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Abstract:

Multispectral fluorescence imaging coupled with linear unmixing is a form of image data

collection and analysis that uses multiple fluorescent dyes - each measuring a specific

biological signal - that are simultaneously measured and subsequently "unmixed" to provide

a read-out for each individual signal. This strategy allows for measuring multiple signals in a

single data capture session - for example, multiple proteins or RNAs in tissue slices or

cultured cells, but can often result in mixed signals and bleed-through problems across dyes.

Existing spectral unmixing algorithms are not optimized for challenging biological specimens

such as postmortem human brain tissue, and often require manual intervention to extract

spectral signatures. We therefore developed an intuitive, automated, and flexible package

called SUFI: spectral unmixing of fluorescent images

(https://github.com/LieberInstitute/SUFI). This package unmixes multispectral fluorescence

images by automating the extraction of spectral signatures using Vertex Component

Analysis, and then performs one of three unmixing algorithms derived from remote sensing.

We demonstrate these remote sensing algorithms' performance on four unique biological

datasets and compare the results to unmixing results obtained using ZEN Black software

(Zeiss). We lastly integrate our unmixing pipeline into the computational tool dotdotdot that is

used to quantify individual RNA transcripts at single cell resolution in intact tissues and

perform differential expression analysis of smFISH data, and thereby provide a one-stop

solution for multispectral fluorescence image analysis and quantification. In summary, we

provide a robust, automated pipeline to assist biologists with improved spectral unmixing of

multispectral fluorescence images.
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Introduction:

Multispectral fluorescence imaging and linear unmixing is a powerful approach for visualizing

and quantifying multiple molecular properties of tissues and cells in a single experiment.  In

fluorescence microscopy, the intensity value at each pixel is proportional to the

photoemission of fluorophores (1). Spectral imaging extends this approach by recording

pixel intensity values at multiple wavelength bands across the electromagnetic spectrum (2).

For each pixel, spectral unmixing (SU) aims to recover the material source (endmembers)

and the proportion of each material (abundances). Since the fluorescent light emissions mix

linearly (3), individual signals can be mathematically disentangled based on the relative

contribution of each spectral signature (also known as a reference emission profile or

“fingerprint” or “endmember”) present in the image (3,4) in a process called "linear

unmixing." Linear unmixing can distinguish fluorophores with similar emission spectra (2,5)

and effectively remove background noise and autofluorescence from the fluorophore signal

(3,6). One such autofluorescent material is lipofuscin, a yellow-brown pigment granule

composed of lipid-containing residues of lysosomal digestion, which is highly expressed in

postmortem human brain tissue and poses a major challenge for fluorescent imaging (7) .

However, existing approaches for spectral unmixing, such as linear unmixing (4), similarity

unmixing (8), LUMoS unmixing (9),  are limited and have not been well optimized for assays

that generate punctate signal, such as single molecule fluorescent in situ hybridization

(smFISH,) or complex tissue specimens containing abundant lipofuscin autofluorescence,

such as postmortem human brain. Linear unmixing  can be performed using proprietary

software that accompanies the microscope used for image acquisition, for example LSM780

microscope/Zen software (Zeiss) and Vectra Polaris Imaging System /Inform software

(Akoya Biosciences), but this leads to several potential weaknesses as the exact algorithms
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used for unmixing are often proprietary, creating a potential "black box" in the data

processing pipeline. Another major challenge of existing linear unmixing approaches is that

users are often required to create individual reference spectrum before unmixing, which is

laborious and may or may not be relevant for the particular image under study. Manual

fingerprint generation is also prone to error and user bias since individual pixels need to be

selected by the experimenter. Lastly, and perhaps most practically, linear unmixing of large

brain sections captured in 4 dimensions ( x, y, z, lambda) and requiring unmixing of 6

fluorescent channels (e.g. 4-plex smFISH, nuclear stain, lipofuscin autofluorescence) is

computationally intensive. Many softwares also do not allow for batch processing and each

image must be unmixed individually. This process is particularly cumbersome for large-scale

datasets containing several hundred images that need to be unmixed.

Multiplex single-molecule fluorescence in situ hybridization (smFISH) using

RNAscope technology (Advanced Cell Diagnostics) has emerged as a powerful approach for

localizing and quantifying gene expression at cellular resolution in mouse and human brain

tissues (10,11). Complementary to other next generation sequencing technologies, smFISH

allows measurement of cell-to-cell variability in gene expression (12,13) and intracellular

localization of mRNA transcripts (14). The widespread generation of single-cell

RNA-sequencing (scRNA-seq) data sets in the brain has fueled a resurgence of multiplex

smFISH to validate cell-type-specific molecular profiles by visualizing individual transcripts at

cellular resolution in brain sections (15,16). Combinatorial labeling and imaging with multiple

probes are necessary to determine the presence or absence of specific transcripts in distinct

neuronal and glia populations and characterize complex subpopulations Imaging specimens

with a large number of fluorescent labels and high autofluorescence often leads to

bleed-through or cross-talk of their emission spectra. These artifacts generally complicate

the interpretation of experimental findings. To this end, it is necessary to have well-separated
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fluorescence labels and robust spectral unmixing methods in fluorescence imaging of brain

tissue. Given these datasets are becoming increasingly large and necessary to precisely

quantify (17), decoupling data collection from linear unmixing and integrating unmixing

pipelines with segmentation and quantification tools would increase throughput in acquisition

and analysis workflows.

In addition to linear unmixing, many other computational methods are used by biologists

for spectral unmixing. Non-negative matrix factorization (NMF) is a feature extraction method

that has been successfully applied to unmix multispectral images and does not require prior

knowledge of spectral signatures (18,19). However, on different runs, NMF produces equally

valid yet significantly different solutions (20). Spectral deconvolution (21) requires users to

acquire and manually select each fluorophore in regions of interest. In this age of rapidly

advancing machine learning techniques, several unsupervised machine learning methods

have been applied to unmix spectral data. Particularly in the field of remote sensing, studies

have used clustering methods to separate geological components, such as sand, water,

vegetation, etc., in hyperspectral images (22–24). In a recent biological study, McRae et al.

used k-means clustering to unmix individual pixels in two-photon laser scanning microscopy

images (9). Although this method does not require prior information about reference spectra,

the performance is sensitive to data preprocessing and robust initialization of cluster centers.

