

Chromosome-level *de novo* genome assembly of *Telopea speciosissima* (New

2 South Wales waratah) using long-reads, linked-reads and Hi-C

4 Running title: A reference genome for waratah (Proteaceae)

6 Stephanie H Chen^{1,2}, Maurizio Rossetto^{2,3}, Marlén van der Merwe², Patricia Lu-Irving², Jia-

10 Yee S Yap^{2,3}, Hervé Sauquet^{4,5}, Greg Bourke⁶, Timothy G Amos¹, Jason G Bragg^{2,5,✉}, Richard J
12 Edwards^{1,✉}

14 ¹School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052,
Australia

16 stephanie.h.chen@unsw.edu.au, t.amos@garvan.org.au, richard.edwards@unsw.edu.au

18 ²Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic
Garden Sydney, Mrs Macquaries Rd, Sydney, NSW 2000, Australia

20 maurizio.rossetto@botanicgardens.nsw.gov.au, marlien.vandermerwe@botanicgardens.nsw.gov.au,

22 patricia.lu-irving@botanicgardens.nsw.gov.au, samantha.yap@botanicgardens.nsw.gov.au,
jason.bragg@botanicgardens.nsw.gov.au

24 ³Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia 4072,
Australia

26 ⁴National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd,
Sydney, NSW 2000, Australia

28 herve.sauquet@botanicgardens.nsw.gov.au

30 ⁵School of Biological, Earth and Environmental Sciences, UNSW Sydney, High St, Kensington, NSW 2052,
Australia

32 ⁶Blue Mountains Botanic Garden, Bells Line of Road, Mount Tomah, NSW 2758, Australia

34 greg.bourke@botanicgardens.nsw.gov.au

✉ Corresponding authors

26

ORCID iD

28 SHC 0000-0001-8844-6864
MR 0000-0002-4878-9114
30 MVDM 0000-0003-1307-5143
PL-I 0000-0003-1116-9402
32 JSY 0000-0002-9141-6006
HS 0000-0001-8305-3236
34 TGA 0000-0002-5829-6655
JGB 0000-0002-7621-7295
36 RJE 0000-0002-3645-5539

38 **ABSTRACT**

40 *Telopea speciosissima*, the New South Wales waratah, is an Australian endemic woody shrub
in the family Proteaceae. Waratahs have great potential as a model clade to better
42 understand processes of speciation, introgression and adaptation, and are significant from a
horticultural perspective. Here, we report the first chromosome-level genome for *T.*
44 *speciosissima*. Combining Oxford Nanopore long-reads, 10x Genomics Chromium linked-
reads and Hi-C data, the assembly spans 823 Mb (scaffold N50 of 69.0 Mb) with 97.8 % of
46 Embryophyta BUSCOs complete. We present a new method in Diploidocus
(<https://github.com/slimsuite/diploidocus>) for classifying, curating and QC-filtering scaffolds,
48 which combines read depths, k-mer frequencies and BUSCO predictions. We also present a

new tool, DepthSizer (<https://github.com/slimsuite/depthsizer>), for genome size estimation
50 from the read depth of single copy orthologues and estimate the genome size to be
approximately 900 Mb. The largest 11 scaffolds contained 94.1 % of the assembly,
52 conforming to the expected number of chromosomes ($2n = 22$). Genome annotation
predicted 40,158 protein-coding genes, 351 rRNAs and 728 tRNAs. We investigated
54 *CYCLOIDEA* (*CYC*) genes, which have a role in determination of floral symmetry, and confirm
the presence of two copies in the genome. Read depth analysis of 180 'Duplicated' BUSCO
56 genes suggest almost all are real duplications, increasing confidence in protein family
analysis using annotated protein-coding genes, and highlighting a possible need to revise the
58 BUSCO set for this lineage. The chromosome-level *T. speciosissima* reference genome
(*Tspe_v1*) provides an important new genomic resource of Proteaceae to support the
60 conservation of flora in Australia and further afield.

62 **Keywords:** *Telopea*, waratah, genome assembly, reference genome, long-read sequencing,
Hi-C

64

INTRODUCTION

66

68 *Telopea* R.Br. is an eastern Australian genus of five species of large, long-lived shrubs in the
flowering plant family Proteaceae. The New South Wales waratah, *Telopea speciosissima*
(Sm.) R.Br., is a striking and iconic member of the Australian flora, characterised by large,
70 terminal inflorescences of red flowers (Figure 1). It has been the state floral emblem of New
South Wales since 1962 and was one of the first Australian plant species collected for

72 cultivation in Europe (Nixon, 1987). The species is endemic to the state of New South Wales,
74 occurring on sandstone ridges in the Sydney region. Previous studies have investigated
76 variation among *Telopea* populations by phenetic analysis of morphology (Crisp & Weston,
78 1993) and evolutionary relationships using cladistics (Weston & Crisp, 1994). Population
80 structure and patterns of divergence and introgression between *T. speciosissima* populations
have been characterised using several loci (Rossetto et al., 2011). Further, microsatellite
82 data and modelling suggest a history of allopatric speciation followed by secondary contact
and hybridization among *Telopea* species (Rossetto et al., 2012). These studies point to the
84 great potential of *Telopea* as a model clade for understanding processes of divergence,
environmental adaptation and speciation. Our understanding of these processes can be
greatly enhanced by a genome-wide perspective, enabled by a reference genome (Ellegren
et al., 2012; Hoban et al., 2016; Lewin et al., 2018; Radwan & Babik, 2012; Seehausen et al.,
2014).

86 Genome sequencing efforts have traditionally focused on model species, crops and their
wild relatives, resulting in a highly uneven species distribution of reference genomes across
88 the plant tree of life (Royal Botanic Gardens, Kew, 2017). Despite Proteaceae occurring
across several continents and encompassing 81 genera and ca. 1700 species (Mast et al.,
90 2008; Weston, 2006), the only publicly available reference genome in the family is a widely-
grown cultivar of the most economically important crop in the family, *Macadamia*
92 *integerrifolia* (macadamia nut) HAES 74 (Nock et al., 2016, 2020). Waratahs are significant to
the horticultural and cut flower industries, with blooms cultivated for the domestic and
94 international markets (Offord et al., 1987; Worrall & Gollnow, 2013). A reference genome

will accelerate efforts in breeding for traits such as resistance to pests and diseases (e.g.

96 *Phytophthora* and *Cylindrocapon destructans* infection; Summerell, 1997; Summerell et al.,
1990) as well as desirable floral characteristics (Offord, 2003, 2006).

98

Technological advances in sequencing and decreasing costs will facilitate the generation of
100 more flowering plant reference genomes, including within the Proteaceae family, and
advance research into links between the evolution of genomes and traits that exhibit
102 exceptional diversity, such as floral morphology (Soltis & Soltis, 2014; Zheng et al., 2021).

CYCLOIDEA (CYC) genes belong to the TPC transcription factor gene family, and are known to
104 have an essential role in determining floral symmetry and inflorescence architecture in many
angiosperm lineages (Busch & Zachgo, 2009; Fambrini & Pugliesi, 2017; Horn et al., 2015;
106 Luo et al., 1996); studies have characterised recurrent duplications of members of the *CYC2*
clade, especially in eudicots (Howarth & Donoghue, 2006), including Fabales (Citerne et al.,
108 2003; Feng et al., 2006), Asterales (Chapman et al., 2008), and Lamiales (Yang et al., 2015;
Zhong & Kellogg, 2015). In Proteaceae, a single duplication of *CYC*-like genes occurred prior
110 to diversification and two genes, *ProtCYC1* and *ProtCYC2*, have been characterised (Citerne
et al., 2017). In particular, *Grevillea juniperina* has been studied in detail (Damerval et al.,
112 2019) and the existence of both *ProtCYC1* and *ProtCYC2* in *Telopea mongaensis* has been
supported by phylogenetic analysis (Citerne et al., 2017). However, *CYC* copy number has
114 not been established in *T. speciosissima*.

116 Here, we provide a high quality chromosome-level *de novo* assembly of the *Telopea*
speciosissima genome, using Oxford Nanopore long-reads, 10x Genomics Chromium linked-

118 reads and Hi-C proximity ligation scaffolding, which will serve as an important platform for
120 evolutionary genomics and the conservation of the Australian flora. We present an analysis
of *CYC* genes in the genome to contribute to the understanding of floral evolution in the
Proteaceae family.

122

MATERIALS AND METHODS

124

Sampling and DNA extraction

126 Young leaves (approx. 8 g) were sampled from the reference genome individual (NCBI
BioSample SAMN18238110) where it grows naturally along the Tomah Spur Fire Trail (-
128 33.53° S, 150.42° E) on land belonging to the Blue Mountains Botanic Garden, Mount Tomah
in New South Wales, Australia. Leaves were immediately frozen in liquid nitrogen and stored
130 at -80° C prior to extraction.

132 High-molecular-weight (HMW) genomic DNA (gDNA) was obtained using a sorbitol pre-wash
step prior to a CTAB extraction adapted from Inglis et al. (2018). The gDNA was then purified
134 with AMPure XP beads (Beckman Coulter, Brea, CA, USA) using a protocol based on
Schalamun et al. (2019) – details available on protocols.io (Lu-Irving & Rutherford, 2021).
136 The quality of the DNA was assessed using Qubit, NanoDrop and TapeStation 2200 System
(Agilent, Santa Clara, CA, USA).

138

ONT PromethION sequencing

140 We performed an in-house sequencing test on the MinION (MinION, [RRID:SCR_017985](#))
141 using a FLO-MINSP6 (R9.4.1) flow cell with a library prepared with the ligation kit (SQK-
142 LSK109). The remaining purified genomic DNA was sent to the Australian Genome Research
143 Facility (AGRF) where size selection was performed to remove small DNA fragments using
144 the BluePippin High Pass Plus Cassette on the BluePippin (Sage Science, Beverly, MA, USA).
145 Briefly, 10 µg of DNA was split into 4 aliquots (2.5 µg) and diluted to 60 µL in TE buffer. Then,
146 20 µL of RT equilibrated loading buffer was added to each aliquot and mixed by pipetting.
147 Samples were loaded on the cassette by removing 80 µL of buffer from each well and adding
148 80 µL of sample or external marker. The cassette was run with the 15 kb High Pass Plus
149 Marker U1 cassette definition. Size selected fractions (approximately 80 µL) were collected
150 from the elution module following a 30 min electrophoresis run. The library was prepared
151 with the ligation sequencing kit (SQK-LSK109). The sequencing was performed using
152 MinKNOW v.19.12.2 (MinION) and v12.12.8 (PromethION) and MinKNOW Core v3.6.7 (in-
153 house test), v3.6.8 (AGRF MinION) and v3.6.7 (AGRF PromethION). A pilot run was first
154 performed on the MinION using the FLO-MIN106 (R9.4.1) flow cell followed by two FLO-
155 PRO002 flow cells (R9.4) on the PromethION (PromethION, [RRID:SCR_017987](#))
156
157 Basecalling was performed after sequencing with GPU-enabled Guppy v3.4.4 using the high-
158 accuracy flip-flop models, resulting in 54x coverage. The output from all ONT basecalling was
159 pooled for adapter removal using Porechop (Porechop, [RRID:SCR_016967](#)) v.0.2.4 (Wick et
160 al., 2017) and quality filtering (removal of reads less than 500 bp in length and Q lower than
161 7) with NanoFilt (NanoFilt, [RRID:SCR_016966](#)) v2.6.0 (De Coster et al., 2018) followed by
162 assessment using FastQC (FastQC, [RRID:SCR_014583](#)) v0.11.8 (Andrews, 2010).

164 **10x Genomics Chromium sequencing**

High-molecular-weight gDNA was sent to AGRF for 10x Genomics Chromium sequencing.

166 Size selection was performed to remove DNA fragments <40 kb using the BluePippin 0.75 %
Agarose Gel Cassette, Dye Free on the BluePippin (Sage Science, Beverly, MA, USA). Briefly, 5
168 µg of DNA was diluted to 30 µL in TE buffer and 10 µL of RT equilibrated loading buffer was
added to each aliquot and mixed by pipetting. Samples were loaded on the cassette by
170 removing 40 µL of buffer from each well and adding 40 µL of sample or external marker. The
cassette was run with the 0.75 % DF Marker U1 high-pass 30-40 kb v3 cassette definition.
172 Size selected fractions (approximately 40 µL) were collected following the 30 min
electrophoresis run. The library was prepared using the Chromium Genome Library Kit & Gel
174 Bead Kit and sequenced (2 x 150 bp paired-end) on the NovaSeq 6000 (Illumina NovaSeq
6000 Sequencing System, [RRID:SCR_016387](#)) with NovaSeq 6000 SP Reagent Kit (300 cycles)
176 and NovaSeq XP 2-Lane Kit for individual lane loading.

178 **Hi-C sequencing**

Hi-C library preparation and sequencing was conducted at the Ramaciotti Centre for
180 Genomics at the University of New South Wales (UNSW Sydney) using the Phase Genomics
Plant kit v3.0. The library was assessed using Qubit and the Agilent 2200 TapeStation system
182 (Agilent Technologies, Mulgrave, VIC, Australia). A pilot run on an Illumina iSeq 100 with 2 x
150 bp paired end sequencing run was performed for QC using hic_qc v1.0 (Phase Genomics,
184 2019) with i1 300 cycle chemistry. This was followed by sequencing on the Illumina NextSeq

500 (Illumina NextSeq 500, [RRID:SCR_014983](#)) with 2 x 150 bp paired-end high output run

186 and NextSeq High Output 300 cycle kit v2.5 chemistry.

188 **Genome assembly and validation**

Our assembly workflow consisted of assembling a draft long-read assembly, hybrid polishing
190 of the assembly with long- and short-reads, and scaffolding the assembly into chromosomes
using Hi-C data (Figure 2). Computational steps were carried out on the UNSW Sydney
192 cluster Katana.

194 The first stage of our assembly approach involved comparing three long-read assemblers
using the ONT data as input: NECAT v0.01 (Chen et al., 2021), Flye ([Flye, RRID:SCR_017016](#)
196 v2.6 (Kolmogorov et al., 2019) and Canu ([Canu, RRID:SCR_015880](#)) v1.9 (Koren et al., 2017).

The genome size parameter used for the assemblers was 1,134 Mb, as previously reported
198 for *Telopea truncata* (Jordan et al., 2015). We later refined genome size estimates for *T.*
speciosissima (see ‘DepthSizer: genome size estimation using single-copy orthologue
200 sequencing depths’ section below). We chose the draft long-read assembly for use in
downstream assembly steps based on contiguity (N50), BUSCO completeness and assembly
202 size in relation to the DepthSizer estimated genome size. As a comparison to the long-read
assemblies, the 10x data were assembled with Supernova (Supernova assembler,
204 [RRID:SCR_016756](#)) v2.1.1 (Weisenfeld et al., 2017) with 332 Mb reads subsampled by
Supernova (54x raw coverage, as recommended by Supernova documentation) as input. We
206 generated pseudohaploid output (pseudohap2 output ‘1’).

208 **Assembly completeness and accuracy**

Completeness was initially evaluated by BUSCO (BUSCO, [RRID:SCR_015008](#)) v3.0.2b (Simão et al., 2015), implementing BLAST+ v2.2.31, Hmmer v3.2.1 and EMBOSS v6.6.0 with the embryophyta_odb9 dataset ($n = 1,440$). To investigate the robustness of BUSCO completeness statistics, assemblies were also evaluated with BUSCO v5.0.0 (Manni et al., 2021), implementing BLAST+ v2.11.0 (Altschul et al., 1990), SEPP v4.3.10 (Mirarab et al., 2011) and Hmmer (Hmmer, [RRID:SCR_005305](#)) v3.3 (Eddy, 2011), against the embryophyta_odb10 dataset ($n = 1,614$). BUSCO results were calculated with both Augustus (Augustus, [RRID:SCR_008417](#)) v3.3.2 (Stanke & Morgenstern, 2005) and MetaEuk v732bcc4b91a08e69950ce0e25976f47c3bb6b89d (Levy Karin et al., 2020) as the gene predictor.

220 BUSCO results were collated using BUSCOMP (BUSCO Compilation and Comparison Tool; [RRID:SCR_021233](#)) v0.11.0 (Stuart et al., 2021) to better evaluate the gains and losses in completeness between different assembly stages, and compare different BUSCO versions.

222 Assembly quality (QV) was also estimated using k-mer analysis of trimmed and filtered 10x linked-read data by Merqury v1.0 with $k = 20$ (Rhie et al., 2020). First, 30 bp from the 5' end of read 1 and 10 bp from the 5' end of read 2 were trimmed using BBmap (BBmap, [RRID:SCR_016965](#)) v38.51 (Bushnell, 2014). In addition, reads were trimmed to Q20, then those shorter than 100 bp were discarded.

228

Genome size estimation and ploidy

230 *Telopea speciosissima* has been reported as a diploid ($2n = 22$) (Darlington & Wylie, 1956;
Ramsay, 1963). We confirmed the individual's diploid status using Smudgeplot v0.2.1
232 (Ranallo-Benavidez et al., 2019). The 1C-value of *T. truncata* (Tasmanian waratah) has been
estimated at 1.16 pg (1.13 Gb) using flow cytometry (Jordan et al., 2015). We used the 10x
234 data to estimate the genome size using Supernova v2.1.1 and GenomeScope
(GenomeScope, [RRID:SCR_017014](#)) v1.0 (Vulture et al., 2017).

236
We sought to refine the genome size estimate of *T. speciosissima* using the ONT data and
238 draft genome assemblies, implementing a new tool, DepthSizer
(<https://github.com/slimsuite/depthsizer>, [RRID:SCR_021232](#), **Box 1**). ONT reads were
240 mapped onto each draft genome using Minimap2 (Minimap2, [RRID:SCR_018550](#)) v2.17 (Li,
2018) (--secondary=no -ax map-ont). The single-copy read depth for each assembly was then
242 calculated as the modal read depth across single copy complete BUSCO genes, which should
be reasonably robust to poor-quality and/or repeat regions within these genes (Edwards et
244 al., 2021).

246 **DepthSizer benchmarking**

DepthSizer was benchmarking using five PacBio reference genomes, plus the high-quality
248 genome assembly and PacBio long reads for the German Shepherd Dog (Field et al., 2020;
Table S1). Accuracy was calculated as the estimated genome size, divided by the
250 documented genome size. Additional benchmarking of the robustness of DepthSizer
predictions was performed using ONT and PacBio sequence data for three high-quality dog
252 genomes: Basenji (Edwards et al., 2021), Dingo (Yadav et al., 2020), and German Shepherd

Dog (Field et al., 2020). Raw reads from each technology were analysed independently using
254 both the breed-specific reference genome, and the CanFam 3.1 dog reference
(GCA_000002285.2; Lindblad-Toh et al., 2005). For all benchmarking, reads were mapped
256 with Minimap2 (Minimap2, [RRID:SCR_018550](#)) v2.17 (Li, 2018). Summary violin plots were
generated with ggstatsplot (Patil, 2021) in R.

