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41 ABSTRACT

42

43  Background

44  Ocean microbes constitute ~70% of the marine biomass, are responsible for ~50% of
45  the Earth’s primary production, and are crucial for global biogeochemical cycles.
46  Marine microbiotas include core taxa that are usually key for ecosystem function.
47  Despite their importance, core marine microbes are relatively unknown, which reflects
48  the lack of consensus on how to identify them. So far, most core microbiotas have been
49  defined based on species occurrence and abundance. Yet, species interactions are also
50 important to identify core microbes, as communities include interacting species. Here,
51  we investigate interconnected bacteria and small protists of the core pelagic microbiota

52 populating a long-term marine-coastal observatory in the Mediterranean Sea over a
53  decade.

54

55  Results

56  Core microbes were defined as those present in >30% of the monthly samples over 10
57  years, with the strongest associations. The core microbiota included 259 Operational
58  Taxonomic Units (OTUs) including 182 bacteria, 77 protists, and 1,411 strong and
59  mostly positive (~95%) associations. Core bacteria tended to be associated with other
60  bacteria, while core protists tended to be associated with bacteria. The richness and
61  abundance of core OTUs varied annually, decreasing in stratified warmers waters and
62  increasing in colder mixed waters. Most core OTUs had a preference for one season,
63  mostly winter, which featured subnetworks with the highest connectivity. Groups of
64  highly associated taxa tended to include protists and bacteria with predominance in the
65 same season, particularly winter. A group of 13 highly-connected hub-OTUs, with
66  potentially important ecological roles dominated in winter and spring. Similarly, 18
67  connector OTUs with a low degree but high centrality were mostly associated with
68  summer or autumn and may represent transitions between seasonal communities.

69

70  Conclusions

71  We found a relatively small and dynamic interconnected core microbiota in a model
72  temperate marine-coastal site, with potential interactions being more deterministic in
73  winter than in other seasons. These core microbes would be essential for the functioning
74  of this ecosystem over the year. Other non-core taxa may also carry out important
75  functions but would be redundant and non-essential. Our work contributes to the
76  understanding of the dynamics and potential interactions of core microbes possibly
77  sustaining ocean ecosystem function.

78
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82 BACKGROUND

83  Ecosystems are composed of interacting units embedded in and influenced by their
84  physicochemical environment. Ecosystem function can be broadly defined as the
85  biological, geochemical, and physical processes that occur within it. These processes
86  will likely change or halt if specific organisms or gene-functions are removed, driving
87  the ecosystem towards a new state or its collapse. It is hypothesized that ecological
88  redundancy guarantees continuous ecosystem function, as multiple species could carry
89  out the same or similar function [1]. And while the amount of functional redundancy in
90 microbial ecosystems is a matter of debate [2, 3] it has also been observed that
91 microbiotas in comparable habitats tend to share “core” species that are hypothesized
92  to be fundamental for ecosystem function [4]. These core organisms and the functions
93  they carry out might not be easily replaced.
94 Identifying the core microbiota is not straightforward as there are different ways
95  of defining a core depending on the habitats and the questions being addressed [4]. One
96  often-used approach is to identify species that tend to be recurrently present across
97  spatiotemporal scales. This definition might not be sufficient, however, since
98  communities are made up of interacting species [5]. A more appropriate definition of a
99  core, therefore, needs to incorporate ecological interactions fundamental for the
100  community in the location under study [4, 5]. This is particularly important in studies
101  using DNA to investigate microbial communities, as a fraction of the detected taxa
102  could be dormant, dead, or transient [6-8]. In the interaction-based definition taxa that
103  do not appear to be interacting are excluded from the core [4].
104 Core microbiotas based on common presence have been widely studied in
105  terrestrial animals, in particular humans [9] or cattle [10], as well in marine animals, in

106  particular corals [11, 12] and sponges [13, 14]. Core microbiotas in non-host-associated
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107  systems, such as soils or the ocean, have been investigated to a lesser extent. In soils,
108  for example, a global analysis identified a core group of 241 ubiquitous and dominant
109  bacterial taxa with more or less invariant abundances and unclear habitat preferences
110 [15]. In the tropical and subtropical global-ocean, a total of 68 bacteria and 57
111  picoeukaryotic operational taxonomic units (OTUs) have been identified that could be
112 part of the core surface microbiota, as they were present in >80% of the globally-
113  distributed samples [16].

114 Analyses of ocean time-series have also pointed to the existence of core
115 microbiotas. For example, Gilbert et al. [17] investigated the microbiota of the English
116  Channel for 6 years and found 12 abundant OTUs that were detected throughout the
117  entire dataset (72 time-points), totaling ~35% of the sequence abundance. Potentially
118  core bacterial OTUs were detected in the SPOT time-series (southern California), in a
119  study covering 10 years of monthly samples in the euphotic zone [18]. These
120  potentially-core bacterial OTUs were present in >75% of the months, represented ~7%
121 (25-28 OTUs depending on depth) of the total richness, and had a high (>10%) relative
122  abundance [18].

123 These studies have provided substantial insights on core marine microbiotas,
124  although they typically define them in terms of species occurrence or abundance over
125  spatiotemporal scales, rather than on potential interactions. As in other ecosystems,
126  microbial interactions are essential for the functioning of the ocean ecosystem, where
127  they guarantee the transfer of carbon and energy to upper trophic levels, as well as the
128  recycling of carbon and nutrients [19]. Despite their importance, most microbial
129  interactions in the ocean remain unknown [20]. A recent literature survey spanning the
130  last 150 years indicated that we have documented a minor fraction of protist interactions

131  in the ocean [21] and most likely, the same is true if not worse for bacteria.
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132 During the last decade, association networks have been used to bridge this
133  knowledge gap. Association networks are based on correlations between species’
134  abundances and they may reflect microbial interactions [22]. Contemporaneous
135  positive correlations may point to interactions such as symbiosis, or similar niche
136  preferences, while negative correlations may suggest predation, competition, or
137  opposite niche preferences [23]. So far, network analyses have produced hypotheses on
138  microbial interactions at the level of individual species across diverse ecosystems [22,
139 24, 25], a few of which have been experimentally validated [26]. In addition, networks
140  can help detect species that have relatively more associations to other species (“hubs”),
141  or species that connect different subgroups within a network, and which therefore may
142  have important roles in the ecosystem. Groups of highly associated species in the
143  network (“modules”) may represent niches [27, 28], and the amount of these modules
144  may increase with increasing environmental selection [22]. Networks can also produce
145  ecological insight at the community level, since their architecture can reflect
146  community processes, such as selection [27].

147 Network analyses have been particularly useful for the investigation of
148  microbial interactions in the ocean [25, 29]. A surface global-ocean network analysis
149  of prokaryotes and single-celled eukaryotes indicated that ~72% of the associations
150  between microbes were positive and that most associations were between single-celled
151  eukaryotes belonging to different organismal size-fractions [26]. Other studies using
152 networks have indicated a limited number of associations between marine microbes and
153  abiotic environmental variables [17, 18, 23, 26, 30-32], suggesting that microbial
154  interactions have an important role in driving community turnover [32]. Despite the

155  important insights these studies have provided, most of them share the limitation that
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156 they do not disentangle whether microbial associations may represent ecological
157  interactions or environmental preferences [22].

158 Even though association networks based on long-term species dynamics may
159 allow a more accurate delineation of core marine microbiotas, few studies have
160 identified them in this manner. Consequently, we have a limited understanding of the
161 interconnected set of organisms that may be key for ocean ecosystem function. Here
162  we identify and investigate the core microbiota occurring in the marine-coastal Blanes
163  Bay Microbial Observatory (Northwestern Mediterranean Sea) over 10 years. We
164  delineated the core microbiota stringently, using potential interactions based on species
165  abundances. We also made an effort to disentangle environmental effects in association
166  networks by identifying and removing species associations that are a consequence of
167  shared environmental preference and not interactions between the species [33]. We
168  analyzed bacteria and protists from the pico- (0.2-3 pm) and nanoplankton (3-20 pm)
169  organismal size fractions, which show a strong seasonality in this location [34-36].
170  Taxa relative abundances were estimated by sequencing the 16S and 18S rRNA-gene
171  and delineating OTUs as Amplicon Sequence Variants (ASVs). Specifically, we ask:
172 What taxa constitute the interconnected core microbiota and what are the main patterns
173  of'this assemblage over 10 years? Does the core microbiota feature seasonal sub-groups
174  of highly associated species? What degree of association do bacteria and microbial
175  eukaryotes have and do they show comparable connectivity? Can we identify core
176  OTUs with central positions in the network that could have important ecological roles?

177

178 RESULTS

179  Composition and dynamics of the resident microbiota
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180 Based on the data set containing 2,926 OTUs, (1,561 bacteria and 1,365 microbial
181  eukaryotes) we first defined the resident OTUs as the bacteria and microbial eukaryotes
182  present in >30% of the samples, which equals 36 out of 120 months (not necessarily
183  consecutive). This threshold was selected as it includes seasonal OTUs that would be
184  present recurrently in at least one season. The residents consisted of 709 OTUs: 354
185  Bacteria (~54% relative read abundance) and 355 Eukaryotic OTUs (~46% relative
186  read abundance) [Table 1, see methods for calculation of relative read abundance]. The
187 most abundant resident bacteria OTUs belonged to Oxyphotobacteria (mostly
188  Symechococcus; ~15% of total relative read abundance), Alphaproteobacteria (mostly
189  SARI1 Clade Ia[~9%, and clade II [~4%]), and Gammaproteobacteria (mainly SAR86;
190 ~2%). The most abundant resident protist OTUs belonged to Dinophyceae
191  (predominantly an unclassified dinoflagellate lineage [~7%], Syndiniales Group I
192  Clade 1 [~7%] and Gyrodinium [~4%]), Chlorophyta (mostly Micromonas [~3%] and
193  Bathycoccus [~2%]), Ochrophyta (predominantly Mediophyceae [~2%] and
194  Chaetoceros [~1%]) and Cryptophyceae (mainly a Cryptomonadales lineage [~2%])
195  [Figure 3, Table S1, Additional file 1].