Furthermore, this method fails to separate fluorophores that are substantially overlapping.

Finally, plug-in options exist in FIJI/ImageJ (25,26) to unmix multispectral images (9,27), but

these are limited in terms of handling autofluorescence and biologically similar structures,

such as puncta belonging to different gene transcripts.

Linear unmixing assumes a Linear Mixture Model (LMM), where contributions from each

endmember sum linearly (3). Although LMM performs very well in most scenarios and
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reduces computational complexity, the assumption of linearity may be inappropriate in

non-linear effects such as quenching and photobleaching. Non-linear unmixing has also

been explored in the field of remote sensing (28,29), but both groups of methods fail to

account for spectral variability. Spectral signatures deviate from the reference spectra for

various reasons, including interaction with surrounding pixels, scattering in complex tissues,

autofluorescence, etc. Several methods have been developed to address the shortcomings

of LMM in remote sensing data (30,31), but these strategies have not yet been applied to

fluorescence microscopy data.

We developed an intuitive and automated pipeline to address the need for improved

flexibility, accuracy, and throughput of fluorescence imaging spectral unmixing of brain

tissues . Notably, we automate the process of endmember selection using Vertex

Component Analysis (VCA) (32). We then use the estimated endmembers to unmix

fluorescence images with various unmixing methods derived from remote sensing and

hyperspectral imaging. We validate the proposed methods’ accuracy by comparing the

unmixing results obtained using ZEN Black software from Zeiss. We also provide scripts to

run unmixing in parallel on several images using a High-Performance Cluster (HPC). Finally,

we integrate our unmixing pipeline into the computational tool dotdotdot (17) to provide a

one-stop solution for analysis and quantification of smFISH fluorescence imaging data from

mouse and postmortem human brain specimens.

Materials and methods:

Sample preparations

Animals

Wild-type mice were purchased from Jackson laboratories (Bar Harbor, ME, C57BL6/J; stock

#000664).  All mice were housed in a temperature-controlled environment with a 12:12
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light/dark cycle and ad libitum access to standard laboratory chow and water. All

experimental animal procedures were approved by the JHU Institutional Animal Care and

Use Committee.

RNAscope single molecule fluorescent in situ hybridization (smFISH) for cultured neurons

Mouse cortical neurons were cultured on a 96-well ibidi optical bottom culture plate as

previously described (33,34). In situ hybridization assays were performed with RNAscope

technology using the RNAscope Fluorescent Multiplex kit V2 and 4-plex Ancillary Kit (catalog

numbers 323100, 323120 ACD, Hayward, CA) as above, with the exception of the protease

step, where cultured cells were treated with a 1:15 dilution of protease III for 30 minutes.

Cells were incubated with probes for Arc, Bdnf exon 1, Bdnf exon 4, and Fos (catalog

number 316911, 457321-c2, 482981-c3 and 316921-c4, ACD, Hayward, CA) and stored

overnight in a 4X saline sodium citrate (SSC) buffer. After amplification, probes were

fluorescently labeled with Opal dyes (PerkinElmer; Opal 520 was diluted 1:500 and assigned

to Fos, Opal 570 was diluted 1:500 and assigned to Bdnf exon 1, Opal 620 was diluted

1:500 and assigned to Bdnf exon4 and Opal 690 was diluted 1:500 and assigned to Arc) and

stained with DAPI (4′,6-diamidino-2-phenylindole) to label nuclei,  then stored in phosphate

buffered saline (PBS) at 4℃.

RNAscope smFISH for mouse brain tissue

Mouse brain was extracted and rapidly frozen in 2-methylbutane (ThermoFisher), and stored

at -80°C until slicing. Sixteen µm coronal sections were prepared using a Leica CM 1520

Cryostat (Leica Biosystems, Buffalo Grove, IL) and mounted onto glass slides (VWR,

SuperFrost Plus). RNAscope was performed using the Fluorescent Multiplex Kit V2 (Cat #

323100, 323120  ACD, Hayward, California) according to manufacturer’s instructions. Briefly,

brain sections were fixed in 10% buffered formalin solution (Cat # HT501128 Sigma-Aldrich,
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St. Louis, Missouri) for 30 min at RT, washed with 1 X PBS, and dehydrated with serial 50%,

70% and 100% ethanol washes. Following pretreatment with hydrogen peroxide, slices were

treated with protease IV solution for 20 min and incubated with specific probes targeting Gal,

Th, Bdnf exon 9, and Npy (Cat # 400961, 317621-C2, 482981-C3, 313321-C4, ACD,

Hayward, California) at 40°C for 2 h in a HybEZ oven (ACD, Hayward, California). Slices

were kept in 4X SSC overnight at 4°C and, on the following day, were incubated at 40°C with

a series of fluorescent Opal Dyes (Perkin Elmer; Opal690 diluted at 1:500 and assigned to

Npy; Opal570 diluted at 1:500 and assigned to Th; Opal620 diluted at 1:500 and assigned to

Bdnf; Opal520 diluted at 1:500 and assigned to Gal). DAPI was used to label nuclei and

slides were coverslipped with FluoroGold (SouthernBiotech).

Immunofluorescence staining in post-mortem human Alzheimer’s Disease (AD) brain

Post-mortem human brain tissue was obtained by autopsy from the Offices of the Chief

Medical Examiner of Maryland, all with informed consent from the legal next of kin collected

under State of Maryland Department of Health and Mental Hygiene Protocol 12-24. Clinical

characterization, diagnoses, and macro- and microscopic neuropathological examinations

were performed on all samples using a standardized paradigm. Details of tissue acquisition,

handling, processing, dissection, clinical characterization, diagnoses, neuropathological

examinations, and quality control measures have been described previously (35).