258

Box 1. DepthSizer: genome size estimation using single-copy orthologue sequencing

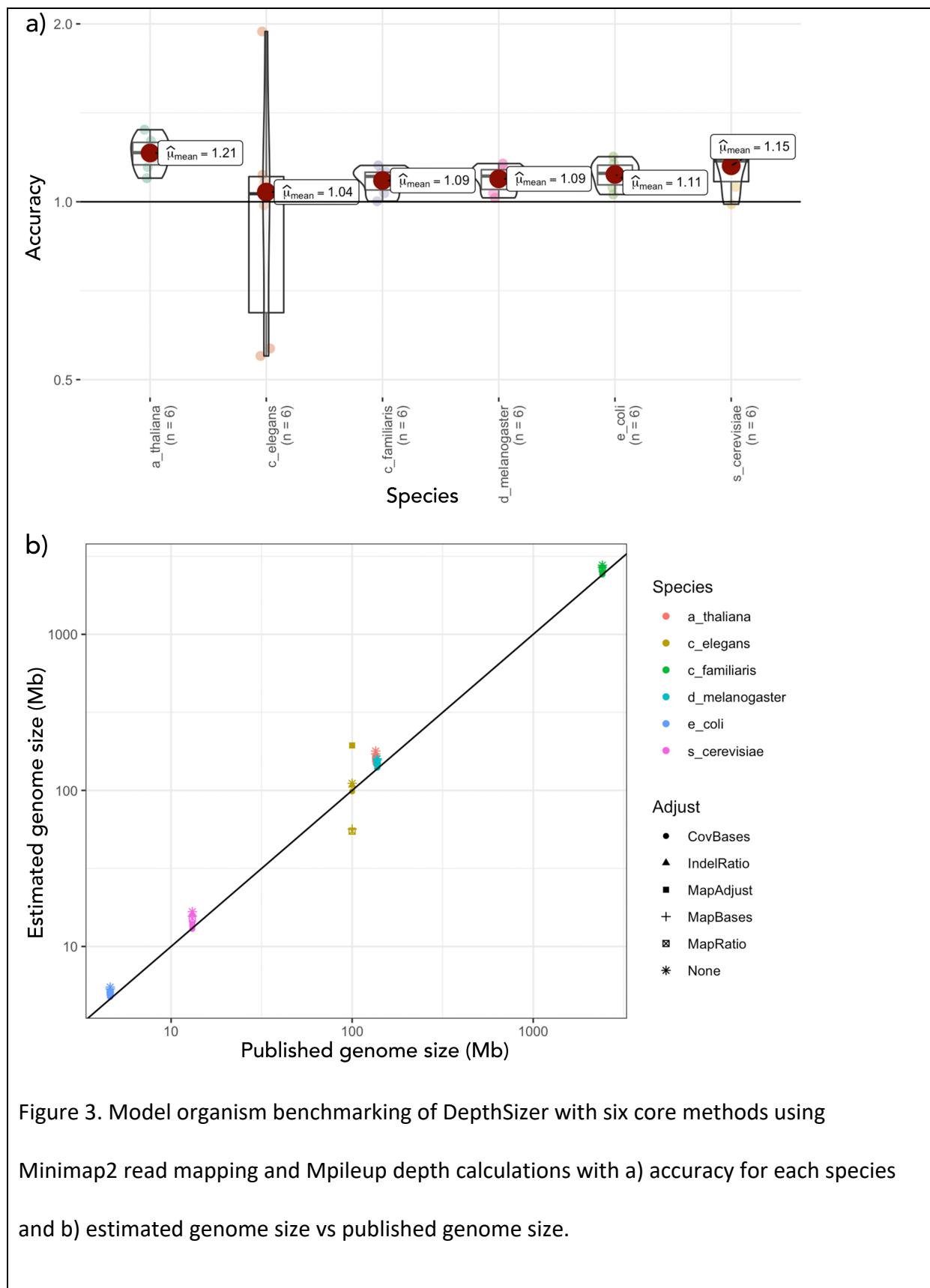
depths

GitHub: <https://github.com/slimsuite/depthsizer>

Genome size prediction is a fundamental task in genome assembly. DepthSizer is a tool for estimating genome size using single-copy long-read sequencing depth profiles.

By definition, sequencing depth (X) is the volume of sequencing divided by the genome size. Given a known volume of sequencing, it is therefore possible to estimate the genome size by estimating the achieved sequencing depth. DepthSizer works on the principle that the modal read depth across single copy BUSCO genes provides a good estimate of the true depth of coverage. This assumes that genuine single copy depth regions will tend towards the same, true, single copy read depth. In contrast, assembly errors or collapsed repeats within those genes, or incorrectly-assigned single copy genes, will give inconsistent read depth deviations from the true single copy depth. The exception is regions of the genome only found on one haplotig – half-depth alternative haplotypes for regions also found in the main assembly –

such as heterogametic sex chromosomes (Edwards et al., 2021), but these are unlikely to outnumber genes present in single copy on both homologous chromosomes. As a consequence, the dominant (i.e. modal) depth across these regions should represent single copy (2n) sequencing depth. First, the distribution of read depth for all single copy genes is generated using Samtools (Samtools, [RRID:SCR_002105](#)) v0.11 (Li et al., 2009) mpileup, and the modal peak calculated using a smoothed ‘density’ function of R (R Project for Statistical Computing, [RRID:SCR_001905](#)) v3.5.3 (R Core Team, 2019) to allow non-integer estimation (see DepthSizer documentation for details). Genome size, G , was then estimated from the modal peak single-copy depth, X_{sc} , and the total volume of sequencing data, T , using the formula: $G = T / X_{sc}$.


DepthSizer has six different genome size adjustment modes that modify T using different core assumptions (see documentation for details):

- None: no adjustment. Assumes zero contamination and perfect read mapping.
- IndelRatio: adjusts total sequencing volume for mismatch between read data being mapped and assembly coverage. Assumes no contamination in raw reads.
- CovBases: sets T as the total number of sequencing read bases covering the assembly. (Assembly Length x Mean depth)
- MapBases: sets T as the total number bases from sequencing reads mapped on to the genome. Assumes perfect mapping and all unmapped reads are contamination.
- MapAdjust: adjusts total sequencing volume by the ratio of mapped reads to mapped bases to account for depth losses during mapping. Assumes no contamination in raw reads.

- MapRatio: adjusts the MapBases by the IndelRatio sequencing:mapping bias.

It is expected that the true genome size should fall between IndelRatio (upper) and MapRatio (lower). CovBases should provide an absolute lower bound for genome size. If there is a very large difference between CovBases and MapBases, this could indicate a problem with the reads and/or assembly (e.g. some kind of incompatibility) and will result in a very inaccurate MapAdjust. If there is a very big difference between MapBases and None, this could indicate a very incomplete assembly, or a lot of contamination. In these cases, it is advisable to establish which before deciding which prediction size to use.

Benchmarking on PacBio data from six model organisms demonstrates robust genome size estimates, with a tendency to slightly overestimate genome size as expected (Figure 3, Table S1 and Table S2). Additional benchmarking on three high-quality canid genomes further revealed robustness to both assembly used (breed-specific genome versus CanFam v3.1) and sequencing technology (PacBio vs ONT), although PacBio data appears to over-estimate genome size more than ONT data (Figure S1).

260 **Assembly tidying and contamination screening**

The draft genome was screened and filtered to remove contamination, low-quality contigs
262 and putative haplotigs, using more rigorous refinement of the approach taken for the
Canfam_GSD (German Shepherd) and CanFam_Bas (Basenji) dog reference genomes
264 (Edwards et al., 2021; Field et al., 2020), implemented in Diploidocus v0.9.6
(<https://github.com/slimsuite/diploidocus>, [RRID:SCR_021231](#), **Box 2**).

266
BUSCO Complete genes were used to estimate a single-copy read depth of 54X. This was
268 used to set low-, mid- and high-depth thresholds for Purge Haplots (Purge_haplots,
[RRID:SCR_017616](#)) v20190612 (Roach et al., 2018) (implementing Perl v5.28.0, BEDTools
270 ([BEDTools](#), [RRID:SCR_006646](#)) v2.27.1 (Quinlan & Hall, 2010), R v3.5.3 (R Core Team, 2019),
and SAMTools v1.9 (Li et al., 2009) of 13X, 40X and 108X. For the draft genome, convergence
272 was reached after three cycles with 148 core sequences and 62 repeat sequences retained
(see Table S6 for summary of cycles and Table S7 for full output).

274

Box 2. Automated genome assembly tidying with Diploidocus

GitHub: <https://github.com/slimsuite/diploidocus>

Diploidocus is a tool that assists with tidying and curating genome assemblies. The tool
combines read depth, KAT k-mer frequencies, Purge Haplots depth bins, Purge Haplots
best sequence hits, BUSCO gene predictions, telomere prediction and vector contamination

into a single seven-part (PURITY|DEPTH|HOM|TOP|MEDK|BUSCO+EXTRA) classification (Table S4). Diploidocus then performs a hierarchical rating of scaffolds, based on their classifications and compiled data (Table S5 and Figure 4). Based on these ratings, sequences are divided into sets:

1. Core. Predominantly diploid scaffolds and unique haploid scaffolds with insufficient evidence for removal.
2. Repeats. Unique haploid scaffolds with insufficient evidence for removal but dominated by repetitive sequences. High coverage scaffolds representing putative collapsed repeats.
3. Quarantine. Messy repetitive sequences and strong candidates for alternative haplotigs.
4. Junk. Low coverage, short and/or high-contaminated sequences.

If any sequences are marked as 'Quarantine' or 'Junk', sequences in the 'Core' and 'Repeat' sets are retained and used as input for another round of classification and filtering.

First, the assembly is screened against the NCBI UniVec database (<ftp://ftp.ncbi.nlm.nih.gov/pub/UniVec/>, downloaded 05/08/2019) to identify and remove contaminants. Hits are first scored using rules derived from NCBI Vecscreener (<https://www.ncbi.nlm.nih.gov/tools/vecscreener/>) and regions marked as 'Terminal' (within 25 bp of a sequence end), 'Proximal' (within 25 bases of another match) or 'Internal' (>25 bp from sequence end or vecscreener match). Then, any segment of fewer than 50 bases between

two vector matches or between a match and a sequence end are marked as ‘Suspect’. In our experience, default Vecscreen parameters appear prone to excessive false positives in large genomes (data not shown), and so Diploidocus features two additional contaminant identification filters. First, the ‘Expected False Discovery Rate’ (eFDR) is calculated for each contaminant sequence. This is simply the BLAST+ Expect value for that hit, divided by the total number of hits at that Expect value threshold. Any hits with an eFDR value exceeding the default threshold of 1.0 were filtered from the vecscreen results. Short matches in long-read assemblies are unlikely to be real contamination and a second filter was applied, restricting contaminant screening to a minimum hit length of 50 bp. Finally, the percentage coverage per scaffold is calculated from the filtered hits. This is performed first for each contaminant individually, before being collapsed into total non-redundant contamination coverage per query. Diploidocus then removes any scaffolds with at least 50 % contamination, trims off any vector hits within 1 kb of the scaffold end, and masks any remaining vector contamination of at least 900 bp. This masking replaces every other base with an N to avoid an assembly gap being inserted: masked regions should be manually fragmented if required. Diploidocus can also report the number of mapped long reads that completely span regions flagged as contamination.

After contamination screening, a sorted BAM file of ONT reads mapped to the filtered assembly is generated using Minimap2 v2.17 (-ax map-ont --secondary = no) (Li, 2018). Purge Haplotigs coverage bins were adjusted to incorporate zero-coverage bases, excluding assembly gaps (defined as 10+ Ns). Counts of Complete, Duplicate and Fragmented BUSCO

genes were also generated for each sequence. General read depth statistics for each sequence were calculated with BBMap v38.51 pileup.sh (Bushnell, 2014). The `sect` function of KAT (KAT, [RRID:SCR_016741](https://doi.org/10.1101/2017.06.02.14741)) v2.4.2 (Mapleson et al., 2017) was used to calculate k-mer frequencies for the 10x linked reads (first 16 bp trimmed from read 1), and the assembly itself. Telomeres were predicted using a method adapted from <https://github.com/JanaSperschneider/FindTelomeres>, searching each sequence for 5' occurrences of a forward telomere regular expression sequence, C{2,4}T{1,2}A{1,3}, and 3' occurrences of a reverse regular expression, T{1,3}A{1,2}G{2,4}. Telomeres were marked if at least 50 % of the terminal 50 bp matches the appropriate sequence.

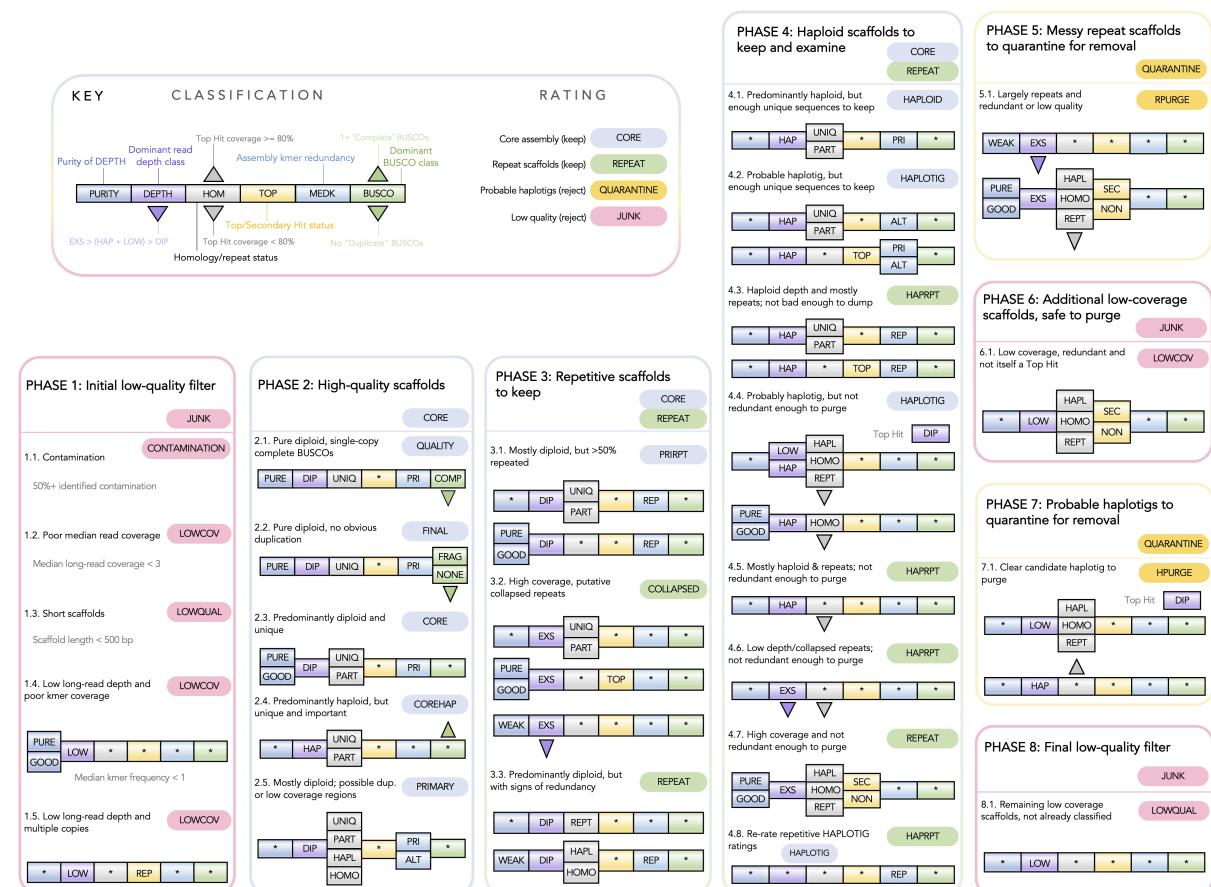


Figure 4. Diploidocus scaffold rating process based on a six-part classification. Asterisks

indicate any class value is accepted. Phases are executed in order. Consequently, rules for later phases appear less restrictive than the full set of criteria required to receive that rating.

276 **Assembly polishing and gap-filling**

The assembly was first long-read polished with Racon (Racon, [RRID:SCR_017642](#)) v1.4.5 (Vaser et al., 2017) using the parameters -m 8 -x -6 -g -8 -w 500 and medaka v1.0.2 (Oxford Nanopore Technologies Ltd., 2018) using the r941_prom_high_g303 model. Then, the 10x reads were incorporated by short-read polishing using Pilon (Pilon, [RRID:SCR_014731](#)) v1.23 (Walker et al., 2014) with reads mapped using Minimap2 v2.12 (Li, 2018) and correcting for indels only; we found correcting for indels only resulted in a higher BUSCO score than correcting for indels and SNPs following the steps described in this section. We scaffolded using SSPACE-LongRead v1.1 (Boetzer & Pirovano, 2014) with -k 1 followed by gap-filling using gapFinisher v20190917 (Kammonen et al., 2019) with default parameters. After another round of long-read polishing with Racon v1.4.5 (Vaser et al., 2017) and medaka v1.0.2 (Oxford Nanopore Technologies Ltd., 2018), we moved forward with a second round of tidying in Diploidocus v0.9.6 (default mode).

290 **Hi-C scaffolding**

Hi-C data were aligned to the draft genome assembly using the Juicer (Juicer, [RRID:SCR_017226](#)) pipeline v1.6 (Durand et al., 2016) then scaffolds were ordered and orientated using the 3D *de novo* assembly pipeline (3D de novo assembly, [RRID:SCR_017227](#)) v180922 (Dudchenko et al., 2017). The contact map was visualised using Juicebox Assembly Tools v1.11.08 and errors over 3 review rounds were corrected manually to resolve 11

296 chromosomes (Dudchenko et al., 2018). The resulting assembly was tidied again using
297 Diploidocus v0.10.6 (default mode).

298

Final polishing and assembly clean-up

300 A further round of long-read polishing with Racon v1.4.5 (Vaser et al., 2017) and medaka
301 v1.0.2 (Oxford Nanopore Technologies Ltd., 2018) was performed as described above. We
302 then short-read polished using Pilon v1.23 (Walker et al., 2014). Two Pilon strategies were
303 applied: (1) indel-only correction; (2) indel and SNP correction. We retained the indel and
304 SNP corrected assembly as it resulted in a marginally higher BUSCO score compared to indel
305 only correction (1311 vs 1310 complete BUSCOs); there was no change to contig nor scaffold
306 numbers. A final hybrid polish was performed using Hypo v1.0.3 (Kundu et al., 2019). The
307 assembly was concluded with a final tidy with Diploidocus v0.14.1 (default mode). All gaps in
308 the assembly were then standardised to 100 bp.

310 Genome-wide heterozygosity was estimated using trimmed 10x reads with GenomeScope
311 (Vurture et al., 2017) from the k-mer 20 histogram computed using Jellyfish (Jellyfish,
312 [RRID:SCR_005491](#)) v2.2.10 (Marçais & Kingsford, 2011).

314 **Genome annotation**

The genome was annotated using the homology-based gene prediction program GeMoMa
315 (GeMoMa, [RRID:SCR_017646](#)) v1.7.1 (Keilwagen et al., 2019) with four reference genomes
316 downloaded from NCBI: *Macadamia integrifolia* (SCU_Mint_v3, GCA_013358625.1),
317 *Nelumbo nucifera* (Chinese Lotus 1.1, GCA_000365185.2), *Arabidopsis thaliana* (TAIR10.1,

GCA_000001735.2) and *Rosa chinensis* (RchiOBHm-V2, GCA_002994745.2). The annotation
320 files for *M. integrifolia* were downloaded from the Southern Cross University data repository
(doi.org/10.25918/5e320fd1e5f06). *Macadamia* (Nock et al., 2020) and *Nelumbo* (Ming et
322 al., 2013) genomes were chosen as they are related to *Telopea* i.e. in the order Proteales.
The other two high-quality genomes represented the core eudicots and included the model
324 flowering plant *Arabidopsis* (Lamesch et al., 2012) and *Rosa* (Hibrand Saint-Oyant et al.,
2018) where the publication focused on genetic regulators of ornamental traits which is of
326 interest for *Telopea*. Annotation completeness was assessed using BUSCO v3.0.2b and v5.0.0
in proteome mode.

328

Ribosomal RNA (rRNA) genes were predicted with Barrnap (Barrnap, [RRID:SCR_015995](#)) v0.9
330 (Seemann, 2018) and transfer RNAs (tRNAs) were predicted with tRNAscan-SE (tRNAscan-SE,
[RRID:SCR_010835](#)) v2.05 (Lowe & Chan, 2016), implementing Infernal (Infernal,
332 [RRID:SCR_011809](#)) v1.1.2 (Nawrocki & Eddy, 2013). A set of 2,419 tRNAs was initially
predicted and filtered to 760 using the recommended protocol for eukaryotes. Then, 22
334 tRNAs with mismatched isotype and 10 with unexpected anticodon were removed to form
the high-confidence set.

336

The genome has also been annotated by the NCBI Eukaryotic Genome Annotation Pipeline
338 using RNAseq data from other Proteaceae (RefSeq accession GCF_018873765.1).

340 **Genome-wide copy number analysis**

Estimated single-copy (2n) sequencing depth was calculated for different regions of the
342 genome using the same smoothed density profile as employed by DepthSizer (Box 1) and
comparing this to the BUSCO-derived single-copy (2n) sequencing depth of DepthSizer. This
344 analysis was performed on: (1) BUSCO v5 (MetaEuk) single-copy ‘Complete’ genes; (2)
BUSCO v5 ‘Duplicated’ genes; (3) All NCBI gene annotations; (4) Each final assembly scaffold;
346 (5) 100 kb non-overlapping windows across the genome. For convenience, this method has
been made available as DepthKopy (<https://github.com/slimsuite/depthkopy>).

