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Abstract:

Multispectral fluorescence imaging coupled with linear unmixing is a form of image data
collection and analysis that uses multiple fluorescent dyes - each measuring a specific
biological signal - that are simultaneously measured and subsequently "unmixed" to provide
a read-out for each individual signal. This strategy allows for measuring multiple signals in a
single data capture session - for example, multiple proteins or RNAs in tissue slices or
cultured cells, but can often result in mixed signals and bleed-through problems across dyes.
Existing spectral unmixing algorithms are not optimized for challenging biological specimens
such as postmortem human brain tissue, and often require manual intervention to extract
spectral signatures. We therefore developed an intuitive, automated, and flexible package
called SUFI: spectral unmixing of fluorescent images
(https://github.com/LieberlInstitute/SUFI). This package unmixes multispectral fluorescence
images by automating the extraction of spectral signatures using Vertex Component
Analysis, and then performs one of three unmixing algorithms derived from remote sensing.
We demonstrate these remote sensing algorithms' performance on four unique biological
datasets and compare the results to unmixing results obtained using ZEN Black software
(Zeiss). We lastly integrate our unmixing pipeline into the computational tool dotdotdot that is
used to quantify individual RNA transcripts at single cell resolution in intact tissues and
perform differential expression analysis of smFISH data, and thereby provide a one-stop
solution for multispectral fluorescence image analysis and quantification. In summary, we
provide a robust, automated pipeline to assist biologists with improved spectral unmixing of

multispectral fluorescence images.
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Introduction:

Multispectral fluorescence imaging and linear unmixing is a powerful approach for visualizing
and quantifying multiple molecular properties of tissues and cells in a single experiment. In
fluorescence microscopy, the intensity value at each pixel is proportional to the
photoemission of fluorophores (1). Spectral imaging extends this approach by recording
pixel intensity values at multiple wavelength bands across the electromagnetic spectrum (2).
For each pixel, spectral unmixing (SU) aims to recover the material source (endmembers)
and the proportion of each material (abundances). Since the fluorescent light emissions mix
linearly (3), individual signals can be mathematically disentangled based on the relative
contribution of each spectral signature (also known as a reference emission profile or
“fingerprint” or “endmember”) present in the image (3,4) in a process called "linear
unmixing." Linear unmixing can distinguish fluorophores with similar emission spectra (2,5)
and effectively remove background noise and autofluorescence from the fluorophore signal
(3,6). One such autofluorescent material is lipofuscin, a yellow-brown pigment granule
composed of lipid-containing residues of lysosomal digestion, which is highly expressed in

postmortem human brain tissue and poses a major challenge for fluorescent imaging (7) .

However, existing approaches for spectral unmixing, such as linear unmixing (4), similarity
unmixing (8), LUMoS unmixing (9), are limited and have not been well optimized for assays
that generate punctate signal, such as single molecule fluorescent in situ hybridization
(smFISH,) or complex tissue specimens containing abundant lipofuscin autofluorescence,
such as postmortem human brain. Linear unmixing can be performed using proprietary
software that accompanies the microscope used for image acquisition, for example LSM780
microscope/Zen software (Zeiss) and Vectra Polaris Imaging System /Inform software

(Akoya Biosciences), but this leads to several potential weaknesses as the exact algorithms
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used for unmixing are often proprietary, creating a potential "black box" in the data
processing pipeline. Another major challenge of existing linear unmixing approaches is that
users are often required to create individual reference spectrum before unmixing, which is
laborious and may or may not be relevant for the particular image under study. Manual
fingerprint generation is also prone to error and user bias since individual pixels need to be
selected by the experimenter. Lastly, and perhaps most practically, linear unmixing of large
brain sections captured in 4 dimensions ( X, y, z, lambda) and requiring unmixing of 6
fluorescent channels (e.g. 4-plex smFISH, nuclear stain, lipofuscin autofluorescence) is
computationally intensive. Many softwares also do not allow for batch processing and each
image must be unmixed individually. This process is particularly cumbersome for large-scale

datasets containing several hundred images that need to be unmixed.

Multiplex single-molecule fluorescence in situ hybridization (smFISH) using
RNAscope technology (Advanced Cell Diagnostics) has emerged as a powerful approach for
localizing and quantifying gene expression at cellular resolution in mouse and human brain
tissues (10,11). Complementary to other next generation sequencing technologies, smFISH
allows measurement of cell-to-cell variability in gene expression (12,13) and intracellular
localization of MRNA transcripts (14). The widespread generation of single-cell
RNA-sequencing (scRNA-seq) data sets in the brain has fueled a resurgence of multiplex
smFISH to validate cell-type-specific molecular profiles by visualizing individual transcripts at
cellular resolution in brain sections (15,16). Combinatorial labeling and imaging with multiple
probes are necessary to determine the presence or absence of specific transcripts in distinct
neuronal and glia populations and characterize complex subpopulations Imaging specimens
with a large number of fluorescent labels and high autofluorescence often leads to
bleed-through or cross-talk of their emission spectra. These artifacts generally complicate

the interpretation of experimental findings. To this end, it is necessary to have well-separated
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fluorescence labels and robust spectral unmixing methods in fluorescence imaging of brain
tissue. Given these datasets are becoming increasingly large and necessary to precisely
quantify (17), decoupling data collection from linear unmixing and integrating unmixing
pipelines with segmentation and quantification tools would increase throughput in acquisition

and analysis workflows.

In addition to linear unmixing, many other computational methods are used by biologists
for spectral unmixing. Non-negative matrix factorization (NMF) is a feature extraction method
that has been successfully applied to unmix multispectral images and does not require prior
knowledge of spectral signatures (18,19). However, on different runs, NMF produces equally
valid yet significantly different solutions (20). Spectral deconvolution (21) requires users to
acquire and manually select each fluorophore in regions of interest. In this age of rapidly
advancing machine learning techniques, several unsupervised machine learning methods
have been applied to unmix spectral data. Particularly in the field of remote sensing, studies
have used clustering methods to separate geological components, such as sand, water,
vegetation, etc., in hyperspectral images (22—-24). In a recent biological study, McRae et al.
used k-means clustering to unmix individual pixels in two-photon laser scanning microscopy
images (9). Although this method does not require prior information about reference spectra,
the performance is sensitive to data preprocessing and robust initialization of cluster centers.
Furthermore, this method fails to separate fluorophores that are substantially overlapping.
Finally, plug-in options exist in FlJI/Imaged (25,26) to unmix multispectral images (9,27), but
these are limited in terms of handling autofluorescence and biologically similar structures,

such as puncta belonging to different gene transcripts.

