10

12

14

16

18

20

22

24

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.444084; this version posted November 10, 2021. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Chromosome-level de novo genome assembly of Telopea speciosissima (New

South Wales waratah) using long-reads, linked-reads and Hi-C

Running title: A reference genome for waratah (Proteaceae)

Stephanie H Chen®?, Maurizio Rossetto?3, Marlien van der Merwe?, Patricia Lu-Irving?, Jia-
Yee S Yap?3, Hervé Sauquet*>, Greg Bourke®, Timothy G Amos?, Jason G Bragg®>> , Richard J
Edwards?

1School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052,
Australia

stephanie.h.chen@unsw.edu.au, t.amos@garvan.org.au, richard.edwards@unsw.edu.au

2Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic
Garden Sydney, Mrs Macquaries Rd, Sydney, NSW 2000, Australia

maurizio.rossetto@botanicgardens.nsw.gov.au, marlien.vandermerwe@botanicgardens.nsw.gov.au,

patricia.lu-irving@botanicgardens.nsw.gov.au, samantha.yap@botanicgardens.nsw.gov.au,

jason.bragg@botanicgardens.nsw.gov.au

3Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia 4072,
Australia

“National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd,
Sydney, NSW 2000, Australia

herve.sauguet@botanicgardens.nsw.gov.au

>School of Biological, Earth and Environmental Sciences, UNSW Sydney, High St, Kensington, NSW 2052,
Australia
5Blue Mountains Botanic Garden, Bells Line of Road, Mount Tomah, NSW 2758, Australia

greg.bourke@botanicgardens.nsw.gov.au



https://doi.org/10.1101/2021.06.02.444084
http://creativecommons.org/licenses/by-nc-nd/4.0/

26

28

30

32

34

36

38

40

42

44

46

48

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.444084; this version posted November 10, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Corresponding authors

ORCID iD

SHC 0000-0001-8844-6864
MR 0000-0002-4878-9114
MVDM 0000-0003-1307-5143
PL-1 0000-0003-1116-9402
JSY 0000-0002-9141-6006
HS 0000-0001-8305-3236
TGA 0000-0002-5829-6655
JGB 0000-0002-7621-7295

RJE 0000-0002-3645-5539

ABSTRACT

Telopea speciosissima, the New South Wales waratah, is an Australian endemic woody shrub
in the family Proteaceae. Waratahs have great potential as a model clade to better
understand processes of speciation, introgression and adaptation, and are significant from a
horticultural perspective. Here, we report the first chromosome-level genome for T.
speciosissima. Combining Oxford Nanopore long-reads, 10x Genomics Chromium linked-
reads and Hi-C data, the assembly spans 823 Mb (scaffold N50 of 69.0 Mb) with 97.8 % of
Embryophyta BUSCOs complete. We present a new method in Diploidocus

(https://github.com/slimsuite/diploidocus) for classifying, curating and QC-filtering scaffolds,

which combines read depths, k-mer frequencies and BUSCO predictions. We also present a
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new tool, DepthSizer (https://github.com/slimsuite/depthsizer), for genome size estimation

from the read depth of single copy orthologues and estimate the genome size to be
approximately 900 Mb. The largest 11 scaffolds contained 94.1 % of the assembly,
conforming to the expected number of chromosomes (2n = 22). Genome annotation
predicted 40,158 protein-coding genes, 351 rRNAs and 728 tRNAs. We investigated
CYCLOIDEA (CYC) genes, which have a role in determination of floral symmetry, and confirm
the presence of two copies in the genome. Read depth analysis of 180 ‘Duplicated’ BUSCO
genes suggest almost all are real duplications, increasing confidence in protein family
analysis using annotated protein-coding genes, and highlighting a possible need to revise the
BUSCO set for this lineage. The chromosome-level T. speciosissima reference genome
(Tspe_v1) provides an important new genomic resource of Proteaceae to support the

conservation of flora in Australia and further afield.

Keywords: Telopea, waratah, genome assembly, reference genome, long-read sequencing,

Hi-C

INTRODUCTION

Telopea R.Br. is an eastern Australian genus of five species of large, long-lived shrubs in the
flowering plant family Proteaceae. The New South Wales waratah, Telopea speciosissima
(Sm.) R.Br., is a striking and iconic member of the Australian flora, characterised by large,
terminal inflorescences of red flowers (Figure 1). It has been the state floral emblem of New

South Wales since 1962 and was one of the first Australian plant species collected for
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cultivation in Europe (Nixon, 1987). The species is endemic to the state of New South Wales,
occurring on sandstone ridges in the Sydney region. Previous studies have investigated
variation among Telopea populations by phenetic analysis of morphology (Crisp & Weston,
1993) and evolutionary relationships using cladistics (Weston & Crisp, 1994). Population
structure and patterns of divergence and introgression between T. speciosissima populations
have been characterised using several loci (Rossetto et al., 2011). Further, microsatellite
data and modelling suggest a history of allopatric speciation followed by secondary contact
and hybridization among Telopea species (Rossetto et al., 2012). These studies point to the
great potential of Telopea as a model clade for understanding processes of divergence,
environmental adaptation and speciation. Our understanding of these processes can be
greatly enhanced by a genome-wide perspective, enabled by a reference genome (Ellegren
et al., 2012; Hoban et al., 2016; Lewin et al., 2018; Radwan & Babik, 2012; Seehausen et al.,

2014).

Genome sequencing efforts have traditionally focused on model species, crops and their
wild relatives, resulting in a highly uneven species distribution of reference genomes across
the plant tree of life (Royal Botanic Gardens, Kew, 2017). Despite Proteaceae occurring
across several continents and encompassing 81 genera and ca. 1700 species (Mast et al.,
2008; Weston, 2006), the only publicly available reference genome in the family is a widely-
grown cultivar of the most economically important crop in the family, Macadamia
integrifolia (macadamia nut) HAES 74 (Nock et al., 2016, 2020). Waratahs are significant to
the horticultural and cut flower industries, with blooms cultivated for the domestic and

international markets (Offord et al., 1987; Worrall & Gollnow, 2013). A reference genome
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will accelerate efforts in breeding for traits such as resistance to pests and diseases (e.g.
96  Phytophthora and Cylindrocapon destructans infection; Summerell, 1997; Summerell et al.,
1990) as well as desirable floral characteristics (Offord, 2003, 2006).
98
Technological advances in sequencing and decreasing costs will facilitate the generation of
100  more flowering plant reference genomes, including within the Proteaceae family, and
advance research into links between the evolution of genomes and traits that exhibit
102  exceptional diversity, such as floral morphology (Soltis & Soltis, 2014; Zheng et al., 2021).
CYCLOIDEA (CYC) genes belong to the TPC transcription factor gene family, and are known to
104  have an essential role in determining floral symmetry and inflorescence architecture in many
angiosperm lineages (Busch & Zachgo, 2009; Fambrini & Pugliesi, 2017; Horn et al., 2015;
106  Luo et al., 1996); studies have characterised recurrent duplications of members of the CYC2
clade, especially in eudicots (Howarth & Donoghue, 2006), including Fabales (Citerne et al.,
108 2003; Feng et al., 2006), Asterales (Chapman et al., 2008), and Lamiales (Yang et al., 2015;
Zhong & Kellogg, 2015). In Proteaceae, a single duplication of CYC-like genes occurred prior
110 to diversification and two genes, ProtCYC1 and ProtCYC2, have been characterised (Citerne
et al., 2017). In particular, Grevillea juniperina has been studied in detail (Damerval et al.,
112  2019) and the existence of both ProtCYC1 and ProtCYC2 in Telopea mongaensis has been
supported by phylogenetic analysis (Citerne et al., 2017). However, CYC copy number has

114  not been established in T. speciosissima.

