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Abstract1

Microbes can form complex communities that perform critical functions in maintaining the integrity2

of their environment or their hosts’ well-being. Rationally managing these microbial communities3

requires improving our ability to predict how different species assemblages affect the final species4

composition of the community. However, making such a prediction remains challenging because of5

our limited knowledge of the diverse physical, biochemical, and ecological processes governing6

microbial dynamics. To overcome this challenge, here we present a deep learning framework that7

automatically learns the map between species assemblages and community compositions from8

training data only, without knowledge of any of the above processes. First, we systematically9

validate our framework using synthetic data generated by classical population dynamics models.10

Then, we apply it to experimental data of both in vitro and in vivo communities, including ocean11

and soil microbial communities, Drosophila melanogaster gut microbiota, and human gut and oral12

microbiota. In particular, we show how our framework learns to perform accurate out-of-sample13

predictions of complex community compositions from a small number of training samples. Our14

results demonstrate how deep learning can enable us to understand better and potentially manage15

complex microbial communities.16
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Introduction17

Microbes can form complex multispecies communities that perform critical functions in maintaining18

the integrity of their environment1,2 or the well-being of their hosts3–6. For example, microbial com-19

munities play key roles in nutrient cycling in soils7 and crop growth8. In humans, the gut microbiota20

plays important roles in our nutrition9, immune system response10, pathogen resistance11, and even21

our nervous central system response5. Still, species invasions (e.g., pathogens) and extinctions (e.g.,22

due to antibiotic administration) produce changes in the species assemblages that may shift these23

communities to undesired compositions12. For instance, antibiotic administrations can shift the24

human gut microbiota to compositions making the host more susceptible to recurrent infections by25

pathogens13. Similarly, intentional changes in the species assemblages, such as by using fecal mi-26

crobiota transplantations, can shift back these communities to desired “healthier” compositions14,15.27

Therefore, improving our ability to rationally manage these microbial communities requires that28

we can predict changes in the community composition based on changes in species assemblages16.29

Building these predictions would also reduce managing costs, helping us to predict which changes in30

the species’ assemblages are more likely to yield a desired community composition. Unfortunately,31

making such a prediction remains challenging because of our limited knowledge of the diverse32

physical17, biochemical18, and ecological19,20 processes governing the microbial dynamics.33

To overcome the above challenge, here we present a deep learning framework that automatically34

learns the map between species assemblages and community compositions from training data35

only, without knowledge of the underlying microbial dynamics. We systematically validated our36

framework using synthetic data generated by classical ecological dynamics models, demonstrating37

its robustness to changes in the system dynamics and to measurement errors. Then, we applied our38

framework to experimental data of both in vitro and in vivo communities, including ocean and soil39

microbial communities21,22, Drosophila melanogaster gut microbiota23, and human gut and oral40

microbiota24. Across these diverse microbial communities, we show how our framework learns to41

predict accurate out-of-sample compositions given a few training samples. Our results show how42

deep learning can be an enabling ingredient for understanding and managing complex microbial43

communities.44
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Methods45

Consider the pool ˝ D f1; � � � ; N g of all microbial species that can inhabit an ecological habitat46

of interest, such as the human gut. A microbiome sample obtained from this habitat can be47

considered as a local community assembled from ˝ with a particular species assemblage. The48

species assemblage of a sample is characterized by a binary vector z 2 f0; 1gN , where its i -th entry49

zi satisfies zi D 1 (or zi D 0) if the i -th species is present (or absent) in this sample. Each sample50

is also associated with a composition vector p 2 �N , where pi is the relative abundance of the51

i-th species, and �N D
˚
p 2 RN

�0j
P

i pi D 1
 

is the probability simplex. Mathematically, our52

problem is to learn the map53

' W z 2 f0; 1gN 7�! p 2 �N ; (1)

which assigns the composition vector p D '.z/ based on the species assemblage z.54

Knowing the above map would be instrumental in understanding the assembly rules of microbial55

communities25. However, learning this map is a fundamental challenge because the map depends56

on many physical, biochemical, and ecological processes influencing the dynamics of microbial57

communities. These processes include the spatial structure of the ecological habitat17, the chemical58

gradients of available resources18, and inter/intra-species interactions20, to name a few. For large59

microbial communities like the human gut microbiota, our knowledge of all these processes is still60

rudimentary, hindering our ability to predict microbial compositions from species assemblages.61