Linear unmixing assumes a Linear Mixture Model (LMM), where contributions from each

endmember sum linearly (3). Although LMM performs very well in most scenarios and
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reduces computational complexity, the assumption of linearity may be inappropriate in
non-linear effects such as quenching and photobleaching. Non-linear unmixing has also
been explored in the field of remote sensing (28,29), but both groups of methods fail to
account for spectral variability. Spectral signatures deviate from the reference spectra for
various reasons, including interaction with surrounding pixels, scattering in complex tissues,
autofluorescence, etc. Several methods have been developed to address the shortcomings
of LMM in remote sensing data (30,31), but these strategies have not yet been applied to

fluorescence microscopy data.

We developed an intuitive and automated pipeline to address the need for improved
flexibility, accuracy, and throughput of fluorescence imaging spectral unmixing of brain
tissues . Notably, we automate the process of endmember selection using Vertex
Component Analysis (VCA) (32). We then use the estimated endmembers to unmix
fluorescence images with various unmixing methods derived from remote sensing and
hyperspectral imaging. We validate the proposed methods’ accuracy by comparing the
unmixing results obtained using ZEN Black software from Zeiss. We also provide scripts to
run unmixing in parallel on several images using a High-Performance Cluster (HPC). Finally,
we integrate our unmixing pipeline into the computational tool dotdotdot (17) to provide a
one-stop solution for analysis and quantification of smFISH fluorescence imaging data from

mouse and postmortem human brain specimens.

Materials and methods:

Sample preparations

Animals

Wild-type mice were purchased from Jackson laboratories (Bar Harbor, ME, C57BL6/J; stock

#000664). All mice were housed in a temperature-controlled environment with a 12:12
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light/dark cycle and ad libitum access to standard laboratory chow and water. All
experimental animal procedures were approved by the JHU Institutional Animal Care and

Use Committee.

RNAscope single molecule fluorescent in situ hybridization (smFISH) for cultured neurons
Mouse cortical neurons were cultured on a 96-well ibidi optical bottom culture plate as
previously described (33,34). In situ hybridization assays were performed with RNAscope
technology using the RNAscope Fluorescent Multiplex kit V2 and 4-plex Ancillary Kit (catalog
numbers 323100, 323120 ACD, Hayward, CA) as above, with the exception of the protease
step, where cultured cells were treated with a 1:15 dilution of protease Ill for 30 minutes.
Cells were incubated with probes for Arc, Bdnf exon 1, Bdnf exon 4, and Fos (catalog
number 316911, 457321-c2, 482981-c3 and 316921-c4, ACD, Hayward, CA) and stored
overnight in a 4X saline sodium citrate (SSC) buffer. After amplification, probes were
fluorescently labeled with Opal dyes (PerkinElmer; Opal 520 was diluted 1:500 and assigned
to Fos, Opal 570 was diluted 1:500 and assigned to Bdnf exon 1, Opal 620 was diluted
1:500 and assigned to Bdnf exon4 and Opal 690 was diluted 1:500 and assigned to Arc) and
stained with DAPI (4',6-diamidino-2-phenylindole) to label nuclei, then stored in phosphate

buffered saline (PBS) at 4°C.

RNAscope smFISH for mouse brain tissue

Mouse brain was extracted and rapidly frozen in 2-methylbutane (ThermoFisher), and stored
at -80°C until slicing. Sixteen um coronal sections were prepared using a Leica CM 1520
Cryostat (Leica Biosystems, Buffalo Grove, IL) and mounted onto glass slides (VWR,
SuperFrost Plus). RNAscope was performed using the Fluorescent Multiplex Kit V2 (Cat #
323100, 323120 ACD, Hayward, California) according to manufacturer’s instructions. Briefly,

brain sections were fixed in 10% buffered formalin solution (Cat # HT501128 Sigma-Aldrich,
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St. Louis, Missouri) for 30 min at RT, washed with 1 X PBS, and dehydrated with serial 50%,
70% and 100% ethanol washes. Following pretreatment with hydrogen peroxide, slices were
treated with protease IV solution for 20 min and incubated with specific probes targeting Gal,
Th, Bdnf exon 9, and Npy (Cat # 400961, 317621-C2, 482981-C3, 313321-C4, ACD,
Hayward, California) at 40°C for 2 h in a HybEZ oven (ACD, Hayward, California). Slices
were kept in 4X SSC overnight at 4°C and, on the following day, were incubated at 40°C with
a series of fluorescent Opal Dyes (Perkin Elmer; Opal690 diluted at 1:500 and assigned to
Npy; Opal570 diluted at 1:500 and assigned to Th; Opal620 diluted at 1:500 and assigned to
Bdnf, Opal520 diluted at 1:500 and assigned to Gal). DAPI was used to label nuclei and

slides were coverslipped with FluoroGold (SouthernBiotech).

Immunofluorescence staining in post-mortem human Alzheimer’s Disease (AD) brain
Post-mortem human brain tissue was obtained by autopsy from the Offices of the Chief
Medical Examiner of Maryland, all with informed consent from the legal next of kin collected
under State of Maryland Department of Health and Mental Hygiene Protocol 12-24. Clinical
characterization, diagnoses, and macro- and microscopic neuropathological examinations
were performed on all samples using a standardized paradigm. Details of tissue acquisition,
handling, processing, dissection, clinical characterization, diagnoses, neuropathological
examinations, and quality control measures have been described previously (35).
Alzheimer’s disease diagnosis comprise standard neuropathology ratings of Braak staging
schema (36) evaluating neurofibrillary tangle burden, and the CERAD scoring measure of
senile plaque burden (37). An Alzheimer’s likelihood diagnosis was then performed based on
the published consensus recommendations for postmortem diagnosis of Alzheimer’s disease
[2] as with prior publications (38,39).

Fresh frozen inferior temporal cortex from a donor with clinically confirmed

Alzheimer’s disease (AD) was sectioned at 10um and stored at -80°C. Immunofluorescence
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staining was performed following a demonstrated protocol provided by 10x Genomics
available online (CG000312, 10X Genomics, Pleasanton, California). Briefly, slides were
thawed for 1 minute at 37°C and fixed with pre-chilled methanol (Cat #34860, Sigma-Aldrich,
St. Louis, Missouri) for 30 minutes at -20°C. Sections were blocked with Human TruStain
FcX (Cat #422301, Biolegend, San Diego, California) and 2% BSA (Cat #130-091-376,
Miltenyi Biotec, Auburn, California) diluted in Blocking Buffer for 5 minutes at room
temperature (RT). Primary antibodies were added in Antibody Diluent (3X SSC, 2% BSA and
0.1% TritonX-100 in nuclease free water) and incubated for 30 minutes at RT. All primary
antibodies were diluted from each stock solution at a concentration of 1:100: mouse
anti-beta-amyloid (Cat #803001, Biolegend, San Diego, California), rabbit anti-pTau
Ser202/Thr205 (Cat # SMC-601, StressMarq Biosciences, Cadboro Bay, Victory, Canada),
and chicken anti-MAP2 (Cat #ab92434, Abcam, Cambridge, Massachusetts). The slides
were subjected to subsequent 5 washes, each of which takes 30 seconds with Wash Buffer
(3X' SSC, 2% BSA and 0.1% TritonX-100 in nuclease free water). The tissue sections were
then incubated with corresponding fluorescently labeled secondary antibodies diluted from
each stock solution at a concentration of 1:500 for 30 minutes at RT. All secondary
antibodies were purchased from Thermo Fisher Scientific (Waltham, Massachusetts): goat
anti-mouse IgG (H+L) conjugated to Alexa Fluor 488 (Cat #A-11001), donkey anti-rabbit IgG
(H+L) conjugated to Alexa Fluor 555 (Cat #A-31572), and goat anti-chicken IgY (H+L)
conjugated to Alexa Fluor 633. DAPI was added to visualize the nuclei. After 5 washes with
Wash Buffer, which takes 30 seconds for every round, and subsequent 20 quick immersions
in 3X SSC (Millipore-Sigma, S6639L, St. Louis, Missouri), slides were coverslipped in 85%