116  Here, we provide a high quality chromosome-level de novo assembly of the Telopea

speciosissima genome, using Oxford Nanopore long-reads, 10x Genomics Chromium linked-
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118 reads and Hi-C proximity ligation scaffolding, which will serve as an important platform for
evolutionary genomics and the conservation of the Australian flora. We present an analysis

120 of CYC genes in the genome to contribute to the understanding of floral evolution in the
Proteaceae family.

122

MATERIALS AND METHODS

124
Sampling and DNA extraction

126  Young leaves (approx. 8 g) were sampled from the reference genome individual (NCBI
BioSample SAMN18238110) where it grows naturally along the Tomah Spur Fire Trail (-

128 33.53°S, 150.42° E) on land belonging to the Blue Mountains Botanic Garden, Mount Tomah
in New South Wales, Australia. Leaves were immediately frozen in liquid nitrogen and stored

130 at-80° C prior to extraction.

132  High-molecular-weight (HMW) genomic DNA (gDNA) was obtained using a sorbitol pre-wash
step prior to a CTAB extraction adapted from Inglis et al. (2018). The gDNA was then purified

134  with AMPure XP beads (Beckman Coulter, Brea, CA, USA) using a protocol based on
Schalamun et al. (2019) — details available on protocols.io (Lu-Irving & Rutherford, 2021).

136  The quality of the DNA was assessed using Qubit, NanoDrop and TapeStation 2200 System
(Agilent, Santa Clara, CA, USA).

138

ONT PromethION sequencing


https://doi.org/10.1101/2021.06.02.444084
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.444084; this version posted November 10, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

140 We performed an in-house sequencing test on the MinlON (MinlON, RRID:SCR 017985)

using a FLO-MINSP6 (R9.4.1) flow cell with a library prepared with the ligation kit (SQK-

142  LSK109). The remaining purified genomic DNA was sent to the Australian Genome Research
Facility (AGRF) where size selection was performed to remove small DNA fragments using

144  the BluePippin High Pass Plus Cassette on the BluePippin (Sage Science, Beverly, MA, USA).
Briefly, 10 ug of DNA was split into 4 aliquots (2.5 pg) and diluted to 60 uL in TE buffer. Then,

146 20 ul of RT equilibrated loading buffer was added to each aliquot and mixed by pipetting.
Samples were loaded on the cassette by removing 80 uL of buffer from each well and adding

148 80 plL of sample or external marker. The cassette was run with the 15 kb High Pass Plus
Marker U1 cassette definition. Size selected fractions (approximately 80 plL) were collected

150 from the elution module following a 30 min electrophoresis run. The library was prepared
with the ligation sequencing kit (SQK-LSK109). The sequencing was performed using

152  MinKNOW v.19.12.2 (MinION) and v12.12.8 (PromethlON) and MinKNOW Core v3.6.7 (in-
house test), v3.6.8 (AGRF MinlON) and v3.6.7 (AGRF PromethlON). A pilot run was first

154  performed on the MinlON using the FLO-MIN106 (R9.4.1) flow cell followed by two FLO-

PRO002 flow cells (R9.4) on the PromethlON (PromethION, RRID:SCR 017987)

156
Basecalling was performed after sequencing with GPU-enabled Guppy v3.4.4 using the high-
158  accuracy flip-flop models, resulting in 54x coverage. The output from all ONT basecalling was

pooled for adapter removal using Porechop (Porechop, RRID:SCR 016967) v.0.2.4 (Wick et

160 al., 2017) and quality filtering (removal of reads less than 500 bp in length and Q lower than

7) with NanoFilt (NanoFilt, RRID:SCR 016966) v2.6.0 (De Coster et al., 2018) followed by

162  assessment using FastQC (FastQC, RRID:SCR 014583) v0.11.8 (Andrews, 2010).



https://doi.org/10.1101/2021.06.02.444084
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.444084; this version posted November 10, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

164  10x Genomics Chromium sequencing
High-molecular-weight gDNA was sent to AGRF for 10x Genomics Chromium sequencing.
166  Size selection was performed to remove DNA fragments <40 kb using the BluePippin 0.75 %
Agarose Gel Cassette, Dye Free on the BluePippin (Sage Science, Beverly, MA, USA). Briefly, 5
168  ug of DNA was diluted to 30 plL in TE buffer and 10 plL of RT equilibrated loading buffer was
added to each aliqguot and mixed by pipetting. Samples were loaded on the cassette by
170  removing 40 pL of buffer from each well and adding 40 uL of sample or external marker. The
cassette was run with the 0.75 % DF Marker U1 high-pass 30-40 kb v3 cassette definition.
172  Size selected fractions (approximately 40 uL) were collected following the 30 min
electrophoresis run. The library was prepared using the Chromium Genome Library Kit & Gel
174  Bead Kit and sequenced (2 x 150 bp paired-end) on the NovaSeq 6000 (lllumina NovaSeq

6000 Sequencing System, RRID:SCR 016387) with NovaSeq 6000 SP Reagent Kit (300 cycles)

176  and NovaSeq XP 2-Lane Kit for individual lane loading.

178  Hi-C sequencing
Hi-C library preparation and sequencing was conducted at the Ramaciotti Centre for

180 Genomics at the University of New South Wales (UNSW Sydney) using the Phase Genomics
Plant kit v3.0. The library was assessed using Qubit and the Agilent 2200 TapeStation system

182  (Agilent Technologies, Mulgrave, VIC, Australia). A pilot run on an Illlumina iSeq 100 with 2 x
150 bp paired end sequencing run was performed for QC using hic_gc v1.0 (Phase Genomics,

184  2019) with i1 300 cycle chemistry. This was followed by sequencing on the Illumina NextSeq
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500 (Illumina NextSeq 500, RRID:SCR _014983) with 2 x 150 bp paired-end high output run

186 and NextSeq High Output 300 cycle kit v2.5 chemistry.

188 Genome assembly and validation
Our assembly workflow consisted of assembling a draft long-read assembly, hybrid polishing
190 of the assembly with long- and short-reads, and scaffolding the assembly into chromosomes
using Hi-C data (Figure 2). Computational steps were carried out on the UNSW Sydney

192  cluster Katana.

194  The first stage of our assembly approach involved comparing three long-read assemblers

using the ONT data as input: NECAT v0.01 (Chen et al., 2021), Flye (Flye, RRID:SCR_017016)

196 v2.6 (Kolmogorov et al., 2019) and Canu (Canu, RRID:SCR 015880) v1.9 (Koren et al., 2017).

The genome size parameter used for the assemblers was 1,134 Mb, as previously reported
198 for Telopea truncata (Jordan et al., 2015). We later refined genome size estimates for T.
speciosissima (see ‘DepthSizer: genome size estimation using single-copy orthologue
200 sequencing depths’ section below). We chose the draft long-read assembly for use in
downstream assembly steps based on contiguity (N50), BUSCO completeness and assembly
202  size in relation to the DepthSizer estimated genome size. As a comparison to the long-read
assemblies, the 10x data were assembled with Supernova (Supernova assembler,

204  RRID:SCR 016756) v2.1.1 (Weisenfeld et al., 2017) with 332 Mb reads subsampled by

Supernova (54x raw coverage, as recommended by Supernova documentation) as input. We

206  generated pseudohaploid output (pseudohap2 output ‘1’).
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208 Assembly completeness and accuracy

Completeness was initially evaluated by BUSCO (BUSCO, RRID:SCR 015008) v3.0.2b (Simao

210 etal., 2015), implementing BLAST+ v2.2.31, Hmmer v3.2.1 and EMBOSS v6.6.0 with the
embryophyta_odb9 dataset (n = 1,440). To investigate the robustness of BUSCO

212  completeness statistics, assemblies were also evaluated with BUSCO v5.0.0 (Manni et al.,
2021), implementing BLAST+ v2.11.0 (Altschul et al., 1990), SEPP v4.3.10 (Mirarab et al.,

214  2011) and Hmmer (Hmmer, RRID:SCR _005305) v3.3 (Eddy, 2011), against the

embryophyta_odb10 dataset (n = 1,614). BUSCO results were calculated with both Augustus

216  (Augustus, RRID:SCR 008417) v3.3.2 (Stanke & Morgenstern, 2005) and MetaEuk

v732bcc4b91a08e69950ce0e25976f47¢3bb6b89d (Levy Karin et al., 2020) as the gene

218  predictor.