Next, we show it is possible to predict the microbial composition from species assemblage62

without knowing the mechanistic details of the above processes. Our solution is a deep learning63

framework that learns the map ' directly from a datasetD of S samples, each of which is associated64

with a pair .z; p/, see Fig. 1.65

Conditions for predicting compositions from species assemblages.66

To ensure that the problem of learning ' from D is mathematically well-posed, we make the67

following assumptions. First, we assume that the species pool in the habitat has universal dynamics26
68

(i.e., different local communities of this habitat can be described by the same population dynamics69

model with the same parameters). This assumption is necessary because, otherwise, the map '70

does not exist, implying that predicting community compositions from species assemblages has71

to be done in a sample-specific manner, which is a daunting task. For in vitro communities, this72

assumption is satisfied if samples were collected from the same experiment or multiple experiments73
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but with very similar environmental conditions. For in vivo communities, empirical evidence74

indicates that the human gut and oral microbiota of healthy adults, as well as certain environment75

microbiota, display strong universal dynamics26. Second, we assume that the compositions of76

those collected samples represent steady states of the microbial communities. This assumption is77

natural because the map ' is not well defined for highly fluctuating microbial compositions. We78

note that observational studies of host-associated microbial communities such as the human gut79

microbiota indicate that they remain close to stable steady states in the absence of drastic dietary80

change or antibiotic administrations24,27,28. Finally, we assume that for each species assemblage81

z 2 f0; 1gN there is a unique steady-state composition p 2 �N . In particular, this assumption82

requires that the true multi-stability does not exist for the species pool (or any subset of it) in83

this habitat. This assumption is required because, otherwise, the map ' is not injective, and the84

prediction of community compositions becomes mathematically ill-defined. In practice, we expect85

that the above three assumptions cannot be strictly satisfied. Therefore, any algorithm that predicts86

microbial compositions from species assemblages needs to be systematically tested to ensure its87

robustness against errors due to the violation of such approximations.88

Limitations of traditional deep learning frameworks.89

Under the above assumptions, a straightforward approach to learning the map ' from D would be90

using deep neural networks29,30 such as a feedforward Residual Network31 (ResNet). As a top-rated91

tool in image processing, ResNet is a cascade of L � 1 hidden layers where the state h` 2 RN of92

the `-th hidden layer satisfies h` D h`�1Cf✓.h`�1/, ` D 1; � � � ; L, for some parametrized function93

f✓ with parameters ✓ . These hidden layers are plugged to the input h0 D gin.z/ and the output94

Op D gout.hL/ layers, where gin and gout are some functions. Crucially, for our problem, any95

architecture must satisfy two restrictions: (1) vector Op must be compositional (i.e., Op 2 �N ); and (2)96

the predicted relative abundance of any absent species must be identically zero (i.e., zi D 0 should97

imply that Opi D 0). Simultaneously satisfying both restrictions requires that the output layer is a98

normalization of the form Opi D zihL;i=
P

j zj hL;j , and that f✓ is a non-negative function (because99

hL � 0 is required to ensure the normalization is correct). We found that it is possible to train such a100

ResNet for predicting compositions in simple cases like small in vitro communities (Supplementary101

Note S2.1). But for large in vivo communities like the human gut microbiota, ResNet does not102

perform very well (Supplementary Fig. S1). This result is likely due to the normalization of the103

output layer, which challenges the training of neural networks because of vanishing gradients30.104
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The vanishing gradient problem is often solved by using other normalization layers such as the105

softmax or sparsemax layers32. However, we cannot use these layers because they do not satisfy106

the second restriction. We also note that ResNet becomes a universal approximation only in the107

limit L!1, which again complicates the training33.108

A new deep learning framework.109

To overcome the limitations of traditional deep learning frameworks based on neural networks (such110

as ResNet) in predicting microbial compositions from species assemblages, we developed cNODE111

(compositional Neural Ordinary Differential Equation), see Fig. 1b. The cNODE framework is112

based on the notion of Neural Ordinary Differential Equations, which can be interpreted as a113

continuous limit of ResNet where the hidden layers h’s are replaced by an ordinary differential114

equation (ODE)34. In cNODE, an input species assemblage z 2 f0; 1gN is first transformed into the115

initial condition h.0/ D z=1|z 2 �N , where 1 D .1; � � � ; 1/| 2 RN (left in Fig. 1b). This initial116

condition is used to solve the set of nonlinear ODEs117

dh.⌧/

d⌧
D h.⌧/ˇ

⇥
f✓

�
h.⌧/

�
� 1 h.⌧/|f✓

�
h.⌧/

�⇤
: (2)