glycerol and stored at 4°C.

RNA mFISH in tmortem human dorsolateral prefrontal cortex (DLPF
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Two blocks of fresh frozen dorsolateral prefrontal cortex (DLPFC) from neurotypical control
individuals ages 24 and 17 were sectioned at 10um and stored at -80°C as previously
described (17). RNA integrity numbers (RINS) were 8.4 and 8.8, respectively. For
post-mortem human studies, in situ hybridization assays were performed with RNAscope
technology utilizing the RNAscope Fluorescent Multiplex Kit V2 and 4-plex Ancillary Kit (Cat
# 323100, 323120 ACD, Hayward, California) according to manufacturer’s instructions.
Briefly, tissue sections were fixed with a 10% neutral buffered formalin solution (Cat #
HT501128 Sigma-Aldrich, St. Louis, Missouri) for 30 minutes at RT, series dehydrated in
ethanol, pretreated with hydrogen peroxide for 10 minutes at RT, and treated with protease
IV for 20 minutes. Sections were incubated with probes for SNAP25, SLC17A7, GAD1, and
MBP (Cat #518851, 415611-C2, 573061-C3, 573051-C4, ACD, Hayward, California) and
stored overnight in a 4x SSC buffer. Probes were fluorescently labeled with Opal Dyes
(Perkin Elmer, Waltham, MA; Opal690 diluted at 1:1000 and assigned to SNAP25; Opal570
diluted at 1:1500 and assigned to SLC17A7; Opal620 diluted at 1:500 and assigned to
GAD1; Opal520 diluted at 1:1500 and assigned to MBP) and stained with DAPI to label the
nucleus (40).

Two subjects were imaged. For each subject, two cortical strips were tile imaged at
20x% to capture layers | to VI. Layer II/ll and layer VI were identified by measuring 20-30%
and 80-90% of the cortical layer thickness, respectively. This strategy reliability delineated
layer 1I/11l and VI across 10 individuals and cortical strips with varying absolute thicknesses.
After demarcation of cortical layers, the positions feature in Zen software was used to
randomly select six fields per layer per strip (n = 12 layer lI/lll and n = 12 layer VI in two

different cortical strips per subject) for high magnification imaging at 63x.

Fluorescent Imaging
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Lambda stacks were acquired in z-series using a Zeiss LSM780 confocal microscope
equipped with 20x x 1.4 NA and 63x x 1.4NA objectives, a GaAsP spectral detector, and
405, 488, 555, and 647 lasers. All lambda stacks were acquired with the same imaging
settings and laser power intensities. Following image acquisition, lambda stacks in z-series
were linearly unmixed in ZEN software (weighted; no autoscale) using reference emission
spectral profiles previously created in ZEN (see below) and saved as Carl Zeiss Image “.czi”

files. Raw lambda stacks were unmixed with SUF/ and compared to ZEN unmixed results.

Single-fluorophore positive fingerprints were generated from samples prepared as above.

Reference spectral profile creation in ZEN software for validation
Reference emission spectral profiles, or ‘fingerprints’, or ‘endmembers’, were created for
each Opal dye in ZEN software as previously described (17). Briefly, four single positive
slides were generated in mouse tissue using the RNAscope Fluorescent Multiplex Kit V2 and
4-plex Ancillary Kit (Cat # 323100, 323120 ACD, Hayward, California) and a control probe
against the housekeeping gene POLR2A according to manufacturer's instructions as
described above. Mouse tissue was used in place of human tissue due to lower tissue
autofluorescence (i.e. the absence of confounding lipofuscin signals). For every single
positive slide, POLR2A was labeled with either Opal520, Opal570, Opal620, or Opal690 dye.
A single positive slide was generated for DAPI using the same pretreatment conditions, but
the omission of probe hybridization steps. To generate a reference emission spectral profile
for lipofuscin autofluorescence, a negative control slide was generated in post-mortem
DLPFC tissue using a 4-plex negative control probe against four bacterial genes (Cat
#321831, ACD, Hayward, CA) in which all Opal dyes were applied, but no probe signal was
amplified.

In a similar approach, reference emission spectral profiles were generated for

immunofluorescent staining in the post-mortem human AD brain tissue.. For amyloid plaques
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and tau tangles, each single positive slide was prepared by labeling B-amyloid (Abeta) or
phospho-tau (pTau) with appropriate primary and secondary antibodies conjugated with
Alexa fluor (AF)488 and AF555, respectively. A lipofuscin fingerprint was created for human
AD brain tissue using a negative control slide treated only with fluorescently labeled
secondary antibodies in the absence of primary antibodies. For DAPI-stained nuclei and
MAP2-positive neurites (labeled with AF633), single positive slides were generated using

mouse brain tissue to avoid lipofuscin autofluorescence.

Spectral unmixing
Spectral unmixing is the process of decomposing composite multichannel images into

spectral profiles and abundances of each endmember in each pixel (2) (41) (42) :

F(C'.lj} T F{_C'JU Sg_c".u s 5'(0.#[-1 -4{;;.1) T Amm (1)
Which can be denoted as F = SA.

In Eq1, F denotes the fluorescence intensities of n pixels recorded in C different spectral
channels. S is the spectral signatures of k fluorophores, and A is the abundance of each
fluorophore in each pixel. To this end, the unmixing process is usually divided into three
different steps: (i) estimation of the number of endmembers, (ii) extraction of endmembers,
(iii) estimation of abundance. In fluorescence microscopy, the number of endmembers is

known in advance. We discuss the latter two steps below.