196

197  Table 1. Description of the datasets.

OTUs OTUs (%) Sequence abundance (%) "
All OTUs! 2,926 100 100
Bacteria 1,561 53.3 50.7
Protists 1,365 46.7 49.3
Resident microbiota? 709 100 100 (85)
Bacteria 354 49.9 53.6
Protists 355 50.1 46.4
Core microbiota® 259 100 64.5 (54)
Bacteria 182 70.3 46.3
Protists 77 29.7 18.2
Picoplankton 109 421 32.4
Nanoplankton 150 57.9 32.1
Protists
Heterotroph 5 1.9 0.3
Photoautotroph 37 14.3 11.8
Parasite 21 8.1 35
Mixotroph 3 1.2 0.7
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Symbiont 1 04 0.1
Unknown 1 43 2.0
Bacteria
Photoautotroph (cyanobacteria) 19 7.3 19.3
Non-photoautotroph? 163 62.5 26.8
Seasonal preference core OTUs
Winter 156 60.2 21.8
Spring 24 9.3 16.4
Summer 44 17.0 8.2
Autumn 30 11.6 13.7
No seasonality 5 19 45
Seasonal subnetworks
Winter 156 60.2 21.8
Spring 19 7.3 13.7
Summer 41 15.8 6.6
Autumn 26 10.0 12.9
198 "Number of OTUs in the full dataset that were left after quality control and rarefaction, which were present in at least 10% of the
199 samples (i.e. 12 months, not necessarily consecutive).
200 20TUs present in at least 30% of the samples (i.e. 36 months, not necessarily consecutive) [=Resident microbiota].
201 3 OTUs included in the core network (core microbiota) with significant correlations (p&q <0.001), local similarity scores >|0.7| and
202 Spearman correlations >|0.7|, being present in at least 30% of the samples.
203 4 Includes non-photoautotrophic lifestyles (i.e., chemoautotrophs, photoheterotrophs, chemoheterotrophs, etc.).
204 *In ltalics the abundances relative to all OTUs are indicated. All other values in normal text indicate abundances relative to OTUs in the resident
205 microbiota.
206
207 The resident microbiota, including both protists and bacteria, showed seasonal

208  variation over 10 years, with communities from the same season but different years
209  tending to group (Figure 1C and D). The structure of the resident microbiota correlated
210  to specific environmental variables during winter (nutrients, Total photosynthetic
211  nanoflagellates [PNF; 2-5um size], and small PNF [2um]), spring (Total Chlorophyll
212 a[Chla]), summer (daylength, temperature, Secchi disk depth and, the cell abundances
213 of Synechococcus, Heterotrophic prokaryotes [HP] and Heterotrophic nanoflagellates
214  [HNF, 2-5um]) and autumn (salinity) [Figure 1C]. The environmental variables most
215  relevant for explaining the variance of the resident microbiota were determined by
216  stepwise model selection and distance-based redundancy analyses (dbRDA) [Figure
217  1D], leading to a dbRDA constrained and unconstrained variation of 41% and 59%
218  respectively (Figure 1D). The selected variables were predominantly aligned with the
219  axis summer (daylength, temperature, and the cell abundance of Synechococcus and
220 HP) - winter (SiO2, small PNF [Figure 1D]. This dbRDA axis had the highest
221  eigenvalue, explaining ~55% of the constrained variation (Figure 1D). Even though

222 the measured environmental variables did not explain the majority of the variation of
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223  the resident microbiota, they could account for a substantial fraction. This was further
224  supported by Adonis analyses, which indicated that the measured environmental
225  variables could explain ~45% of the resident microbiota variance, with temperature and
226  daylength having a predominant role by accounting for 30% of this variance (15%
227  each).

228 We then investigated whether temperature and daylength could determine the
229  main niches. We found that ~70% and ~68% of the OTUs in the resident microbiota
230  had niche preferences associated with temperature or daylength respectively (Figure
231 1E-F; Note that several OTUs preferring Spring or Autumn are not expected to be
232 detected with this approach, as their preferred temperature or daylength may not differ
233  significantly from the randomized mean). In total, 371 OTUs from the resident
234  microbiota had both a temperature and a daylength niche preference that departed
235  significantly from the randomization mean (Figure 1E-F). These 371 OTUs
236  represented ~52% of all OTUs in the resident microbiota, corresponding to ~90% of
237  the sequence abundance. In particular, 248 OTUs had a weighted mean for both
238  temperature and daylength below the randomization mean (corresponding to
239  winter/autumn), while 116 OTUs had a weighted mean above the randomization mean
240  for both variables (corresponding to summer/spring). Interestingly, 7 OTUs displayed
241  aweighted mean above and below the randomized mean for temperature and daylength

242 respectively (corresponding to autumn or spring).
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244  Figure 1. The Blanes Bay Microbial Observatory and the variation of its resident
245  microbiota and measured environmental variables over ten years. A) Location of the Blanes
246  Bay Microbial Observatory. B) All possible correlations between the measured environmental
247  variables including the richness and abundance of resident OTUs (NB: only 709 resident OTUs
248  are considered, see Table1). Only significant Pearson correlation coefficients are shown

249  (p<0.01). The p-values were corrected for multiple inference (Holm's method). C) Unconstrained

10
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250  ordination (NMDS based on Bray Curtis dissimilarities) of communities including resident OTUs
251  only, to which environmental variables were fitted. Only variables with a significant fit are shown
252 (P<0.05). Arrows indicate the direction of the gradient and their length represents the strength
253  of the correlation between resident OTUs and a particular environmental variable. The color of
254  the samples (circles) indicates the season to which they belong. The bottom-left arrow indicates
255  the direction of the seasonal change. PNF = photosynthetic nanoflagellates. D) Constrained
256  ordination (Distance-based redundancy analyses, doRDA, using Bray Curtis dissimilarities)
257  including only the most relevant variables after stepwise model selection using permutation tests.
258  Each axis (i.e., dbRDA1 and dbRDA2) indicates the amount of variance it explains according to
259  the associated eigenvalues. The color of the samples (circles) indicates the season to which they
260  belong. Arrows indicate the direction of the gradient and their length represents the strength of
261  the correlation between resident OTUs and a particular environmental variable. The bottom-left
262  arrow indicates the direction of the seasonal change. E-F) Resident OTUs displaying different
263  niche preferences (blueish areas) in terms of the two most important abiotic variables:
264  Temperature E) and Daylength F). The red dots indicate the randomization mean, and the orange
265  curves represent the confidence limits. Black dots indicate individual OTUs for which temperature
266  or daylength preferences are significantly (p<0.05) higher or lower than a random distribution
267  over 10 years. At least two assemblages with different niches become evident: one preferring
268  higher temperature and longer days (summer/spring), and another one preferring lower
269  temperature and shorter days (winter/autumn). Note that several OTUs associated to Spring or
270  Autumn are not expected to be detected with this approach, as their preferred temperature or
271  daylength may not differ significantly from the randomized mean.

272

273  Core network

11
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274 To determine the core microbiota that incorporates possible interactions, we
275  constructed an association network based on the resident OTUs and removed all OTUs
276  that were not involved in strong and significant associations with any other OTUs.
277  Specifically, we kept only the associations (edges in the network) with Local similarity
278  score |LS|> 0.7, a false discovery rate adjusted p-value <0.001 and Spearman |r| > 0.7.
279 In addition, we removed all associations that seemed to be caused by environmental
280  preferences of OTUs (see Methods). The core network consisted of 1,411 significant
281  and strong correlations (Figure 2A) and was substantially smaller than the network
282  based on the resident OTUs without stringent cut-offs (Figure S1A, Additional file 2,
283  removed edges in Figure S1B, Additional file 2). The core network includes only the
284  strongest microbial associations that are inferred during a decade and, according to our
285  definition, determines the core microbiota. The associations in the core microbiota may
286  represent proxies for species interactions since steps have been taken to remove
287  associations that are driven by environmental factors.

288 In the core network, most associations were positive (~95%), pointing to the
289  dominance of co-existence or symbiotic associations (Table 2, Figure 2A). The core
290 network had “small world” properties [37], with a small average path length (i.e.
291  number of nodes between any pair of nodes through the shortest path) and a relatively
292  high clustering coefficient, showing that nodes tend to be connected to other nodes,
293  forming tightly knit groups, more than what it would be expected by chance (Table 3).
294  Since node degree was not correlated with OTU abundance (Figure S2, Additional file
295  3), the associations between OTUs are not caused by a high sequence abundance alone,

296  as the most abundant OTUs did not tend to be the most connected.

12
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299  Figure 2. Core microbiota resulting from 10 years of monthly pico- and nanoplankton
300 relative abundances. A) Core network including bacteria and microbial eukaryotic OTUs that

301  occur = 30% of the time during the studied decade (i.e. resident microbiota), with highly
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302  significant and strong associations (P<0.001 and Q<0.001, absolute local similarity score |LS| >
303 0.7, Spearman correlation |p|>0.7), where detected environmentally-driven edges were
304 removed. The color of the edges (links) indicates whether the association is positive (grey) or
305 negative (red). The shape of nodes indicates bacteria (rhomboid) or microbial eukaryotes (circle),
306  and the color of nodes represents species seasonal preferences, determined using the indicator
307  value (indval, p<0.05). Node size indicates OTU relative abundance. B) Core network as a Circos
308  plot, indicating the high-rank taxonomy of the core OTUs. Since 95% of the associations are
309 positive (see Table 2), we do not indicate whether an edge is positive or negative.

