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Abstract  15 

Aim 16 

The distribution of overmature forests in metropolitan France is poorly known, with only a few well-studied prominent 17 

sites, and has never been evaluated countrywide. Here, we modelled French forest reserves’ time since the last 18 

harvesting operation - a proxy for forest maturity - then inferred the current statistical distribution of overmature 19 

forests (i.e. forests over 50 years without harvesting) in France. 20 

 21 

Location 22 

Metropolitan France 23 

 24 

Methods 25 

We used inventories from forest reserves and managed forests to calibrate a generalised linear mixed model 26 

explaining the time since the last harvesting with selected structural attributes and environmental variables. We then 27 

projected this model on the independent National Forest Inventory dataset. We thus obtained an updated estimation 28 

of the proportion and a rough distribution of overmature forest stands in metropolitan France. 29 

 30 

Results 31 

We found that high basal area of very large trees, high volumes of standing and downed deadwood, high diversity of 32 

tree-related microhabitats and more marginally diversity of decay stages best characterized the time since the last 33 

harvesting. Volumes of stumps and high density of coppices translating legacy of past forest management also 34 

distinguished more overmature plots. Our projection yielded an estimated 3% of French forests over 50 years without 35 

harvesting mostly located in more inaccessible areas (i.e. mountainous areas) and a promising proportion of future 36 

overmature forests if left unharvested.  37 

 38 

 39 

Main conclusions 40 

Our study showed that the time since the last harvesting is a good proxy for a combination of stand structure attributes 41 

key in characterising overmature temperate forests. It gives the first robust statistical estimate of the proportion of 42 

overmature forests and may serve to report on their status in metropolitan France. Our method could be implemented 43 

at a larger spatial scale, notably in countries with accessible National Forest Inventory and calibration data, to produce 44 

indicators at international level. 45 

 46 
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1 | INTRODUCTION 51 

 52 

Old-growth forests have a key role in the mitigation of climate change. They act as carbon storage and sinks 53 

(Achard & Hansen, 2012; Frey et al., 2016; Luyssaert et al., 2008). They have a role in the protection of water resources 54 

and the prevention of soil erosion (Brockerhoff et al., 2017; Watson et al., 2018) and also host a myriad of features 55 

with high conservation value promoting biodiversity (Bauhus et al., 2009; Burrascano et al., 2013; Larrieu et al., 2018; 56 

Paillet et al., 2010, 2015, 2017).  57 

Wirth et al., (2009) present various ways to define forest maturity. Their structural definition is a combination 58 

of dominant tree species’ age and estimated longevity, with stands considered old-growth if they harbour dominant 59 

species older than half of their longevity. In practice, this definition is problematic in that (1) tree age is best 60 

determined by core sampling, a tedious task which may underestimate tree age (Speer, 2009) and (2) longevity is not 61 

a well-known species feature, it depends on various factors and might be biased by the long history of forest 62 

management displayed in European forests, resulting in most trees being harvested before they die of natural 63 

senescence (Cateau et al., 2015). To work around those issues, international reporting generally uses the time since 64 

the last harvesting as a proxy for forest maturity or naturalness (see indicator 4.3 in the State of Europe’s forests, 65 

(Forest Europe, 2020). By “harvesting” we considered any human intervention extracting wood biomass from the 66 

forest, including various harvesting intensity and management regime, ranging anywhere from thinning to final cut, 67 

and from strict forest reserves to regularly harvested forests. Indeed, whatever their degree of maturity, forests bear 68 

the legacy of past – sometimes intensive – forest use in their stand structure, notably silvicultural treatments such as 69 

coppice-with-standards (Lassauce et al., 2012). The use of the time since the last harvesting is a way of assessing the 70 

degree of naturalness of the forest in question, with increased occurrence of maturity feature or structural attributes 71 

in older unmanaged plots. Those plots display more trees with larger diameters at breast height (Burrascano et al., 72 

2013; Heiri et al., 2009; Paillet et al., 2015), a higher abundance of tree-related microhabitats (Larrieu et al., 2018; 73 

Paillet et al., 2017; Winter & Möller, 2008) along with high volumes of deadwood (Harmon, 2009; Siitonen et al., 2000). 74 

Those specific structural attributes harboured by more mature forests also have high conservation value for 75 

biodiversity (Bauhus et al., 2009; Burrascano et al., 2013; Siitonen et al., 2000).  76 

In France, it is acknowledged that 50 years of abandonment are a minimum for a forest to display sufficient 77 

maturity features (MAAF & IGN, 2016). Such a threshold may not qualify a given forest as “old-growth”, but still 78 

represents a transition phase towards this state. We herein call these forests “overmature” (Wirth et al., 2009) and 79 

distinguish them  from primary forests which, according to the Food and Agriculture Organisation are forests with no 80 

clearly visible indications of human activities and disturbance (FAO, 2015). However primary forests patches – like any 81 

forest with natural succession - can be at various stand succession stages and levels of maturity including overmature 82 

and old-growth. 83 

Despite the many services they provide (Paillet et al., 2010; Watson et al., 2018) overmature and primary 84 

forests remain scarce at the global scale, especially in western Europe and most are, as yet, unprotected (Forest 85 

Europe, 2015; Sabatini et al., 2018; Sabatini, Keeton, et al., 2020). In their report for the European Commission, 86 
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Barredo et al., (2021) assessed that primary and overmature forests constituted 2.4% of forested area in Europe. There 87 

is a recognised need for a global map of old-growth and primary forest patches (Barredo et al., 2021; Chiarucci & 88 

