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2	

ABSTRACT 41	
 42	
Background 43	
Ocean microbes constitute ~70% of the marine biomass, are responsible for ~50% of 44	
the Earth’s primary production, and are crucial for global biogeochemical cycles. 45	
Marine microbiotas include core taxa that are usually key for ecosystem function. 46	
Despite their importance, core marine microbes are relatively unknown, which reflects 47	
the lack of consensus on how to identify them. So far, most core microbiotas have been 48	
defined based on species occurrence and abundance. Yet, species interactions are also 49	
important to identify core microbes, as communities include interacting species. Here, 50	
we investigate interconnected bacteria and small protists of the core pelagic microbiota 51	
populating a long-term marine-coastal observatory in the Mediterranean Sea over a 52	
decade. 53	
 54	
Results 55	
Core microbes were defined as those present in >30% of the monthly samples over 10 56	
years, with the strongest associations. The core microbiota included 259 Operational 57	
Taxonomic Units (OTUs) including 182 bacteria, 77 protists, and 1,411 strong and 58	
mostly positive (~95%) associations. Core bacteria tended to be associated with other 59	
bacteria, while core protists tended to be associated with bacteria. The richness and 60	
abundance of core OTUs varied annually, decreasing in stratified warmers waters and 61	
increasing in colder mixed waters. Most core OTUs had a preference for one season, 62	
mostly winter, which featured subnetworks with the highest connectivity. Groups of 63	
highly associated taxa tended to include protists and bacteria with predominance in the 64	
same season, particularly winter. A group of 13 highly-connected hub-OTUs, with 65	
potentially important ecological roles dominated in winter and spring. Similarly, 18 66	
connector OTUs with a low degree but high centrality were mostly associated with 67	
summer or autumn and may represent transitions between seasonal communities. 68	
 69	
Conclusions 70	
We found a relatively small and dynamic interconnected core microbiota in a model 71	
temperate marine-coastal site, with potential interactions being more deterministic in 72	
winter than in other seasons. These core microbes would be essential for the functioning 73	
of this ecosystem over the year. Other non-core taxa may also carry out important 74	
functions but would be redundant and non-essential. Our work contributes to the 75	
understanding of the dynamics and potential interactions of core microbes possibly 76	
sustaining ocean ecosystem function. 77	
 78	
 79	
Keywords: bacteria, protists, ocean, time-series, seasonality, networks, associations 80	
  81	
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3	

BACKGROUND 82	

Ecosystems are composed of interacting units embedded in and influenced by their 83	

physicochemical environment. Ecosystem function can be broadly defined as the 84	

biological, geochemical, and physical processes that occur within it. These processes 85	

will likely change or halt if specific organisms or gene-functions are removed, driving 86	

the ecosystem towards a new state or its collapse. It is hypothesized that ecological 87	

redundancy guarantees continuous ecosystem function, as multiple species could carry 88	

out the same or similar function [1]. And while the amount of functional redundancy in 89	

microbial ecosystems is a matter of debate [2, 3] it has also been observed that 90	

microbiotas in comparable habitats tend to share “core” species that are hypothesized 91	

to be fundamental for ecosystem function [4]. These core organisms and the functions 92	

they carry out might not be easily replaced.   93	

Identifying the core microbiota is not straightforward as there are different ways 94	

of defining a core depending on the habitats and the questions being addressed [4]. One 95	

often-used approach is to identify species that tend to be recurrently present across 96	

spatiotemporal scales. This definition might not be sufficient, however, since 97	

communities are made up of interacting species [5]. A more appropriate definition of a 98	

core, therefore, needs to incorporate ecological interactions fundamental for the 99	

community in the location under study [4, 5]. This is particularly important in studies 100	

using DNA to investigate microbial communities, as a fraction of the detected taxa 101	

could be dormant, dead, or transient [6-8]. In the interaction-based definition taxa that 102	

do not appear to be interacting are excluded from the core [4].  103	

Core microbiotas based on common presence have been widely studied in 104	

terrestrial animals, in particular humans [9] or cattle [10], as well in marine animals, in 105	

particular corals [11, 12] and sponges [13, 14]. Core microbiotas in non-host-associated 106	
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systems, such as soils or the ocean, have been investigated to a lesser extent.  In soils, 107	

for example, a global analysis identified a core group of 241 ubiquitous and dominant 108	

bacterial taxa with more or less invariant abundances and unclear habitat preferences 109	

[15]. In the tropical and subtropical global-ocean, a total of 68 bacteria and 57 110	

picoeukaryotic operational taxonomic units (OTUs) have been identified that could be 111	

part of the core surface microbiota, as they were present in >80% of the globally-112	

distributed samples [16].  113	

Analyses of ocean time-series have also pointed to the existence of core 114	

microbiotas. For example, Gilbert et al. [17] investigated the microbiota of the English 115	

Channel for 6 years and found 12 abundant OTUs that were detected throughout the 116	

entire dataset (72 time-points), totaling ~35% of the sequence abundance. Potentially 117	

core bacterial OTUs were detected in the SPOT time-series (southern California), in a 118	

study covering 10 years of monthly samples in the euphotic zone [18]. These 119	

potentially-core bacterial OTUs were present in >75% of the months, represented ~7% 120	

(25-28 OTUs depending on depth) of the total richness, and had a high (>10%) relative 121	

abundance [18].  122	

These studies have provided substantial insights on core marine microbiotas, 123	

although they typically define them in terms of species occurrence or abundance over 124	

spatiotemporal scales, rather than on potential interactions. As in other ecosystems, 125	

microbial interactions are essential for the functioning of the ocean ecosystem, where 126	

they guarantee the transfer of carbon and energy to upper trophic levels, as well as the 127	

recycling of carbon and nutrients [19]. Despite their importance, most microbial 128	

interactions in the ocean remain unknown [20]. A recent literature survey spanning the 129	

last 150 years indicated that we have documented a minor fraction of protist interactions 130	

in the ocean [21] and most likely, the same is true if not worse for bacteria.  131	
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During the last decade, association networks have been used to bridge this 132	

knowledge gap. Association networks are based on correlations between species’ 133	

abundances and they may reflect microbial interactions [22]. Contemporaneous 134	

positive correlations may point to interactions such as symbiosis,  or similar niche 135	

preferences, while negative correlations may suggest predation, competition, or 136	

opposite niche preferences [23]. So far, network analyses have produced hypotheses on 137	

microbial interactions at the level of individual species across diverse ecosystems [22, 138	

24, 25], a few of which have been experimentally validated [26]. In addition, networks 139	

can help detect species that have relatively more associations to other species (“hubs”), 140	

or species that connect different subgroups within a network, and which therefore may 141	

have important roles in the ecosystem. Groups of highly associated species in the 142	

network (“modules”) may represent niches [27, 28], and the amount of these modules 143	

may increase with increasing environmental selection [22]. Networks can also produce 144	

ecological insight at the community level, since their architecture can reflect 145	

community processes, such as selection [27]. 146	

Network analyses have been particularly useful for the investigation of 147	

microbial interactions in the ocean [25, 29]. A surface global-ocean network analysis 148	

of prokaryotes and single-celled eukaryotes indicated that ~72% of the associations 149	

between microbes were positive and that most associations were between single-celled 150	

eukaryotes belonging to different organismal size-fractions [26].  Other studies using 151	

networks have indicated a limited number of associations between marine microbes and 152	

abiotic environmental variables [17, 18, 23, 26, 30-32], suggesting that microbial 153	

interactions have an important role in driving community turnover [32]. Despite the 154	

important insights these studies have provided, most of them share the limitation that 155	
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they do not disentangle whether microbial associations may represent ecological 156	

interactions or environmental preferences [22].   157	

Even though association networks based on long-term species dynamics may 158	

allow a more accurate delineation of core marine microbiotas, few studies have 159	

identified them in this manner. Consequently, we have a limited understanding of the 160	

interconnected set of organisms that may be key for ocean ecosystem function. Here 161	

we identify and investigate the core microbiota occurring in the marine-coastal Blanes 162	

Bay Microbial Observatory (Northwestern Mediterranean Sea) over 10 years. We 163	

delineated the core microbiota stringently, using potential interactions based on species 164	

abundances. We also made an effort to disentangle environmental effects in association 165	

networks by identifying and removing species associations that are a consequence of 166	

shared environmental preference and not interactions between the species [33]. We 167	

analyzed bacteria and protists from the pico- (0.2-3 µm) and nanoplankton (3-20 µm) 168	

organismal size fractions, which show a strong seasonality in this location [34-36]. 169	

Taxa relative abundances were estimated by sequencing the 16S and 18S rRNA-gene 170	

and delineating OTUs as Amplicon Sequence Variants (ASVs). Specifically, we ask: 171	

What taxa constitute the interconnected core microbiota and what are the main patterns 172	

of this assemblage over 10 years? Does the core microbiota feature seasonal sub-groups 173	

of highly associated species? What degree of association do bacteria and microbial 174	

eukaryotes have and do they show comparable connectivity? Can we identify core 175	

OTUs with central positions in the network that could have important ecological roles? 176	

 177	

RESULTS 178	

Composition and dynamics of the resident microbiota 179	
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Based on the data set containing 2,926 OTUs, (1,561 bacteria and 1,365 microbial 180	

eukaryotes) we first defined the resident OTUs as the bacteria and microbial eukaryotes 181	

present in >30% of the samples, which equals 36 out of 120 months (not necessarily 182	

consecutive). This threshold was selected as it includes seasonal OTUs that would be 183	

present recurrently in at least one season. The residents consisted of 709 OTUs: 354 184	

Bacteria (~54% relative read abundance) and 355 Eukaryotic OTUs (~46% relative 185	

read abundance) [Table 1, see methods for calculation of relative read abundance]. The 186	

most abundant resident bacteria OTUs belonged to Oxyphotobacteria (mostly 187	

Synechococcus; ~15% of total relative read abundance), Alphaproteobacteria (mostly 188	

SAR11 Clade Ia [~9%, and clade II [~4%]), and Gammaproteobacteria (mainly SAR86; 189	

~2%). The most abundant resident protist OTUs belonged to Dinophyceae 190	

(predominantly an unclassified dinoflagellate lineage [~7%], Syndiniales Group I 191	

Clade 1 [~7%] and Gyrodinium [~4%]), Chlorophyta (mostly Micromonas [~3%] and 192	