310

311 The core network displayed a winter cluster, while no clear clusters could be
312  defined for the other seasons (Figure 2A). Of the 15 environmental variables analyzed,
313  only 3 were found to be significantly correlated with core OTUs: daylength, showing
314  strong correlations with 33 OTUs, temperature, correlated with 14 OTUs, and
315  Chlorophyll a, correlated with 1 OTU (Figure 2A). Therefore, the analysis of the core
316 network also points to the importance of temperature and daylength in the decade-long
317  seasonal dynamics of the studied microbial ecosystem. It is also coherent with the
318  Adonis and ordination analyses (Figure 1C-B). However, the associations between
319 these environmental parameters with taxa represented only 4% of all the associations
320 (Figure 2B).

321  Table 2. Core associations. See Figure 2.

322
Association# Co-occurrences  Co-exclusions
(edges) (positive) (negative)
All 1,411 1,341 (95.0%) 70 (5.0%)
Within Picoplankton 378 353 (93.3%) 25 (6.6%)
Within Nanoplankton 791 748 (94.6%) 43 (5.4%)
Picoplankton-Nanoplankton 242 240 (99.2%) 2 (0.8%)
323
324 Of the 709 OTUs from the resident microbiota (Figure 3), only 259 OTUs

325  (35%) were left in the core network (182 bacteria (~70%) and 77 microbial eukaryotic
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326  OTUs (~30%); Table 1, Figure 2). The monthly taxonomic composition of the resident
327  microbiota differed from that of the core (Figure 3). The core OTUs accounted for
328  ~64% of the relative read abundance of the resident microbiota (Table 1). The core
329  OTUs had annual variation in terms of richness and abundance over the 10 years for
330  both the pico- and nanoplankton, with microbial eukaryotes decreasing markedly in
331  OTUrichness and relative read abundance in the warmer seasons, and increasing during

332 colder periods (Figure 3).
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334

335  Figure 3. The monthly variation in the resident and core microbiotas over 10 years. Upper
336  panels: The resident microbiota is defined as those eukaryotes and bacteria that occur in at least
337  30% of the samples over 10 years. The relative OTU abundance (left panel) and number of OTUs
338  (right panel) for different domains and taxonomic levels in the resident microbiota are shown.
339 Note that the relative abundance of Bacteria vs. Eukaryotes does not necessarily reflect
340  organismal abundances on the sampling site, but the amplicon relative abundance after PCR.
341 Relative abundances were calculated for each year and aggregated over the corresponding
342  months along the 10 years for the resident microbiota, then split into size fractions (NB: relative
343  abundance for both domains and size fraction sums up to 1 for each month across ten years).
344  Lower panels: Core microbiota over 10 years. The relative abundances of core OTUs reflect the
345  remaining proportions after removing all the OTUs that were not strongly associated when
346  building networks. Relative OTU abundance (left panel) and number of OTUs (right panel) for
347  different domains and taxonomic levels among the core OTUs.

348

349 The most abundant bacteria (Figure 3; Table S2, Additional file 1) among the
350  core OTUs were Oxyphotobacteria (mostly Synechococcus), total abundance ~14% of
351 the resident microbiota, followed by Alphaproteobacteria, with SAR11 clades Ia and II
352  representing ~9% and ~2% respectively. The most abundant microbial eukaryotic
353  groups were Micromonas, Bathycoccus, Dinophyceae, and Cryptomonadales (each
354  ~2%) [Figure 3; Table S3, Additional file 1]. In terms of diversity and abundance,
355  Dbacterial non-phototrophs  (including chemoautotrophs,  photoheterotrophs,
356  chemoheterotrophs) were the most prevalent in the core microbiota, representing ~62%
357 of the OTUs and a quarter of the total relative read abundance (Table 1). In turn,
358  protistan heterotrophs represented a minor fraction of the diversity and relative

359  abundance (Table 1). Bacteria photoautotrophs were relatively more abundant than
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360 their protistan counterparts but less diverse (Table 1). Protistan parasites represented
361 ~8% of the OTUs and ~3% of the abundance, while the remaining protistan lifestyles
362  had a minor relevance in the core microbiota (Table 1).

363

364  Intra- and cross-domain core associations

365 Bacteria tended to be associated with other bacteria (Table 3 & 4; Figure 2B), with
366  Bacteria-Bacteria associations making up ~54% of all associations, while Protist-Protist
367  associations accounted for 11% (Table 4). The connectivity of the bacterial
368  subnetworks was higher (mean degree ~10) than the protist counterparts (mean degree
369 ~6), regardless of whether these networks included exclusively bacteria, protists, or
370  both (Table 3).

371 In particular, there was a substantial number of associations between Alpha-
372  and Gammaproteobacteria, between Alphaproteobacteria and Acidiimicrobia as well as
373  among Alphaproteobacteria OTUs (Figure 2B). Eukaryotic OTUs did not show a
374  similar trend with associations between OTUs of the same taxonomic ranks (Figure
375 2B). In terms of cross-domain associations, Alphaproteobacteria OTUs had several
376  associations with most major protistan groups (i.e. dinoflagellates, diatoms,
377  cryptophytes, Mamiellophyceae, and Syndiniales) [Figure 2B].

378

379  Core associations within the pico- and within the nanoplankton

380  While the pico- and nano-size fractions indicate different lifestyles in bacteria (free-
381 living or particle-attached), they indicate different cell sizes in protists, and this could
382  bereflected in association networks. Nanoplankton sub-networks were larger and more
383  connected than picoplankton counterparts (Figure 4, Table 3). This pattern was

384  observed in both sub-networks considering associations from the same or both size
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385 fractions (Table 3). Nanoplankton sub-networks had a higher average degree (~10)
386  than picoplankton sub-networks (~7; Wilcoxon p<0.05), while not differing much in
387  other network statistics (Table 3). Most associations in the pico- and nanoplankton
388  were positive (>93%), while the associations between OTUs from different size
389  fractions represented only ~17% of the total, being ~99% positive (Table 2).

390 In the pico- or nanoplankton sub-networks that include OTUs from the same
391 size fraction, the number of bacterial core OTUs was higher than the protistan
392  counterparts (103 bacterial vs. 47 protistan OTUs in the nanoplankton, and 79 bacterial
393  wvs. 30 protistan OTUs in the picoplankton) (Figure 4, Table 3). Still, core OTUs in
394  both the pico- and nanoplankton had comparable sequence abundances: ~27% of the
395  resident microbiota in each size fraction. Within the picoplankton, 64% of the
396  associations were between bacteria, 8% between eukaryotes, and 25% between
397  eukaryotes and bacteria (Table 4). In turn, in the nanoplankton, 50% of the edges were
398  between bacteria, 14% between eukaryotes, and 31% between eukaryotes and bacteria
399 (Table 4). Overall, the BBMO pico- and nanoplankton sub-networks differed in size,
400  connectivity, and taxonomic composition, while they were similar in terms of positive
401  connections and relative sequence abundance.

402

403 Table 3. Core network and sub-networks statistics.

Network Nodes Edges Di. De. Average Average Average Largest  Mod.
(#OTUs) degree path clustering clique
length coefficient (#)
Core network 262 (259) 1,411 11 0.04 10.7 345 0.52 13 (4) 0.19
Random core network 262 1,411 5 0.04 10.7 2.60 0.03 3(199) 0.13
Picoplankton all 1 161 (160)* 620* 10  0.05 7.7 313 0.55 10(1) 0.22
Picoplankton only 2 110 (109) 378 9 0.06 6.9 3.15 0.51 9(4) 0.29
Nanoplankton all 3 197 (194 1,033* 10  0.05 10.5 3.18 0.57 13(4) 0.15
Nanoplankton only* 153 (150) 791 10 007 10.3 3.21 0.56 13(4) 0.17
Bacteria all 5 233 (230)** 1,236 10  0.04 10.6 3.34 0.52 11(3) 0.19
Bacteria only ¢ 185 (182) 803 10  0.05 8.7 3.50 0.51 10(1) 0.31
Protists all 7 147 (145)* 608** 5 0.06 8.3 240 0.48 8(2) 0.10
Protist only & 80 (77) 175 5 0.05 44 2.54 0.54 7(1) 0.32

NB: Networks and sub-networks include OTUs and environmental factors. Di=Network diameter. De=Network density. Largest clique = size of
the largest clique(s) in the network, and in brackets, the number of them. Mod = Network modularity inferred using edge betweenness. All
associations where picoplankton OTUs are involved (including nanoplankton); 2Associations between picoplankton OTU only; 3All associations
where nanoplankton OTUs are involved (including picoplankton); 4Associations between nanoplankton OTU only; SAll associations where
bacterial OTUs are involved (including protists); 6Associations between bacterial OTU only; 7All associations where protist OTUs are involved
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(including bacteria); 8Associations between protist OTU only. * Includes nodes and edges shared between pico- and nanoplankton. ** Includes
nodes and edges shared between bacteria and protists.
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415  Figure 4. Pico- and nanoplankton core sub-networks. The shape of the nodes indicates

416  bacteria (rhomboid) or microbial eukaryotes (circle), and the color of nodes represents species
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417  seasonal preferences, determined using the indicator value (p<0.05). The color of the edges
418 indicates if the association is positive (grey) or negative (red). Node size indicates OTU relative
419  abundance from the core microbiota.

