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Abstract

Summary: Accurately identifying cell-typesis a critical step in single-cell sequencing analyses.
Here, we present marker-based automatic cell-type annotation (MACA), a new tool for
annotating single-cell transcriptomics datasets. We developed MACA by testing 4 cdl-type
scoring methods with 2 public cell-marker databases as reference in 6 single-cell studies. MACA
compares favorably to 4 existing marker-based cell-type annotation methods in terms of
accuracy and speed. We show that MACA can annotate a large single-nuclei RNA-seq study in
minutes on human hearts with ~290k cells. MACA scales easily to large datasets and can broadly
help experts to annotate cell types in single-cell transcriptomics datasets, and we envision
MACA provides a new opportunity for integration and standardization of cell-type annotation

across multiple datasets.

Availability and implementation: MACA is written in python and released under GNU

General Public License v3.0. The source code is available at https://github.com/ImXman/MACA.
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1 Introduction

Identifying constituent cell-types in a single-cell dataset is fundamental to understand the
underlying biology of the system. Many computational methods have been proposed to
automatically label cells, and a benchmark study shows that a standard Support VVector Machine
(SVM) classifier outperforms most other sophisticated supervised methods and can achieve high
accuracy in cell-type assignment (Abdelaal, et al., 2019). However, due to lack of ground-truth
in most single cell studies, supervised classification approaches are not feasible and may not be
generalized for new single cell studies with different experimental designs. Therefore,
unsupervised clustering approaches are still the predominant options for single-cell data analysis
(L&hnemann, et al., 2020). Unsupervised approaches usually require human assistance in both
defining clustering resolution and manual annotation of cell-types. This results in cell-type
annotation being time-consuming and less reproducible due to human inference. As more single
cel studies are available, summarizing markers identified in these studies to construct a marker
database becomes an alternative approach for automatic cell-type annotation. For example,
PanglaoDB (Franzén, et a., 2019) and CdlMarker (Zhang, et al., 2019) are two marker
databases that summarize markers found in numerous single cell studies and cover a broad range
of major cell-types in human and mouse. Also, NeuroExpresso (Mancarci, et al., 2017) is a
specialized database for brain cell-types. Taking advantage of those databases for robust cell-
type identification, we present MACA, a marker-based automatic cell-type annotation method
and show how MACA automatically annotates cell-types with high speed and accuracy. We

envison MACA as an aid for cell-type annotation to be used by both experts and non-experts.
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2 MACA implementation

MACA takes as input expression profiles measured by single cell or nucles RNA-seq
experiments. MACA calculates two cell-type labels for each cell based on 1) an individual cell
expression profile and 2) a collective clustering profile. From these, a final cell-type label is
generated according to a normalized confusion matrix (Figure 1a). MACA first computes cell-
type scores for each cell, using a scoring method based on a marker database or user-defined
marker lists. The scoring method uses the raw gene count to calculate a cell-type score for each
cell, according to gene markers of this cell-type. This results in converting a gene expression
matrix to cell-type score matrix. Then, MACA generates a label (Label 1) for each cell by
identifying the cell-type associated with the highest score. Independently, using the matrix of
cell-type scores as input, the Louvain community detection algorithm (Blondel, et al., 2008) is
applied to generate Labd 2, which isa clustering label to which a cell belongs. Since the number
of cell typesisusually unknown, MACA tries clustering at greater resolution to over-cluster cells

into many small but homogeneous groups.

Both Label 1 and Labe 2 serve complimentary functions. Label 1 is assigned on a per-cell basis
which may result in incorrectly annotating many cells due to noisiness in the maximum cell-type
score for each cell. This may occur when the putative cell-type feature is covered up by ambient
RNAs from dominant cell-types (Pliner, et al., 2019). On the other hand, Label 2 is likely to
suffer from a common problem in single cell RNA-seq clustering analysis, where cells may share
the same dominant features, even though they have been clustered into different groups because

of subtle differences. Additionally, results from a clustering analysis can often vary since
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clustering is non-deterministic. Due to its dependence on user’s decisions, mostly the choices of

clustering resolution and neighborhood size.