Bathycoccus [~2%]), Ochrophyta (predominantly Mediophyceae [~2%] and 193	

Chaetoceros [~1%]) and Cryptophyceae (mainly a Cryptomonadales lineage [~2%]) 194	

[Figure 3, Table S1, Additional file 1]. 195	

 196	

Table 1. Description of the datasets. 197	
 OTUs OTUs (%) Sequence abundance (%) * 

All OTUs1 2,926 100 100 
     Bacteria      1,561 53.3 50.7 
     Protists      1,365 46.7 49.3 
    
Resident microbiota2 709 100 100 (85) 
     Bacteria      354      49.9 53.6 
     Protists      355      50.1 46.4 
    
Core microbiota3 259 100 64.5 (54) 
     Bacteria 182 70.3 46.3 
     Protists 77 29.7 18.2 
     Picoplankton 109 42.1 32.4 
     Nanoplankton 150 57.9 32.1 
   Protists    
     Heterotroph  5 1.9 0.3 
     Photoautotroph  37 14.3 11.8 
     Parasite  21 8.1 3.5 
     Mixotroph  3 1.2 0.7 
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     Symbiont  1 0.4 0.1 
     Unknown 11 4.3 2.0 
   Bacteria    
     Photoautotroph (cyanobacteria) 19 7.3 19.3 
     Non-photoautotroph4 163 62.5 26.8 
  Seasonal preference core OTUs    
     Winter 156 60.2 21.8 
     Spring 24 9.3 16.4 
     Summer 44 17.0 8.2 
     Autumn 30 11.6 13.7 
     No seasonality 5 1.9 4.5 
  Seasonal subnetworks    
     Winter 156 60.2 21.8 
     Spring  19 7.3 13.7 
     Summer  41 15.8 6.6 
     Autumn  26 10.0 12.9 

1 Number of OTUs in the full dataset that were left after quality control and rarefaction, which were present in at least 10% of the 198	
samples (i.e. 12 months, not necessarily consecutive). 199	

2 OTUs present in at least 30% of the samples (i.e. 36 months, not necessarily consecutive) [=Resident microbiota]. 200	
3 OTUs included in the core network (core microbiota) with significant correlations (p&q <0.001), local similarity scores >|0.7| and 201	

Spearman correlations >|0.7|, being present in at least 30% of the samples. 202	
4 Includes non-photoautotrophic lifestyles (i.e., chemoautotrophs, photoheterotrophs, chemoheterotrophs, etc.). 203	
* In Italics the abundances relative to all OTUs are indicated.  All other values in normal text indicate abundances relative to OTUs in the resident   204	
  microbiota. 205	
 206	

 The resident microbiota, including both protists and bacteria, showed seasonal 207	

variation over 10 years, with communities from the same season but different years 208	

tending to group (Figure 1C and D). The structure of the resident microbiota correlated 209	

to specific environmental variables during winter (nutrients, Total photosynthetic 210	

nanoflagellates [PNF; 2-5µm size], and small PNF [2µm]), spring (Total Chlorophyll 211	

a [Chla]), summer (daylength, temperature, Secchi disk depth and, the cell abundances 212	

of Synechococcus, Heterotrophic prokaryotes [HP] and Heterotrophic nanoflagellates 213	

[HNF, 2-5µm]) and autumn (salinity) [Figure 1C]. The environmental variables most 214	

relevant for explaining the variance of the resident microbiota were determined by 215	

stepwise model selection and distance-based redundancy analyses (dbRDA) [Figure 216	

1D], leading to a dbRDA constrained and unconstrained variation of 41% and 59% 217	

respectively (Figure 1D). The selected variables were predominantly aligned with the 218	

axis summer (daylength, temperature, and the cell abundance of Synechococcus and 219	

HP) - winter (SiO2, small PNF [Figure 1D]. This dbRDA axis had the highest 220	

eigenvalue, explaining ~55% of the constrained variation (Figure 1D). Even though 221	

the measured environmental variables did not explain the majority of the variation of 222	
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the resident microbiota, they could account for a substantial fraction. This was further 223	

supported by Adonis analyses, which indicated that the measured environmental 224	

variables could explain ~45% of the resident microbiota variance, with temperature and 225	

daylength having a predominant role by accounting for 30% of this variance (15% 226	

each).  227	

 We then investigated whether temperature and daylength could determine the 228	

main niches. We found that ~70% and ~68% of the OTUs in the resident microbiota 229	

had niche preferences associated with temperature or daylength respectively (Figure 230	

1E-F; Note that several OTUs preferring Spring or Autumn are not expected to be 231	

detected with this approach, as their preferred temperature or daylength may not differ 232	

significantly from the randomized mean). In total, 371 OTUs from the resident 233	

microbiota had both a temperature and a daylength niche preference that departed 234	

significantly from the randomization mean (Figure 1E-F). These 371 OTUs 235	

represented ~52% of all OTUs in the resident microbiota, corresponding to ~90% of 236	

the sequence abundance. In particular, 248 OTUs had a weighted mean for both 237	

temperature and daylength below the randomization mean (corresponding to 238	

winter/autumn), while 116 OTUs had a weighted mean above the randomization mean 239	

for both variables (corresponding to summer/spring). Interestingly, 7 OTUs displayed 240	

a weighted mean above and below the randomized mean for temperature and daylength 241	

respectively (corresponding to autumn or spring).  242	
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 243	

Figure 1. The Blanes Bay Microbial Observatory and the variation of its resident 244	

microbiota and measured environmental variables over ten years. A) Location of the Blanes 245	

Bay Microbial Observatory. B) All possible correlations between the measured environmental 246	

variables including the richness and abundance of resident OTUs (NB: only 709 resident OTUs 247	

are considered, see Table1). Only significant Pearson correlation coefficients are shown 248	

(p<0.01). The p-values were corrected for multiple inference (Holm's method). C) Unconstrained 249	
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ordination (NMDS based on Bray Curtis dissimilarities) of communities including resident OTUs 250	

only, to which environmental variables were fitted. Only variables with a significant fit are shown 251	

(P<0.05).  Arrows indicate the direction of the gradient and their length represents the strength 252	

of the correlation between resident OTUs and a particular environmental variable. The color of 253	

the samples (circles) indicates the season to which they belong. The bottom-left arrow indicates 254	

the direction of the seasonal change. PNF = photosynthetic nanoflagellates. D) Constrained 255	

ordination (Distance-based redundancy analyses, dbRDA, using Bray Curtis dissimilarities) 256	

including only the most relevant variables after stepwise model selection using permutation tests. 257	

Each axis (i.e., dbRDA1 and dbRDA2) indicates the amount of variance it explains according to 258	

the associated eigenvalues. The color of the samples (circles) indicates the season to which they 259	

belong. Arrows indicate the direction of the gradient and their length represents the strength of 260	

the correlation between resident OTUs and a particular environmental variable. The bottom-left 261	

arrow indicates the direction of the seasonal change. E-F) Resident OTUs displaying different 262	

niche preferences (blueish areas) in terms of the two most important abiotic variables: 263	

Temperature E) and Daylength F). The red dots indicate the randomization mean, and the orange 264	

curves represent the confidence limits. Black dots indicate individual OTUs for which temperature 265	

or daylength preferences are significantly (p<0.05) higher or lower than a random distribution 266	

over 10 years. At least two assemblages with different niches become evident: one preferring 267	

higher temperature and longer days (summer/spring), and another one preferring lower 268	

temperature and shorter days (winter/autumn). Note that several OTUs associated to Spring or 269	

Autumn are not expected to be detected with this approach, as their preferred temperature or 270	

daylength may not differ significantly from the randomized mean. 271	

 272	

Core network 273	
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To determine the core microbiota that incorporates possible interactions, we 274	

constructed an association network based on the resident OTUs and removed all OTUs 275	

that were not involved in strong and significant associations with any other OTUs. 276	

Specifically, we kept only the associations (edges in the network) with Local similarity 277	

score |LS| > 0.7, a false discovery rate adjusted p-value < 0.001 and Spearman |r| > 0.7. 278	

In addition, we removed all associations that seemed to be caused by environmental 279	

preferences of OTUs (see Methods). The core network consisted of 1,411 significant 280	

and strong correlations (Figure 2A) and was substantially smaller than the network 281	

based on the resident OTUs without stringent cut-offs (Figure S1A, Additional file 2, 282	

removed edges in Figure S1B, Additional file 2). The core network includes only the 283	

strongest microbial associations that are inferred during a decade and, according to our 284	

definition, determines the core microbiota. The associations in the core microbiota may 285	

represent proxies for species interactions since steps have been taken to remove 286	

associations that are driven by environmental factors.  287	

In the core network, most associations were positive (~95%), pointing to the 288	

dominance of co-existence or symbiotic associations (Table 2, Figure 2A). The core 289	

network had “small world” properties [37], with a small average path length (i.e. 290	

number of nodes between any pair of nodes through the shortest path) and a relatively 291	

high clustering coefficient, showing that nodes tend to be connected to other nodes, 292	

forming tightly knit groups, more than what it would be expected by chance (Table 3). 293	

Since node degree was not correlated with OTU abundance (Figure S2, Additional file 294	

3), the associations between OTUs are not caused by a high sequence abundance alone, 295	

as the most abundant OTUs did not tend to be the most connected. 296	
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 297	

 298	

Figure 2. Core microbiota resulting from 10 years of monthly pico- and nanoplankton 299	

relative abundances. A) Core network including bacteria and microbial eukaryotic OTUs that 300	

occur ≥ 30% of the time during the studied decade (i.e. resident microbiota), with highly 301	
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significant and strong associations (P<0.001 and Q<0.001, absolute local similarity score |LS| > 302	

0.7, Spearman correlation |ρ|>0.7), where detected environmentally-driven edges were 303	

removed. The color of the edges (links) indicates whether the association is positive (grey) or 304	

negative (red). The shape of nodes indicates bacteria (rhomboid) or microbial eukaryotes (circle), 305	

and the color of nodes represents species seasonal preferences, determined using the indicator 306	

value (indval, p<0.05). Node size indicates OTU relative abundance. B) Core network as a Circos 307	

plot, indicating the high-rank taxonomy of the core OTUs. Since 95% of the associations are 308	

positive (see Table 2), we do not indicate whether an edge is positive or negative. 309	