348

Repeat annotation

350 Following the approach from the *Macadamia integrifolia* genome paper (Nock et al., 2020),
we identified and quantified repeats in the *Telopea* genome as well as the other four species
352 used in the GeMoMa annotation for comparison. A custom repeat library was generated
with RepeatModeler (RepeatModeler, [RRID:SCR_015027](#)) v2.0.1 (-engine ncbi) and the
354 genome was masked with RepeatMasker (RepeatMasker, [RRID:SCR_012954](#)) v4.1.0 (TaraIlo-
Graovac & Chen, 2009), both with default parameters. The annotation table was generated
356 using the buildSummary.pl RepeatMasker script.

358 **Orthologous clusters and synteny analyses**

Synteny between the *Telopea* (Tspe_v1) and *Macadamia* (SCU_Mint_v3) genomes was
360 explored with satsuma2 version untagged-2c08e401140c1ed03e0f with parameters -l 3000 -
do_refine 1 -min_matches 40 -cutoff 2 -min_seed_length 48 and visualised with the
362 ChromosomePaint function (Grabherr et al., 2010) and MizBee v1.0 (Meyer et al., 2009). The
protein sequences of Tspe_v1 and the four species used in the GeMoMa annotation were

364 clustered into orthologous groups and tests for gene ontology (GO) enrichment were
365 conducted for waratah-specific clusters using OrthoVenn2 (Xu et al., 2019). Intersection of
366 clusters was visualised using the R package UpSetR (Conway et al., 2017).

368 ***CYCLOIDEA* transcription factor gene family analysis**

369 Complete and partial protein sequences for *CYCLOIDEA* transcription factors were
370 downloaded from NCBI using identifiers listed in Table S3 of Citerne et al., 2017. GABLAM
371 v2.30.5 (Davey et al., 2006) was used to identify all homologous proteins (BLAST+ v2.11.0,
372 blastp e-value <1e-4) in the waratah GeMoMa annotation, which was annotated with
373 protein descriptions from closest Swissprot hits using SAAGA v0.7.6 (Stuart et al., 2021).
374 Each *Telopea speciosissima* homologue was then used as query sequence for HAQESAC
375 v1.14.0 (Edwards et al., 2007) to generate a high-quality multiple sequence alignment and
376 inferred phylogenetic tree of close homologues (limited to a maximum of 100 closest hits). A
377 search database was constructed from all angiosperm proteins in Uniprot (taxid 3398), the
378 three reference proteomes used for GeMoMa annotation (*Macadamia integrifolia*, *Nelumbo*
379 *nucifera* and *Rosa chinensis*), and all angiosperm reference proteomes from Quest For
380 Orthologues (March 2021 release; (Forslund et al., 2018). To this were added the original
381 CYC sequences and full GeMoMa annotation of *T. speciosissima*. BLAST+ searches and
382 HAQESAC runs were controlled by MultiHAQ v1.5.0 (Jones et al., 2011). To generate a
383 comprehensive but non-redundant tree of CYC genes, all homologues meeting initial
384 HAQESAC screening criteria (min 40 % global identity and 60 % global coverage to query, <50
385 % gaps relative to nearest homologue) were combined into a single non-redundant dataset
386 of *CYCLOIDEA* homologues and their homologues. A candidate *Telopea* *CYCLOIDEA*-like 1

gene (TSPEV1G03060) was identified based on SAAGA annotation and HAQESAC
388 homologues. This was used as a query for a second, manually curated HAQESAC run against
the full non-redundant protein dataset, screening out any proteins with an unknown species
390 designation (including sequence assigned the 9MAGSP species code). Multiple sequence
alignments were performed with Clustal Omega (Clustal Omega, [RRID:SCR_001591](#)) v1.2.4
392 (Sievers et al., 2011). The final tree was generated with IQ-TREE (IQ-TREE, [RRID:SCR_017254](#))
v2.0.4 (Nguyen et al., 2015) with 1,000 bootstraps.

394

RESULTS AND DISCUSSION

396 **High-quality chromosome-level *Tspe_v1* reference genome**
398 The ONT, 10x and Hi-C sequencing yielded a total of 48.3, 123.4 and 25.0 Gb of sequence,
respectively (Table 1). At the initial long-read assembly stage, NECAT resulted in the most
400 contiguous assembly, at 365 contigs and the highest BUSCO completeness at 81.2 %. This
was followed by Flye at 2,484 contigs and 81.0 % complete, then Canu at 3,983 contigs at
402 78.4 % complete. The BUSCO completeness of the 10x pseudohaploid assembly was higher
than each of the long-read assemblies at 91.8 %. However, the 10x assembly had much
404 lower contiguity at 43,951 contigs, as expected (Table S3). Whilst Supernova had a higher
BUSCO completeness (91.9 % versus 81.2 %), NECAT was orders of magnitude better in
406 terms of contiguity (10.7 Mb N50 on 365 contigs vs 874 kb N50 on 27,610 scaffolds).
Furthermore, BUSCOMP analysis revealed that the NECAT assembly contained more
408 complete BUSCO genes when base accuracy is not considered (Figure 5; Supplementary Files
– BUSCOMP full report). Guided by these metrics, NECAT was selected as the core assembly

410 for additional processing. We confirmed the individual's diploid status with Smudgeplot
(Figure S2a).

412
414 Rounds of polishing and tidying improved the contiguity and quality of the genome as the genome progressed through the assembly workflow (Table S3). The first round of polishing markedly improved the BUSCO score – long-read polishing increased complete BUSCOs from 416 1,532 (v0.2) to 1,590 (v0.3) and short-read polishing further increased this to 1,602 (v0.4).

418 The assembly was scaffolded by SSPACE-LongRead from 209 contigs into 138 scaffolds, however, no gaps were filled by gapFinisher. After further long-read polishing, a run of Diploidocus (v0.7) retained 128 scaffolds out of 138, which consisted of 87 core, 41 repeat, 420 10 quarantine and 0 junk scaffolds. Following incorporation of Hi-C data, the assembly was in 2,357 scaffolds, and the N50 increased substantially from 16.5 Mb to 68.9 Mb.

422 Surprisingly, the contig number increased considerably from 148 to 3,537, suggesting that the Hi-C data and NECAT assembly were frequently in conflict. The resulting assembly was 424 tidied with Diploidocus and 1643 scaffolds (824,534,974 bp) were retained out of 2,357 (833,952,765 bp; 1,347 core, 296 repeat, 548 quarantine and 166 junk scaffolds). The 426 removal of many sequences by Diploidocus, and the less contiguous initial assemblies from widely-used long-read assemblers Canu and Flye (Table S3), suggest that the NECAT 428 assembly contained erroneously joined sequences, and these were corrected by Hi-C.

430 However, it is also possible that limitations of the Hi-C library contributed to the high degree of fragmentation. The assembly contiguity improved to 1,399 scaffolds and 1,595 contigs 432 following a further round of long-read polishing (Table S3). Following hybrid polishing with Hypo (v0.9), the number of scaffolds remained as 1,399 and the BUSCO score improved

slightly. Notably, Hypo polishing improved the Merqury QV score from 29.8 to 33.9. A final
434 iteration of Diploidocus Tidy removed 72 putative haplotigs and 38 low quality 'junk'
scaffolds, keeping 1,084 core and 250 repetitive scaffolds.

436
The conclusion of the assembly workflow produced an 823.3 Mb haploid genome assembly
438 (Tspe_v1) on 1,289 scaffolds, with an N50 of 69.0 Mb and L50 of 6 (Table 2). The Hi-C data
facilitated scaffolding into 11 chromosomes (Figure 6), conforming to previous cytological
440 studies (Darlington & Wylie, 1956), and the anchored proportion of Tspe_v1 spanned 94.2 %
of the final assembly; the chromosomes were numbered by descending length (Table S8) as
442 this is the first instance *Telopea* chromosomes have been studied in detail.

444 From a core set of 1,614 single-copy orthologues from the Embryophyta lineage, 97.8 %
were complete in the assembly (86.7 % as single-copy, 11.2 % as duplicates), 1.7 % were
446 fragmented and only 0.5 % were not found, suggesting that the assembly includes most of
the waratah gene space. Interestingly, BUSCO scores vary by many percentages between
448 different BUSCO versions and gene predictors. BUSCO v5.0.0 with MetaEuk as the gene
predictor consistently produced the highest scores (Table S3). BUSCO v3.0.2b with Augustus
450 benchmarked the assembly against 1,440 single-copy orthologues only found 91.3 %
complete in the assembly (81.5 % as single-copy, 9.7 % as duplicates), with 2.9 % fragmented
452 and 5.8 % missing. BUSCO v5.0.0 with Augustus as the gene predictor reported higher scores
than v3.0.2b but lower than when MetaEuk was used as the gene predictor (Table S3). We
454 recovered a maximal non-redundant set of 1,549 complete single copy BUSCOs across the
set of assemblies. BUSCOMP analysis revealed that only one gene out of 1614 was not found

456 by BUSCO v5 MetaEuk in any version of the assembly (Figure 5; Supplementary File –
457 BUSCOMP full report). The *Tspe_v1* assembly completeness is favourable in comparison to
458 the *Macadamia integrifolia* (SCU_Mint_v3) assembly (Nock et al., 2020), which also
459 combined long-read and Illumina sequences (BUSCO v5 MetaEuk 96.7 % vs 81.9 % complete,
460 respectively, in the anchored portion of the assembly). The Merqury QV score of the
461 assembly was 34.03, indicating a base-level accuracy of >99.99 % (Figure S3). Genome-wide
462 heterozygosity was estimated to be 0.756 % (Figure S2b).

464 **The *Telopea speciosissima* genome is approximately 900 Mb**

465 The 1C-value of *T. truncata* (Tasmanian waratah) has been estimated at 1.16 pg (1.13 Gb)
466 using flow cytometry (Jordan et al., 2015). Supernova v2.1.1 predicted a genome size of 953
467 Mb from the assembly of the 10x linked-reads whilst GenomeScope predicted a smaller
468 genome of 794 Mb from the same data (Figure S2b). DepthSizer analysis of the six different
469 versions of the genome assembly (four raw assemblies, *Tspe_v1*, and *Tspe_v1*
470 chromosomes) estimated the genome size of *T. speciosissima* to fall within a range from 850
471 Mb to 950 Mb (Table S9), and shows good robustness to both assembly version and BUSCO
472 dataset used (Figure 7). This falls between the Supernova and GenomeScope estimates. We
473 report an estimated genome size of approximately 900 Mb, considering the mean of
474 estimates of the six adjustment methods using the BUSCO v5 MetaEuk data, based on the
475 highest quality *Tspe_v1* assemblies.

476

The majority of *Tspe_v1* is at single-copy (2n) read depth

478 Read depth copy number analysis reveals that the majority of the assembly is at the
expected $2n$ depth (Figure 8). Single-copy ‘Complete’ BUSCO genes strongly cluster around
480 CN = 1, further supporting the robustness of the method underpinning DepthSizer. Notably,
the 180 ‘Duplicated’ BUSCO genes are also predominantly at single-copy depth, with a
482 similar copy number distribution to the BUSCOs classified as single-copy and complete. This
indicates that the vast majority are likely to be real duplications found in *T. speciosissima*,
484 with only a few representing potential sequencing errors (Table S10). This was supported by
HAQESAC phylogenetic analysis of all 180 genes (Supplementary File –
486 *Tspe_v1.buscodup_HAQESAC.zip*). Copy number analysis of all 14,882 NCBI annotated genes
shows a similar clustering around a median copy number of 1. However, the mean copy
488 number is surprisingly high at 2.36. Further inspection of the data revealed that this is being
driven by a reasonably small number of very high copy number genes, derived from highly
490 collapsed repeat regions (Table S11). This is further supported by the elevated mean copy
number for both whole scaffolds and 100 kb windows. This is consistent with the
492 identification by Diploidocus of 250 repetitive scaffolds, and a final assembly of approx. 91.5
% of the predicted genome size. Consistent with other Hi-C scaffolded assemblies (e.g. Rhie
494 et al., 2021), it is likely that *Tspe_v1* still contains some misassemblies that will need to be
corrected with additional curation in future.

496

Repetitive elements and gene prediction

498 The *Telopea* genome is highly repetitive, with repeats accounting for 62.3 % of the total
sequence length and has a similar repeat content to *Macadamia*, previously reported as
500 55.1 % (Nock et al., 2020) and found to be 58.5 % in our analyses (Table S12). Class I

transposable elements (TEs) or retrotransposons were the most pervasive classified repeat
502 class (20.3 % of the genome) and were dominated by long terminal repeat (LTR)
retrotransposons (18.1 %). Class II TEs (DNA transposons) only accounted for 0.03 % of the
504 genome. A high percentage of repeats remained unclassified (40.6 %) and the genome will
serve as a resource for future studies into repetitive elements in *Telopea* and related
506 species.

508 Genome annotation predicted 40,126 protein-coding genes and 46,842 mRNAs in the *T.*
speciosissima assembly, which fits the expectation for plant genomes (Sterck et al., 2007). Of
510 these genes, 38,427 appeared in the 11 chromosomes (Table S8). Of 1,440 Embryophyta
orthologous proteins, 94.0 % were complete in the annotation (79.3 % as single-copy, 14.7 %
512 as duplicates), 3.4 % were fragmented and 2.6 % were missing. Additionally, 351 rRNA genes
and a set of 728 high-confidence transfer RNAs (tRNAs) were predicted. The NCBI
514 Annotation Release 100 had a higher completeness, as expected, than the GeMoMa
annotation; of 1,614 Embryophyta genes, 98.3 % were complete in the annotation (54.2 % as
516 single-copy, 44.1 % as duplicated), 1.1 % were fragmented and 0.6 % were missing. When
comparing the assembly completeness with proteome completeness using BUSCO v3.0.2b,
518 the proteome completeness at 94.0 % (79.3 % as single-copy and 14.7 % as duplicated) was
unexpectedly higher than the genome completeness at 91.3 % (81.5 % as single-copy and 9.7
520 % as duplicated). However, this issue was resolved with a later version of BUSCO (v5.0.0).
The improvements in BUSCO likely meant that genes could be better discerned in the
522 genome assembly, where they are more difficult to identify, compared to a proteome.

524 An inverse pattern in the incidence of genes and repeats was observed across all
chromosomes, with repeat content generally peaking towards the centre of each
526 chromosome (Figure 9), suggesting predominantly metacentric and submetacentric
chromosomes. This pattern may represent enriched repeat content and reduced coding
528 content in pericentromeric regions, although further study is required to identify the
centromeres (Jiang et al., 2003; Oliveira & Torres, 2018; Simon et al., 2015).

530

BUSCO completeness statistics must be matched by version and gene predictor

532 One surprising observation from our BUSCO analysis was a jump in completeness of over 6 %
when moving from BUSCO v3 Augustus predictions to BUSCO v5 MetaEuk predictions (Figure
534 5 and Table S3). This is explained in part by the change to the lineage database used.
However, completeness scores for BUSCO v5 Augustus are only about 3 % higher. This is
536 particularly pronounced for the raw assemblies, where Augustus scores can be over 10 %
lower than MetaEuk scores. Great care must be taken in naïve comparison of published
538 BUSCO scores, even if using the same version of BUSCO. MetaEuk scores seem to be both
higher and more stable. However, nucleotide sequences for Complete BUSCO genes are
540 currently only output from Augustus mode. We have therefore updated BUSCOMP to
extract the missing sequences from MetaEuk runs so that they can be used with
542 downstream tools such as BUSCOMP that require these sequences.

544 **Orthologous clusters and synteny between *Telopea* and *Macadamia***

The five species formed 24,140 clusters: 23,031 orthologous clusters (containing at least 2
546 species) and 1,109 single-copy gene clusters. There were 9,463 orthologous families

common to all of the species. The three members of the order Proteales (*T. speciosissima*,
548 *M. integrifolia* and *N. nucifera*) shared 456 families (Figure 10 and Figure S4). Tests for GO
enrichment of 912 waratah-specific clusters identified 12 significant terms (Table S13). The
550 most enriched GO terms were DNA recombination (GO:0006310, $P = 1.8 \times 10^{-27}$),
retrotransposon nucleocapsid (GO:0000943, $P = 3.5 \times 10^{-12}$) and DNA integration
552 (GO:0015074, $P = 4.1 \times 10^{-11}$).

554 The *Macadamia* genome ($2n = 28$) has six more chromosomes than the *Telopea* genome ($2n$
= 22), but the two species have similar estimated genome sizes – 896 Mb (Nock et al., 2020)
556 compared to 874 Mb. It is thought that the ancestral Proteaceae had a chromosome number
of $x = 7$ (Carta et al., 2020; L. A. S. Johnson & Briggs, 1963, 1975; Murat et al., 2017),
558 although the occurrence of paleo-polyploidy in family has been debated (Stace et al., 1998).

Overall, synteny analyses reveal an abundance of interchromosomal rearrangements
560 between the *Telopea* and *Macadamia* genomes (Figure 11), reflecting the long time since
their divergence (73-83 Ma; Sauquet et al., 2009). However, a number of regions exhibit
562 substantial collinearity, for example, *Telopea* chromosome 09 and *Macadamia* chromosome
11 (Figure S5).

564

CYC gene copy number and the genetic control of floral symmetry

566 In total, 210 predicted waratah sequences (longest isoform per gene) were identified as
homologous to the 49 Citerne et al. CYC protein sequences. Of these, 198 generated
568 multiple sequence alignments and phylogenetic trees. These combined to form a non-
redundant dataset of 12,238 proteins. HAQESAC reduced this to a high-quality alignment of

570 46 homologous proteins, including two waratah proteins, TSPEV1G03060 – *CYC1* and
TSPEV1G20406 – *CYC2*. Consistent with previous work (Citerne et al., 2017), these two
572 proteins belonged to two distinct clades (Figure 12). While the exact role of the two
paralogues in determining floral symmetry in Proteaceae would require a study of gene
574 expression and remains incompletely understood in the species examined so far (Citerne et
al., 2017; Damerval et al., 2019), this is the first study to quantify the total number of
576 *CYCLOIDEA* paralogues in Proteaceae based on a complete genome sequence. Our results
hence lend further support to the pattern of a single gene duplication in the stem lineage of
578 Proteaceae that had so far emerged from Sanger and transcriptome sequencing.

580 **A molecular resource for biodiversity genomics**

The *T. speciosissima* reference genome will enable genome-scale research into Proteaceae
582 evolution, at a wide range of scales. At shallower evolutionary scales, the *Telopea* genus
contains five species that exhibit genetic variation consistent with a history of divergence
584 and introgression, likely driven by climatic change (Rossetto et al., 2011, 2012). Recent
studies highlight the power of genome-scale approaches for inferring demographic change
586 and mechanistic forces that have influenced such clades, often making use of heterogenetity
in patterns of variation across whole genomes (Choi et al., 2021; Soltis & Soltis, 2021). We
588 expect the waratah genome to similarly facilitate studies that provide new insights about
historical gene flow and selection, in changing environments.

590

CONCLUSIONS

592

We present a high-quality annotated chromosome-level reference genome of *Telopea speciosissima* assembled from Oxford Nanopore long-reads, 10x Genomics Chromium linked-reads and Hi-C (823 Mb in length, N50 of 69.9 Mb and BUSCO completeness of 97.8 %): the first for a waratah, and only the second publicly available Proteaceae reference genome. We envisage these data will be a platform to underpin evolutionary genomics, gene discovery, breeding and the conservation of Proteaceae and the Australian flora.

600 ACKNOWLEDGEMENTS

602 We thank Stuart Allan for providing access to the sequenced plant and assistance with
sample collection at Blue Mountains Botanic Garden and Carolyn Connelly for facilitating
604 access to lab materials at the Royal Botanic Garden Sydney. We acknowledge Chris Jackson
for advice on repeat annotation. We thank the members of UNSW Research Technology
606 Services, particularly Duncan Smith, for help with software installation on the high-
performance computing cluster Katana. We acknowledge Mabel Lum for assistance with the
608 Bioplatforms Australia data portal. ONT and 10x sequencing were conducted at the
Australian Genome Research Facility (AGRF). Hi-C library prep and sequencing was
610 conducted at the Ramaciotti Centre for Genomics at the University of New South Wales.

612 FUNDING

614 We would like to acknowledge the contribution of the Genomics for Australian Plants
Framework Initiative consortium
616 (<https://www.genomicsforaustralianplants.com/consortium/>) in the generation of data used
in this publication. The Initiative is supported by funding from Bioplatforms Australia
618 (enabled by NCRIS), the Ian Potter Foundation, Royal Botanic Gardens Foundation (Victoria),
Royal Botanic Gardens Victoria, the Royal Botanic Gardens and Domain Trust, the Council of
620 Heads of Australasian Herbaria, CSIRO, Centre for Australian National Biodiversity Research
and the Department of Biodiversity, Conservation and Attractions, Western Australia. SHC
622 was supported through an Australian Government Research Training Program Scholarship.
RJE was funded by the Australian Research Council (LP160100610 and LP18010072).

