

1 **MACA: Marker-based automatic cell-type annotation for single cell expression data**

2 **Yang Xu^{1,2}, Simon J. Baumgart^{1,3}, Christian Stegmann¹, Sikander Hayat^{1,4}**

3 1. Bayer-Broad Joint Precision Cardiology Lab, Cambridge, MA, USA

4 2. Current address: UT-ORNL Graduate School of Genome Science and Technology, The
5 University of Tennessee, Knoxville, TN, USA

6 3. Current address: Novo Nordisk, Data Mining and Bioinformatics, Copenhagen, Denmark

7 4. Current address: Institute of Experimental Medicine and Systems Biology, RWTH Aachen
8 University, Aachen, Germany

9

10 **Abstract**

11 **Summary:** Accurately identifying cell-types is a critical step in single-cell sequencing analyses.
12 Here, we present marker-based automatic cell-type annotation (MACA), a new tool for
13 annotating single-cell transcriptomics datasets. We developed MACA by testing 4 cell-type
14 scoring methods with 2 public cell-marker databases as reference in 6 single-cell studies. MACA
15 compares favorably to 4 existing marker-based cell-type annotation methods in terms of
16 accuracy and speed. We show that MACA can annotate a large single-nuclei RNA-seq study in
17 minutes on human hearts with ~290k cells. MACA scales easily to large datasets and can broadly
18 help experts to annotate cell types in single-cell transcriptomics datasets, and we envision
19 MACA provides a new opportunity for integration and standardization of cell-type annotation
20 across multiple datasets.

21 **Availability and implementation:** MACA is written in python and released under GNU
22 General Public License v3.0. The source code is available at <https://github.com/ImXman/MACA>.

23 **Contact:** Yang Xu (yxu71@vols.utk.edu), Sikander Hayat (hayat221@gmail.com)

24

25 **1 Introduction**

26 Identifying constituent cell-types in a single-cell dataset is fundamental to understand the
27 underlying biology of the system. Many computational methods have been proposed to
28 automatically label cells, and a benchmark study shows that a standard Support Vector Machine
29 (SVM) classifier outperforms most other sophisticated supervised methods and can achieve high
30 accuracy in cell-type assignment (Abdelaal, et al., 2019). However, due to lack of ground-truth
31 in most single cell studies, supervised classification approaches are not feasible and may not be
32 generalized for new single cell studies with different experimental designs. Therefore,
33 unsupervised clustering approaches are still the predominant options for single-cell data analysis
34 (Lähnemann, et al., 2020). Unsupervised approaches usually require human assistance in both
35 defining clustering resolution and manual annotation of cell-types. This results in cell-type
36 annotation being time-consuming and less reproducible due to human inference. As more single
37 cell studies are available, summarizing markers identified in these studies to construct a marker
38 database becomes an alternative approach for automatic cell-type annotation. For example,
39 PanglaoDB (Franzén, et al., 2019) and CellMarker (Zhang, et al., 2019) are two marker
40 databases that summarize markers found in numerous single cell studies and cover a broad range
41 of major cell-types in human and mouse. Also, NeuroExpresso (Mancarci, et al., 2017) is a
42 specialized database for brain cell-types. Taking advantage of those databases for robust cell-
43 type identification, we present MACA, a **marker-based automatic cell-type annotation** method
44 and show how MACA automatically annotates cell-types with high speed and accuracy. We
45 envision MACA as an aid for cell-type annotation to be used by both experts and non-experts.

46

47 **2 MACA implementation**

48 MACA takes as input expression profiles measured by single cell or nuclei RNA-seq
49 experiments. MACA calculates two cell-type labels for each cell based on 1) an individual cell
50 expression profile and 2) a collective clustering profile. From these, a final cell-type label is
51 generated according to a normalized confusion matrix (Figure 1a). MACA first computes cell-
52 type scores for each cell, using a scoring method based on a marker database or user-defined
53 marker lists. The scoring method uses the raw gene count to calculate a cell-type score for each
54 cell, according to gene markers of this cell-type. This results in converting a gene expression
55 matrix to cell-type score matrix. Then, MACA generates a label (Label 1) for each cell by
56 identifying the cell-type associated with the highest score. Independently, using the matrix of
57 cell-type scores as input, the Louvain community detection algorithm (Blondel, et al., 2008) is
58 applied to generate Label 2, which is a clustering label to which a cell belongs. Since the number
59 of cell types is usually unknown, MACA tries clustering at greater resolution to over-cluster cells
60 into many small but homogeneous groups.

