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ABSTRACT 38 

 

Telopea speciosissima, the New South Wales waratah, is an Australian endemic woody shrub 40 

in the family Proteaceae. Waratahs have great potential as a model clade to better 

understand processes of speciation, introgression and adaptation, and are significant from a 42 

horticultural perspective. Here, we report the first chromosome-level genome for T. 

speciosissima. Combining Oxford Nanopore long-reads, 10x Genomics Chromium linked-44 

reads and Hi-C data, the assembly spans 823 Mb (scaffold N50 of 69.0 Mb) with 97.8 % of 

Embryophyta BUSCOs complete. We present a new method in Diploidocus 46 

(https://github.com/slimsuite/diploidocus) for classifying, curating and QC-filtering scaffolds, 

which combines read depths, k-mer frequencies and BUSCO predictions. We also present a 48 
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new tool, DepthSizer (https://github.com/slimsuite/depthsizer), for genome size estimation 

from the read depth of single copy orthologues and estimate the genome size to be 50 

approximately 900 Mb. The largest 11 scaffolds contained 94.1 % of the assembly, 

conforming to the expected number of chromosomes (2n = 22). Genome annotation 52 

predicted 40,158 protein-coding genes, 351 rRNAs and 728 tRNAs. We investigated 

CYCLOIDEA (CYC) genes, which have a role in determination of floral symmetry, and confirm 54 

the presence of two copies in the genome. Read depth analysis of 180 ‘Duplicated’ BUSCO 

genes suggest almost all are real duplications, increasing confidence in protein family 56 

analysis using annotated protein-coding genes, and highlighting a possible need to revise the 

BUSCO set for this lineage. The chromosome-level T. speciosissima reference genome 58 

(Tspe_v1) provides an important new genomic resource of Proteaceae to support the 

conservation of flora in Australia and further afield. 60 

 

Keywords: Telopea, waratah, genome assembly, reference genome, long-read sequencing, 62 

Hi-C 

 64 

INTRODUCTION 

 66 

Telopea R.Br. is an eastern Australian genus of five species of large, long-lived shrubs in the 

flowering plant family Proteaceae. The New South Wales waratah, Telopea speciosissima 68 

(Sm.) R.Br., is a striking and iconic member of the Australian flora, characterised by large, 

terminal inflorescences of red flowers (Figure 1). It has been the state floral emblem of New 70 

South Wales since 1962 and was one of the first Australian plant species collected for 
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cultivation in Europe (Nixon, 1987). The species is endemic to the state of New South Wales, 72 

occurring on sandstone ridges in the Sydney region. Previous studies have investigated 

variation among Telopea populations by phenetic analysis of morphology (Crisp & Weston, 74 

1993) and evolutionary relationships using cladistics (Weston & Crisp, 1994). Population 

structure and patterns of divergence and introgression between T. speciosissima populations 76 

have been characterised using several loci (Rossetto et al., 2011). Further, microsatellite 

data and modelling suggest a history of allopatric speciation followed by secondary contact 78 

and hybridization among Telopea species (Rossetto et al., 2012). These studies point to the 

great potential of Telopea as a model clade for understanding processes of divergence, 80 

environmental adaptation and speciation. Our understanding of these processes can be 

greatly enhanced by a genome-wide perspective, enabled by a reference genome (Ellegren 82 

et al., 2012; Hoban et al., 2016; Lewin et al., 2018; Radwan & Babik, 2012; Seehausen et al., 

2014). 84 

 

Genome sequencing efforts have traditionally focused on model species, crops and their 86 

wild relatives, resulting in a highly uneven species distribution of reference genomes across 

the plant tree of life (Royal Botanic Gardens, Kew, 2017). Despite Proteaceae occurring 88 

across several continents and encompassing 81 genera and ca. 1700 species (Mast et al., 

2008; Weston, 2006), the only publicly available reference genome in the family is a widely-90 

grown cultivar of the most economically important crop in the family, Macadamia 

integrifolia (macadamia nut) HAES 74 (Nock et al., 2016, 2020). Waratahs are significant to 92 

the horticultural and cut flower industries, with blooms cultivated for the domestic and 

international markets (Offord et al., 1987; Worrall & Gollnow, 2013). A reference genome 94 
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will accelerate efforts in breeding for traits such as resistance to pests and diseases (e.g. 

Phytophthora and Cylindrocapon destructans infection; Summerell, 1997; Summerell et al., 96 

1990) as well as desirable floral characteristics (Offord, 2003, 2006). 

 98 

Technological advances in sequencing and decreasing costs will facilitate the generation of 

more flowering plant reference genomes, including within the Proteaceae family, and 100 

advance research into links between the evolution of genomes and traits that exhibit 

exceptional diversity, such as floral morphology (Soltis & Soltis, 2014; Zheng et al., 2021). 102 

CYCLOIDEA (CYC) genes belong to the TPC transcription factor gene family, and are known to 

have an essential role in determining floral symmetry and inflorescence architecture in many 104 

angiosperm lineages (Busch & Zachgo, 2009; Fambrini & Pugliesi, 2017; Horn et al., 2015; 

Luo et al., 1996); studies have characterised recurrent duplications of members of the CYC2 106 

clade, especially in eudicots (Howarth & Donoghue, 2006), including Fabales (Citerne et al., 

2003; Feng et al., 2006), Asterales (Chapman et al., 2008), and Lamiales (Yang et al., 2015; 108 

Zhong & Kellogg, 2015). In Proteaceae, a single duplication of CYC-like genes occurred prior 

to diversification and two genes, ProtCYC1 and ProtCYC2, have been characterised (Citerne 110 

et al., 2017). In particular, Grevillea juniperina has been studied in detail (Damerval et al., 

2019) and the existence of both ProtCYC1 and ProtCYC2 in Telopea mongaensis has been 112 

supported by phylogenetic analysis (Citerne et al., 2017). However, CYC copy number has 

not been established in T. speciosissima. 114 

 

Here, we provide a high quality chromosome-level de novo assembly of the Telopea 116 

speciosissima genome, using Oxford Nanopore long-reads, 10x Genomics Chromium linked-
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reads and Hi-C proximity ligation scaffolding, which will serve as an important platform for 118 

evolutionary genomics and the conservation of the Australian flora. We present an analysis 

of CYC genes in the genome to contribute to the understanding of floral evolution in the 120 

Proteaceae family. 

 122 

MATERIALS AND METHODS 

 124 

Sampling and DNA extraction 

Young leaves (approx. 8 g) were sampled from the reference genome individual (NCBI 126 

BioSample SAMN18238110) where it grows naturally along the Tomah Spur Fire Trail (-

33.53° S, 150.42° E) on land belonging to the Blue Mountains Botanic Garden, Mount Tomah 128 

in New South Wales, Australia. Leaves were immediately frozen in liquid nitrogen and stored 

at -80° C prior to extraction. 130 

 

High-molecular-weight (HMW) genomic DNA (gDNA) was obtained using a sorbitol pre-wash 132 

step prior to a CTAB extraction adapted from Inglis et al. (2018). The gDNA was then purified 

with AMPure XP beads (Beckman Coulter, Brea, CA, USA) using a protocol based on 134 

Schalamun et al. (2019) – details available on protocols.io (Lu-Irving & Rutherford, 2021). 

The quality of the DNA was assessed using Qubit, NanoDrop and TapeStation 2200 System 136 

(Agilent, Santa Clara, CA, USA). 