624

AUTHOR CONTRIBUTIONS

626 JGB coordinated the project. MR, MvdM, PL-I, HS, GB, JGB and RJE designed the study and
628 funded the project. GB provided the samples. PL-I and J-YSY performed optimised DNA
extraction protocols and performed extractions. SHC performed the genome assembly,
630 scaffolding and annotation. RJE conceptualised and developed Diploidocus and DepthSizer.
TGA and RJE performed the DepthSizer benchmarking analysis. RJE performed the copy
632 number analysis and CYC phylogenetics. SHC, RJE and JGB wrote the manuscript. All authors
edited and approved the final manuscript.

634

REFERENCES

636

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search
638 tool. *Journal of Molecular Biology*, 215(3), 403–410.

Andrews, S. (2010). *FastQC: a quality control tool for high throughput sequence data*.

640 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

Boetzer, M., & Pirovano, W. (2014). SSPACE-LongRead: Scaffolding bacterial draft genomes using
642 long read sequence information. *BMC Bioinformatics*, 15(1), 211.

<https://doi.org/10.1186/1471-2105-15-211>

644 Busch, A., & Zachgo, S. (2009). Flower symmetry evolution: Towards understanding the abominable
mystery of angiosperm radiation. *BioEssays*, 31(11), 1181–1190.

646 <https://doi.org/10.1002/bies.200900081>

Bushnell, B. (2014). *BBMap: A fast, accurate, splice-aware aligner*.

648 <https://sourceforge.net/projects/bbmap/>

Carta, A., Bedini, G., & Peruzzi, L. (2020). A deep dive into the ancestral chromosome number and
650 genome size of flowering plants. *New Phytologist*, 228(3), 1097–1106.

<https://doi.org/10.1111/nph.16668>

652 Chapman, M. A., Leebens-Mack, J. H., & Burke, J. M. (2008). Positive selection and expression
divergence following gene duplication in the sunflower *CYCLOIDEA* gene family. *Molecular*

654 *Biology and Evolution*, 25(7), 1260–1273.

Chen, Y., Nie, F., Xie, S.-Q., Zheng, Y.-F., Dai, Q., Bray, T., Wang, Y.-X., Xing, J.-F., Huang, Z.-J., Wang,

656 D.-P., He, L.-J., Luo, F., Wang, J.-X., Liu, Y.-Z., & Xiao, C.-L. (2021). Efficient assembly of
nanopore reads via highly accurate and intact error correction. *Nature Communications*,

658 12(1), 60. <https://doi.org/10.1038/s41467-020-20236-7>

Choi, J. Y., Dai, X., Alam, O., Peng, J. Z., Rughani, P., Hickey, S., Harrington, E., Juul, S., Ayroles, J. F.,

660 Purugganan, M. D., & Stacy, E. A. (2021). Ancestral polymorphisms shape the adaptive

radiation of Metrosideros across the Hawaiian Islands. *Proceedings of the National Academy of Sciences*, 118(37). <https://doi.org/10.1073/pnas.2023801118>

662 Citerne, H. L., Luo, D., Pennington, R. T., Coen, E., & Cronk, Q. C. B. (2003). A Phylogenomic
664 investigation of CYCLOIDEA-like TCP genes in the Leguminosae. *Plant Physiology*, 131(3),
1042–1053. <https://doi.org/10.1104/pp.102.016311>

666 Citerne, H. L., Reyes, E., Le Guilloux, M., Delannoy, E., Simonnet, F., Sauquet, H., Weston, P. H.,
Nadot, S., & Damerval, C. (2017). Characterization of CYCLOIDEA-like genes in Proteaceae, a
668 basal eudicot family with multiple shifts in floral symmetry. *Annals of Botany*, 119(3), 367–
378. <https://doi.org/10.1093/aob/mcw219>

670 Conway, J. R., Lex, A., & Gehlenborg, N. (2017). UpSetR: An R package for the visualization of
intersecting sets and their properties. *Bioinformatics*, 33(18), 2938–2940.
672 <https://doi.org/10.1093/bioinformatics/btx364>

Crisp, M. D., & Weston, P. H. (1993). Geographic and ontogenetic variation in morphology of
674 Australian waratahs (*Telopea*: Proteaceae). *Systematic Biology*, 42(1), 49–76. JSTOR.
<https://doi.org/10.2307/2992556>

676 Damerval, C., Citerne, H., Conde e Silva, N., Deveaux, Y., Delannoy, E., Joets, J., Simonnet, F., Staedler,
Y., Schönenberger, J., Yansouni, J., Le Guilloux, M., Sauquet, H., & Nadot, S. (2019).
678 Unraveling the developmental and genetic mechanisms underpinning floral architecture in
Proteaceae. *Frontiers in Plant Science*, 10, 18. <https://doi.org/10.3389/fpls.2019.00018>

680 Darlington, C. D., & Wylie, A. P. (1956). *Chromosome atlas of flowering plants*. George Allen and
Unwin Ltd.

682 Davey, N. E., Shields, D. C., & Edwards, R. J. (2006). SLiMDisc: Short, linear motif discovery, correcting
for common evolutionary descent. *Nucleic Acids Research*, 34(12), 3546–3554.
684 <https://doi.org/10.1093/nar/gkl486>

De Coster, W., D'Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: 686 Visualizing and processing long-read sequencing data. *Bioinformatics*, 34(15), 2666–2669.
<https://doi.org/10.1093/bioinformatics/bty149>

688 Dudchenko, O., Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., Shamim, M. S.,
Machol, I., Lander, E. S., Aiden, A. P., & Aiden, E. L. (2017). De novo assembly of the *Aedes*
690 *aegypti* genome using Hi-C yields chromosome-length scaffolds. *Science*, 356(6333), 92–95.
<https://doi.org/10.1126/science.aal3327>

692 Dudchenko, O., Shamim, M. S., Batra, S. S., Durand, N. C., Musial, N. T., Mostafa, R., Pham, M.,
Hilaire, B. G. S., Yao, W., Stamenova, E., Hoeger, M., Nyquist, S. K., Korchina, V., Pletch, K.,
694 Flanagan, J. P., Tomaszewicz, A., McAloose, D., Estrada, C. P., Novak, B. J., ... Aiden, E. L.
(2018). The Juicebox Assembly Tools module facilitates de novo assembly of mammalian
696 genomes with chromosome-length scaffolds for under \$1000. *BioRxiv*, 254797.
<https://doi.org/10.1101/254797>

698 Durand, N. C., Shamim, M. S., Machol, I., Rao, S. S. P., Huntley, M. H., Lander, E. S., & Aiden, E. L.
(2016). Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. *Cell*
700 *Systems*, 3(1), 95–98. <https://doi.org/10.1016/j.cels.2016.07.002>

Eddy, S. R. (2011). Accelerated Profile HMM Searches. *PLOS Computational Biology*, 7(10), e1002195.
702 <https://doi.org/10.1371/journal.pcbi.1002195>

Edwards, R. J., Field, M. A., Ferguson, J. M., Dudchenko, O., Keilwagen, J., Rosen, B. D., Johnson, G. S.,
704 Rice, E. S., Hillier, L. D., Hammond, J. M., Towarnicki, S. G., Omer, A., Khan, R., Skvortsova, K.,
Bogdanovic, O., Zammit, R. A., Aiden, E. L., Warren, W. C., & Ballard, J. W. O. (2021).
706 Chromosome-length genome assembly and structural variations of the primal Basenji dog
(*Canis lupus familiaris*) genome. *BMC Genomics*, 22(1), 188. <https://doi.org/10.1186/s12864-021-07493-6>

710 Edwards, R. J., Moran, N., Devocelle, M., Kiernan, A., Meade, G., Signac, W., Foy, M., Park, S. D. E.,
Dunne, E., Kenny, D., & Shields, D. C. (2007). Bioinformatic discovery of novel bioactive
peptides. *Nature Chemical Biology*, 3(2), 108–112. <https://doi.org/10.1038/nchembio854>

712 Ellegren, H., Smeds, L., Burri, R., Olason, P. I., Backström, N., Kawakami, T., Künstner, A., Mäkinen, H.,
Nadachowska-Brzyska, K., Qvarnström, A., Uebbing, S., & Wolf, J. B. W. (2012). The genomic
714 landscape of species divergence in *Ficedula* flycatchers. *Nature*, 491(7426), 756–760.
<https://doi.org/10.1038/nature11584>

716 Fambrini, M., & Pugliesi, C. (2017). CYCLOIDEA 2 clade genes: Key players in the control of floral
symmetry, inflorescence architecture, and reproductive organ development. *Plant Molecular
718 Biology Reporter*, 35(1), 20–36. <https://doi.org/10.1007/s11105-016-1005-z>

Feng, X., Zhao, Z., Tian, Z., Xu, S., Luo, Y., Cai, Z., Wang, Y., Yang, J., Wang, Z., Weng, L., Chen, J.,
720 Zheng, L., Guo, X., Luo, J., Sato, S., Tabata, S., Ma, W., Cao, X., Hu, X., ... Luo, D. (2006).
Control of petal shape and floral zygomorphy in *Lotus japonicus*. *Proceedings of the National
722 Academy of Sciences*, 103(13), 4970–4975. <https://doi.org/10.1073/pnas.0600681103>

Field, M. A., Rosen, B. D., Dudchenko, O., Chan, E. K. F., Minoche, A. E., Edwards, R. J., Barton, K.,
724 Lyons, R. J., Tuipulotu, D. E., Hayes, V. M., D. Omer, A., Colaric, Z., Keilwagen, J., Skvortsova,
K., Bogdanovic, O., Smith, M. A., Aiden, E. L., Smith, T. P. L., Zammit, R. A., & Ballard, J. W. O.
726 (2020). Canfam_GSD: De novo chromosome-length genome assembly of the German
Shepherd Dog (*Canis lupus familiaris*) using a combination of long reads, optical mapping,
728 and Hi-C. *GigaScience*, 9(giaa027). <https://doi.org/10.1093/gigascience/giaa027>

Forslund, K., Pereira, C., Capella-Gutierrez, S., da Silva, A. S., Altenhoff, A., Huerta-Cepas, J., Muffato,
730 M., Patricio, M., Vandepoele, K., Ebersberger, I., Blake, J., Fernández Breis, J. T., Quest for
Orthologs Consortium, Boeckmann, B., Gabaldón, T., Sonnhammer, E., Dessimoz, C., Lewis,
732 S., & Quest for Orthologs Consortium. (2018). Gearing up to handle the mosaic nature of life

in the quest for orthologs. *Bioinformatics (Oxford, England)*, 34(2), 323–329.

734 <https://doi.org/10.1093/bioinformatics/btx542>

Grabherr, M. G., Russell, P., Meyer, M., Mauceli, E., Alföldi, J., Di Palma, F., & Lindblad-Toh, K. (2010).

736 Genome-wide synteny through highly sensitive sequence alignment: Satsuma.

Bioinformatics, 26(9), 1145–1151. <https://doi.org/10.1093/bioinformatics/btq102>

738 Gu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). Circlize implements and enhances circular visualization in R. *Bioinformatics*, 30(19), 2811–2812.

740 <https://doi.org/10.1093/bioinformatics/btu393>

Hibrand Saint-Oyant, L., Ruttink, T., Hamama, L., Kirov, I., Lakhwani, D., Zhou, N. N., Bourke, P. M.,

742 Daccord, N., Leus, L., Schulz, D., Van de Geest, H., Hesselink, T., Van Laere, K., Debray, K.,

Balzergue, S., Thouroude, T., Chastellier, A., Jeauffre, J., Voisine, L., ... Foucher, F. (2018). A

744 high-quality genome sequence of *Rosa chinensis* to elucidate ornamental traits. *Nature Plants*, 4(7), 473–484. <https://doi.org/10.1038/s41477-018-0166-1>

746 Hoban, S., Kelley, J. L., Lotterhos, K. E., Antolin, M. F., Bradburd, G., Lowry, D. B., Poss, M. L., Reed, L. K., Storfer, A., & Whitlock, M. C. (2016). Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. *The American Naturalist*, 188(4), 379–397.

<https://doi.org/10.1086/688018>

750 Horn, S., Pabón-Mora, N., Theußl, V. S., Busch, A., & Zachgo, S. (2015). Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids. *The Plant Journal*, 81(4),

752 559–571. <https://doi.org/10.1111/tpj.12750>

Howarth, D. G., & Donoghue, M. J. (2006). Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals

754 duplications predating the core eudicots. *Proceedings of the National Academy of Sciences*, 103(24), 9101–9106.

756 Inglis, P. W., Pappas, M. de C. R., Resende, L. V., & Grattapaglia, D. (2018). Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and

758 fungal samples for high-throughput SNP genotyping and sequencing applications. *PLOS ONE*, 13(10), e0206085. <https://doi.org/10.1371/journal.pone.0206085>

760 Jiang, J., Birchler, J. A., Parrott, W. A., & Kelly Dawe, R. (2003). A molecular view of plant centromeres. *Trends in Plant Science*, 8(12), 570–575.
<https://doi.org/10.1016/j.tplants.2003.10.011>

762 Johnson, L. A. S., & Briggs, B. G. (1963). Evolution in the Proteaceae. *Australian Journal of Botany*, 11(1), 21–61.

764 Johnson, L. A. S., & Briggs, B. G. (1975). On the Proteaceae—The evolution and classification of a southern family. *Botanical Journal of the Linnean Society*, 70(2), 83–182.
<https://doi.org/10.1111/j.1095-8339.1975.tb01644.x>

768 Jones, B. M., Edwards, R. J., Skipp, P. J., O'Connor, C. D., & Iglesias-Rodriguez, M. D. (2011). Shotgun proteomic analysis of *Emiliania huxleyi*, a marine phytoplankton species of major biogeochemical importance. *Marine Biotechnology (New York, N.Y.)*, 13(3), 496–504.
<https://doi.org/10.1007/s10126-010-9320-0>

772 Jordan, G. J., Carpenter, R. J., Koutoulis, A., Price, A., & Brodribb, T. J. (2015). Environmental adaptation in stomatal size independent of the effects of genome size. *New Phytologist*, 205(2), 608–617. <https://doi.org/10.1111/nph.13076>

774 Kammonen, J. I., Smolander, O.-P., Paulin, L., Pereira, P. A. B., Laine, P., Koskinen, P., Jernvall, J., & Auvinen, P. (2019). GapFinisher: A reliable gap filling pipeline for SSPACE-LongRead scaffolder output. *PLOS ONE*, 14(9), e0216885.
<https://doi.org/10.1371/journal.pone.0216885>

778 Keilwagen, J., Hartung, F., & Grau, J. (2019). GeMoMa: Homology-based gene prediction utilizing intron position conservation and RNA-seq data. *Methods in Molecular Biology (Clifton, N.J.)*, 1962, 161–177. https://doi.org/10.1007/978-1-4939-9173-0_9

782 Kolmogorov, M., Yuan, J., Lin, Y., & Pevzner, P. A. (2019). Assembly of long, error-prone reads using
repeat graphs. *Nature Biotechnology*, 37(5), 540–546. <https://doi.org/10.1038/s41587-019-0072-8>

784 Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017). Canu:
786 Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
separation. *Genome Research*, gr.215087.116. <https://doi.org/10.1101/gr.215087.116>

788 Kundu, R., Casey, J., & Sung, W.-K. (2019). *HyPo: Super fast and accurate polisher for long read
genome assemblies*. <https://doi.org/10.1101/2019.12.19.882506>

790 Lamesch, P., Berardini, T. Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R., Dreher, K.,
792 Alexander, D. L., Garcia-Hernandez, M., Karthikeyan, A. S., Lee, C. H., Nelson, W. D., Ploetz, L.,
Singh, S., Wensel, A., & Huala, E. (2012). The Arabidopsis Information Resource (TAIR):
Improved gene annotation and new tools. *Nucleic Acids Research*, 40(D1), D1202–D1210.

794 <https://doi.org/10.1093/nar/gkr1090>

Levy Karin, E., Mirdita, M., & Söding, J. (2020). MetaEuk—Sensitive, high-throughput gene discovery,
796 and annotation for large-scale eukaryotic metagenomics. *Microbiome*, 8(1), 48.
<https://doi.org/10.1186/s40168-020-00808-x>

798 Lewin, H. A., Robinson, G. E., Kress, W. J., Baker, W. J., Coddington, J., Crandall, K. A., Durbin, R.,
Edwards, S. V., Forest, F., Gilbert, M. T. P., Goldstein, M. M., Grigoriev, I. V., Hackett, K. J.,
800 Haussler, D., Jarvis, E. D., Johnson, W. E., Patrinos, A., Richards, S., Castilla-Rubio, J. C., ...
Zhang, G. (2018). Earth BioGenome Project: Sequencing life for the future of life. *Proceedings
802 of the National Academy of Sciences*, 115(17), 4325–4333.
<https://doi.org/10.1073/pnas.1720115115>

804 Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics*, 34(18), 3094–
3100. <https://doi.org/10.1093/bioinformatics/bty191>

806 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.,
& 1000 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map
808 format and SAMtools. *Bioinformatics*, 25(16), 2078–2079.
<https://doi.org/10.1093/bioinformatics/btp352>

810 Lindblad-Toh, K., Wade, C. M., Mikkelsen, T. S., Karlsson, E. K., Jaffe, D. B., Kamal, M., Clamp, M.,
Chang, J. L., Kulbokas, E. J., & Zody, M. C. (2005). Genome sequence, comparative analysis
812 and haplotype structure of the domestic dog. *Nature*, 438(7069), 803–819.

Lowe, T. M., & Chan, P. P. (2016). tRNAscan-SE On-line: Integrating search and context for analysis of
814 transfer RNA genes. *Nucleic Acids Research*, 44(W1), W54–57.
<https://doi.org/10.1093/nar/gkw413>

816 Lu-Irving, P., & Rutherford, S. (2021). *High molecular weight DNA extraction from leaf tissue*.
[dx.doi.org/10.17504/protocols.io.bu9ynz7w](https://doi.org/10.17504/protocols.io.bu9ynz7w)

818 Luo, D., Carpenter, R., Vincent, C., Copsey, L., & Coen, E. (1996). Origin of floral asymmetry in
Antirrhinum. *Nature*, 383(6603), 794–799.

820 Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A., & Zdobnov, E. M. (2021). BUSCO update: Novel
and streamlined workflows along with broader and deeper phylogenetic coverage for scoring
822 of eukaryotic, prokaryotic, and viral genomes. *Molecular Biology and Evolution*, 38(10),
4647–4654. <https://doi.org/10.1093/molbev/msab199>

824 Mapleson, D., Garcia Accinelli, G., Kettleborough, G., Wright, J., & Clavijo, B. J. (2017). KAT: A K-mer
analysis toolkit to quality control NGS datasets and genome assemblies. *Bioinformatics*,
826 33(4), 574–576. <https://doi.org/10.1093/bioinformatics/btw663>

Marçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of
828 occurrences of k-mers. *Bioinformatics*, 27(6), 764–770.
<https://doi.org/10.1093/bioinformatics/btr011>

830 Mast, A. R., Willis, C. L., Jones, E. H., Downs, K. M., & Weston, P. H. (2008). A smaller *Macadamia*
from a more vagile tribe: Inference of phylogenetic relationships, divergence times, and
832 diaspora evolution in *Macadamia* and relatives (tribe Macadamieae; Proteaceae). *American
Journal of Botany*, 95(7), 843–870.