61 Both Label 1 and Label 2 serve complimentary functions. Label 1 is assigned on a per-cell basis
62 which may result in incorrectly annotating many cells due to noisiness in the maximum cell-type
63 score for each cell. This may occur when the putative cell-type feature is covered up by ambient
64 RNAs from dominant cell-types (Pliner, et al., 2019). On the other hand, Label 2 is likely to
65 suffer from a common problem in single cell RNA-seq clustering analysis, where cells may share
66 the same dominant features, even though they have been clustered into different groups because
67 of subtle differences. Additionally, results from a clustering analysis can often vary since

68 clustering is non-deterministic. Due to its dependence on user's decisions, mostly the choices of
69 clustering resolution and neighborhood size.

70 To address these issues, MACA combines Label 1 and Label 2 to get a comprehensive cell-type
71 annotation by mapping Label 2 to Label 1 through a normalized confusion matrix. In the
72 confusion matrix C , $c_{i,j}$ represents the number of cells that were clustered as the i^{th} cluster in
73 Label 2 and labeled as the j^{th} cell-type in Label 1. The basic assumption of mapping Label 2 to
74 Label 1 through a confusion matrix is that cells with the same clustering label (Label 2) should
75 have the same cell-type label (Label 1). Ideally, if cells were identified to be in the same cluster,
76 they should all share the same cell-type, and this cell-type has the highest score for cells in that
77 cluster. However, in real data, this is rarely the case, as we argued above. Therefore, using a
78 confusion matrix, we look for consensus between Label 1 and Label 2, by searching for the
79 highest cell-type score in each cluster. Here, we compute the normalized confusion matrix C_n
80 through dividing confusion matrix C by the size of the cluster: $c_{i,j} = \frac{c_{i,j}}{\sum_{j=1}^N c_{i,j}}$, and we search for
81 column number with the largest value for each row (Figure 1b). If $\max_j(c_{i,j}) \geq 0.5$, the i^{th}
82 cluster would be assigned as the j^{th} cell-type, as more than 50% of cells in the i^{th} cluster are
83 labeled as the j^{th} cell-type (Case 1). For cases where $\max_j(c_{i,j}) < 0.5$, it is likely that cell
84 identities of some cells were covered up by ambient RNAs from dominant cell-types (Case 2).
85 Therefore, MACA records significant or at least the top-3 cell-types for each cell in the i^{th}
86 cluster based on cell-type scores. To find significant cell-types for each cell, we get a distribution
87 of scores of all cell-types for each cell and define those cell-types as significant if their z-scores >
88 3. If the number of significant cell-types is less than 3, we would keep the top-3 cell-types.
89 Doing this can retrieve more potential cell-type labels for this cluster, and each cell will

90 contribute at least 3 candidates into a pool of candidate cell-types for this cluster. Then, MACA
91 calculates frequency of each candidate cell-type in this pool and assigns the i^{th} cluster as the
92 cell-type with the highest frequency if the frequency exceeds half the size of the cluster
93 ($\max_j(f_{i,j}) \geq 0.5$) (Case 2a). Otherwise, the i^{th} cluster would be labeled as “unassigned”
94 ($\max_j(f_{i,j}) < 0.5$) (Case 2b), which is the case that cells in this cluster do not have an
95 agreement on which cell-types they belong to. For the choice of 0.5, we will show our
96 examination in the next Results section. As we mentioned before, clustering-based cell-type
97 identification largely depends on user’s choice, for example the choices of clustering resolution
98 and neighborhood size. Therefore, the outcome may vary among different users. To have a more
99 reproducible outcome, we cluster cells with different clustering parameters to get multiple
100 clustering assignments (Label 2s). Repeating the procedure of mapping Label 2 to Label 1 will
101 enable us to get an ensemble annotation through voting, and this ensemble annotation is less
102 influenced by a single clustering choice (Figure 1c). Using ensemble approach also offers a naïve
103 way of scoring MACA-based cell-type predictions. Users can set up a threshold to filter cells
104 whose annotations are less consistent in outcomes of different clustering trials, and we also
105 provide examinations in the next section to help users choose a reasonable threshold for
106 annotation with quality. In this study, we generated clusters using Louvain method with 3
107 different resolutions and 3 different numbers of neighborhood, which results in 9 different
108 clustering labels (Label 2s). After mapping these 9 Label 2s to Label 1, we generated 9 cell-type
109 annotations. Then, we used a voting approach to get the final annotations (the highest votes from
110 the 9 annotations). Users can also increase the number of clustering trials to have a larger voting
111 pool for annotation ensemble or decrease the number to save computation time.