220  BUSCO results were collated using BUSCOMP (BUSCO Compilation and Comparison Tool;

RRID:SCR 021233) v0.11.0 (Stuart et al., 2021) to better evaluate the gains and losses in

222  completeness between different assembly stages, and compare different BUSCO versions.
Assembly quality (QV) was also estimated using k-mer analysis of trimmed and filtered 10x

224  linked-read data by Merqury v1.0 with k = 20 (Rhie et al., 2020). First, 30 bp from the 5’ end
of read 1 and 10 bp from the 5’ end of read 2 were trimmed using BBmap (BBmap,

226  RRID:SCR 016965) v38.51 (Bushnell, 2014). In addition, reads were trimmed to Q20, then

those shorter than 100 bp were discarded.
228

Genome size estimation and ploidy

10
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230 Telopea speciosissima has been reported as a diploid (2n = 22) (Darlington & Wylie, 1956;
Ramsay, 1963). We confirmed the individual’s diploid status using Smudgeplot v0.2.1

232  (Ranallo-Benavidez et al., 2019). The 1C-value of T. truncata (Tasmanian waratah) has been
estimated at 1.16 pg (1.13 Gb) using flow cytometry (Jordan et al., 2015). We used the 10x

234  data to estimate the genome size using Supernova v2.1.1 and GenomeScope

(GenomeScope, RRID:SCR _017014) v1.0 (Vurture et al., 2017).

236
We sought to refine the genome size estimate of T. speciosissima using the ONT data and
238  draft genome assemblies, implementing a new tool, DepthSizer

(https://github.com/slimsuite/depthsizer, RRID:SCR 021232, Box 1). ONT reads were

240  mapped onto each draft genome using Minimap2 (Minimap2, RRID:SCR _018550) v2.17 (Li,

2018) (--secondary=no -ax map-ont). The single-copy read depth for each assembly was then
242  calculated as the modal read depth across single copy complete BUSCO genes, which should
be reasonably robust to poor-quality and/or repeat regions within these genes (Edwards et

244 al., 2021).

246  DepthSizer benchmarking
DepthSizer was benchmarking using five PacBio reference genomes, plus the high-quality

248 genome assembly and PacBio long reads for the German Shepherd Dog (Field et al., 2020;
Table S1). Accuracy was calculated as the estimated genome size, divided by the

250 documented genome size. Additional benchmarking of the robustness of DepthSizer
predictions was performed using ONT and PacBio sequence data for three high-quality dog

252  genomes: Basenji (Edwards et al., 2021), Dingo (Yadav et al., 2020), and German Shepherd

11
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Dog (Field et al., 2020). Raw reads from each technology were analysed independently using
254  both the breed-specific reference genome, and the CanFam 3.1 dog reference
(GCA_000002285.2; Lindblad-Toh et al., 2005). For all benchmarking, reads were mapped

256  with Minimap2 (Minimap2, RRID:SCR _018550) v2.17 (Li, 2018). Summary violin plots were

generated with ggstatsplot (Patil, 2021) in R.

258

Box 1. DepthSizer: genome size estimation using single-copy orthologue sequencing
depths

GitHub: https://github.com/slimsuite/depthsizer

Genome size prediction is a fundamental task in genome assembly. DepthSizer is a tool for

estimating genome size using single-copy long-read sequencing depth profiles.

By definition, sequencing depth (X) is the volume of sequencing divided by the genome size.
Given a known volume of sequencing, it is therefore possible to estimate the genome size by
estimating the achieved sequencing depth. DepthSizer works on the principle that the modal
read depth across single copy BUSCO genes provides a good estimate of the true depth of
coverage. This assumes that genuine single copy depth regions will tend towards the same,
true, single copy read depth. In contrast, assembly errors or collapsed repeats within those
genes, or incorrectly-assigned single copy genes, will give inconsistent read depth deviations
from the true single copy depth. The exception is regions of the genome only found on one

haplotig — half-depth alternative haplotypes for regions also found in the main assembly —

12
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such as heterogametic sex chromosomes (Edwards et al., 2021), but these are unlikely to
outnumber genes present in single copy on both homologous chromosomes. As a
consequence, the dominant (i.e. modal) depth across these regions should represent single
copy (2n) sequencing depth. First, the distribution of read depth for all single copy genes is

generated using Samtools (Samtools, RRID:SCR_002105) v0.11 (Li et al., 2009) mpileup, and

the modal peak calculated using a smoothed ‘density’ function of R (R Project for Statistical

Computing, RRID:SCR 001905) v3.5.3 (R Core Team, 2019) to allow non-integer estimation

(see DepthSizer documentation for details). Genome size, G, was then estimated from the
modal peak single-copy depth, Xs., and the total volume of sequencing data, T, using the

formula: G =T/ Xsc.

DepthSizer has six different genome size adjustment modes that modify T using different
core assumptions (see documentation for details):
e None: no adjustment. Assumes zero contamination and perfect read mapping.
¢ IndelRatio: adjusts total sequencing volume for mismatch between read data being
mapped and assembly coverage. Assumes no contamination in raw reads.
o CovBases: sets T as the total number of sequencing read bases covering the
assembly. (Assembly Length x Mean depth)
e MapBases: sets T as the total number bases from sequencing reads mapped on to
the genome. Assumes perfect mapping and all unmapped reads are contamination.
¢ MapAdjust: adjusts total sequencing volume by the ratio of mapped reads to mapped
bases to account for depth losses during mapping. Assumes no contamination in raw

reads.

13
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¢ MapRatio: adjusts the MapBases by the IndelRatio sequencing:mapping bias.

It is expected that the true genome size should fall between IndelRatio (upper)

and MapRatio (lower). CovBases should provide an absolute lower bound for genome size. If
there is a very large difference between CovBases and MapBases, this could indicate a
problem with the reads and/or assembly (e.g. some kind of incompatibility) and will result in
a very inaccurate MapAdjust. If there is a very big difference between MapBases and None,
this could indicate a very incomplete assembly, or a lot of contamination. In these cases, it is

advisable to establish which before deciding which prediction size to use.

Benchmarking on PacBio data from six model organisms demonstrates robust genome size
estimates, with a tendency to slightly overestimate genome size as expected (Figure 3, Table
S1 and Table S2). Additional benchmarking on three high-quality canid genomes further
revealed robustness to both assembly used (breed-specific genome versus CanFam v3.1) and
sequencing technology (PacBio vs ONT), although PacBio data appears to over-estimate

genome size more than ONT data (Figure S1).
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Minimap2 read mapping and Mpileup depth calculations with a) accuracy for each species
and b) estimated genome size vs published genome size.
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260  Assembly tidying and contamination screening
The draft genome was screened and filtered to remove contamination, low-quality contigs
262  and putative haplotigs, using more rigorous refinement of the approach taken for the
Canfam_GSD (German Shepherd) and CanFam_Bas (Basenji) dog reference genomes
264  (Edwards et al., 2021; Field et al., 2020), implemented in Diploidocus v0.9.6

(https://github.com/slimsuite/diploidocus, RRID:SCR 021231, Box 2).