 310	

 The core network displayed a winter cluster, while no clear clusters could be 311	

defined for the other seasons (Figure 2A). Of the 15 environmental variables analyzed, 312	

only 3 were found to be significantly correlated with core OTUs: daylength, showing 313	

strong correlations with 33 OTUs, temperature, correlated with 14 OTUs, and 314	

Chlorophyll a, correlated with 1 OTU (Figure 2A). Therefore, the analysis of the core 315	

network also points to the importance of temperature and daylength in the decade-long 316	

seasonal dynamics of the studied microbial ecosystem. It is also coherent with the 317	

Adonis and ordination analyses (Figure 1C-B). However, the associations between 318	

these environmental parameters with taxa represented only 4% of all the associations 319	

(Figure 2B). 320	

Table 2. Core associations. See Figure 2.   321	

 322	
 Association #  

(edges) 
Co-occurrences 

(positive) 
 Co-exclusions 

(negative) 
All 1,411 1,341 (95.0%) 70 (5.0%) 
Within Picoplankton 378    353 (93.3%) 25 (6.6%) 
Within Nanoplankton 791    748 (94.6%) 43 (5.4%) 
Picoplankton-Nanoplankton 242    240 (99.2%)        2 (0.8%) 

 323	

Of the 709 OTUs from the resident microbiota (Figure 3), only 259 OTUs 324	

(35%) were left in the core network (182 bacteria (~70%) and 77 microbial eukaryotic 325	
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OTUs (~30%); Table 1, Figure 2). The monthly taxonomic composition of the resident 326	

microbiota differed from that of the core (Figure 3). The core OTUs accounted for 327	

~64% of the relative read abundance of the resident microbiota (Table 1). The core 328	

OTUs had annual variation in terms of richness and abundance over the 10 years for 329	

both the pico- and nanoplankton, with microbial eukaryotes decreasing markedly in 330	

OTU richness and relative read abundance in the warmer seasons, and increasing during 331	

colder periods (Figure 3).  332	

 333	
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 334	

Figure 3. The monthly variation in the resident and core microbiotas over 10 years. Upper 335	

panels: The resident microbiota is defined as those eukaryotes and bacteria that occur in at least 336	

30% of the samples over 10 years. The relative OTU abundance (left panel) and number of OTUs 337	

(right panel) for different domains and taxonomic levels in the resident microbiota are shown. 338	

Note that the relative abundance of Bacteria vs. Eukaryotes does not necessarily reflect 339	

organismal abundances on the sampling site, but the amplicon relative abundance after PCR. 340	

Relative abundances were calculated for each year and aggregated over the corresponding 341	

months along the 10 years for the resident microbiota, then split into size fractions (NB: relative 342	

abundance for both domains and size fraction sums up to 1 for each month across ten years). 343	

Lower panels: Core microbiota over 10 years. The relative abundances of core OTUs reflect the 344	

remaining proportions after removing all the OTUs that were not strongly associated when 345	

building networks. Relative OTU abundance (left panel) and number of OTUs (right panel) for 346	

different domains and taxonomic levels among the core OTUs.  347	

 348	

The most abundant bacteria (Figure 3; Table S2, Additional file 1) among the 349	

core OTUs were Oxyphotobacteria (mostly Synechococcus), total abundance ~14% of 350	

the resident microbiota, followed by Alphaproteobacteria, with SAR11 clades Ia and II 351	

representing ~9% and ~2% respectively. The most abundant microbial eukaryotic 352	

groups were Micromonas, Bathycoccus, Dinophyceae, and Cryptomonadales (each 353	

~2%) [Figure 3; Table S3, Additional file 1]. In terms of diversity and abundance, 354	

bacterial non-phototrophs (including chemoautotrophs, photoheterotrophs, 355	

chemoheterotrophs) were the most prevalent in the core microbiota, representing ~62% 356	

of the OTUs and a quarter of the total relative read abundance (Table 1). In turn, 357	

protistan heterotrophs represented a minor fraction of the diversity and relative 358	

abundance (Table 1). Bacteria photoautotrophs were relatively more abundant than 359	
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their protistan counterparts but less diverse (Table 1). Protistan parasites represented 360	

~8% of the OTUs and ~3% of the abundance, while the remaining protistan lifestyles 361	

had a minor relevance in the core microbiota (Table 1). 362	

 363	

Intra- and cross-domain core associations  364	

Bacteria tended to be associated with other bacteria (Table 3 & 4; Figure 2B), with 365	

Bacteria-Bacteria associations making up ~54% of all associations, while Protist-Protist 366	

associations accounted for 11% (Table 4). The connectivity of the bacterial 367	

subnetworks was higher (mean degree ~10) than the protist counterparts (mean degree 368	

~6), regardless of whether these networks included exclusively bacteria, protists, or 369	

both (Table 3). 370	

In particular, there was a substantial number of associations between Alpha- 371	

and Gammaproteobacteria, between Alphaproteobacteria and Acidiimicrobia as well as 372	

among Alphaproteobacteria OTUs (Figure 2B). Eukaryotic OTUs did not show a 373	

similar trend with associations between OTUs of the same taxonomic ranks (Figure 374	

2B). In terms of cross-domain associations, Alphaproteobacteria OTUs had several 375	

associations with most major protistan groups (i.e. dinoflagellates, diatoms, 376	

cryptophytes, Mamiellophyceae, and Syndiniales) [Figure 2B]. 377	

 378	

Core associations within the pico- and within the nanoplankton 379	

While the pico- and nano-size fractions indicate different lifestyles in bacteria (free-380	

living or particle-attached), they indicate different cell sizes in protists, and this could 381	

be reflected in association networks. Nanoplankton sub-networks were larger and more 382	

connected than picoplankton counterparts (Figure 4, Table 3). This pattern was 383	

observed in both sub-networks considering associations from the same or both size 384	
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fractions (Table 3). Nanoplankton sub-networks had a higher average degree (~10) 385	

than picoplankton sub-networks (~7; Wilcoxon p<0.05), while not differing much in 386	

other network statistics (Table 3). Most associations in the pico- and nanoplankton 387	

were positive (>93%), while the associations between OTUs from different size 388	

fractions represented only ~17% of the total, being ~99% positive (Table 2).  389	

In the pico- or nanoplankton sub-networks that include OTUs from the same 390	

size fraction, the number of bacterial core OTUs was higher than the protistan 391	

counterparts (103 bacterial vs. 47 protistan OTUs in the nanoplankton, and 79 bacterial 392	

vs. 30 protistan OTUs in the picoplankton) (Figure 4, Table 3). Still, core OTUs in 393	

both the pico- and nanoplankton had comparable sequence abundances: ~27% of the 394	

resident microbiota in each size fraction. Within the picoplankton, 64% of the 395	

associations were between bacteria, 8% between eukaryotes, and 25% between 396	

eukaryotes and bacteria (Table 4). In turn, in the nanoplankton, 50% of the edges were 397	

between bacteria, 14% between eukaryotes, and 31% between eukaryotes and bacteria 398	

(Table 4). Overall, the BBMO pico- and nanoplankton sub-networks differed in size, 399	

connectivity, and taxonomic composition, while they were similar in terms of positive 400	

connections and relative sequence abundance. 401	

 402	

Table 3. Core network and sub-networks statistics. 403	
Network Nodes 

(#OTUs) 
Edges Di. De. Average 

degree 
Average 

path 
length 

Average 
clustering 
coefficient 

Largest 
clique 

(#) 

Mod. 

Core network 262 (259) 1,411 11 0.04 10.7 3.45 0.52 13 (4) 0.19 
Random core network 262 1,411 5 0.04 10.7 2.60 0.03 3(199) 0.13 
Picoplankton all 1   161 (160)*     620* 10 0.05 7.7 3.13 0.55 10(1) 0.22 
Picoplankton only 2 110 (109)    378 9 0.06 6.9 3.15 0.51 9(4) 0.29 
Nanoplankton all 3   197 (194)*    1,033* 10 0.05 10.5 3.18 0.57 13(4) 0.15 
Nanoplankton only4 153 (150)     791 10 0.07 10.3 3.21 0.56 13(4) 0.17 
Bacteria all 5    233 (230)**     1,236** 10 0.04 10.6 3.34 0.52 11(3) 0.19 
Bacteria only 6 185 (182)        803 10 0.05 8.7 3.50 0.51 10(1) 0.31 
Protists all 7    147 (145)**      608** 5 0.06 8.3 2.40 0.48 8(2) 0.10 
Protist only 8    80 (77)      175 5 0.05 4.4 2.54 0.54 7(1) 0.32 
 404	
NB: Networks and sub-networks include OTUs and environmental factors. Di=Network diameter. De=Network density. Largest clique = size of 405	
the largest clique(s) in the network, and in brackets, the number of them. Mod = Network modularity inferred using edge betweenness. 1All 406	
associations where picoplankton OTUs are involved (including nanoplankton); 2Associations between picoplankton OTU only; 3All associations 407	
where nanoplankton OTUs are involved (including picoplankton); 4Associations between nanoplankton OTU only; 5All associations where 408	
bacterial OTUs are involved (including protists); 6Associations between bacterial OTU only; 7All associations where protist OTUs are involved 409	
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(including bacteria); 8Associations between protist OTU only. * Includes nodes and edges shared between pico- and nanoplankton. ** Includes 410	
nodes and edges shared between bacteria and protists. 411	
 412	

 413	

 414	

Figure 4. Pico- and nanoplankton core sub-networks. The shape of the nodes indicates 415	

bacteria (rhomboid) or microbial eukaryotes (circle), and the color of nodes represents species 416	
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seasonal preferences, determined using the indicator value (p<0.05). The color of the edges 417	

indicates if the association is positive (grey) or negative (red). Node size indicates OTU relative 418	

abundance from the core microbiota. 419	

 420	

Table 4. Core associations within and between taxonomic domains and size fractions.   421	

Network Association type1 # Associations  
Core network Total 1,411 

Bacteria - Bacteria 767 (54%) 
Bacteria - Protist 433 (31%) 
Protist - Protist 161 (11%) 

 Environmental factor - Bacteria 36 (3%) 
 Environmental factor - Protist 14 (1%) 
Picoplankton subnetwork Total 378 

Bacteria - Bacteria 241 (64%) 
Bacteria - Protist 94 (25%) 
Protist - Protist 31 (8%) 

 Environmental factor - Bacteria 12 (3% 
 Environmental factor - Protist 0 (0%) 
Nanoplankton subnetwork Total 791 