To address these issues, MACA combines Label 1 and Label 2 to get a comprehensive cell-type
annotation by mapping Labd 2 to Label 1 through a normalized confusion matrix. In the
confusion matrix C, c; ; represents the number of cells that were clustered as the i®" cluster in
Label 2 and labeled as the jt* cell-typein Label 1. The basic assumption of mapping Label 2 to
Label 1 through a confusion matrix is that cells with the same clustering label (Label 2) should
have the same cell-type label (Label 1). Ideally, if cells were identified to be in the same cluster,
they should all share the same cédll-type, and this cell-type has the highest score for cells in that
cluster. However, in real data, this is rarely the case, as we argued above. Therefore, using a
confusion matrix, we look for consensus between Label 1 and Label 2, by searching for the

highest cell-type score in each cluster. Here, we compute the normalized confusion matrix C,,

through dividing confusion matrix C by the size of the cluster: ¢; ; = ZNC‘—’ and we search for

j=1Lj
column number with the largest value for each row (Figure 1b). If max;(c;;) = 0.5, the i*"
cluster would be assigned as the jt* cell-type, as more than 50% of cdlls in thei*" cluster are
labeled as the j™* cell-type (Case 1). For cases where max;(c; ;) < 0.5, it is likely that cell
identities of some cells were covered up by ambient RNAs from dominant cell-types (Case 2).
Therefore, MACA records significant or at least the top-3 cell-types for each cell in the it"
cluster based on cell-type scores. To find significant cell-types for each cell, we get a distribution
of scores of al cell-types for each cell and define those cell-types as significant if their z-scores >
3. If the number of significant cell-types is less than 3, we would keep the top-3 cell-types.

Doing this can retrieve more potential cell-type labels for this cluster, and each cell will
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90 contribute at least 3 candidates into a pool of candidate cell-types for this cluster. Then, MACA
91  calculates frequency of each candidate cell-type in this pool and assigns the it" cluster as the
92  cdl-type with the highest frequency if the frequency exceeds half the size of the cluster

93 (maxj(fi,j) > 0.5) (Case 2a). Otherwise, the i** cluster would be labeled as “unassigned”

94 (max;(f;;) < 0.5) (Case 2b), which is the case that cells in this cluster do not have an
95 agreement on which cell-types they belong to. For the choice of 0.5, we will show our
96 examination in the next Results section. As we mentioned before, clustering-based cell-type
97 identification largely depends on user’s choice, for example the choices of clustering resolution
98  and neighborhood size. Therefore, the outcome may vary among different users. To have a more
99 reproducible outcome, we cluster cells with different clustering parameters to get multiple
100  clustering assignments (Label 2s). Repeating the procedure of mapping Label 2 to Label 1 will
101  enable us to get an ensemble annotation through voting, and this ensemble annotation is less
102  influenced by a single clustering choice (Figure 1c). Using ensemble approach also offers a naive
103  way of scoring MACA-based cell-type predictions. Users can set up a threshold to filter cells
104  whose annotations are less consistent in outcomes of different clustering trials, and we also
105  provide examinations in the next section to help users choose a reasonable threshold for
106  annotation with quality. In this study, we generated clusters using Louvain method with 3
107  different resolutions and 3 different numbers of neighborhood, which results in 9 different
108  clustering labels (Label 2s). After mapping these 9 Label 2sto Label 1, we generated 9 cell-type
109  annotations. Then, we used a voting approach to get the final annotations (the highest votes from
110  the9 annotations). Users can also increase the number of clustering trials to have a larger voting

111 pool for annotation ensemble or decrease the number to save computation time.
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112  Back to converting gene expression matrix to cell-type score matrix, we collected 4 different
113  scoring methods that were proposed to do the conversion. These scoring methods are either
114  named by authors, or we named them after the last name of the first author. PlinerScore was a
115  part of Garnett that was designed to annotate cell-types through supervised classification (Pliner,
116 et a., 2019). The uniqueness of PlinerScore is the use of TF-IDF transformation to deal with
117  specificity of agene marker and a cutoff to deal with issue of free MRNA in single-cell RNA-seq
118  data. AUCdl comes from SENIC, which uses gene sets to quantify regulon activities of single-
119  cell expression data (Aibar, et al., 2017). In this study, AUCel quantifies the enrichment of
120  every cdl-type as an area under the recovery curve (AUC) across the ranking of al gene markers
121 in aparticular cell. This assessment is cell-wise and is different from PlinerScore that requires
122 transformation of the whole dataset. Both CIM and DingScore simply use the total expression of
123 al gene markers of a particular cell-type as the cell-type score (Ding, et al., 2020; Efroni, et al.,
124  2015). CIM normalizes the total expression by multiplying a weight that is defined as the number
125 of expressed gene markers divided by the number of all gene markers of this cell-type.
126  DingScore, on the other hand, normalizes the total expression of one cell-type by dividing total
127  expression of al genes. Since some cdll-types have a longer list of marker genes than others,
128  cell-types with more marker genes in the database would have larger cell-type scores.
129  Normalization in CIM was considered to address this issue. However, PlinerScore and
130  DingScore were not intentionally designed to cope with unbalanced marker lists. To deal with
131  thisissue, we did a similar processing to normalization in CIM, which is dividing the score of
132 each cell type by the number of expressed markers in that cell type. However, AUCdl is a
133  completely different approach from the other 3 scoring methods, which does not simply sum up