266
BUSCO Complete genes were used to estimate a single-copy read depth of 54X. This was
268  used to set low-, mid- and high-depth thresholds for Purge Haplotigs (Purge_haplotigs,

RRID:SCR 017616) v20190612 (Roach et al., 2018) (implementing Perl v5.28.0, BEDTools

270 (BEDTools, RRID:SCR 006646) v2.27.1 (Quinlan & Hall, 2010), R v3.5.3 (R Core Team, 2019),

and SAMTools v1.9 (Li et al., 2009) of 13X, 40X and 108X. For the draft genome, convergence
272  was reached after three cycles with 148 core sequences and 62 repeat sequences retained
(see Table S6 for summary of cycles and Table S7 for full output).

274

Box 2. Automated genome assembly tidying with Diploidocus

GitHub: https://github.com/slimsuite/diploidocus

Diploidocus is a tool that assists with tidying and curating genome assemblies. The tool
combines read depth, KAT k-mer frequencies, Purge Haplotigs depth bins, Purge Haplotigs

best sequence hits, BUSCO gene predictions, telomere prediction and vector contamination

16
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into a single seven-part (PURITY|DEPTH|HOM|TOP | MEDK|BUSCO+EXTRA) classification
(Table S4). Diploidocus then performs a hierarchical rating of scaffolds, based on their
classifications and compiled data (Table S5 and Figure 4). Based on these ratings, sequences

are divided into sets:

1. Core. Predominantly diploid scaffolds and unique haploid scaffolds with insufficient
evidence for removal.

2. Repeats. Unigue haploid scaffolds with insufficient evidence for removal but
dominated by repetitive sequences. High coverage scaffolds representing putative
collapsed repeats.

3. Quarantine. Messy repetitive sequences and strong candidates for alternative
haplotigs.

4. Junk. Low coverage, short and/or high-contaminated sequences.

If any sequences are marked as ‘Quarantine’ or ‘Junk’, sequences in the ‘Core’ and ‘Repeat’

sets are retained and used as input for another round of classification and filtering.

First, the assembly is screened against the NCBI UniVec database

(ftp://ftp.ncbi.nlm.nih.gov/pub/UniVec/, downloaded 05/08/2019) to identify and remove

contaminants. Hits are first scored using rules derived from NCBI Vecscreen

(https://www.ncbi.nlm.nih.gov/tools/vecscreen/) and regions marked as ‘Terminal’ (within

25 bp of a sequence end), ‘Proximal’ (within 25 bases of another match) or ‘Internal’ (>25 bp

from sequence end or vecsreen match). Then, any segment of fewer than 50 bases between
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two vector matches or between a match and a sequence end are marked as ‘Suspect’. In our
experience, default Vecscreen parameters appear prone to excessive false positives in large
genomes (data not shown), and so Diploidocus features two additional contaminant
identification filters. First, the ‘Expected False Discovery Rate’ (eFDR) is calculated for each
contaminant sequence. This is simply the BLAST+ Expect value for that hit, divided by the
total number of hits at that Expect value threshold. Any hits with an eFDR value exceeding
the default threshold of 1.0 were filtered from the vecscreen results. Short matches in long-
read assemblies are unlikely to be real contamination and a second filter was applied,
restricting contaminant screening to a minimum hit length of 50 bp. Finally, the percentage
coverage per scaffold is calculated from the filtered hits. This is performed first for each
contaminant individually, before being collapsed into total non-redundant contamination
coverage per query. Diploidocus then removes any scaffolds with at least 50 %
contamination, trims off any vector hits within 1 kb of the scaffold end, and masks any
remaining vector contamination of at least 900 bp. This masking replaces every other base
with an N to avoid an assembly gap being inserted: masked regions should be manually
fragmented if required. Diploidocus can also report the number of mapped long reads that

completely span regions flagged as contamination.

After contamination screening, a sorted BAM file of ONT reads mapped to the filtered
assembly is generated using Minimap2 v2.17 (-ax map-ont --secondary = no) (Li, 2018).
Purge Haplotigs coverage bins were adjusted to incorporate zero-coverage bases, excluding

assembly gaps (defined as 10+ Ns). Counts of Complete, Duplicate and Fragmented BUSCO

18


https://doi.org/10.1101/2021.06.02.444084
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.444084; this version posted November 10, 2021. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

genes were also generated for each sequence. General read depth statistics for each

sequence were calculated with BBMap v38.51 pileup.sh (Bushnell, 2014). The sect function

of KAT (KAT, RRID:SCR 016741) v2.4.2 (Mapleson et al., 2017) was used to calculate k-mer

frequencies for the 10x linked reads (first 16 bp trimmed from read 1), and the assembly

itself. Telomeres were predicted using a method adapted from

https://github.com/JanaSperschneider/FindTelomeres, searching each sequence for 5’

occurrences of a forward telomere regular expression sequence, C{2,4}T{1,2}A{1,3}, and 3'

occurrences of a reverse regular expression, T{1,3}A{1,2}G{2,4}. Telomeres were marked if at

least 50 % of the terminal 50 bp matches the appropriate sequence.
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indicate any class value is accepted. Phases are executed in order. Consequently, rules for

later phases appear less restrictive than the full set of criteria required to receive that rating.

276  Assembly polishing and gap-filling

The assembly was first long-read polished with Racon (Racon, RRID:SCR _017642) v1.4.5

278  (Vaser et al., 2017) using the parameters -m 8 -x -6 -g -8 -w 500 and medaka v1.0.2 (Oxford
Nanopore Technologies Ltd., 2018) using the r941_prom_high_g303 model. Then, the 10x

280 reads were incorporated by short-read polishing using Pilon (Pilon, RRID:SCR 014731) v1.23

(Walker et al., 2014) with reads mapped using Minimap2 v2.12 (Li, 2018) and correcting for
282  indels only; we found correcting for indels only resulted in a higher BUSCO score than
correcting for indels and SNPs following the steps described in this section. We scaffolded
284  using SSPACE-LongRead v1.1 (Boetzer & Pirovano, 2014) with -k 1 followed by gap-filling
using gapFinisher v20190917 (Kammonen et al., 2019) with default parameters. After
286  another round of long-read polishing with Racon v1.4.5 (Vaser et al., 2017) and medaka
v1.0.2 (Oxford Nanopore Technologies Ltd., 2018), we moved forward with a second round

288  of tidying in Diploidocus v0.9.6 (default mode).

290  Hi-C scaffolding
Hi-C data were aligned to the draft genome assembly using the Juicer (Juicer,

292  RRID:SCR _017226) pipeline v1.6 (Durand et al., 2016) then scaffolds were ordered and

orientated using the 3D de novo assembly pipeline (3D de novo assembly, RRID:SCR 017227)

294  v180922 (Dudchenko et al., 2017). The contact map was visualised using Juicebox Assembly

Tools v1.11.08 and errors over 3 review rounds were corrected manually to resolve 11
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296 chromosomes (Dudchenko et al., 2018). The resulting assembly was tidied again using
Diploidocus v0.10.6 (default mode).

298
Final polishing and assembly clean-up

300 A further round of long-read polishing with Racon v1.4.5 (Vaser et al., 2017) and medaka
v1.0.2 (Oxford Nanopore Technologies Ltd., 2018) was performed as described above. We

302 then short-read polished using Pilon v1.23 (Walker et al., 2014). Two Pilon strategies were
applied: (1) indel-only correction; (2) indel and SNP correction. We retained the indel and

304  SNP corrected assembly as it resulted in a marginally higher BUSCO score compared to indel
only correction (1311 vs 1310 complete BUSCOs); there was no change to contig nor scaffold

306 numbers. A final hybrid polish was performed using Hypo v1.0.3 (Kundu et al., 2019). The
assembly was concluded with a final tidy with Diploidocus v0.14.1 (default mode). All gaps in

308 the assembly were then standardised to 100 bp.