Piovesan, 2020) and the “EU Biodiversity Strategy for 2030” explicitly mentions that “it will  be  crucial  to  define, map, 89 

monitor and strictly protect all the EU’s remaining primary and old-growth forests” notably by designating at least 10% 90 

of Europe's land to strict protection (European Commission, 2020). Indeed, the restoration of degraded forest is often 91 

more costly than to conserve existing ecosystems, and forest degradation can only be partially reversed on a 92 

reasonable time scale (Chazdon, 2008). However, studies of high conservation value forests such as overmature forests 93 

in France have targeted, to date, only a few emblematic reserves (Christensen et al., 2005; Mountford, 2002; Pontailler 94 

et al., 1997). (Sabatini, Keeton, et al., 2020) evaluated the area of primary forests in France to less than 0.1% of the 95 

forested area and the sole estimation for the proportion of overmature forest stands in France dates back to 1993 and 96 

was evaluated to about 3% (MAAPRAT-IFN, 2011). This estimation has not been updated since and relied more on 97 

expertise rather than sound data or rigorous analytical approach. There is therefore a knowledge gap concerning the 98 

proportion, distribution and overall characterisation of overmature forests that needs to be filled.  99 

 100 

 In this study, we used inventories of forest stand structure issued from forest reserves and managed forests 101 

to calibrate a generalised linear mixed model explaining the time since the last harvesting with selected attributes of 102 

maturity, herein called structural variables, combined with environmental variables. We hypothesized that time since 103 

the last harvesting would be positively influenced by a high volume of large logs and snags (Heiri et al., 2009; Portier 104 

et al., 2020; Siitonen et al., 2000) and high basal area of very large trees (Burrascano et al., 2013; Paillet et al., 2015) a 105 

high diversity of tree-related microhabitats (Larrieu et al., 2018; Paillet et al., 2017; Winter & Möller, 2008) and decay 106 

stages (Siitonen et al., 2000; Winter & Möller, 2008; Wirth et al., 2009). We expected time since last harvesting to be 107 

negatively correlated with the volume of stumps (Paillet et al., 2015; Siitonen et al., 2000) and stem density of medium 108 

trees (Paillet et al., 2015). We also tested other structural variables that would bear witness to past management (e.g. 109 

proportion of coppice). Finally, we expected overmature forests to be in more remote and less productive areas 110 

(Levers et al., 2014, 2018; Sabatini et al., 2018), hence positively correlated with elevation or slope and soil fertility.  111 

We projected this model on an independent nation-wide dataset issued from the National Forest Inventory. 112 

Thus, we obtained an updated estimation of the proportion and a rough distribution of overmature forest stands (i.e. 113 

abandoned for over 50 years) in metropolitan France. This study may serve to report on the status of overmature 114 

forests in France, as well as a guideline for inferring their distribution in other North-western European countries using 115 

maturity features in similar temperate forest types. 116 

 117 

2 | METHODS 118 

2.1 | Training data 119 

 120 
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We worked with a dataset issued from a monitoring program that has been implementing forest stand structure 121 

description in French forest reserves since 2005, to monitor the evolution of forest attributes. A stratified sample 122 

design encompasses the variability within a forest reserve. Plots can be comprised in strict forests reserves, where 123 

harvesting is prohibited, special forest reserves, where management targets specific habitat or species (e.g. forest 124 

ponds), as well as managed stands in forests reserves where harvesting may be allowed under certain conditions (Table 125 

1). They also include plots in both private and public forests, but with a vast majority of public forests. One forest 126 

reserve can host up to several hundred plots depending on the size of the represented area and its layout. We kept 127 

the plots where the time since the last harvesting was recorded by forest managers, by looking into current or old 128 

management plans. Plots from this network show a larger abandonment gradient than French forests in general (see 129 

Appendix S1 Figure S1.1 in Supporting Information).  130 

Plot status 
 

Number of 
plots 

Mean basal 
area of living 
trees (m².ha-1) 

Mean volume of 
standing dead 
trees (m3.ha-1) 

Mean volume of 
downed 
deadwood 
(m3.ha-1) 

Mean time since 
the last 
harvesting 
(years) 

Managed stands 
in forest 
reserves 

228 34.9 10.6 17.4 30.8 

Special forest 
reserves 

2628 27.6 14.5 28.8 31.5 

Strict forest 
reserves 

1872 28.4 10.7 20.4 33.6 

Table 1: Description of the training dataset (4 728 plots and 71 forest reserves) split by the management status of plots. Special forest 131 
reserves include future forest reserves (not yet designated), national and regional forest reserves and Natura 2000 sites 132 

4 728 plots in 71 reserves were used for modelling (Figure 1). We only kept the plots with spatial coordinates 133 

and classified into one of the six most abundant tree species groups (see below and Appendix S4 for definitions): pure 134 

spruce and fir plots accounted for 11% of the total plots, pure beech plots accounted for 14%, mixed broadleaved 135 

[over 75% of multispecies broadleaved] 32%, mostly broadleaved [50 – 75% of broadleaved] 8%, mostly conifers [50 136 

– 75% of coniferous] 9% and pure deciduous oaks 7% (Fig.S1.2). As a comparison, overall French production forests is 137 

comprised of 65% of broadleaved forests, 21% of coniferous forests and 11% of forests with either mostly broadleaves 138 

or mostly coniferous trees [50 - 75 % of basal area] (MAAF & IGN, 2016). Our modelling dataset has therefore slightly 139 

less coniferous and broadleaved and more “mostly coniferous” or “mostly broadleaved” forest types than the average 140 

French forest.  141 

 142 
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 143 

Figure 1: Distribution of 71 reserves from the training data kept for modelling. Each pie plot shows the forest types of the reserve’s 144 
constituting plots. The green background shows French forest cover (from the National Forest Inventory).  145 