Automated extraction of spectral signatures
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An essential part of the proposed pipeline is the automated extraction of the spectral
signatures, or 'endmembers,' from the observed multispectral image. To achieve this, we use
the Vector Component Analysis (VCA) - an Endmember Extraction Algorithm (32) that can
be used to extract fingerprints (i.e. spectral signatures) from multiplex lambda stacks. We
approach the extraction of fingerprints in two different ways, (i) Using lambda stacks
acquired from the single positive slides from above to extract fingerprints for individual
fluorophores. (ii) Using a multiplex lambda stack and extracting fingerprints for all
fluorophores in one go. We discuss the pros and cons of each method and provide

additional details in the supplementary information.

Estimation of abundance

This step involves the estimation of the proportion of different fluorophores in each pixel.
Here we implement and compare three different methods derived from remote sensing and
adapt them for unmixing in fluorescence microscopy: (i) fully constrained least square
unmixing (FCLSU) algorithm (43) tries to minimize the squared error in the linear
approximation of multispectral image, imposing the non-negative constraint and the
sum-to-one constraint for the abundance calculations. (ii) extended linear mixing model
(ELMM) algorithm (30) extends the idea of FCLSU unmixing by taking into account the
spectral variability. Particularly, scaling of reference spectra. (iii) generalized extended linear
mixing model (GELMM) algorithm (31) extends ELMM to account for complex spectral

distortions where different wavelength recordings are affected unevenly.

SUFI toolbox
SUFIis a MATLAB-based command line toolbox for automated spectral unmixing of
fluorescent images. Briefly, the analysis pipeline involves data normalization, automated

extraction of spectral signatures using VCA algorithm, and application of spectral unmixing
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algorithms (Figure 1). Bio-formats toolbox ‘bfmatlab’ is used to read the image data into a
MATLAB structure with fields containing gene data, DAPI and lipofuscin. SUF/ toolbox is

publicly available at https://github.com/Lieberlnstitute/SUFI.

Performance metrics
The Root Mean Squared Error (RMSE) between a true image (y,), i.e. ZEN unmixed image

and its estimate (y.) i.e. FCLSU (or ELMM or GELMM) unmixed image is defined as,

(yest - yref)2
RMSE = \/ > ~ 2

The Structural Similarity Index (SSIM) is based on the computation of luminance, contrast

and structure of true image vs. estimated image (44). The range of values are between [0, 1]

with a value of SSIM = 1 indicating 100 percent structural similarity.

SSIM = [l(yest7 yref)]a : [C(yesta yref)]ﬂ : [S(Qesty yref)]’y(3)

2/'Lest,uyTEf + C11
Hyess® + thy,er” + C 4)
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C s =
(yest yref) Uyest2 + O.yref2 + Cy (5)
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where Hyest> Hyress Tyestr Ourer and Pvestures are the local means, standard deviations, and
cross-covariance for images Yest> Yref . C1, C2, C3 are constants.

The Sarensen-Dice Similarity coefficient (DICE) ranges between [0, 1] where a value of
DICE = 1 indicates a 100 percent match of segmentation between two images.

2 x |intersection(Yest, Yref)|

’yestl + |yref| (7)

DICE =

where |Yest| represents the cardinal of Yest.
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Data segmentation with dotdotdot

Using previously published custom MATLAB scripts (17), we automatically segment and
quantify nuclei and RNA transcripts using SUFI generated unmixed outputs. Briefly, the
dotdotdot processing pipeline involves smoothing, thresholding, watershed segmentation,
autofluorescence masking, and dot metrics extraction. Specifically, adaptive 3D
segmentation is performed on image stacks using the CellSegm MATLAB toolbox, and
nuclei are further split using the DAPI channel and 3D watershed function. Single dots are
detected using histogram-based thresholding and assigned to nuclei based on their 3D
location in the image stack. Lipofuscin signal is used as a mask to remove pixels

confounded by autofluorescence.

Results:

In this section, we compare experiment results for four unique biological datasets
(cultured mouse neurons, mouse brain tissue, post-mortem human AD brain tissue, and
post-mortem human DLFC) using the FCLSU (43), the ELMM (30), and the GELMM (31)
unmixing methods. These methods are derived from the field of remote sensing and
optimized to our use case. Performances were evaluated in comparison to linearly unmixed
images from ZEN Black software (ZEN) using Root Means Squared Error (RMSE),
Structural Similarity Index (SSIM), and Serensen-Dice similarity coefficient (DICE). Runtime

values provided are for unmixing on an individual multiplex lambda stack.

Automated extraction of fingerprints using Vertex Component Analysis

Given the widespread use of multiplex smFISH in human tissues, we first introduce
the automated extraction of spectral signatures (i.e., fingerprints) using RNAscope smFISH

in postmortem human DLPFC (Figure 2). Single positive images of DAPI, lipofuscin
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autofluorescence, and RNA transcripts labeled with Opal520, Opal570, Opal620, Opal690
dyes are run through the extraction pipeline. For each single positive lambda stack, two
fingerprints are extracted—one representing the fluorophore's spectral signature and the
second representing the background noise’s spectral signature. In order to validate these
VCA extracted spectral fingerprints, we manually selected pure pixels from every single
positive image and extracted spectral signatures using ZEN software. Plotting
VCA-extracted fingerprints against manually extracted ones demonstrates that VCA was
able to extract each fingerprint robustly (Figure 2). RMSE values between these curves are
calculated and presented within each subplot and further show that the fingerprints extracted
through VCA are similar to manually extracted fingerprints.

Although it is common to generate single positive samples for spectral imaging
experiments, limited reagents or specimen availability may prohibit the generation of single
positive slides. To address this, we tried extracting all fingerprints using the multiplex lambda
stack instead of lambda stacks acquired from single positive slides. We use the lambda
stack from Figure 2 to extract seven pure spectral signatures (i.e., DAPI, Opal520, Opal570,
Opal620, Opal690, lipofuscin, and background noise). Plotting and comparing fingerprints
extracted from the multiplex lambda stack against single positive extracted fingerprints
shows that DAPI and Opal fingerprints are very similar, but the lambda stack approach fails
at extracting the lipofuscin fingerprint (Figure S1). Discrepancies for accurately extracting
lipofuscin could be due to (i) a smaller fraction of lipofuscin pixels present in the multiplex
lambda stack and (ii) the spectral signature of lipofuscin is similar to that of Opal520, thus
adding more uncertainty while classifying individual pixels. In summary, we show that VCA
can be used as an alternative approach to manual fingerprint generation as long as the

fluorophores are spectrally distinct.