834 Meyer, M., Munzner, T., & Pfister, H. (2009). MizBee: A multiscale synteny browser. *IEEE
Transactions on Visualization and Computer Graphics*, 15(6), 897–904.
836 <https://doi.org/10.1109/TVCG.2009.167>

Ming, R., VanBuren, R., Liu, Y., Yang, M., Han, Y., Li, L.-T., Zhang, Q., Kim, M.-J., Schatz, M. C.,
838 Campbell, M., Li, J., Bowers, J. E., Tang, H., Lyons, E., Ferguson, A. A., Narzisi, G., Nelson, D.
R., Blaby-Haas, C. E., Gschwend, A. R., ... Shen-Miller, J. (2013). Genome of the long-living
840 sacred lotus (*Nelumbo nucifera* Gaertn.). *Genome Biology*, 14(5), 1–11.
<https://doi.org/10.1186/gb-2013-14-5-r41>

842 Mirarab, S., Nguyen, N., & Warnow, T. (2011). SEPP: SATé-Enabled Phylogenetic Placement. In
Biocomputing 2012 (pp. 247–258). World Scientific.
844 https://doi.org/10.1142/9789814366496_0024

Murat, F., Armero, A., Pont, C., Klopp, C., & Salse, J. (2017). Reconstructing the genome of the most
846 recent common ancestor of flowering plants. *Nature Genetics*, 49(4), 490–496.
<https://doi.org/10.1038/ng.3813>

848 Nawrocki, E. P., & Eddy, S. R. (2013). Infernal 1.1: 100-fold faster RNA homology searches.
Bioinformatics, 29(22), 2933–2935. <https://doi.org/10.1093/bioinformatics/btt509>

850 Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective
852 stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and
Evolution*, 32(1), 268–274. <https://doi.org/10.1093/molbev/msu300>

Nixon, P. (1987). *The Waratah*. Kangaroo Press.

854 Nock, C. J., Baten, A., Barkla, B. J., Furtado, A., Henry, R. J., & King, G. J. (2016). Genome and
transcriptome sequencing characterises the gene space of *Macadamia integrifolia*
856 (Proteaceae). *BMC Genomics*, 17(1), 937. <https://doi.org/10.1186/s12864-016-3272-3>

Nock, C. J., Baten, A., Mauleon, R., Langdon, K. S., Topp, B., Hardner, C., Furtado, A., Henry, R. J., &
858 King, G. J. (2020). Chromosome-scale assembly and annotation of the macadamia genome
(*Macadamia integrifolia* HAES 741). *G3: Genes, Genomes, Genetics*, 10(10), 3497–3504.
860 <https://doi.org/10.1534/g3.120.401326>

Offord, C. A. (2003). Improvement of waratahs (*Telopea* spp.) through breeding. *Acta Horticultae*,
862 603, 119–122.

Offord, C. A. (2006). Analysis of characters and germplasm of significance to improvement of
864 Australian native waratahs (*Telopea* spp., family Proteaceae) for cut flower production.
Genetic Resources and Crop Evolution, 53(6), 1263–1272. <https://doi.org/10.1007/s10722-005-3487-7>

Offord, C. A., Nixon, P., & Goodwin, P. B. (1987). Development of the waratah as a commercial crop.
868 *Journal International Protea Association*, 14, 14–15.

Oliveira, L. C., & Torres, G. A. (2018). Plant centromeres: Genetics, epigenetics and evolution.
870 *Molecular Biology Reports*, 45(5), 1491–1497. <https://doi.org/10.1007/s11033-018-4284-7>

Oxford Nanopore Technologies Ltd. (2018). *Medaka*. <https://github.com/nanoporetech/medaka>

872 Patil, I. (2021). Visualizations with statistical details: The “ggstatsplot” approach. *Journal of Open
Source Software*, 6(61), 3167. <https://doi.org/10.21105/joss.03167>

874 Phase Genomics. (2019). *Hic_qc*. https://github.com/phasegenomics/hic_qc

Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic
876 features. *Bioinformatics*, 26(6), 841–842. <https://doi.org/10.1093/bioinformatics/btq033>

R Core Team. (2019). *R: A Language and Environment for Statistical Computing*. R Foundation for
878 Statistical Computing. <https://www.R-project.org/>

Radwan, J., & Babik, W. (2012). The genomics of adaptation. *Proceedings of the Royal Society B: Biological Sciences*, 279(1749), 5024–5028. <https://doi.org/10.1098/rspb.2012.2322>

Ramsay, H. (1963). Chromosome numbers in the Proteaceae. *Australian Journal of Botany*, 11(1), 1–20.

Ranallo-Benavidez, T. R., Jaron, K. S., & Schatz, M. C. (2019). GenomeScope 2.0 and Smudgeplots: Reference-free profiling of polyploid genomes. *BioRxiv*, 747568. <https://doi.org/10.1101/747568>

Rhie, A., McCarthy, S. A., Fedrigo, O., Damas, J., Formenti, G., Koren, S., Uliano-Silva, M., Chow, W., Fungtammasan, A., Kim, J., Lee, C., Ko, B. J., Chaisson, M., Gedman, G. L., Cantin, L. J., Thibaud-Nissen, F., Haggerty, L., Bista, I., Smith, M., ... Jarvis, E. D. (2021). Towards complete and error-free genome assemblies of all vertebrate species. *Nature*, 592(7856), 737–746. <https://doi.org/10.1038/s41586-021-03451-0>

Rhie, A., Walenz, B. P., Koren, S., & Phillippy, A. M. (2020). Merqury: Reference-free quality, completeness, and phasing assessment for genome assemblies. *Genome Biology*, 21(1), 1–27.

Roach, M. J., Schmidt, S. A., & Borneman, A. R. (2018). Purge Haplotype: Allelic contig reassignment for third-gen diploid genome assemblies. *BMC Bioinformatics*, 19(1), 460. <https://doi.org/10.1186/s12859-018-2485-7>

Rossetto, M., Allen, C. B., Thurlby, K. A. G., Weston, P. H., & Milner, M. L. (2012). Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient. *BMC Evolutionary Biology*, 12, 149. <https://doi.org/10.1186/1471-2148-12-149>

Rossetto, M., Thurlby, K. A., Offord, C. A., Allen, C. B., & Weston, P. H. (2011). The impact of distance and a shifting temperature gradient on genetic connectivity across a heterogeneous landscape. *BMC Evolutionary Biology*, 11, 126. <https://doi.org/10.1186/1471-2148-11-126>

Royal Botanic Gardens, Kew. (2017). *State of the World's Plants 2017* (No. 978-1-84246-647-6). Royal
904 Botanic Gardens, Kew.

Sauquet, H., Weston, P. H., Anderson, C. L., Barker, N. P., Cantrill, D. J., Mast, A. R., & Savolainen, V.
906 (2009). Contrasted patterns of hyperdiversification in Mediterranean hotspots. *Proceedings
of the National Academy of Sciences*, 106(1), 221–225.

908 <https://doi.org/10.1073/pnas.0805607106>

Schalamun, M., Nagar, R., Kainer, D., Beavan, E., Eccles, D., Rathjen, J. P., Lanfear, R., & Schwessinger,
910 B. (2019). Harnessing the MinION: An example of how to establish long-read sequencing in a
laboratory using challenging plant tissue from *Eucalyptus pauciflora*. *Molecular Ecology
Resources*, 19(1), 77–89. <https://doi.org/10.1111/1755-0998.12938>

912 Seehausen, O., Butlin, R. K., Keller, I., Wagner, C. E., Boughman, J. W., Hohenlohe, P. A., Peichel, C. L.,
914 Saetre, G.-P., Bank, C., Brännström, Å., Brelandsford, A., Clarkson, C. S., Eroukhmanoff, F., Feder,
J. L., Fischer, M. C., Foote, A. D., Franchini, P., Jiggins, C. D., Jones, F. C., ... Widmer, A. (2014).
916 Genomics and the origin of species. *Nature Reviews Genetics*, 15(3), 176–192.
<https://doi.org/10.1038/nrg3644>

918 Seemann, T. (2018). *Barrnap*. <https://github.com/tseemann/barrnap>

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert,
920 M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-
quality protein multiple sequence alignments using Clustal Omega. *Molecular Systems
Biology*, 7, 539. <https://doi.org/10.1038/msb.2011.75>

922 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO:
924 Assessing genome assembly and annotation completeness with single-copy orthologs.
Bioinformatics (Oxford, England), 31(19), 3210–3212.

926 <https://doi.org/10.1093/bioinformatics/btv351>

928 Simon, L., Voisin, M., Tatout, C., & Probst, A. V. (2015). Structure and function of centromeric and pericentromeric heterochromatin in *Arabidopsis thaliana*. *Frontiers in Plant Science*, 6. <https://doi.org/10.3389/fpls.2015.01049>

930 Soltis, P. S., & Soltis, D. E. (2014). Flower Diversity and Angiosperm Diversification. In J. L. Riechmann & F. Wellmer (Eds.), *Flower Development: Methods and Protocols* (pp. 85–102). Springer New York. https://doi.org/10.1007/978-1-4614-9408-9_4

932 Soltis, P. S., & Soltis, D. E. (2021). Plant genomes: Markers of evolutionary history and drivers of evolutionary change. *PLANTS, PEOPLE, PLANET*, 3(1), 74–82. <https://doi.org/10.1002/ppp3.10159>

936 Stace, H. M., Douglas, A. W., & Sampson, J. F. (1998). Did 'Paleo-polyploidy' Really occur in Proteaceae? *Australian Systematic Botany*, 11(4), 613–629. <https://doi.org/10.1071/sb98013>

938 Stanke, M., & Morgenstern, B. (2005). AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. *Nucleic Acids Research*, 33(suppl_2), W465–W467.

940 Sterck, L., Rombauts, S., Vandepoele, K., Rouzé, P., & Van de Peer, Y. (2007). How many genes are there in plants (... and why are they there)? *Current Opinion in Plant Biology*, 10(2), 199–203. <https://doi.org/10.1016/j.pbi.2007.01.004>

942 Stuart, K. C., Edwards, R. J., Cheng, Y., Warren, W. C., Burt, D. W., Sherwin, W. B., Hofmeister, N. R., Werner, S. J., Ball, G. F., Bateson, M., Brandley, M. C., Buchanan, K. L., Cassey, P., Clayton, D. F., Meyer, T. D., Meddle, S. L., & Rollins, L. A. (2021). Transcript- and annotation-guided genome assembly of the European starling. *BioRxiv*, 2021.04.07.438753. <https://doi.org/10.1101/2021.04.07.438753>

944 Summerell, B. A. (1997). Pests and diseases. In *The Waratah* (2nd edition). Kangaroo Press.

946 Summerell, B. A., Nixons, P. G., & Burgess, L. W. (1990). Crown and stem canker of waratah caused by *Cylindrocarpon destructans*. *Australasian Plant Pathology*, 19(1), 13–15. <https://doi.org/10.1071/APP9900013>

952 Tarailo-Graovac, M., & Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. *Current Protocols in Bioinformatics*, 25(1), 4.10.1-4.10.14.

954 <https://doi.org/10.1002/0471250953.bi0410s25>

Vaser, R., Sović, I., Nagarajan, N., & Šikić, M. (2017). Fast and accurate de novo genome assembly from long uncorrected reads. *Genome Research*, 27(5), 737–746.

956 <https://doi.org/10.1101/gr.214270.116>

958 Vurture, G. W., Sedlazeck, F. J., Nattestad, M., Underwood, C. J., Fang, H., Gurtowski, J., & Schatz, M. C. (2017). GenomeScope: Fast reference-free genome profiling from short reads. *Bioinformatics*, 33(14), 2202–2204. <https://doi.org/10.1093/bioinformatics/btx153>

960 Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A., Zeng, Q., Wortman, J., Young, S. K., & Earl, A. M. (2014). Pilon: An integrated tool for comprehensive Microbial variant detection and genome assembly improvement. *PLOS ONE*, 9(11), e112963.

962 <https://doi.org/10.1371/journal.pone.0112963>

964 Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M., & Jaffe, D. B. (2017). Direct determination of diploid genome sequences. *Genome Research*, 27(5), 757–767.

966 <https://doi.org/10.1101/gr.214874.116>

968 Weston, P. H. (2006). Proteaceae. In K. Kubitzki (Ed.), *The Families and Genera of Vascular Plants. Volume IX* (pp. 364–404). Springer-Verlag.

970 Weston, P. H., & Crisp, M. D. (1994). Cladistic biogeography of waratahs (Proteaceae, Embothrieae) and their allies across the pacific. *Australian Systematic Botany*, 7(3), 225–249.

972 <https://doi.org/10.1071/sb9940225>

974 Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Completing bacterial genome assemblies with multiplex MinION sequencing. *Microbial Genomics*, 3(10).

976 <https://doi.org/10.1099/mgen.0.000132>

976 Worrall, R., & Gollnow, B. (2013). *Growing waratahs for cut flowers—A guide for commercial growers* (No. 12/087). Rural Industries Research and Development Corporation.

978 Xu, L., Dong, Z., Fang, L., Luo, Y., Wei, Z., Guo, H., Zhang, G., Gu, Y. Q., Coleman-Derr, D., Xia, Q., & Wang, Y. (2019). OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. *Nucleic Acids Research*, 47(W1), W52–W58. <https://doi.org/10.1093/nar/gkz333>

982 Yadav, S., Dudchenko, O., Esvaran, M., Rosen, B. D., Field, M. A., Skvortsova, K., Edwards, R. J., Gopalakrishnan, S., Keilwagen, J., Cochran, B. J., Manandhar, B., Bucknall, M., Bustamante, S., Rasmussen, J. A., Melvin, R. G., Omer, A., Colaric, Z., Chan, E. K. F., Minoche, A. E., ... Ballard, J. W. O. (2020). Desert Dingo (*Canis lupus dingo*) genome provides insights into their role in the Australian ecosystem. *BioRxiv*, 2020.11.15.384057. <https://doi.org/10.1101/2020.11.15.384057>

988 Yang, X., Zhao, X.-G., Li, C.-Q., Liu, J., Qiu, Z.-J., Dong, Y., & Wang, Y.-Z. (2015). Distinct regulatory changes underlying differential expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR genes associated with petal variations in zygomorphic flowers of *Petrocosmea* spp. Of the family Gesneriaceae. *Plant Physiology*, 169(3), 2138–2151.

992 Zheng, T., Li, P., Li, L., & Zhang, Q. (2021). Research advances in and prospects of ornamental plant genomics. *Horticulture Research*, 8(1), 1–19. <https://doi.org/10.1038/s41438-021-00499-x>

994 Zhong, J., & Kellogg, E. A. (2015). Duplication and expression of CYC2-like genes in the origin and maintenance of corolla zygomorphy in Lamiales. *New Phytologist*, 205(2), 852–868.

996 DATA ACCESSIBILITY

998 The Tspe_v1 genome was deposited to NCBI under BioProject PRJNA712988 and BioSample

1000 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. *Journal of Molecular Biology*, 215(3), 403–410.

1002 Andrews, S. (2010). *FastQC: a quality control tool for high throughput sequence data*.

1004 Boetzer, M., & Pirovano, W. (2014). SSPACE-LongRead: Scaffolding bacterial draft genomes using long read sequence information. *BMC Bioinformatics*, 15(1), 211.

1006 Busch, A., & Zachgo, S. (2009). Flower symmetry evolution: Towards understanding the abominable mystery of angiosperm radiation. *BioEssays*, 31(11), 1181–1190.

1008 <https://doi.org/10.1002/bies.200900081>

1010 Bushnell, B. (2014). *BBMap: A fast, accurate, splice-aware aligner*.

1012 Carta, A., Bedini, G., & Peruzzi, L. (2020). A deep dive into the ancestral chromosome number and genome size of flowering plants. *New Phytologist*, 228(3), 1097–1106.

1014 Chapman, M. A., Leebens-Mack, J. H., & Burke, J. M. (2008). Positive selection and expression divergence following gene duplication in the sunflower *CYCLOIDEA* gene family. *Molecular Biology and Evolution*, 25(7), 1260–1273.

1016 Chen, Y., Nie, F., Xie, S.-Q., Zheng, Y.-F., Dai, Q., Bray, T., Wang, Y.-X., Xing, J.-F., Huang, Z.-J., Wang, D.-P., He, L.-J., Luo, F., Wang, J.-X., Liu, Y.-Z., & Xiao, C.-L. (2021). Efficient assembly of nanopore reads via highly accurate and intact error correction. *Nature Communications*, 12(1), 60. <https://doi.org/10.1038/s41467-020-20236-7>

Choi, J. Y., Dai, X., Alam, O., Peng, J. Z., Rughani, P., Hickey, S., Harrington, E., Juul, S.,

1022 Ayroles, J. F., Purugganan, M. D., & Stacy, E. A. (2021). Ancestral polymorphisms
shape the adaptive radiation of *Metrosideros* across the Hawaiian Islands.

1024 *Proceedings of the National Academy of Sciences*, 118(37).
<https://doi.org/10.1073/pnas.2023801118>

1026 Citerne, H. L., Luo, D., Pennington, R. T., Coen, E., & Cronk, Q. C. B. (2003). A Phylogenomic
investigation of *CYCLOIDEA*-like TCP genes in the Leguminosae. *Plant Physiology*,
131(3), 1042–1053. <https://doi.org/10.1104/pp.102.016311>

1028 Citerne, H. L., Reyes, E., Le Guilloux, M., Delannoy, E., Simonnet, F., Sauquet, H., Weston, P.,

1030 H., Nadot, S., & Damerval, C. (2017). Characterization of *CYCLOIDEA*-like genes in
Proteaceae, a basal eudicot family with multiple shifts in floral symmetry. *Annals of
Botany*, 119(3), 367–378. <https://doi.org/10.1093/aob/mcw219>

1032 Conway, J. R., Lex, A., & Gehlenborg, N. (2017). UpSetR: An R package for the visualization of
intersecting sets and their properties. *Bioinformatics*, 33(18), 2938–2940.
<https://doi.org/10.1093/bioinformatics/btx364>

1034 Crisp, M. D., & Weston, P. H. (1993). Geographic and ontogenetic variation in morphology of
Australian waratahs (*Telopea*: Proteaceae). *Systematic Biology*, 42(1), 49–76. JSTOR.
<https://doi.org/10.2307/2992556>

1036 Damerval, C., Citerne, H., Conde e Silva, N., Deveaux, Y., Delannoy, E., Joets, J., Simonnet, F.,

1038 Staedler, Y., Schönenberger, J., Yansouni, J., Le Guilloux, M., Sauquet, H., & Nadot, S.
(2019). Unraveling the developmental and genetic mechanisms underpinning floral
architecture in Proteaceae. *Frontiers in Plant Science*, 10, 18.
<https://doi.org/10.3389/fpls.2019.00018>

1040

1042

1044 Darlington, C. D., & Wylie, A. P. (1956). *Chromosome atlas of flowering plants*. George Allen and Unwin Ltd.

1046 Davey, N. E., Shields, D. C., & Edwards, R. J. (2006). SLiMDisc: Short, linear motif discovery, correcting for common evolutionary descent. *Nucleic Acids Research*, 34(12), 3546–3554. <https://doi.org/10.1093/nar/gkl486>

1048 De Coster, W., D'Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: 1050 Visualizing and processing long-read sequencing data. *Bioinformatics*, 34(15), 2666–2669. <https://doi.org/10.1093/bioinformatics/bty149>

1052 Dudchenko, O., Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., Shamim, 1054 M. S., Machol, I., Lander, E. S., Aiden, A. P., & Aiden, E. L. (2017). De novo assembly of the *Aedes aegypti* genome using Hi-C yields chromosome-length scaffolds. *Science*, 356(6333), 92–95. <https://doi.org/10.1126/science.aal3327>

1056 Dudchenko, O., Shamim, M. S., Batra, S. S., Durand, N. C., Musial, N. T., Mostofa, R., Pham, 1058 M., Hilaire, B. G. S., Yao, W., Stamenova, E., Hoeger, M., Nyquist, S. K., Korchina, V., Pletch, K., Flanagan, J. P., Tomaszewicz, A., McAloose, D., Estrada, C. P., Novak, B. J., ... Aiden, E. L. (2018). The Juicebox Assembly Tools module facilitates de novo 1060 assembly of mammalian genomes with chromosome-length scaffolds for under \$1000. *BioRxiv*, 254797. <https://doi.org/10.1101/254797>

1062 Durand, N. C., Shamim, M. S., Machol, I., Rao, S. S. P., Huntley, M. H., Lander, E. S., & Aiden, 1064 E. L. (2016). Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. *Cell Systems*, 3(1), 95–98. <https://doi.org/10.1016/j.cels.2016.07.002>

1066 Eddy, S. R. (2011). Accelerated Profile HMM Searches. *PLOS Computational Biology*, 7(10), e1002195. <https://doi.org/10.1371/journal.pcbi.1002195>

1068 Edwards, R. J., Field, M. A., Ferguson, J. M., Dudchenko, O., Keilwagen, J., Rosen, B. D., Johnson, G. S., Rice, E. S., Hillier, L. D., Hammond, J. M., Towarnicki, S. G., Omer, A., Khan, R., Skvortsova, K., Bogdanovic, O., Zammit, R. A., Aiden, E. L., Warren, W. C., &

1070 Ballard, J. W. O. (2021). Chromosome-length genome assembly and structural variations of the primal Basenji dog (*Canis lupus familiaris*) genome. *BMC Genomics*, 22(1), 188. <https://doi.org/10.1186/s12864-021-07493-6>

1072 Edwards, R. J., Moran, N., Devocelle, M., Kiernan, A., Meade, G., Signac, W., Foy, M., Park, S.

1074 D. E., Dunne, E., Kenny, D., & Shields, D. C. (2007). Bioinformatic discovery of novel bioactive peptides. *Nature Chemical Biology*, 3(2), 108–112.