We did not keep plots over 110 years since the last harvesting as we judged the data too unreliable. We left 146 

out reserves with less than 20 remaining plots to ensure sufficient data for the averaging of the random effect (see 147 

below). We graphically checked that forests subjected to different management regimes were equivalent in terms of 148 

site fertility, precipitation and mean annual temperature, therefore not introducing bias in the dataset (Appendix S1, 149 

Figure S1.3). 150 

The protocol for the stand structure surveys is detailed in Appendix S2. Living trees with a diameter at breast 151 

height (DBH) under 30 cm were all measured within a fixed 10 m radius plot. Larger trees were measured if they were 152 

comprised in a 3% angle count sampling (Paillet et al., 2015). Coppice and standard stems were differentiated. Each 153 

shoot from the same stump was measured individually. Standing deadwood under 30 cm and standing and downed 154 

deadwood over 30 cm in diameter were measured respectively on a 10 m and 20 m radius plot, discriminating between 155 

stumps (under 130 cm tall) snags and standing dead trees. Downed deadwood with a diameter under 30 cm was 156 

surveyed on three linear 20 m long transects. Decay stage as well as diameter were recorded off all sampled deadwood 157 

(see Appendix S2). Finally, tree-related microhabitat surveys followed the protocol detailed in Paillet et al. (2019) by 158 

visually inspecting trees and recording presence of microhabitats. Different microhabitat classifications have been 159 
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used over the years. Therefore, we created a harmonized classification based on Larrieu et al. (2018)’s microhabitat 160 

forms to narrow it down to one homogeneous classification (Appendix S3). 161 

 162 

2.2 | Structural attributes and environmental variables 163 

 164 

Among the attributes surveyed, we kept the basal area, volume and stem density of living trees, volume of 165 

standing deadwood (stumps, snags and standing dead trees) and volume of downed deadwood (logs) (see Paillet et 166 

al., 2015). Diversity of decay stages and tree-related microhabitats were calculated at the plot scale with the Shannon 167 

index, one type corresponding to either decay stage associated with tree species and type of deadwood (stump, snag, 168 

standing dead tree, downed deadwood) or tree-related microhabitat form associated with species and type of wood 169 

(dead or alive) (see Table 2). We split observations into diameter classes: small trees [DBH: 17.5, 27.5cm], medium 170 

trees [27.5, 47.5], large trees [47.5, 67.5] and very large trees over 67.5 cm. 171 

Table 2: Structural features chosen as candidate variables for modelling the time since the last harvesting of forest plots, and the 172 
literature supporting them.  173 
“Hypothesis” relates to the expected effect of the structural feature on the time since the last harvesting: 174 

« + » (« - ») means we expect a positive (negative) effect of the feature on the time since the last harvesting  175 
« ++ » means it is a very common feature found in most articles dealing with forest maturity.  176 

This table is based on a literature review, but other attributes were tested considering the local specificities of our dataset. 177 

 178 

Structural 
features 
 

Variable Hypothesis Source 

Living trees Density and basal area of large and 

very large trees  

++ Burrascano et al., 2013; Paillet et al., 2015 

Density of living trees + Portier et al., 2020 

Total basal area of living trees + Heiri et al., 2009 

Density of medium sized living 

trees 

- Paillet et al., 2015 

Decay stages Diversity of decay stages + Siitonen et al., 2000; Winter & Möller, 2008; 

Wirth et al., 2009 

Tree-related 

microhabitats 

Diversity of tree-related 

microhabitats 

++ Larrieu et al., 2018; Paillet et al., 2017; 

Winter & Möller, 2008 

Downed 

deadwood 

Volume of downed deadwood ++ Bauhus et al., 2009; Heiri et al., 2009; Paillet 

et al., 2015; Portier et al., 2020; Siitonen et 

al., 2000; Vandekerkhove et al., 2009 

Standing 

deadwood 

 

Volume of stumps - Paillet et al., 2015; Siitonen et al., 2000 

Volume of standing dead trees and 

snags 

++ Heiri et al., 2009; Portier et al., 2020; 

Siitonen et al., 2000 

 179 

We extracted environmental variables using plot locations (see Table 3 for the sources):  180 

- edaphic: plant-bioindicated soil pH, C/N ratio, maximum water holding capacity;  181 

- climatic: mean annual temperature and precipitation;  182 
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- topographic: elevation, slope, aspect. 183 

Three other environmental composite variables were also extracted or calculated:   184 

- a site index extracted from Toïgo et al., (2015)’s model predicting tree growth as a function of tree species and 185 

environmental variables, to account for site productivity; 186 

- the forested region or “sylvoécorégions” accounted for the regional context of the plots. It is a classification 187 

of forested areas in metropolitan France within which factors discriminant for forestry and habitat distribution 188 

are homogeneous (L’IF n°14, 2011) ; 189 

- the plot’s forest type which was created based on an adaptation of an existing French classification, the BD 190 

forêt version 2 (IGN, 2016a). This classification establishes forest types for plots based on the relative tree 191 

cover of each species present on said plot. We approximated tree cover with tree basal area (Figure S1. 4), as 192 

tree cover was not accounted for in the reserve inventories. As an example, a plot was considered “pure” 193 

when over 75% of the total basal area of the plot was composed of a single species (or a grouping of species 194 

with similar characteristics, see Appendix S4 and Figure S1.3 for more details).  195 

The data concerning the nature of the last harvest was not consistent over the plots and only concerned a fraction of 196 

the dataset and was not sufficient to build a variable characterising the intensity of harvesting, which is why we settled 197 

not to include this information (see Discussion). 198 

Table 3: Environmental covariates tested for modelling and where they were sourced 199 

Category Covariate Units Source 

Topographic Elevation Meters BD ALTI v.2.0 : digital terrain model 25 m 

(IGN) 

Slope Degrees Calculated1 with BD ALTI v.2.0  

cosine(Aspect) - Calculated with BD ALTI v.2.0  

Climatic  Mean annual 

temperature (BIO2) 

degrees Celsius WorldClim v.2 (Fick & Hijmans, 2017) 

Total annual 

precipitation (BIO12) 

Millimetres WorldClim v.2  

Edaphic Soil pH2 - DIGITALIS dataset - (Laboratoire SILVA, n.d.) 