 138 

ONT PromethION sequencing 
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We performed an in-house sequencing test on the MinION (MinION, RRID:SCR_017985) 140 

using a FLO-MINSP6 (R9.4.1) flow cell with a library prepared with the ligation kit (SQK-

LSK109). The remaining purified genomic DNA was sent to the Australian Genome Research 142 

Facility (AGRF) where size selection was performed to remove small DNA fragments using 

the BluePippin High Pass Plus Cassette on the BluePippin (Sage Science, Beverly, MA, USA). 144 

Briefly, 10 µg of DNA was split into 4 aliquots (2.5 µg) and diluted to 60 µL in TE buffer. Then, 

20 µL of RT equilibrated loading buffer was added to each aliquot and mixed by pipetting. 146 

Samples were loaded on the cassette by removing 80 µL of buffer from each well and adding 

80 µL of sample or external marker. The cassette was run with the 15 kb High Pass Plus 148 

Marker U1 cassette definition. Size selected fractions (approximately 80 µL) were collected 

from the elution module following a 30 min electrophoresis run. The library was prepared 150 

with the ligation sequencing kit (SQK-LSK109). The sequencing was performed using 

MinKNOW v.19.12.2 (MinION) and v12.12.8 (PromethION) and MinKNOW Core v3.6.7 (in-152 

house test), v3.6.8 (AGRF MinION) and v3.6.7 (AGRF PromethION). A pilot run was first 

performed on the MinION using the FLO-MIN106 (R9.4.1) flow cell followed by two FLO-154 

PRO002 flow cells (R9.4) on the PromethION (PromethION, RRID:SCR_017987) 

 156 

Basecalling was performed after sequencing with GPU-enabled Guppy v3.4.4 using the high-

accuracy flip-flop models, resulting in 54x coverage. The output from all ONT basecalling was 158 

pooled for adapter removal using Porechop (Porechop, RRID:SCR_016967) v.0.2.4 (Wick et 

al., 2017) and quality filtering (removal of reads less than 500 bp in length and Q lower than 160 

7) with NanoFilt (NanoFilt, RRID:SCR_016966) v2.6.0 (De Coster et al., 2018) followed by 

assessment using FastQC (FastQC, RRID:SCR_014583) v0.11.8 (Andrews, 2010). 162 
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10x Genomics Chromium sequencing 164 

High-molecular-weight gDNA was sent to AGRF for 10x Genomics Chromium sequencing. 

Size selection was performed to remove DNA fragments <40 kb using the BluePippin 0.75 % 166 

Agarose Gel Cassette, Dye Free on the BluePippin (Sage Science, Beverly, MA, USA). Briefly, 5 

µg of DNA was diluted to 30 µL in TE buffer and 10 µL of RT equilibrated loading buffer was 168 

added to each aliquot and mixed by pipetting. Samples were loaded on the cassette by 

removing 40 µL of buffer from each well and adding 40 µL of sample or external marker. The 170 

cassette was run with the 0.75 % DF Marker U1 high-pass 30-40 kb v3 cassette definition. 

Size selected fractions (approximately 40 µL) were collected following the 30 min 172 

electrophoresis run. The library was prepared using the Chromium Genome Library Kit & Gel 

Bead Kit and sequenced (2 x 150 bp paired-end) on the NovaSeq 6000 (Illumina NovaSeq 174 

6000 Sequencing System, RRID:SCR_016387) with NovaSeq 6000 SP Reagent Kit (300 cycles) 

and NovaSeq XP 2-Lane Kit for individual lane loading. 176 

 

Hi-C sequencing 178 

Hi-C library preparation and sequencing was conducted at the Ramaciotti Centre for 

Genomics at the University of New South Wales (UNSW Sydney) using the Phase Genomics 180 

Plant kit v3.0. The library was assessed using Qubit and the Agilent 2200 TapeStation system 

(Agilent Technologies, Mulgrave, VIC, Australia). A pilot run on an Illumina iSeq 100 with 2 x 182 

150 bp paired end sequencing run was performed for QC using hic_qc v1.0 (Phase Genomics, 

2019) with i1 300 cycle chemistry. This was followed by sequencing on the Illumina NextSeq 184 
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500 (Illumina NextSeq 500, RRID:SCR_014983) with 2 x 150 bp paired-end high output run 

and NextSeq High Output 300 cycle kit v2.5 chemistry. 186 

 

Genome assembly and validation 188 

Our assembly workflow consisted of assembling a draft long-read assembly, hybrid polishing 

of the assembly with long- and short-reads, and scaffolding the assembly into chromosomes 190 

using Hi-C data (Figure 2). Computational steps were carried out on the UNSW Sydney 

cluster Katana. 192 

 

The first stage of our assembly approach involved comparing three long-read assemblers 194 

using the ONT data as input: NECAT v0.01 (Chen et al., 2021), Flye (Flye, RRID:SCR_017016) 

v2.6 (Kolmogorov et al., 2019) and Canu (Canu, RRID:SCR_015880) v1.9 (Koren et al., 2017). 196 

The genome size parameter used for the assemblers was 1,134 Mb, as previously reported 

for Telopea truncata (Jordan et al., 2015). We later refined genome size estimates for T. 198 

speciosissima (see ‘DepthSizer: genome size estimation using single-copy orthologue 

sequencing depths’ section below). We chose the draft long-read assembly for use in 200 

downstream assembly steps based on contiguity (N50), BUSCO completeness and assembly 

size in relation to the DepthSizer estimated genome size. As a comparison to the long-read 202 

assemblies, the 10x data were assembled with Supernova (Supernova assembler, 

RRID:SCR_016756) v2.1.1 (Weisenfeld et al., 2017) with 332 Mb reads subsampled by 204 

Supernova (54x raw coverage, as recommended by Supernova documentation) as input. We 

generated pseudohaploid output (pseudohap2 output ‘1’). 206 
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Assembly completeness and accuracy 208 

Completeness was initially evaluated by BUSCO (BUSCO, RRID:SCR_015008) v3.0.2b (Simão 

et al., 2015), implementing BLAST+ v2.2.31, Hmmer v3.2.1 and EMBOSS v6.6.0 with the 210 

embryophyta_odb9 dataset (n = 1,440). To investigate the robustness of BUSCO 

completeness statistics, assemblies were also evaluated with BUSCO v5.0.0 (Manni et al., 212 

2021), implementing BLAST+ v2.11.0 (Altschul et al., 1990), SEPP v4.3.10 (Mirarab et al., 

2011) and Hmmer (Hmmer, RRID:SCR_005305) v3.3 (Eddy, 2011), against the 214 

embryophyta_odb10 dataset (n = 1,614). BUSCO results were calculated with both Augustus 

(Augustus, RRID:SCR_008417) v3.3.2 (Stanke & Morgenstern, 2005) and MetaEuk 216 

v732bcc4b91a08e69950ce0e25976f47c3bb6b89d (Levy Karin et al., 2020) as the gene 

predictor.  218 

 

BUSCO results were collated using BUSCOMP (BUSCO Compilation and Comparison Tool; 220 

RRID:SCR_021233) v0.11.0 (Stuart et al., 2021) to better evaluate the gains and losses in 

completeness between different assembly stages, and compare different BUSCO versions. 222 

Assembly quality (QV) was also estimated using k-mer analysis of trimmed and filtered 10x 

linked-read data by Merqury v1.0 with k = 20 (Rhie et al., 2020). First, 30 bp from the 5’ end 224 

of read 1 and 10 bp from the 5’ end of read 2 were trimmed using BBmap (BBmap, 

RRID:SCR_016965) v38.51 (Bushnell, 2014). In addition, reads were trimmed to Q20, then 226 

those shorter than 100 bp were discarded. 