134  values of marker genes for a given cell-type. So, we ran AUCell without extra processing for
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135  returned values. Meanwhile, we show that the number of expressed marker genes in both
136  PanglaoDB and CellMarker across 6 single cell datasets tested in this study, and we found that
137  most cell-types in PanglaoDB have expressed marker genes within 0~60, while most cell-types
138  have less than 10 marker genes expressed in CellMarker (Supplementary Figure S1). For both
139  PanglaoDB and CellMarker, we can conclude that cell-types with over 100 expressed marker

140  genesareaminority.

141 In practice, we build MACA in the analysis pipeline of Scanpy, and MACA takes data in the
142  format of “anndata’ in Python (Wolf, et al., 2018). Expression data are preprocessed through cell
143  and gene filtering, and transformed by LogNormlization method, the common practice in single
144  cdl analysis. Then, the user provides marker information in the form of Python dictionary, and
145  MACA transforms gene expression matrix to cell-type score matrix. Next, annotation by MACA
146  can be summarized into 4 steps as shown in Figure 1: 1) Louvain clustering to generate Label 2;
147  2) Generating Label 1 via max function; 3) Mapping Labd 2 to Label 1 through normalized

148  confusion matrix; 4) Repeating step 1 to 3 to have ensembled annotation.

149

150 3 Results

151  The key component for optimal performance of MACA is congtructing cell-type scores from the
152  gene expression matrix. We investigated 4 scoring methods that have been proposed to transform
153  gene expression matrix to cell-type score matrix (Aibar, et a., 2017; Ding, et a., 2020; Efroni, et
154  a., 2015; Pliner, et a., 2019), and we tested these methods with 2 public marker databases
155  (Franzén, et al., 2019; Zhang, et a., 2019) in 6 single cell studies comprised of 3000 to 20000

156  cells (Baron, et al., 2016; Cui, et a., 2019; Tian, et al., 2019; VieiraBraga, et a., 2019; Wang, et
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157  d., 2020; Zheng, et a., 2017), which include 3 benchmark datasets (Supplementary Table S1)
158  (Abdedaal, et a., 2019). To evaluate these annotation outcomes, we used Adjusted Rand Index
159  (ARI) and Normalized Mutual Information (NMI). Both ARI and NMI are calculated by
160  measuring similarity or agreement between our annotations and authors' annotations. For the 3
161  benchmark datasets, authors annotations would be the ground truth label, while authors
162  annotations in the other 3 datasets are at least created under careful investigation. Therefore, use
163  of ARI and NMI, in this case, is to show how well we can reproduce authors outcomes. We
164  found annotations using PlinerScore with markersin PanglaoDB have the largest agreement with
165 authors annotations for all 6 datasets, in terms of both ARI and NMI (Table 1). Therefore,
166 MACA uses PanglaoDB with PlinerScore as the main marker database and scoring method,
167  respectively. When we define if Label 2 agrees with Label 1, we selected 0.5 as the threshold. It
168  isout of asimple reasoning of whether the half agrees. However, it is possible to set up aless or
169  more stringent threshold to define the consensus between Label 1 and 2. Thus, we further tested
170  how different thresholds will affect MACA’s performance. We changed the threshold from 0.2
171 to 0.9 and performed our test in these 6 datasets. We expect annotations would vary, but
172 surprisingly, MACA’s performance is quite robust to the choice of this parameter, except that we
173 observed drops of ARI and NMI in two datasets when using 0.9 as threshold (Supplementary

174  Table S2).

175  Next, we seek to compare MACA with other existing marker-based annotation tools. CellAssign
176  and SCINA are two computational methods that have been proposed for automatic cell-type
177 assignment (Zhang, et a., 2019; Zhang, et a., 2019). Both methods rely on statistical
178 interference to compute the probabilities of cell types, which are time- and computation-