(Université de Lorraine-AgroParisTech-INRA)  

 C/N ratio2 - DIGITALIS dataset 

 Maximum water 

holding capacity3 

Millimetres/cm of 

soil 

DIGITALIS dataset 

Forest type  - Adaptation of the BD forêt v.2 (IGN, 2016a) 

Forested region SylvoEcoRegion - National Forest Inventory (L’IF n°14, 2011) 

Site index  - (Toïgo et al., 2015) 

200 

1 « terrain » function from R package raster (Hijmans, 2020) 201 
2 The C/N ratio and soil pH are bioindicated for the first soil layer using floristic surveys from the National Forest Inventory (NFI) and 202 
the EcoPlant database (Gégout et al., 2005) 203 
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3 The maximum water holding capacity is calculated with the measurements from soil surveys from the first soil layer by the National 204 
Forest Inventory, and generalised to 500m² resolution maps (Laboratoire SILVA, n.d.) 205 

 206 

2.3 | Statistical methods 207 

 208 

We proceeded to data exploration following (Zuur et al., 2010). All statistical analyses were processed in R 209 

version 3.6.3 (R Core Team, 2020). We modelled the time since the last harvesting (dependant variable) as a function 210 

of stand structure and environmental variables using a generalized linear mixed model, with gamma error distribution, 211 

log link, and a “site” random effect, to take into account the nested sampling design (Bolker et al., 2009). We used the 212 

R package glmmTMB version 1.0.1 (Brooks et al., 2017) for modelling.  213 

The model aimed at pinpointing maturity features relevant to characterising the time since the last harvesting. 214 

We used ascendant variable selection based on AIC (Akaike Information Criterion) scores to select the best model. 215 

Considering the large size of our dataset, we chose a conservative five-point AIC threshold instead of the standard 216 

two-points threshold. First, we selected stand structure variables, to which we added environmental variables and 217 

interactions (see Table 4). We tested first order interactions as well as a few second order interactions that made 218 

biological sense. We favoured more specific variables over more generalized ones (e.g. standing and downed 219 

deadwood volumes separately vs. total deadwood volume). We checked for correlation and multicollinearity of model 220 

covariates, with variance inflation factors (VIF) under five (Zuur et al., 2010).  221 

We validated the final model following (Zuur & Ieno, 2016) by plotting residuals against fitted values, variables 222 

included and variables excluded from the model. We checked for overfitting with 50 iterations of 10-fold cross 223 

validation (i.e. random sets of 10% of the plots were consecutively removed from the training dataset). Variance 224 

explained by the model was evaluated using a pseudo r-squared (Nakagawa & Schielzeth, 2013) with the piecewiseSEM 225 

package (Lefcheck, 2016). This gives a pseudo r-squared measure for generalised linear mixed model, yielding a 226 

marginal r-squared which is the variance explained by the fixed factors, and a conditional r-squared, variance explained 227 

by the fixed and random effects. We looked at estimate and prediction accuracy (measure of the coefficient of 228 

determination r-squared from the linear regression of predicted versus observed time since the last harvesting) 229 

variations (Harrel, 2015). Model robustness was also considered by leaving out reserves one by one and running the 230 

model to check for influential or problematic reserves. 231 

 232 

2.4 | Prediction on systematic nation-wide dataset 233 

 234 

We predicted the time since the last harvesting on a systematic nation-wide National Forest Inventory (NFI) 235 

dataset. Each year, about 6500 NFI forest plots are surveyed, recording measurements of stand structure, soil related 236 

and floristic variables. We inferred time since the last harvesting on an NFI subset from the 2012 to 2018 survey 237 

campaigns, assuming that most of the plots included have not been subjected to major disturbance during this six-238 

year period, so that our estimations can be valid currently. These plots include both public and private forests, for 239 

faithful representation of French forests. We selected 27 075 plots out of the 38 432 NFI plots available, distributed 240 
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over the whole French territory using the same selection criteria as for training plots (e.g. forest types, see map Fig. 241 

S5.1). Since the sampling design of NFI plots is not homogeneous for all regions and forest types, we weighted the 242 

time since the last harvesting estimations by the relative proportion of each forest type per forested region 243 

(« sylvoécorégion ») to account for this heterogeneity. 244 

For the prediction, the final model was simplified as the NFI data was missing some forest attributes included 245 

in the initial model fitted on the learning dataset (e.g. tree-related microhabitats, volume of stumps). We ran a new 246 

variable selection process with only the variables available in the NFI dataset, which led to the simplified model. 247 

Resulting raw model estimates were then used for prediction where we dropped the random site effect since it did 248 

not apply to the non-nested NFI data and used a Generalised Linear Model with a gamma distribution and log link. We 249 

then calculated the 95% confidence intervals of the raw model estimates using the variance-covariance matrix from 250 

the fitted model. 251 

3 | RESULTS 252 

2.1 | Description of the training dataset  253 

 254 

Our training dataset plots displayed a mean volume of deadwood of 25 m3/ha, which is above the national 255 

average for similar forest types - about 18 m3/ha. The volume of standing deadwood was of 13 m3/ha for our plots, 256 

against 8 m3/ha for the equivalent National Forest Inventory plots. Finally, the mean volume of living trees on our plots 257 

was of 303 m3/ha, against a national average of 208 m3/ha. 258 

Our dataset showed an overall decreasing trend for the number of plots as the time since the last harvesting 259 

got longer, and especially few plots with abandonment times over 75 years since the last harvesting (Appendix S1). 260 

