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Abstract

Resistance to EGFR inhibitors (EGFRi) presents a major obstacle in treating non-small cell lung
cancer (NSCLC). One of the most exciting new ways to find potential resistance markers involves
running functional genetic screens, such as CRISPR, followed by manual triage of significantly
enriched genes. This triage process to identify ‘high value’ hits resulting from the CRISPR screen
involves significant manual curation that requires specialized knowledge and can take even experts
several months to comprehensively complete.

To find key drivers of resistance faster we built a hybrid recommendation system on top of a
heterogeneous biomedical knowledge graph integrating preclinical, clinical, and literature evidence.
Genes were ranked based on trade-offs between diverse types of evidence linking them to potential
mechanisms of EGFRI resistance. This unbiased approach identified 36 resistance markers from
>3,000 genes, reducing hit identification time from months to minutes. In addition to reproducing
known resistance markers, our method identified novel resistance mechanisms that we prospectively
validated.

Introduction

In this study we explore how a biological question can be translated into a recommendation problem.
Traditionally recommendation systems have been used to help users discover relevant items among an
overwhelming number of options [1]. By interacting with recommendations users provide either im-
plicit or explicit feedback, which recommendation models use to personalise and improve predictions
[2]. Information overload is particularly common in e-commerce [3], streaming [4] and social media
applications [5], hence recommendation systems play key role in these industries. The biomedical do-
main on the other hand, is not seen as a typical application area for recommendation systems. Their
usage so far is limited to a handful of recent studies: Ozsoy et al, applied collaborative filtering for
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drug repositioning problem [6]; Frainay et al, developed a network-based recommendation solution to
enrich and interpret metabolomicc data [7]; Suphavilai et al, built a matrix factorization-based recom-
mendation system to predict response of cancer drugs [8]; Radivojevic et al, developed an automated
recommendation solution for synthetic biology [9]. The success of these pilot studies suggest there are
potential opportunities for recommendation systems in the biomedical domain; the amount of biomedi-
cal data is growing exponentially and scientists could benefit from recommendation solutions that help
them to navigate the data and reason about it.

Naturally, direct transfer of classic recommendation approaches to the biomedical domain is not trivial.
Specifics of the problem space impose numerous challenges for a recommendation system practitioner,
to name a few:

e an elementary unit of recommendation is not a simple self-contained item (e.g a gene), but rather
a research direction accompanied by a biologically sound hypothesis;

e ultimate validation of recommendations is complex and often requires expensive and time-
consuming laboratory experiments, as opposed to users just ’selecting’ an item in a common
non-biological recommendation scenario;

e unlike traditional applications, in a biomedical setting both implicit and explicit feedback is
scarce, making it harder to tune and train models;

e ground truths are scarce and in most cases context-dependent which renders training challenging;

e due to the high cost associated with accepting a recommendation, an increased emphasis is placed
on explainability and exposing causal reasoning paths behind a recommendation.

Despite these challenges, wider adoption of recommendation approaches holds plenty of opportunities
to support and accelerate biological research. To illustrate this point, in this study we focused on the
problem of drug resistance in lung cancer. Our goal was to build a recommendation solution that finds
key genes driving drug resistance.

Drug resistance is a complex biological phenomenon that hinders development of efficient and lasting
cancer treatments [10]. Tumours recruit diverse strategies to escape selective pressure induced by
drugs, such as changes in drug metabolism [11], inhibition of cell death [12], epigenetic alterations
[13] or acquired mutations in drug targets [14]. Enhanced DNA repair and increased amplification of
tumour driver genes also contribute to secondary resistance [15]. Genetic and epidemiological diversity
of patients [16] further complicates the resistance landscape.

In this study we focus on non-small cell lung cancer (NSCLC) carrying activating mutations of the epi-
dermal growth factor receptor (EGFR). It accounts for 15-20% of lung cancer patients [17]. Treatment
with first or second generation EGFR tyrosine kinase inhibitors such as gefitinib, erlotinib or afatinib
results in impressive response rates in patients initially [18], however, tumours quickly develop resis-
tance to treatment. The majority of resistant cases are driven by accumulation of secondary mutations
of EGFR gene, such as T790M, that prevent binding of EGFR TKI compounds [19]. Development
of osimertinib, a third generation EGFR TKI, provided the ability to target such secondary EGFR
mutations [20]. In fact, treatment with osimertinib significantly improved patient survival in first-
or second-line therapy setting [21, 22|. However, therapy resistance prevails. Acquired mutations of
EGFR such as C797S drive osimertinib resistance in 6-26 % of cases. Bypass pathway activation,
amplifications of MET or mutations in PIK3CA have also been shown to contribute to resistance [23].
Still, in half of the cases the molecular resistance mechanisms remain unknown and promising markers
could reside in a so called ’dark matter’ of the human genome [24].

A common strategy to find key drivers of acquired resistance is based on functional genomic screens,
such as CRISPR screens [25]. CRISPR-Cas9 genome-wide knock out, knock down and knock-in screens
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have recently emerged as an efficient high-throughput technology to systematically investigate resis-
tance mechanisms [25]. CRISPR screens can be applied in two ways to understand drug response and
drug resistance. First, they can be used to identify alterations in genes that increase sensitivity of a cell
to drug treatment. Here, researchers measure negative selection of modified genes in drug treatment.
This approach can help to define therapeutic combinations that might increase response to treatment.
Second, CRISPR screens are used to identify genes that drive drug resistance if altered. In this case the
experimental setup mimics treatment scenarios in the clinic. In this approach, outgrowth or positive
selection of drug resistant cells is measured and used to define mechanisms that drive resistance. These
can be potentially targeted once resistance is established.

In these settings, a typical output of a CRISPR screen may identify many hundreds of resistance genes.
To narrow down the list to the most promising, biologically plausible and actionable resistance genes,
researchers have to perform manual triage and validation. During this process experts aggregate prior
knowledge about a disease with additional evidence available from clinical and pre-clinical studies
and decide which genes to prioritize for experimental validation. The selection process is tedious and
time consuming. It also relies on deep specialized knowledge, hence the results can be prone to the
individual bias. Our goal was to replace such manual triage with a recommendation solution, which
could efficiently integrate diverse types of evidence and identify the most promising candidate genes
driving drug resistance.