 228 

Genome size estimation and ploidy 
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Telopea speciosissima has been reported as a diploid (2n = 22) (Darlington & Wylie, 1956; 230 

Ramsay, 1963). We confirmed the individual’s diploid status using Smudgeplot v0.2.1 

(Ranallo-Benavidez et al., 2019). The 1C-value of T. truncata (Tasmanian waratah) has been 232 

estimated at 1.16 pg (1.13 Gb) using flow cytometry (Jordan et al., 2015). We used the 10x 

data to estimate the genome size using Supernova v2.1.1 and GenomeScope 234 

(GenomeScope, RRID:SCR_017014) v1.0 (Vurture et al., 2017). 

 236 

We sought to refine the genome size estimate of T. speciosissima using the ONT data and 

draft genome assemblies, implementing a new tool, DepthSizer 238 

(https://github.com/slimsuite/depthsizer, RRID:SCR_021232, Box 1). ONT reads were 

mapped onto each draft genome using Minimap2 (Minimap2, RRID:SCR_018550) v2.17 (Li, 240 

2018) (--secondary=no -ax map-ont). The single-copy read depth for each assembly was then 

calculated as the modal read depth across single copy complete BUSCO genes, which should 242 

be reasonably robust to poor-quality and/or repeat regions within these genes (Edwards et 

al., 2021). 244 

 

DepthSizer benchmarking 246 

DepthSizer was benchmarking using five PacBio reference genomes, plus the high-quality 

genome assembly and PacBio long reads for the German Shepherd Dog (Field et al., 2020; 248 

Table S1). Accuracy was calculated as the estimated genome size, divided by the 

documented genome size. Additional benchmarking of the robustness of DepthSizer 250 

predictions was performed using ONT and PacBio sequence data for three high-quality dog 

genomes: Basenji (Edwards et al., 2021), Dingo (Yadav et al., 2020), and German Shepherd 252 
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Dog (Field et al., 2020). Raw reads from each technology were analysed independently using 

both the breed-specific reference genome, and the CanFam 3.1 dog reference 254 

(GCA_000002285.2; Lindblad-Toh et al., 2005). For all benchmarking, reads were mapped 

with Minimap2 (Minimap2, RRID:SCR_018550) v2.17 (Li, 2018). Summary violin plots were 256 

generated with ggstatsplot (Patil, 2021) in R. 

 258 

Box 1.  DepthSizer: genome size estimation using single-copy orthologue sequencing 

depths 

GitHub: https://github.com/slimsuite/depthsizer 

 

Genome size prediction is a fundamental task in genome assembly. DepthSizer is a tool for 

estimating genome size using single-copy long-read sequencing depth profiles. 

 

By definition, sequencing depth (X) is the volume of sequencing divided by the genome size. 

Given a known volume of sequencing, it is therefore possible to estimate the genome size by 

estimating the achieved sequencing depth. DepthSizer works on the principle that the modal 

read depth across single copy BUSCO genes provides a good estimate of the true depth of 

coverage. This assumes that genuine single copy depth regions will tend towards the same, 

true, single copy read depth. In contrast, assembly errors or collapsed repeats within those 

genes, or incorrectly-assigned single copy genes, will give inconsistent read depth deviations 

from the true single copy depth. The exception is regions of the genome only found on one 

haplotig – half-depth alternative haplotypes for regions also found in the main assembly – 
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such as heterogametic sex chromosomes (Edwards et al., 2021), but these are unlikely to 

outnumber genes present in single copy on both homologous chromosomes. As a 

consequence, the dominant (i.e. modal) depth across these regions should represent single 

copy (2n) sequencing depth. First, the distribution of read depth for all single copy genes is 

generated using Samtools (Samtools, RRID:SCR_002105) v0.11 (Li et al., 2009) mpileup, and 

the modal peak calculated using a smoothed ‘density’ function of R (R Project for Statistical 

Computing, RRID:SCR_001905) v3.5.3 (R Core Team, 2019) to allow non-integer estimation 

(see DepthSizer documentation for details). Genome size, G, was then estimated from the 

modal peak single-copy depth, Xsc, and the total volume of sequencing data, T, using the 

formula: G = T / XSC. 

DepthSizer has six different genome size adjustment modes that modify T using different 

core assumptions (see documentation for details): 

• None: no adjustment. Assumes zero contamination and perfect read mapping. 

• IndelRatio: adjusts total sequencing volume for mismatch between read data being 

mapped and assembly coverage. Assumes no contamination in raw reads. 

• CovBases: sets T as the total number of sequencing read bases covering the 

assembly. (Assembly Length x Mean depth) 

• MapBases: sets T as the total number bases from sequencing reads mapped on to 

the genome. Assumes perfect mapping and all unmapped reads are contamination. 

• MapAdjust: adjusts total sequencing volume by the ratio of mapped reads to mapped 

bases to account for depth losses during mapping. Assumes no contamination in raw 

reads. 
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• MapRatio: adjusts the MapBases by the IndelRatio sequencing:mapping bias. 

 

It is expected that the true genome size should fall between IndelRatio (upper) 

and MapRatio (lower). CovBases should provide an absolute lower bound for genome size. If 

there is a very large difference between CovBases and MapBases, this could indicate a 

problem with the reads and/or assembly (e.g. some kind of incompatibility) and will result in 

a very inaccurate MapAdjust. If there is a very big difference between MapBases and None, 

this could indicate a very incomplete assembly, or a lot of contamination. In these cases, it is 

advisable to establish which before deciding which prediction size to use. 

 

Benchmarking on PacBio data from six model organisms demonstrates robust genome size 

estimates, with a tendency to slightly overestimate genome size as expected (Figure 3, Table 

S1 and Table S2). Additional benchmarking on three high-quality canid genomes further 

revealed robustness to both assembly used (breed-specific genome versus CanFam v3.1) and 

sequencing technology (PacBio vs ONT), although PacBio data appears to over-estimate 

genome size more than ONT data (Figure S1). 
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Figure 3. Model organism benchmarking of DepthSizer with six core methods using 

Minimap2 read mapping and Mpileup depth calculations with a) accuracy for each species 

and b) estimated genome size vs published genome size. 
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Assembly tidying and contamination screening 260 

The draft genome was screened and filtered to remove contamination, low-quality contigs 

and putative haplotigs, using more rigorous refinement of the approach taken for the 262 

Canfam_GSD (German Shepherd) and CanFam_Bas (Basenji) dog reference genomes 

(Edwards et al., 2021; Field et al., 2020), implemented in Diploidocus v0.9.6 264 

(https://github.com/slimsuite/diploidocus, RRID:SCR_021231, Box 2). 

 266 

BUSCO Complete genes were used to estimate a single-copy read depth of 54X. This was 

used to set low-, mid- and high-depth thresholds for Purge Haplotigs (Purge_haplotigs, 268 

RRID:SCR_017616) v20190612 (Roach et al., 2018) (implementing Perl v5.28.0, BEDTools 

(BEDTools, RRID:SCR_006646) v2.27.1 (Quinlan & Hall, 2010), R v3.5.3 (R Core Team, 2019), 270 

and SAMTools v1.9 (Li et al., 2009) of 13X, 40X and 108X. For the draft genome, convergence 

was reached after three cycles with 148 core sequences and 62 repeat sequences retained 272 

(see Table S6 for summary of cycles and Table S7 for full output). 