Alzheimer’s disease diagnosis comprise standard neuropathology ratings of Braak staging

schema (36) evaluating neurofibrillary tangle burden, and the CERAD scoring measure of

senile plaque burden (37). An Alzheimer’s likelihood diagnosis was then performed based on

the published consensus recommendations for postmortem diagnosis of Alzheimer’s disease

[2] as with prior publications (38,39).

Fresh frozen inferior temporal cortex from a donor with clinically confirmed

Alzheimer’s disease (AD) was sectioned at 10μm and stored at -80°C.  Immunofluorescence
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staining was performed following a demonstrated protocol provided by 10x Genomics

available online (CG000312, 10X Genomics, Pleasanton, California). Briefly, slides were

thawed for 1 minute at 37°C and fixed with pre-chilled methanol (Cat #34860, Sigma-Aldrich,

St. Louis, Missouri) for 30 minutes at -20°C. Sections were blocked with Human TruStain

FcX (Cat #422301, Biolegend, San Diego, California) and 2% BSA (Cat #130-091-376,

Miltenyi Biotec, Auburn, California) diluted in Blocking Buffer for 5 minutes at room

temperature (RT). Primary antibodies were added in Antibody Diluent (3X SSC, 2% BSA and

0.1% TritonX-100 in nuclease free water) and incubated for 30 minutes at RT. All primary

antibodies were diluted from each stock solution at a concentration of 1:100: mouse

anti-beta-amyloid (Cat #803001, Biolegend, San Diego, California), rabbit anti-pTau

Ser202/Thr205 (Cat # SMC-601, StressMarq Biosciences, Cadboro Bay, Victory, Canada),

and chicken anti-MAP2 (Cat #ab92434, Abcam, Cambridge, Massachusetts). The slides

were subjected to subsequent 5 washes, each of which takes 30 seconds with Wash Buffer

(3X SSC, 2% BSA and 0.1% TritonX-100 in nuclease free water). The tissue sections were

then incubated with corresponding fluorescently labeled secondary antibodies diluted from

each stock solution at a concentration of 1:500 for 30 minutes at RT. All secondary

antibodies were purchased from Thermo Fisher Scientific (Waltham, Massachusetts): goat

anti-mouse IgG (H+L) conjugated to Alexa Fluor 488 (Cat #A-11001), donkey anti-rabbit IgG

(H+L) conjugated to Alexa Fluor 555 (Cat #A-31572), and goat anti-chicken IgY (H+L)

conjugated to Alexa Fluor 633. DAPI was added to visualize the nuclei. After 5 washes with

Wash Buffer, which takes 30 seconds for every round, and subsequent 20 quick immersions

in 3X SSC (Millipore-Sigma, S6639L, St. Louis, Missouri), slides were coverslipped in  85%

glycerol and stored at 4°C.

RNAscope smFISH in postmortem human dorsolateral prefrontal cortex (DLPFC)
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Two blocks of fresh frozen dorsolateral prefrontal cortex (DLPFC) from neurotypical control

individuals ages 24 and 17 were sectioned at 10μm and stored at -80°C as previously

described (17).  RNA integrity numbers (RINS) were 8.4 and 8.8, respectively.  For

post-mortem human studies, in situ hybridization assays were performed with RNAscope

technology utilizing the RNAscope Fluorescent Multiplex Kit V2 and 4-plex Ancillary Kit (Cat

# 323100, 323120  ACD, Hayward, California) according to manufacturer’s instructions.

Briefly, tissue sections were fixed with a 10% neutral buffered formalin solution (Cat #

HT501128 Sigma-Aldrich, St. Louis, Missouri) for 30 minutes at RT, series dehydrated in

ethanol, pretreated with hydrogen peroxide for 10 minutes at RT, and treated with protease

IV for 20 minutes. Sections were incubated with probes for SNAP25, SLC17A7, GAD1, and

MBP (Cat #518851, 415611-C2, 573061-C3, 573051-C4, ACD, Hayward, California) and

stored overnight in a 4x SSC buffer.  Probes were fluorescently labeled with Opal Dyes

(Perkin Elmer, Waltham, MA; Opal690 diluted at 1:1000 and assigned to SNAP25; Opal570

diluted at 1:1500 and assigned to SLC17A7; Opal620 diluted at 1:500 and assigned to

GAD1; Opal520 diluted at 1:1500 and assigned to MBP) and stained with DAPI to label the

nucleus (40).

Two subjects were imaged. For each subject, two cortical strips were tile imaged at

20× to capture layers I to VI. Layer II/II and layer VI were identified by measuring 20–30%

and 80–90% of the cortical layer thickness, respectively. This strategy reliability delineated

layer II/III and VI across 10 individuals and cortical strips with varying absolute thicknesses.

After demarcation of cortical layers, the positions feature in Zen software was used to

randomly select six fields per layer per strip (n = 12 layer II/III and n = 12 layer VI in two

different cortical strips per subject) for high magnification imaging at 63×.

Fluorescent Imaging
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Lambda stacks were acquired in z-series using a Zeiss LSM780 confocal microscope

equipped with 20x x 1.4 NA and 63x x 1.4NA objectives, a GaAsP spectral detector, and

405, 488, 555, and 647 lasers. All lambda stacks were acquired with the same imaging

settings and laser power intensities. Following image acquisition, lambda stacks in z-series

were linearly unmixed in ZEN software (weighted; no autoscale) using reference emission

spectral profiles previously created in ZEN (see below) and saved as Carl Zeiss Image “.czi”

files. Raw lambda stacks were unmixed with SUFI and compared to ZEN unmixed results.

Single-fluorophore positive fingerprints were generated from samples prepared as above.