112 Back to converting gene expression matrix to cell-type score matrix, we collected 4 different
113 scoring methods that were proposed to do the conversion. These scoring methods are either
114 named by authors, or we named them after the last name of the first author. PlinerScore was a
115 part of Garnett that was designed to annotate cell-types through supervised classification (Pliner,
116 et al., 2019). The uniqueness of PlinerScore is the use of TF-IDF transformation to deal with
117 specificity of a gene marker and a cutoff to deal with issue of free mRNA in single-cell RNA-seq
118 data. AUCell comes from SENIC, which uses gene sets to quantify regulon activities of single-
119 cell expression data (Aibar, et al., 2017). In this study, AUCell quantifies the enrichment of
120 every cell-type as an area under the recovery curve (AUC) across the ranking of all gene markers
121 in a particular cell. This assessment is cell-wise and is different from PlinerScore that requires
122 transformation of the whole dataset. Both CIM and DingScore simply use the total expression of
123 all gene markers of a particular cell-type as the cell-type score (Ding, et al., 2020; Efroni, et al.,
124 2015). CIM normalizes the total expression by multiplying a weight that is defined as the number
125 of expressed gene markers divided by the number of all gene markers of this cell-type.
126 DingScore, on the other hand, normalizes the total expression of one cell-type by dividing total
127 expression of all genes. Since some cell-types have a longer list of marker genes than others,
128 cell-types with more marker genes in the database would have larger cell-type scores.
129 Normalization in CIM was considered to address this issue. However, PlinerScore and
130 DingScore were not intentionally designed to cope with unbalanced marker lists. To deal with
131 this issue, we did a similar processing to normalization in CIM, which is dividing the score of
132 each cell type by the number of expressed markers in that cell type. However, AUCell is a
133 completely different approach from the other 3 scoring methods, which does not simply sum up
134 values of marker genes for a given cell-type. So, we ran AUCell without extra processing for

135 returned values. Meanwhile, we show that the number of expressed marker genes in both
136 PanglaoDB and CellMarker across 6 single cell datasets tested in this study, and we found that
137 most cell-types in PanglaoDB have expressed marker genes within 0~60, while most cell-types
138 have less than 10 marker genes expressed in CellMarker (Supplementary Figure S1). For both
139 PanglaoDB and CellMarker, we can conclude that cell-types with over 100 expressed marker
140 genes are a minority.

141 In practice, we build MACA in the analysis pipeline of Scanpy, and MACA takes data in the
142 format of “anndata” in Python (Wolf, et al., 2018). Expression data are preprocessed through cell
143 and gene filtering, and transformed by LogNormlization method, the common practice in single
144 cell analysis. Then, the user provides marker information in the form of Python dictionary, and
145 MACA transforms gene expression matrix to cell-type score matrix. Next, annotation by MACA
146 can be summarized into 4 steps as shown in Figure 1: 1) Louvain clustering to generate Label 2;
147 2) Generating Label 1 via max function; 3) Mapping Label 2 to Label 1 through normalized
148 confusion matrix; 4) Repeating step 1 to 3 to have ensembled annotation.

149

150 3 Results

151 The key component for optimal performance of MACA is constructing cell-type scores from the
152 gene expression matrix. We investigated 4 scoring methods that have been proposed to transform
153 gene expression matrix to cell-type score matrix (Aibar, et al., 2017; Ding, et al., 2020; Efroni, et
154 al., 2015; Pliner, et al., 2019), and we tested these methods with 2 public marker databases
155 (Franzén, et al., 2019; Zhang, et al., 2019) in 6 single cell studies comprised of 3000 to 20000
156 cells (Baron, et al., 2016; Cui, et al., 2019; Tian, et al., 2019; Vieira Braga, et al., 2019; Wang, et

157 al., 2020; Zheng, et al., 2017), which include 3 benchmark datasets (Supplementary Table S1)
158 (Abdelaal, et al., 2019). To evaluate these annotation outcomes, we used Adjusted Rand Index
159 (ARI) and Normalized Mutual Information (NMI). Both ARI and NMI are calculated by
160 measuring similarity or agreement between our annotations and authors' annotations. For the 3
161 benchmark datasets, authors' annotations would be the ground truth label, while authors'
162 annotations in the other 3 datasets are at least created under careful investigation. Therefore, use
163 of ARI and NMI, in this case, is to show how well we can reproduce authors' outcomes. We
164 found annotations using PlinerScore with markers in PanglaoDB have the largest agreement with
165 authors' annotations for all 6 datasets, in terms of both ARI and NMI (Table 1). Therefore,
166 MACA uses PanglaoDB with PlinerScore as the main marker database and scoring method,
167 respectively. When we define if Label 2 agrees with Label 1, we selected 0.5 as the threshold. It
168 is out of a simple reasoning of whether the half agrees. However, it is possible to set up a less or
169 more stringent threshold to define the consensus between Label 1 and 2. Thus, we further tested
170 how different thresholds will affect MACA's performance. We changed the threshold from 0.2
171 to 0.9 and performed our test in these 6 datasets. We expect annotations would vary, but
172 surprisingly, MACA's performance is quite robust to the choice of this parameter, except that we
173 observed drops of ARI and NMI in two datasets when using 0.9 as threshold (Supplementary
174 Table S2).