Here, the independent variable ⌧ � 0 represents a virtual “time”. The expression h ˇ v is the118

entry-wise multiplication of the vectors h; v 2 RN . The function f✓ W �N ! RN can be any119

continuous function parametrized by ✓ . For example, it can be the linear function f✓.h/ D ⇥h with120

parameter matrix ⇥ 2 RN ⇥N (bottom in Fig. 1b), or a more complicated function represented by121

a feedforward deep neural network. Note that Eq. (2) is a general form of the replicator equation122

—a canonical model in evolutionary game theory35— with f✓ representing the fitness function. By123

choosing a final integration “time” ⌧c > 0, Eq. (2) is numerically integrated to obtain the prediction124

Op D h.⌧c/ that is the output of cNODE (right in Fig. 1b). We choose ⌧c D 1 without loss of125

generality, as ⌧ in Eq. (2) can be rescaled by multiplying f✓ by a constant. The cNODE thus126

implements the map127

O'✓ W z 2 f0; 1gN 7�! Op 2 �N ; (3)

taking an input species assemblage z to the predicted composition Op (see Supplementary Note S1128

for implementation details). Note that Eq. (2) is key to cNODE because its architecture guarantees129

that the two restrictions imposed before are naturally satisfied. Namely, Op 2 �N because the130

conditions h.0/ 2 �N and 1|dh=d⌧ D 0 imply that h.⌧/ 2 �N for all ⌧ � 0. Additionally, zi D 0131
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implies Opi D 0 because h.0/ and z have the same zero pattern, and the right-hand side of Eq. (2) is132

entry-wise multiplied by h.133

We train cNODE by adjusting the parameters ✓ to approximate ' with O'✓ . To do this, we first134

choose a distance or dissimilarity function d.p; q/ to quantify how dissimilar are two compositions135

p; q 2 �N . One can use any Minkowski distance or dissimilarity function. In the rest of this paper,136

we choose the Bray-Curtis36 dissimilarity to present our results. Specifically, for a dataset Di ✓ D,137

we use the loss function138

E.Di/ D
1

jDi j

X
.z;p/2Di

d.p; O'✓.z//: (4)

Second, we randomly split the dataset D into training D1 and test D2 datasets. Next, we choose an139

adequate functional form for f✓ . In our experiments, we found that the linear function f✓.h/ D ⇥h,140

⇥ 2 RN ⇥N , provides accurate predictions for the composition of in silico, in vitro, and in vivo141

communities. Despite f✓ is linear, the map O'✓ is nonlinear because it is the solution of the nonlinear142

ODE of Eq. (2). Finally, we adjust the parameters ✓ by minimizing Eq. (4) on D1 using a143

gradient-based meta-learning algorithm37. This learning algorithm enhances the generalizability144

of cNODE (Supplementary Note S1.2 and Supplementary Fig. S1). Once trained, we calculate145

cNODE’s test prediction error E.D2/ that quantifies cNODE’s performance in predicting the146

compositions of never-seen-before species assemblages. Test prediction errors could be due to a147

poor adjustment of the parameters (i.e., inaccurate prediction of the training set), low ability to148

generalize (i.e., inaccurate predictions of the test dataset), or violations of our three assumptions149

(universal dynamics, steady-state samples, no true multi-stability).150

Figure 1 shows the result of applying cNODE to fly gut microbiome samples collected in an151

experimental study23. In this study, germ-free flies (Drosophila melanogaster) were colonized with152

all possible combinations of N D 5 core species of fly gut bacteria, i.e., Lactobacillus plantarum153

(species-1), Lactobacillus brevis (species-2), Acetobacter pasteurianus (species-3), Acetobacter154

tropicalis (species-4), and Acetobacter orientalis (species-5). The dataset contains 41 replicates for155

the composition of each of the 2N � 1 D 31 local communities with different species assamblages.156

To apply cNODE, we aggregated all replicates and calculated their average composition, resulting157

in one “representative” sample per species assamblage (Supplementary Note S4). We also excluded158

the trivial samples with a single species, resulting in S D 26 samples. We trained cNODE by159

randomly choosing 21 of those samples (80%) as the training dataset (Fig. 1a). Once trained,160

cNODE accurately predicts microbial compositions in the test dataset of 5 species assemblages (Fig.161