The median time since the last harvesting was of 26 years. 261 

 262 

3.2 | Selected model 263 

 264 

The volume of stumps at an early decay stage was negatively correlated to the time since the last harvesting 265 

(standardised β = -0.051, SE = 0.007) (Table 4). The second most important variable, coppice density, had a slightly 266 

milder magnitude and was positively correlated to the time since the last harvesting (β = 0.043, SE = 0.009). Other 267 

positively correlated variables, but at a lower magnitude than coppices, were the basal area of very large trees (β = 268 

0.026, SE = 0.008), the volume of standing deadwood, i.e. snags and standing dead trees (β = 0.021, SE = 0.007), the 269 

volume of downed deadwood (β = 0.018, SE = 0.007) and the diversity of tree-related microhabitats (β = 0.023, SE = 270 

0.008).  Furthermore, diversity of decay stages had a negative influence on the time since the last harvesting, but was 271 

only marginally significant (β = -0.012, SE= 0.007).  272 

Concerning the environmental covariates, soil pH had a strong positive influence on the time since the last 273 

harvesting (β = 0.195, SE = 0.048). The same went for mean annual precipitation (β = 0.211, SE = 0.040). Precipitation 274 

and pH were the two effects with the strongest magnitude. 275 
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 276 

Table 4: Standardised estimates, standard errors, and p-values for the variables from the generalised linear mixed model with a 277 
gamma distribution, log link and “site” random effect explaining the time since the last harvesting of French forest plots.   ‘***’ < 0.001, 278 
‘**’ < 0.01, ‘*’  < 0.05, ‘(*)’ <0.1. Volumes and basal areas are all per hectare values. 279 

  Standardised 

estimates (𝜷) 

Standard error 

(SE) 

p-value (p) 

 Intercept 3.160    0.093   < 2e-16   *** 

St
ru

ct
u

ra
l c

o
va

ri
a

te
s 

Volume of stumps at early decay stages -0.051    0.007   2.53e-13 *** 

Coppice density 0.043     0.009     3.29e-06 *** 

Volume of standing deadwood 0.021    0.007     0.001 ** 

Volume of downed deadwood 0.018   0.007     0.011 *   

Diversity of tree-related microhabitats 0.029    0.008     3.51e-04 *** 

Basal area of very large living trees 0.026   0.008     0.001 ** 

Diversity of decay stages -0.012       0.007 0.094 (*)  

En
vi

ro
n

m
en

ta
l 

co
va

ri
a

te
s 

Mean annual precipitation 0.211    0.040     1.25e-07 *** 

Soil pH 0.195     0.048     5.34e-05 *** 

In
te

ra
ct

io
n

s 

Volume of stumps at an early decay stage : 

Precipitations 

0.025    0.007     6.55e-4 *** 

Downed deadwood : Precipitation  -0.016    0.007    0.025 *   

Basal area of very large trees : Precipitation -0.024       0.007 4.39e-4 *** 

Diversity of decay stages : Precipitation -0.019    0.007     0.005 ** 

Volume of stumps at an early decay stage : pH 0.013     0.005     0.015 *   

Volume of downed deadwood : pH -0.012    0.006    0.044 *   

Precipitation : pH -0.286      0.035    < 2e-16 *** 

 280 

The estimates also showed that when precipitation or pH increased, the negative effect of the volume of 281 

stumps on the time since the last harvesting decreased (closer to zero) (β = 0.025, p = 0.007; β = 0.013, SE = 0.005, 282 

respectively) and the positive effect of the volume of downed deadwood decreased (β = -0.016, SE = 0.007 ; β = -0.012, 283 

SE = 0.006, respectively) (Figure 2). Positive effect of the basal area of very large trees also decreased with higher 284 

precipitation (β = -0.024, SE = 0.007). Furthermore, the negative influence of the diversity of decay stages on the time 285 

since the last harvesting decreased with more abundant precipitation (β = -0.019, SE = 0.007). Finally, when the soil 286 
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pH increased, precipitation had a decreasing positive effect on the time since the last harvesting (β = -0.286, SE = 287 

0.035) (see Fig.S5.2 for other illustrations). 288 

 289 

 290 

Figure 2: Illustration of the interactions between volume of downed deadwood (β = -0.012, p = 0.044) and volume of stumps at an 291 
early decay stage (β = 0.013, p = 0.015) with soil pH. Lines represent a generalised linear model with a log link and 95% confidence 292 
interval for pH values over and under 6.5. 293 

3.3 | Model validation 294 

 295 

The distribution of model residuals as a function of the predicted time since the last harvesting showed 296 

relative homogeneity, except for a few plots with overestimated time since the last harvesting (Fig. S6. 1). When 297 

checked, the residual distribution as a function of the variables both included and excluded from the model showed 298 

no noticeable patterns, except for some badly estimated time since the last harvesting on the lower tail of the x axis 299 

for the variables “volume of stumps at early decay stages”, “volume of downed deadwood”, “volume of standing 300 

deadwood”, and “coppice density”. The pseudo r-squared yielded a marginal r-squared of 0.45 and a conditional r-301 

squared of 0.68.  302 

Reserves were removed one at a time from the training data to check for any particularly influential sites 303 

regarding the estimated values. Cross validation results showed that predictions were relatively constant, with an r-304 

squared linking the predicted values to the observed values varying between 0.756 and 0.900 over 500 simulations 305 