420

421 Table 4. Core associations within and between taxonomic domains and size fractions.

Network Association type' # Associations

Core network Total 1,411
Bacteria - Bacteria 767 (54%)
Bacteria - Protist 433 (31%)
Protist - Protist 161 (11%)
Environmental factor - Bacteria 36 (3%)
Environmental factor - Protist 14 (1%)

Picoplankton subnetwork Total 378
Bacteria - Bacteria 241 (64%)
Bacteria - Protist 94 (25%)
Protist - Protist 31 (8%)
Environmental factor - Bacteria 12 (3%
Environmental factor - Protist 0 (0%)

Nanoplankton subnetwork Total 791
Bacteria - Bacteria 394 (50%)
Bacteria - Protist 246 (31%)
Protist - Protist 113 (14%)
Environmental factor - Bacteria 24 (3%)
Environmental factor - Protist 14 (2%)

1“Bacteria — Bacteria” indicates associations between two bacterial OTUs. “Protist — Protist” are associations between two unicellular eukaryotes
and “Bacteria — Protist” are associations between one eukaryote and one bacterial OTU. “Environmental factor — Protist” and “Environmental
factor — Bacteria” are associations between an environmental factor and a eukaryotic or bacterial OTU.

BB
N DN
Ul BN

426  Network seasonality

427  The indicator value (IndVal) was used to infer the seasonal preference of core OTUs.
428  Most of the core OTUs (98%:; 254 out of 259 OTUs) showed a clear preference for one
429  of the four seasons, pointing to a marked seasonality in the core microbiota (Figure 4;
430 Table 5; Tables S4 & S5, Additional file 1). Winter had the highest quantity of core
431 OTUs and the highest network connectivity (average degree ~13), compared to the
432  other seasons (average degrees ~2 — ~6) [Figure 4; Table 5]. The average path length
433  was larger in the core network compared to a random network of the same size (Table
434  3). Yet, all sub-networks associated with size fractions and seasons (Table 5) had

435  shorter path lengths than the random network, indicating that nodes tended to be
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436  connected within seasons and size fractions. This was also supported by an increase in
437  network density when comparing the core network (Table 3) and the core network
438  subdivided into seasons (Table 5), against the core network subdivided into both
439  seasons and size fractions (Table 5). The five OTUs that did not show any seasonal
440  preference, among them SAR11 Clades Ia & II, showed high to moderate abundances
441  but had a low number of associations to other OTUs (Tables S4, S5, S6, Additional
442  file 1). Thus, network connectivity in the BBMO appears to be heterogeneous over
443  time, peaking in winter and remaining low in the other seasons.

444

445  Table 5: Subnetworks including core OTUs displaying seasonal preference.
446

Sub- Number of Edges Di. De. Average Average Average Largest  Mod.
network OTUs degree path clustering clique
length coefficient (#)
Winter 156 1475 7 010 15.1 262 0.54 134) 019
3 Spring 19 16 4 0.09 1.7 1.56 0.44 4(1) 0.75
Summer 41 56 7 0.07 27 2.90 0.49 6(1) 0.53
Autumn 26 25 3 0.08 1.9 1.59 0.46 4(2) 0.73
Winter 63 286 6 0.15 9.1 2.35 0.53 9(4) 0.10
8 Spring 8 5 3 0.18 1.2 1.50 0.00 2(5) 0.56
&  Summer 25 36 5 0.12 29 2.20 0.41 6(1) 0.23
Autumn 5 3 2 0.30 1.2 1.25 0.00 2(3) 0.44
Winter 92 658 6 0.16 14.3 240 0.61 13(4) 0.04
2 Spring 11 11 4 0.20 20 1.59 0.57 4(1) 0.56
2 Summer 13 17 3 0.22 26 1.70 0.65 4(1) 0.50
Autumn 17 18 3 0.13 2.1 1.35 0.56 4(2) 0.60
447 NB: Subnetworks include OTUs only. Di=Network diameter. De=Network density. Largest clique = size of the largest clique(s) in the network,
448 and in brackets, the number of them. Mod = Network modularity inferred using edge betweenness.
449

450  Groups of highly associated OTUs

451  Within the core network, we identified groups that were more connected to each other
452  than to the rest of the network (called modules). These groups of OTUs may indicate
453  recurring associations that are likely important for the stability of ecosystem function.
454  We identified 12 modules in both the pico- and nanoplankton subnetworks (Table S7,
455  Additional file 1). Modules tended to include OTUs from the same season (Table S8,
456  Additional file 1), with main modules (i.e. MCODE score >4) including OTUs

457  predominantly associated with winter, summer, and autumn (Figure 5). Overall, winter

21


https://doi.org/10.1101/2021.03.18.435965
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435965; this version posted June 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

458  modules prevailed (5 out of 7) among the main modules (Figure 5), while modules
459  with scores < 4 did not tend to be associated with a specific season (Table S8,
460  Additional file 1). Two main winter modules had members that were negatively
461  correlated to temperature and daylength (Figure 5; Modules 1 and 4, nanoplankton).
462 The total relative sequence abundance of core OTUs included in modules was
463  ~24% (proportional to the resident microbiota), while the total abundance of individual
464  modules ranged between ~6% and ~0.3% (Table S7, Additional file 1). In turn, the
465  relative abundance of core OTUs included in modules ranged between 0.01% and ~2%
466 (Table S8, Additional file 1). In most modules, a few OTUs tended to dominate the
467  abundance, although there were exceptions, such as module 4 of the picoplankton,
468  where all SAR11 members featured abundances >1% (Table S8, Additional file 1). In
469  addition, several OTUs within modules had relatively low abundances (Table S8,
470  Additional file 1), supporting modules as a real feature of the network and not just the
471  agglomeration of abundant taxa.

472

473  Central OTUs

474  Biological networks typically contain nodes (i.e. OTUs) that hold more ‘“central”
475  positions in the network than others [22]. Even though the ecological role of these hub
476  and connector OTUs is unclear, it is acknowledged that they could reflect taxa with
477  important ecological functions [22]. There is no universal definition for hub or
478  connector OTUs, yet, in this work, we have used stringent thresholds to determine them
479  ad hoc (see Methods). We have identified 13 hub-OTUs that were associated with
480  winter or spring (Table 6). Hubs did not include highly abundant OTUs, such as
481  Synechococcus or SARI11 (Table 6), but instead, they included several OTUs with

482  moderate-low abundance (<1%) and high degree (ranging between 26-60) [Table 6].
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483  For example, the Gammaproteobacteria OTU bn_000226 had a relative abundance of
484  0.04% and a degree of 60 (Table 6). Hubs included other moderately abundant OTUs,
485  such as the eukaryotic picoalgae Bathycoccus, which was abundant in winter, as well
486  as an unidentified dinoflagellate (Table 6).

487 We identified a total of 18 connector OTUs (featuring relatively low degree and
488  high centrality), which were predominantly associated with summer (5 out of 18) or
489  autumn (6 out of 18), contrasting with hub OTUs, which were associated mostly with
490  winter and spring (Table 6). Connectors may be linked to the seasonal transition
491  between main community states (Figure 1 C & D) and included several abundant
492  OTUs belonging to Synechococcus and SARI11 (Table 6). In particular, the SAR11
493  OTU bp 000007 displayed a relatively high abundance (1.4%), but a degree of 3
494  (relatively low) and a betweenness centrality of 0.6 (relatively high). In contrast, two
495  protist OTUs displayed low-moderate abundances (ep 00269, Chrysophyceae,
496  abundance 0.04% and en_00161, Syndiniales, abundance 0.4%), low degree <4, but a
497  high betweenness centrality (>0.8; Table 6).

498

499

500

501

502

503

504

505
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508
509 Table 6. Central OTUs.
OTU Class Lowest rank taxonomy Relative Degree  Betweenness Closeness Season
Abundance (%)! Centrality Centrality
Hubs
en_00092 Mamiellophyceae Bathycoccus 0.51 42 0.04 0.42 Winter
en_00119 Dinophyceae - 0.41 50 0.03 0.42 Winter
bp_000037 Alphaproteobacteria Parvibaculales_OCS116 0.31 45 0.08 0.43 Winter
bp_000039 Gammaproteobacteria SUPO05_cluster 0.28 29 0.12 0.41 Spring
bn_000039 Gammaproteobacteria SUPO05_cluster 0.21 42 0.17 0.44 Spring
bn_000037 Alphaproteobacteria Parvibaculales_OCS116 0.20 40 0.05 0.42 Spring
bp_000059 Gammaproteobacteria SAR86 0.20 24 0.09 0.40 Spring
ep_00070 Cryptophyceae Cryptomonadales_X 0.13 40 0.04 0.42 Winter
bn_000059 Gammaproteobacteria SAR86 0.12 24 0.03 0.40 Spring
bn_000102 Alphaproteobacteria Nisaeaceae_OM75 0.09 26 0.03 0.38 Winter
bp_000193 Alphaproteobacteria - 0.06 37 0.03 0.40 Winter
bn_000170 Acidimicrobiia Sva0996_marine_group 0.06 59 0.06 0.44 Winter
bn_000226 Gammaproteobacteria HOC36 0.04 60 0.06 0.43 Winter
Connectors

bp_ 000001 Oxyphotobacteria Synechococcus (CC9902) 3.79 o) 0.05 0.30 Autumn
bp_ 000002 Alphaproteobacteria SAR11 Clade_la 2.26 2 0.40 0.56 Spring
bp_ 000004 Alphaproteobacteria SAR11 Clade_la 2.02 3 0.15 0.63 NA
bp_ 000007 Alphaproteobacteria SAR11 Clade_la 1.38 3 0.60 0.71 NA
bp_ 000008 Alphaproteobacteria SAR11 Clade_la 1.15 3 0.15 0.63 NA
bn_ 000008 Alphaproteobacteria SAR11 Clade_la 0.68 o) 0.03 0.27 Winter
en_ 00059 Chlorodendrophyceae Tetraselmis 0.66 4 0.05 0.26 Summer
bn_ 000020 Oxyphotobacteria - 0.56 3 0.60 0.67 Autumn
en_00161 Syndiniales Syndiniales-Group-I-Clade-4_X 0.42 4 0.80 0.75 Autumn
bn_ 000018 Oxyphotobacteria Prochlorococcus MIT9313 0.41 o) 0.04 0.24 Winter
bn_ 000054 Alphaproteobacteria Puniceispirillales_SAR116 0.1 4 0.14 0.40 Autumn
bn_ 000062 Alphaproteobacteria Puniceispirillales_SAR116 0.08 3 0.55 0.50 Autumn
bn_ 000077 Rhodothermia Balneola 0.07 3 0.17 0.32 Summer
bn_ 000112 Gammaproteobacteria KIB9A 0.06 4 0.53 0.48 Summer
bn_ 000156 Alphaproteobacteria Parvibaculales_PS1 0.05 4 0.14 0.40 Summer
bn_ 000281 Bacteroidia Sphingobacteriales_NS11-12 0.05 o) 0.16 0.44 Autumn
bn_ 000221 Alphaproteobacteria Puniceispirillales_SAR116 0.04 o) 0.05 0.30 Winter
ep_ 00269 Chrysophyceae Clade-I_X 0.04 2 1.00 1.00 Summer