Spectral unmixing of RNAscope multiplexsmFISH for cultured neurons
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Having demonstrated successful automated extraction of fingerprints, we first applied
reference profiles for unmixing of cultured mouse neuron smFISH data, which lacks strong
autofluorescence often observed in tissue slices. These samples contained 5 fluorophores:
nuclei stained with DAPI (blue), Fos transcripts labeled with Opal520 (green), Bdnf exon 1
transcripts labeled with Opal570 (yellow), Bdnf exon 4 transcripts labeled with Opal 620 (red)
and, Arc transcripts labeled with Opal690 (maroon). Due to a second peak in the DAPI
emission spectrum (Figure 2), the Fos signal in green overlaps with spectrally neighboring
blue nuclei signal. We see similar overlap in emission spectra for other combinations of Opal
dyes, i.e., Bdnfexon 1 in yellow overlapping with Fos signal in green, and Arc signal in
maroon overlapping with Bdnf exon 4 in red. Despite spectral overlap in reference emission
profiles, all three spectral unmixing algorithms (i.e., FCLSU, ELMM, and GELMM) were able
to separate individual fluorophore channels from the multiplex lambda stack (Figure 3). For
DAPI, we found that each algorithm performed exceptionally well, scoring 95%+ dice
similarity coefficient and low RMSE values (Table 1). We observe similar results for Opal520
with a 97% dice similarity coefficient and even lower RMSE scores (Table 1). Due to the
long tail of Opal570 emission spectra, there is some overlap between Bdnf exon 1 in yellow
and Bdnf exon 4 in red (Figure 2). Consequently,the performance of all unmixing algorithms'
is reduced for Opal570 and Opal620 fluorophores (Figure 3C, 3D). Finally, both FCLSU and
GELMM accurately unmixed Opal690 signals, scoring 88% dice similarity. On average,
FCLSU performed the best, scoring 78% dice similarity with a run time of 10 minutes,
GELMM scored 73% dice similarity with a run time of 493 minutes, and ELMM scored 71%
dice similarity with a run time of 204 minutes. SSIM remained consistent for each channel

across different algorithms.

tral unmixing of RNA multiplex smFISH for m rain ti li
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Next, we wanted to test the unmixing algorithms on a lower magnification dataset
with more densely packed cells. To this end, we applied FLCSU, ELMM, and GELMM
algorithms on RNAscope smFISH data collected from mouse brain tissue at 10x
magnification. These samples contained 5 fluorophores: cell nuclei stained with DAPI, Gal
transcripts labeled with Opal520, Th transcripts labeled with Opal570, Bdnf exon 9
transcripts labeled with Opal620, and Npy transcripts labeled with Opal690. Although the
unmixed images using the three algorithms look qualitatively similar to unmixed ZEN
images (Figure 4), the performance parameters differ significantly (Table 2). This is partly
due to densely packed cells resulting in more mixed pixels, thereby increasing the ambiguity
in labeling individual pixels. For instance, due to the second smaller peak in the DAPI
emission spectrum (Figure 2), the Gal signal in green spectrally overlaps with the nuclei
signal in blue (Figure 4B - 4B™). This overlap results in DAPI pixels having spectral
signatures of variable amplitude and shape. For DAPI, we see ELMM outperform FCLSU
with a dice similarity score of 85% and RMSE of 0.0035 (Table 2). While performance is
consistent across different algorithms for Opal520 and Opal570 channels, we see a drop in
performance for Opal620 and Opal690 channels with dice similarity around 50% for both
fluorophores. On average, ELMM performed the best, scoring 67% dice similarity with a run
time of 296 minutes, followed by GELMM scoring65% dice similarity with a run time of 613

minutes, and FCLSU scoring 64% dice similarity with a run time of 6 minutes.

Spectral unmixing of RNAscope multiplex smFISH in postmortem human brain tissue

Autofluorescence is a common, but undesired, signal in fluorescence microscopy that
can confound signals from labeled biological targets. Often this background signal has
relatively higher intensity and a broader emission spectrum than fluorophores labeling
targets (45). Autofluorescence can come from extracellular components or specific cell types

and can be more pervasive in certain wavelength bands (46). In human brain tissue, one
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such autofluorescent material is lipofuscin, a product of lysosomal digestion that
accumulates in brain cells due to aging (7) and also in a group of neurodegenerative
disorders classified as neuronal ceroid lipofuscinoses, which are characterized by dementia,
visual loss, and epilepsy. We next evaluated the ability of the different unmixing algorithms to
separate lipofuscin autofluorescence in postmortem human dorsolateral prefrontal cortex
(DLPFC) using a previously published dataset (17). This experiment included 5 fluorophores:
cell nucleus stained with DAPI, MBP transcripts labeled with Opal520, SLC17A7 transcripts
labeled with Opal570, GAD1 transcripts labeled with Opal620, and SNAP25 transcripts
labeled with Opal690. Like other fluorophores, lipofuscin autofluorescence can be treated as
an additional channel and unmixed with its own spectral signature (Figure 2). We see that all
unmixing algorithms were able to isolate the autofluorescence signal (Figure 5F' - 5F™) and
were consistent with high dice similarity scores and low RMSE values (Figure 5, Table 3).
Overall, ELMM did best with a dice similarity score of 80% and a runtime of 182 minutes.
FCLSU came second with a dice similarity score of 78% and a runtime of 6 minutes.

GELMM scored a dice similarity score of 76% and a runtime of 434 minutes.

tral unmixing of immunofluor n ta from tmortem human Alzheimer'

disease brain tissue

Having established that all algorithms performed robustly on different biological
samples subjected to smFISH, we lastly wanted to explore the performance of the three
algorithms on a different type of fluorescent data acquired using immunofluorescence
staining of postmortem human Alzheimer's disease brain tissue. In this experiment, we also
used a different set of fluorophores (Alexa dyes) that were assigned as follows to label
nuclei, amyloid beta plaques, neurofibrillary tangles, and neuronal dendrites: the cell nuclei
are stained with DAPI, Abeta protein is labeled with Alexa fluor (AF)488, phoso-Tau protein

is labeled with AF555, and MAP2 protein is labeled with AF633. Spectral signatures for
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these dyes extracted using VCA are reported in Figure S2. Similar to smFISH data acquired
with Opal dyes, we found each algorithm to be robust at unmixing individual fluorophore
channels and autofluorescence for immunofluorescence data acquired with Alexa dyes
(Figure 6). In terms of performance metrics, pixel-wise RMSE values are consistently under
0.01 (Table 3) andice similarity scores are consistent across different channels and
algorithms. Overall, FCLSU performed best with a dice similarity score of 70% and a
runtime of 4 minutes. GELMM followed with a dice similarity score of 68% and a runtime of
140 minutes. Finally, ELMM scored a dice similarity score of 66% and a runtime of 41

minutes.