By moving the problem to a recommendation domain we encounter two major challenges. First is
the lack of training data. Here we are dealing with a highly specific molecular phenotype of a poorly
understood origin, which prevents us from using information on resistance markers relevant for other,
even closely related, diseases as training data. Second, unlike a typical recommendation scenario, in our
case both explicit and implicit feedback are lacking. This fact limits our ability to gradually train and
improve models. Given these constraints we followed a hybrid unsupervised recommendation approach,
which relies on content-based filtering. We formalized re-ranking of CRISPR hits as a multi-objective
optimisation problem [26], where diverse and conflicting types of evidence supporting gene’s relevance
are mapped to objectives. During the optimization procedure feasible solutions (genes) are identified
and compared until no better can be found. A crucial component of such framework is a set of hybrid
features. Each feature represents a distinct type of evidence, such as literature support, clinical and
pre-clinical evidence.

Along with the purely biological features, our recommendation system relied on data derived from a
specially constructed heterogeneous biomedical knowledge graph [27]. Knowledge graphs provide a
convenient conceptual representation of relationships (edges) between entities (nodes). In the recom-
mendation context knowledge graphs gain popularity as a way to introduce content-specific information
and also to provide explanations for the resulting recommendations [28]. In addition, graph-based rec-
ommendations were shown to achieve higher precision and accuracy compared to alternative approaches
[29-31]. We used graph structural information together with graph-based representations to express
relevance of a gene in the resistance context. Our assumption was that by combining graph-derived
features with clinical ones we could discover unobvious genes that drive drug resistance in lung cancer.

In summary, in this study we explored how a question of finding drivers of secondary EGFR TKI
resistance could be addressed as a recommendation problem. We demonstrate that a hybrid recom-
mendation system based on multi-objective optimisation approach can be used to re-rank CRISPR hits
in the context of secondary drug resistance. The proposed framework, together with an automated
feature generation flow and interactive re-ranking interface, helped to reduce gene hit prioritisation
time from months to a few minutes. Moreover, it helped to identify resistance candidates that would
potentially have been missed by either inherent expert bias or limited integration of experimental
outcome with prior knowledge.
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Results

Re-ranking of CRISPR hits can be approached as multi-objective optimization

We framed re-ranking of CRISPR hits as a multi-objective optimization problem. In this setting,
diverse lines of evidence that support gene’s relevance are treated as multiple objectives (Figure 1).
In other words, the formal goal is to simultaneously optimize k objectives, reflected in k objective
functions: fi(x), fa(z), ..., fr(z). Individual functions form a vector function F'(x):

F(z) = [fi(2), fa(x), o, fi(2)]"

where x = [x1, x9, ..., ] € Q; x represents the decision variable, €2 - decision variable space. Therefore,
multi-objective optimization can be defined as minimization (or maximization) of the objective function
set F'(x). With multiple competing objectives a singular best solution often cannot be found. However,
one can identify a set of optimal solutions based on the notion of Pareto dominance [32]. A solution
21 dominates solution xs if the following two conditions are true:

e solution x; is not worse than xo according to all objectives;

e solution x is strictly better than solution z9 according to at least one objective.

If both conditions are true, we can say that x; dominates xs, which is equal to o being dominated by
x1. In other words, dominant solutions can not be improved any further without compromising at least
one of the other objectives. A set of such dominant solutions forms a Pareto front, which combines
the best trade-off combinations between competing objectives. Therefore, by computing Pareto fronts
on diverse sets of objectives defined based on CRISPR screen data and additional supporting evidence
we can narrow down the number of promising markers of EGFR TKI resistance (Figure 1).

A hybrid set of features supports recommendation system

To support the recommendation system we assembled a hybrid set of rich features (Figure 1, Supple-
mentary Table 1), with an idea that each feature represents an objective. The selected features were
relevant for EGFR inhibitor resistance in NSCLC and corresponded to distinct lines of evidence. Key
feature types and rationale to consider them for re-ranking of CRISPR hits are summarized below.

CRISPR

CRISPR screen data served as a starting point for re-ranking. In this study we relied on screens
that were set-up to resemble clinical treatment scenarios for FGFR mutant lung cancer, using NSCLC
cancer cell lines harbouring EGFR mutations commonly found in patient populations and where those
cell lines were treated with 15 or 3" generation EGFR inhibitors. In total we identified a starting list
of >1000 candidate drug resistance genes [33| that were labelled as significant after the screen analysis.
We further aggregated CRISPR data by computing consistency metrics, which reflected stability of a
gene’s performance across experimental conditions. Normally genes showing consistent behaviour in
multiple relevant conditions, e.g related cell lines or treatments, are ranked higher by domain experts.
Altogether, seven consistency-based features were incorporated in the feature set: 1) three features
based on loss-of-function part of the screen; 2) three features based on gain-of-function part of the
screen; 3) a summary metric reflecting overall consistency in the full screen (Table 1).

Literature-based metrics

Literature search is routinely used as a first step to confirm experimental findings and to find support
for a potential mechanistic hypothesis. For the EGFR inhibitor resistance problem we were primarily
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interested in the overall literature support for a gene. As a proxy of literature support we calculated
the total number of publications that mention a gene in a relevant context, such as cancer, resistance,
EGFR, NSCLC. Conveniently, the same exact metric when reversed can be interpreted as novelty of
a particular target. To extract literature mentions we analysed a total corpus of >180,000 PubMed
papers published between 2000 and 2019. We included aggregated literature metrics, based on two
terms of interest: EGFR and NSCLC. For each gene we computed the number of papers that mention
a gene together with one of these terms (Supplementary Table 1).