1c). For example, cNODE predicts that in the assemblage of species 3 with species 4, species 3 will162
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become nearly extinct, which agrees well with the experimental result (sample 26 in Fig. 1c).163

Results164

In silico validation of cNODE.165

To systematically evaluate the performance cNODE, we generated in silico data for pools of166

N D 100 species with population dynamics given by the classic Generalized Lotka-Volterra (GLV)167

model38
168

dxi.t/

dt
D xi.t/

2
4ri C

NX
j D1

aij xj .t/

3
5 ; i D 1; � � � ; N: (5)

Above, xi.t/ denotes the abundance of the i-th species at time t � 0. The GLV model has169

as parameters the interaction matrix A D .aij / 2 RN ⇥N , and the intrinsic growth-rate vector170

r D .ri/ 2 RN . The parameter aij denotes the inter- (if j ¤ i) or intra- (if j D i) species171

interaction strength of species j to the per-capita growth rate of species i . The parameter ri is172

the intrinsic growth rate of species i . The interaction matrix A determines the ecological network173

G.A/ underlying the species pool. Namely, this network has one node per species and edges174

.j ! i/ 2 G.A/ if aij ¤ 0. The connectivity C 2 Œ0; 1ç of this network is the proportion of edges175

it has compared to the N 2 edges in a complete network. Despite its simplicity, the GLV model176

successfully describes the population dynamics of microbial communities in diverse environments,177

from the soil39 and lakes40 to the human gut11,41,42. To validate cNODE, we generated synthetic178

microbiome samples as steady-state compositions of GLV models with random parameters by179

choosing aij ⇠ Bernoulli.C /Normal.0; �/ if i ¤ j , ai i D �1, and ri ⇠ UniformŒ0; 1ç, for180

different values of connectivity C and characteristic inter-species interaction strength � > 0181

(Supplementary Note S3).182

Figure 2a shows the prediction error in synthetic training and test datasets, each of which has183

N samples generated by the GLV model of N species, with � D 0:5 and different values of C .184

The prediction error in the training set, E.D1/, keeps decreasing with the increasing number of185

training epochs, especially for high C values (as shown in dashed and dotted cyan lines in Fig.186

2a). Interestingly, the prediction error in the test dataset, E.D2/, reaches a plateau after enough187

number of training epochs regardless of the C values (see solid, dashed and dotted yellows lines in188

Fig. 2a), which is a clear evidence of an adequate training of cNODE with low overfitting. Note189

that the plateau of E.D/ increases with C . We confirm this result in datasets with different sizes190
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of the training dataset (Fig. 2b). Moreover, we found that the plateau increases with increasing191

characteristic interaction strength � (Fig. 2c). Fortunately, the increase of E.D2/ (due to increasing192

C or � ) can be compensated by increasing the sample size of the training set D1. Indeed, as shown193

in Fig. 2b,c, E.D2/ decreases with increasing jD1j=N .194

To systematically evaluate the robustness of cNODE against violation of its three key assump-195

tions, we performed three types of validations. In the first validation, we generated datasets that196

violate the assumption of universal dynamics. For this, given a “base” GLV model with parameters197

.A; r/, we consider two forms of universality loss (Supplementary Note S3). First, samples are198

generated using a GLV with the same ecological network but with those non-zero interaction199

strengths aij replaced by aij C Normal.0; ⌘/, where ⌘ > 0 characterizes the changes in the typical200

interaction strength. Second, samples are generated using a GLV with slightly different ecological201

networks obtained by randomly rewiring a proportion ⇢ 2 Œ0; 1ç of their edges. We find that202

cNODE is robust to both forms of universality loss as its asymptotic prediction error changes203

continuously, maintaining a reasonably low prediction error up to ⌘ D 0:4 and ⇢ D 0:1 (Fig. 2d204

and Supplementary Fig. S2).205

In the second validation, we evaluated the robustness of cNODE against measurement noises in206

the relative abundance of species. For this, for each sample, we first change the relative abundance of207

the i -th species from pi to maxf0; pi CNormal.0; "/g, where " � 0 characterizes the measurement208

noise intensity. Then, we normalize the vector p to ensure it is still compositional, i.e., p 2 �N .209

Due to the measurement noise, some species that were absent may be measured as present, and210

vice-versa. In this case, we find that cNODE performs adequately up to " D 0:025 (Fig. 2f)211