1076 <https://doi.org/10.1038/nchembio854>

Ellegren, H., Smeds, L., Burri, R., Olason, P. I., Backström, N., Kawakami, T., Künstner, A.,

1078 Mäkinen, H., Nadachowska-Brzyska, K., Qvarnström, A., Uebbing, S., & Wolf, J. B. W. (2012). The genomic landscape of species divergence in *Ficedula* flycatchers. *Nature*, 491(7426), 756–760. <https://doi.org/10.1038/nature11584>

1080 Fambrini, M., & Pugliesi, C. (2017). CYCLOIDEA 2 clade genes: Key players in the control of floral symmetry, inflorescence architecture, and reproductive organ development. *Plant Molecular Biology Reporter*, 35(1), 20–36. <https://doi.org/10.1007/s11105-016-0005-z>

1082 Feng, X., Zhao, Z., Tian, Z., Xu, S., Luo, Y., Cai, Z., Wang, Y., Yang, J., Wang, Z., Weng, L., Chen, J., Zheng, L., Guo, X., Luo, J., Sato, S., Tabata, S., Ma, W., Cao, X., Hu, X., ... Luo, D. (2006). Control of petal shape and floral zygomorphy in *Lotus japonicus*. *Proceedings of the National Academy of Sciences*, 103(13), 4970–4975. <https://doi.org/10.1073/pnas.0600681103>

1084

1086

1088

1090 Field, M. A., Rosen, B. D., Dudchenko, O., Chan, E. K. F., Minoche, A. E., Edwards, R. J.,
Barton, K., Lyons, R. J., Tuipulotu, D. E., Hayes, V. M., D. Omer, A., Colaric, Z.,

1092 Keilwagen, J., Skvortsova, K., Bogdanovic, O., Smith, M. A., Aiden, E. L., Smith, T. P. L.,
Zammit, R. A., & Ballard, J. W. O. (2020). Canfam_GSD: De novo chromosome-length
1094 genome assembly of the German Shepherd Dog (*Canis lupus familiaris*) using a
combination of long reads, optical mapping, and Hi-C. *GigaScience*, 9(giaa027).

1096 <https://doi.org/10.1093/gigascience/giaa027>
Forslund, K., Pereira, C., Capella-Gutierrez, S., da Silva, A. S., Altenhoff, A., Huerta-Cepas, J.,

1098 Muffato, M., Patricio, M., Vandepoele, K., Ebersberger, I., Blake, J., Fernández Breis,
J. T., Quest for Orthologs Consortium, Boeckmann, B., Gabaldón, T., Sonnhammer, E.,
1100 Dessimoz, C., Lewis, S., & Quest for Orthologs Consortium. (2018). Gearing up to
handle the mosaic nature of life in the quest for orthologs. *Bioinformatics (Oxford,*
1102 *England)*, 34(2), 323–329. <https://doi.org/10.1093/bioinformatics/btx542>
Grabherr, M. G., Russell, P., Meyer, M., Mauceli, E., Alföldi, J., Di Palma, F., & Lindblad-Toh,
1104 K. (2010). Genome-wide synteny through highly sensitive sequence alignment:
Satsuma. *Bioinformatics*, 26(9), 1145–1151.

1106 <https://doi.org/10.1093/bioinformatics/btq102>
Gu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). Circlize implements and enhances
1108 circular visualization in R. *Bioinformatics*, 30(19), 2811–2812.
<https://doi.org/10.1093/bioinformatics/btu393>

1110 Hibrand Saint-Oyant, L., Ruttink, T., Hamama, L., Kirov, I., Lakhwani, D., Zhou, N. N., Bourke,
P. M., Daccord, N., Leus, L., Schulz, D., Van de Geest, H., Hesselink, T., Van Laere, K.,
1112 Debray, K., Balzergue, S., Thouroude, T., Chastellier, A., Jeauffre, J., Voisine, L., ...

1114 Foucher, F. (2018). A high-quality genome sequence of *Rosa chinensis* to elucidate
ornamental traits. *Nature Plants*, 4(7), 473–484. <https://doi.org/10.1038/s41477-018-0166-1>

1116 Hoban, S., Kelley, J. L., Lotterhos, K. E., Antolin, M. F., Bradburd, G., Lowry, D. B., Poss, M. L.,
Reed, L. K., Storfer, A., & Whitlock, M. C. (2016). Finding the genomic basis of local
1118 adaptation: Pitfalls, practical solutions, and future directions. *The American Naturalist*, 188(4), 379–397. <https://doi.org/10.1086/688018>

1120 Horn, S., Pabón-Mora, N., Theußl, V. S., Busch, A., & Zachgo, S. (2015). Analysis of the
CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids. *The
1122 Plant Journal*, 81(4), 559–571. <https://doi.org/10.1111/tpj.12750>

1124 Howarth, D. G., & Donoghue, M. J. (2006). Phylogenetic analysis of the “ECE” (CYC/TB1)
clade reveals duplications predating the core eudicots. *Proceedings of the National
Academy of Sciences*, 103(24), 9101–9106.

1126 Inglis, P. W., Pappas, M. de C. R., Resende, L. V., & Grattapaglia, D. (2018). Fast and
inexpensive protocols for consistent extraction of high quality DNA and RNA from
1128 challenging plant and fungal samples for high-throughput SNP genotyping and
sequencing applications. *PLOS ONE*, 13(10), e0206085.

1130 <https://doi.org/10.1371/journal.pone.0206085>

1132 Jiang, J., Birchler, J. A., Parrott, W. A., & Kelly Dawe, R. (2003). A molecular view of plant
centromeres. *Trends in Plant Science*, 8(12), 570–575.
<https://doi.org/10.1016/j.tplants.2003.10.011>

1134 Johnson, L. A. S., & Briggs, B. G. (1963). Evolution in the Proteaceae. *Australian Journal of
Botany*, 11(1), 21–61.

1136 Johnson, L. A. S., & Briggs, B. G. (1975). On the Proteaceae—The evolution and classification
of a southern family. *Botanical Journal of the Linnean Society*, 70(2), 83–182.
1138 <https://doi.org/10.1111/j.1095-8339.1975.tb01644.x>

1140 Jones, B. M., Edwards, R. J., Skipp, P. J., O'Connor, C. D., & Iglesias-Rodriguez, M. D. (2011).
Shotgun proteomic analysis of *Emiliania huxleyi*, a marine phytoplankton species of
major biogeochemical importance. *Marine Biotechnology (New York, N.Y.)*, 13(3),
1142 496–504. <https://doi.org/10.1007/s10126-010-9320-0>

1144 Jordan, G. J., Carpenter, R. J., Koutoulis, A., Price, A., & Brodribb, T. J. (2015). Environmental
adaptation in stomatal size independent of the effects of genome size. *New
Phytologist*, 205(2), 608–617. <https://doi.org/10.1111/nph.13076>

1146 Kammonen, J. I., Smolander, O.-P., Paulin, L., Pereira, P. A. B., Laine, P., Koskinen, P., Jernvall,
J., & Auvinen, P. (2019). GapFinisher: A reliable gap filling pipeline for SSPACE-
1148 LongRead scaffolder output. *PLOS ONE*, 14(9), e0216885.
<https://doi.org/10.1371/journal.pone.0216885>

1150 PVC (Research Infrastructure), UNSW Sydney. (2010). *Katana*.
<https://doi.org/10.26190/669x-a286>

1152 Keilwagen, J., Hartung, F., & Grau, J. (2019). GeMoMa: Homology-based gene prediction
utilizing intron position conservation and RNA-seq data. *Methods in Molecular
1154 Biology (Clifton, N.J.)*, 1962, 161–177. https://doi.org/10.1007/978-1-4939-9173-0_9

Kolmogorov, M., Yuan, J., Lin, Y., & Pevzner, P. A. (2019). Assembly of long, error-prone
1156 reads using repeat graphs. *Nature Biotechnology*, 37(5), 540–546.
<https://doi.org/10.1038/s41587-019-0072-8>

1158 Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017).
Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and
repeat separation. *Genome Research*, gr.215087.116.
<https://doi.org/10.1101/gr.215087.116>

1160

1162 Kundu, R., Casey, J., & Sung, W.-K. (2019). *HyPo: Super fast and accurate polisher for long
read genome assemblies*. <https://doi.org/10.1101/2019.12.19.882506>

1164 Lamesch, P., Berardini, T. Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R.,
Dreher, K., Alexander, D. L., Garcia-Hernandez, M., Karthikeyan, A. S., Lee, C. H.,

1166 Nelson, W. D., Ploetz, L., Singh, S., Wensel, A., & Huala, E. (2012). The Arabidopsis
Information Resource (TAIR): Improved gene annotation and new tools. *Nucleic Acids
Research*, 40(D1), D1202–D1210. <https://doi.org/10.1093/nar/gkr1090>

1168 Levy Karin, E., Mirdita, M., & Söding, J. (2020). MetaEuk—Sensitive, high-throughput gene
discovery, and annotation for large-scale eukaryotic metagenomics. *Microbiome*,
8(1), 48. <https://doi.org/10.1186/s40168-020-00808-x>

1172 Lewin, H. A., Robinson, G. E., Kress, W. J., Baker, W. J., Coddington, J., Crandall, K. A., Durbin,
R., Edwards, S. V., Forest, F., Gilbert, M. T. P., Goldstein, M. M., Grigoriev, I. V.,

1174 Hackett, K. J., Haussler, D., Jarvis, E. D., Johnson, W. E., Patrinos, A., Richards, S.,
Castilla-Rubio, J. C., ... Zhang, G. (2018). Earth BioGenome Project: Sequencing life for
1176 the future of life. *Proceedings of the National Academy of Sciences*, 115(17), 4325–
4333. <https://doi.org/10.1073/pnas.1720115115>

1178 Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics*,
34(18), 3094–3100. <https://doi.org/10.1093/bioinformatics/bty191>

1180 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The Sequence
1182 Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079.
<https://doi.org/10.1093/bioinformatics/btp352>

1184 Lindblad-Toh, K., Wade, C. M., Mikkelsen, T. S., Karlsson, E. K., Jaffe, D. B., Kamal, M., Clamp, M., Chang, J. L., Kulkarni, E. J., & Zody, M. C. (2005). Genome sequence, comparative
1186 analysis and haplotype structure of the domestic dog. *Nature*, 438(7069), 803–819.

Lowe, T. M., & Chan, P. P. (2016). tRNAscan-SE On-line: Integrating search and context for
1188 analysis of transfer RNA genes. *Nucleic Acids Research*, 44(W1), W54-57.
<https://doi.org/10.1093/nar/gkw413>

1190 Lu-Irving, P., & Rutherford, S. (2021). High molecular weight DNA extraction from leaf tissue.
[dx.doi.org/10.17504/protocols.io.bu9ynz7w](https://doi.org/10.17504/protocols.io.bu9ynz7w)

1192 Luo, D., Carpenter, R., Vincent, C., Copsey, L., & Coen, E. (1996). Origin of floral asymmetry in
Antirrhinum. *Nature*, 383(6603), 794–799.

1194 Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A., & Zdobnov, E. M. (2021). BUSCO
update: Novel and streamlined workflows along with broader and deeper
1196 phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes.
Molecular Biology and Evolution, 38(10), 4647–4654.

1198 <https://doi.org/10.1093/molbev/msab199>

Mapleson, D., Garcia Accinelli, G., Kettleborough, G., Wright, J., & Clavijo, B. J. (2017). KAT: A
1200 K-mer analysis toolkit to quality control NGS datasets and genome assemblies.
Bioinformatics, 33(4), 574–576. <https://doi.org/10.1093/bioinformatics/btw663>

1202 Marçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. *Bioinformatics*, 27(6), 764–770.

1204 <https://doi.org/10.1093/bioinformatics/btr011>

Mast, A. R., Willis, C. L., Jones, E. H., Downs, K. M., & Weston, P. H. (2008). A smaller

1206 *Macadamia* from a more vagile tribe: Inference of phylogenetic relationships, divergence times, and diaspora evolution in *Macadamia* and relatives (tribe

1208 Macadamieae; Proteaceae). *American Journal of Botany*, 95(7), 843–870.

Meyer, M., Munzner, T., & Pfister, H. (2009). MizBee: A multiscale synteny browser. *IEEE*

1210 *Transactions on Visualization and Computer Graphics*, 15(6), 897–904.

<https://doi.org/10.1109/TVCG.2009.167>

1212 Ming, R., VanBuren, R., Liu, Y., Yang, M., Han, Y., Li, L.-T., Zhang, Q., Kim, M.-J., Schatz, M. C., Campbell, M., Li, J., Bowers, J. E., Tang, H., Lyons, E., Ferguson, A. A., Narzisi, G.,

1214 Nelson, D. R., Blaby-Haas, C. E., Gschwend, A. R., ... Shen-Miller, J. (2013). Genome of the long-living sacred lotus (*Nelumbo nucifera* Gaertn.). *Genome Biology*, 14(5), 1–11.

1216 <https://doi.org/10.1186/gb-2013-14-5-r41>

Mirarab, S., Nguyen, N., & Warnow, T. (2011). SEPP: SATé-Enabled Phylogenetic Placement. In *Biocomputing 2012* (pp. 247–258). World Scientific.

https://doi.org/10.1142/9789814366496_0024

1220 Murat, F., Armero, A., Pont, C., Klopp, C., & Salse, J. (2017). Reconstructing the genome of the most recent common ancestor of flowering plants. *Nature Genetics*, 49(4), 490–

1222 496. <https://doi.org/10.1038/ng.3813>

Nawrocki, E. P., & Eddy, S. R. (2013). Infernal 1.1: 100-fold faster RNA homology searches. *Bioinformatics*, 29(22), 2933–2935. <https://doi.org/10.1093/bioinformatics/btt509>

1226 Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and Evolution*, 32(1), 268–274.

1228 <https://doi.org/10.1093/molbev/msu300>

1228 Nixon, P. (1987). *The Waratah*. Kangaroo Press.

1230 Nock, C. J., Baten, A., Barkla, B. J., Furtado, A., Henry, R. J., & King, G. J. (2016). Genome and transcriptome sequencing characterises the gene space of *Macadamia integrifolia* (Proteaceae). *BMC Genomics*, 17(1), 937. <https://doi.org/10.1186/s12864-016-3272-3>

1232 Nock, C. J., Baten, A., Mauleon, R., Langdon, K. S., Topp, B., Hardner, C., Furtado, A., Henry, R. J., & King, G. J. (2020). Chromosome-scale assembly and annotation of the macadamia genome (*Macadamia integrifolia* HAES 741). *G3: Genes, Genomes, Genetics*, 10(10), 3497–3504. <https://doi.org/10.1534/g3.120.401326>

1234 Offord, C. A. (2003). Improvement of waratahs (*Telopea* spp.) through breeding. *Acta Horticulturae*, 603, 119–122.

1238 Offord, C. A. (2006). Analysis of characters and germplasm of significance to improvement of Australian native waratahs (*Telopea* spp., family Proteaceae) for cut flower production. *Genetic Resources and Crop Evolution*, 53(6), 1263–1272. <https://doi.org/10.1007/s10722-005-3487-7>

1242 Offord, C. A., Nixon, P., & Goodwin, P. B. (1987). Development of the waratah as a commercial crop. *Journal International Protea Association*, 14, 14–15.

1246 Oliveira, L. C., & Torres, G. A. (2018). Plant centromeres: Genetics, epigenetics and evolution. *Molecular Biology Reports*, 45(5), 1491–1497. <https://doi.org/10.1007/s11033-018-4284-7>

1248 4284-7

Oxford Nanopore Technologies Ltd. (2018). *Medaka*.

1250 <https://github.com/nanoporetech/medaka>

Patil, I. (2021). Visualizations with statistical details: The “ggstatsplot” approach. *Journal of Open Source Software*, 6(61), 3167. <https://doi.org/10.21105/joss.03167>

1252 Phase Genomics. (2019). *Hic_qc*. https://github.com/phasegenomics/hic_qc

1254 Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. *Bioinformatics*, 26(6), 841–842.

1256 <https://doi.org/10.1093/bioinformatics/btq033>

R Core Team. (2019). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing. <https://www.R-project.org/>

1258 Radwan, J., & Babik, W. (2012). The genomics of adaptation. *Proceedings of the Royal Society B: Biological Sciences*, 279(1749), 5024–5028. <https://doi.org/10.1098/rspb.2012.2322>

1260 11(1), 1–20.

1262 Ramsay, H. (1963). Chromosome numbers in the Proteaceae. *Australian Journal of Botany*, 11(1), 1–20.

1264 Ranallo-Benavidez, T. R., Jaron, K. S., & Schatz, M. C. (2019). GenomeScope 2.0 and Smudgeplots: Reference-free profiling of polyploid genomes. *BioRxiv*, 747568. <https://doi.org/10.1101/747568>

1266 Rhie, A., McCarthy, S. A., Fedrigo, O., Damas, J., Formenti, G., Koren, S., Uliano-Silva, M., Chow, W., Fungtammasan, A., Kim, J., Lee, C., Ko, B. J., Chaisson, M., Gedman, G. L.,

1270 Cantin, L. J., Thibaud-Nissen, F., Haggerty, L., Bista, I., Smith, M., ... Jarvis, E. D. (2021). Towards complete and error-free genome assemblies of all vertebrate species. *Nature*, 592(7856), 737–746. <https://doi.org/10.1038/s41586-021-03451-0>

1272 Rhie, A., Walenz, B. P., Koren, S., & Phillippy, A. M. (2020). Merqury: Reference-free quality, completeness, and phasing assessment for genome assemblies. *Genome Biology*, 21(1), 1–27.

1274 Roach, M. J., Schmidt, S. A., & Borneman, A. R. (2018). Purge Haplotigs: Allelic contig reassignment for third-gen diploid genome assemblies. *BMC Bioinformatics*, 19(1), 460. <https://doi.org/10.1186/s12859-018-2485-7>

1278 Rossetto, M., Allen, C. B., Thurlby, K. A. G., Weston, P. H., & Milner, M. L. (2012). Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient. *BMC Evolutionary Biology*, 12, 149. <https://doi.org/10.1186/1471-2148-12-149>

1282 Rossetto, M., Thurlby, K. A., Offord, C. A., Allen, C. B., & Weston, P. H. (2011). The impact of distance and a shifting temperature gradient on genetic connectivity across a heterogeneous landscape. *BMC Evolutionary Biology*, 11, 126. <https://doi.org/10.1186/1471-2148-11-126>

1286 Royal Botanic Gardens, Kew. (2017). *State of the World's Plants 2017* (No. 978-1-84246-647-6). Royal Botanic Gardens, Kew.

1288 Sauquet, H., Weston, P. H., Anderson, C. L., Barker, N. P., Cantrill, D. J., Mast, A. R., & Savolainen, V. (2009). Contrasted patterns of hyperdiversification in Mediterranean hotspots. *Proceedings of the National Academy of Sciences*, 106(1), 221–225. <https://doi.org/10.1073/pnas.0805607106>

1292 Schalamun, M., Nagar, R., Kainer, D., Beavan, E., Eccles, D., Rathjen, J. P., Lanfear, R., & Schwessinger, B. (2019). Harnessing the MinION: An example of how to establish long-read sequencing in a laboratory using challenging plant tissue from *Eucalyptus pauciflora*. *Molecular Ecology Resources*, 19(1), 77–89.

1294 <https://doi.org/10.1111/1755-0998.12938>

1296 Seehausen, O., Butlin, R. K., Keller, I., Wagner, C. E., Boughman, J. W., Hohenlohe, P. A., Peichel, C. L., Saetre, G.-P., Bank, C., Brännström, Å., Breisford, A., Clarkson, C. S., Eroukhmanoff, F., Feder, J. L., Fischer, M. C., Foote, A. D., Franchini, P., Jiggins, C. D., Jones, F. C., ... Widmer, A. (2014). Genomics and the origin of species. *Nature Reviews Genetics*, 15(3), 176–192. <https://doi.org/10.1038/nrg3644>

1300 1302 Seemann, T. (2018). *Barrnap*. <https://github.com/tseemann/barrnap>

1304 Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Molecular Systems Biology*, 7, 539. <https://doi.org/10.1038/msb.2011.75>

1306 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics (Oxford, England)*, 31(19), 3210–3212.