Graph-derived features

In this study we used a custom knowledge graph (KG) as a source of side information for the recom-
mendation system. Our KG contained 11 million nodes and 84 million edges and was composed of 37
public and internal datasets, such as Hetionet, OpenTargets, ChREMBL and Ensembl [27]. In general,
patterns of interactions between biological entities captured by knowledge graphs can be translated
into features and consumed by recommendation systems in a number of ways (Figure 1, Supplemen-
tary Table 1). One way is to compute features directly on the graph. This includes metrics such as
node degree — reflecting the importance of a node; PageRank — a measure of node’s popularity [34];
betweenness — a way to detect the amount of influence a node has over the flow of information in the
graph. An alternative approach involves projecting the graph into a low-dimensional space, so that
every node is transformed into its vector representation — embedding. Embeddings capture critical
structural properties of the graph [35], so that the nodes that were close in the graph also remain
close in the embedding space. In this study we computed distances in the embedding space between
each gene and two key entities of interest: ‘EGFR’ and ‘NSCLC’. The assumption is that genes most
relevant to the EGFR TKI resistance phenotype should be close to either lung cancer or EGFR gene
nodes.

Clinical enrichment scores

To ensure the recommendation system captures clinical evidence, we included genomic data from
osimertinib-treated EGFR-mutant lung cancer patients in the feature set. We prioritised four clinical
trials: AURAext|36], AURA2|37], AURA3|21|, and FLAURA|22]. The prevalence of genomic alter-
ations in non-responders vs responders across 355 patients treated with osimertinib were calculated
and included as ’clinical enrichment score features’ to the feature set (Supplementary Table 1).

Tractability and gene essentiality

Traditionally drug resistance in cancer is addressed by developing compounds or combination therapy
that modulates activity of its key driver genes (targets). When a target is prioritised for drug develop-
ment one needs to ensure that: 1) a gene is tractable in principle, i.e it is shown or predicted to bind
to commonly used drug modalities with high affinity; 2) a gene should not be essential, since knock-
out of an essential gene can be detrimental to other cells in the organism, not just the tumour ones.
To support the first consideration, we included bucket tractability estimates [38] for three modalities:
antibodies, small molecules and other modalities (enzyme, oligonucleotides, etc). In support of the
second consideration we integrated DepMap [39] essentiality estimates.

In summary, the final hybrid set contained 25 rich features, supporting diverse criteria taken into
consideration during validation of CRISPR hits by domain experts (Supplementary Table 1). The
hybrid set was also augmented by graph-derived features and literature-based metrics.
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Interactive interface allows experts to re-rank CRISPR hits

So far, we have defined a basic model for multi-objective optimization and demonstrated how to build
a hybrid set of features to support re-ranking of CRISPR hits in the EGFR TKI context.

In the real-world scenario, decision making can be both iterative and subjective. A choice of a particular
set of objectives and the direction of optimization for the same variable varies from expert to expert.
Each combination of objectives and corresponding directions for optimization might result in a different
shape of Pareto front, therefore — in a different set of top recommended genes.

To accommodate diversity of opinions and to enable domain scientists to explore complex trade-
offs between the objectives we built an interactive application — skywalkR https://github.com/
AstraZeneca/skywalkR (Figure 2). SkywalkR is a Shiny app [40], which operates on top of the pre-
assembled hybrid feature set (see Supplementary Table 1). SkywalkR app combines diverse facets of
knowledge to guide re-prioritization of CRISPR hits for experimental validation. In addition, it allows
domain experts to explore various trade offs between objectives. Thereby, it stimulates exploration
of possibilities, highlights gaps in the existing knowledge and motivates to adjust expectations about
optimal solutions.

Automated engineering of rich features coupled with multi-objective optimization realized through
skywalkR, interactive interface dramatically reduced the time required for gene prioritization from a
few weeks to minutes.

Evaluation demonstrates majority of top recommendations labelled as credible by
the experts

To evaluate the recommendation framework against the expert opinions we fixed a default set of pref-
erences. Preferences were defined by a combination of selected objectives and corresponding directions
of optimization. The set of defaults was chosen to mimic the process of CRISPR hit validation by
domain experts. The resulting list contained 36 recommended genes (Figure 3). To collect opinions
on the list from the domain experts, we set up an interactive evaluation task with Prodigy [41]. Five
independent experts assigned each of the recommended genes to one or more predefined categories:
1) known, resistance marker; 2) novel, but credible hit; 3) novel, not credible hit; 4) not novel, not
credible hit. Here ’credible’ referred to tractability and meant an existence/absence of a clear path to
biological validation.

Despite the expected discrepancies between the expert opinions, the majority of the recommended
genes (89%) were classified as either ‘novel, but credible hit’ or ‘known resistance marker’ (Figure 3).
To consolidate opinions we assigned the most frequent label to each gene (best label). This resulted in
three major categories: ‘known’, ‘novel, but credible’ and ‘novel, not credible’. To determine underlying
data structure that supported separation between the three labels, we analysed values corresponding
to seven objectives included in the default preference. For easier comparison values were standardised
(Figure 3). Genes labelled as 'novel, not credible’ were clearly separated from the remaining genes on
the basis of low values of all objectives across the board, except the log fold change values from the
RNA-Seq study 3. This analysis suggests that in general the experts tend to prioritize genes supported
by several lines of evidence.

Shapley values indicate the high impact of CRISPR-derived features

To further estimate what was the impact of each of the objectives on the expert decisions, we calculated
Shapley values [42], a game-theoretic technique used to explain output of machine learning models. For
this analysis we reduced the problem to a binary classification task, where a gene is either selected by


https://doi.org/10.1101/2021.07.23.453506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.23.453506; this version posted August 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

an expert or not. To assign positive labels we used a set of 100 genes prioritized to a secondary CRISPR
screen [33| and trained two random forest models: 1) based on a default subset of features; 2) based
on the full set of rich features, including clinical, pre-clinical, literature, CRISPR and graph-derived
categories (Figure 4).

The resulting Shapley values indicate that in general, CRISPR-derived features have the largest impact
on gene classification. When the default set of features was tested, the composite CRISPR screen
consistency variable accounted for the most impact on classification 4. Interestingly, when a full
set of features was used to train the model, CRISPR-derived features remained decisive, followed by
graph-derived features. This suggests that graph-derived features though not routinely used in manual
triage, could provide a valuable insight in the overall relevance of a gene, especially when combined
with context-defining experimental data, such as CRISPR.