510 " Proportional to the resident microbiota

511
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519  modules. The edges represent correlations with |LS| > 0.7, |p|>0.7, P<0.001 and Q<0.001. The
520 color of the edges indicates positive (grey) or negative (red) associations. The shape of nodes
521 indicates bacteria (rhomboid) or microbial eukaryotes (circle), and the color of nodes represents
522  species seasonal preferences, determined using the indicator value (p<0.05). pb =
523  Proteobacteria

524
525

526 DISCUSSION

527  Identifying the most important microbes for the functioning of the ocean ecosystem is
528 achallenge, which can be addressed by delineating core microbiotas [4]. Recognizing
529  the most abundant and widespread microbes in the ocean is a step towards knowing the
530 core microbiota. However, this does not take into account the importance that both
531 microbial interactions and microbes with moderate or low abundance may have for the
532  functioning of ecosystems [4, 29, 38]. Considering potential interactions when
533  delineating core microbiotas may not only allow identifying moderate/low abundance
534  taxa that may have important roles in the community but could also allow excluding
535 taxa that are present in several locations but that may not have an important role for
536  community function (e.g., dormant cells or cells being dispersed [8]). Here, we have
537  delineated and analyzed the core microbiota of a coastal ecosystem-based on 10 years
538 of occurrence data considering possible interactions.

539 To detect the core microbiota, we first identified the resident OTUs, that is,
540 those that occur >30% of the time (i.e. >36 out of 120 months) over a decade. This
541  threshold was selected as it allows for seasonal OTUs that would be present recurrently
542 in at least one season. Analysis of the resident OTU dynamics indicated a clear
543  seasonality (Figure 1 C-D), and that the measured environmental factors could explain

544  ~45% of the resident microbiota variance. The main environmental drivers were
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545  temperature and daylength, which is consistent with previous works from the same
546  time-series (BBMO) [34, 39, 40]. These values are lower than what has been reported
547  for bacteria in the English Channel, where daylength explains ~65% of community
548  variance [17], and higher than what has been reported for entire communities in the
549  time-series SPOT (California, 31%) [41] or SOLA (the Mediterranean Sea, ~130 km
550 from BBMO; 7-12%) [42]. Daylength may be more important in the English Channel
551 as it has a more pronounced annual variation than at BBMO, whereas the measured
552  differences could reflect a higher coupling of the resident OTUs with environmental
553  variation in BBMO than in SOLA or SPOT. SOLA is characterized by the occasional
554  winter storms that bring nutrients from the sediments to the water column as well as by
555 the freshwater inputs from nearby rivers during flash floods [43], and this could
556  partially explain the differences with BBMO. The importance of daylength and
557  temperature for community dynamics was reflected by niche analyses, which identified
558 two main niches associated with summer and winter at the BBMO, to which ~50% of
559  the resident OTUs were associated (Figure 1 E-F). Other resident OTUs likely have
560  spring and fall niches as indicated by Figure 1 C-D, yet these niches cannot be detected
561  with the used null model analysis, as their preferred temperatures or daylengths will not
562  depart significantly from the randomized mean.

563 Based on the resident OTUs, we built networks to define the core microbiota.
564  We identified a total of 259 core OTUs (182 bacteria and 77 protists) that represented
565  64% of the abundance of the resident microbiota and that showed seasonal variation.
566  We could only find supporting evidence from the literature (PIDA database) [21] for
567 85 associations of the core (6 %), indicating that most of them still need to be validated
568  with direct observation or experimentally. This is not surprising, as the most studied

569  hosts in PIDA are protists from the micro-plankton (>20 pm cell size), which are mostly
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570  absent from our pico- and nanoplankton networks. Also, PIDA does not cover Bacteria-
571  Bacteria associations. Nevertheless, the detected core OTUs from BBMO represent a
572  fraction of the core microbiota at this site, since larger microbial size fractions were not
573  sampled. Including these larger size fractions would expand the composition of the core
574  and could unveil additional patterns. For example, in a global ocean network including
575  size fractions >20 pm cell size, protists or small multicellular eukaryotes dominated the
576  interactome [26].

577 Alpha-/Gammaproteobacteria, Bateroidia, Acidimicrobiia were the main
578  bacterial groups in the core, including also common marine taxa, such as
579  Synechococcus or SAR11. The main protists in the core included Syndiniales
580 (parasites), Dinoflagellates, Mammiellales (Micromonas and Bathycoccus), and
581  diatoms. These taxa are likely the most important in sustaining ecosystem function at
582 BBMO, and probably have similar importance in other coastal areas. Other studies have
583  reported important roles in marine association networks for SAR11 and Synechococcus
584  [31, 44]. Syndiniales, Haptophytes, and Dinoflagellates dominated networks in terms
585  of the number of nodes and edges at SPOT, while Mamiellales (Micromonas &
586  Bathycoccus) and diatoms also had relevant roles [41]. Syndiniales, Dinoflagellates,
587  and Diatoms were also predominant in global ocean networks, which is coherent with
588  our results [26].

589 Bacteria-Bacteria associations were the most abundant (54%) in the core
590 BBMO microbiota, followed by Bacteria-Protists (31%) and Protist-Protist (11%)
591 associations. Associations tended to occur among bacteria or protists, rather than
592  between them, in the English Channel time-series [17]. However, the study used
593  microscopy to determine protist community composition, while it used 16S-rRNA gene

594  data for analyzing bacteria communities and this might explain the limited number of
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595  connections between protists and bacteria. Most associations occurred among protists
596 in a global-ocean network that included a broad range of microbial size-fractions [26].
597  This suggests that time-series analyses including larger size-fractions may determine a
598  higher proportion of associations among protists, which may turn out to be prevalent.

599 The core network had “small world” properties (that is, high clustering
600  coefficient and relatively short path lengths) [37] when compared to randomized
601 networks (Table 3) or particular subnetworks from size fractions or specific seasons
602 (Table 5). The small-world topology is characteristic of many different types of
603  networks [45], including marine microbial temporal or spatial networks [23, 26, 30,
604  31]. Some of our network statistics were similar to those obtained at SPOT [23, 30], in
605 particular the averages of degree, clustering coefficient, and path length (Table 3).
606  Furthermore, the BBMO network had an average path length similar to a global ocean
607  network [26] and also, similarly to this network, the node degree of the BBMO core
608 members was independent of their relative abundances, showing that the associations
609  between core OTUs were not merely a consequence of high prevalence and abundance.
610 The BBMO core network had a clustering coefficient that was ten times larger
611  than that of an Erd6s—Rényi random network of the same size (Table 3), which agrees
612  with what was observed at SPOT [23, 30]. The large proportion of positive associations
613  in BBMO networks (~95%) was in agreement with results from other temporal [23, 41]
614  or large-scale spatial [26] microbiota analyses, where positive associations were also
615  predominant (~70-98%), although these values include taxa that are not necessarily part
616  of the core. This suggests that interactions such as syntrophy or symbiotic associations
617  are more important than competition in marine microbial systems and that these types
618  of associations may underpin marine ecosystem function. These findings are also

619  coherent with a recent large-scale literature survey that found that ~47% of the validated
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620  associations between protists and bacteria are symbiotic [21]. Nevertheless, it is also
621  possible that common sampling strategies and methodological approaches do not detect
622  asubstantial fraction of negative associations. For example, while positive correlations
623 in taxa abundance pointing to positive interactions may be easier to detect, negative
624  associations may be missed due to plummeting species abundances that would prevent
625  establishing significant correlations, or to a delay between the increase and decrease in
626  abundance of interacting taxa that are not synchronized with sampling time. Future
627  studies adapting the sampling scheme to the timing of interactions (e.g., daily or weekly
628  sampling) and the use of other approaches apart from taxa abundances, such as analyses
629  of single-cell genomic data to determine protistan predation, or controlled experiments,
630  will likely generate new insights on negative microbial interactions.

631 The relatively high clustering coefficient of the core network (compared to a
632  random network) and its short path length indicate that most OTUs are connected
633  through < 3 intermediary OTUs. It has been shown that a large proportion of strong
634  positive associations, as in the BBMO core network, may destabilize communities due
635  to positive feedbacks between species [46]. When a species decreases in abundance as
636  aresponse to environmental variation, it may pull others with it, generating a cascade
637  effect propagated by the many positive associations in the network. Accordingly, the
638  change of abundance in specific OTUs in one section of the network could affect OTUs
639 in other network sections not necessarily affected directly by the environmental
640  variation. This cascade effect may help to explain a paradox: environmental variables
641  affect the structure of marine microbial communities and consequently association
642  networks. Yet, our and others' results [17, 18, 23, 26, 30-32] have reported a limited
643  number of associations between environmental variables and network nodes (OTUs).

644  Environmental heterogeneity might affect network structure by acting on a small subset
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645 of nodes (OTUs), which would then influence other nodes through cascading
646 interactions facilitated by the highly interconnected nature of the networks as well as
647  positive feedbacks promoted by the high proportion of positive associations [46].