 274 

Box 2. Automated genome assembly tidying with Diploidocus  

GitHub: https://github.com/slimsuite/diploidocus 

 

Diploidocus is a tool that assists with tidying and curating genome assemblies. The tool 

combines read depth, KAT k-mer frequencies, Purge Haplotigs depth bins, Purge Haplotigs 

best sequence hits, BUSCO gene predictions, telomere prediction and vector contamination 
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into a single seven-part (PURITY|DEPTH|HOM|TOP|MEDK|BUSCO+EXTRA) classification 

(Table S4). Diploidocus then performs a hierarchical rating of scaffolds, based on their 

classifications and compiled data (Table S5 and Figure 4). Based on these ratings, sequences 

are divided into sets: 

1. Core. Predominantly diploid scaffolds and unique haploid scaffolds with insufficient 

evidence for removal. 

2. Repeats. Unique haploid scaffolds with insufficient evidence for removal but 

dominated by repetitive sequences. High coverage scaffolds representing putative 

collapsed repeats. 

3. Quarantine. Messy repetitive sequences and strong candidates for alternative 

haplotigs. 

4. Junk. Low coverage, short and/or high-contaminated sequences. 

 

If any sequences are marked as ‘Quarantine’ or ‘Junk’, sequences in the ‘Core’ and ‘Repeat’ 

sets are retained and used as input for another round of classification and filtering. 

 

First, the assembly is screened against the NCBI UniVec database 

(ftp://ftp.ncbi.nlm.nih.gov/pub/UniVec/, downloaded 05/08/2019) to identify and remove 

contaminants. Hits are first scored using rules derived from NCBI Vecscreen 

(https://www.ncbi.nlm.nih.gov/tools/vecscreen/) and regions marked as ‘Terminal’ (within 

25 bp of a sequence end), ‘Proximal’ (within 25 bases of another match) or ‘Internal’ (>25 bp 

from sequence end or vecsreen match). Then, any segment of fewer than 50 bases between 
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two vector matches or between a match and a sequence end are marked as ‘Suspect’. In our 

experience, default Vecscreen parameters appear prone to excessive false positives in large 

genomes (data not shown), and so Diploidocus features two additional contaminant 

identification filters. First, the ‘Expected False Discovery Rate’ (eFDR) is calculated for each 

contaminant sequence. This is simply the BLAST+ Expect value for that hit, divided by the 

total number of hits at that Expect value threshold. Any hits with an eFDR value exceeding 

the default threshold of 1.0 were filtered from the vecscreen results. Short matches in long-

read assemblies are unlikely to be real contamination and a second filter was applied, 

restricting contaminant screening to a minimum hit length of 50 bp. Finally, the percentage 

coverage per scaffold is calculated from the filtered hits. This is performed first for each 

contaminant individually, before being collapsed into total non-redundant contamination 

coverage per query. Diploidocus then removes any scaffolds with at least 50 % 

contamination, trims off any vector hits within 1 kb of the scaffold end, and masks any 

remaining vector contamination of at least 900 bp. This masking replaces every other base 

with an N to avoid an assembly gap being inserted: masked regions should be manually 

fragmented if required. Diploidocus can also report the number of mapped long reads that 

completely span regions flagged as contamination. 

 

After contamination screening, a sorted BAM file of ONT reads mapped to the filtered 

assembly is generated using Minimap2 v2.17 (−ax map-ont --secondary = no) (Li, 2018). 

Purge Haplotigs coverage bins were adjusted to incorporate zero-coverage bases, excluding 

assembly gaps (defined as 10+ Ns). Counts of Complete, Duplicate and Fragmented BUSCO 
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genes were also generated for each sequence. General read depth statistics for each 

sequence were calculated with BBMap v38.51 pileup.sh (Bushnell, 2014). The sect function 

of KAT (KAT, RRID:SCR_016741) v2.4.2 (Mapleson et al., 2017) was used to calculate k-mer 

frequencies for the 10x linked reads (first 16 bp trimmed from read 1), and the assembly 

itself. Telomeres were predicted using a method adapted from 

https://github.com/JanaSperschneider/FindTelomeres, searching each sequence for 5’ 

occurrences of a forward telomere regular expression sequence, C{2,4}T{1,2}A{1,3}, and 3' 

occurrences of a reverse regular expression, T{1,3}A{1,2}G{2,4}. Telomeres were marked if at 

least 50 % of the terminal 50 bp matches the appropriate sequence.  

 

Figure 4. Diploidocus scaffold rating process based on a six-part classification. Asterisks 
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indicate any class value is accepted. Phases are executed in order. Consequently, rules for 

later phases appear less restrictive than the full set of criteria required to receive that rating. 

 

Assembly polishing and gap-filling 276 

The assembly was first long-read polished with Racon (Racon, RRID:SCR_017642) v1.4.5 

(Vaser et al., 2017) using the parameters -m 8 -x -6 -g -8 -w 500 and medaka v1.0.2 (Oxford 278 

Nanopore Technologies Ltd., 2018) using the r941_prom_high_g303 model. Then, the 10x 

reads were incorporated by short-read polishing using Pilon (Pilon, RRID:SCR_014731) v1.23 280 

(Walker et al., 2014) with reads mapped using Minimap2 v2.12 (Li, 2018) and correcting for 

indels only; we found correcting for indels only resulted in a higher BUSCO score than 282 

correcting for indels and SNPs following the steps described in this section. We scaffolded 

using SSPACE-LongRead v1.1 (Boetzer & Pirovano, 2014) with -k 1 followed by gap-filling 284 

using gapFinisher v20190917 (Kammonen et al., 2019) with default parameters. After 

another round of long-read polishing with Racon v1.4.5 (Vaser et al., 2017) and medaka 286 

v1.0.2 (Oxford Nanopore Technologies Ltd., 2018), we moved forward with a second round 

of tidying in Diploidocus v0.9.6 (default mode).  288 

 

Hi-C scaffolding 290 

Hi-C data were aligned to the draft genome assembly using the Juicer (Juicer, 

RRID:SCR_017226) pipeline v1.6 (Durand et al., 2016) then scaffolds were ordered and 292 

orientated using the 3D de novo assembly pipeline (3D de novo assembly, RRID:SCR_017227) 

v180922 (Dudchenko et al., 2017). The contact map was visualised using Juicebox Assembly 294 

Tools v1.11.08 and errors over 3 review rounds were corrected manually to resolve 11 
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chromosomes (Dudchenko et al., 2018). The resulting assembly was tidied again using 296 

Diploidocus v0.10.6 (default mode). 