175 Next, we seek to compare MACA with other existing marker-based annotation tools. CellAssign
176 and SCINA are two computational methods that have been proposed for automatic cell-type
177 assignment (Zhang, et al., 2019; Zhang, et al., 2019). Both methods rely on statistical
178 interference to compute the probabilities of cell types, which are time- and computationally-
179 intensive. Recently, Cell-ID was released for extraction of gene signature as well as cell-type

180 annotation (Cortal, et al., 2021). We also noticed scCATCH and SCSA, which are both cluster-
181 based annotation tools (Cao, et al., 2020; Shao, et al., 2020). Both scCATCH and SCSA require
182 identifying differential marker genes for each cluster via a statistical test implemented in Seurat
183 and then matching identified cluster markers to marker database (Butler, et al., 2018). Here, we
184 compared MACA with CellAssign, SCINA, Cell-ID, and scCATCH using these 6 single cell
185 studies and cell markers in PanglaoDB. We tested MACA, CellAssign, SCINA, Cell-ID, and
186 scCATCH on a workstation with 16-core CPU and 64GB memory. MACA can finish annotation
187 within 1 minute (cells around 3,000) and less than 2 minutes for a relatively large dataset (cells
188 up to 20,000 cells). On the datasets used and on our computational resources, scCATCH and
189 Cell-ID took longer than MACA to compute annotations and ranks as the second and third
190 fastest. In our hands, SCINA took around 20-minute time to finish annotation for a large dataset,
191 and CellAssign took the longest time to complete cell-type assignment and failed to annotate
192 data with > 20,000 cells due to lack of memory (Supplementary Table S3). Because annotation
193 by scCATCH needs clustering first and differential marker identification is highly affected by
194 clustering outcome, the investigator will need to do a thorough investigation to make sure that
195 clustering is not overdone or underestimated. In this study, we reported the highest and the
196 averaged outcomes of scCATCH in each dataset. Comparing these results with manual
197 annotations from the authors, we found 1) MACA labels cells had a higher consensus than
198 CellAssign, SCINA, Cell-ID, and scCATCH, in terms of both ARI and NMI, and 2) MACA and
199 scCATCH identify similar numbers of cell-types to author's annotations, while the other 3
200 methods, especially Cell-ID, report overall more different cell-types (Table 1). The low ARIs
201 and NMIs of CellAssign and Cell-ID can be counted as results of 1) many "unassigned" cells and
202 2) exceeding numbers of different cell-types over the numbers reported by authors. It is

203 important to note that other methods compared here were run on their default parameters. In
204 future, parameter tuning of those methods on a computer with higher memory should be carried
205 out for a comprehensive benchmarking on many datasets. Finally, to better evaluate annotations,
206 we used a machine learning approach to assess cell-type assignment. Training classifiers was
207 recently proposed by (Miao, et al., 2020) to assist in finding a good clustering resolution, and we
208 adopt this idea to evaluate our annotations. Basically, if the annotation is good enough, we can
209 train a classifier to predict cell type using gene-expression values with high accuracy. Conversely,
210 if there are many wrong labels, it would be hard for a classifier to make the right decision. We
211 performed 5-fold cross-validated training, where we split one dataset into 4-fold training set and
212 1-fold testing set and trained a SVM classifier on the training sets and applied the classifier to
213 predict labels for the testing set. This procedure repeats 5 times to get a mean accuracy. Instead
214 of treating authors' annotations as ground truth, this machine-learning evaluation provides an
215 independent angle to judge annotation quality. Indeed, MACA achieves high concordance with
216 authors' reported annotations and higher mean of accuracies than other methods (Supplementary
217 Table S4). Of note, high accuracy of SVM classifier is not equal to correctness of annotation.
218 Meanwhile, ARI and NMI reports similarity between two annotations but cannot reflect the
219 difference of annotation resolution. For example, MACA may return less cell-types than authors.
220 Moreover, annotation resolution of MACA highly depends on the number of cell-types in the
221 marker database, and it is likely that MACA cannot annotate some rare subtypes that do not
222 show up in the marker database. Here, we used confusion matrix to show how cell-type labels by
223 MACA are against cell-type labels by authors (Supplementary Figure S2). Take annotation of
224 human pancreas as an example, cells annotated by MACA as "Pancreatic stellate cells" fall into
225 3 groups that were annotated by author as "activated stellate cells", "quiescent stellate cells", and

226 “Schwann cells”, respectively. Since MACA may have a different annotation resolution from the
227 author’s, we performed a test to show how different annotation resolutions can affect
228 calculations of ARI and NMI. We included the human kidney (CD10-) data, which has 3
229 different annotation resolutions by the authors, from 5 major cell-types to 29 intermediate cell-
230 types, and to 50 fine cell-types (Kuppe, et al., 2021). We used MACA to annotate this data and
231 compared MACA’s annotation with these 3 annotations. We found NMI is more robust to
232 change of annotation resolution than ARI. It also suggests that a higher ARI reflects similar
233 resolution between MACA and author. (Supplementary Figure S3).