648 If OTUs susceptible to environmental variation are also highly connected, then
649 their effect on the entire network structure may be larger. In line with this, we found
650  that the connectivity of OTUs associated with environmental variables at BBMO (49
651  OTUs out of 259) had a mean degree of ~25 (SD ~14), while for all the 259 OTUs of
652  the core network, the mean degree was ~11 (SD ~13). The seasonal dynamics of the
653 BBMO microbiota may partially be driven by a subset of OTUs that vary with
654  environmental factors (e.g. temperature, daylength). These may exert a destabilizing
655 influence over the entire community over time, promoting the annual turnover of
656  communities and networks.

657 Most core OTUs (98%) showed a clear preference for one season. Interestingly,
658  the distribution of core OTUs among the seasons was uneven, with 61% of these OTUs
659  showing a winter preference. Network connectivity at BBMO was correspondingly
660  heterogeneous between seasons, peaking in winter and remaining low in the other
661  seasons. Specifically, the winter subnetwork included ~92% of the seasonal edges. This
662 indicates that winter associations are not only specific (i.e. they do not tend to change
663  partners), but they also have a relatively high recurrence (otherwise, winter networks
664  would be smaller). A higher similarity between winter communities when compared to
665  other seasons was also indicated by our ordination analyses of the resident OTUs
666  (Figure 1), as well as by studies of the entire protist community at BBMO [34] or whole
667  community analyses at SPOT [23].

668 The structure of communities is determined by the interplay of selection,

669  dispersal, speciation, and ecological drift [47]. Our results indicate that selection, a
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670  deterministic process, is stronger in winter, leading to winter sub-communities that tend
671  to be more similar between each other than to communities from other seasons. Given
672  that we have removed edges associated with the measured environmental variables, we
673  do not expect that the identified edges between winter OTUs represent selection
674  associated to these variables (e.g. low temperature). Consequently, winter edges may
675  represent associations linked to unmeasured variables or ecological interactions that
676  may be more likely to develop during winter due to stronger environmental selection.
677 Due to weaker selection in other seasons species occurrence would display less
678  recurrent (or more random) patterns, preventing specific associations to be formed. This
679  also suggests that ecological redundancy changes over time, and is lower in winter
680  compared to the other seasons (even though the number of OTUs is larger in winter).
681 A reduction in redundancy may also promote strong ecological interactions in winter.
682 The existence of subsets of species that interact more often between themselves
683  than with other species (modules), is characteristic of biological networks, and can
684  contribute to overall network stability [48, 49]. Modules can represent divergent
685  selection, niches, the clustering of evolutionary closely related species or co-
686  evolutionary units [50, 51]. Modules in the core BBMO network (total 12) included
687  positive associations between diverse taxa, and could represent divergent selection,
688  driven by unmeasured environmental variables, or examples of syntrophic or symbiotic
689 interactions between microbes from different taxonomic groups.

690 Most BBMO modules included diverse lifestyles (heterotrophs, mixotrophs,
691  phototrophs, parasites), similar to what has been observed at SPOT [41]. Yet, a number
692  of modules appeared to be predominantly heterotrophic or autotrophic (Table S8,
693  Additional file 1). Some modules included OTUs from the same species, such as

694  Module 4 in the picoplankton, which included several SAR11 Clade I OTUs, and
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695  Module 7 of the nanoplankton, which included several Synechococcus OTUs. These
696 modules could reflect similar niches, associated with unmeasured variables, or the
697  dependence on metabolites produced by other organisms (auxotrophy). There is
698 evidence of auxotrophy for both SARI11 (e.g. thiamin, glycine)[52-54] and
699  Synechococcus (e.g. cobalamin) [55]. Recently it has been observed in co-culture
700  experiments that Prochlorococcus may fulfill some metabolic requirements of SAR11,
701  promoting the growth of the latter in a commensal relationship [56]. In our analyses of
702  the BBMO core microbiota, we did not find strong associations between SAR11 and
703  Prochlorococcus or the more abundant relative, Synechococcus. Yet, SAR11 formed
704  strong associations with a plethora of taxa with which could potentially have
705  commensal relationships.

706 The overall importance of the observed modules was indicated by the total
707  abundance of their constituent OTUs (24% of the reads compared to the resident
708  microbiota). Most of the modules at BBMO were associated with a single season,
709  suggesting that they reflect seasonal niches. Since these modules were inferred over 10
710  years, they represent recurrent network features. Chafee et al. [57] also identified
711  season-specific modules in a 2-year time series in the North Sea (Helgoland), including
712  samples taken weekly or bi-weekly. These modules were much larger than ours, and
713  they may also include environmentally-driven edges. Nevertheless, the Helgoland
714  modules seem to be driven by eutrophic (spring & summer) vs. oligotrophic (autumn
715 & winter) conditions in this location. In contrast, the BBMO modules, displayed weaker
716  correlations with nutrients and seem to be influenced by temperature and daylength
717  (Figure 5). Differences in the sampling scheme between Helgoland and BBMO
718  ((bi)weekly vs. monthly) as well as between both locations (different seas and latitudes,

719  affecting temperature and daylength) may explain these differences.
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720 Keystone species have a high influence in ecosystems relative to their
721  abundance [58]. Network analyses may help to identify them [24, 59], yet, there is no
722  clear consensus of what network features are the best unequivocal indicator of keystone
723  species [60-62]. Therefore, we focused on identifying central OTUs (hubs or
724  connectors) that may be important for ecosystem function [22, 24] and could represent
725  keystone species. We identified 13 hubs in the BBMO core network with moderate-low
726  abundances (<1%) and high degree (26-60) that were associated with winter or spring.
727  These moderate-low abundance OTUs may affect nutrient cycling directly [63] or
728  indirectly, by affecting other OTUs with higher abundance. The putative stronger
729  selection exerted by low temperatures and short daylengths during winter and early
730  spring, as compared to summer and autumn, may lead to a higher species recurrence
731  [34], larger networks, and possibly, more hubs. An OTU of the abundant picoalgae
732 Bathycoccus (en_00092) was identified as a winter hub, which is consistent with
733 reported Bathycoccus abundance peaks in late winter (February-March) in both BBMO
734  [64] and the nearby station SOLA [42]. This Bathycoccus hub may be associated with
735  diverse taxa, such as prokaryotes that may benefit from algal exudates [65] or even via
736  mixotrophy [66]. In agreement with this, out of the 42 associations of this hub OTU,
737 25 were with bacteria and the rest with protists.

738 In contrast to hubs, connector OTUs were predominantly associated with
739  warmer waters, that is, summer and autumn, and may represent transitions in
740  community states. This was consistent with the associations observed in an abundant
741  Synechococcus connector OTU (bp_000001, Table 6). This OTU was predominant in
742  summer-autumn, in agreement with previous BBMO reports [36, 67], but it was
743  associated with other OTUs from spring (negative association with bp_000017), winter

744  (negative association with bp 000039), summer (positive association with bp 000087,
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745  bp 000012) and autumn (positive association with bp 000022), thus likely holding a
746  central position in the network. Another abundant spring connector OTU (SAR11 Clade
747  la, bp 000002), featured only two connections to spring (positive association with
748  bp_000007) and summer (positive association with bp 000046) OTUs.

749

750 CONCLUSION

751  Our decade-long analysis of the dynamics of a microbiota populating a time-series in
752  the Mediterranean Sea allowed us to determine the interconnected core microbiota,
753  which likely includes several microbes that are important for the functioning of this
754  coastal ecosystem. We found a relatively small core microbiota that displayed seasonal
755  variation, with a heterogeneous distribution of associations over different seasons,
756  indicating different degrees of recurrence and selection strength over the year. Future
757  analyses of other core marine microbiotas will determine how universal are the patterns
758  found in BBMO. These studies will be crucial to determine potential long-term effects
759  of climate change on the architecture of the interaction networks that underpin the
760  functioning of the ocean ecosystem.

761

762 METHODS

763  Study site and sampling

764  Surface water (~1 m depth) was sampled monthly from January 2004 to December
765 2013 at the Blanes Bay Microbial Observatory (BBMO) in the Northwestern
766  Mediterranean Sea (41°40°N, 2°48°E) [Figure 1A]. The BBMO is an oligotrophic
767  coastal site ~1 km offshore with ~20 m depth and with limited riverine or human
768  influence [36]. Seawater was pre-filtered with a 200 pum nylon mesh and then

769  transported to the laboratory in 20 L plastic carboys and processed within 2 hours.
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770  Microbial plankton from about 6 L of the pre-filtered seawater was separated into two
771  size fractions: picoplankton (0.2-3 pm) and nanoplankton fraction (3-20 um). To
772  achieve this, the seawater was first filtered through a 20 pum nylon mesh using a
773  peristaltic pump. Then the nanoplankton (3-20 um) was captured on a 3 um pore-size
774  polycarbonate filter. Subsequently, a 0.2 um pore-size Sterivex unit (Millipore,
775  Durapore) was used to capture the picoplankton (0.2-3 um). Sterivex units and 3 pm
776  filters were stored at -80 °C until further processed. The sequential filtering process
777  aimed to capture free-living bacteria and picoeukaryotes in the 0.2-3 pm size fraction
778  (picoplankton), and particle/protist-attached bacteria or nanoeukaryotes in the 3-20 um
779  fraction (nanoplankton). The 3um filter was replaced if clogging was detected; DNA
780  from all 3pm filters from the same sample were extracted together.