Reference spectral profile creation in ZEN software for validation

Reference emission spectral profiles, or ‘fingerprints’, or ‘endmembers’, were created for

each Opal dye in ZEN software as previously described (17). Briefly, four single positive

slides were generated in mouse tissue using the RNAscope Fluorescent Multiplex Kit V2 and

4-plex Ancillary Kit (Cat # 323100, 323120 ACD, Hayward, California) and a control probe

against the housekeeping gene POLR2A according to manufacturer's instructions as

described above. Mouse tissue was used in place of human tissue due to lower tissue

autofluorescence (i.e. the absence of confounding lipofuscin signals). For every single

positive slide, POLR2A was labeled with either Opal520, Opal570, Opal620, or Opal690 dye.

A single positive slide was generated for DAPI using the same pretreatment conditions, but

the omission of probe hybridization steps. To generate a reference emission spectral profile

for lipofuscin autofluorescence, a negative control slide was generated in post-mortem

DLPFC tissue using a 4-plex negative control probe against four bacterial genes (Cat

#321831, ACD, Hayward, CA) in which all Opal dyes were applied, but no probe signal was

amplified.

In a similar approach, reference emission spectral profiles were generated for

immunofluorescent staining in the post-mortem human AD brain tissue.. For amyloid plaques
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and tau tangles, each single positive slide was prepared by labeling β-amyloid (Abeta) or

phospho-tau (pTau) with appropriate primary and secondary antibodies conjugated with

Alexa fluor (AF)488 and AF555, respectively. A lipofuscin fingerprint was created for human

AD brain tissue using a negative control slide treated only with fluorescently labeled

secondary antibodies in the absence of primary antibodies. For DAPI-stained nuclei and

MAP2-positive neurites (labeled with AF633), single positive slides were generated using

mouse brain tissue to avoid lipofuscin autofluorescence.

Spectral unmixing

Spectral unmixing is the process of decomposing composite multichannel images into

spectral profiles and abundances of each endmember in each pixel (2) (41) (42) :

(1)

Which can be denoted as F = SA.

In Eq1, F denotes the fluorescence intensities of n pixels recorded in C different spectral

channels. S is the spectral signatures of k fluorophores, and A is the abundance of each

fluorophore in each pixel. To this end, the unmixing process is usually divided into three

different steps: (i) estimation of the number of endmembers, (ii) extraction of endmembers,

(iii) estimation of abundance. In fluorescence microscopy, the number of endmembers is

known in advance. We discuss the latter two steps below.

Automated extraction of spectral signatures
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An essential part of the proposed pipeline is the automated extraction of the spectral

signatures, or 'endmembers,' from the observed multispectral image. To achieve this, we use

the Vector Component Analysis (VCA) - an Endmember Extraction Algorithm (32) that can

be used to extract fingerprints (i.e. spectral signatures) from multiplex lambda stacks. We

approach the extraction of fingerprints in two different ways, (i) Using lambda stacks

acquired from the single positive slides from above to extract fingerprints for individual

fluorophores. (ii) Using a multiplex lambda stack and extracting fingerprints for all

fluorophores in one go. We discuss the pros and cons of each method and provide

additional details in the supplementary information.

Estimation of abundance

This step involves the estimation of the proportion of different fluorophores in each pixel.

Here we implement and compare three different methods derived from remote sensing and

adapt them for unmixing in fluorescence microscopy: (i) fully constrained least square

unmixing (FCLSU) algorithm (43) tries to minimize the squared error in the linear

approximation of multispectral image, imposing the non-negative constraint and the

sum-to-one constraint for the abundance calculations. (ii)  extended linear mixing model

(ELMM) algorithm (30) extends the idea of FCLSU unmixing by taking into account the

spectral variability. Particularly, scaling of reference spectra. (iii) generalized extended linear

mixing model (GELMM) algorithm (31) extends ELMM to account for complex spectral

distortions where different wavelength recordings are affected unevenly.

SUFI toolbox

SUFI is a MATLAB-based command line toolbox for automated spectral unmixing of

fluorescent images. Briefly, the analysis pipeline involves data normalization, automated

extraction of spectral signatures using VCA algorithm, and application of spectral unmixing
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algorithms (Figure 1). Bio-formats toolbox ‘bfmatlab’ is used to read the image data into a

MATLAB structure with fields containing gene data, DAPI and lipofuscin. SUFI toolbox is

publicly available at https://github.com/LieberInstitute/SUFI.

Performance metrics

The Root Mean Squared Error (RMSE) between a true image (yref), i.e. ZEN unmixed image

and its estimate (yest) i.e. FCLSU (or ELMM or GELMM) unmixed image is defined as,

(2)

The Structural Similarity Index (SSIM) is based on the computation of luminance, contrast

and structure of true image vs. estimated image (44). The range of values are between [0, 1]

with a value of SSIM = 1 indicating 100 percent structural similarity.

(3)

(4)

(5)

(6)

where , and are the local means, standard deviations, and

cross-covariance for images . are constants.

The Sørensen-Dice Similarity coefficient (DICE) ranges between [0, 1] where a value of

DICE = 1 indicates a 100 percent match of segmentation between two images.

(7)

where represents the cardinal of .
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Data segmentation with dotdotdot

Using previously published custom MATLAB scripts (17), we automatically segment and

quantify nuclei and RNA transcripts using SUFI generated unmixed outputs. Briefly, the

dotdotdot processing pipeline involves smoothing, thresholding, watershed segmentation,

autofluorescence masking, and dot metrics extraction. Specifically, adaptive 3D

segmentation is performed on image stacks using the CellSegm MATLAB toolbox, and

nuclei are further split using the DAPI channel and 3D watershed function. Single dots are

detected using histogram-based thresholding and assigned to nuclei based on their 3D

location in the image stack. Lipofuscin signal is used as a mask to remove pixels

confounded by autofluorescence.