179  intensive. Recently, Cdll-ID was released for extraction of gene signature as well as cell-type
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180  annotation (Cortal, et al., 2021). We also noticed sScCATCH and SCSA, which are both cluster-
181  based annotation tools (Cao, et a., 2020; Shao, et al., 2020). Both scCATCH and SCSA require
182  identifying differential marker genes for each cluster via a statistical test implemented in Seurat
183  and then matching identified cluster markers to marker database (Butler, et al., 2018). Here, we
184  compared MACA with CelAssign, SCINA, Cél-ID, and scCATCH using these 6 single cell
185  studies and cell markers in PanglaoDB. We tested MACA, CdlAssign, SCINA, Cdl-ID, and
186  scCATCH on aworkstation with 16-core CPU and 64GB memory. MACA can finish annotation
187  within 1 minute (cells around 3,000) and less than 2 minutes for a relatively large dataset (cells
188  up to 20,000 cells). On the datasets used and on our computational resources, sScCATCH and
189  Cdl-ID took longer than MACA to compute annotations and ranks as the second and third
190 fastest. In our hands, SCINA took around 20-minute time to finish annotation for a large dataset,
191 and CellAssign took the longest time to complete cell-type assignment and failed to annotate
192  data with > 20,000 cells due to lack of memory (Supplementary Table S3). Because annotation
193 by scCATCH needs clustering first and differential marker identification is highly affected by
194  clustering outcome, the investigator will need to do a thorough investigation to make sure that
195 clustering is not overdone or underestimated. In this study, we reported the highest and the
196 averaged outcomes of scCATCH in each dataset. Comparing these results with manual
197  annotations from the authors, we found 1) MACA labels cells had a higher consensus than
198  CdlAssign, SCINA, CdlI-ID, and scCATCH, in terms of both ARI and NMI, and 2) MACA and
199 scCATCH identify similar numbers of cell-types to author’s annotations, while the other 3
200 methods, especially Cell-ID, report overall more different cell-types (Table 1). The low ARIs
201 and NMIs of CellAssign and Cédll-ID can be counted as results of 1) many “unassigned” cells and

202 2) exceeding numbers of different cell-types over the numbers reported by authors. It is
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203  important to note that other methods compared here were run on their default parameters. In
204  future, parameter tuning of those methods on a computer with higher memory should be carried
205  out for a comprehensive benchmarking on many datasets. Finally, to better evaluate annotations,
206  we used a machine learning approach to assess cell-type assignment. Training classifiers was
207  recently proposed by (Miao, et a., 2020) to assist in finding a good clustering resolution, and we
208  adopt this idea to evaluate our annotations. Basically, if the annotation is good enough, we can
209 train aclassfier to predict cell type using gene-expression values with high accuracy. Conversdly,
210 if there are many wrong labels, it would be hard for a classfier to make the right decision. We
211 performed 5-fold cross-validated training, where we split one dataset into 4-fold training set and
212 1-fold testing set and trained a SVM classifier on the training sets and applied the classifier to
213 predict labels for the testing set. This procedure repeats 5 times to get a mean accuracy. Instead
214  of treating authors annotations as ground truth, this machine-learning evaluation provides an
215  independent angle to judge annotation quality. Indeed, MACA achieves high concordance with
216  authors reported annotations and higher mean of accuracies than other methods (Supplementary
217  Table $4). Of note, high accuracy of SVM classifier is not equal to correctness of annotation.
218  Meanwhile, ARI and NMI reports similarity between two annotations but cannot reflect the
219  difference of annotation resolution. For example, MACA may return less cell-types than authors.
220 Moreover, annotation resolution of MACA highly depends on the number of cell-types in the
221  marker database, and it is likely that MACA cannot annotate some rare subtypes that do not
222 show up in the marker database. Here, we used confusion matrix to show how cell-type labels by
223 MACA are against cell-type labels by authors (Supplementary Figure S2). Take annotation of
224  human pancreas as an example, cells annotated by MACA as “Pancreatic stellate cells’ fal into

225 3 groupsthat were annotated by author as “activated stellate cells’, “quiescent stellate cells’, and
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226  “Schwann cédlls’, respectively. Since MACA may have a different annotation resolution from the
227 author's, we performed a test to show how different annotation resolutions can affect
228  caculations of ARI and NMI. We included the human kidney (CD10-) data, which has 3
229  different annotation resolutions by the authors, from 5 major cell-types to 29 intermediate cell-
230  types, and to 50 fine cell-types (Kuppe, et a., 2021). We used MACA to annotate this data and
231  compared MACA'’s annotation with these 3 annotations. We found NMI is more robust to
232 change of annotation resolution than ARI. It also suggests that a higher ARI reflects similar

233 resolution between MACA and author. (Supplementary Figure S3).