781 A total of 15 contextual abiotic and biotic variables were considered for each
782  sampling point: Daylength (hours of light), Temperature (°C), Turbidity (estimated as
783  Secchi disk depth [m]), Salinity, Total Chlorophyll a [Chla] (ug/l), PO4* (uM), NH4*
784  (uM), NOy (uM), NO3™ (uM), SiO2 (uM), abundances of Heterotrophic prokaryotes
785  [HP] (cells/ml), Synechococcus (cells/ml), Total photosynthetic nanoflagellates [PNF;
786  2-5um size] (cells/ml), small PNF (2um ; cells/ml) and, Heterotrophic nanoflagellates
787  [HNF] (cells/ml) [Figure 1B]. Water temperature and salinity were sampled in situ with
788  a SAIV A/S SD204 CTD. Inorganic nutrients (NOs-, NO2", NH4", POs*, SiO,) were
789  measured using an Alliance Evolution II autoanalyzer [68]. Cell counts were done by
790 flow cytometry (heterotrophic prokaryotes, Synechococcus) or epifluorescence
791  microscopy (PNF, small PNF and HNF). See Gasol et al. [36] for specific details on
792 how other variables were measured. Environmental variables were z-score standardized
793  before running statistical analysis.

794
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795  DNA extraction, sequencing, and metabarcoding

796  DNA was extracted from the filters using a standard phenol-chloroform protocol [69],
797  purified in Amicon Units (Millipore), and quantified and qualitatively checked with a
798  NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific). Eukaryotic PCR
799  amplicons were generated for the V4 region of the 18S rDNA (~380 bp), using the
800  primer pair TAReukFWDI1 and TAReukREV3 [70]. The primers Bakt 341F [71] and
801 Bakt 806RB [72] were used to amplify the V4 region of the 16S rDNA. PCR
802  amplification and amplicon sequencing were carried out at the Research and Testing
803  Laboratory (http://rtlgenomics.com/) on the I//umina MiSeq platform (2x250 bp paired-
804 end sequencing). DNA sequences and metadata are publicly available at the European
805  Nucleotide Archive (http://www.ebi.ac.uk/ena; accession numbers PRJEB23788 for
806  18S rRNA genes & PRJEB38773 for 16S rRNA genes).

807 A total 0f 29,952,108 and 16,940,406 paired-end ///lumina reads were produced
808 for microbial eukaryotes and prokaryotes respectively. Adapters and primers were
809 removed with Cutadapt v1.16 [73]. DADA2 v1.10.1 [74] was used for quality control,
810  trimming, and inference of Operational Taxonomic Units (OTUs) as Amplicon
811  Sequence Variants (ASVs). For both microbial eukaryotes and prokaryotes, the
812 Maximum number of expected errors (MaxEE) was set to 2 and 4 for the forward and
813 reverse reads respectively. No ambiguous bases (Ns) were allowed. Microbial
814  eukaryotic sequences were trimmed to 220 bp (forward) and 190 bp (reverse), while
815  prokaryotic sequences were trimmed to 225 bp (both forward and reverse reads). A
816  total of 28,876 and 19,604 OTUs were inferred for microbial eukaryotes and
817  prokaryotes respectively.

818 OTUs were assigned taxonomy using the naive Bayesian classifier method [75]

819  together with the SILVA version 132 [76] database as implemented in DADA2.
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820  Eukaryotic OTUs were also BLASTed [77] against the Protist Ribosomal Reference
821  database (PR?, version 4.10.0; [78]). When the taxonomic assignments for the
822  eukaryotes disagreed between SILVA and PR?, the conflict was resolved manually by
823  inspecting a pairwise alignment of the OTU and the closest hits from the two databases.
824  OTUs assigned to Metazoa, Streptophyta, nucleomorph, chloroplast, and mitochondria
825 were removed before further analysis. Archaea were removed from downstream
826  analyses as the used primers are not optimal for recovering this domain [79].

827 Each sample (corresponding to a specific gene, size fraction, and timepoint) was
828  subsampled with the rrarefy function from the R package Vegan [80] to 4,907 reads,
829  corresponding to the number of reads in the sample with the lowest sequencing depth,
830  to normalize for different sequencing depth between samples. OTUs present in <10%
831  of the samples were removed. After quality control and rarefaction, the number of
832  OTUs was 2,926 (1,561 bacteria, and 1,365 microeukaryotes; Table 1).

833 Due to a suboptimal sequencing of the amplicons, we did not use nanoplankton
834  samples of bacteria and protists from the period May 2010 to July 2012 (27 samples)
835 as well as March 2004 and February 2005. OTU read abundance for samples with
836  missing values were estimated using seasonally aware missing value imputation by
837  weighted moving average for time series as implemented in the R package imputeTS
838  [81].

839 Cell/particle dislodging or filter clogging during the sequential filtration process
840 may affect the taxonomic diversity observed in the different size fractions, with
841 nanoplankton DNA leaking into the picoplankton fraction, or picoplankton DNA
842  getting stuck in the nanoplankton fraction. To minimize the effects of cell/particle
843  dislodging or filter clogging on the diversity recovered from the different size fractions,

844  we calculated the sequence-abundance ratio for OTUs appearing in both pico- and
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845  nano-plankton fractions. When the ratio exceeded 2:1, we removed the OTU from the
846  size fraction with the lowest number of reads. After subsampling and filtering the OTU
847  tables were joined for each time point, and since the samples had been normalized to
848  the same sequencing depth, we calculated the relative read abundance for the OTUs for
849  each year and aggregated over the corresponding months along the 10 years for the
850  resident microbiota. This means that the relative abundance for both domains and size
851  fractions sums up to 1 for each month across ten years.

852

853  Resident microbiota

854  We defined ad hoc the resident microbiota as the set of OTUs present in >30% of the
855  samples over 10 years (that is, present in >36 months, not necessarily consecutive).
856  This value was chosen as it allows for seasonal OTUs, which may only be present 3-4
857 months each year, and still be considered as part of the resident microbiota. The
858  residents included 355 eukaryotic and 354 bacteria OTUs (Table 1), and excluded a
859  substantial amount of rare OTUs, which can cause spurious correlations during network
860  construction due to sparsity [i.e. too many zeros] [22]. The relative abundance of the
861  taxonomic groups included in the resident microbiota was fairly stable from year to
862  year (Figure 3).

863

864  Environmental variation and resident OTUs

865  All possible correlations among the measured environmental variables and resident
866  OTU richness and abundance were computed in R and plotted with the package
867  corrplot. Only significant Pearson correlation coefficients were considered (p<0.01),
868 and the p-values were corrected for multiple inference (Holm's method) using the

869  function rcorr.adjust from the R package RcmdrMisc. Unconstrained ordination
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870  analyses were carried out using NMDS based on Bray Curtis dissimilarities between
871  samples including resident OTUs only. Environmental variables were fitted to the
872  NMDS using the function emvfit from the R package Vegan [80]. Only variables
873  displaying a significant correlation (p<0.05) were considered. Constrained ordination
874 was performed using distance-based redundancy analyses (dbRDA) in Vegan,
875  considering Bray Curtis dissimilarities between samples including resident OTUs only.
876  The most relevant variables for constrained ordination were selected by stepwise model
877  selection using 200 permutations, as implemented in ordistep (Vegan). Ordinations
878  were plotted using the R package ggplot2 and ggord. The amount of community
879  variance explained by the different environmental variables was calculated with Adonis
880  (Vegan) using 999 permutations. Resident OTUs displaying niche preference in terms
881  of Temperature and Daylength, the most important environmental variables, were
882  determined using the function niche.val from the R package EcolUtils with 1,000
883  permutations.

884

885  Delineation of seasons

886  Seasons were defined following Gasol et al. [36] with a small modification: months
887  with water temperature (at the sampling time) >17 °C and daylength >14 h d! were
888  considered to be summer. Months with water temperature <17 °C and < 11 h d"! of
889  daylength were considered to be winter. Months with water temperature >17°C and
890  daylength <14 h d'! were considered as autumn, while months with water temperature
891 <17°C and > 11 h d"! of daylength were considered to be spring. The indicator value
892  [82] was calculated using the R package /abdsv [83] to infer OTU seasonal preference.
893

894  Core microbiota delineated using networks
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895  The OTU table together with the 15 environmental variables were used to construct
896  association networks using extended Local Similarity Analysis (eLSA) [84-86]. eLSA
897  was run on the OTU table with subsampled reads with default normalization: a z-score
898  transformation using the median and median absolute deviation. P-value estimations
899  were run under a mixed model that performs a random permutation test of a co-
900  occurrence only if the theoretical p-values for the comparison are <0.05. Bonferroni
901 false discovery rate (q) was calculated for all edges based on the p-values using the
902  p.adjust package in R.

903 To detect environmentally-driven associations between OTUs induced by the
904 measured environmental variables we used the program EnDED [87].
905  Environmentally-driven associations indicate similar or different environmental
906  preferences between OTUs and not ecological interactions. In short, EnDED evaluates
907  associations between two OTUs that are both connected to the same environmental
908 variable based on a combination of four methods: Sign Pattern, Overlap, Interaction
909  Information, and Data Processing Inequality. These methods use the sign (positive or
910 negative) and the duration of the association, the relative abundance of OTUs as well
911 as environmental parameters to determine if an association is environmentally-driven.
912  If the four methods agreed that an association was environmentally-driven, then it was
913  removed from the network. The initial number of edges was 199,937, of which 180,345
914  were OTU-OTU edges that were at least in one triplet with an environmental parameter.
915  Intotal 65,280 (~33%) edges in the network were identified as indirect by EnDED and
916 removed. Afterward, only edges representing the strongest associations (i.e., absolute
917  local similarity score |[LS| > 0.7, Spearman correlation |p| > 0.7, P<0.001 and Q<0.001)
918  and nodes representing the resident OTUs were retained for downstream analysis and

919  are hereafter referred to as “core associations”. Those OTUs participating in core
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920  associations were defined as core OTUs, although their involvement in ecological
921 interactions need further experimental validation. Both core associations and core
922  OTUs constitute the “core network”, which also represents the core microbiota (both
923  “core network™ and “core microbiota” are used indistinctively). The core network was
924  randomized using the Erdés—Rényi model [88], using 262 nodes and 1,411 edges.