Results:

In this section, we compare experiment results for four unique biological datasets

(cultured mouse neurons, mouse brain tissue, post-mortem human AD brain tissue, and

post-mortem human DLFC) using the FCLSU (43), the ELMM (30), and the GELMM (31)

unmixing methods. These methods are derived from the field of remote sensing and

optimized to our use case. Performances were evaluated in comparison to linearly unmixed

images from ZEN Black software (ZEN) using Root Means Squared Error (RMSE),

Structural Similarity Index (SSIM), and Sørensen-Dice similarity coefficient (DICE). Runtime

values provided are for unmixing on an individual multiplex lambda stack.

Automated extraction of fingerprints using Vertex Component Analysis

Given the widespread use of multiplex smFISH in human tissues, we first introduce

the automated extraction of spectral signatures (i.e., fingerprints) using RNAscope smFISH

in postmortem human DLPFC (Figure 2). Single positive images of DAPI, lipofuscin
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autofluorescence, and RNA transcripts labeled with  Opal520, Opal570, Opal620, Opal690

dyes are run through the extraction pipeline. For each single positive lambda stack, two

fingerprints are extracted—one representing the fluorophore's spectral signature and the

second representing the background noise’s spectral signature. In order to validate these

VCA extracted spectral fingerprints, we manually selected pure pixels from every single

positive image and extracted spectral signatures using ZEN software. Plotting

VCA-extracted fingerprints against manually extracted ones demonstrates that VCA was

able to extract each fingerprint robustly (Figure 2). RMSE values between these curves are

calculated and presented within each subplot and further show that the fingerprints extracted

through VCA are similar to manually extracted fingerprints.

Although it is common to generate single positive samples for spectral imaging

experiments, limited reagents or specimen availability may prohibit the generation of single

positive slides. To address this, we tried extracting all fingerprints using the multiplex lambda

stack instead of lambda stacks acquired from single positive slides. We use the lambda

stack from Figure 2 to extract seven pure spectral signatures (i.e., DAPI, Opal520, Opal570,

Opal620, Opal690, lipofuscin, and background noise). Plotting and comparing fingerprints

extracted from the multiplex lambda stack against single positive extracted fingerprints

shows that DAPI and Opal fingerprints are very similar, but the lambda stack approach fails

at extracting the lipofuscin fingerprint (Figure S1). Discrepancies for accurately extracting

lipofuscin could be due to (i) a smaller fraction of lipofuscin pixels present in the multiplex

lambda stack and (ii) the spectral signature of lipofuscin is similar to that of Opal520, thus

adding more uncertainty while classifying individual pixels. In summary, we show that VCA

can be used as an alternative approach to manual fingerprint generation as long as the

fluorophores are spectrally distinct.

Spectral unmixing of RNAscope multiplexsmFISH for cultured neurons
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Having demonstrated successful automated extraction of fingerprints, we first applied

reference profiles for unmixing of cultured mouse neuron smFISH data, which lacks strong

autofluorescence often observed in tissue slices. These samples contained 5 fluorophores:

nuclei stained with DAPI (blue), Fos transcripts labeled with Opal520 (green), Bdnf exon 1

transcripts labeled with Opal570 (yellow), Bdnf exon 4 transcripts labeled with Opal 620 (red)

and, Arc transcripts labeled with Opal690 (maroon). Due to a second peak in the DAPI

emission spectrum (Figure 2), the Fos signal in green overlaps with spectrally neighboring

blue nuclei signal. We see similar overlap in emission spectra for other combinations of Opal

dyes, i.e., Bdnf exon 1 in yellow overlapping with Fos signal in green, and Arc signal in

maroon overlapping with Bdnf exon 4 in red. Despite spectral overlap in reference emission

profiles, all three spectral unmixing algorithms (i.e., FCLSU, ELMM, and GELMM) were able

to separate individual fluorophore channels from the multiplex lambda stack (Figure 3). For

DAPI, we found that each algorithm performed exceptionally well, scoring 95%+ dice

similarity coefficient and low RMSE values (Table 1). We observe similar results for Opal520

with a 97% dice similarity coefficient and even lower RMSE scores (Table 1).  Due to the

long tail of Opal570 emission spectra, there is some overlap between Bdnf exon 1 in yellow

and Bdnf exon 4 in red (Figure 2). Consequently,the performance of all unmixing algorithms'

is reduced for Opal570 and Opal620 fluorophores (Figure 3C, 3D). Finally, both FCLSU and

GELMM accurately unmixed Opal690 signals, scoring 88% dice similarity. On average,

FCLSU performed the best, scoring 78% dice similarity with a run time of 10 minutes,

GELMM scored 73% dice similarity with a run time of 493 minutes, and ELMM scored 71%

dice similarity with a run time of 204 minutes. SSIM remained consistent for each channel

across different algorithms.

Spectral unmixing of RNAscope multiplex smFISH for mouse brain tissue slices
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Next, we wanted to test the unmixing algorithms on a lower magnification dataset

with more densely packed cells. To this end, we applied FLCSU, ELMM, and GELMM

algorithms on RNAscope smFISH data collected from mouse brain tissue at 10x

magnification.  These samples contained 5 fluorophores: cell nuclei stained with DAPI, Gal

transcripts labeled with Opal520, Th transcripts labeled with Opal570, Bdnf exon 9

transcripts labeled with Opal620, and Npy transcripts labeled with Opal690. Although the

unmixed images using the three algorithms  look qualitatively similar to unmixed ZEN

images (Figure 4), the performance parameters differ significantly (Table 2). This is partly

due to densely packed cells resulting in more mixed pixels, thereby increasing the ambiguity

in labeling individual pixels. For instance, due to the  second smaller peak in the DAPI

emission spectrum (Figure 2), the Gal signal in green spectrally overlaps with the nuclei

signal in blue (Figure 4B - 4B'"). This overlap results in DAPI pixels having spectral

signatures of variable amplitude and shape. For DAPI, we see ELMM outperform FCLSU

with a dice similarity score of 85% and RMSE of 0.0035 (Table 2). While performance is

consistent across different algorithms for Opal520 and Opal570 channels, we see a drop in

performance for Opal620 and Opal690 channels with dice similarity around 50% for both

fluorophores. On average, ELMM performed the best, scoring 67% dice similarity with a run

time of 296 minutes, followed by GELMM scoring65% dice similarity with a run time of 613

minutes, and FCLSU scoring 64% dice similarity with a run time of 6 minutes.