Pathway enrichment analysis captures known and novel EGFR resistance mecha-
nisms among top recommended genes

To link the prioritised hits to known EGFR biology, we performed pathway enrichment analysis. It
captured pathways related to resistance such as 'mechanisms of resistance to EGFR inhibitors in
lung cancer’ and 'LKBI1 signaling pathway’ (Table 2). Occasionally enrichment results are redundant
and top terms may be similar to each other thus carrying little new information. Therefore we also
performed crosstalk analysis (Supplementary Figure 6) which confirmed 'mechanisms of resistance to
EGFR inhibitors in lung cancer’ as the top enriched pathway.

Experimental validation demonstrates that deregulation of a subset of recom-
mended genes mediates resistance phenotype

To further validate a subset of recommended genes we experimentally investigated their direct impact
on osimertinib resistance. We manipulated expression of four recommended genes (MET, PTEN, NF1
and KCTD5) in EGFR mutant NSCLC cell lines PC-9 and HCC827, both sensitive to osimertinib
(Figure 7, A).

Our expectation was that deregulation of PTEN, NF1 and KCTD5 should mediate a stable resistance
phenotype, since these genes were shown to negatively regulate MAPK or PI3K/AKT signalling [43—
45| — known drivers of EGFR TKI resistance. To test this hypothesis we established a flow cytometry
based long-term competition assay (Figure 5, B). The assay showed that after 14 days of co-culture
perturbation of NF1, PTEN or KCTD5 expression did not affect proliferation compared to control cells.
However, when treated with osimertinib NF1 or PTEN KO caused a fitness advantage, measured as a
two to three fold increase in proliferation (in PC-9 or HCC827, respectively) compared to control cells
(Figure 5, C). These results indicate stable and profound osimertinib resistance mediated by PTEN
and NF1.

Recent studies indicate that amplifications of MET [23] are often associated with an overexpression
of this receptor tyrosine kinase resulting in bypassing of EGFR signals [46]. To validate relevance of
MET to osimertinib resistance we activated its expression in PC-9 cells (Figure 7, B) and compared
proliferation in control (DMSO) and drug treatment. As expected, overexpression of MET did not
alter cell proliferation under control conditions but was substantially elevated when cells were treated
with osimertinib compared to control modified cells (Figure 5, D).

Together these findings indicate that three out of four selected recommended genes - PTEN, NF1 and
MET have initial experimental evidence indicating their involvement in osimertinib resistance.
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Recommendation approach identifies novel candidate genes involved in EGFR TKI
resistance

In addition to known EGFR TKI resistance markers, and validated markers discussed above, our
method also identified several novel markers of osimertinib resistance (Figure 3). Here we define 'novel’
as genes having no publications that directly associate them to EGFR in the context of resistance.

Two of these novel hits, FOSL1 and BCL6, have been since shown to be involved in key molecular
bypass mechanisms for EGFR-TKI resistance [47], [48]. FOSL1 has been shown to play a key role in
the cross-talk between MEK and Hippo pathways. Misregulation of MEK pathway in driving tumour
growth is well established [49], and key Hippo pathway members (YAP, TAZ) have been implicated in
NSCLC [50]. Pham et al.[47] showed that a significant decrease in FOSL1 expression was observed when
YAP1-amplified Detroit562 cells were treated with a combination of YAP1 knockdown and Cobimetinib
(MEKi), but not for either treatment. BCL6 plays a key role in mediating core cell functions such as
antiapoptosis and DNA Damage recognition and has been shown to play a key role in NSCLC [51].
Tran et al. [48] showed that inhibition of BCL6 in NSCLC cell lines conferred sensitivity to Gefitinib.
Further experiments also showed that targeting BCL6 and EGFR as a combination showed significant
synergy. Altogether these observations indicate that our recommendation approach suggested not only
well known resistance markers, but was also able to identify novel and promising drivers of resistance.

Discussion

In this study we explored how an open-ended biological question — discovering drivers of drug resis-
tance in lung cancer — can be approached as a recommendation problem. The current protocol to
find resistance markers starts with high-throughput CRISPR screens, followed by a lengthy and time-
consuming manual triage which requires specialised knowledge. Our goal was to replace the manual
triage with a recommendation solution that outputs genes potentially driving the resistance. Undoubt-
edly, such a biomedical setting is not a traditional area of application for recommendation systems.
Still, the need to find a small number of relevant genes amongst prohibitively large set of possibilities
constitutes a typical recommendation task. How to approach it?

Common recommendation problems are often solved with collaborative filtering [52], content-based
[53] or hybrid solutions [54|. The idea behind collaborative filtering is to predict preferences of a user
for an item based on weighted preferences of other users [52|. This approach was demonstrated to
work successfully to recommend conceptually complex entities, such as movies, without any additional
information about the entity itself [55]. However, to work accurately collaborative filtering requires
either large datasets of users actively rating items or a substantial amount of historical data. Due to
the lack of user interactions data, or its equivalent, collaborative filtering is not directly applicable to
the CRISPR hit re-ranking task.

On the other hand, content-based approaches recommend items exclusively based on the properties of
an item and do not require user interaction data. Therefore, this class of methods seems more suitable
for our case. Such content-based recommender would require a set of features, describing properties of
a gene relevant for secondary resistance in lung cancer. The disadvantage of content-based approaches
is their reliance on similarities between items to make a recommendation. They require either a point
of reference or more broadly — training data to make predictions. In the CRISPR hit re-ranking case
training data is lacking mainly because a clear conceptual representation of a good resistance hit
is also lacking. The closest analogue of training data in this case would be a weakly labeled dataset
[56] created based on information about genes implicated in drug resistance in related types of cancer
under similar treatments. It still remains to be proved, however, if a notion of resistance is directly
transferable between very specific cancer contexts. Moreover, in this study we focus on discovery of
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novel markers of drug resistance, that have never been explored before. Hence it won’t make sense to
base recommendations on a handful of genes that are already known to be implicated in drug resistance.