Bacteria - Bacteria 394 (50%) 
Bacteria - Protist 246 (31%) 
Protist - Protist 113 (14%) 

 Environmental factor - Bacteria 24 (3%) 
 Environmental factor - Protist 14 (2%) 

1 “Bacteria – Bacteria” indicates associations between two bacterial OTUs.  “Protist – Protist” are associations between two unicellular eukaryotes 422	
and “Bacteria – Protist” are associations between one eukaryote and one bacterial OTU. “Environmental factor – Protist” and “Environmental 423	
factor – Bacteria” are associations between an environmental factor and a eukaryotic or bacterial OTU.  424	
 425	

Network seasonality  426	

The indicator value (IndVal) was used to infer the seasonal preference of core OTUs. 427	

Most of the core OTUs (98%; 254 out of 259 OTUs) showed a clear preference for one 428	

of the four seasons, pointing to a marked seasonality in the core microbiota (Figure 4; 429	

Table 5; Tables S4 & S5, Additional file 1). Winter had the highest quantity of core 430	

OTUs and the highest network connectivity (average degree ~13), compared to the 431	

other seasons (average degrees ~2 – ~6) [Figure 4; Table 5]. The average path length 432	

was larger in the core network compared to a random network of the same size (Table 433	

3). Yet, all sub-networks associated with size fractions and seasons (Table 5) had 434	

shorter path lengths than the random network, indicating that nodes tended to be 435	
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connected within seasons and size fractions. This was also supported by an increase in 436	

network density when comparing the core network (Table 3) and the core network 437	

subdivided into seasons (Table 5), against the core network subdivided into both 438	

seasons and size fractions (Table 5). The five OTUs that did not show any seasonal 439	

preference, among them SAR11 Clades Ia & II, showed high to moderate abundances 440	

but had a low number of associations to other OTUs (Tables S4, S5, S6, Additional 441	

file 1). Thus, network connectivity in the BBMO appears to be heterogeneous over 442	

time, peaking in winter and remaining low in the other seasons. 443	

 444	

Table 5: Subnetworks including core OTUs displaying seasonal preference. 445	
 446	

 Sub-
network 

Number of 
OTUs 

Edges Di. De. Average 
degree 

Average 
path 

length 

Average 
clustering 
coefficient 

Largest 
clique 

(#) 

Mod. 

Al
l 

Winter 156 1,175 7 0.10 15.1 2.62 0.54 13(4) 0.19 
Spring 19 16 4 0.09 1.7 1.56 0.44 4(1) 0.75 
Summer 41 56 7 0.07 2.7 2.90 0.49 6(1) 0.53 
Autumn 26 25 3 0.08 1.9 1.59 0.46 4(2) 0.73 

Pi
co

 Winter 63 286 6 0.15 9.1 2.35 0.53 9(4) 0.10 
Spring 8 5 3 0.18 1.2 1.50 0.00 2(5) 0.56 
Summer 25 36 5 0.12 2.9 2.20 0.41 6(1) 0.23 
Autumn 5 3 2 0.30 1.2 1.25 0.00 2(3) 0.44 

Na
no

 Winter 92 658 6 0.16 14.3 2.40 0.61 13(4) 0.04 
Spring 11 11 4 0.20 2.0 1.59 0.57 4(1) 0.56 
Summer 13 17 3 0.22 2.6 1.70 0.65 4(1) 0.50 
Autumn 17 18 3 0.13 2.1 1.35 0.56 4(2) 0.60 

NB: Subnetworks include OTUs only. Di=Network diameter. De=Network density. Largest clique = size of the largest clique(s) in the network, 447	
and in brackets, the number of them. Mod = Network modularity inferred using edge betweenness.  448	
	449	

Groups of highly associated OTUs  450	

Within the core network, we identified groups that were more connected to each other 451	

than to the rest of the network (called modules). These groups of OTUs may indicate 452	

recurring associations that are likely important for the stability of ecosystem function. 453	

We identified 12 modules in both the pico- and nanoplankton subnetworks (Table S7, 454	

Additional file 1). Modules tended to include OTUs from the same season (Table S8, 455	

Additional file 1), with main modules (i.e. MCODE score >4) including OTUs 456	

predominantly associated with winter, summer, and autumn (Figure 5). Overall, winter 457	
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modules prevailed (5 out of 7) among the main modules (Figure 5), while modules 458	

with scores ≤ 4 did not tend to be associated with a specific season (Table S8, 459	

Additional file 1). Two main winter modules had members that were negatively 460	

correlated to temperature and daylength (Figure 5; Modules 1 and 4, nanoplankton). 461	

The total relative sequence abundance of core OTUs included in modules was 462	

~24% (proportional to the resident microbiota), while the total abundance of individual 463	

modules ranged between ~6% and ~0.3% (Table S7, Additional file 1). In turn, the 464	

relative abundance of core OTUs included in modules ranged between 0.01% and ~2% 465	

(Table S8, Additional file 1). In most modules, a few OTUs tended to dominate the 466	

abundance, although there were exceptions, such as module 4 of the picoplankton, 467	

where all SAR11 members featured abundances >1% (Table S8, Additional file 1). In 468	

addition, several OTUs within modules had relatively low abundances (Table S8, 469	

Additional file 1), supporting modules as a real feature of the network and not just the 470	

agglomeration of abundant taxa. 471	

 472	

Central OTUs 473	

Biological networks typically contain nodes (i.e. OTUs) that hold more “central” 474	

positions in the network than others [22]. Even though the ecological role of these hub 475	

and connector OTUs is unclear, it is acknowledged that they could reflect taxa with 476	

important ecological functions [22]. There is no universal definition for hub or 477	

connector OTUs, yet, in this work, we have used stringent thresholds to determine them 478	

ad hoc (see Methods). We have identified 13 hub-OTUs that were associated with 479	

winter or spring (Table 6). Hubs did not include highly abundant OTUs, such as 480	

Synechococcus or SAR11 (Table 6), but instead, they included several OTUs with 481	

moderate-low abundance (<1%) and high degree (ranging between 26-60) [Table 6]. 482	
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For example, the Gammaproteobacteria OTU bn_000226 had a relative abundance of 483	

0.04% and a degree of 60 (Table 6). Hubs included other moderately abundant OTUs, 484	

such as the eukaryotic picoalgae Bathycoccus, which was abundant in winter, as well 485	

as an unidentified dinoflagellate (Table 6).  486	

We identified a total of 18 connector OTUs (featuring relatively low degree and 487	

high centrality), which were predominantly associated with summer (5 out of 18) or 488	

autumn (6 out of 18), contrasting with hub OTUs, which were associated mostly with 489	

winter and spring (Table 6). Connectors may be linked to the seasonal transition 490	

between main community states (Figure 1 C & D) and included several abundant 491	

OTUs belonging to Synechococcus and SAR11 (Table 6). In particular, the SAR11 492	

OTU bp_000007 displayed a relatively high abundance (1.4%), but a degree of 3 493	

(relatively low) and a betweenness centrality of 0.6 (relatively high). In contrast, two 494	

protist OTUs displayed low-moderate abundances (ep_00269, Chrysophyceae, 495	

abundance 0.04% and en_00161, Syndiniales, abundance 0.4%), low degree <4, but a 496	

high betweenness centrality (>0.8; Table 6).  497	

 498	

 499	

 500	

 501	

 502	

 503	

 504	

 505	

 506	

 507	
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 508	

Table 6. Central OTUs. 509	
OTU Class Lowest rank taxonomy Relative 

Abundance (%)1 
Degree Betweenness 

Centrality 
Closeness 
Centrality 

Season 

Hubs        
en_00092 Mamiellophyceae Bathycoccus 0.51 42 0.04 0.42 Winter 
en_00119 Dinophyceae - 0.41 50 0.03 0.42 Winter 
bp_000037 Alphaproteobacteria Parvibaculales_OCS116 0.31 45 0.08 0.43 Winter 
bp_000039 Gammaproteobacteria SUP05_cluster 0.28 29 0.12 0.41 Spring 
bn_000039 Gammaproteobacteria SUP05_cluster 0.21 42 0.17 0.44 Spring 
bn_000037 Alphaproteobacteria Parvibaculales_OCS116 0.20 40 0.05 0.42 Spring 
bp_000059 Gammaproteobacteria SAR86 0.20 24 0.09 0.40 Spring 
ep_00070 Cryptophyceae Cryptomonadales_X 0.13 40 0.04 0.42 Winter 
bn_000059 Gammaproteobacteria SAR86 0.12 24 0.03 0.40 Spring 
bn_000102 Alphaproteobacteria Nisaeaceae_OM75 0.09 26 0.03 0.38 Winter 
bp_000193 Alphaproteobacteria - 0.06 37 0.03 0.40 Winter 
bn_000170 Acidimicrobiia Sva0996_marine_group 0.06 59 0.06 0.44 Winter 
bn_000226 Gammaproteobacteria HOC36 0.04 60 0.06 0.43 Winter 
  Connectors        
bp_ 000001 Oxyphotobacteria Synechococcus (CC9902) 3.79 5 0.05 0.30 Autumn 
bp_ 000002 Alphaproteobacteria SAR11 Clade_Ia 2.26 2 0.40 0.56 Spring 
bp_ 000004 Alphaproteobacteria SAR11 Clade_Ia 2.02 3 0.15 0.63 NA 
bp_ 000007 Alphaproteobacteria SAR11 Clade_Ia 1.38 3 0.60 0.71 NA 
bp_ 000008 Alphaproteobacteria SAR11 Clade_Ia 1.15 3 0.15 0.63 NA 
bn_ 000008 Alphaproteobacteria SAR11 Clade_Ia 0.68 5 0.03 0.27 Winter 
en_ 00059 Chlorodendrophyceae Tetraselmis 0.66 4 0.05 0.26 Summer 
bn_ 000020 Oxyphotobacteria - 0.56 3 0.60 0.67 Autumn 
en_ 00161 Syndiniales Syndiniales-Group-I-Clade-4_X 0.42 4 0.80 0.75 Autumn 
bn_ 000018 Oxyphotobacteria Prochlorococcus MIT9313 0.41 5 0.04 0.24 Winter 
bn_ 000054 Alphaproteobacteria Puniceispirillales_SAR116 0.11 4 0.14 0.40 Autumn 
bn_ 000062 Alphaproteobacteria Puniceispirillales_SAR116 0.08 3 0.55 0.50 Autumn 
bn_ 000077 Rhodothermia Balneola 0.07 3 0.17 0.32 Summer 
bn_ 000112 Gammaproteobacteria KI89A 0.06 4 0.53 0.48 Summer 
bn_ 000156 Alphaproteobacteria Parvibaculales_PS1 0.05 4 0.14 0.40 Summer 
bn_ 000281 Bacteroidia Sphingobacteriales_NS11-12 0.05 5 0.16 0.44 Autumn 
bn_ 000221 Alphaproteobacteria Puniceispirillales_SAR116 0.04 5 0.05 0.30 Winter 
ep_ 00269 Chrysophyceae Clade-I_X 0.04 2 1.00 1.00 Summer 