In the third validation, we generated datasets with true multi-stability by simulating a population212

dynamics model with nonlinear functional responses (Supplementary Notes S3). For each species213

collection, these functional responses generate two interior equilibria in different “regimes”: one214

regime with low biomass, and the other regime with high biomass. We then train cNODE with215

datasets obtained by choosing a fraction .1 � �/ of samples from the first regime, and the rest from216

the second regime. We find that cNODE is robust enough to provide reasonable predictions up to217

� D 0:2 (Fig. 2d).218

Evaluation of cNODE using real data.219

We evaluated cNODE using six microbiome datasets of different habitats (Supplementary Note220

S4). The first dataset consists of S D 275 samples43 of the ocean microbiome at phylum taxonomic221

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2021.06.17.448886doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.448886
http://creativecommons.org/licenses/by-nc-nd/4.0/


level, resulting in N D 73 different taxa. The second dataset consists of S D 26 in vivo samples222

of Drosophila melanogaster gut microbiota of N D 5 species23, as described in Fig. 1. The223

third dataset has S D 93 samples of in vitro communities of N D 8 soil bacterial species21. The224

fourth dataset contains S D 113 samples of the Central Park soil microbiome22 at the phylum level225

(N D 36 phyla). The fifth dataset contains S D 150 samples of the human oral microbiome from226

the Human Microbiome Project24 (HMP) at the genus level (N D 73 genera). The final dataset has227

S D 106 samples of the human gut microbiome from HMP at the genus level (N D 58 genera).228

To evaluate cNODE, we performed the leave-one-out cross-validation on each dataset. The229

median test prediction errors were 0.06, 0.066, 0.079, 0.107, 0.211 and 0.242 for the six datasets,230

respectively (Fig. 3a). To understand the meaning of these errors, for each dataset we inspected231

five pairs (p; Op) corresponding to the observed and out-of-sample predicted composition of five232

samples. We chose the five samples based on their test prediction error. Specifically, we selected233

those samples with the minimal error, close to the first quartile, closer to the median, closer to234

the third quartile, and with the maximal error (columns in Fig. 3b-g, from left to right ). We235

found that samples with errors below the third quartile provide acceptable predictions (left three236

columns in Fig. 3b-g), while samples with errors close to the third quartile or with the maximal237

error do demonstrate salient differences between the observed and predicted compositions (right238

two columns in Fig. 3b-g). Note that in the sample with largest error of the human gut dataset239

(Fig. 3g, rightmost column), the observed composition is dominated by Provotella (pink) while240

the predicted sample is dominated by Bacteroides (blue). This drastic difference is likely due to241

different dietary patterns44.242

Discussion243

cNODE is a deep learning framework to predict microbial compositions from species assemblages244

only. We validated its performance using in silico, in vitro, and in vivo microbial communities,245

finding that cNODE learns to perform accurate out-of-sample predictions using a few training246

samples. Classic methods for predicting species abundances in microbial communities require247

inference based on population dynamics models21,41,45,46. However, these methods typically require248

high-quality time-series data of species absolute abundances, which can be difficult and expensive249

to obtain for in vivo microbial communities. cNODE circumvents needing absolute abundances250

or time-series data. However, compared to the classic methods, the cost to pay is that the trained251

function f✓ cannot be mechanistically interpreted because of the lack of identifiability inherent to252
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compositional data47,48. We also note a recent statistical method to predict the steady-state abundance253

in ecological communities49. This method also requires absolute abundance measurements. cNODE254

can outperform this statistical method despite using only relative abundances (Supplementary Note255

S6). See also Supplementary Note S5 for a discussion of how our framework compares to other256

related works.257

Deep learning techniques are actively applied in microbiome research50–58, such as for classifying258

samples that shifted to a diseased state59, predicting infection complications in immunocompromised259

patients60, or predicting the temporal or spatial evolution of certain species collection61,62. However,260

to the best of our knowledge, the potential of deep learning for predicting the effect of changing261

species assemblages was not explored nor validated before. Our proposed framework, based on the262

notion of neural ODE34, is a baseline that could be improved by incorporating additional information.263

For example, incorporating available environmental information such as pH, temperature, age, BMI,264

and host’s diet could enhance the prediction accuracy. This additional information would help265

to predict the species present in different environments. Adding “hidden variables” such as the266

unmeasured total biomass or unmeasured resources to our ODE will enhance the expressivity of the267

cNODE63,64, but this may result in more challenging training. Finally, if available, knowledge of the268

genetic similarity between species can be leveraged into the loss function by using the phylogenetic269