234 As we mentioned above, using ensemble approach also offers user an option to filter cells whose
235 annotations are less consistent in outcomes of different clustering trials. However, it also causes
236 loss of cells for downstream analysis, like cellular composition analysis. To find a good balance
237 between having higher annotation quality and keeping most cells for downstream analysis, we
238 tested threshold of voting from 1/9 to 9/9, where the numerator means the minimum number of
239 votes required to keep the cell-annotation. With 1/9, all cells will be kept, with 2/9, cells with
240 annotations with at least 2 votes will be kept, while only cells that have the same annotation
241 across 9 clustering trials will be considered if threshold is set up as 9/9. We reported the results
242 across 10 datasets in Supplementary Table S5, and it may provide a reference for user to choose
243 a threshold that serves user’s need. Of note, we kept all cells in other evaluations. Particularly, all
244 cells were used in benchmark with other methods. Here, we suggest setting up the threshold as
245 7/9. Next, we expect to show that annotation by MACA is applicable for most single cell RNA-
246 seq platforms. We re-annotated PBMC data from a new study by (Ding, et al., 2020). This data
247 consists of two biological samples from 9 platforms. We found that 1) both PBMC samples have
248 the same major cell-types, and these 9 platforms can successfully profile them (Supplementary

249 Figure S4a), and 2) annotation by MACA shows that all platforms profile similar cellular
250 components for these two PBMC samples, except CEL-Seq2 (Supplementary Figure S4b). These
251 results are largely consistent to the original report (Ding, et al., 2020). However, this PBMC data
252 didn't come with a ground-truth annotation, we further added the human pancreas data, which
253 consists of 5 independent studies profiled by 4 different single-cell RNA-seq platforms (Baron,
254 et al., 2016; Grün, et al., 2016; Lawlor, et al., 2017; Muraro, et al., 2016; Segerstolpe, et al.,
255 2016). Annotation by MACA has 0.929 ARI and 0.908 NMI against author-reported annotation,
256 and we also observed all major cell-types were revealed across all 4 platforms (Supplementary
257 Figure S4c).

258 Finally, we applied MACA to a single-nuclei RNA-seq dataset from all 4 chambers of the human
259 heart, comprised of ~290k nuclei (Tucker, et al., 2020). MACA could annotate each of the 4
260 chambers comprising of ~80K cells each in < 6 mins. Annotations by MACA have major
261 agreement with author's reported annotations with an average ARI and NMI of 0.63 and 0.76,
262 respectively (Supplementary Table S6). However, we also found some disagreements exist in
263 annotation of cells in from left and right atria. Therefore, we investigated disagreement between
264 MACA's and author's annotations, and found the biggest difference stems from disagreement in
265 assignments for neuronal cells and lymphocytes, which are both small-population cell types in
266 this dataset (1702 neuronal cells and 1503 lymphocytes out of ~290k). We found neuronal cells
267 weren't revealed and author-reported lymphocytes were reported as memory T cells in MACA's
268 annotation (Supplementary Table S7a and b).

269 By default, MACA works with the list marker genes and cell-types present in PanglaoDB, but
270 users can also input their own gene-lists. A major limitation of MACA is that it can only
271 annotate cell-types that are pre-defined in the marker reference, but with more marker gene-sets

272 becoming available with single-cell sequencing studies, we believe that MACA will be useful to
273 annotate heterogeneous single-cell datasets. This points us two future directions to improve
274 MACA. First, with more atlas studies that profile all sorts of biological systems, more refined
275 markers for small cell populations can be defined, and MACA could reach finer annotation
276 resolution by integrating markers from these new atlas studies. Second, weights of markers
277 should be incorporated into the scoring method of MACA, for example marker specificity and
278 expression strength. However, at the current stage, all markers have equal weights when they
279 contribute to cell-type scores, and we believe that incorporating marker weights will be
280 beneficial for accurate annotation. With a more refined marker database and cell-type scoring
281 method, MACA would rapidly perform integrated annotation across multiple datasets, and this is
282 very critical for downstream analyses like cellular component analysis across datasets under
283 different conditions. In fact, we noticed that combining PlinerScore and PanglaoDB to generate
284 new features has the advantages of correcting batch effects for integrated annotation across
285 datasets, and we aim to extend the use of MACA to standardization of cell-type annotation
286 across datasets in the future (see application in integrated annotation on GitHub of MACA).
287 Finally, we conclude that MACA is a suitable tool for automatic cell-type annotation that can aid
288 both experts and non-experts in rapid annotation of their single-cell datasets.