1 Proportional to the resident microbiota 510	
  511	
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 512	

	513	
Figure 5. Main modules in the core network. Modules with MCODE score >4 are shown for 514	

picoplankton (upper panel) and nanoplankton (lower panel). For each module, the MCODE score 515	

and relative amplicon abundance of the taxa included in it (as % of the resident microbiota) are 516	

indicated. In addition, the numbers of edges and OTUs within the modules are shown as 517	

edges/OTUs; this quotient estimates the average number of edges per OTU within the different 518	
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modules. The edges represent correlations with |LS| > 0.7, |ρ|>0.7, P<0.001 and Q<0.001. The 519	

color of the edges indicates positive (grey) or negative (red) associations. The shape of nodes 520	

indicates bacteria (rhomboid) or microbial eukaryotes (circle), and the color of nodes represents 521	

species seasonal preferences, determined using the indicator value (p<0.05). pb = 522	

Proteobacteria 523	

 524	

 525	

DISCUSSION 526	

Identifying the most important microbes for the functioning of the ocean ecosystem is 527	

a challenge, which can be addressed by delineating core microbiotas [4]. Recognizing 528	

the most abundant and widespread microbes in the ocean is a step towards knowing the 529	

core microbiota. However, this does not take into account the importance that both 530	

microbial interactions and microbes with moderate or low abundance may have for the 531	

functioning of ecosystems  [4, 29, 38]. Considering potential interactions when 532	

delineating core microbiotas may not only allow identifying moderate/low abundance 533	

taxa that may have important roles in the community but could also allow excluding 534	

taxa that are present in several locations but that may not have an important role for 535	

community function (e.g., dormant cells or cells being dispersed [8]). Here, we have 536	

delineated and analyzed the core microbiota of a coastal ecosystem-based on 10 years 537	

of occurrence data considering possible interactions.  538	

 To detect the core microbiota, we first identified the resident OTUs, that is, 539	

those that occur >30% of the time (i.e. >36 out of 120 months) over a decade. This 540	

threshold was selected as it allows for seasonal OTUs that would be present recurrently 541	

in at least one season. Analysis of the resident OTU dynamics indicated a clear 542	

seasonality (Figure 1 C-D), and that the measured environmental factors could explain 543	

~45% of the resident microbiota variance. The main environmental drivers were 544	
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temperature and daylength, which is consistent with previous works from the same 545	

time-series (BBMO) [34, 39, 40]. These values are lower than what has been reported 546	

for bacteria in the English Channel, where daylength explains ~65% of community 547	

variance [17], and higher than what has been reported for entire communities in the 548	

time-series SPOT (California, 31%) [41] or SOLA (the Mediterranean Sea, ~130 km 549	

from BBMO; 7-12%) [42]. Daylength may be more important in the English Channel 550	

as it has a more pronounced annual variation than at BBMO, whereas the measured 551	

differences could reflect a higher coupling of the resident OTUs with environmental 552	

variation in BBMO than in SOLA or SPOT. SOLA is characterized by the occasional 553	

winter storms that bring nutrients from the sediments to the water column as well as by 554	

the freshwater inputs from nearby rivers during flash floods [43], and this could 555	

partially explain the differences with BBMO. The importance of daylength and 556	

temperature for community dynamics was reflected by niche analyses, which identified 557	

two main niches associated with summer and winter at the BBMO, to which ~50% of 558	

the resident OTUs were associated (Figure 1 E-F). Other resident OTUs likely have 559	

spring and fall niches as indicated by Figure 1 C-D, yet these niches cannot be detected 560	

with the used null model analysis, as their preferred temperatures or daylengths will not 561	

depart significantly from the randomized mean.  562	

 Based on the resident OTUs, we built networks to define the core microbiota. 563	

We identified a total of 259 core OTUs (182 bacteria and 77 protists) that represented 564	

64% of the abundance of the resident microbiota and that showed seasonal variation. 565	

We could only find supporting evidence from the literature (PIDA database) [21] for 566	

85 associations of the core (6 %), indicating that most of them still need to be validated 567	

with direct observation or experimentally. This is not surprising, as the most studied 568	

hosts in PIDA are protists from the micro-plankton (>20 µm cell size), which are mostly 569	
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absent from our pico- and nanoplankton networks. Also, PIDA does not cover Bacteria-570	

Bacteria associations. Nevertheless, the detected core OTUs from BBMO represent a 571	

fraction of the core microbiota at this site, since larger microbial size fractions were not 572	

sampled. Including these larger size fractions would expand the composition of the core 573	

and could unveil additional patterns. For example, in a global ocean network including 574	

size fractions >20 µm cell size, protists or small multicellular eukaryotes dominated the 575	

interactome [26].  576	

 Alpha-/Gammaproteobacteria, Bateroidia, Acidimicrobiia were the main 577	

bacterial groups in the core, including also common marine taxa, such as 578	

Synechococcus or SAR11. The main protists in the core included Syndiniales 579	

(parasites), Dinoflagellates, Mammiellales (Micromonas and Bathycoccus), and 580	

diatoms. These taxa are likely the most important in sustaining ecosystem function at 581	

BBMO, and probably have similar importance in other coastal areas. Other studies have 582	

reported important roles in marine association networks for SAR11 and Synechococcus 583	

[31, 44]. Syndiniales, Haptophytes, and Dinoflagellates dominated networks in terms 584	

of the number of nodes and edges at SPOT, while Mamiellales (Micromonas & 585	

Bathycoccus) and diatoms also had relevant roles [41].  Syndiniales, Dinoflagellates, 586	

and Diatoms were also predominant in global ocean networks, which is coherent with 587	

our results [26].  588	

 Bacteria-Bacteria associations were the most abundant (54%) in the core 589	

BBMO microbiota, followed by Bacteria-Protists (31%) and Protist-Protist (11%) 590	

associations. Associations tended to occur among bacteria or protists, rather than 591	

between them, in the English Channel time-series [17]. However, the study used 592	

microscopy to determine protist community composition, while it used 16S-rRNA gene 593	

data for analyzing bacteria communities and this might explain the limited number of 594	
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connections between protists and bacteria. Most associations occurred among protists 595	

in a global-ocean network that included a broad range of microbial size-fractions [26]. 596	

This suggests that time-series analyses including larger size-fractions may determine a 597	

higher proportion of associations among protists, which may turn out to be prevalent.  598	

The core network had “small world” properties (that is, high clustering 599	

coefficient and relatively short path lengths) [37] when compared to randomized 600	

networks (Table 3) or particular subnetworks from size fractions or specific seasons 601	

(Table 5). The small-world topology is characteristic of many different types of 602	

networks [45], including marine microbial temporal or spatial networks [23, 26, 30, 603	

31]. Some of our network statistics were similar to those obtained at SPOT [23, 30], in 604	

particular the averages of degree, clustering coefficient, and path length (Table 3). 605	

Furthermore, the BBMO network had an average path length similar to a global ocean 606	

network [26] and also, similarly to this network, the node degree of the BBMO core 607	

members was independent of their relative abundances, showing that the associations 608	

between core OTUs were not merely a consequence of high prevalence and abundance.  609	

The BBMO core network had a clustering coefficient that was ten times larger 610	

than that of an Erdős–Rényi random network of the same size (Table 3), which agrees 611	

with what was observed at SPOT [23, 30]. The large proportion of positive associations 612	

in BBMO networks (~95%) was in agreement with results from other temporal [23, 41] 613	

or large-scale spatial [26] microbiota analyses, where positive associations were also 614	

predominant (~70-98%), although these values include taxa that are not necessarily part 615	

of the core. This suggests that interactions such as syntrophy or symbiotic associations 616	

are more important than competition in marine microbial systems and that these types 617	

of associations may underpin marine ecosystem function. These findings are also 618	

coherent with a recent large-scale literature survey that found that ~47% of the validated 619	
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associations between protists and bacteria are symbiotic [21]. Nevertheless, it is also 620	

possible that common sampling strategies and methodological approaches do not detect 621	

a substantial fraction of negative associations. For example, while positive correlations 622	

in taxa abundance pointing to positive interactions may be easier to detect, negative 623	

associations may be missed due to plummeting species abundances that would prevent 624	

establishing significant correlations, or to a delay between the increase and decrease in 625	

abundance of interacting taxa that are not synchronized with sampling time. Future 626	

studies adapting the sampling scheme to the timing of interactions (e.g., daily or weekly 627	

sampling) and the use of other approaches apart from taxa abundances, such as analyses 628	

of single-cell genomic data to determine protistan predation, or controlled experiments, 629	

will likely generate new insights on negative microbial interactions. 630	

The relatively high clustering coefficient of the core network (compared to a 631	

random network) and its short path length indicate that most OTUs are connected 632	

through < 3 intermediary OTUs. It has been shown that a large proportion of strong 633	

positive associations, as in the BBMO core network, may destabilize communities due 634	

to positive feedbacks between species [46]. When a species decreases in abundance as 635	

a response to environmental variation, it may pull others with it, generating a cascade 636	

effect propagated by the many positive associations in the network. Accordingly, the 637	

change of abundance in specific OTUs in one section of the network could affect OTUs 638	

in other network sections not necessarily affected directly by the environmental 639	

variation. This cascade effect may help to explain a paradox: environmental variables 640	

affect the structure of marine microbial communities and consequently association 641	

networks. Yet, our and others' results [17, 18, 23, 26, 30-32] have reported a limited 642	

number of associations between environmental variables and network nodes (OTUs). 643	

Environmental heterogeneity might affect network structure by acting on a small subset 644	
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of nodes (OTUs), which would then influence other nodes through cascading 645	

interactions facilitated by the highly interconnected nature of the networks as well as 646	

positive feedbacks promoted by the high proportion of positive associations [46].  647	