310 Genome-wide heterozygosity was estimated using trimmed 10x reads with GenomeScope
(Vurture et al., 2017) from the k-mer 20 histogram computed using Jellyfish (Jellyfish,

312  RRID:SCR 005491) v2.2.10 (Marcais & Kingsford, 2011).

314 Genome annotation
The genome was annotated using the homology-based gene prediction program GeMoMa

316 (GeMoMa, RRID:SCR 017646) v1.7.1 (Keilwagen et al., 2019) with four reference genomes

downloaded from NCBI: Macadamia integrifolia (SCU_Mint_v3, GCA_013358625.1),

318 Nelumbo nucifera (Chinese Lotus 1.1, GCA_000365185.2), Arabidopsis thaliana (TAIR10.1,
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GCA_000001735.2) and Rosa chinensis (RchiOBHmM-V2, GCA_002994745.2). The annotation
320 files for M. integrifolia were downloaded from the Southern Cross University data repository

(doi.org/10.25918/5e320fd1e5f06). Macadamia (Nock et al., 2020) and Nelumbo (Ming et

322  al., 2013) genomes were chosen as they are related to Telopea i.e. in the order Proteales.
The other two high-quality genomes represented the core eudicots and included the model

324  flowering plant Arabidopsis (Lamesch et al., 2012) and Rosa (Hibrand Saint-Oyant et al.,
2018) where the publication focused on genetic regulators of ornamental traits which is of

326 interest for Telopea. Annotation completeness was assessed using BUSCO v3.0.2b and v5.0.0
in proteome mode.

328

Ribosomal RNA (rRNA) genes were predicted with Barrnap (Barrnap, RRID:SCR_015995) v0.9

330 (Seemann, 2018) and transfer RNAs (tRNAs) were predicted with tRNAscan-SE (tRNAscan-SE,

RRID:SCR 010835) v2.05 (Lowe & Chan, 2016), implementing Infernal (Infernal,

332  RRID:SCR 011809) v1.1.2 (Nawrocki & Eddy, 2013). A set of 2,419 tRNAs was initially

predicted and filtered to 760 using the recommended protocol for eukaryotes. Then, 22
334  tRNAs with mismatched isotype and 10 with unexpected anticodon were removed to form
the high-confidence set.
336
The genome has also been annotated by the NCBI Eukaryotic Genome Annotation Pipeline

338 using RNAseq data from other Proteaceae (RefSeq accession GCF_018873765.1).

340 Genome-wide copy number analysis
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Estimated single-copy (2n) sequencing depth was calculated for different regions of the
342  genome using the same smoothed density profile as employed by DepthSizer (Box 1) and
comparing this to the BUSCO-derived single-copy (2n) sequencing depth of DepthSizer. This
344  analysis was performed on: (1) BUSCO v5 (MetaEuk) single-copy ‘Complete’ genes; (2)
BUSCO v5 ‘Duplicated’ genes; (3) All NCBI gene annotations; (4) Each final assembly scaffold;
346  (5) 100 kb non-overlapping windows across the genome. For convenience, this method has

been made available as DepthKopy (https://github.com/slimsuite/depthkopy).

348
Repeat annotation
350 Following the approach from the Macadamia integrifolia genome paper (Nock et al., 2020),
we identified and quantified repeats in the Telopea genome as well as the other four species
352  used in the GeMoMa annotation for comparison. A custom repeat library was generated

with RepeatModeler (RepeatModeler, RRID:SCR 015027) v2.0.1 (-engine ncbi) and the

354 genome was masked with RepeatMasker (RepeatMasker, RRID:SCR 012954) v4.1.0 (Tarailo-

Graovac & Chen, 2009), both with default parameters. The annotation table was generated

356  using the buildSummary.pl RepeatMasker script.

358 Orthologous clusters and synteny analyses
Synteny between the Telopea (Tspe_v1) and Macadamia (SCU_Mint_v3) genomes was

360 explored with satsuma2 version untagged-2c08e401140c1ed03e0f with parameters -1 3000 -
do_refine 1 -min_matches 40 -cutoff 2 -min_seed_length 48 and visualised with the

362 ChromosomePaint function (Grabherr et al., 2010) and MizBee v1.0 (Meyer et al., 2009). The

protein sequences of Tspe_v1 and the four species used in the GeMoMa annotation were
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364  clustered into orthologous groups and tests for gene ontology (GO) enrichment were
conducted for waratah-specific clusters using OrthoVenn2 (Xu et al., 2019). Intersection of

366 clusters was visualised using the R package UpSetR (Conway et al., 2017).

368 CYCLOIDEA transcription factor gene family analysis
Complete and partial protein sequences for CYCLOIDEA transcription factors were

370 downloaded from NCBI using identifiers listed in Table S3 of Citerne et al., 2017. GABLAM
v2.30.5 (Davey et al., 2006) was used to identify all homologous proteins (BLAST+ v2.11.0,

372  blastp e-value <le-4) in the waratah GeMoMa annotation, which was annotated with
protein descriptions from closest Swissprot hits using SAAGA v0.7.6 (Stuart et al., 2021).

374  Each Telopea speciosissima homologue was then used as query sequence for HAQESAC
v1.14.0 (Edwards et al., 2007) to generate a high-quality multiple sequence alignment and

376 inferred phlyogenetic tree of close homologues (limited to a maximum of 100 closest hits). A
search database was constructed from all angiosperm proteins in Uniprot (taxid 3398), the

378 three reference proteomes used for GeMoMa annotation (Macadamia integrifolia, Nelumbo
nucifera and Rosa chinensis), and all angiosperm reference proteomes from Quest For

380 Orthologues (March 2021 release; (Forslund et al., 2018). To this were added the original
CYC sequences and full GeMoMa annotation of T. speciosissima. BLAST+ searches and

382 HAQESAC runs were controlled by MultiHAQ v1.5.0 (Jones et al., 2011). To generate a
comprehensive but non-redundant tree of CYC genes, all homologues meeting initial

384  HAQESAC screening criteria (min 40 % global identity and 60 % global coverage to query, <50
% gaps relative to nearest homologue) were combined into a single non-redundant dataset

386  of CYCLOIDEA homologues and their homologues. A candidate Telopea CYCLOIDEA-like 1

24


https://doi.org/10.1101/2021.06.02.444084
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.444084; this version posted November 10, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

gene (TSPEV1G03060) was identified based on SAAGA annotation and HAQESAC
388 homologues. This was used as a query for a second, manually curated HAQESAC run against
the full non-redundant protein dataset, screening out any proteins with an unknown species
390 designation (including sequence assigned the 9MAGSP species code). Multiple sequence

alignments were performed with Clustal Omega (Clustal Omega, RRID:SCR 001591) v1.2.4

392  (Sievers et al.,, 2011). The final tree was generated with IQ-TREE (IQ-TREE, RRID:SCR 017254)

v2.0.4 (Nguyen et al., 2015) with 1,000 bootstraps.