 298 

Final polishing and assembly clean-up 

A further round of long-read polishing with Racon v1.4.5 (Vaser et al., 2017) and medaka 300 

v1.0.2 (Oxford Nanopore Technologies Ltd., 2018) was performed as described above. We 

then short-read polished using Pilon v1.23 (Walker et al., 2014). Two Pilon strategies were 302 

applied: (1) indel-only correction; (2) indel and SNP correction. We retained the indel and 

SNP corrected assembly as it resulted in a marginally higher BUSCO score compared to indel 304 

only correction (1311 vs 1310 complete BUSCOs); there was no change to contig nor scaffold 

numbers. A final hybrid polish was performed using Hypo v1.0.3 (Kundu et al., 2019). The 306 

assembly was concluded with a final tidy with Diploidocus v0.14.1 (default mode). All gaps in 

the assembly were then standardised to 100 bp. 308 

 

Genome-wide heterozygosity was estimated using trimmed 10x reads with GenomeScope 310 

(Vurture et al., 2017) from the k-mer 20 histogram computed using Jellyfish (Jellyfish, 

RRID:SCR_005491) v2.2.10 (Marçais & Kingsford, 2011). 312 

 

Genome annotation 314 

The genome was annotated using the homology-based gene prediction program GeMoMa 

(GeMoMa, RRID:SCR_017646) v1.7.1 (Keilwagen et al., 2019) with four reference genomes 316 

downloaded from NCBI: Macadamia integrifolia (SCU_Mint_v3, GCA_013358625.1), 

Nelumbo nucifera (Chinese Lotus 1.1, GCA_000365185.2), Arabidopsis thaliana (TAIR10.1, 318 
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GCA_000001735.2) and Rosa chinensis (RchiOBHm-V2, GCA_002994745.2). The annotation 

files for M. integrifolia were downloaded from the Southern Cross University data repository 320 

(doi.org/10.25918/5e320fd1e5f06). Macadamia (Nock et al., 2020) and Nelumbo (Ming et 

al., 2013) genomes were chosen as they are related to Telopea i.e. in the order Proteales. 322 

The other two high-quality genomes represented the core eudicots and included the model 

flowering plant Arabidopsis (Lamesch et al., 2012) and Rosa (Hibrand Saint-Oyant et al., 324 

2018) where the publication focused on genetic regulators of ornamental traits which is of 

interest for Telopea. Annotation completeness was assessed using BUSCO v3.0.2b and v5.0.0 326 

in proteome mode. 

 328 

Ribosomal RNA (rRNA) genes were predicted with Barrnap (Barrnap, RRID:SCR_015995) v0.9 

(Seemann, 2018) and transfer RNAs (tRNAs) were predicted with tRNAscan-SE (tRNAscan-SE, 330 

RRID:SCR_010835) v2.05 (Lowe & Chan, 2016), implementing Infernal (Infernal, 

RRID:SCR_011809) v1.1.2 (Nawrocki & Eddy, 2013). A set of 2,419 tRNAs was initially 332 

predicted and filtered to 760 using the recommended protocol for eukaryotes. Then, 22 

tRNAs with mismatched isotype and 10 with unexpected anticodon were removed to form 334 

the high-confidence set. 

 336 

The genome has also been annotated by the NCBI Eukaryotic Genome Annotation Pipeline 

using RNAseq data from other Proteaceae (RefSeq accession GCF_018873765.1). 338 

 

Genome-wide copy number analysis 340 
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Estimated single-copy (2n) sequencing depth was calculated for different regions of the 

genome using the same smoothed density profile as employed by DepthSizer (Box 1) and 342 

comparing this to the BUSCO-derived single-copy (2n) sequencing depth of DepthSizer. This 

analysis was performed on: (1) BUSCO v5 (MetaEuk) single-copy ‘Complete’ genes; (2) 344 

BUSCO v5 ‘Duplicated’ genes; (3) All NCBI gene annotations; (4) Each final assembly scaffold; 

(5) 100 kb non-overlapping windows across the genome. For convenience, this method has 346 

been made available as DepthKopy (https://github.com/slimsuite/depthkopy). 

 348 

Repeat annotation 

Following the approach from the Macadamia integrifolia genome paper (Nock et al., 2020), 350 

we identified and quantified repeats in the Telopea genome as well as the other four species 

used in the GeMoMa annotation for comparison. A custom repeat library was generated 352 

with RepeatModeler (RepeatModeler, RRID:SCR_015027) v2.0.1 (-engine ncbi) and the 

genome was masked with RepeatMasker (RepeatMasker, RRID:SCR_012954) v4.1.0 (Tarailo-354 

Graovac & Chen, 2009), both with default parameters. The annotation table was generated 

using the buildSummary.pl RepeatMasker script. 356 

 

Orthologous clusters and synteny analyses 358 

Synteny between the Telopea (Tspe_v1) and Macadamia (SCU_Mint_v3) genomes was 

explored with satsuma2 version untagged-2c08e401140c1ed03e0f with parameters -l 3000 -360 

do_refine 1 -min_matches 40 -cutoff 2 -min_seed_length 48 and visualised with the 

ChromosomePaint function (Grabherr et al., 2010) and MizBee v1.0 (Meyer et al., 2009). The 362 

protein sequences of Tspe_v1 and the four species used in the GeMoMa annotation were 
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clustered into orthologous groups and tests for gene ontology (GO) enrichment were 364 

conducted for waratah-specific clusters using OrthoVenn2 (Xu et al., 2019). Intersection of 

clusters was visualised using the R package UpSetR (Conway et al., 2017). 366 

 
CYCLOIDEA transcription factor gene family analysis 368 

Complete and partial protein sequences for CYCLOIDEA transcription factors were 

downloaded from NCBI using identifiers listed in Table S3 of Citerne et al., 2017. GABLAM 370 

v2.30.5 (Davey et al., 2006) was used to identify all homologous proteins (BLAST+ v2.11.0, 

blastp e-value <1e-4) in the waratah GeMoMa annotation, which was annotated with 372 

protein descriptions from closest Swissprot hits using SAAGA v0.7.6 (Stuart et al., 2021). 

Each Telopea speciosissima homologue was then used as query sequence for HAQESAC 374 

v1.14.0 (Edwards et al., 2007) to generate a high-quality multiple sequence alignment and 

inferred phlyogenetic tree of close homologues (limited to a maximum of 100 closest hits). A 376 

search database was constructed from all angiosperm proteins in Uniprot (taxid 3398), the 

three reference proteomes used for GeMoMa annotation (Macadamia integrifolia, Nelumbo 378 

nucifera and Rosa chinensis), and all angiosperm reference proteomes from Quest For 

Orthologues (March 2021 release; (Forslund et al., 2018). To this were added the original 380 

CYC sequences and full GeMoMa annotation of T. speciosissima. BLAST+ searches and 

HAQESAC runs were controlled by MultiHAQ v1.5.0 (Jones et al., 2011). To generate a 382 

comprehensive but non-redundant tree of CYC genes, all homologues meeting initial 

HAQESAC screening criteria (min 40 % global identity and 60 % global coverage to query, <50 384 

% gaps relative to nearest homologue) were combined into a single non-redundant dataset 

of CYCLOIDEA homologues and their homologues. A candidate Telopea CYCLOIDEA-like 1 386 
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gene (TSPEV1G03060) was identified based on SAAGA annotation and HAQESAC 

homologues. This was used as a query for a second, manually curated HAQESAC run against 388 

the full non-redundant protein dataset, screening out any proteins with an unknown species 

designation (including sequence assigned the 9MAGSP species code). Multiple sequence 390 

alignments were performed with Clustal Omega (Clustal Omega, RRID:SCR_001591) v1.2.4 

(Sievers et al., 2011). The final tree was generated with IQ-TREE (IQ-TREE, RRID:SCR_017254) 392 

v2.0.4 (Nguyen et al., 2015) with 1,000 bootstraps. 