If OTUs susceptible to environmental variation are also highly connected, then 648	

their effect on the entire network structure may be larger. In line with this, we found 649	

that the connectivity of OTUs associated with environmental variables at BBMO (49 650	

OTUs out of 259) had a mean degree of ~25 (SD ~14), while for all the 259 OTUs of 651	

the core network, the mean degree was ~11 (SD ~13). The seasonal dynamics of the 652	

BBMO microbiota may partially be driven by a subset of OTUs that vary with 653	

environmental factors (e.g. temperature, daylength). These may exert a destabilizing 654	

influence over the entire community over time, promoting the annual turnover of 655	

communities and networks.  656	

Most core OTUs (98%) showed a clear preference for one season. Interestingly, 657	

the distribution of core OTUs among the seasons was uneven, with 61% of these OTUs 658	

showing a winter preference. Network connectivity at BBMO was correspondingly 659	

heterogeneous between seasons, peaking in winter and remaining low in the other 660	

seasons. Specifically, the winter subnetwork included ~92% of the seasonal edges. This 661	

indicates that winter associations are not only specific (i.e. they do not tend to change 662	

partners), but they also have a relatively high recurrence (otherwise, winter networks 663	

would be smaller). A higher similarity between winter communities when compared to 664	

other seasons was also indicated by our ordination analyses of the resident OTUs 665	

(Figure 1), as well as by studies of the entire protist community at BBMO [34] or whole 666	

community analyses at SPOT [23].  667	

The structure of communities is determined by the interplay of selection, 668	

dispersal, speciation, and ecological drift [47]. Our results indicate that selection, a 669	
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deterministic process, is stronger in winter, leading to winter sub-communities that tend 670	

to be more similar between each other than to communities from other seasons. Given 671	

that we have removed edges associated with the measured environmental variables, we 672	

do not expect that the identified edges between winter OTUs represent selection 673	

associated to these variables (e.g. low temperature). Consequently, winter edges may 674	

represent associations linked to unmeasured variables or ecological interactions that 675	

may be more likely to develop during winter due to stronger environmental selection. 676	

Due to weaker selection in other seasons species occurrence would display less 677	

recurrent (or more random) patterns, preventing specific associations to be formed. This 678	

also suggests that ecological redundancy changes over time, and is lower in winter 679	

compared to the other seasons (even though the number of OTUs is larger in winter). 680	

A reduction in redundancy may also promote strong ecological interactions in winter. 681	

 The existence of subsets of species that interact more often between themselves 682	

than with other species (modules), is characteristic of biological networks, and can 683	

contribute to overall network stability [48, 49]. Modules can represent divergent 684	

selection, niches, the clustering of evolutionary closely related species or co-685	

evolutionary units [50, 51]. Modules in the core BBMO network (total 12) included 686	

positive associations between diverse taxa, and could represent divergent selection, 687	

driven by unmeasured environmental variables, or examples of syntrophic or symbiotic 688	

interactions between microbes from different taxonomic groups.  689	

Most BBMO modules included diverse lifestyles (heterotrophs, mixotrophs, 690	

phototrophs, parasites), similar to what has been observed at SPOT [41]. Yet, a number 691	

of modules appeared to be predominantly heterotrophic or autotrophic (Table S8, 692	

Additional file 1). Some modules included OTUs from the same species, such as 693	

Module 4 in the picoplankton, which included several SAR11 Clade I OTUs, and 694	
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Module 7 of the nanoplankton, which included several Synechococcus OTUs. These 695	

modules could reflect similar niches, associated with unmeasured variables, or the 696	

dependence on metabolites produced by other organisms (auxotrophy). There is 697	

evidence of auxotrophy for both SAR11 (e.g. thiamin, glycine)[52-54] and 698	

Synechococcus (e.g. cobalamin) [55]. Recently it has been observed in co-culture 699	

experiments that Prochlorococcus may fulfill some metabolic requirements of SAR11, 700	

promoting the growth of the latter in a commensal relationship [56]. In our analyses of 701	

the BBMO core microbiota, we did not find strong associations between SAR11 and 702	

Prochlorococcus or the more abundant relative, Synechococcus. Yet, SAR11 formed 703	

strong associations with a plethora of taxa with which could potentially have 704	

commensal relationships. 705	

The overall importance of the observed modules was indicated by the total 706	

abundance of their constituent OTUs (24% of the reads compared to the resident 707	

microbiota). Most of the modules at BBMO were associated with a single season, 708	

suggesting that they reflect seasonal niches. Since these modules were inferred over 10 709	

years, they represent recurrent network features. Chafee et al. [57] also identified 710	

season-specific modules in a 2-year time series in the North Sea (Helgoland), including 711	

samples taken weekly or bi-weekly. These modules were much larger than ours, and 712	

they may also include environmentally-driven edges. Nevertheless, the Helgoland 713	

modules seem to be driven by eutrophic (spring & summer) vs. oligotrophic (autumn 714	

& winter) conditions in this location. In contrast, the BBMO modules, displayed weaker 715	

correlations with nutrients and seem to be influenced by temperature and daylength 716	

(Figure 5). Differences in the sampling scheme between Helgoland and BBMO 717	

((bi)weekly vs. monthly) as well as between both locations (different seas and latitudes, 718	

affecting temperature and daylength) may explain these differences. 719	
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 Keystone species have a high influence in ecosystems relative to their 720	

abundance [58]. Network analyses may help to identify them [24, 59], yet, there is no 721	

clear consensus of what network features are the best unequivocal indicator of keystone 722	

species [60-62]. Therefore, we focused on identifying central OTUs (hubs or 723	

connectors) that may be important for ecosystem function [22, 24] and could represent 724	

keystone species. We identified 13 hubs in the BBMO core network with moderate-low 725	

abundances (<1%) and high degree (26-60) that were associated with winter or spring. 726	

These moderate-low abundance OTUs may affect nutrient cycling directly [63] or 727	

indirectly, by affecting other OTUs with higher abundance. The putative stronger 728	

selection exerted by low temperatures and short daylengths during winter and early 729	

spring, as compared to summer and autumn, may lead to a higher species recurrence 730	

[34], larger networks, and possibly, more hubs. An OTU of the abundant picoalgae 731	

Bathycoccus (en_00092) was identified as a winter hub, which is consistent with 732	

reported Bathycoccus abundance peaks in late winter (February-March) in both BBMO 733	

[64] and the nearby station SOLA [42]. This Bathycoccus hub may be associated with 734	

diverse taxa, such as prokaryotes that may benefit from algal exudates [65] or even via 735	

mixotrophy [66]. In agreement with this, out of the 42 associations of this hub OTU, 736	

25 were with bacteria and the rest with protists. 737	

In contrast to hubs, connector OTUs were predominantly associated with 738	

warmer waters, that is, summer and autumn, and may represent transitions in 739	

community states. This was consistent with the associations observed in an abundant 740	

Synechococcus connector OTU (bp_000001, Table 6). This OTU was predominant in 741	

summer-autumn, in agreement with previous BBMO reports [36, 67], but it was 742	

associated with other OTUs from spring (negative association with bp_000017), winter 743	

(negative association with bp_000039), summer (positive association with bp_000087, 744	
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bp_000012) and autumn (positive association with bp_000022), thus likely holding a 745	

central position in the network. Another abundant spring connector OTU (SAR11 Clade 746	

Ia, bp_000002), featured only two connections to spring (positive association with 747	

bp_000007) and summer (positive association with bp_000046) OTUs. 748	

 749	

CONCLUSION 750	

Our decade-long analysis of the dynamics of a microbiota populating a time-series in 751	

the Mediterranean Sea allowed us to determine the interconnected core microbiota, 752	

which likely includes several microbes that are important for the functioning of this 753	

coastal ecosystem. We found a relatively small core microbiota that displayed seasonal 754	

variation, with a heterogeneous distribution of associations over different seasons, 755	

indicating different degrees of recurrence and selection strength over the year. Future 756	

analyses of other core marine microbiotas will determine how universal are the patterns 757	

found in BBMO. These studies will be crucial to determine potential long-term effects 758	

of climate change on the architecture of the interaction networks that underpin the 759	

functioning of the ocean ecosystem.  760	

 761	

METHODS 762	

Study site and sampling  763	

Surface water (~1 m depth) was sampled monthly from January 2004 to December 764	

2013 at the Blanes Bay Microbial Observatory (BBMO) in the Northwestern 765	

Mediterranean Sea (41º40’N, 2º48’E) [Figure 1A]. The BBMO is an oligotrophic 766	

coastal site ~1 km offshore with ~20 m depth and with limited riverine or human 767	

influence [36]. Seawater was pre-filtered with a 200 µm nylon mesh and then 768	

transported to the laboratory in 20 L plastic carboys and processed within 2 hours. 769	
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Microbial plankton from about 6 L of the pre-filtered seawater was separated into two 770	

size fractions: picoplankton (0.2-3 µm) and nanoplankton fraction (3-20 µm).  To 771	

achieve this, the seawater was first filtered through a 20 µm nylon mesh using a 772	

peristaltic pump. Then the nanoplankton (3-20 µm) was captured on a 3 µm pore-size 773	

polycarbonate filter. Subsequently, a 0.2 µm pore-size Sterivex unit (Millipore, 774	

Durapore) was used to capture the picoplankton (0.2-3 µm). Sterivex units and 3 µm 775	

filters were stored at -80 ºC until further processed. The sequential filtering process 776	

aimed to capture free-living bacteria and picoeukaryotes in the 0.2-3 µm size fraction 777	

(picoplankton), and particle/protist-attached bacteria or nanoeukaryotes in the 3-20 µm 778	

fraction (nanoplankton). The 3µm filter was replaced if clogging was detected; DNA 779	

from all 3µm filters from the same sample were extracted together. 780	

A total of 15 contextual abiotic and biotic variables were considered for each 781	

sampling point: Daylength (hours of light), Temperature (°C), Turbidity (estimated as 782	

Secchi disk depth [m]), Salinity, Total Chlorophyll a [Chla] (µg/l), PO43- (µM), NH4+ 783	

(µM), NO2- (µM), NO3- (µM), SiO2 (µM), abundances of Heterotrophic prokaryotes 784	

[HP] (cells/ml), Synechococcus (cells/ml), Total photosynthetic nanoflagellates [PNF; 785	