925 For the core network, we calculated: 1) Density: quantifies the proportion of
926  actual network connections out of the total number of possible connections, 2)
927  Transitivity or Clustering coefficient: measures the probability that nodes connected to
928  anode are also connected, forming tight clusters, 3) Average path length: mean number
929  of steps (edges) along the shortest paths for all possible pairs of nodes in the network
930 (a low average path length indicates that most species in the network are connected
931 through a few intermediate species), 4) Degree: number of associations per node, 5)
932  Betweenness centrality: measures how often an OTU (node) appears on the shortest
933  paths between other OTUs in the network, 6) Closeness centrality: indicates how close
934  anode is to all other nodes in a network, 7) Cligues.: refers to sets of interconnected
935  nodes where all possible connections are realized, 8) Modularity: measures the division
936  ofa given network into modules (that is, groups of OTUs that are highly interconnected
937  between themselves).

938 The Degree, Betweenness centrality and Closeness centrality were used to
939  identify central OTUs using ad hoc definitions. “Hub” OTUs were those with a score
940  above the average for the three statistics and were normally among the top 25% in each
941  score [22, 62, 89]. Specifically, hub OTUs featured a degree >24, Betweenness
942  centrality >0.03 and Closeness centrality >0.3. Similarly, “connector” OTUs were
943  defined as those featuring a relatively low degree and high centrality and could be seen

944  as elements that connect different regions of a network or modules [50]. Connector
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OTUs featured a degree <5, Betweenness centrality > 0.03 and Closeness centrality
>(0.2. Network statistics were calculated with igraph in R [90] , Gephi [91] and
Cytoscape v3.6.1 [92]. Visualizations were made in Cytoscape v3.6.1. Modules in the

core network were identified with MCODE [93].
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1258 FIGURE LEGENDS

1259

1260

1261  Figure 1. The Blanes Bay Microbial Observatory and the variation of its resident
1262  microbiota and measured environmental variables over ten years. A) Location of
1263  the Blanes Bay Microbial Observatory. B) All possible correlations between the
1264  measured environmental variables including the richness and abundance of resident
1265 OTUs (NB: only 709 resident OTUs are considered, see Tablel). Only significant
1266  Pearson correlation coefficients are shown (p<0.01). The p-values were corrected for
1267  multiple inference (Holm's method). C) Unconstrained ordination (NMDS based on
1268  Bray Curtis dissimilarities) of communities including resident OTUs only, to which
1269  environmental variables were fitted. Only variables with a significant fit are shown
1270  (P<0.05). Arrows indicate the direction of the gradient and their length represents the
1271  strength of the correlation between resident OTUs and a particular environmental
1272  variable. The color of the samples (circles) indicates the season to which they belong.
1273  The bottom-left arrow indicates the direction of the seasonal change. PNF =
1274  photosynthetic nanoflagellates. D) Constrained ordination (Distance-based redundancy
1275  analyses, dbRDA, using Bray Curtis dissimilarities) including only the most relevant
1276  variables after stepwise model selection using permutation tests. Each axis (i.e.,
1277  dbRDA1 and dbRDA?2) indicates the amount of variance it explains according to the
1278  associated eigenvalues. The color of the samples (circles) indicates the season to which
1279  they belong. Arrows indicate the direction of the gradient and their length represents
1280 the strength of the correlation between resident OTUs and a particular environmental
1281  variable. The bottom-left arrow indicates the direction of the seasonal change. E-F)
1282  Resident OTUs displaying different niche preferences (blueish areas) in terms of the

1283  two most important abiotic variables: Temperature E) and Daylength F). The red dots
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1284  indicate the randomization mean, and the orange curves represent the confidence limits.
1285  Black dots indicate individual OTUs for which temperature or daylength preferences
1286  are significantly (p<0.05) higher or lower than a random distribution over 10 years. At
1287  least two assemblages with different niches become evident: one preferring higher
1288  temperature and longer days (summer/spring), and another one preferring lower
1289  temperature and shorter days (winter/autumn). Note that several OTUs associated to
1290  Spring or Autumn are not expected to be detected with this approach, as their preferred
1291  temperature or daylength may not differ significantly from the randomized mean.
1292

1293  Figure 2. Core microbiota resulting from 10 years of monthly pico- and
1294  nanoplankton relative abundances. A) Core network including bacteria and
1295  microbial eukaryotic OTUs that occur > 30% of the time during the studied decade (i.e.
1296  resident microbiota), with highly significant and strong associations (P<0.001 and
1297  Q<0.001, absolute local similarity score |LS| > 0.7, Spearman correlation |p|>0.7),
1298  where detected environmentally-driven edges were removed. The color of the edges
1299  (links) indicates whether the association is positive (grey) or negative (red). The shape
1300 of nodes indicates bacteria (rhomboid) or microbial eukaryotes (circle), and the color
1301  of nodes represents species seasonal preferences, determined using the indicator value
1302  (indval, p<0.05). Node size indicates OTU relative abundance. B) Core network as a
1303  Circos plot, indicating the high-rank taxonomy of the core OTUs. Since 95% of the
1304  associations are positive (see Table 2), we do not indicate whether an edge is positive
1305  or negative.

1306

1307  Figure 3. The monthly variation in the resident and core microbiotas over 10

1308  years. Upper panels: The resident microbiota is defined as those eukaryotes and
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1309  Dbacteria that occur in at least 30% of the samples over 10 years. The relative OTU
1310 abundance (left panel) and number of OTUs (right panel) for different domains and
1311  taxonomic levels in the resident microbiota are shown. Note that the relative abundance
1312  of Bacteria vs. Eukaryotes does not necessarily reflect organismal abundances on the
1313  sampling site, but the amplicon relative abundance after PCR. Relative abundances
1314  were calculated for each year and aggregated over the corresponding months along the
1315 10 years for the resident microbiota, then split into size fractions (NB: relative
1316  abundance for both domains and size fraction sums up to 1 for each month across ten
1317  years). Lower panels: Core microbiota over 10 years. The relative abundances of core
1318  OTUs reflect the remaining proportions after removing all the OTUs that were not
1319  strongly associated when building networks. Relative OTU abundance (left panel) and
1320  number of OTUs (right panel) for different domains and taxonomic levels among the
1321  core OTUs.

1322

1323  Figure 4. Pico- and nanoplankton core sub-networks. The shape of the nodes
1324  indicates bacteria (rhomboid) or microbial eukaryotes (circle), and the color of nodes
1325  represents species seasonal preferences, determined using the indicator value (p<0.05).
1326  The color of the edges indicates if the association is positive (grey) or negative (red).
1327  Node size indicates OTU relative abundance from the core microbiota.

1328

1329  Figure 5. Main modules in the core network. Modules with MCODE score >4 are
1330  shown for picoplankton (upper panel) and nanoplankton (lower panel). For each
1331  module, the MCODE score and relative amplicon abundance of the taxa included in it
1332 (as % of the resident microbiota) are indicated. In addition, the numbers of edges and

1333  OTUs within the modules are shown as edges/OTUs; this quotient estimates the average
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1334 number of edges per OTU within the different modules. The edges represent
1335  correlations with [LS| > 0.7, |p|>0.7, P<0.001 and Q<0.001. The color of the edges
1336  indicates positive (grey) or negative (red) associations. The shape of nodes indicates
1337  bacteria (rhomboid) or microbial eukaryotes (circle), and the color of nodes represents
1338  species seasonal preferences, determined using the indicator value (p<0.05). pb =
1339  Proteobacteria

1340

1341
1342 TABLE TITLES

1343

1344  Table 1. Description of the datasets.

1345  Table 2. Core associations. See Figure 2.

1346  Table 3. Core network and sub-networks statistics.

1347  Table 4. Core associations within and between taxonomic domains and size fractions.
1348  Table 5: Subnetworks including core OTUs displaying seasonal preference.

1349  Table 6. Central OTUs.

1350

1351
1352 ADDITIONAL FILES

1353

1354  Additional file 1: Table S1

1355  Relative abundance of bacterial and protistan lineages that are part of the resident and
1356  core microbiotas.

1357

1358
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Additional file 1: Table S2

Relative abundance of core bacterial taxa.

Additional file 1: Table S3

Relative abundance of core eukaryotic taxa.

Additional file 1: Table S4
Indicator value for core OTUs in the picoplankton. Sorted by season/kingdom and

relative amplicon abundance.

Additional file 1: Table S5
Indicator value for core OTUs in the nanoplankton. Sorted by season/ kingdom and

relative amplicon abundance.

Additional file 1: Table S6

Core OTUs without seasonal preference.

Additional file 1: Table S7

Module description.

Additional file 1: Table S8

OTUs within modules.

55


https://doi.org/10.1101/2021.03.18.435965
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435965; this version posted June 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1384  Additional file 2: Figure S1

1385  Panel A shows the full network constructed with the resident microbiota (that is, OTUs
1386  present in >30% of the samples over 10 years; Table 1). Panel B displays network
1387  elements that were removed as they did not fulfill the cut-offs (that is, highly significant
1388  correlations (P & Q <0.001), local similarity scores >|0.7| and Spearman correlations
1389  >|0.7)).

1390

1391  Additional file 3: Figure S2

1392  OTU relative abundance vs. degree shows no relationship in the core network.
1393

1394
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Supplementary Figures
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Figure S1. Panel A shows the full network constructed with the resident microbiota
(that is, OTUs present in >30% of the samples over 10 years; Table 1). Panel B displays
network elements that were removed as they did not fulfill the cut-offs (that is, highly
significant correlations (P & Q <0.001), local similarity scores >|0.7| and Spearman
correlations >|0.7|).
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1410  Figure S2. OTU relative abundance vs. degree shows no relationship in the core
1411  network.
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