Data segmentation and quantitative analysis using dotdotdot framework

Finally, to evaluate the accuracy of other unmixing methods compared to ZEN
software, we integrate our automated unmixing pipeline with our previously published
dotdotdot image segmentation and analysis framework for smFISH data(17). First, we apply
FCLSU, ELMM, GELMM, and ZEN-based unmixing on raw smFISH images of postmortem
human dorsolateral prefrontal cortex (DLPFC) using the same dataset from Maynard et al.
2020 described in Figure 5 (40). dotdotdot automatically segments nuclei and individual
transcript channels (Figure 7) and provides several metrics including dot number, dot size,
and dot intensity. We quantified the number of segmented objects for each channel in Table
5. For DAPI Opal 520, and Opal 620, we find the number of objects to be equal or consistent
across all algorithms. However, we see an increase in the number of objects for Opal 570
when unmixed with FCLSU, ELMM, or GELMM versus ZEN. On the other hand, we see a
decrease in the number of segmented objects for Opal 690 and Lipofuscin when unmixed
with FCLSU, ELMM, or GELMM versus ZEN. This is potentially due to the proximity of Opal
570 and Opal 690 puncta as seen in Figure 7. Overall, we found the segmentation results of

the three different algorithms consistent with those of ZEN-unmixed data (17).
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Discussion:

With increasing sophistication in the design and probing of biological targets, there is
greater demand for novel imaging technologies that offer enhanced sensitivity, reliable
acquisition, and the ability to resolve several targets simultaneously. One such technique,
multispectral fluorescence imaging, allows for the observation and analysis of several
elements within a sample - each tagged with a different fluorescent dye. Combining multiple
fluorescent probes offers a higher level of information from the same sample (47,48) but may
also lead to mixed signals (41). Existing spectral unmixing methods solve this problem to
some extent, but their accessibility and applicability is limited, especially for smFISH in
rodent and brain tissues, and often requires manual intervention. Here, we introduce and
systematically evaluate several spectral unmixing algorithms derived from the field of remote
sensing that provide a flexible, robust, and automated approach to disentangle multiplex
fluorescent images.

We aimed to address several drawbacks to existing spectral unmixing methods for
brain tissues that need to be addressed. First, spectral unmixing is often performed using
proprietary software that typically accompanies the microscope used for data collection. This
leads to several roadblocks regarding cost, throughput, and customization. For instance, it
can be challenging to acquire and unmix data on the same computer due to the
computational and time requirements, which often necessitates the purchase of additional
expensive software licenses. While ZEN software offers a free “lite” version, the full license
is required to run unmixing algorithms and each image must be unmixed individually. Also,
unmixing algorithms are often not transparent, which leads to a "black-box" in the analysis
pipeline that can limit optimization and troubleshooting capabilities. Additionally, spectral
unmixing is a computationally-intensive - yet entirely parallelizable - task. The time spent

unmixing individual images in between acquisition sessions could instead be directed for
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additional data collection. For example, in a single imaging session, researchers could
spend 3-4hours continuously imaging, which reduces to 2-3 hours of imaging when needing
to unmix individual images in real time in a typical RNAscope experiment. The time
complexity and inability to unmix in batch mode is incredibly daunting when several hundred
images need to be collected and unmixed.

We address these analytical limitations for spectral imaging by providing a
MATLAB-based unmixing solution that leverages the implicit parallelizability of unmixing
each image independently. By decoupling the data collection and unmixing processes, we
aim to improve analysis efficiency. Secondly, unmixing methods based on linear mixing
models (LMM), such as linear unmixing, spectral deconvolution, and similarity unmixing,
requires the user to choose the individual reference spectrum before unmixing. Manually
selecting pure pixels in a single positive or multiplex lambda stack for fingerprint generation
is a labor-intensive task that is also prone to human bias since pure pixels are variable
between images or even within the same image, which may result in the generation of
variable reference profiles. Also, background noise and autofluorescence need their own
spectral signatures, which are more challenging to estimate manually. We solve this by
automating the extraction of spectral signatures using the vertex component analysis (VCA)
algorithm, which alleviates the need to manually select pixels for fingerprint generation.
Furthermore, background noise and lipofuscin autofluorescence are separated as individual
channels with their own spectral signatures using VCA (Figure 2). Lastly, unmixing methods
based on unsupervised machine learning algorithms, like clustering, have been introduced in
multispectral fluorescence microscopy (9). Although these methods do not require prior
information about the reference spectrum, the performance is sensitive to data conditioning
and cluster centers' initialization, which means that we could end up with different unmixed
channels for different cluster center initialization. These approaches also tend to perform

worse when substantial spectral overlap exists between fluorophores. On the other hand, the
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only preprocessing step for our pipeline is data normalization, and our approach handles
overlapping fluorophores commonly used for smFISH successfully (Figure 5).

In this age of interdisciplinary research, machine learning methods have bought
several seemingly unrelated fields closer together. One such field that shares a similar
conceptual framework to spectral unmixing is satellite imaging (22,49,50). Particularly in the
field of remote sensing, studies have used spectral unmixing methods to disentangle
geological channels, such as sand, water, vegetation, etc, from hyperspectral images
captured by satellites (23,24). However, spectral unmixing in fluorescence microscopy has
several advantages. First, the number of endmembers (fingerprints or spectral signatures) is
known in advance based on the number of fluorophores or dyes utilized by the experimenter
. Typically, with remote sensing images, the number of endmembers is not known and often
calculated as the first step during the unmixing process. Second, due to the limited spatial
resolution of satellite images, a large proportion of individual pixels are a mixture of two or
more geological components. However, in fluorescence images, individual pixels specify a
single fluorophore unless a colocalized label was designed. Conversely, remote sensing
images have the upper hand when it comes to the number of spectral bands. Typically,
satellite imagery results in several hundred spectral bands, whereas fluorescence
microscopy has 30 - 50 bands. In our imaging setup, data is collected at 32 spectral bands
spanning the visual spectrum ~every 8nm. Increasing the number of detectors and therefore
increasing the number of spectral bands will improve unmixing performance in fluorescent
biological samples.

We acknowledge that there are limitations to the methods introduced in this paper.
First, these methods assume a linear mixture model (LMM) to disentangle mixed signals
mathematically. Although LMM performs very well in most scenarios and reduces
computational complexity, the assumption might be inappropriate when non-linear effects

such as quenching and photobleaching are used. Second, our methods require that the
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number of fluorophores is equal to or lesser than the number of spectral bands. If the
number of fluorophores is greater than the number of spectral bands, we end up with an
under-determined system that cannot be resolved. Third, any increase in the dimension of
images leads to an exponential increase in runtime. We used 1024X1024 images in our
experiments and ran all unmixing methods on a 40 member cluster node. On average,
FCLSU took 6 minutes, ELMM took 180 minutes, and GELMM took 400 minutes. For most
scenarios, FCLSU is a clear choice in terms of performance per time utilized. This is
because ELMM and GELMM try to improve on results obtained through FCLSU, which in
most cases are sufficient enough. Finally, the automated extraction of fingerprints requires
single positive images to determine spectral signatures (Figure 2, S2) accurately. Typically,
single positive images are generated to validate fluorophores before spectral imaging.
Although we show that fingerprints can be extracted directly from the multiplex lambda stack
(Flgure S1), this method fails to extract significantly overlapping fingerprints (i.e., Opal 520
and Lipofuscin). Future studies should evaluate data driven approaches to extract spectral
signatures and explore deep learning based methods for spectral unmixing.