289

290 **Acknowledgements**

291 We would like to thank Mark Chaffin, Stephen Fleming and other members of the Precision
292 Cardiology Lab for providing useful feedback on the manuscript.

293

294 **Disclosures**

295 Simon Baumgart, Christian Stegmann and Sikander Hayat are employees of Bayer US LLC (a
296 subsidiary of Bayer AG) and may own stock in Bayer AG.

297

298 **References**

299 Abdelaal, T., *et al.* A comparison of automatic cell identification methods for single-cell RNA sequencing
300 data. *Genome biology* 2019;20(1):194-194.

301 Aibar, S., *et al.* SCENIC: single-cell regulatory network inference and clustering. *Nature methods*
302 2017;14(11):1083-1086.

303 Baron, M., *et al.* A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and
304 Intra-cell Population Structure. *Cell systems* 2016;3(4):346-360.e344.

305 Blondel, V.D., *et al.* Fast unfolding of communities in large networks. *Journal of Statistical Mechanics: Theory and Experiment* 2008;2008(10):P10008-10012.

306 Butler, A., *et al.* Integrating single-cell transcriptomic data across different conditions, technologies, and
308 species. *Nature biotechnology* 2018;36(5):411-420.

309 Cao, Y., Wang, X. and Peng, G. SCSA: A Cell Type Annotation Tool for Single-Cell RNA-seq Data. *Frontiers in genetics* 2020;11:490-490.

311 Cortal, A., *et al.* Gene signature extraction and cell identity recognition at the single-cell level with Cell-ID. *Nature Biotechnology* 2021.

313 Cui, Y., *et al.* Single-Cell Transcriptome Analysis Maps the Developmental Track of the Human Heart. *Cell reports (Cambridge)* 2019;26(7):1934-1950.e1935.

315 Ding, J., *et al.* Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. *Nature biotechnology* 2020;38(6):737-746.

317 Efroni, I., *et al.* Quantification of cell identity from single-cell gene expression profiles. *Genome biology* 2015;16(1):9-9.

319 Franzén, O., Gan, L.-M. and Björkegren, J.L.M. PanglaoDB: a web server for exploration of mouse and
320 human single-cell RNA sequencing data. *Database : the journal of biological databases and curation*
321 2019;2019.

322 Grün, D., *et al.* De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data. *Cell stem cell* 2016;19(2):266-277.

324 Kuppe, C., *et al.* Decoding myofibroblast origins in human kidney fibrosis. *Nature* 2021;589(7841):281-286.

326 Lähnemann, D., *et al.* Eleven grand challenges in single-cell data science. *Genome biology* 2020;21(1):31-35.

328 Lawlor, N., *et al.* Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific
329 expression changes in type 2 diabetes. *Genome research* 2017;27(2):208-222.

330 Mancarci, B.O., *et al.* Cross-Laboratory Analysis of Brain Cell Type Transcriptomes with Applications to
331 Interpretation of Bulk Tissue Data. *eNeuro* 2017;4(6):ENEURO.0212-0217.2017.

332 Miao, Z., *et al.* Putative cell type discovery from single-cell gene expression data. *Nature methods*
333 2020;17(6):621-628.

334 Muraro, Mauro J., *et al.* A Single-Cell Transcriptome Atlas of the Human Pancreas. *Cell systems*
335 2016;3(4):385-394.e383.

336 Pliner, H.A., Shendure, J. and Trapnell, C. Supervised classification enables rapid annotation of cell
337 atlases. *Nature methods* 2019;16(10):983-986.

338 Segerstolpe, Å., *et al.* Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2
339 Diabetes. *Cell metabolism* 2016;24(4):593-607.

340 Shao, X., *et al.* scCATCH: Automatic Annotation on Cell Types of Clusters from Single-Cell RNA
341 Sequencing Data. *iScience* 2020;23(3):100882.

342 Tian, L., *et al.* Benchmarking single cell RNA-sequencing analysis pipelines using mixture control
343 experiments. *Nature methods* 2019;16(6):479-487.

344 Tucker, N.R., *et al.* Transcriptional and Cellular Diversity of the Human Heart. *Circulation (New York, N.Y.)*
345 2020.