Spectral unmixing of RNAscope multiplex smFISH in postmortem human brain tissue

Autofluorescence is a common, but undesired, signal in fluorescence microscopy that

can confound signals from  labeled biological targets. Often this background signal has

relatively higher intensity and a broader emission spectrum than fluorophores labeling

targets (45). Autofluorescence can come from extracellular components or specific cell types

and can be more pervasive in certain wavelength bands (46). In human brain tissue, one
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such autofluorescent material is lipofuscin, a product of lysosomal digestion that

accumulates in brain cells due to aging (7) and also in a group of neurodegenerative

disorders classified as neuronal ceroid lipofuscinoses, which are characterized by dementia,

visual loss, and epilepsy. We next evaluated the ability of the different unmixing algorithms to

separate lipofuscin autofluorescence in postmortem human dorsolateral prefrontal cortex

(DLPFC) using a previously published dataset (17). This experiment included 5 fluorophores:

cell nucleus stained with DAPI, MBP transcripts labeled with Opal520, SLC17A7 transcripts

labeled with Opal570, GAD1 transcripts labeled with Opal620, and SNAP25 transcripts

labeled with Opal690. Like other fluorophores, lipofuscin autofluorescence can be treated as

an additional channel and unmixed with its own spectral signature (Figure 2). We see that all

unmixing algorithms were able to isolate the autofluorescence signal (Figure 5F' - 5F'") and

were consistent with high dice similarity scores and low RMSE values (Figure 5, Table 3).

Overall, ELMM did best with a dice similarity score of 80% and a runtime of 182 minutes.

FCLSU came second with a dice similarity score of 78% and a runtime of 6 minutes.

GELMM scored a dice similarity score of 76% and a runtime of 434 minutes.

Spectral unmixing of immunofluorescence data from postmortem human Alzheimer's

disease brain tissue

Having established that all algorithms performed robustly on different biological

samples subjected to smFISH, we lastly wanted to explore the performance of the three

algorithms on a different type of fluorescent data acquired using immunofluorescence

staining of  postmortem human Alzheimer's disease brain tissue. In this experiment, we also

used a different set of fluorophores (Alexa dyes) that were assigned as follows to label

nuclei, amyloid beta plaques, neurofibrillary tangles, and neuronal dendrites: the cell nuclei

are stained with DAPI, Abeta protein is labeled with Alexa fluor (AF)488, phoso-Tau protein

is labeled with AF555, and MAP2 protein is labeled with AF633. Spectral signatures for
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these dyes extracted using VCA are reported in Figure S2. Similar to smFISH data acquired

with Opal dyes, we found each algorithm to be robust at unmixing individual fluorophore

channels and autofluorescence for immunofluorescence data acquired with Alexa dyes

(Figure 6). In terms of performance metrics, pixel-wise RMSE values are consistently under

0.01 (Table 3) andice similarity scores are consistent across different channels and

algorithms. Overall, FCLSU performed  best with a dice similarity score of 70% and a

runtime of 4 minutes. GELMM followed  with a dice similarity score of 68% and a runtime of

140 minutes. Finally, ELMM scored a dice similarity score of 66% and a runtime of 41

minutes.

Data segmentation and quantitative analysis using dotdotdot framework

Finally, to evaluate the accuracy of other unmixing methods compared to ZEN

software,  we integrate our automated unmixing pipeline with our previously published

dotdotdot image segmentation and analysis framework for smFISH data(17). First, we apply

FCLSU, ELMM, GELMM, and ZEN-based unmixing on raw smFISH images of postmortem

human dorsolateral prefrontal cortex (DLPFC) using the same dataset from Maynard et al.

2020 described in Figure 5 (40). dotdotdot automatically segments nuclei and individual

transcript channels (Figure 7) and provides several metrics including dot number, dot size,

and dot intensity. We quantified the number of segmented objects for each channel in Table

5. For DAPI Opal 520, and Opal 620, we find the number of objects to be equal or consistent

across all algorithms. However, we see an increase in the number of objects for Opal 570

when unmixed with FCLSU, ELMM, or GELMM versus ZEN. On the other hand, we see a

decrease in the number of segmented objects for Opal 690 and Lipofuscin when unmixed

with FCLSU, ELMM, or GELMM versus ZEN. This is potentially due to the proximity of Opal

570 and Opal 690 puncta as seen in Figure 7. Overall, we found the segmentation results of

the three different algorithms consistent with those of ZEN-unmixed data (17).
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Discussion:

With increasing sophistication in the design and probing of biological targets, there is

greater demand for novel imaging technologies that offer enhanced sensitivity, reliable

acquisition, and the ability to resolve several targets simultaneously. One such technique,

multispectral fluorescence imaging, allows for the observation and analysis of several

elements within a sample - each tagged with a different fluorescent dye. Combining multiple

fluorescent probes offers a higher level of information from the same sample (47,48) but may

also lead to mixed signals (41). Existing spectral unmixing methods solve this problem to

some extent, but their accessibility and applicability is limited, especially for smFISH in

rodent and brain tissues, and often requires manual intervention. Here, we introduce and

systematically evaluate several spectral unmixing algorithms derived from the field of remote

sensing that provide a flexible, robust, and automated approach to disentangle multiplex

fluorescent images.