(Fig. S6.2). The estimated values were quite stable except for the covariates soil pH and precipitation, as well as for 306 

the interaction between those two variables for which estimates slightly varied during simulations, but to a negligible 307 

extent (Fig. S6. 3).  308 

 309 
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3.4 | Model projection on the National Forest Inventory dataset 310 

 311 

The simplified model used for projection (see Table S6.1) was comprised of four structural features: the 312 

volume of standing and downed deadwood, coppice density and basal area of very large trees, as well as the two 313 

environmental covariates soil pH and precipitation. As for interactions, downed deadwood and basal area of very large 314 

trees interacted negatively with precipitation, and coppice density interacted negatively with soil pH. Finally, there 315 

was still a negative interaction between soil pH and precipitation. 316 

We predicted an average time since the last harvesting of 27 years for the NFI plots issued from the 2012 to 317 

2018 campaigns (including only the six forest types kept for modelling). According to this projection, about 3.1% of 318 

French metropolitan forest has reached or surpassed 50 years of abandonment. 43% of forests were predicted to have 319 

a time since the last harvesting between 26 and 50 years. When varying this threshold from 30 to 300 years of 320 

abandonment, we observe the decreasing trend presented in Figure 3a. The confidence interval is very large, around 321 

30 years without harvesting and gets narrower with higher thresholds. There are very few forests predicted above 75 322 

years without harvesting, which is in accordance with the distribution of the time since the last harvesting in the 323 

training dataset (French forest reserves). Plots with longer predicted time since the last harvesting are mainly 324 

distributed in mountainous regions of eastern France (Vosges, southern Alps and Jura), as well as in the south of France 325 

(Pyrenees and Cevennes) and Corsica (Figure 3d). 326 
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 327 

 328 

Figure 3: (a) represents how the maturity threshold changes the predicted proportion of overmature forests. The ribbon represents 329 
the 95% confidence interval. The 50-year threshold (vertical bar) is the one we chose for this study. The confidence interval narrows 330 
very fast and at 50 years without harvesting it ranges from 1 to 9%. (b) NFI plots with predicted time since the last harvesting under 331 
26 years, (c) NFI plots with predicted time since the last harvesting between 26 and 50 years, (d) NFI plots with predicted time since 332 
the last harvesting over 50 years. 333 

4 | DISCUSSION 334 

We evaluated French forest’s state of maturity using time since the last harvesting and showed that most 335 

maturity features highlighted in the literature did indeed explain time since the last harvesting quite well, and that 336 

density of coppices, translating legacy of past forest management, also played a role in the modelling approach. Our 337 

projection gives the first robust statistical estimate of the proportion of overmature forests in metropolitan France 338 

and may serve to report on their status. Our approach allowed us to account for the multidimensional and continuous 339 

nature of forest maturity, and differs from previous studies (e.g. Larrieu et al., 2019a; Paillet et al., 2015; 340 
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Vandekerkhove, 2005) which used the opposite reasoning: modelling structural variables as a function of the time 341 

since the last harvesting.  342 

 343 

4.1 | Influence of parameters on the models 344 

 345 

As expected, the volume of stumps at early decay stages was negatively correlated with the time since the last 346 

harvesting (Paillet et al., 2015; Siitonen et al., 2000). When plots are unharvested for a long period of time, stumps 347 

that originated from human disturbance decompose, hence the decline in abundance of fresh stumps in more 348 

overmature forests. Stumps at an early decay stage are characteristic of recent harvesting, and their absence is a token 349 

of longer abandonment times. 350 

Higher basal area of very large living trees is also a known characteristic of overmature forests (Bauhus et al., 351 

2009; Burrascano et al., 2013; Paillet et al., 2015). Additionally, larger trees often bear higher diversity of tree-related 352 

microhabitats and therefore promote biodiversity at the stand level (Larrieu et al., 2018; Paillet et al., 2017): tree-353 

related microhabitats are the result of tree alteration by biotic and abiotic processes (Larrieu et al., 2018), their 354 

presence is thus mostly related to the timespan during which trees are subjected to those processes and thus to time 355 

since the last harvesting.  356 

We also expected the diversity of decay stages on standing and downed deadwood to be positively correlated 357 

to the time since the last harvesting. Although it was, the observed effect was only marginally significant. Wood 358 

decomposition dynamics depend on other factors than time only, such as environmental conditions prone to 359 

microorganisms (Herrmann & Bauhus, 2013), the chemical composition of wood (i.e. species), its diameter, micro-360 

climatic conditions as well as edaphic parameters (Heiri et al., 2009; Přívětivý et al., 2018; Larrieu et al., 2019b). Those 361 

characteristics were not selected in the model interactions, it therefore seems that there is no univocal correlation 362 

between the time since the last harvesting and decay stages, hence the marginal effect observed here. Moreover, 363 

secondary disturbances generating deadwood may vary in nature, severity and temporality, meaning that even in 364 

overmature forests, deadwood characteristics can be variable (Brassard & Chen, 2006). Some punctual disturbances 365 

such as storms or droughts can result in locally high amounts of deadwood (Aakala, 2011; Harmon, 2009). In our case, 366 

some plots have been subjected to major disturbances, e.g. the 1999 storms that caused damage to a large portion of 367 

the French forests, which could still bear the legacy of those events. Additionally, managed stands are usually 368 

harvested decades before they reach “true” old-growth stage, meaning that recently abandoned forests will hold 369 

deadwood at relatively low decay stages and may need several decades to have an important diversity of decay stages. 370 