Wasserstein distance65 that provides a well-defined gradient66.270

We anticipate that a useful application of our framework is to predict if by adding some271

species collection to a local community we can bring the abundance of target species below the272

practical extinction threshold. Thus, given a local community containing the target (and potentially273

pathogenic) species, we could use a greedy optimization algorithm to identify a minimal collection274

of species to add such that our architecture predicts that they will decolonize the target species.275

Our framework does have limitations. For example, cNODE cannot accurately predict the276

abundance of taxa that have never been observed in the training dataset. Also, a limitation of our277

current architecture is that it assumes that true multistability does not exist —namely, a community278

with a given species assemblage permits only one stable steady-state, where each species in the279

collection has a positive abundance. For complex microbial communities such as the human gut280

microbiota, the highly personalized species collections make it very difficult to decide if true281

multistability exists or not. Our framework could be extended to handle multistability by predicting282

a probability density function for the abundance of each species. In such a case, true multistability283

would correspond to predicting a multimodal density function.284

In conclusion, the many species and the complex, uncertain dynamics that microbial communi-285
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ties exhibit have been fundamental obstacles in our ability to learn how they respond to alterations,286

such as removing or adding species. Moving this field forward may require losing some ability to287

interpret the mechanism behind their response. In this sense, deep learning methods could enable us288

to rationally manage and predict complex microbial communities’ dynamics.289
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Figure 1: A deep learning framework to predict microbiome compositions from species assemblages.
We illustrate this framework using experimental data from a pool of N D 5 bacterial species in Drosophila
melangaster gut microbiota23: Lactobacillus plantarum (blue), Lactobacillus brevis (pink), Acetobacter
pasteurianus (yellow), Acetobacter tropicalis (green), and Acetobacter orientalis (purple). a. We randomly
split this dataset into training (D1) and test (D2) datasets, which contain 80% and 20% of the samples,
respectively. Each dataset contains pairs .z; p/ with the species assamblage z 2 f0; 1gN (top) and its
corresponding composition p 2 �N (bottom) from each sample. b. To predict compositions from species
assamblages, our cNODE framework consists of a solver for the ODE shown in Eq. (2), together with a
chosen parametrized function f✓ . During training, the parameters ✓ are adjusted to learn to predict the
composition Op 2 �N of the species assamblage z 2 f0; 1gN in D1. c. After training, the performance is
evaluated by predicting the composition of never-seen-before species assamblages in the test dataset D2. In
this experimental microbiota, cNODE learned to perform accurate predictions of the composition in the test
dataset. For example, in the assemblage of species 3 and 4 (sample 26), cNODE correctly predicts that the
composition is strongly dominated by a single species.
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Figure 2: In silico validation of cNODE using synthetic datasets. Results are for synthetic
communities of N D 100 species generated by the with Generalized Lotka-Volterra model (panels
a-e) or a population dynamics model with nonlinear functional responses (panel f). a. Training
cNODE with N samples obtained from GLV models with connectivity C D 0:1 (solid), C D 0:15
(dashed), C D 0:2 (dotted). b. Performance of cNODE for GLV datasets with C D 0:5 and
different interaction strengths � . c. Performance of cNODE for GLV datasets with � D 0:5 and
different connectivity C . d. Performance of cNODE for GLV datasets with non-universal dynamics,
quantified by the value of ⌘. For all datasets, � D 0:1 and C D 0:5. e. Performance of cNODE for
GLV datasets with measurement errors quantified by ". For all datasets, � D 0:1 and C D 0:5. f.
Performance of cNODE for synthetic datasets with multiple interior equilibria, quantified by the
probability � 2 Œ0; 1ç of finding multiple equilibria. For all datasets, C D 0:5; � D 0:1. In panels
b-f, thin lines represent the prediction errors for ten validations of training cNODE with a different
dataset. Mean errors are shown in thick lines.
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Figure 3: Predicting the composition of real microbiomes. a. Boxplots with the prediction error
obtained from a leave-one-out crossvalidation of each dataset. b-g: For each dataset, we show true
and predicted samples corresponding to the minimal prediction error, closer to the first quartile,
median, closer to the third quartile, maximum prediction error (including outliers). Note all shown
in panels b-g predictions are out-of-sample predictions.
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