We aimed to address several drawbacks to existing spectral unmixing methods for

brain tissues that need to be addressed. First, spectral unmixing is often performed using

proprietary software that typically accompanies the microscope used for data collection. This

leads to several roadblocks regarding cost, throughput, and customization. For instance, it

can be challenging to acquire and unmix data on the same computer due to the

computational and time requirements, which often necessitates the purchase of additional

expensive software licenses.  While ZEN software offers a free “lite” version, the full license

is required to run unmixing algorithms and each image must be unmixed individually. Also,

unmixing algorithms are often not transparent, which leads to a "black-box" in the analysis

pipeline that can limit optimization and troubleshooting capabilities. Additionally, spectral

unmixing is a computationally-intensive - yet entirely parallelizable - task. The time spent

unmixing individual images in between acquisition sessions could instead be directed for

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.01.28.428639doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=3289183,2640077&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=2082372&pre=&suf=&sa=0
https://doi.org/10.1101/2021.01.28.428639
http://creativecommons.org/licenses/by-nc/4.0/


additional data collection.  For example, in a single imaging session, researchers could

spend 3-4hours continuously imaging, which reduces to 2-3 hours of imaging when needing

to unmix individual images in real time in a typical RNAscope experiment. The time

complexity and inability to unmix in batch mode is incredibly daunting when several hundred

images need to be collected and unmixed.

We address these analytical limitations for spectral imaging by providing a

MATLAB-based unmixing solution that leverages the implicit parallelizability of unmixing

each image independently. By decoupling the data collection and unmixing processes, we

aim to improve analysis efficiency. Secondly, unmixing methods based on linear mixing

models (LMM), such as linear unmixing, spectral deconvolution, and similarity unmixing,

requires the user to choose the individual reference spectrum before unmixing. Manually

selecting pure pixels in a single positive or multiplex lambda stack for fingerprint generation

is a labor-intensive task that is also prone to human bias since pure pixels are variable

between images or even within the same image, which may result in the generation of

variable reference profiles. Also, background noise and autofluorescence need their own

spectral signatures, which are more challenging to estimate manually. We solve this by

automating the extraction of spectral signatures using the vertex component analysis (VCA)

algorithm, which alleviates the need to manually select pixels for fingerprint generation.

Furthermore, background noise and lipofuscin autofluorescence are separated as individual

channels with their own spectral signatures using VCA (Figure 2). Lastly, unmixing methods

based on unsupervised machine learning algorithms, like clustering, have been introduced in

multispectral fluorescence microscopy (9). Although these methods do not require prior

information about the reference spectrum, the performance is sensitive to data conditioning

and cluster centers' initialization, which means that we could end up with different unmixed

channels for different cluster center initialization. These approaches also tend to perform

worse when substantial spectral overlap exists between fluorophores. On the other hand, the
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only preprocessing step for our pipeline is data normalization, and our approach handles

overlapping fluorophores commonly used for smFISH successfully (Figure 5).

In this age of interdisciplinary research, machine learning methods have bought

several seemingly unrelated fields closer together. One such field that shares a similar

conceptual framework to  spectral unmixing is satellite imaging (22,49,50). Particularly in the

field of remote sensing, studies have used spectral unmixing methods to disentangle

geological channels, such as sand, water, vegetation, etc, from hyperspectral images

captured by satellites (23,24). However, spectral unmixing in fluorescence microscopy has

several advantages. First, the number of endmembers (fingerprints or spectral signatures) is

known in advance based on the number of fluorophores or dyes utilized by the experimenter

. Typically, with remote sensing images, the number of endmembers is not known and often

calculated as the first step during the unmixing process. Second, due to the limited spatial

resolution of satellite images, a large proportion of individual pixels are a mixture of two or

more geological components. However, in fluorescence images, individual pixels specify a

single fluorophore unless a colocalized label was designed. Conversely, remote sensing

images have the upper hand when it comes to the number of spectral bands. Typically,

satellite imagery results in several hundred spectral bands, whereas fluorescence

microscopy has 30 - 50 bands. In our imaging setup, data is collected at 32 spectral bands

spanning the visual spectrum ~every 8nm.  Increasing the number of detectors and therefore

increasing the number of spectral bands will improve unmixing performance in fluorescent

biological samples.

We acknowledge that there are limitations to the methods introduced in this paper.

First, these methods assume a linear mixture model (LMM) to disentangle mixed signals

mathematically. Although LMM performs very well in most scenarios and reduces

computational complexity, the assumption might be inappropriate when non-linear effects

such as quenching and photobleaching are used. Second, our methods require that the
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number of fluorophores is equal to or lesser than the number of spectral bands. If the

number of fluorophores is greater than the number of spectral bands, we end up with an

under-determined system that cannot be resolved. Third, any increase in the dimension of

images leads to an exponential increase in runtime. We used 1024X1024 images in our

experiments and ran all unmixing methods on a 40 member cluster node. On average,

FCLSU took 6 minutes, ELMM took 180 minutes, and GELMM took 400 minutes. For most

scenarios, FCLSU is a clear choice in terms of performance per time utilized. This is

because ELMM and GELMM try to improve on results obtained through FCLSU, which in

most cases are sufficient enough. Finally, the automated extraction of fingerprints requires

single positive images to determine spectral signatures (Figure 2, S2) accurately. Typically,

single positive images are generated to validate fluorophores before spectral imaging.

Although we show that fingerprints can be extracted directly from the multiplex lambda stack

(FIgure S1), this method fails to extract significantly overlapping fingerprints (i.e., Opal 520

and Lipofuscin).  Future studies should evaluate data driven approaches to extract spectral

signatures and explore deep learning based methods for spectral unmixing.

In conclusion, we present a robust, flexible, and automated tool for spectral unmixing

of fluorescent images acquired in brain tissues . Notably, we automate the process of

endmember selection using Vertex Component Analysis (VCA). We then provide several

unmixing methods derived from remote sensing to disentangle multiplex lambda stacks. We

demonstrate these algorithms using four biologically unique fluorescence imaging datasets.