 394 

RESULTS AND DISCUSSION 

 396 
High-quality chromosome-level Tspe_v1 reference genome 

The ONT, 10x and Hi-C sequencing yielded a total of 48.3, 123.4 and 25.0 Gb of sequence, 398 

respectively (Table 1). At the initial long-read assembly stage, NECAT resulted in the most 

contiguous assembly, at 365 contigs and the highest BUSCO completeness at 81.2 %. This 400 

was followed by Flye at 2,484 contigs and 81.0 % complete, then Canu at 3,983 contigs at 

78.4 % complete. The BUSCO completeness of the 10x pseudohaploid assembly was higher 402 

than each of the long-read assemblies at 91.8 %. However, the 10x assembly had much 

lower contiguity at 43,951 contigs, as expected (Table S3). Whilst Supernova had a higher 404 

BUSCO completeness (91.9 % versus 81.2 %), NECAT was orders of magnitude better in 

terms of contiguity (10.7 Mb N50 on 365 contigs vs 874 kb N50 on 27,610 scaffolds). 406 

Furthermore, BUSCOMP analysis revealed that the NECAT assembly contained more 

complete BUSCO genes when base accuracy is not considered (Figure 5; Supplementary Files 408 

– BUSCOMP full report). Guided by these metrics, NECAT was selected as the core assembly 
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for additional processing. We confirmed the individual’s diploid status with Smudgeplot 410 

(Figure S2a). 

 412 

Rounds of polishing and tidying improved the contiguity and quality of the genome as the 

genome progressed through the assembly workflow (Table S3). The first round of polishing 414 

markedly improved the BUSCO score – long-read polishing increased complete BUSCOs from 

1,532 (v0.2) to 1,590 (v0.3) and short-read polishing further increased this to 1,602 (v0.4). 416 

The assembly was scaffolded by SSPACE-LongRead from 209 contigs into 138 scaffolds, 

however, no gaps were filled by gapFinisher. After further long-read polishing, a run of 418 

Diploidocus (v0.7) retained 128 scaffolds out of 138, which consisted of 87 core, 41 repeat, 

10 quarantine and 0 junk scaffolds. Following incorporation of Hi-C data, the assembly was 420 

in 2,357 scaffolds, and the N50 increased substantially from 16.5 Mb to 68.9 Mb. 

Surprisingly, the contig number increased considerably from 148 to 3,537, suggesting that 422 

the Hi-C data and NECAT assembly were frequently in conflict. The resulting assembly was 

tidied with Diploidocus and 1643 scaffolds (824,534,974 bp) were retained out of 2,357 424 

(833,952,765 bp; 1,347 core, 296 repeat, 548 quarantine and 166 junk scaffolds). The 

removal of many sequences by Diploidocus, and the less contiguous initial assemblies from 426 

widely-used long-read assemblers Canu and Flye (Table S3), suggest that the NECAT 

assembly contained erroneously joined sequences, and these were corrected by Hi-C. 428 

However, it is also possible that limitations of the Hi-C library  contributed to the high degree 

of fragmentation. The assembly contiguity improved to 1,399 scaffolds and 1,595 contigs 430 

following a further round of long-read polishing (Table S3). Following hybrid polishing with 

Hypo (v0.9), the number of scaffolds remained as 1,399 and the BUSCO score improved 432 
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slightly. Notably, Hypo polishing improved the Merqury QV score from 29.8 to 33.9. A final 

iteration of Diploidocus Tidy removed 72 putative haplotigs and 38 low quality ‘junk’ 434 

scaffolds, keeping 1,084 core and 250 repetitive scaffolds.  

 436 

The conclusion of the assembly workflow produced an 823.3 Mb haploid genome assembly 

(Tspe_v1) on 1,289 scaffolds, with an N50 of 69.0 Mb and L50 of 6 (Table 2). The Hi-C data 438 

facilitated scaffolding into 11 chromosomes (Figure 6), conforming to previous cytological 

studies (Darlington & Wylie, 1956), and the anchored proportion of Tspe_v1 spanned 94.2 % 440 

of the final assembly; the chromosomes were numbered by descending length (Table S8) as 

this is the first instance Telopea chromosomes have been studied in detail. 442 

 

From a core set of 1,614 single-copy orthologues from the Embryophyta lineage, 97.8 % 444 

were complete in the assembly (86.7 % as single-copy, 11.2 % as duplicates), 1.7 % were 

fragmented and only 0.5 % were not found, suggesting that the assembly includes most of 446 

the waratah gene space. Interestingly, BUSCO scores vary by many percentages between 

different BUSCO versions and gene predictors. BUSCO v5.0.0 with MetaEuk as the gene 448 

predictor consistently produced the highest scores (Table S3). BUSCO v3.0.2b with Augustus 

benchmarked the assembly against 1,440 single-copy orthologues only found 91.3 % 450 

complete in the assembly (81.5 % as single-copy, 9.7 % as duplicates), with 2.9 % fragmented 

and 5.8 % missing. BUSCO v5.0.0 with Augustus as the gene predictor reported higher scores 452 

than v3.0.2b but lower than when MetaEuk was used as the gene predictor (Table S3). We 

recovered a maximal non-redundant set of 1,549 complete single copy BUSCOs across the 454 

set of assemblies. BUSCOMP analysis revealed that only one gene out of 1614 was not found 
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by BUSCO v5 MetaEuk in any version of the assembly (Figure 5; Supplementary File – 456 

BUSCOMP full report). The Tspe_v1 assembly completeness is favourable in comparison to 

the Macadamia integrifolia (SCU_Mint_v3) assembly (Nock et al., 2020), which also 458 

combined long-read and Illumina sequences (BUSCO v5 MetaEuk 96.7 % vs 81.9 % complete, 

respectively, in the anchored portion of the assembly). The Merqury QV score of the 460 

assembly was 34.03, indicating a base-level accuracy of >99.99 % (Figure S3). Genome-wide 

heterozygosity was estimated to be 0.756 % (Figure S2b). 462 

 

The Telopea speciosissima genome is approximately 900 Mb 464 

The 1C-value of T. truncata (Tasmanian waratah) has been estimated at 1.16 pg (1.13 Gb) 

using flow cytometry (Jordan et al., 2015). Supernova v2.1.1 predicted a genome size of 953 466 

Mb from the assembly of the 10x linked-reads whilst GenomeScope predicted a smaller 

genome of 794 Mb from the same data (Figure S2b). DepthSizer analysis of the six different 468 

versions of the genome assembly (four raw assemblies, Tspe_v1, and Tspe_v1 

chromosomes) estimated the genome size of T. speciosissima to fall within a range from 850 470 

Mb to 950 Mb (Table S9), and shows good robustness to both assembly version and BUSCO 

dataset used (Figure 7). This falls between the Supernova and GenomeScope estimates. We 472 

report an estimated genome size of approximately 900 Mb, considering the mean of 

estimates of the six adjustment methods using the BUSCO v5 MetaEuk data, based on the 474 

highest quality Tspe_v1 assemblies. 