234  Aswe mentioned above, using ensemble approach also offers user an option to filter cells whose
235  annotations are less consistent in outcomes of different clustering trials. However, it also causes
236  loss of cells for downstream analysis, like cellular composition analysis. To find a good balance
237  between having higher annotation quality and keeping most cells for downstream analysis, we
238  tested threshold of voting from 1/9 to 9/9, where the numerator means the minimum number of
239  votes required to keep the cell-annotation. With 1/9, all cells will be kept, with 2/9, cells with
240  annotations with at least 2 votes will be kept, while only cells that have the same annotation
241 across 9 clustering trials will be considered if threshold is set up as 9/9. We reported the results
242  across 10 datasets in Supplementary Table S5, and it may provide a reference for user to choose
243  athreshold that serves user’s need. Of note, we kept al cellsin other evaluations. Particularly, all
244  cells were used in benchmark with other methods. Here, we suggest setting up the threshold as
245  7/9. Next, we expect to show that annotation by MACA is applicable for most single cell RNA-
246  seq platforms. We re-annotated PBMC data from a new study by (Ding, et al., 2020). This data
247  consists of two biological samples from 9 platforms. We found that 1) both PBMC samples have

248  the same mgjor cell-types, and these 9 platforms can successfully profile them (Supplementary
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249  Figure $4a), and 2) annotation by MACA shows that all platforms profile similar cellular
250  components for these two PBMC samples, except CEL-Seq2 (Supplementary Figure $4b). These
251  results arelargely consistent to the original report (Ding, et a., 2020). However, this PBMC data
252 didn't come with a ground-truth annotation, we further added the human pancreas data, which
253  consists of 5 independent studies profiled by 4 different single-cell RNA-seq platforms (Baron,
254 et d., 2016; Grun, et a., 2016; Lawlor, et a., 2017; Muraro, et al., 2016; Segerstolpe, et al.,
255  2016). Annotation by MACA has 0.929 ARI and 0.908 NMI against author-reported annotation,
256  and we also observed all major cell-types were revealed across all 4 platforms (Supplementary

257  Figure $A4c).

258  Finally, we applied MACA to asingle-nuclei RNA-seq dataset from all 4 chambers of the human
259  heart, comprised of ~290k nuclei (Tucker, et al., 2020). MACA could annotate each of the 4
260  chambers comprising of ~80K cells each in < 6 mins. Annotations by MACA have major
261  agreement with author’s reported annotations with an average ARI and NMI of 0.63 and 0.76,
262 respectively (Supplementary Table S6). However, we also found some disagreements exist in
263  annotation of cellsin from left and right atria. Therefore, we investigated disagreement between
264  MACA'’s and author’s annotations, and found the biggest difference stems from disagreement in
265  assignments for neuronal cells and lymphocytes, which are both small-population cell types in
266  this dataset (1702 neuronal cells and 1503 lymphocytes out of ~290k). We found neuronal cells
267  weren't revealed and author-reported lymphocytes were reported as memory T cellsin MACA'’s

268  annotation (Supplementary Table S7aand b).

269 By default, MACA works with the list marker genes and cell-types present in PanglaoDB, but
270  users can also input their own gene-lists. A major limitation of MACA is that it can only

271 annotate cell-types that are pre-defined in the marker reference, but with more marker gene-sets
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272 becoming available with single-cell sequencing studies, we believe that MACA will be useful to
273  annotate heterogeneous single-cell datasets. This points us two future directions to improve
274  MACA. First, with more atlas studies that profile all sorts of biological systems, more refined
275  markers for small cell populations can be defined, and MACA could reach finer annotation
276  resolution by integrating markers from these new atlas studies. Second, weights of markers
277  should be incorporated into the scoring method of MACA, for example marker specificity and
278  expression strength. However, at the current stage, all markers have equal weights when they
279  contribute to cell-type scores, and we believe that incorporating marker weights will be
280  beneficial for accurate annotation. With a more refined marker database and cell-type scoring
281  method, MACA would rapidly perform integrated annotation across multiple datasets, and thisis
282  very critical for downstream analyses like cellular component analysis across datasets under
283  different conditions. In fact, we noticed that combining PlinerScore and PanglaoDB to generate
284 new features has the advantages of correcting batch effects for integrated annotation across
285  datasets, and we aim to extend the use of MACA to standardization of cell-type annotation
286  across datasets in the future (see application in integrated annotation on GitHub of MACA).
287  Finally, we conclude that MACA is asuitable tool for automatic cell-type annotation that can aid