In conclusion, we present a robust, flexible, and automated tool for spectral unmixing
of fluorescent images acquired in brain tissues . Notably, we automate the process of
endmember selection using Vertex Component Analysis (VCA). We then provide several
unmixing methods derived from remote sensing to disentangle multiplex lambda stacks. We
demonstrate these algorithms using four biologically unique fluorescence imaging datasets.
Finally, we provide a MATLAB toolbox that can be readily adopted by the scientific
community for their unmixing needs and bundled this pipeline with our previous smFISH
segmentation/quantification tool dotdotdot.

Acknowledgments
The authors gratefully acknowledge the contributions of the Offices of the Chief Medical

Examiner of Maryland for collaborating in the accession of post-mortem human brain


https://doi.org/10.1101/2021.01.28.428639
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.428639; this version posted July 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

donations that were used in this study. We also thank the members of the Neuropathology
Section of the Lieber Institute for Brain Development who made important contributions in
the clinical characterization and diagnosis of the donors. We thank Dr. Keri Martinowich for
comments on the manuscript.

Funding

Lieber Institute for Brain Development; National Institutes of Mental Health [ROTMH123183].
Data Availability

All data and software generated or analyzed during this study are available on github

https://github.com/LieberlInstitute/SUFI



https://github.com/LieberInstitute/SUFI
https://doi.org/10.1101/2021.01.28.428639
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.428639; this version posted July 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

»®]503nm «®]512nm

& |573nm ¥ [581nm
8 % 'y &'

Sample preparation

415nm 424nm
1 % &' 8 8

625nm 634nm

lanjbda stack fpr each z-plne

l Spectral Imaging (Zeiss LSM780)

o o o
> o ©

scaled pixel intensity

©
[N]

oL — Spectral Unmixing
40 500 600 700
A (nm)

Automated fingerprint extraction using VCA

Figure 1: Multispectral imaging and data analysis workflow. Experimental workflow,
imaging protocols and data analysis pipelines are similar for mouse and human tissues, but
they include optimized conditions for sample preparation (see Methods). Multispectral
imaging is performed using a Zeiss LSM780 confocal microscope to acquire lambda stacks.
We show a single z-plane across the electromagnetic spectrum pseudo colored by
wavelength. Spectral signatures are extracted in Matlab using the Vertex Component
Analysis. Finally, spectral unmixing is performed using different algorithms to disentangle
signals for individual fluorophores.


https://doi.org/10.1101/2021.01.28.428639
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.428639; this version posted July 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Opal 620
1 0)
-3 O~ -vca
manual
IR RMSE
0 v SRR 0 LERSdE =] LY
400 500 600 700 400 500 600 700
Opal 520
1 ' R = 0.01
0.8}
0.6}
0.4}
0.2t
O LS L L
400 500 600 700
Opal 570 Lipgofuscin
1 ' 7 R=0.02 ' '
> 4 038}
=
[7)]
c
8| o6t
£
g | o4l
a
9| o0zt
N
®
£ %00 500 600 700 O
] 400 500 600 700
c
wavelength (nm)
B
400 500 600 700

Figure 2: Extracted spectral signatures (fingerprints) from postmortem human brain
data. Spectral signatures are extracted from single positive slides using the Vector
Component Analysis (VCA). In each subplot, normalized pixel intensity is plotted against
wavelength. (i) solid lines represent the fingerprints extracted manually using ZEN Black
software. (ii) dotted lines with bubbles represent fingerprints extracted automatically using
VCA. The color corresponds to peak wavelength for DAPI and Opal dyes. Lipofuscin is
pseudo-colored to black. Root mean squared error (RMSE) between the two lines is
calculated for each set of fingerprints
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Figure 3: Spectral unmixing of smFISH data from cultured mouse neurons. . Neuronal
nuclei stained with DAPI, Fos transcripts labeled with Opal520, Bdnf exon 1 transcripts
labeled with Opal570, Bdnf exon 4 transcripts labeled with Opal 620, and Arc transcripts
labeled with Opal690. Images shown are 2D maximum intensity projections of 3D z-stacks.
(A - E) Linear unmixing results using ZEN software. (A’ - E’). Spectral unmixing results using
FCLSU algorithm. (A” - E”). Spectral unmixing results using ELMM algorithm. (A” - E™)
Spectral unmixing results using GELMM algorithm.


https://doi.org/10.1101/2021.01.28.428639
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.428639; this version posted July 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

ZEN FCLSU ELMM GELMM

DAPI

Opal 520

Opal 570

Figure 4: Spectral unmixing of smFISH in mouse brain tissue slices. Nuclei stained with
DAPI, Gal transcripts labeled with Opal520, Th transcripts labeled with Opal570, Bdnf exon
9 transcripts labeled with Opal620, and Npy transcripts labeled with Opal690. Images
shown are 2D maximum intensity projections of 3D z-stacks. (A - E) Linear unmixing results
using ZEN software. (A’ - E’) Spectral unmixing results using FCLSU algorithm. (A’ - E”)
Spectral unmixing results using ELMM algorithm. (A” - E””) Spectral unmixing results using
GELMM algorithm.
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Figure 5: Spectral unmixing of smFISH in postmortem human brain tissue. Cell
nucleus is stained with DAPI, MBP transcripts labeled with Opal520, SLC17A7 transcripts
labeled with Opal570, GAD1 transcripts labeled with Opal620, and SNAP25 transcripts
labeled with Opal690. Images shown are 2D maximum intensity projections of 3D z-stacks.
(A - F) Linear unmixing results using ZEN software. (A’ - F’) Spectral unmixing results using
FCLSU algorithm. (A” - F”) Spectral unmixing results using ELMM algorithm. (A” - F™)
Spectral unmixing results using GELMM algorithm.
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Figure 6: Spectral unmixing of immunofluorescence data from postmortem
Alzheimer's disease brain tissue.The cell nuclei are stained with DAPI, Abeta protein is
labelled with AF488, pTau protein is labeled with AF555, MAP2 protein is labeled with
AF633. Images shown are 2D maximum intensity projections of 3D z-stacks. (A - E) Linear
unmixing results using ZEN software. (A’ - E’) Spectral unmixing results using FCLSU
algorithm. (A” - E”) Spectral unmixing results using ELMM algorithm. (A - E™’) Spectral
unmixing results using GELMM algorithm.
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Figure 7: Segmentation of smFISH data in postmortem human brain data using
dotdotdot.. dotdotdot segmentation of unmixed smFISH images from postmortem human
DLPFC. Images shown are 2D maximum intensity projections of 3D segmented z-stacks. (A
- F) Segmented results of ZEN unmixed images. (A" - F’) Segmented results of FCLSU
unmixed images. (A’ - F’) Segmented results of ELMM unmixed images. (A” - F”)
Segmented results of GELMM unmixed images.