2-5µm size] (cells/ml), small PNF (2µm ; cells/ml) and, Heterotrophic nanoflagellates 786	

[HNF] (cells/ml) [Figure 1B]. Water temperature and salinity were sampled in situ with 787	

a SAIV A/S SD204 CTD. Inorganic nutrients  (NO3-, NO2-, NH4+, PO43-, SiO2) were 788	

measured using an Alliance Evolution II autoanalyzer [68]. Cell counts were done by 789	

flow cytometry (heterotrophic prokaryotes, Synechococcus) or epifluorescence 790	

microscopy (PNF, small PNF and HNF). See Gasol et al. [36] for specific details on 791	

how other variables were measured. Environmental variables were z-score standardized 792	

before running statistical analysis. 793	

 794	
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DNA extraction, sequencing, and metabarcoding 795	

DNA was extracted from the filters using a standard phenol-chloroform protocol [69], 796	

purified in Amicon Units (Millipore), and quantified and qualitatively checked with a 797	

NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific). Eukaryotic PCR 798	

amplicons were generated for the V4 region of the 18S rDNA (~380 bp), using the 799	

primer pair TAReukFWD1 and TAReukREV3 [70]. The primers Bakt_341F [71] and 800	

Bakt_806RB [72] were used to amplify the V4 region of the 16S rDNA. PCR 801	

amplification and amplicon sequencing were carried out at the Research and Testing 802	

Laboratory (http://rtlgenomics.com/) on the Illumina MiSeq platform (2x250 bp paired-803	

end sequencing). DNA sequences and metadata are publicly available at the European 804	

Nucleotide Archive (http://www.ebi.ac.uk/ena; accession numbers PRJEB23788 for 805	

18S rRNA genes & PRJEB38773 for 16S rRNA genes). 806	

A total of 29,952,108 and 16,940,406 paired-end Illumina reads were produced 807	

for microbial eukaryotes and prokaryotes respectively. Adapters and primers were 808	

removed with Cutadapt v1.16 [73]. DADA2 v1.10.1 [74] was used for quality control, 809	

trimming, and inference of Operational Taxonomic Units (OTUs) as Amplicon 810	

Sequence Variants (ASVs). For both microbial eukaryotes and prokaryotes, the 811	

Maximum number of expected errors (MaxEE) was set to 2 and 4 for the forward and 812	

reverse reads respectively. No ambiguous bases (Ns) were allowed. Microbial 813	

eukaryotic sequences were trimmed to 220 bp (forward) and 190 bp (reverse), while 814	

prokaryotic sequences were trimmed to 225 bp (both forward and reverse reads). A 815	

total of 28,876 and 19,604 OTUs were inferred for microbial eukaryotes and 816	

prokaryotes respectively. 817	

OTUs were assigned taxonomy using the naïve Bayesian classifier method [75] 818	

together with the SILVA version 132 [76] database as implemented in DADA2. 819	
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Eukaryotic OTUs were also BLASTed [77] against the Protist Ribosomal Reference 820	

database (PR2, version 4.10.0; [78]). When the taxonomic assignments for the 821	

eukaryotes disagreed between SILVA and PR2, the conflict was resolved manually by 822	

inspecting a pairwise alignment of the OTU and the closest hits from the two databases. 823	

OTUs assigned to Metazoa, Streptophyta, nucleomorph, chloroplast, and mitochondria 824	

were removed before further analysis. Archaea were removed from downstream 825	

analyses as the used primers are not optimal for recovering this domain [79]. 826	

Each sample (corresponding to a specific gene, size fraction, and timepoint) was 827	

subsampled with the rrarefy function from the R package Vegan [80] to 4,907 reads, 828	

corresponding to the number of reads in the sample with the lowest sequencing depth, 829	

to normalize for different sequencing depth between samples. OTUs present in <10% 830	

of the samples were removed. After quality control and rarefaction, the number of 831	

OTUs was 2,926 (1,561 bacteria, and 1,365 microeukaryotes; Table 1).   832	

Due to a suboptimal sequencing of the amplicons, we did not use nanoplankton 833	

samples of bacteria and protists from the period May 2010 to July 2012 (27 samples) 834	

as well as March 2004 and February 2005. OTU read abundance for samples with 835	

missing values were estimated using seasonally aware missing value imputation by 836	

weighted moving average for time series as implemented in the R package imputeTS 837	

[81].  838	

Cell/particle dislodging or filter clogging during the sequential filtration process 839	

may affect the taxonomic diversity observed in the different size fractions, with 840	

nanoplankton DNA leaking into the picoplankton fraction, or picoplankton DNA 841	

getting stuck in the nanoplankton fraction. To minimize the effects of cell/particle 842	

dislodging or filter clogging on the diversity recovered from the different size fractions, 843	

we calculated the sequence-abundance ratio for OTUs appearing in both pico- and 844	
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nano-plankton fractions. When the ratio exceeded 2:1, we removed the OTU from the 845	

size fraction with the lowest number of reads. After subsampling and filtering the OTU 846	

tables were joined for each time point, and since the samples had been normalized to 847	

the same sequencing depth, we calculated the relative read abundance for the OTUs for 848	

each year and aggregated over the corresponding months along the 10 years for the 849	

resident microbiota. This means that the relative abundance for both domains and size 850	

fractions sums up to 1 for each month across ten years.  851	

 852	

Resident microbiota 853	

We defined ad hoc the resident microbiota as the set of OTUs present in >30% of the 854	

samples over 10 years (that is, present in >36 months, not necessarily consecutive). 855	

This value was chosen as it allows for seasonal OTUs, which may only be present 3-4 856	

months each year, and still be considered as part of the resident microbiota. The 857	

residents included 355 eukaryotic and 354 bacteria OTUs (Table 1), and excluded a 858	

substantial amount of rare OTUs, which can cause spurious correlations during network 859	

construction due to sparsity [i.e. too many zeros] [22]. The relative abundance of the 860	

taxonomic groups included in the resident microbiota was fairly stable from year to 861	

year (Figure 3).  862	

 863	

Environmental variation and resident OTUs 864	

All possible correlations among the measured environmental variables and resident 865	

OTU richness and abundance were computed in R and plotted with the package 866	

corrplot. Only significant Pearson correlation coefficients were considered (p<0.01), 867	

and the p-values were corrected for multiple inference (Holm's method) using the 868	

function rcorr.adjust from the R package RcmdrMisc. Unconstrained ordination 869	
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analyses were carried out using NMDS based on Bray Curtis dissimilarities between 870	

samples including resident OTUs only. Environmental variables were fitted to the 871	

NMDS using the function envfit from the R package Vegan	 [80]. Only variables 872	

displaying a significant correlation (p<0.05) were considered. Constrained ordination 873	

was performed using distance-based redundancy analyses (dbRDA) in Vegan, 874	

considering Bray Curtis dissimilarities between samples including resident OTUs only. 875	

The most relevant variables for constrained ordination were selected by stepwise model 876	

selection using 200 permutations, as implemented in ordistep (Vegan). Ordinations 877	

were plotted using the R package ggplot2 and ggord. The amount of community 878	

variance explained by the different environmental variables was calculated with Adonis 879	

(Vegan) using 999 permutations. Resident OTUs displaying niche preference in terms 880	

of Temperature and Daylength, the most important environmental variables, were 881	

determined using the function niche.val from the R package EcolUtils with 1,000 882	

permutations. 883	

 884	

Delineation of seasons 885	

Seasons were defined following Gasol et al. [36] with a small modification: months 886	

with water temperature (at the sampling time) >17 °C and daylength >14 h d-1 were 887	

considered to be summer. Months with water temperature <17 °C and < 11 h d-1 of 888	

daylength were considered to be winter. Months with water temperature >17°C and 889	

daylength <14 h d-1 were considered as autumn, while months with water temperature 890	

<17°C and > 11 h d-1 of daylength were considered to be spring. The indicator value 891	

[82] was calculated using the R package labdsv [83] to infer OTU seasonal preference.  892	

 893	

Core microbiota delineated using networks 894	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.03.18.435965doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435965
http://creativecommons.org/licenses/by-nc-nd/4.0/


41	

The OTU table together with the 15 environmental variables were used to construct 895	

association networks using extended Local Similarity Analysis (eLSA) [84-86]. eLSA 896	

was run on the OTU table with subsampled reads with default normalization: a z-score 897	

transformation using the median and median absolute deviation. P-value estimations 898	

were run under a mixed model that performs a random permutation test of a co-899	

occurrence only if the theoretical p-values for the comparison are <0.05. Bonferroni 900	

false discovery rate (q) was calculated for all edges based on the p-values using the 901	

p.adjust package in R. 902	

To detect environmentally-driven associations between OTUs induced by the 903	

measured environmental variables we used the program EnDED [87]. 904	

Environmentally-driven associations indicate similar or different environmental 905	

preferences between OTUs and not ecological interactions. In short, EnDED evaluates 906	

associations between two OTUs that are both connected to the same environmental 907	

variable based on a combination of four methods: Sign Pattern, Overlap, Interaction 908	

Information, and Data Processing Inequality. These methods use the sign (positive or 909	

negative) and the duration of the association, the relative abundance of OTUs as well 910	

as environmental parameters to determine if an association is environmentally-driven. 911	

If the four methods agreed that an association was environmentally-driven, then it was 912	

removed from the network. The initial number of edges was 199,937, of which 180,345 913	

were OTU-OTU edges that were at least in one triplet with an environmental parameter. 914	

In total 65,280 (~33%) edges in the network were identified as indirect by EnDED and 915	

removed. Afterward, only edges representing the strongest associations (i.e., absolute 916	

local similarity score |LS| > 0.7, Spearman correlation |ρ| > 0.7, P<0.001 and Q<0.001) 917	

and nodes representing the resident OTUs were retained for downstream analysis and 918	

are hereafter referred to as “core associations”. Those OTUs participating in core 919	
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associations were defined as core OTUs, although their involvement in ecological 920	

interactions need further experimental validation. Both core associations and core 921	

OTUs constitute the “core network”, which also represents the core microbiota (both 922	

“core network” and “core microbiota” are used indistinctively). The core network was 923	

randomized using the Erdős–Rényi model [88], using 262 nodes and 1,411 edges. 924	

For the core network, we calculated: 1) Density: quantifies the proportion of 925	

actual network connections out of the total number of possible connections, 2) 926	