394

RESULTS AND DISCUSSION

396
High-quality chromosome-level Tspe_v1 reference genome

398 The ONT, 10x and Hi-C sequencing yielded a total of 48.3, 123.4 and 25.0 Gb of sequence,
respectively (Table 1). At the initial long-read assembly stage, NECAT resulted in the most

400 contiguous assembly, at 365 contigs and the highest BUSCO completeness at 81.2 %. This
was followed by Flye at 2,484 contigs and 81.0 % complete, then Canu at 3,983 contigs at

402  78.4 % complete. The BUSCO completeness of the 10x pseudohaploid assembly was higher
than each of the long-read assemblies at 91.8 %. However, the 10x assembly had much

404  lower contiguity at 43,951 contigs, as expected (Table S3). Whilst Supernova had a higher
BUSCO completeness (91.9 % versus 81.2 %), NECAT was orders of magnitude better in

406  terms of contiguity (10.7 Mb N50 on 365 contigs vs 874 kb N50 on 27,610 scaffolds).
Furthermore, BUSCOMP analysis revealed that the NECAT assembly contained more

408 complete BUSCO genes when base accuracy is not considered (Figure 5; Supplementary Files

— BUSCOMP full report). Guided by these metrics, NECAT was selected as the core assembly
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410 for additional processing. We confirmed the individual’s diploid status with Smudgeplot
(Figure S2a).

412
Rounds of polishing and tidying improved the contiguity and quality of the genome as the

414  genome progressed through the assembly workflow (Table S3). The first round of polishing
markedly improved the BUSCO score — long-read polishing increased complete BUSCOs from

416 1,532 (v0.2) to 1,590 (v0.3) and short-read polishing further increased this to 1,602 (v0.4).
The assembly was scaffolded by SSPACE-LongRead from 209 contigs into 138 scaffolds,

418 however, no gaps were filled by gapFinisher. After further long-read polishing, a run of
Diploidocus (v0.7) retained 128 scaffolds out of 138, which consisted of 87 core, 41 repeat,

420 10 quarantine and 0 junk scaffolds. Following incorporation of Hi-C data, the assembly was
in 2,357 scaffolds, and the N50 increased substantially from 16.5 Mb to 68.9 Mb.

422  Surprisingly, the contig number increased considerably from 148 to 3,537, suggesting that
the Hi-C data and NECAT assembly were frequently in conflict. The resulting assembly was

424  tidied with Diploidocus and 1643 scaffolds (824,534,974 bp) were retained out of 2,357
(833,952,765 bp; 1,347 core, 296 repeat, 548 quarantine and 166 junk scaffolds). The

426  removal of many sequences by Diploidocus, and the less contiguous initial assemblies from
widely-used long-read assemblers Canu and Flye (Table S3), suggest that the NECAT

428  assembly contained erroneously joined sequences, and these were corrected by Hi-C.
However, it is also possible that limitations of the Hi-C library contributed to the high degree

430 of fragmentation. The assembly contiguity improved to 1,399 scaffolds and 1,595 contigs
following a further round of long-read polishing (Table S3). Following hybrid polishing with

432  Hypo (v0.9), the number of scaffolds remained as 1,399 and the BUSCO score improved

26


https://doi.org/10.1101/2021.06.02.444084
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.444084; this version posted November 10, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

slightly. Notably, Hypo polishing improved the Merqury QV score from 29.8 to 33.9. A final
434  iteration of Diploidocus Tidy removed 72 putative haplotigs and 38 low quality ‘junk’
scaffolds, keeping 1,084 core and 250 repetitive scaffolds.
436
The conclusion of the assembly workflow produced an 823.3 Mb haploid genome assembly
438  (Tspe_v1) on 1,289 scaffolds, with an N50 of 69.0 Mb and L50 of 6 (Table 2). The Hi-C data
facilitated scaffolding into 11 chromosomes (Figure 6), conforming to previous cytological
440  studies (Darlington & Wylie, 1956), and the anchored proportion of Tspe_v1 spanned 94.2 %
of the final assembly; the chromosomes were numbered by descending length (Table S8) as

442  this is the first instance Telopea chromosomes have been studied in detail.

444  From a core set of 1,614 single-copy orthologues from the Embryophyta lineage, 97.8 %
were complete in the assembly (86.7 % as single-copy, 11.2 % as duplicates), 1.7 % were

446  fragmented and only 0.5 % were not found, suggesting that the assembly includes most of
the waratah gene space. Interestingly, BUSCO scores vary by many percentages between

448  different BUSCO versions and gene predictors. BUSCO v5.0.0 with MetaEuk as the gene
predictor consistently produced the highest scores (Table S3). BUSCO v3.0.2b with Augustus

450 benchmarked the assembly against 1,440 single-copy orthologues only found 91.3 %
complete in the assembly (81.5 % as single-copy, 9.7 % as duplicates), with 2.9 % fragmented

452  and 5.8 % missing. BUSCO v5.0.0 with Augustus as the gene predictor reported higher scores
than v3.0.2b but lower than when MetaEuk was used as the gene predictor (Table S3). We

454  recovered a maximal non-redundant set of 1,549 complete single copy BUSCOs across the

set of assemblies. BUSCOMP analysis revealed that only one gene out of 1614 was not found
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456 by BUSCO v5 MetaEuk in any version of the assembly (Figure 5; Supplementary File —
BUSCOMP full report). The Tspe_v1 assembly completeness is favourable in comparison to

458  the Macadamia integrifolia (SCU_Mint_v3) assembly (Nock et al., 2020), which also
combined long-read and Illlumina sequences (BUSCO v5 MetaEuk 96.7 % vs 81.9 % complete,

460 respectively, in the anchored portion of the assembly). The Merqury QV score of the
assembly was 34.03, indicating a base-level accuracy of >99.99 % (Figure S3). Genome-wide

462  heterozygosity was estimated to be 0.756 % (Figure S2b).

464  The Telopea speciosissima genome is approximately 900 Mb
The 1C-value of T. truncata (Tasmanian waratah) has been estimated at 1.16 pg (1.13 Gb)

466  using flow cytometry (Jordan et al., 2015). Supernova v2.1.1 predicted a genome size of 953
Mb from the assembly of the 10x linked-reads whilst GenomeScope predicted a smaller

468 genome of 794 Mb from the same data (Figure S2b). DepthSizer analysis of the six different
versions of the genome assembly (four raw assemblies, Tspe_v1, and Tspe_v1

470 chromosomes) estimated the genome size of T. speciosissima to fall within a range from 850
Mb to 950 Mb (Table S9), and shows good robustness to both assembly version and BUSCO

472  dataset used (Figure 7). This falls between the Supernova and GenomeScope estimates. We
report an estimated genome size of approximately 900 Mb, considering the mean of

474  estimates of the six adjustment methods using the BUSCO v5 MetaEuk data, based on the
highest quality Tspe_v1 assemblies.

476

The majority of Tspe_v1 is at single-copy (2n) read depth
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478  Read depth copy number analysis reveals that the majority of the assembly is at the
expected 2n depth (Figure 8). Single-copy ‘Complete’ BUSCO genes strongly cluster around

480 CN =1, further supporting the robustness of the method underpinning DepthSizer. Notably,
the 180 ‘Duplicated’ BUSCO genes are also predominantly at single-copy depth, with a

482  similar copy number distribution to the BUSCOs classified as single-copy and complete. This
indicates that the vast majority are likely to be real duplications found in T. speciosissima,

484  with only a few representing potential sequencing errors (Table S10). This was supported by
HAQESAC phylogenetic analysis of all 180 genes (Supplementary File —

486  Tspe_vl.buscodup HAQESAC.zip). Copy number analysis of all 14,882 NCBI annotated genes
shows a similar clustering around a median copy number of 1. However, the mean copy

488  number is surprisingly high at 2.36. Further inspection of the data revealed that this is being
driven by a reasonably small number of very high copy number genes, derived from highly

490 collapsed repeat regions (Table S11). This is further supported by the elevated mean copy
number for both whole scaffolds and 100 kb windows. This is consistent with the

492 identification by Diploidocus of 250 repetitive scaffolds, and a final assembly of approx. 91.5
% of the predicted genome size. Consistent with other Hi-C scaffolded assemblies (e.g. Rhie

494  etal.,, 2021), it is likely that Tspe_v1 still contains some misassemblies that will need to be
corrected with additional curation in future.