https://doi.org/10.1101/2021.01.28.428639
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.428639; this version posted July 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

0 Eles
400 500 600 700
Opal 520
1 ' ' R = 0.01
0.8
0.6
0.4
0.2
O LA L L
400 500 600 700
Opal 570
1 ' 7 R=0.02
> 4 0.8
=
[7)
c
3 0.6
£
T | oa
a
9| 02
N
®
El o Siica 2
s 400 500 600 700
c

wavelength (nm)

400 500 600

—
700

vOpaI 620A

Opal 690

0 -
400 500 600 700

Lipofuscin
T Fat T
R =0.03

0.8
0.6

0.4

0.2

e ‘ :
400 500 600 700

-G- -G~ -vca

manual
RMSE

Figure S1: Extracted spectral signatures (fingerprints) from single positive vs.
multiplex lambda stacks. Comparison of spectral signatures extracted from single positives
vs multiplex lambda stack using the Vector Component Analysis (VCA). In each subplot,
normalized pixel intensity is plotted against wavelength. (i) solid lines represent the
fingerprints extracted using multiplex lambda stack. (ii) dotted lines with bubbles represent
fingerprints extracted from single positives. The color corresponds to peak wavelength for
DAPI and Opal dyes. Lipofuscin is pseudo-colored to black. Root mean squared error
(RMSE) between the two lines is calculated for each set of fingerprints.
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Figure S2: Extracted spectral signatures (fingerprints) of immunofluorescence data
from postmortem human brain tissue sections derived from donors with Alzheimer's
disease. Spectral signatures are extracted from single positive lambda stacks using the
Vector Component Analysis (VCA). In each subplot, normalized pixel intensity is plotted
against wavelength. The color corresponds to peak wavelength for DAPI and Opal dyes.
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Lipofuscin is pseudo-colored to black.

Table 1: Unmixing results using cultured mouse neuron smFISH data

Root mean squared error (RMSE)
DAPI Opal 520 Opal 570 Opal 620 Opal 690 Mean

FCLSU  0.0055 0.0020 0.0031 0.0012 0.0015 0.0027
ELMM  0.0049 0.0025 0.0022 0.0012 0.0012 0.0024
GELMM  (0.0048 0.0020 0.0033 0.0012 0.0015 0.0026
Sorensen-Dice similarity coeflicient
FCLSU  0.9582 0.9739 0.4296 0.6551 0.8803 0.7794
ELMM  0.9715 0.9680 0.7547 0.2146 0.6683 0.7154
GELMM  0.9650 0.9745 0.2584 0.5778 0.8783 0.7308
Structural similarity index (SSIM)

FCLSU  0.8953 0.9961 0.9909 0.9865 0.9817 0.9701
ELMM  (0.8984 0.9961 0.9914 0.9879 0.9875 0.9723

GELMM  (.8963 0.9959 0.9909 0.9865 0.9812 0.9702
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Table 2: Unmixing results using smFISH data from mouse brain tissue sections

Root mean squared error (RMSE)
DAPI Opal 520 Opal 570 Opal 620 Opal 690 Mean

FCLSU  0.0052 0.0023 0.0225 0.0079 0.0021 0.0080
ELMM  0.0035 0.0012 0.0248 0.0083 0.0023 0.0080
GELMM  0.0052 0.0021 0.0252 0.0080 0.0021 0.0085
Serensen-Dice similarity coefficient
FCLSU  0.6866 0.7574 0.8547 0.4545 0.4752 0.6457
ELMM  0.8559 0.8179 0.7799 0.3918 0.5196 0.6730
GELMM  0.7493 0.7927 0.7795 0.4394 0.5001 0.6522
Structural similarity index (SSIM)

FCLSU  0.8510 0.9737 0.9682 0.9754 0.9668 0.9470
ELMM  0.9306 0.9963 0.9713 0.9660 0.9580 0.9644

GELMM  (.8466 0.9736 0.9631 0.9748 0.9677 0.9452


https://doi.org/10.1101/2021.01.28.428639
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.428639; this version posted July 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Table 3: Unmixing results using smFISH data from postmortem human brain tissue
sections

Root mean squared error (RMSE)
DAPI Opal 520 Opal 570 Opal 620 Opal 690 Lipofuscin Mean

FCLSU 0.0026 0.0045 0.0073 0.0023 0.0046 0.0011 0.0037
ELMM 0.0020 0.0043 0.0066 0.0026 0.0040 0.0011 0.0034
GELMDMN  0.0022 0.0041 0.0070 0.0028 0.0047 0.0012 0.0037
Serensen-Dice similarity coefficient
FCLSU 0.9869 .8398 0.7833 0.9266 0.5987 0.5431 0.7797
ELMM 0.9884 0.8453 (.7T882 0.9364 0.7422 0.5008 0.8002
GELMDMN  (0.9556 0.8534 0.7889 0.9037 0.6435 0.4119 0.7595
Structural similarity index (SSIM)

FCLSU 0.9695 0.9931 0.9857 0.9953 0.9328 0.9972 0.9789
ELMM 0.9786 0.9950 0.9899 0.9946 0.9460 0.9974 0.9836

GELMM  (.9695 0.9952 0.9872 0.9950 0.9337 0.9962 0.9795
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Table 4: Unmixing results using immunofluorescence data from postmortem human
brain tissues sections from AD donors

Root mean squared error (RMSE)
DAPI Abeta pTau MAP2 Lipofuscin Mean

FCLSU  0.0087 0.0039 0.0031 0.0031 0.0031 0.0059

ELMM  0.0081 0.0034 0.0031  0.0025 0.0025 0.0055

GELMM 0.0081 0.0034 0.0036  0.0025 0.0025 0.0055
Serensen-Dice similarity coefficient

FCLSU 04362 0.7778 0.7016  0.6938 0.6938 0.7065

ELMM 04436  0.7265 0.5257  0.6988 0.6988 0.6660

GELMM 04263 0.7118 0.7699  0.6022 0.6022 0.6871
Structural similarity index (SSIM)

FCLSU  0.9511 09819 09627 0.9842 0.9842 0.9282

ELMM  0.9566 0.9886 0.9565  0.9891 0.9891 0.9334

GELMM 09568 0.9911 0.9443  0.9835 (.9835 0.9330
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Table 5: Number of segmented objects by dotdotdot for human brain tissue data

DAPI Opal 520 Opal 570 Opal 620 Opal 690 Lipofuscin

ZEN 17 1024 2589 380 3341 97
FCLSU 17 1078 2907 382 6564 a6
ELMM 17 1049 2898 391 7161 ol

GELMM 17 1028 2898 380 7393 43
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