 476 

The majority of Tspe_v1 is at single-copy (2n) read depth 
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Read depth copy number analysis reveals that the majority of the assembly is at the 478 

expected 2n depth (Figure 8). Single-copy ‘Complete’ BUSCO genes strongly cluster around 

CN = 1, further supporting the robustness of the method underpinning DepthSizer. Notably, 480 

the 180 ‘Duplicated’ BUSCO genes are also predominantly at single-copy depth, with a 

similar copy number distribution to the BUSCOs classified as single-copy and complete. This 482 

indicates that the vast majority are likely to be real duplications found in T. speciosissima, 

with only a few representing potential sequencing errors (Table S10). This was supported by 484 

HAQESAC phylogenetic analysis of all 180 genes (Supplementary File – 

Tspe_v1.buscodup_HAQESAC.zip). Copy number analysis of all 14,882 NCBI annotated genes 486 

shows a similar clustering around a median copy number of 1. However, the mean copy 

number is surprisingly high at 2.36. Further inspection of the data revealed that this is being 488 

driven by a reasonably small number of very high copy number genes, derived from highly 

collapsed repeat regions (Table S11). This is further supported by the elevated mean copy 490 

number for both whole scaffolds and 100 kb windows. This is consistent with the 

identification by Diploidocus of 250 repetitive scaffolds, and a final assembly of approx. 91.5 492 

% of the predicted genome size. Consistent with other Hi-C scaffolded assemblies (e.g. Rhie 

et al., 2021), it is likely that Tspe_v1 still contains some misassemblies that will need to be 494 

corrected with additional curation in future. 

 496 

Repetitive elements and gene prediction 

The Telopea genome is highly repetitive, with repeats accounting for 62.3 % of the total 498 

sequence length and has a similar repeat content to Macadamia, previously reported as 

55.1 % (Nock et al., 2020) and found to be 58.5 % in our analyses (Table S12). Class I 500 
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transposable elements (TEs) or retrotransposons were the most pervasive classified repeat 

class (20.3 % of the genome) and were dominated by long terminal repeat (LTR) 502 

retrotransposons (18.1 %). Class II TEs (DNA transposons) only accounted for 0.03 % of the 

genome. A high percentage of repeats remained unclassified (40.6 %) and the genome will 504 

serve as a resource for future studies into repetitive elements in Telopea and related 

species. 506 

 

Genome annotation predicted 40,126 protein-coding genes and 46,842 mRNAs in the T. 508 

speciosissima assembly, which fits the expectation for plant genomes (Sterck et al., 2007). Of 

these genes, 38,427 appeared in the 11 chromosomes (Table S8). Of 1,440 Embryophyta 510 

orthologous proteins, 94.0 % were complete in the annotation (79.3 % as single-copy, 14.7 % 

as duplicates), 3.4 % were fragmented and 2.6 % were missing. Additionally, 351 rRNA genes 512 

and a set of 728 high-confidence transfer RNAs (tRNAs) were predicted. The NCBI 

Annotation Release 100 had a higher completeness, as expected, than the GeMoMa 514 

annotation; of 1,614 Embryophyta genes, 98.3 % were complete in the annotation (54.2 % as 

single-copy, 44.1 % as duplicated), 1.1 % were fragmented and 0.6 % were missing. When 516 

comparing the assembly completeness with proteome completeness using BUSCO v3.0.2b, 

the proteome completeness at 94.0 % (79.3 % as single-copy and 14.7 % as duplicated) was 518 

unexpectedly higher than the genome completeness at 91.3 % (81.5 % as single-copy and 9.7 

% as duplicated). However, this issue was resolved with a later version of BUSCO (v5.0.0). 520 

The improvements in BUSCO likely meant that genes could be better discerned in the 

genome assembly, where they are more difficult to identify, compared to a proteome. 522 
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An inverse pattern in the incidence of genes and repeats was observed across all 524 

chromosomes, with repeat content generally peaking towards the centre of each 

chromosome (Figure 9), suggesting predominantly metacentric and submetacentric 526 

chromosomes. This pattern may represent enriched repeat content and reduced coding 

content in pericentromeric regions, although further study is required to identify the 528 

centromeres (Jiang et al., 2003; Oliveira & Torres, 2018; Simon et al., 2015). 

 530 

BUSCO completeness statistics must be matched by version and gene predictor 

One surprising observation from our BUSCO analysis was a jump in completeness of over 6 % 532 

when moving from BUSCO v3 Augustus predictions to BUSCO v5 MetaEuk predictions (Figure 

5 and Table S3). This is explained in part by the change to the lineage database used. 534 

However, completeness scores for BUSCO v5 Augustus are only about 3 % higher. This is 

particularly pronounced for the raw assemblies, where Augustus scores can be over 10 % 536 

lower than MetaEuk scores. Great care must be taken in naïve comparison of published 

BUSCO scores, even if using the same version of BUSCO. MetaEuk scores seem to be both 538 

higher and more stable. However, nucleotide sequences for Complete BUSCO genes are 

currently only output from Augustus mode. We have therefore updated BUSCOMP to 540 

extract the missing sequences from MetaEuk runs so that they can be used with 

downstream tools such as BUSCOMP that require these sequences. 542 

 

Orthologous clusters and synteny between Telopea and Macadamia 544 

The five species formed 24,140 clusters: 23,031 orthologous clusters (containing at least 2 

species) and 1,109 single-copy gene clusters. There were 9,463 orthologous families 546 
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common to all of the species. The three members of the order Proteales (T. speciosissima, 

M. integrifolia and N. nucifera) shared 456 families (Figure 10 and Figure S4). Tests for GO 548 

enrichment of 912 waratah-specific clusters identified 12 significant terms (Table S13). The 

most enriched GO terms were DNA recombination (GO:0006310, P = 1.8 x 10-27), 550 

retrotransposon nucleocapsid (GO:0000943, P = 3.5 x 10-12) and DNA integration 

(GO:0015074, P = 4.1 x 10-11). 552 

 

The Macadamia genome (2n = 28) has six more chromosomes than the Telopea genome (2n 554 

= 22), but the two species have similar estimated genome sizes – 896 Mb (Nock et al., 2020) 

compared to 874 Mb. It is thought that the ancestral Proteaceae had a chromosome number 556 

of x = 7 (Carta et al., 2020; L. A. S. Johnson & Briggs, 1963, 1975; Murat et al., 2017), 

although the occurrence of paleo-polyploidy in family has been debated (Stace et al., 1998). 558 

Overall, synteny analyses reveal an abundance of interchromosomal rearrangements 

between the Telopea and Macadamia genomes (Figure 11), reflecting the long time since 560 

their divergence (73-83 Ma; Sauquet et al., 2009). However, a number of regions exhibit 

substantial collinearity, for example, Telopea chromosome 09 and Macadamia chromosome 562 

11 (Figure S5). 

 564 

CYC gene copy number and the genetic control of floral symmetry 

In total, 210 predicted waratah sequences (longest isoform per gene) were identified as 566 

homologous to the 49 Citerne et al. CYC protein sequences. Of these, 198 generated 

multiple sequence alignments and phylogenetic trees. These combined to form a non-568 

redundant dataset of 12,238 proteins. HAQESAC reduced this to a high-quality alignment of 
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46 homologous proteins, including two waratah proteins, TSPEV1G03060 – CYC1 and 570 

TSPEV1G20406 – CYC2. Consistent with previous work (Citerne et al., 2017), these two 

proteins belonged to two distinct clades (Figure 12). While the exact role of the two 572 

paralogues in determining floral symmetry in Proteaceae would require a study of gene 

expression and remains incompletely understood in the species examined so far (Citerne et 574 

al., 2017; Damerval et al., 2019), this is the first study to quantify the total number of 

CYCLOIDEA paralogues in Proteaceae based on a complete genome sequence. Our results 576 

hence lend further support to the pattern of a single gene duplication in the stem lineage of 

Proteaceae that had so far emerged from Sanger and transcriptome sequencing. 578 

 

A molecular resource for biodiversity genomics 580 

The T. speciosissima reference genome will enable genome-scale research into Proteaceae 

evolution, at a wide range of scales. At shallower evolutionary scales, the Telopea genus 582 

contains five species that exhibit genetic variation consistent with a history of divergence 

and introgression, likely driven by climatic change (Rossetto et al., 2011, 2012). Recent 584 

studies highlight the power of genome-scale approaches for inferring demographic change 

and mechanistic forces that have influenced such clades, often making use of heterogenetity 586 

in patterns of variation across whole genomes (Choi et al., 2021; Soltis & Soltis, 2021). We 

expect the waratah genome to similarly facilitate studies that provide new insights about 588 

historical gene flow and selection, in changing environments. 