496
Repetitive elements and gene prediction

498 The Telopea genome is highly repetitive, with repeats accounting for 62.3 % of the total
sequence length and has a similar repeat content to Macadamia, previously reported as

500 55.1 % (Nock et al., 2020) and found to be 58.5 % in our analyses (Table S12). Class |
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transposable elements (TEs) or retrotransposons were the most pervasive classified repeat
502 class (20.3 % of the genome) and were dominated by long terminal repeat (LTR)
retrotransposons (18.1 %). Class Il TEs (DNA transposons) only accounted for 0.03 % of the
504 genome. A high percentage of repeats remained unclassified (40.6 %) and the genome will
serve as a resource for future studies into repetitive elements in Telopea and related

506 species.

508 Genome annotation predicted 40,126 protein-coding genes and 46,842 mRNAs in the T.
speciosissima assembly, which fits the expectation for plant genomes (Sterck et al., 2007). Of
510 these genes, 38,427 appeared in the 11 chromosomes (Table S8). Of 1,440 Embryophyta
orthologous proteins, 94.0 % were complete in the annotation (79.3 % as single-copy, 14.7 %
512  as duplicates), 3.4 % were fragmented and 2.6 % were missing. Additionally, 351 rRNA genes
and a set of 728 high-confidence transfer RNAs (tRNAs) were predicted. The NCBI
514  Annotation Release 100 had a higher completeness, as expected, than the GeMoMa
annotation; of 1,614 Embryophyta genes, 98.3 % were complete in the annotation (54.2 % as
516  single-copy, 44.1 % as duplicated), 1.1 % were fragmented and 0.6 % were missing. When
comparing the assembly completeness with proteome completeness using BUSCO v3.0.2b,
518 the proteome completeness at 94.0 % (79.3 % as single-copy and 14.7 % as duplicated) was
unexpectedly higher than the genome completeness at 91.3 % (81.5 % as single-copy and 9.7
520 % as duplicated). However, this issue was resolved with a later version of BUSCO (v5.0.0).
The improvements in BUSCO likely meant that genes could be better discerned in the

522  genome assembly, where they are more difficult to identify, compared to a proteome.
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524  Aninverse pattern in the incidence of genes and repeats was observed across all
chromosomes, with repeat content generally peaking towards the centre of each

526  chromosome (Figure 9), suggesting predominantly metacentric and submetacentric
chromosomes. This pattern may represent enriched repeat content and reduced coding

528 content in pericentromeric regions, although further study is required to identify the
centromeres (Jiang et al., 2003; Oliveira & Torres, 2018; Simon et al., 2015).

530
BUSCO completeness statistics must be matched by version and gene predictor

532  One surprising observation from our BUSCO analysis was a jump in completeness of over 6 %
when moving from BUSCO v3 Augustus predictions to BUSCO v5 MetaEuk predictions (Figure

534  5and Table S3). This is explained in part by the change to the lineage database used.
However, completeness scores for BUSCO v5 Augustus are only about 3 % higher. This is

536  particularly pronounced for the raw assemblies, where Augustus scores can be over 10 %
lower than MetaEuk scores. Great care must be taken in naive comparison of published

538  BUSCO scores, even if using the same version of BUSCO. MetaEuk scores seem to be both
higher and more stable. However, nucleotide sequences for Complete BUSCO genes are

540  currently only output from Augustus mode. We have therefore updated BUSCOMP to
extract the missing sequences from MetaEuk runs so that they can be used with

542  downstream tools such as BUSCOMP that require these sequences.

544  Orthologous clusters and synteny between Telopea and Macadamia

The five species formed 24,140 clusters: 23,031 orthologous clusters (containing at least 2

546  species) and 1,109 single-copy gene clusters. There were 9,463 orthologous families
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common to all of the species. The three members of the order Proteales (T. speciosissima,
548 M. integrifolia and N. nucifera) shared 456 families (Figure 10 and Figure S4). Tests for GO

enrichment of 912 waratah-specific clusters identified 12 significant terms (Table S13). The
550 most enriched GO terms were DNA recombination (GO:0006310, P = 1.8 x 10%7),

retrotransposon nucleocapsid (GO:0000943, P = 3.5 x 10%2) and DNA integration

552  (G0:0015074, P = 4.1 x 10'1%).

554  The Macadamia genome (2n = 28) has six more chromosomes than the Telopea genome (2n
= 22), but the two species have similar estimated genome sizes — 896 Mb (Nock et al., 2020)

556 compared to 874 Mb. It is thought that the ancestral Proteaceae had a chromosome number
of x =7 (Carta et al., 2020; L. A. S. Johnson & Briggs, 1963, 1975; Murat et al., 2017),

558 although the occurrence of paleo-polyploidy in family has been debated (Stace et al., 1998).
Overall, synteny analyses reveal an abundance of interchromosomal rearrangements

560 between the Telopea and Macadamia genomes (Figure 11), reflecting the long time since
their divergence (73-83 Ma; Sauquet et al., 2009). However, a number of regions exhibit

562  substantial collinearity, for example, Telopea chromosome 09 and Macadamia chromosome
11 (Figure S5).

564
CYC gene copy number and the genetic control of floral symmetry

566 Intotal, 210 predicted waratah sequences (longest isoform per gene) were identified as
homologous to the 49 Citerne et al. CYC protein sequences. Of these, 198 generated

568 multiple sequence alignments and phylogenetic trees. These combined to form a non-

redundant dataset of 12,238 proteins. HAQESAC reduced this to a high-quality alignment of
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570 46 homologous proteins, including two waratah proteins, TSPEV1G03060 — CYC1 and
TSPEV1G20406 — CYC2. Consistent with previous work (Citerne et al., 2017), these two

572  proteins belonged to two distinct clades (Figure 12). While the exact role of the two
paralogues in determining floral symmetry in Proteaceae would require a study of gene

574  expression and remains incompletely understood in the species examined so far (Citerne et
al., 2017; Damerval et al., 2019), this is the first study to quantify the total number of

576  CYCLOIDEA paralogues in Proteaceae based on a complete genome sequence. Our results
hence lend further support to the pattern of a single gene duplication in the stem lineage of

578  Proteaceae that had so far emerged from Sanger and transcriptome sequencing.

580 A molecular resource for biodiversity genomics
The T. speciosissima reference genome will enable genome-scale research into Proteaceae
582  evolution, at a wide range of scales. At shallower evolutionary scales, the Telopea genus
contains five species that exhibit genetic variation consistent with a history of divergence
584  and introgression, likely driven by climatic change (Rossetto et al., 2011, 2012). Recent
studies highlight the power of genome-scale approaches for inferring demographic change
586 and mechanistic forces that have influenced such clades, often making use of heterogenetity
in patterns of variation across whole genomes (Choi et al., 2021; Soltis & Soltis, 2021). We
588  expect the waratah genome to similarly facilitate studies that provide new insights about
historical gene flow and selection, in changing environments.