Thus, Wirth et al. (2009) suggested that deadwood volume and decay stages could potentially be misleading and could 371 

not be taken as sole indicators of maturity. Nevertheless, our results confirm that deadwood is a key component for 372 

characterising overmature French forests, but that they may still be at too early successional stages to see the true 373 

shape of the relationship between diversity of decay stages and the time since the last harvesting. This also might be  374 

more complex than anticipated considering the diversity of abiotic and biotic processes that come into play in 375 

deadwood decay rates and accumulation (Harmon, 2009). 376 
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Finally, coppice density was strongly and positively correlated to the time since the last harvesting. Coppicing 377 

is a legacy of past management for fuel (heating) and is a practice that has decreased over the last century (IGN, 378 

2016b). Many coppice-with-standards plots have now been abandoned (Unrau et al., 2018) resulting in what Lassauce 379 

et al. (2012) call “coppice-with-standard stands with an overmature component”. In their study, they also found a 380 

significant increase in the basal area of large living trees and downed deadwood for more overmature plots with a 381 

history of coppicing. This trend seems widespread among stands with a history of coppice-with-standard management.  382 

Indeed, Becker et al., (2017) also noticed that after 40 years of abandonment of coppicing, legacies of this practice still 383 

remained in species composition. These overmature coppices could constitute another form of overmature forests 384 

(Lassauce et al., 2012), and it would be interesting to consider coppice density as another indicator for forest maturity, 385 

especially since coppice forests currently represent up to 15% of Europe’s forest resources (Unrau et al., 2018). 386 

 Environmental variables were amongst the strongest positive predictors for the time since the last harvesting. 387 

We related the importance of mean annual precipitation and soil pH to soil fertility : soil nutrients need to be in a 388 

soluble form and are most available at a neutral soil pH of 6.5 to 7.5 (Jense, 2010; Landsberg & Gower, 1997). The 389 

forest reserve plots have a mean soil pH of 5.3, meaning that increased pH in our plots corresponds to optimum 390 

nutrient absorption potential, hence the observed positive correlation between soil pH and time since the last 391 

harvesting. Surprisingly, elevation was not selected in favour of mean annual precipitation). Precipitation was 392 

nonetheless strongly correlated to elevation (correlation coefficient = 0.9). Precipitation seems to have a broader role 393 

and a higher explanatory power than elevation, since they condition both biotic (tree growth, decay rates, soil 394 

properties) and abiotic (atmospheric humidity) phenomena. Indeed, environmental variables interacted significantly 395 

with stand characteristics in the model, notably interactions between deadwood volumes and pH/precipitation. Plots 396 

with higher pH and higher precipitation (better site productivity), have the potential for high basal areas and high stem 397 

densities to be reached sooner.  Nonetheless, we observed a negative interaction between soil pH and precipitation, 398 

meaning that overall, productive sites show shorter times since the last harvesting. Rainier plots and/or plots with 399 

higher soil pH conditions showed lessened negative effects of the volume of stumps, and positive effect of the diversity 400 

of decay stages, the volume of downed deadwood and basal area of very large trees on the time since the last 401 

harvesting. These interactions could be linked to either (1) known productive sites (higher precipitation and soil pH) 402 

being more attractive for harvesting, e.g. productive sites with high increment and larger trees, which would be 403 

favoured for harvesting, or (2) sites with heavier rainfall (> 1000 mm) are subjected to faster decomposition rates of 404 

deadwood (Zell et al., 2009) compared to drier surroundings, resulting in misleadingly low time since the last 405 

harvesting for those rainier plots.   406 

 407 

4.2 | The projected proportion and rough distribution of overmature forests 408 

 409 

 Our model predicted that 3.1% of the national forested area has a time since the last harvesting above 50 410 

years (95% confidence interval ranges from 1 to 9 %). This prediction is valid only for the six forest types kept for 411 

modelling (pure beech, pure deciduous oak, mixed broadleaved, pure spruce and/or fir, mostly broadleaved and 412 
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mostly coniferous types). The mean prediction is of the same order of magnitude as the early expertise that had been 413 

proposed in 1993 (MAAPRAT-IFN, 2011). The fact that this proportion has not changed since the 90s is somewhat 414 

surprising but given that this former estimation came with no statistical background, it is quite an unreliable figure to 415 

compare to. The only recent reliable numbers are those reported concerning the area of primary forests, which 416 

account for less than 0.1% of the national forested area (Barredo et al., 2021; Sabatini, Bluhm, et al., 2020).  417 

As expected, forested areas abandoned more than 50 years ago seem to occur mostly in more remote and 418 

mountainous areas in southern and eastern France (Figure 3c). Indeed, it has been shown that accessibility and 419 

favourable topographic, climatic, and soil conditions characterise intensively managed areas, whereas de-420 

intensification and abandonment trends occur in more marginal areas (Levers et al., 2014, 2018; Sabatini et al., 2018) 421 

Additionally, abandoned forests have been found to be located in low productivity and low accessibility areas in the 422 

past (Joppa & Pfaff, 2009; Lõhmus et al., 2004; Svensson et al., 2020).  423 

More interestingly, our prediction also showed evidence of a large proportion (43%) of French forest with 424 

abandonment times comprised between 26 and 50 years, with “hotspots” such as Corsica, Brittany and middle-eastern 425 

France. This figure is however to be tempered, as it comes with considerable uncertainty, the lower bound of the 426 

confidence interval being around 12.5%. For example, the spatial pattern in the projection of time since the last 427 

harvesting in the area of Britany (West of France) could be linked to the scarcity of training data for this area combined 428 

with the fact that it is a less forested region with high precipitation, making the model particularly sensitive and 429 

probably not quite fitted for this particular region.  430 

Nonetheless, they represent a significant proportion of French forests and could - in a relatively close future - 431 

display interesting conservation attributes which would deserve more attention, especially if some larger continuous 432 

and connected areas, particularly interesting for biodiversity, could be restored or managed sensibly (Bauhus et al., 433 