In short, CRISPR hit re-ranking task does not immediately fit into classic recommendation frameworks.
Complexity of the biological context, lack of insight about mechanisms of resistance, coupled with
absence of training data and user feedback make it difficult to build a fully fledged recommendation
solution capable of reasoning about drug resistance.

Devoid of user feedback and training data we approached CRISPR re-ranking problem as a decision-
making task. We formalized the problem as a multi-objective optimization with the goal to find
solutions defined by optimal trade-offs between novelty, druggability, clinical and pre-clinical relevance.
This approach operates in an unsupervised domain, where a perfect solution is unknown. Still we can
leverage domain expertise to loosely define a profile of a 'good resistance hit’. This can be formalized
by including/excluding objectives, setting directions of optimization and setting constraints on the
objectives themselves.

Similar to the manual triage, re-ranking of CRISPR hits through multi-objective optimization can be
performed iteratively. By experimenting with diverse sets of objectives one could explore plausible
solutions given the constraints of underlying data. We recognised such iterative decision making could
benefit from an interactive interface. Therefore we developed a Shiny app, SkywalkR, that accounts
for diversity of opinions and allows the users to explore the resistance space more efficiently. The app
allows the experts to compose custom optimization preferences and re-rank the list of hits based on
them. The overall technical solution includes: 1) an automated pipeline that generates features; 2)
an interactive interface that runs on top of multi-objective optimization model and has access to the
features. This setup helped to dramatically reduce the time required to prioritise CRISPR screen hits
from the usual weeks-months to a few minutes.

The key component of our recommendation system is a hybrid set of features, which is tailored to the
EGFR inhibitor resistance context. Along with the usual types of evidence used by the experts during
the manual triage, such as clinical and pre-clinical evidence, we included features derived from a custom
heterogeneous biomedical knowledge graph. The rationale behind it is that structural properties of the
knowledge graph can express relevance of a gene, even if a direct proof of its association with resistance
does not yet exist in the literature or clinical /pre-clinical sources. In other words graph-derived features
could aid discovery of novel or unexpected drivers of drug resistance.

To determine if our recommendation approach produces meaningful results we developed a hybrid strat-
egy. Recommendations were initially evaluated by domain experts, followed by targeted experimental
validation of a few promising genes. The in silico evaluation demonstrated that majority (89%) of
suggested genes were classified by independent experts as credible and/or novel. The remaining genes
(12%) were classified by the experts as 'novel but not tractable’, meaning there was not a clear path
for biological validation yet. To complement the evaluation we picked four genes (MET, PTEN, NF1
and KCTD5) for experimental validation. We demonstrated that deregulation of these genes indeed
mediated stable resistance phenotype. Though the exact mechanism of this is effect remains to be
investigated, our experiments proved that recommended genes are implicated in secondary resistance.
In summary, hybrid evaluation demonstrates that our recommendation approach not only produces
relevant results, but also does it in a fraction of a time compared with the manual triage.

Though the initial results are promising we recognise that overall our recommendation approach has
a number of limitations and areas of improvement. First of all, when applying the multi-objective
optimization approach to the CRISPR hit triage problem, there is a risk to consider an excessive
number of objectives/lines of evidence. The more objectives we take into account, the broader and
more topologically complex Pareto fronts can become. This effect limits our ability to unambiguously


https://doi.org/10.1101/2021.07.23.453506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.23.453506; this version posted August 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

select a small set of optimal solutions. A few strategies can help to overcome this problem: 1) select a
small number of the most important objectives relying on the domain knowledge; 2) multiple objectives
can be combined into a single one using scalarization techniques [57]; 3) introduce adaptive weights
to individual objectives based on the domain knowledge and the notion of the relative importance of
each type of evidence [31]; 4) multi-objective optimization can be performed in consecutive stages on
a sub-selection of objectives, similar to Markov decision process [58]. Some of the above approaches
could be combined, for example scalarization and adaptive weights. Worth mentioning that all of
the listed strategies rely on domain knowledge. Perhaps, they can be viewed as a progressive way to
translate individual researcher bias into a formal model.

Another limitation we faced in this study is difficulties with assessing the accuracy of our recommen-
dations. Primarily it stems from the lack of clear notion of 'good resistance hit’. In addition we could
not rely on user feedback to gradually evaluate and improve predictions. The ultimate source of truth
in our case is experimental validation, where a role of a gene in driving resistance phenotype could be
tested in wvitro or in animal models. At the moment large-scale validation experiments are not feasi-
ble since they are costly and take long time to perform. However in an ideal scenario, experimental
output can become an equivalent of user feedback and be used to improve predictions of biomedical
recommendation systems.

In summary, accumulation of large amounts of biomedical data coupled with the need to comprehend
and reason about it makes biomedical applications an attractive field for recommendation techniques.
However direct translation of traditional recommendation approaches to the biomedical domain is
not always trivial. Specifics of the problem space and complexity of biological systems call for efficient
recommendation solutions that could operate in unsupervised or weakly supervised settings. We believe
that wider adoption and systematic use of recommendation system to solve biological problems bear
a potential to transform biomedical research and drug discovery.

Methods

Pooled drug CRISPR screen data

The primary data for pre-clinical drug resistance to EGFRi was generated from pooled, genome-
wide CRISPR loss-of-function (LoF) and gain-of-function (GoF) studies, analogous to [59]. In the
screens every gene in the genome was knocked out or over expressed and the impact on osimertinib
resistance was assessed based on a treatment-control comparison of guide RNA prevalence. The screens
recapitulate clinical treatment scenarios for FGFR mutant lung cancer in that the cell line models
contain activating mutations of EGFR. As described in [33] the cell lines were treated with EGFR
inhibitors for 3 weeks to allow hit identification of genes driving resistance when knocked out or
overexpressed. In total we identified a starting list of >3000 resistance genes as hits to be re-ranked.
Hits were defined according to [60].

Graph-derived features

The biomedical knowledge graph was built as described in [27]. Embeddings were calculated based
on the full graph using RESCAL algorithm [61]. L2 distance from human gene nodes to "EGFR’
and 'NSCLC’ nodes was calculated using Faiss package [62]. Full graph was also used to calculate
descriptive network metrics such as node degree and number of unique neighbours connected to a
node.