346 Vieira Braga, F.A., *et al.* A cellular census of human lungs identifies novel cell states in health and in
347 asthma. *Nature medicine* 2019;25(7):1153-1163.

348 Wang, L., *et al.* Single-cell reconstruction of the adult human heart during heart failure and recovery
349 reveals the cellular landscape underlying cardiac function. *Nature cell biology* 2020;22(1):108-119.

350 Wolf, F.A., Angerer, P. and Theis, F.J. SCANPY: large-scale single-cell gene expression data analysis.
351 *Genome biology* 2018;19(1):15-15.

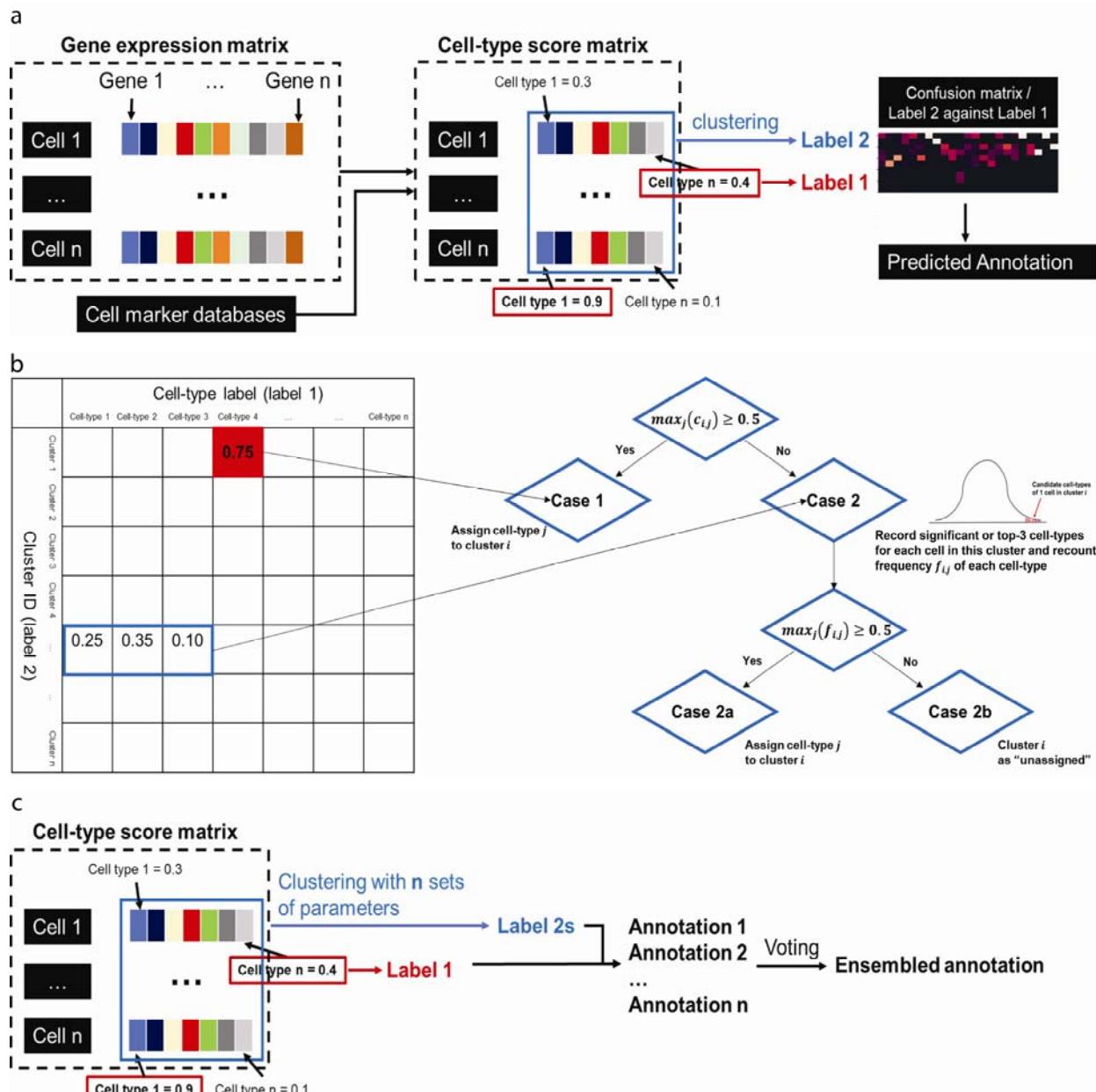
352 Zhang, A.W., *et al.* Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment
353 profiling. *Nature methods* 2019;16(10):1007-1015.

354 Zhang, X., *et al.* CellMarker: a manually curated resource of cell markers in human and mouse. *Nucleic
355 acids research* 2019;47(D1):D721-D728.