2009; Portier et al., 2020; Sabatini et al., 2020). We mainly associate this large proportion with the fact that French 434 

metropolitan forested surface area has doubled over the last century mostly due to land abandonment and now 435 

occupies 31% of the metropolitan France or about 16.9 million hectares (IGN, 2018). While strict forest reserves 436 

compose a mere 0.15% of the French forests (Cateau et al., 2017), private forests represent 75% of the area (MAAF & 437 

IGN, 2016) and considering that the harvesting in these - often small and fragmented - properties may be low or 438 

inexistent, they could potentially account for this large portion of “in between” forests in our prediction. In addition, 439 

about 60% of the annual biomass increment is actually harvested in France, a phenomenon that feeds the proportion 440 

of forests unharvested for an intermediate timespan. Finally, many of these “in between” forests are in mountainous 441 

areas known for their potential for matured forests (see above).  442 

It is interesting to note those “in between” areas which are not accounted for in most studies and conservation 443 

decisions. If we consider that each country is equally responsible for contributing to the “EU Biodiversity Strategy for 444 

2030” goal for 10% of strictly protected land (European Commission, 2020) and we project this figure on the forest 445 

ecosystem, then France, with 3% of estimated overmature forest – not all protected and probably quite fragmented - 446 

still has a long way to go. But the recognition that areas with high potential for achieving this goal exist and are 447 

identified, is a first step forward. 448 

 449 
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4.3 | Limits and perspectives to our modelling approach 450 

 451 

The distribution of overmature forests predicted by our model should not be taken as a precise map but as an 452 

overview of the state of French forests to this day. Indeed, the plot density is quite scarce with 27 075 plots for the 453 

whole French territory. The time since the last harvesting used for training the model could introduce some error, 454 

since the older the last known harvesting, the more uncertain this estimation becomes. Although the integration of 455 

the volume of coppice in our model is a way to take into account at least part of the harvesting legacy of the plot, we 456 

acknowledge that our model does not consider the intensity of harvesting (e.g. volume of wood harvested, type of 457 

management), and – had this knowledge been available – it would likely have further refined our predictions. In this 458 

regard, private forests issued from land abandonment would differ from forests already in place with similar time since 459 

the last harvesting. One way to take this into account without knowing the plot history would be to offset our 460 

prediction with maps of ancient forests (forests in place since the 1850s), the digitization of which is currently a work 461 

in progress (Bergès & Dupouey, 2021). Another consequence is related to the possible interaction between the 462 

silvicultural treatment and tree related microhabitats. Some trees bearing microhabitats are systematically removed 463 

during thinning operations while stands managed as coppice-with-standards often have smaller trees, that could be 464 

too small to bear many tree-related microhabitat (Paillet et al., 2017).  465 

Additionally, our model would have been more precise had we not removed covariates from the predictive. 466 

This is further proof of the use of surveying stumps and tree-related microhabitats in forest inventories (Paillet et al., 467 

2017). 468 

 469 

The overall results of our study are encouraging, in the sense that a large portion of the French forest has 470 

potential to attain interesting states of maturity in a close future and therefore to contribute to the race against climate 471 

change, by acting as carbon pools (Carey et al., 2001; Portier et al., 2020; Sabatini et al., 2020). In some cases high 472 

carbon storage may even support conservation of biodiversity though trade-offs between carbon stock and 473 

biodiversity have also been found (Sabatini et al., 2019). Further validation, e.g. by crossing our findings with maps 474 

and data on previously studied overmature sites, along with field validation, would enable us to refine our knowledge 475 

of the distribution of more overmature forests, and evaluate the precision of our predictions. These overmature 476 

forests complement the integrated conservation measures in managed forests and constitute a functional network for 477 

forest biodiversity, the efficiency and completeness of which remains to be analysed (Vandekerkhove et al., 2013).  478 

Our results can be used in ensuring that the existing 3% of overmature forest are acknowledged, and our work 479 

can constitute a stepping-stone to further refining our knowledge of the state of maturity of French forests. On a 480 

broader scale, similar methods could be applied for neighbouring temperate North-western European forests with 481 

characteristics and harvesting history alike that of French forests (Sabatini, Bluhm, et al., 2020; Sabatini et al., 2018). 482 

Indeed, since many countries around the world benefit from national forest inventories that provide robust forest 483 

estimates and could be used as independent data to project results of models such as ours (see Tomppo et al., 2010 484 

for a synthesis). The limiting factor is probably the fact that time since last harvesting is not often documented at a 485 

large scale or requires deep historical work to be gathered. We assume that our model could roughly be applied to 486 
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neighbouring countries with similar ecological conditions and forest types (e.g. Germany, Switzerland). Beyond, it 487 

should be necessary to recalibrate the model with sound and local independent field data. Would this process be 488 

applied at a large scale, it would be a complementary source of knowledge to strengthen estimates from other 489 

initiatives (Sabatini et al., 2018; Sabatini, Keeton, et al., 2020) and thus provide more decision tools for the 490 

conservation of primeval and overmature forests that have a crucial role for biodiversity and mitigation of climate 491 

change (Luyssaert et al., 2008; Paillet et al., 2010). 492 
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6 | DATA ACCESSIBILITY 502 

The two datasets we worked with for this study were the Nature Forest Reserve data (PSDRF), ONF-RNF and the French 503 

national forest inventory data (raw data, annual surveys from 2005 to 2018, https://inventaire-504 

forestier.ign.fr/spip.php?rubrique159). 505 

 506 
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