To make graph-derived metrics more relevant to mechanistic explanation of EGFRI resistance, we
further focused on a protein-protein interaction (PPI) subgraph. PPI subgraph was defined based on
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the ’interacts’ edges from HetioNet [63, 64]. PPI subgraph was used to calculate PageRank [34] and
betweenness [65] metrics for each gene node.

Literature-based features

To estimate overall literature support for a gene’s involvement in EGFR inhibitor resistance we analysed
a corpus of PubMed and PMC articles as well as Springer bio-classified data published between 2000
and 2019. The corpus was further restricted to a set of 185299 publications relevant to cancer and/or
secondary drug resistance. The search was performed on the title, abstract and full text. Next, two
key terms were identified - '"EGFR’ and 'NSCLC’. For each of the target terms we computed the total
number of papers that mention a given human gene and one of the key terms of interest together.
The resulting two summary metrics were included in a hybrid feature set and exposed through the
skywalkR interface.

In addition to single-gene metrics we computed multi-term gene co-occurrence in previously defined
(cancer and drug resistance) context. The idea behind this analysis was to discover sets of genes
that tend to co-occur together in EGFR inhibitor resistance context. Frequent co-occurrence of gene
combinations across publications could indicate a strong link between genes within a set and suggest
a potential mechanism driving secondary resistance. Gene co-occurrence matrix was used to build an
interactive heatmap in the skywalkR app.

Clinical enrichment features

Osimertinib is an irreversible EGFR inhibitor that selectively targets the EGFR T790M mutation [66].
We aggregated data from Osimertinib-treated patients across four clinical trials - AURAext, AURA2,
AURA3, and FLAURA. AURAext is a phase II extention of the AURA trial with an 80mg/day
Osimertinib dose administered to Non-small Cell Lung Cancer (NSCLC) patients [36]. AURA2 is a
Phase 2 single arm clinical trial for NSCLC patients with advanced disease who progressed on previous
treatment with EGFR Tyrosine Kinase Inhibitor (TKI), and also carry the EGFR T790M mutation
[37]. AURA3 is a Phase 3 randomised study comparing the efficacy of Osimertinib vs platinum-based
chemotherapy in advanced NSCLC patients who have progressed on prior treatment with EGFR TKI.
These patients also carry the EGFR T790M mutation [21]. FLAURA is a Phase 3 clinical trial for
first-line Osimertinib treated advanced NSCLC patients vs other EGFR TKI standard-of-care (SoC)
treatments [22].

335 patients treated with Osimertinib across the 4 trials were analysed. Sequencing data from Guardant
Health and FMI gene panels were utilised to identify genetic alterations. Patients who were classified
with the RECIST criteria of Partial Responder/Complete Responder AND PFS > 6mos were classified
as responders, and enrichment of genetic alterations in responders vs non-responders was calculated. As
individual trials utilised different clinical gene panels, the enrichment metrics were kept trial-specific
and no aggregation across trials was performed. This ’enrichment score’ was used as a feature for
multi-objective optimisation.

Tractability

To estimate druggability of candidate genes we relied on tractability scores from OpenTargets https://
github.com/melschneider/tractability_pipeline_v2, [38]. Tractability scores for three modalities
were included: antibodies, small molecules and other modalities (e.g. enzyme, protein, oligonucleotide,
etc.). For convenience buckets were reversed, so that the highest druggable bucket corresponded to
the highest numeric score 10. Reversed tractability metrics were exposed through the skywalkR app.
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Gene essentiality

Information about whether the gene is common essential or not was retrieved from DMC DepMap [67].
We flagged a gene as "essential" if inhibition of target gene results in reduced viability for 90% of cell
lines used in DepMap. Otherwise a gene was flagged as "nonessential".

Models, implementations

Pareto fronts were computed based on the implementation from the rPref R package [68]. To build
binary classifiers for gene labels we used fast implementation of random forest from ranger package
[69]. Shapley values were calculated using fastshap package [70].

Pathway enrichment analysis

We used MetaCore to perform enrichment analysis. Genes were matched to possible targets in func-
tional ontologies of MetaCore. The probability of a random intersection between a set of IDs the size
of target list with ontology entities is estimated in p-value of hypergeometric intersection. The lower
p-value means higher relevance of the entity to the dataset. Canonical pathway maps represent a set
of signaling and metabolic maps for human. All maps are created by manual curators/scientists from
Clarivate Analytics relying on published peer-reviewed literature. To adjust enrichment results we
additionally performed crosstalk analysis.

Generation of KO or activation cell lines, plasmids and antibodies

PC-9 and HCC827 cell lines were cultured at 37C and 5% CO2 in RPMI 1640 GlutaMAX media
(Gibco, US) supplemented with 10% fetal bovine serum. For generation of KO cell line pools PC-9
and HCC827 cells were transduced with pKLV2-EF1la-Cas9Bsd-W (Addgene 1D:68343)[71] to stably
express Cas9. Transduced cells were subjected to Blasticidin (Gibco, US) selection. To knockout
target genes guide RNAs targeting KCTD5, NF1, PTEN or non-targeting-control (see Table 3) were
cloned into pLKV2-U6gRNAS5(BbsI)-PGKpuro2ABFP-W (Addgene ID:67974) and Cas9 expressing
cell lines were transduced and selected with puromycin (Gibco, US). To activate MET expression in
PC-9 cells the three vector based CRISPR SAM system [72| was used. In brief, viroid’s containing
open reading frames of dCas9-VP64 and MS2-P65-HSF1 as well as target specific guideRNA expression
constructs were purchased (SAMVP64BSTV, SAMMS2HYGV and LV06 respectively, Sigma Aldrich)
and used to stepwise transduce and select PC-9 cells. After each transduction cells were subjected to
respective antibiotic selection (blasticidin, hygromycin, puromycin). 14 days after transduction whole
cell lysates of selected cell pools were analysed by western blot to confirm CRISPR KO or CRISPR
activation of gene expression using anti-KCTD5 (proteintech, 15553-1-AP), anti-MET (CST, #8198),
anti-NF1(abcam, ab17963), anti-PTEN (CST, #9559), as well as loading control ab.