590

CONCLUSIONS

592
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We present a high-quality annotated chromosome-level reference genome of Telopea
594  speciosissima assembled from Oxford Nanopore long-reads, 10x Genomics Chromium
linked-reads and Hi-C (823 Mb in length, N50 of 69.9 Mb and BUSCO completeness of 97.8
596  %): the first for a waratah, and only the second publicly available Proteaceae reference
genome. We envisage these data will be a platform to underpin evolutionary genomics, gene

598 discovery, breeding and the conservation of Proteaceae and the Australian flora.
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1380 Zheng, T., Li, P, Li, L., & Zhang, Q. (2021). Research advances in and prospects of ornamental
plant genomics. Horticulture Research, 8(1), 1-19. https://doi.org/10.1038/s41438-
1382 021-00499-x
Zhong, J., & Kellogg, E. A. (2015). Duplication and expression of CYC2-like genes in the origin
1384 and maintenance of corolla zygomorphy in Lamiales. New Phytologist, 205(2), 852—
868.
1386 along with the raw data (ONT, 10x and Hi-C) to SRA as SRR14018636, SRR14018635 and
SRR14018634. The genome may be browsed via Apollo:

1388  https://edwapollo.babs.unsw.edu.au/apollo208/1468723/jbrowse/index.html. The NCBI

Annotation Release 100 is available at

1390  https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/018/873/765/GCF 018873765.1 Tspe vl

and the annotation is available for browsing in

1392  GDV: https://www.ncbi.nlm.nih.gov/genome/gdv/browser/?acc=GCF 018873765.1&context

=genome.

1394

Supplementary data, was deposited to Dryad (https://doi.org/10.5061/dryad.12jm63xzt)

1396  and contains files for tracks available on the Apollo genome browser (genome, gaps,
mapped ONT and 10x reads and annotations) and the protein sequences from the GeMoMa

1398 genome annotation.

1400 Data for species used for genome annotation are available at the following repositories:
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Macadamia integrifolia

1402  https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/013/358/625/GCA 013358625.1 SCU Mint

v3/ doi.org/10.25918/5e320fd1e5f06

1404  Arabidopsis thaliana

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/735/GCF 000001735.4 TAIR10.1/

1406  Rosa chinensis

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/994/745/GCA 002994745.2 RchiOBHm-

1408  V2/

Nelumbo nucifera

1410  https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/365/185/GCF 000365185.1 Chinese Lo

tus 1.1
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TABLES AND FIGURES

Table 1. Library information of Telopea speciosissima reference genome (Tspe_v1).

Sequencing Library Medianinsert Meanread No. of reads Sequence
platform size (bp) length (bp) bases (Gb)
Oxford Nanopore Ligation (SQK-LSK109) - 13,449 3,595,148 48.3
Technologies*

Illumina NovaSeq Paired-end 10x 336 2x150 822,558,750 123.4
6000 Chromium

Total gDNA - - - 826,153,898 171.7
Illumina NextSeq Phase Genomics 174 2x151 165,573,702 25.0

i
500 Proximo Hi-C (Plant)

" Two PromethION flow cells and two partial flow cells from a MinlON pilot run

*Includes a pilot iSeq run used to QC the library
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Table 2. Genome assembly and annotation statistics for the Telopea speciosissima reference

genome.
Statistic Tspe_v1l
Total length (bp) 823,061,212
No. of scaffolds 1,289
N50 (bp) 69,013,595
L50 6
No. of contigs 1,452
N50 (bp) 12,206,888
L50 21
N bases 18,174
GC (%) 40.11

BUSCO' complete (genome; n = 1,614)
Single copy (genome)

Duplicated (genome)

97.8 % (1,579)
86.7 % (1,399)
11.2 % (180)

BUSCO fragmented (genome) 1.7 % (27)
BUSCO missing (genome) 0.5% (8)
Protein-coding genes 40,158
mRNAs 46,877
rRNAs 351
tRNAs 728

BUSCO' complete (proteome; n = 1,614)

Single copy (proteome)

Duplicated (proteome)
BUSCO fragmented (proteome)
BUSCO missing (proteome)

94.4 % (1,524)
82.7 % (1,334)
11.8 % (190)

3.2%(52)

2.4 % (38)

"BUSCO v5 MetaEuk (embryophyta_odb10)
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1422
Figure 1. New South Wales waratah (Telopea speciosissima). Photo taken by SH Chen
1424
READS CONTIGS SCAFFOLDS CHROMOSOMES
e Lon -read Short-read Scaff Id d Long-read
A bl 9 ol an g-rea
constcar':elrr“ant pOII gap- POIIS
Q NANOPOFI__E 1 O,\ cenowmcs @ PH A$CES
« NECAT * Diploidocus * Racon * SSPACE-LR * Racon * Diploidocus « Juicer * Long-read * Diploidocus
+ (Flye and Canu)  (cycle mode) * Medaka * GapFinisher * Medaka + 3D-DNA pipeline  Racon and Medaka
« Contamination « Juicebox « Short-read: Pilon
screen * Hybrid: Hypo
Assembly and annotation workflow
Telopea speciosissima Tspe_v'1 m
* GeMoMa * Barmap
1426

Figure 2. Assembly and annotation workflow for the Telopea speciosissima reference

genome Tspe_vl. Logos reproduced with permission. Waratah photo by SH Chen
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Figure 5. BUSCOMP summary of BUSCO completeness rating compiled over different stages
1430 (see Figure 2) of the Telopea speciosissima genome assembly. The final BUSCOMP rating

uses the best rating per BUSCO gene across any of the assemblies.
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a)

1432
Figure 6. Hi-C contact matrices visualised in Juicebox.js in balanced normalisation mode a)

1434  before and b) after correction.
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1436  Figure 7. DepthSizer Telopea assembly size prediction using read depth of BUSCO v5
MetaEuk genes a) sits between estimates from flow cytometry, Supernova and
1438 GenomeScope at mean of 904 Mb for the v1 final assembly and is b) robust to BUSCO

versions, with variation across the four adjustment methods. Dotted line represents the final

1440  assembly size.
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Dataset

1442  Figure 8. Genome-wide regional copy number analysis. Copy number (CN) is relative to a
single diploid (2n) copy in the genome, truncated at CN = 4. Violin plots and means

1444  generated with ggstatsplot. Each data point represents a different genomic region. BUSCO,
BUSCO v5 (MetaEuk) single-copy ‘Complete’ genes; Duplicated, BUSCO v5 ‘Duplicated’

1446  genes; Regions, NCBI gene annotations; Sequences, assembly scaffolds; Windows, 100 kb

non-overlapping windows across the genome.
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Figure 9. Features of the 11 chromosomes of the Telopea speciosissima reference genome.
Concentric tracks from the outside inward represent: chromosomes, gaps (gaps of unknown
length appear as 100 bp in the assembly), GC content calculated using BEDTools v2.27.1
(Quinlan & Hall, 2010), gene density and repeat density. The latter three tracks denote
values in 500 kb sliding windows. Density was defined as the fraction of a genomic window
that is covered by genomic regions. Plots are white on a solid background coloured by

chromosome. Visualisation created using the R package circlize v0.4.12 (Gu et al., 2014).
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1458  Figure 10. Orthologous gene clusters shared among the three members of the order Proteales —
Telopea speciosissima, Macadamia integrifolia and Nelumbo nucifera — and the core eudicots —

1460  Arabidopsis thaliana (Brassicales) and Rosa chinensis (Rosales).
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Figure 11. Synteny between Telopea speciosissima (2n = 22) and Macadamia integrifolia (2n

= 28). Coloured squares for each species match painted chromosome regions in the other

species. More detail of the underlying synteny and rearrangements can be found in Figure

S5.
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Figure 12. Phylogeny of CYCLOIDEA (CYC) proteins in Proteaceae, obtained from maximum-
1468 likelihood inference with IQ-TREE. Node numbers indicate bootstrap support expressed as

percentage. Scale bar represents 0.07 nucleotide substitutions per site. Branches terminate

1470 atcircles; dotted extensions are for labelling purporses only.
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