Finally, we provide a MATLAB toolbox that can be readily adopted by the scientific

community for their unmixing needs and bundled this pipeline with our previous smFISH

segmentation/quantification tool dotdotdot.
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Figure 1: Multispectral imaging and data analysis workflow. Experimental workflow,
imaging protocols and data analysis pipelines are similar for mouse and human tissues, but
they include optimized conditions for sample preparation (see Methods). Multispectral
imaging is performed using a Zeiss LSM780 confocal microscope to acquire lambda stacks.
We show a single z-plane across the electromagnetic spectrum pseudo colored by
wavelength. Spectral signatures are extracted in Matlab using the Vertex Component
Analysis. Finally, spectral unmixing is performed using different algorithms to disentangle
signals for individual fluorophores.
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Figure 2: Extracted spectral signatures (fingerprints) from postmortem human brain
data. Spectral signatures are extracted from single positive slides using the Vector
Component Analysis (VCA). In each subplot, normalized pixel intensity is plotted against
wavelength. (i) solid lines represent the fingerprints extracted manually using ZEN Black
software. (ii) dotted lines with bubbles represent fingerprints extracted automatically using
VCA. The color corresponds to peak wavelength for DAPI and Opal dyes. Lipofuscin is
pseudo-colored to black. Root mean squared error (RMSE) between the two lines is
calculated for each set of fingerprints
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Figure 3: Spectral unmixing of smFISH data from cultured mouse neurons. . Neuronal
nuclei stained with DAPI, Fos transcripts labeled with Opal520, Bdnf exon 1 transcripts
labeled with Opal570, Bdnf exon 4 transcripts labeled with Opal 620, and Arc transcripts
labeled with Opal690. Images shown are 2D maximum intensity projections of 3D z-stacks.
(A - E) Linear unmixing results using ZEN software. (A’ - E’). Spectral unmixing results using
FCLSU algorithm. (A’’ - E’’). Spectral unmixing results using ELMM algorithm. (A’’’ - E’’’)
Spectral unmixing results using GELMM algorithm.
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Figure 4: Spectral unmixing of smFISH in mouse brain tissue slices. Nuclei stained with
DAPI, Gal transcripts labeled with Opal520, Th transcripts labeled with Opal570, Bdnf exon
9 transcripts labeled with Opal620, and Npy transcripts labeled with Opal690.  Images
shown are 2D maximum intensity projections of 3D z-stacks. (A - E) Linear unmixing results
using ZEN software. (A’ - E’) Spectral unmixing results using FCLSU algorithm. (A’’ - E’’)
Spectral unmixing results using ELMM algorithm. (A’’’ - E’’’) Spectral unmixing results using
GELMM algorithm.
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Figure 5: Spectral unmixing of smFISH in postmortem human brain tissue. Cell
nucleus is stained with DAPI, MBP transcripts  labeled with Opal520, SLC17A7 transcripts
labeled with Opal570, GAD1 transcripts labeled with Opal620, and SNAP25 transcripts
labeled with Opal690. Images shown are 2D maximum intensity projections of 3D z-stacks.
(A - F) Linear unmixing results using ZEN software. (A’ - F’) Spectral unmixing results using
FCLSU algorithm. (A’’ - F’’) Spectral unmixing results using ELMM algorithm. (A’’’ - F’’’)
Spectral unmixing results using GELMM algorithm.
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Figure 6: Spectral unmixing of immunofluorescence data from postmortem
Alzheimer's disease brain tissue.The cell nuclei are stained with DAPI, Abeta protein is
labelled with AF488, pTau protein is labeled with AF555, MAP2 protein is  labeled with
AF633. Images shown are 2D maximum intensity projections of 3D z-stacks. (A - E) Linear
unmixing results using ZEN software. (A’ - E’) Spectral unmixing results using FCLSU
algorithm. (A’’ - E’’) Spectral unmixing results using ELMM algorithm. (A’’’ - E’’’) Spectral
unmixing results using GELMM algorithm.
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Figure 7: Segmentation of smFISH data in postmortem human brain data using
dotdotdot.. dotdotdot segmentation of unmixed smFISH images from postmortem human
DLPFC. Images shown are 2D maximum intensity projections of 3D segmented z-stacks. (A
- F) Segmented results of ZEN unmixed images. (A’ - F’) Segmented results of FCLSU
unmixed images. (A’’ - F’’) Segmented results of ELMM unmixed images. (A’’’ - F’’’)
Segmented results of GELMM unmixed images.
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Figure S1: Extracted spectral signatures (fingerprints) from single positive vs.
multiplex lambda stacks. Comparison of spectral signatures extracted from single positives
vs multiplex lambda stack using the Vector Component Analysis (VCA). In each subplot,
normalized pixel intensity is plotted against wavelength. (i) solid lines represent the
fingerprints extracted using multiplex lambda stack. (ii) dotted lines with bubbles represent
fingerprints extracted from single positives. The color corresponds to peak wavelength for
DAPI and Opal dyes. Lipofuscin is pseudo-colored to black. Root mean squared error
(RMSE) between the two lines is calculated for each set of fingerprints.
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Figure S2: Extracted spectral signatures (fingerprints) of immunofluorescence data
from postmortem human brain tissue sections derived from donors with Alzheimer's
disease. Spectral signatures are extracted from single positive lambda stacks using the
Vector Component Analysis (VCA). In each subplot, normalized pixel intensity is plotted
against wavelength. The color corresponds to peak wavelength for DAPI and Opal dyes.
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Lipofuscin is pseudo-colored to black.

Table 1: Unmixing results using cultured mouse neuron smFISH data
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Table 2: Unmixing results using smFISH data from mouse brain tissue sections
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Table 3: Unmixing results using  smFISH data from postmortem human brain tissue
sections
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Table 4: Unmixing results using immunofluorescence data from postmortem  human
brain tissues sections from AD donors
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Table 5: Number of segmented objects by dotdotdot for human brain tissue data
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