Viability assay

Two thousand cells were seeded 24h prior to treatmemt into 96 well plates. Cells were treated with
indicated concentrations of DMSO or osimertinib and cultured for 5 days as technical triplicates.
Viability was determined by adding CellTiter-Glo Luminescent Cell Viability Assay (Promega, US)
according to manufacturer’s protocol and measuring luminescence using a SpectraMax plate reader
(Molecular Devices, US). Results are visualised as percent viability of DMSO treated control. Shown
are representative results of three biological replicates.
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Flow cytometry based resistance tracking

For studying the effects of gene KO on osimertinib resistance, PC-9 and HCC827 KO cell lines were co-
cultured with respective Cas9-expressing control cells and treated with DMSO or osimertinib (50nM)
for 14 days. Media and drug was replenished every 3-4 days. Fractions of KO cells relative to control
cells were determined by measuring BFP co-expression in KO cells via flow cytometry at indicated
timepoints. In case of PC-9 CRISPR activation lines, PC-9 control cells were stably labelled with
BFP and fractions of unstained CRISPR activation cells relative to BFP-positive control cells were
determined by flow cytometry. All experiments were performed as three technical replicates of two
independent guideRNAs per gene as biological replicates. FlowJo 10 was used for analysis of FACS
data.

Code availability

skywalkR source code and documentation can be found at https://github.com/AstraZeneca/skywalkR.
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Figure 1: Hybrid recommendation system takes into account diverse types of evidence to suggest
promising drivers of drug resistance in NSCLC. The evidence from specially built knowledge graph,
literature, clinical and pre-clinical datasets is aggregated and formalized as objectives in multi-objective

optimization (MOO) task. Recommended solutions (genes) represent the optimal trade-offs between
the conflicting objectives. A subset of recommended genes is passed for the experimental validation.
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Figure 2: SkywalkR interactive interface allows users to re-rank CRISPR hits based on various combi-
nations of objectives. A) On the side bar panel each objective is represented with a slider. Users can
decide which objectives to include in the optimization and can also specify direction of optimization
(minimize or maximize). B) Additional tools to explore the results. Relative view shows profiles of rec-
ommended genes. Bar plots demonstrate standardized values across objectives and top recommended
genes. Co-occurence heatmap demonstrates clusters of genes frequently mentioned together in EGFR
TKI resistance context.
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Figure 3: Evaluation of top recommended genes by five independent experts indicates that majority
of genes can be classified either as ’known’ A) or 'novel, but credible’ B) categories. Four genes
were labelled as 'novel, not credible by the experts’ C). Here credibility refers to the absence of clear
path to validate predictions experimentally. Features used to generate predictions: full screen — overall
consistency across all conditions in the CRISPR screen; RNASeq LFC —log2 fold change from internal
RNASeq study; clinical ESI, clinical ES2, clinical ES3 — enrichment scores from clinical studies
where resistant patients were compared against responders; lit EGFR, lit NSCLC' — co-occurrence
estimates from the literature. Agreement column indicates the number of experts assigning a certain
label to a gene. Size of a bubble reflects value normalized across the full set of features for all genes.
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Figure 4: Shapley values reflect relative importance of features that differentiate relevant hits from
non-relevant. We modelled the task as a binary classification problem, where a gene can be labelled as
either relevant or not. A list of genes prioritised by domain experts for secondary screens was used as
a set of labels. The analysis was run using a subsection of default objectives A) and repeated on the
full set of objectives B). In both cases features associated with consistency in CRISPR screens appear
to have the greatest impact on classification.
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Figure 5: Validation of resistance genes proposed by recommendation system. A) Proliferation assays
confirm osimertinib sensitivity of EGFR-mutant NSCLC cell lines PC-9 and HCC827 after 5 days of
treatment. B) Resistance to osimertinib by target gene KO was measured in flow cytometry based
competition assays.Increase in percentage of KO cells compared to control cells was considered as
resistance effect to osimertinib. C) Confirmation of resistance to osimertinib in EGFR mutant NSCLC
KO cell line models. Effect of KO of three genes (KCTD5, NF1 and PTEN) on osimertinib resistance
was tested in PC-9 and HCCB827 cell lines. Proliferation of cells in DMSO or osimertinib (50nM)
was tracked over 14 days and percentage of BFP+ KO cells was plotted. D) Activation of MET
drives resistance to osimertinib in EGFR mutant PC-9 cells PC-9 cells were engineered to express the
dCas9-VP64 SAM CRISPR activation system [72].
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Category Name Definition Default

Essentiality | depmap Gene essentiality according to DepMap; used for | exclude

filtering only.

Tractability | trct_ab Tractability with antibodies exclude
trct_sb Tractability with small molecules maximize
trct_om Tractability with other modalities exclude

Literature lit_nsclc Number of papers mentioning NSCLC AND a | maximize

candidate gene in cancer context
lit_egfr Number of papers mentioning EGFR AND a | maximize
candidate gene in cancer context

KG-derived | L2_egfr Euclidean distance from a gene to EGFR node | exclude

based on RESCAL embeddings
L2_nsclc Euclidean distance from a gene to NSCLC node | exclude
based on RESCAL embeddings
n_neighbours Number of unique neighbours in the full graph | exclude
n_edges Number of edges connected to a node in the full | exclude
graph
degree Node degree in PPI subgraph exclude
pageRank pageRank for a node computed on PPI subgraph | exclude
betweenness betweenness centrality of a node, computed on | exclude
PPI subgraph
CRISPR full_screen summary consistency across all cell lines in | maximize
CRISPRn and CRISPRa screens
KO_osi CRISPRn, number of cell lines treated with os- | exclude
imertinib where a gene is a hit
KO_gefi CRISPRn, number of cell lines treated with gefi- | exclude
tinib where a gene is a hit
K0_all CRISPRn, number of cell lines treated with ei- | maximize
ther osimertinib or gefitinb where a gene is a hit
A_osi CRISPRa, number of cell lines treated with os- | exclude
imertinib where a gene is a hit
A_gefi CRISPRa, number of cell lines treated with gefi- | exclude
tinib where a gene is a hit
A_all CRISPRa, number of cell lines treated with ei- | maximize
ther osimertinib or gefitinib where a gene is a
hit
Clinical clinical_ES1 mutation enrichment score in internal clinical | maximize
study 1
clinical_ES2 mutation enrichment score in internal clinical | maximize
study 2
clinical_ES3 mutation enrichment score, cross-studies maximize
Pre-clinical | RNASeq_LFC log2 fold change from internal RNAseq study, | maximize
where cancer cell lines were treated with osimer-
tinib vs DMSO treatment
RNASeq_pval adjusted p-values associated with LFC minimize

Table 1: SUPPLEMENTARY.