Transitivity or Clustering coefficient: measures the probability that nodes connected to 927	

a node are also connected, forming tight clusters, 3) Average path length: mean number 928	

of steps (edges) along the shortest paths for all possible pairs of nodes in the network 929	

(a low average path length indicates that most species in the network are connected 930	

through a few intermediate species), 4) Degree: number of associations per node, 5) 931	

Betweenness centrality: measures how often an OTU (node) appears on the shortest 932	

paths between other OTUs in the network, 6) Closeness centrality: indicates how close 933	

a node is to all other nodes in a network, 7) Cliques: refers to sets of interconnected 934	

nodes where all possible connections are realized, 8) Modularity: measures the division 935	

of a given network into modules (that is, groups of OTUs that are highly interconnected 936	

between themselves). 937	

The Degree, Betweenness centrality and Closeness centrality were used to 938	

identify central OTUs using ad hoc definitions. “Hub” OTUs were those with a score 939	

above the average for the three statistics and were normally among the top 25% in each 940	

score [22, 62, 89]. Specifically, hub OTUs featured a degree >24, Betweenness 941	

centrality >0.03 and Closeness centrality >0.3. Similarly, “connector” OTUs were 942	

defined as those featuring a relatively low degree and high centrality and could be seen 943	

as elements that connect different regions of a network or modules  [50]. Connector 944	
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OTUs featured a degree <5, Betweenness centrality > 0.03 and Closeness centrality 945	

>0.2. Network statistics were calculated with igraph in R [90] , Gephi [91]  and 946	

Cytoscape v3.6.1 [92]. Visualizations were made in Cytoscape v3.6.1. Modules in the 947	

core network were identified with MCODE [93].  948	
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FIGURE LEGENDS 1258	
 1259	
 1260	

Figure 1. The Blanes Bay Microbial Observatory and the variation of its resident 1261	

microbiota and measured environmental variables over ten years. A) Location of 1262	

the Blanes Bay Microbial Observatory. B) All possible correlations between the 1263	

measured environmental variables including the richness and abundance of resident 1264	

OTUs (NB: only 709 resident OTUs are considered, see Table1). Only significant 1265	

Pearson correlation coefficients are shown (p<0.01). The p-values were corrected for 1266	

multiple inference (Holm's method). C) Unconstrained ordination (NMDS based on 1267	

Bray Curtis dissimilarities) of communities including resident OTUs only, to which 1268	

environmental variables were fitted. Only variables with a significant fit are shown 1269	

(P<0.05).  Arrows indicate the direction of the gradient and their length represents the 1270	

strength of the correlation between resident OTUs and a particular environmental 1271	

variable. The color of the samples (circles) indicates the season to which they belong. 1272	

The bottom-left arrow indicates the direction of the seasonal change. PNF = 1273	

photosynthetic nanoflagellates. D) Constrained ordination (Distance-based redundancy 1274	

analyses, dbRDA, using Bray Curtis dissimilarities) including only the most relevant 1275	

variables after stepwise model selection using permutation tests. Each axis (i.e., 1276	

dbRDA1 and dbRDA2) indicates the amount of variance it explains according to the 1277	

associated eigenvalues. The color of the samples (circles) indicates the season to which 1278	

they belong. Arrows indicate the direction of the gradient and their length represents 1279	

the strength of the correlation between resident OTUs and a particular environmental 1280	

variable. The bottom-left arrow indicates the direction of the seasonal change. E-F) 1281	

Resident OTUs displaying different niche preferences (blueish areas) in terms of the 1282	

two most important abiotic variables: Temperature E) and Daylength F). The red dots 1283	
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indicate the randomization mean, and the orange curves represent the confidence limits. 1284	

Black dots indicate individual OTUs for which temperature or daylength preferences 1285	

are significantly (p<0.05) higher or lower than a random distribution over 10 years. At 1286	

least two assemblages with different niches become evident: one preferring higher 1287	

temperature and longer days (summer/spring), and another one preferring lower 1288	

temperature and shorter days (winter/autumn). Note that several OTUs associated to 1289	

Spring or Autumn are not expected to be detected with this approach, as their preferred 1290	

temperature or daylength may not differ significantly from the randomized mean. 1291	

 1292	

Figure 2. Core microbiota resulting from 10 years of monthly pico- and 1293	

nanoplankton relative abundances. A) Core network including bacteria and 1294	

microbial eukaryotic OTUs that occur ≥ 30% of the time during the studied decade (i.e. 1295	

resident microbiota), with highly significant and strong associations (P<0.001 and 1296	

Q<0.001, absolute local similarity score |LS| > 0.7, Spearman correlation |ρ|>0.7), 1297	

where detected environmentally-driven edges were removed. The color of the edges 1298	

(links) indicates whether the association is positive (grey) or negative (red). The shape 1299	

of nodes indicates bacteria (rhomboid) or microbial eukaryotes (circle), and the color 1300	

of nodes represents species seasonal preferences, determined using the indicator value 1301	

(indval, p<0.05). Node size indicates OTU relative abundance. B) Core network as a 1302	

Circos plot, indicating the high-rank taxonomy of the core OTUs. Since 95% of the 1303	

associations are positive (see Table 2), we do not indicate whether an edge is positive 1304	

or negative. 1305	

 1306	

Figure 3. The monthly variation in the resident and core microbiotas over 10 1307	

years. Upper panels: The resident microbiota is defined as those eukaryotes and 1308	
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bacteria that occur in at least 30% of the samples over 10 years. The relative OTU 1309	

abundance (left panel) and number of OTUs (right panel) for different domains and 1310	

taxonomic levels in the resident microbiota are shown. Note that the relative abundance 1311	

of Bacteria vs. Eukaryotes does not necessarily reflect organismal abundances on the 1312	

sampling site, but the amplicon relative abundance after PCR. Relative abundances 1313	

were calculated for each year and aggregated over the corresponding months along the 1314	

10 years for the resident microbiota, then split into size fractions (NB: relative 1315	

abundance for both domains and size fraction sums up to 1 for each month across ten 1316	

years). Lower panels: Core microbiota over 10 years. The relative abundances of core 1317	

OTUs reflect the remaining proportions after removing all the OTUs that were not 1318	

strongly associated when building networks. Relative OTU abundance (left panel) and 1319	

number of OTUs (right panel) for different domains and taxonomic levels among the 1320	

core OTUs.  1321	

 1322	

Figure 4. Pico- and nanoplankton core sub-networks. The shape of the nodes 1323	

indicates bacteria (rhomboid) or microbial eukaryotes (circle), and the color of nodes 1324	

represents species seasonal preferences, determined using the indicator value (p<0.05). 1325	

The color of the edges indicates if the association is positive (grey) or negative (red). 1326	

Node size indicates OTU relative abundance from the core microbiota. 1327	

 1328	

Figure 5. Main modules in the core network. Modules with MCODE score >4 are 1329	

shown for picoplankton (upper panel) and nanoplankton (lower panel). For each 1330	

module, the MCODE score and relative amplicon abundance of the taxa included in it 1331	

(as % of the resident microbiota) are indicated. In addition, the numbers of edges and 1332	

OTUs within the modules are shown as edges/OTUs; this quotient estimates the average 1333	
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number of edges per OTU within the different modules. The edges represent 1334	

correlations with |LS| > 0.7, |ρ|>0.7, P<0.001 and Q<0.001. The color of the edges 1335	

indicates positive (grey) or negative (red) associations. The shape of nodes indicates 1336	

bacteria (rhomboid) or microbial eukaryotes (circle), and the color of nodes represents 1337	

species seasonal preferences, determined using the indicator value (p<0.05). pb = 1338	

Proteobacteria 1339	

 1340	

 1341	

TABLE TITLES 1342	

 1343	

Table 1. Description of the datasets. 1344	

Table 2. Core associations. See Figure 2.   1345	

Table 3. Core network and sub-networks statistics. 1346	

Table 4. Core associations within and between taxonomic domains and size fractions.   1347	

Table 5: Subnetworks including core OTUs displaying seasonal preference. 1348	

Table 6. Central OTUs. 1349	

 1350	

 1351	

ADDITIONAL FILES 1352	

 1353	

Additional file 1: Table S1 1354	

Relative abundance of bacterial and protistan lineages that are part of the resident and 1355	

core microbiotas. 1356	

 1357	

 1358	
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Additional file 1: Table S2 1359	

Relative abundance of core bacterial taxa.    1360	

 1361	

Additional file 1: Table S3 1362	

Relative abundance of core eukaryotic taxa. 1363	

 1364	

Additional file 1: Table S4 1365	

Indicator value for core OTUs in the picoplankton. Sorted by season/kingdom and 1366	

relative amplicon abundance. 1367	

 1368	

Additional file 1: Table S5 1369	

Indicator value for core OTUs in the nanoplankton. Sorted by season/ kingdom and 1370	

relative amplicon abundance. 1371	

 1372	

Additional file 1: Table S6 1373	

Core OTUs without seasonal preference. 1374	

 1375	

Additional file 1: Table S7 1376	

Module description. 1377	

 1378	

Additional file 1: Table S8 1379	

OTUs within modules. 1380	

 1381	

 1382	

 1383	
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Additional file 2: Figure S1 1384	

Panel A shows the full network constructed with the resident microbiota (that is, OTUs 1385	

present in >30% of the samples over 10 years; Table 1). Panel B displays network 1386	

elements that were removed as they did not fulfill the cut-offs (that is, highly significant 1387	

correlations (P & Q <0.001), local similarity scores >|0.7| and Spearman correlations 1388	

>|0.7|). 1389	

 1390	

Additional file 3: Figure S2 1391	

OTU relative abundance vs. degree shows no relationship in the core network. 1392	
 1393	

  1394	
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Supplementary Figures 1395	
 1396	

 1397	
 1398	
Figure S1. Panel A shows the full network constructed with the resident microbiota 1399	
(that is, OTUs present in >30% of the samples over 10 years; Table 1). Panel B displays 1400	
network elements that were removed as they did not fulfill the cut-offs (that is, highly 1401	
significant correlations (P & Q <0.001), local similarity scores >|0.7| and Spearman 1402	
correlations >|0.7|). 1403	
 1404	
  1405	
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 1406	

 1407	
 1408	
 1409	
Figure S2. OTU relative abundance vs. degree shows no relationship in the core 1410	
network. 1411	
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