1308 1310 <https://doi.org/10.1093/bioinformatics/btv351>

1312 Simon, L., Voisin, M., Tatout, C., & Probst, A. V. (2015). Structure and function of centromeric and pericentromeric heterochromatin in *Arabidopsis thaliana*. *Frontiers in Plant Science*, 6. <https://doi.org/10.3389/fpls.2015.01049>

1314 Soltis, P. S., & Soltis, D. E. (2014). Flower Diversity and Angiosperm Diversification. In J. L. Riechmann & F. Wellmer (Eds.), *Flower Development: Methods and Protocols* (pp. 85–102). Springer New York. https://doi.org/10.1007/978-1-4614-9408-9_4

1316 Soltis, P. S., & Soltis, D. E. (2021). Plant genomes: Markers of evolutionary history and drivers of evolutionary change. *PLANTS, PEOPLE, PLANET*, 3(1), 74–82. <https://doi.org/10.1002/ppp3.10159>

1318

1320 Stace, H. M., Douglas, A. W., & Sampson, J. F. (1998). Did 'Paleo-polyploidy' Really occur in Proteaceae? *Australian Systematic Botany*, 11(4), 613–629.

1322 <https://doi.org/10.1071/sb98013>

1324 Stanke, M., & Morgenstern, B. (2005). AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. *Nucleic Acids Research*, 33(suppl_2), W465–W467.

1326 Sterck, L., Rombauts, S., Vandepoele, K., Rouzé, P., & Van de Peer, Y. (2007). How many genes are there in plants (... and why are they there)? *Current Opinion in Plant Biology*, 10(2), 199–203. <https://doi.org/10.1016/j.pbi.2007.01.004>

1328

1330 Stuart, K. C., Edwards, R. J., Cheng, Y., Warren, W. C., Burt, D. W., Sherwin, W. B., Hofmeister, N. R., Werner, S. J., Ball, G. F., Bateson, M., Brandley, M. C., Buchanan, K. L., Cassey, P., Clayton, D. F., Meyer, T. D., Meddle, S. L., & Rollins, L. A. (2021). Transcript- and annotation-guided genome assembly of the European starling.

1332 *BioRxiv*, 2021.04.07.438753. <https://doi.org/10.1101/2021.04.07.438753>

1334 Summerell, B. A. (1997). Pests and diseases. In *The Waratah* (2nd edition). Kangaroo Press.

Summerell, B. A., Nixons, P. G., & Burgess, L. W. (1990). Crown and stem canker of waratah
1336 caused by *Cylindrocarpon destructans*. *Australasian Plant Pathology*, 19(1), 13–15.
<https://doi.org/10.1071/APP9900013>

1338 Tarailo-Graovac, M., & Chen, N. (2009). Using RepeatMasker to identify repetitive elements
in genomic sequences. *Current Protocols in Bioinformatics*, 25(1), 4.10.1-4.10.14.

1340 <https://doi.org/10.1002/0471250953.bi0410s25>

Vaser, R., Sović, I., Nagarajan, N., & Šikić, M. (2017). Fast and accurate de novo genome
1342 assembly from long uncorrected reads. *Genome Research*, 27(5), 737–746.
<https://doi.org/10.1101/gr.214270.116>

1344 Vurture, G. W., Sedlazeck, F. J., Nattestad, M., Underwood, C. J., Fang, H., Gurtowski, J., &
Schatz, M. C. (2017). GenomeScope: Fast reference-free genome profiling from short
1346 reads. *Bioinformatics*, 33(14), 2202–2204.
<https://doi.org/10.1093/bioinformatics/btx153>

1348 Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A.,
Zeng, Q., Wortman, J., Young, S. K., & Earl, A. M. (2014). Pilon: An integrated tool for
1350 comprehensive Microbial variant detection and genome assembly improvement.
PLOS ONE, 9(11), e112963. <https://doi.org/10.1371/journal.pone.0112963>

1352 Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M., & Jaffe, D. B. (2017). Direct
determination of diploid genome sequences. *Genome Research*, 27(5), 757–767.
1354 <https://doi.org/10.1101/gr.214874.116>

Weston, P. H. (2006). Proteaceae. In K. Kubitzki (Ed.), *The Families and Genera of Vascular
1356 Plants. Volume IX* (pp. 364–404). Springer-Verlag.

Weston, P. H., & Crisp, M. D. (1994). Cladistic biogeography of waratahs (Proteaceae, 1358 Embothriaceae) and their allies across the pacific. *Australian Systematic Botany*, 7(3), 225–249. <https://doi.org/10.1071/sb9940225>

1360 Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Completing bacterial genome 1362 assemblies with multiplex MinION sequencing. *Microbial Genomics*, 3(10). <https://doi.org/10.1099/mgen.0.000132>

Worrall, R., & Gollnow, B. (2013). *Growing waratahs for cut flowers—A guide for commercial 1364 growers* (No. 12/087). Rural Industries Research and Development Corporation.

Xu, L., Dong, Z., Fang, L., Luo, Y., Wei, Z., Guo, H., Zhang, G., Gu, Y. Q., Coleman-Derr, D., Xia, 1366 Q., & Wang, Y. (2019). OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. *Nucleic Acids Research*, 47(W1), W52–W58. <https://doi.org/10.1093/nar/gkz333>

Yadav, S., Dudchenko, O., Esvaran, M., Rosen, B. D., Field, M. A., Skvortsova, K., Edwards, R. 1370 J., Gopalakrishnan, S., Keilwagen, J., Cochran, B. J., Manandhar, B., Bucknall, M., Bustamante, S., Rasmussen, J. A., Melvin, R. G., Omer, A., Colaric, Z., Chan, E. K. F., 1372 Minoche, A. E., ... Ballard, J. W. O. (2020). Desert Dingo (*Canis lupus dingo*) genome provides insights into their role in the Australian ecosystem. *BioRxiv*, 2020.11.15.384057. <https://doi.org/10.1101/2020.11.15.384057>

Yang, X., Zhao, X.-G., Li, C.-Q., Liu, J., Qiu, Z.-J., Dong, Y., & Wang, Y.-Z. (2015). Distinct 1376 regulatory changes underlying differential expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR genes associated with petal variations in 1378 zygomorphic flowers of *Petrocosmea* spp. Of the family Gesneriaceae. *Plant Physiology*, 169(3), 2138–2151.

1380 Zheng, T., Li, P., Li, L., & Zhang, Q. (2021). Research advances in and prospects of ornamental
1381 plant genomics. *Horticulture Research*, 8(1), 1–19. <https://doi.org/10.1038/s41438-021-00499-x>

1382 Zhong, J., & Kellogg, E. A. (2015). Duplication and expression of CYC2-like genes in the origin
1383 and maintenance of corolla zygomorphy in Lamiales. *New Phytologist*, 205(2), 852–868.

1384 along with the raw data (ONT, 10x and Hi-C) to SRA as SRR14018636, SRR14018635 and
1385 SRR14018634. The genome may be browsed via Apollo:
1386 <https://edwapollo.babs.unsw.edu.au/apollo208/1468723/jbrowse/index.html>. The NCBI
1387 Annotation Release 100 is available at
1388 https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/018/873/765/GCF_018873765.1_Tspe_v1
1389 and the annotation is available for browsing in
1390 GDV: https://www.ncbi.nlm.nih.gov/genome/gdv/browser/?acc=GCF_018873765.1&context=genome.

1391 1392 1393 1394 Supplementary data, was deposited to Dryad (<https://doi.org/10.5061/dryad.12jm63xzt>)
1395 and contains files for tracks available on the Apollo genome browser (genome, gaps,
1396 mapped ONT and 10x reads and annotations) and the protein sequences from the GeMoMa
1397 genome annotation.

1398 1399 1400 Data for species used for genome annotation are available at the following repositories:

Macadamia integrifolia

1402 https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/013/358/625/GCA_013358625.1_SCU_Mint_v3/ doi.org/10.25918/5e320fd1e5f06

1404 *Arabidopsis thaliana*

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/735/GCF_000001735.4_TAIR10.1/

1406 *Rosa chinensis*

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/994/745/GCA_002994745.2_RchiOBHm-

1408 [V2/](#)

Nelumbo nucifera

1410 https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/365/185/GCF_000365185.1_Chinese_Lotus_1.1/

1412 TABLES AND FIGURES

1414 Table 1. Library information of *Telopea speciosissima* reference genome (Tspe_v1).

Sequencing platform	Library	Median insert size (bp)	Mean read length (bp)	No. of reads	Sequence bases (Gb)
Oxford Nanopore Technologies [†]	Ligation (SQK-LSK109)	-	13,449	3,595,148	48.3
Illumina NovaSeq 6000	Paired-end 10x Chromium	336	2 x 150	822,558,750	123.4
Total gDNA	-	-	-	826,153,898	171.7
Illumina NextSeq 500 [‡]	Phase Genomics Proximo Hi-C (Plant)	174	2 x 151	165,573,702	25.0

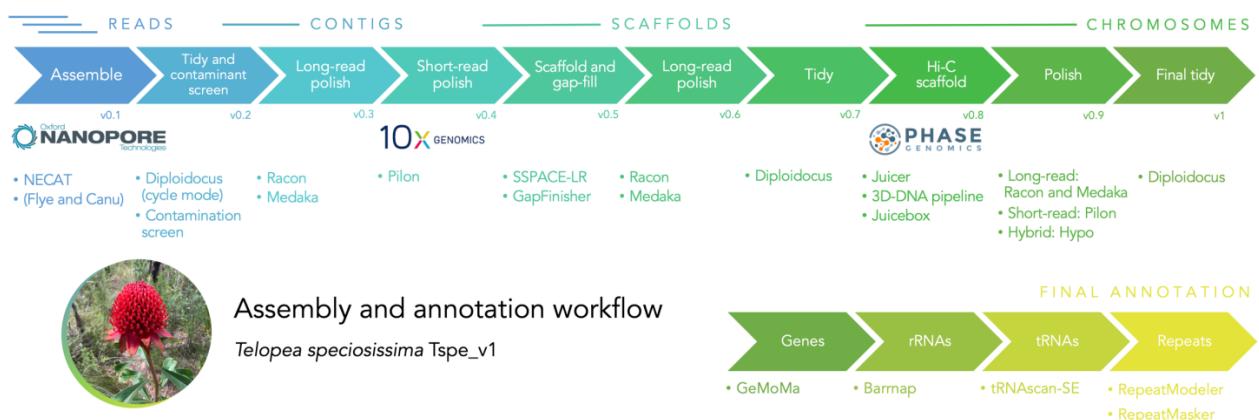
1416 [†] Two PromethION flow cells and two partial flow cells from a MinION pilot run

[‡] Includes a pilot iSeq run used to QC the library

1418

1420 Table 2. Genome assembly and annotation statistics for the *Telopea speciosissima* reference genome.

Statistic	Tspe_v1
Total length (bp)	823,061,212
No. of scaffolds	1,289
N50 (bp)	69,013,595
L50	6
No. of contigs	1,452
N50 (bp)	12,206,888
L50	21
N bases	18,174
GC (%)	40.11
BUSCO[†] complete (genome; n = 1,614)	97.8 % (1,579)
Single copy (genome)	86.7 % (1,399)
Duplicated (genome)	11.2 % (180)
BUSCO fragmented (genome)	1.7 % (27)
BUSCO missing (genome)	0.5 % (8)
Protein-coding genes	40,158
mRNAs	46,877
rRNAs	351
tRNAs	728
BUSCO[†] complete (proteome; n = 1,614)	94.4 % (1,524)
Single copy (proteome)	82.7 % (1,334)
Duplicated (proteome)	11.8 % (190)
BUSCO fragmented (proteome)	3.2 % (52)
BUSCO missing (proteome)	2.4 % (38)


[†] BUSCO v5 MetaEuk (embryophyta_odb10)

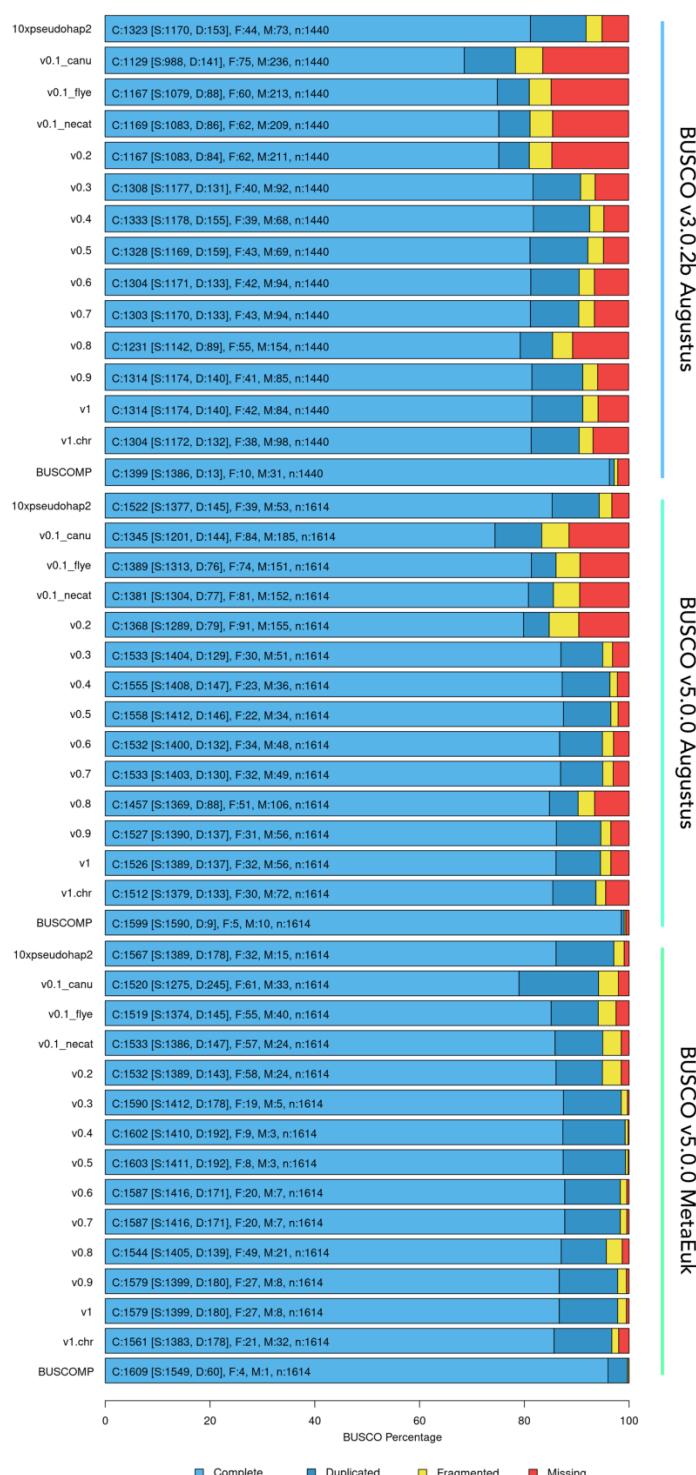
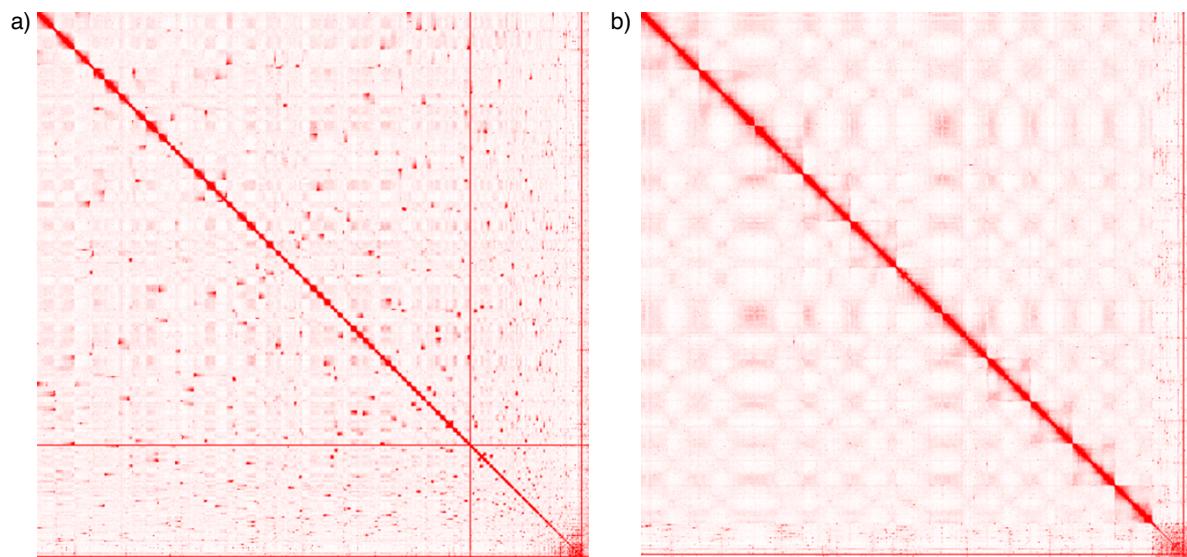

1422

Figure 1. New South Wales waratah (*Telopea speciosissima*). Photo taken by SH Chen.

1424

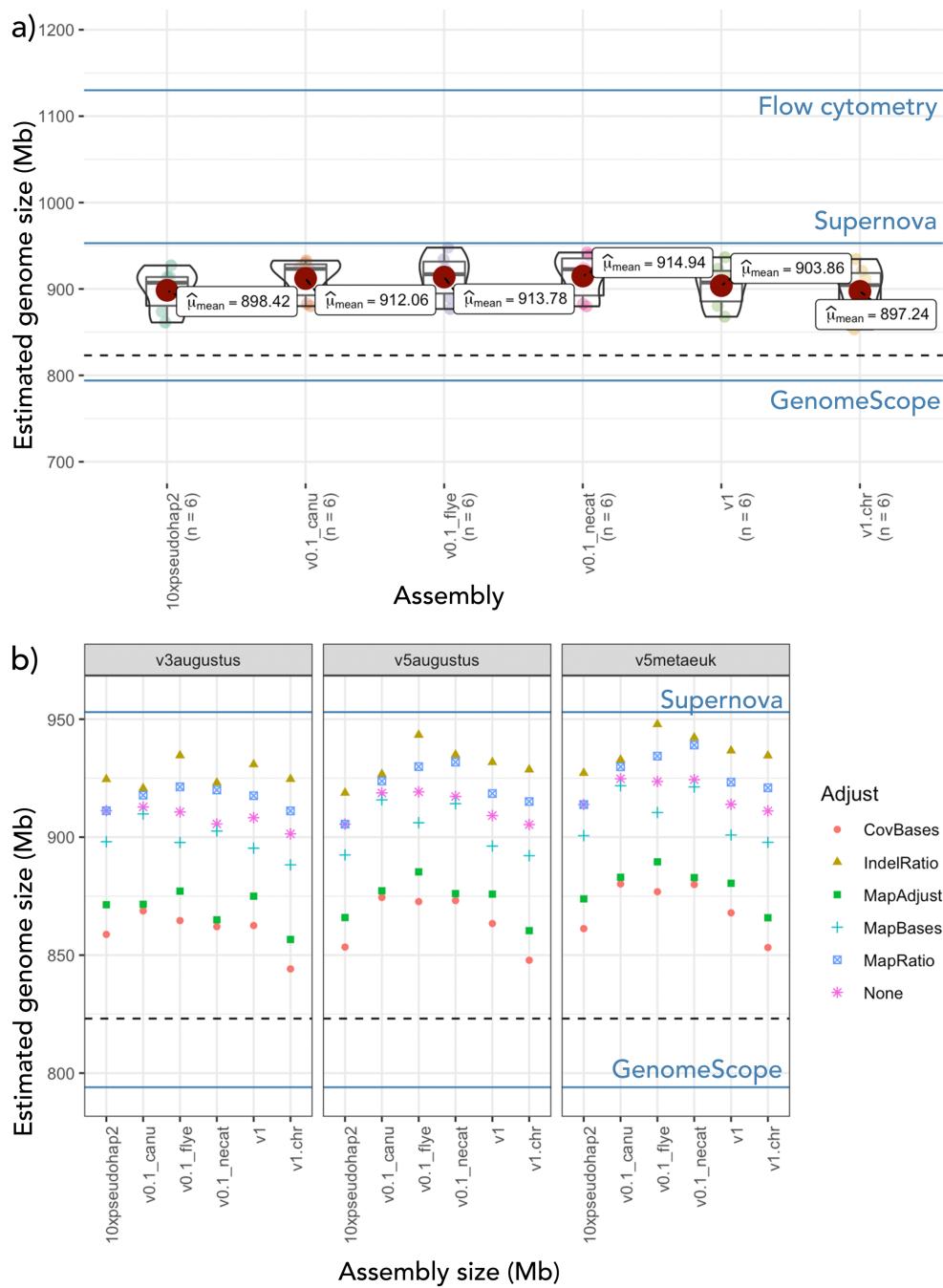
1426 Figure 2. Assembly and annotation workflow for the *Telopea speciosissima* reference genome Tspe_v1. Logos reproduced with permission. Waratah photo by SH Chen.