Definitions of features used for multi-objective optimization
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Figure 6: SUPPLEMENTARY. Crosstalk analysis of BIKG recommended hits: The network of the top
10 ontology terms from pathway enrichment analysis. Nodes represent top terms and edges represent
significant similarities (as measured by hypergeometric test) between these entities. The edge thickness
depends on the size of intersection between two ontology terms while the color of the node corresponds
to the enrichment z-score.
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Maps Total | p-value | FDR In Network objects from data

Data
Mechanisms  of  re- | 45 1.5e-13 1.6e-10 11 ERK1 (MAPK3), ErbB2, K-RAS, PTEN,
sistance  to  EGFR c-Src, ERK2 (MAPK1), AKT(PKB), E-
inhibitors in lung cadherin, IGF-1 receptor, HGF receptor
cancer (Met), ErbB3
Main  pathways  of | 80 1.2e-10 6.3e-08 11 Tuberin, PDGF receptor, ErbB2, K-RAS,
Schwann cells transfor- PTEN, ERK1/2, PDGF-R-beta, Neu-
mation in neurofibro- rofibromin, AKT(PKB), IGF-1 receptor,
matosis type 1 ErbB3
EGFR  signaling in | 46 2.4e-10 7.4e-08 9 Tuberin, ERK1 (MAPKS3), ErbB2, K-
Prostate Cancer RAS, ERK1/2, c¢-Src, ERK2 (MAPK1),

AKT(PKB), ErbB3

Development H3K36 20 2.8e-10 7.4e-08 7 CDK4, pl5, Bcel-6, p53, EZH2, pl4ARF,
demethylation in stem pl6INK4
cell maintenance
Aberrant B-Raf signal- | 55 1.3e-09 2.7e-07 9 Tuberin, CBP, AKT1, ERK1/2, ROCK,
ing in melanoma pro- ERK2 (MAPK1), BMF, AKT(PKB), Ric-
gression tor
Regulation of Tissue | 43 3.8e-09 6.6e-07 8 ERK1 (MAPK3), K-RAS, VEGFR-2,
factor  signaling in PTEN, ERK1/2, ERK2 (MAPK1),
cancer AKT(PKB), p53
Development Estrogen- | 44 4.6e-09 6.9e-07 8 ERK1 (MAPK3), ErbB2, CBP, ERK1/2,
independent activation ERK2 (MAPK1), AKT(PKB), IGF-1 re-
of ESR1 and ESR2 ceptor, ErbB3
LKB1 signaling path- | 45 5.5e-09 7.3e-07 8 Tuberin, PTEN, ERK1/2, ¢-Src, BRG1,
way in lung cancer cells p53, E-cadherin, p16INK4
Main genetic and epige- | 48 9.4e-09 1.1e-06 8 K-RAS, CDK4, PTEN, p53, IGF-1 re-
netic alterations in lung ceptor, HGF receptor (Met), pl4ARF,
cancer p16INK4
The role of | 32 1.1e-08 1.2e-06 7 ERK1 (MAPK3), TXNRDI1, CBP,

KEAP1/NRF2 pathway
in skin sensitization

ERK1/2, ERK2 (MAPK1), E-cadherin,
KEAP1

Table 2: SUPPLEMETARY. Pathway Enrichment Analysis
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Figure 7: SUPPLEMENTARY. Evaluation of gene KO and activation in NSCLC cell lines. A CRIPSR
Cas9 vector system used for generation of PC-9 and HCC827 KO cell lines. In these cell lines Cas9 is
expressed constitutively after Blasticidin selection. pKLV2 sgRNA vector co-expressed BFP for FACS
based tracking of proliferation. B Loss of target gene expression of KCTD5, NF1 and PTEN as well as
overexpression of MET in PC-9. Whole cell lysates were analysed 14 days after transduction. C Loss
of target gene expression of KCTD5, NF1 and PTEN in HCC827. Whole cell lysates were analysed 14
days after transduction.
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Figure 8: SUPPLEMENTARY. Novel markers predicted by recommendation system showing evidence
paths to known osimertinib resistance markers. A shows FOSL1’s role in epigenetic silencing and
innate immune response. B shows BCL6’s role in anti-tumour immunity, cross-talk with key aberrant
pathways in cancer such as JAK/STAT and p38.
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Method Target gene sgRNA Target sequence
CRISPR NTC sgNTC 5-ACGCTAAACCAACGGTGC-3’
KO
KCTD5 sgKCTD5 #1 5-ACGTTGAGTCGGACCCACT-3’
sgKCTD5 #2 5-GATTTCGGGTCCCGGCACA-3’
NF1 sgNF1 #1 5-CCGAAGTTCAGCTGCATGC-3’
sgNF1 #2 5-TTAGCAGTTATAAATAGCC-3’
PTEN sgPTEN +#1 5-CCGCCAAATTTAATTGCAG-3’
sgPTEN #2 5-GATAAGTTCTAGCTGTGGT-3’
CRISPR MET sgMET #1 5-TGGCAGGGCAGCGCGCGTGT-3’
activation sgMET #2 5-TGGTCGCCTGGCGGTGCCTC-3’

Table 3: SUPPLEMENTARY. Target sequences of guide RNAs used in this study
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