288  both experts and non-expertsin rapid annotation of their single-cell datasets.
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361 Figurel

362

363  Figure 1. Schematic workflow of MACA. a, MACA converts gene expression matrix into cell-type score
364  matrix based on cell marker database. MACA generates Label 1 by using max function and Label 2
365 by over-clustering al cells into small groups. MACA finally maps Label 2 to Label 1 via confusion
366  matrix. b, Use of confusion matrix for cell-type annotation. ¢, Inpractical implementation, n sets
367  of clustering parameters are used to generate n Label 2s. Mapping all Label 2sto Label 1 returns multiple
368  annotations, and MACA ensembles these annotations by voting to generate the final cell-type prediction.
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369 Tablel

ARI PBMC (Zhengetal., 2017}  CellBench (Tian etal., 2019) Pancreas (Baron etal., 2016) Heart (Wangetal., 2020} Heart (Cuietal., 2019) Lung (Vieira et al., 2019)

PanglaoDB+PlinerScore 0.95 0.92 0.90 071 0.61 0.45
PanglacDB+AUCell 0.04 0.00 0.78 0.39 0.47 0.29
PanglacDB+CIM 0.28 0.65 0.90 0.27 0.30 0.33
PanglacDB+DingScore 0.83 0.74 0.69 0.07 0.44 0.20
CellMarker+PlinerScore 0.38 0.43 0.27 0.57 0.13 0.21
CellMarker+AUCell 0.29 0.52 032 0.34 0.09 0.14
CellMarker+CIM 0.24 0.60 0.54 0.56 0.07 0.09
CellMarker+DingScore 0.22 0.55 038 0.37 0.19 NA
SCINA 0.46 0.63 0.89 0.13 0.55 031
CellAssign NA 0.00 0.89 0.15 0.53 0.26
Cell-ID 0.50 0.17 0.57 0.10 0.49 0.35
scCATCH (best) 0.62 0.56 0.86 0.04 0.14 0.60
scCATCH (average) 0.57 0.40 0.66 0.04 0.05 0.35

NMI PBMC (Zhengetal., 2017)  CellBench (Tian etal., 2019)  Pancreas (Baron et al., 2016) Heart (Wangetal., 2020} Heart (Cui etal., 2019} Lung (Vieira et al., 2019)
PanglaoDB+PlinerScore 0.89 0.92 0.88 0.59 0.62 0.59
PanglacDB+AUCell 0.09 0.00 0.79 041 0.50 031
PanglacDB+CIM 0.51 0.80 0.88 0.30 0.44 0.40
PanglacDB+DingScore 0.74 0.85 0.70 0.10 0.47 0.33
CellMarker+PlinerScore 0.44 0.64 0.57 0.51 0.32 0.42
CellMarker+AUCell 0.23 0.67 0.46 0.32 0.33 0.17
CellMarker+CIM 0.49 0.78 0.73 0.41 0.31 0.21
CellMarker+DingScore 0.43 0.73 0.60 0.34 0.33 0.08
SCINA 0.54 0.71 0.84 0.07 0.54 0.46
CellAssign NA 0.06 0.86 0.08 0.51 0.49
Cell-ID 0.67 0.38 0.74 0.08 0.55 0.58
ScCATCH (best) 0.77 0.70 0.84 0.05 0.30 0.73
scCATCH (average) 0.75 0.62 0.75 0.04 0.12 0.63

# of cell-types

PBMC (Zhenget al., 2017}

CellBench (Tian et al., 2019}

Pancreas (Baron et al., 2016) Heart (Wangetal., 2020} Heart (Cui et al., 2019} Lung (Vieira et al., 2019)

MACA 8 6 11 8 7 13
SCINA 14 14 17 16 23 41
CellAssign NA 9 17 18 24 31
Cell-ID 33 55 48 35 37 63
scCATCH (best) 9 5 10 3 3 16

Author's annotation

5

5

14

5

13

9
370 Table 1.Performance of MACA, CelAssign, SCINA, Cel-ID, and scCATACH in 6 scRNA-seq
371  datasets, measured by ARI and NMI. 8 different settings of MACA include using 4 cell-type scoring
372  methods (PlinerScore, AUCdl, CIM, and DingScore) with 2 marker databases (PanglaoDB and
373  CdlIMarker).
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