356 Zhang, Z., *et al.* SCINA: A Semi-Supervised Subtyping Algorithm of Single Cells and Bulk Samples. *Genes*
357 2019;10(7):531.

358 Zheng, G.X.Y., *et al.* Massively parallel digital transcriptional profiling of single cells. *Nature
359 communications* 2017;8(1):14049-14049.

360



361 **Figure 1**

362

363 **Figure 1.** Schematic workflow of MACA. a, MACA converts gene expression matrix into cell-type score
364 matrix based on cell marker database. MACA generates Label 1 by using max function and Label 2
365 by over-clustering all cells into small groups. MACA finally maps Label 2 to Label 1 via confusion
366 matrix. b, Use of confusion matrix for cell-type annotation. c, In practical implementation, n sets
367 of clustering parameters are used to generate n Label 2s. Mapping all Label 2s to Label 1 returns multiple
368 annotations, and MACA ensembles these annotations by voting to generate the final cell-type prediction.

369 **Table 1**

ARI	PBMC (Zheng et al., 2017)	CellBench (Tian et al., 2019)	Pancreas (Baron et al., 2016)	Heart (Wang et al., 2020)	Heart (Cui et al., 2019)	Lung (Vieira et al., 2019)
PanglaoDB+PlinerScore	0.95	0.92	0.90	0.71	0.61	0.45
PanglaoDB+AUCell	0.04	0.00	0.78	0.39	0.47	0.29
PanglaoDB+CIM	0.28	0.65	0.90	0.27	0.30	0.33
PanglaoDB+DingScore	0.83	0.74	0.69	0.07	0.44	0.20
CellMarker+PlinerScore	0.38	0.43	0.27	0.57	0.13	0.21
CellMarker+AUCell	0.29	0.52	0.32	0.34	0.09	0.14
CellMarker+CIM	0.24	0.60	0.54	0.56	0.07	0.09
CellMarker+DingScore	0.22	0.55	0.38	0.37	0.19	NA
SCINA	0.46	0.63	0.89	0.13	0.55	0.31
CellAssign	NA	0.00	0.89	0.15	0.53	0.26
Cell-ID	0.50	0.17	0.57	0.10	0.49	0.35
scCATCH (best)	0.62	0.56	0.86	0.04	0.14	0.60
scCATCH (average)	0.57	0.40	0.66	0.04	0.05	0.35
<hr/>						
NMI	PBMC (Zheng et al., 2017)	CellBench (Tian et al., 2019)	Pancreas (Baron et al., 2016)	Heart (Wang et al., 2020)	Heart (Cui et al., 2019)	Lung (Vieira et al., 2019)
PanglaoDB+PlinerScore	0.89	0.92	0.88	0.59	0.62	0.59
PanglaoDB+AUCell	0.09	0.00	0.79	0.41	0.50	0.31
PanglaoDB+CIM	0.51	0.80	0.88	0.30	0.44	0.40
PanglaoDB+DingScore	0.74	0.85	0.70	0.10	0.47	0.33
CellMarker+PlinerScore	0.44	0.64	0.57	0.51	0.32	0.42
CellMarker+AUCell	0.23	0.67	0.46	0.32	0.33	0.17
CellMarker+CIM	0.49	0.78	0.73	0.41	0.31	0.21
CellMarker+DingScore	0.43	0.73	0.60	0.34	0.33	0.08
SCINA	0.54	0.71	0.84	0.07	0.54	0.46
CellAssign	NA	0.06	0.86	0.08	0.51	0.49
Cell-ID	0.67	0.38	0.74	0.08	0.55	0.58
scCATCH (best)	0.77	0.70	0.84	0.05	0.30	0.73
scCATCH (average)	0.75	0.62	0.75	0.04	0.12	0.63
<hr/>						
# of cell-types	PBMC (Zheng et al., 2017)	CellBench (Tian et al., 2019)	Pancreas (Baron et al., 2016)	Heart (Wang et al., 2020)	Heart (Cui et al., 2019)	Lung (Vieira et al., 2019)
MACA	8	6	11	8	7	13
SCINA	14	14	17	16	23	41
CellAssign	NA	9	17	18	24	31
Cell-ID	33	55	48	35	37	63
scCATCH (best)	9	5	10	3	3	16
Author's annotation	5	5	14	5	9	13

370 **Table 1.** Performance of MACA, CellAssign, SCINA, Cell-ID, and scCATCH in 6 scRNA-seq
371 datasets, measured by ARI and NMI. 8 different settings of MACA include using 4 cell-type scoring
372 methods (PlinerScore, AUCell, CIM, and DingScore) with 2 marker databases (PanglaoDB and
373 CellMarker).