1428

Figure 5. BUSCOMP summary of BUSCO completeness rating compiled over different stages

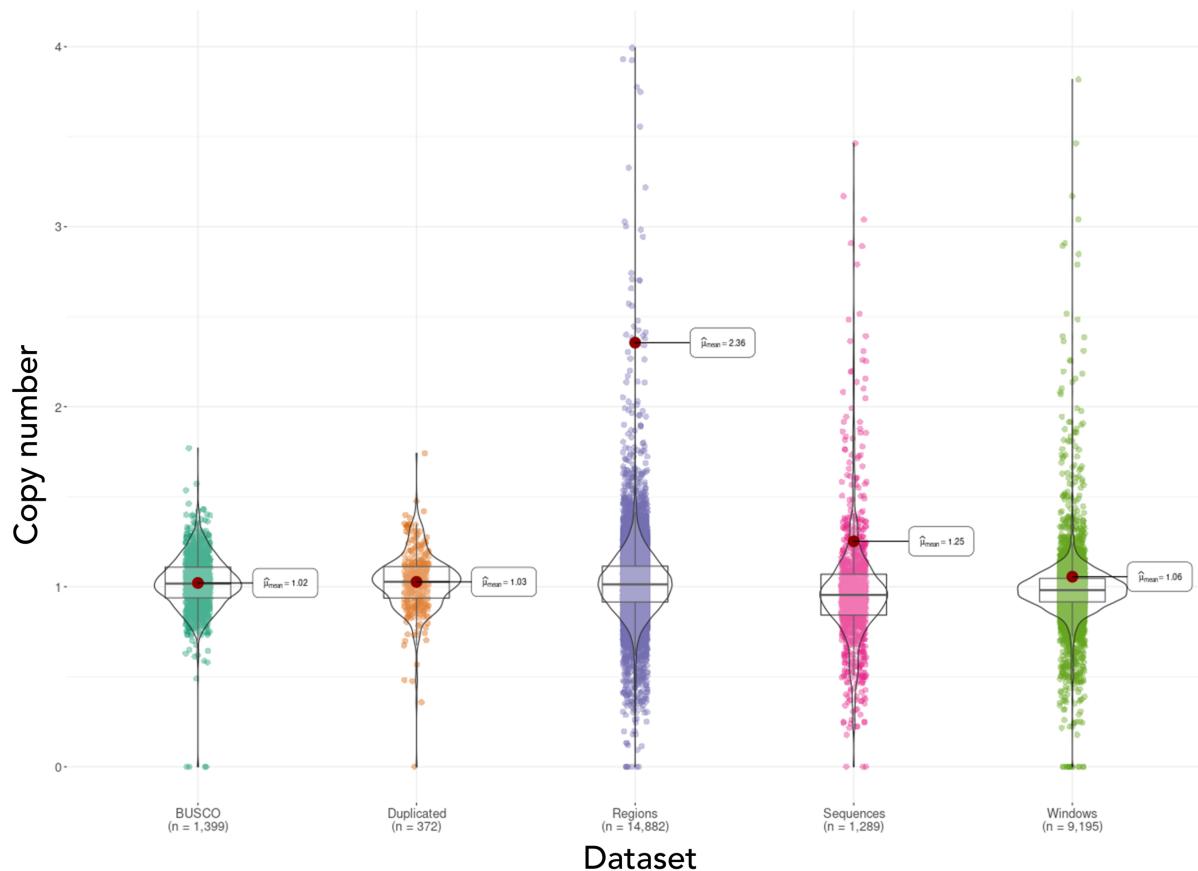
1430 (see Figure 2) of the *Telopea speciosissima* genome assembly. The final BUSCOMP rating


uses the best rating per BUSCO gene across any of the assemblies.

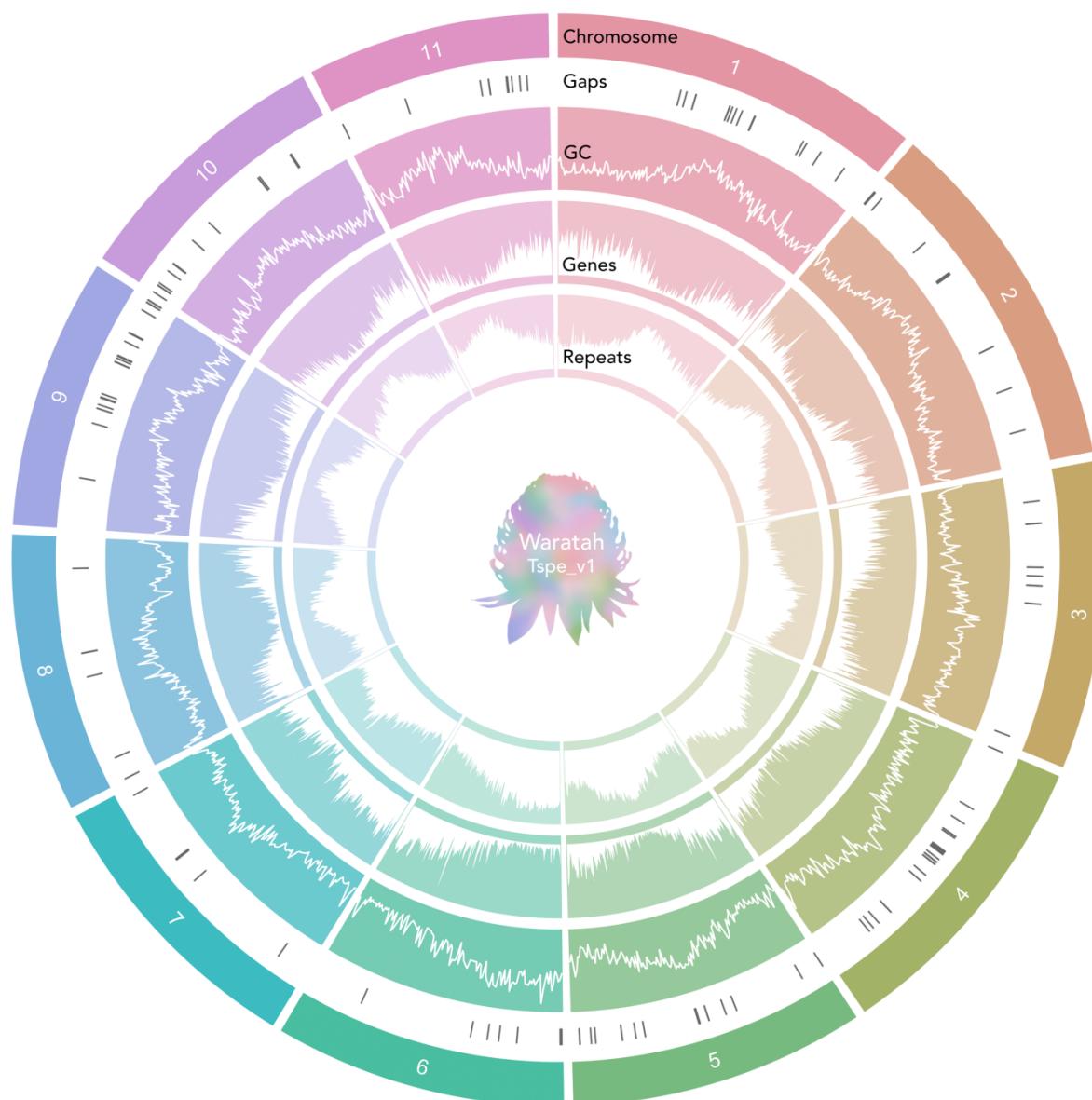
1432

Figure 6. Hi-C contact matrices visualised in Juicebox.js in balanced normalisation mode a)

1434 before and b) after correction.


1436 Figure 7. DepthSizer *Telopea* assembly size prediction using read depth of BUSCO v5

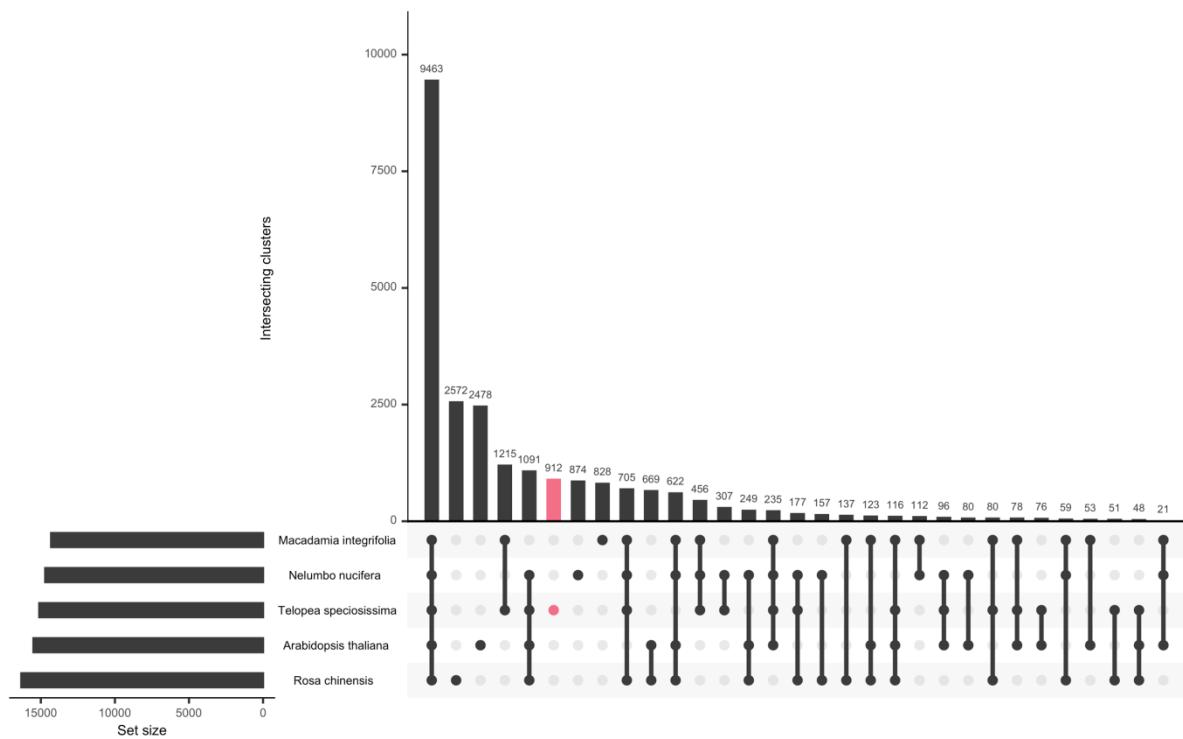
1438 MetaEuk genes a) sits between estimates from flow cytometry, Supernova and


1440 GenomeScope at mean of 904 Mb for the v1 final assembly and is b) robust to BUSCO

1442 versions, with variation across the four adjustment methods. Dotted line represents the final

1444 assembly size.

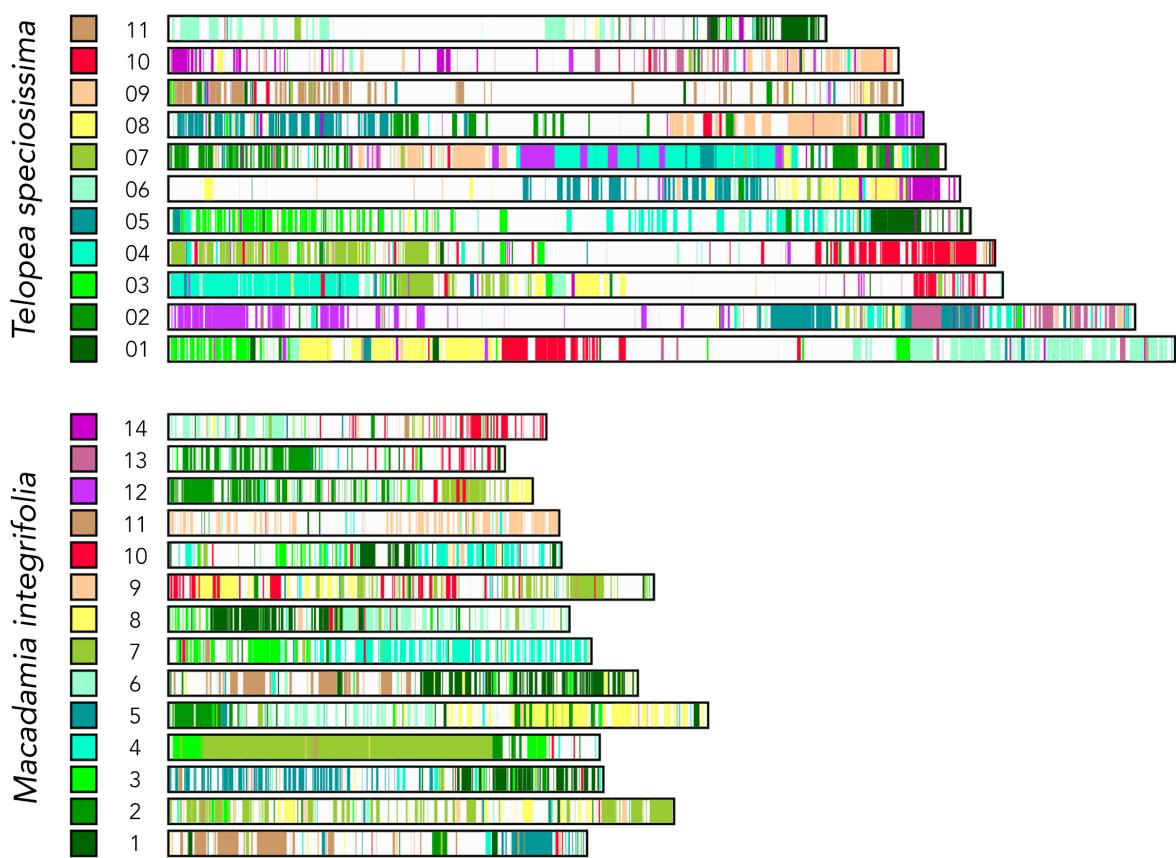
1442 Figure 8. Genome-wide regional copy number analysis. Copy number (CN) is relative to a
1443 single diploid ($2n$) copy in the genome, truncated at CN = 4. Violin plots and means
1444 generated with ggstatsplot. Each data point represents a different genomic region. BUSCO,
1445 BUSCO v5 (MetaEuk) single-copy 'Complete' genes; Duplicated, BUSCO v5 'Duplicated'
1446 genes; Regions, NCBI gene annotations; Sequences, assembly scaffolds; Windows, 100 kb
non-overlapping windows across the genome.



1448

Figure 9. Features of the 11 chromosomes of the *Telopea speciosissima* reference genome.

1450 Concentric tracks from the outside inward represent: chromosomes, gaps (gaps of unknown
length appear as 100 bp in the assembly), GC content calculated using BEDTools v2.27.1
1452 (Quinlan & Hall, 2010), gene density and repeat density. The latter three tracks denote
values in 500 kb sliding windows. Density was defined as the fraction of a genomic window
1454 that is covered by genomic regions. Plots are white on a solid background coloured by
chromosome. Visualisation created using the R package circlize v0.4.12 (Gu et al., 2014).


1456

1458 Figure 10. Orthologous gene clusters shared among the three members of the order Proteales –

Telopea speciosissima, *Macadamia integrifolia* and *Nelumbo nucifera* – and the core eudicots –

1460 *Arabidopsis thaliana* (Brassicaceae) and *Rosa chinensis* (Rosaceae).

1462 Figure 11. Synteny between *Telopea speciosissima* ($2n = 22$) and *Macadamia integrifolia* ($2n$
1463 = 28). Coloured squares for each species match painted chromosome regions in the other
1464 species. More detail of the underlying synteny and rearrangements can be found in Figure
1465 S5.

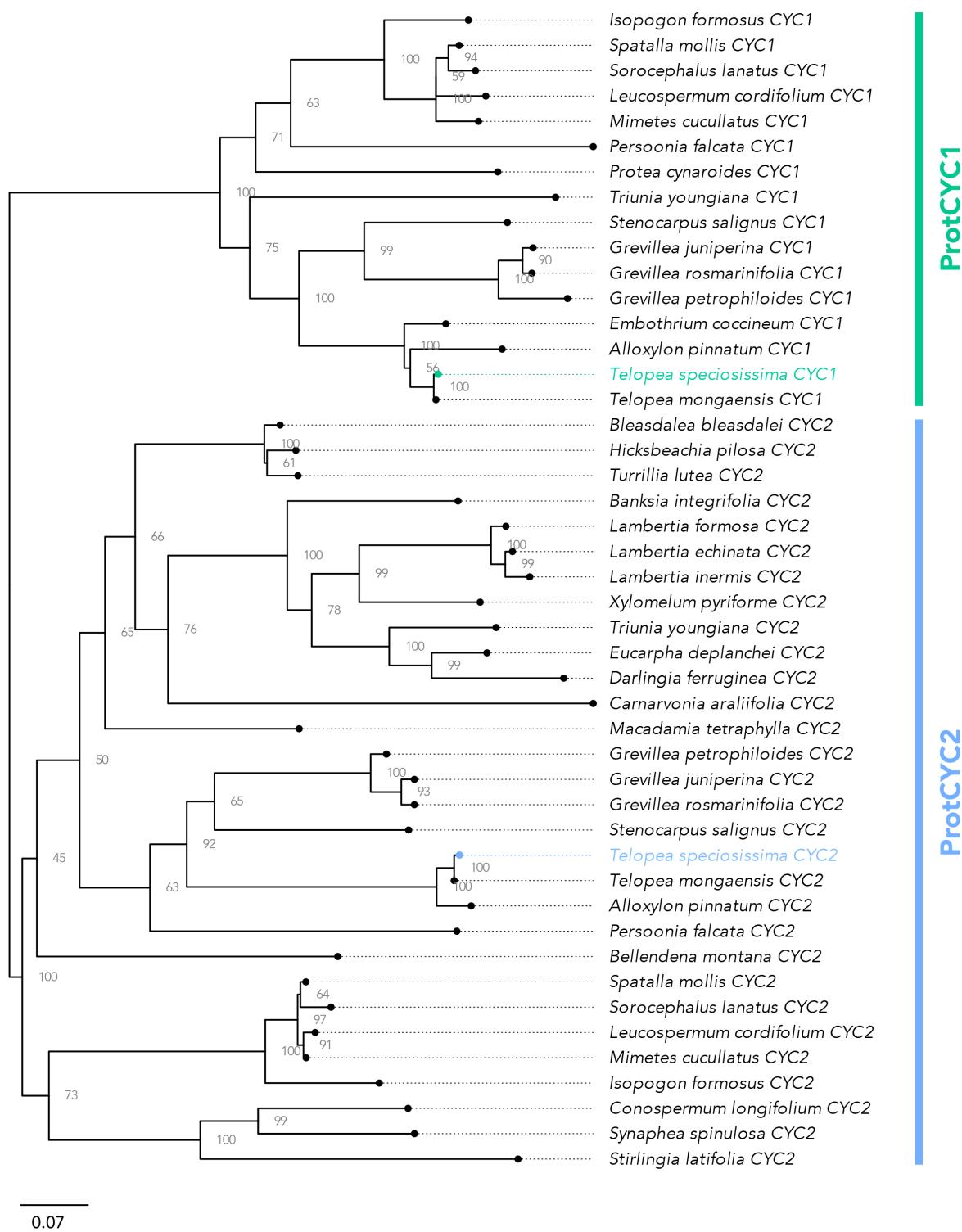


Figure 12. Phylogeny of CYCLOIDEA (CYC) proteins in Proteaceae, obtained from maximum-

likelihood inference with IQ-TREE. Node numbers indicate bootstrap support expressed as percentage. Scale bar represents 0.07 nucleotide substitutions per site. Branches terminate at circles; dotted extensions are for labelling purposes only.