 590 

CONCLUSIONS 

 592 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.06.02.444084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.444084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

We present a high-quality annotated chromosome-level reference genome of Telopea 

speciosissima assembled from Oxford Nanopore long-reads, 10x Genomics Chromium 594 

linked-reads and Hi-C (823 Mb in length, N50 of 69.9 Mb and BUSCO completeness of 97.8 

%): the first for a waratah, and only the second publicly available Proteaceae reference 596 

genome. We envisage these data will be a platform to underpin evolutionary genomics, gene 

discovery, breeding and the conservation of Proteaceae and the Australian flora. 598 
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Macadamia integrifolia 

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/013/358/625/GCA_013358625.1_SCU_Mint_1402 

v3/ doi.org/10.25918/5e320fd1e5f06 

Arabidopsis thaliana 1404 

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/735/GCF_000001735.4_TAIR10.1/ 

Rosa chinensis 1406 

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/994/745/GCA_002994745.2_RchiOBHm-

V2/ 1408 

Nelumbo nucifera 

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/365/185/GCF_000365185.1_Chinese_Lo1410 

tus_1.1  
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TABLES AND FIGURES 1412 

 
Table 1. Library information of Telopea speciosissima reference genome (Tspe_v1). 1414 

Sequencing 

platform 

Library Median insert 

size (bp) 

Mean read 

length (bp) 

No. of reads Sequence 

bases (Gb) 

Oxford Nanopore 
Technologies† 

Ligation (SQK-LSK109) 

 
 

- 13,449 3,595,148 48.3 

Illumina NovaSeq 

6000 

Paired-end 10x 

Chromium 

336 2 x 150 822,558,750 123.4 

Total gDNA - - - 826,153,898 171.7 

Illumina NextSeq 
500‡ 

Phase Genomics 

Proximo Hi-C (Plant) 

174 2 x 151 165,573,702 25.0 

 

† Two PromethION flow cells and two partial flow cells from a MinION pilot run 1416 
‡ Includes a pilot iSeq run used to QC the library 
  1418 
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Table 2. Genome assembly and annotation statistics for the Telopea speciosissima reference 
genome. 1420 

Statistic Tspe_v1 

Total length (bp) 823,061,212 

No. of scaffolds 1,289 

  N50 (bp)   69,013,595 

  L50   6 

No. of contigs 1,452 

  N50 (bp)   12,206,888 

  L50   21 

N bases 18,174 

GC (%) 40.11 

BUSCO† complete (genome; n = 1,614) 97.8 % (1,579) 

  Single copy (genome)   86.7 % (1,399) 

  Duplicated (genome)   11.2 % (180) 

BUSCO fragmented (genome) 1.7 % (27) 

BUSCO missing (genome) 0.5 % (8) 

Protein-coding genes 40,158 

mRNAs 46,877 

rRNAs 351 

tRNAs 728 

BUSCO† complete (proteome; n = 1,614) 94.4 % (1,524) 

  Single copy (proteome)   82.7 % (1,334) 

  Duplicated (proteome)   11.8 % (190) 

BUSCO fragmented (proteome) 3.2 % (52) 

BUSCO missing (proteome) 2.4  % (38) 
† BUSCO v5 MetaEuk (embryophyta_odb10) 
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 1422 

Figure 1. New South Wales waratah (Telopea speciosissima). Photo taken by SH Chen. 

 1424 

 

Figure 2. Assembly and annotation workflow for the Telopea speciosissima reference 1426 

genome Tspe_v1. Logos reproduced with permission. Waratah photo by SH Chen. 
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 1428 

Figure 5. BUSCOMP summary of BUSCO completeness rating compiled over different stages 

(see Figure 2) of the Telopea speciosissima genome assembly. The final BUSCOMP rating 1430 

uses the best rating per BUSCO gene across any of the assemblies. 
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 1432 

Figure 6. Hi-C contact matrices visualised in Juicebox.js in balanced normalisation mode a) 

before and b) after correction. 1434 

a) b)
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Figure 7. DepthSizer Telopea assembly size prediction using read depth of BUSCO v5 1436 

MetaEuk genes a) sits between estimates from flow cytometry, Supernova and 

GenomeScope at mean of 904 Mb for the v1 final assembly and is b) robust to BUSCO 1438 

versions, with variation across the four adjustment methods. Dotted line represents the final 

assembly size. 1440 
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Figure 8. Genome-wide regional copy number analysis. Copy number (CN) is relative to a 1442 

single diploid (2n) copy in the genome, truncated at CN = 4. Violin plots and means 

generated with ggstatsplot. Each data point represents a different genomic region. BUSCO, 1444 

BUSCO v5 (MetaEuk) single-copy ‘Complete’ genes; Duplicated, BUSCO v5 ‘Duplicated’ 

genes; Regions, NCBI gene annotations; Sequences, assembly scaffolds; Windows, 100 kb 1446 

non-overlapping windows across the genome. 
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 1448 

Figure 9. Features of the 11 chromosomes of the Telopea speciosissima reference genome. 

Concentric tracks from the outside inward represent: chromosomes, gaps (gaps of unknown 1450 

length appear as 100 bp in the assembly), GC content calculated using BEDTools v2.27.1 

(Quinlan & Hall, 2010), gene density and repeat density. The latter three tracks denote 1452 

values in 500 kb sliding windows. Density was defined as the fraction of a genomic window 

that is covered by genomic regions. Plots are white on a solid background coloured by 1454 

chromosome. Visualisation created using the R package circlize v0.4.12 (Gu et al., 2014). 
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 1456 

 

Figure 10. Orthologous gene clusters shared among the three members of the order Proteales – 1458 

Telopea speciosissima, Macadamia integrifolia and Nelumbo nucifera – and the core eudicots – 

Arabidopsis thaliana (Brassicales) and Rosa chinensis (Rosales). 1460 
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Figure 11. Synteny between Telopea speciosissima (2n = 22) and Macadamia integrifolia (2n 1462 

= 28). Coloured squares for each species match painted chromosome regions in the other 

species. More detail of the underlying synteny and rearrangements can be found in Figure 1464 

S5. 
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 1466 
Figure 12. Phylogeny of CYCLOIDEA (CYC) proteins in Proteaceae, obtained from maximum-

likelihood inference with IQ-TREE. Node numbers indicate bootstrap support expressed as 1468 

percentage. Scale bar represents 0.07 nucleotide substitutions per site. Branches terminate 

at circles; dotted extensions are for labelling purporses only. 1470 
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