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. Abstract

> Microbes can form complex communities that perform critical functions in maintaining the integrity
s of their environment or their hosts’ well-being. Rationally managing these microbial communities
+ requires improving our ability to predict how different species assemblages affect the final species
s composition of the community. However, making such a prediction remains challenging because of
s our limited knowledge of the diverse physical, biochemical, and ecological processes governing
7 microbial dynamics. To overcome this challenge, here we present a deep learning framework that
s automatically learns the map between species assemblages and community compositions from
o training data only, without knowledge of any of the above processes. First, we systematically
1 validate our framework using synthetic data generated by classical population dynamics models.
1+ Then, we apply it to experimental data of both in vitro and in vivo communities, including ocean
2 and soil microbial communities, Drosophila melanogaster gut microbiota, and human gut and oral
13 microbiota. In particular, we show how our framework learns to perform accurate out-of-sample
1+ predictions of complex community compositions from a small number of training samples. Our
15 results demonstrate how deep learning can enable us to understand better and potentially manage

¢ complex microbial communities.
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- Introduction

s Microbes can form complex multispecies communities that perform critical functions in maintaining
1o the integrity of their environment' or the well-being of their hosts*. For example, microbial com-
20 munities play key roles in nutrient cycling in soils” and crop growth®. In humans, the gut microbiota
2 plays important roles in our nutrition’, immune system response'?, pathogen resistance'!, and even
2 our nervous central system response’. Still, species invasions (e.g., pathogens) and extinctions (e.g.,
s due to antibiotic administration) produce changes in the species assemblages that may shift these
2« communities to undesired compositions'?. For instance, antibiotic administrations can shift the
»s human gut microbiota to compositions making the host more susceptible to recurrent infections by
s pathogens'?. Similarly, intentional changes in the species assemblages, such as by using fecal mi-
2 crobiota transplantations, can shift back these communities to desired “healthier” compositions'*!3.
2s Therefore, improving our ability to rationally manage these microbial communities requires that
2 we can predict changes in the community composition based on changes in species assemblages'®.
s Building these predictions would also reduce managing costs, helping us to predict which changes in
a1 the species’ assemblages are more likely to yield a desired community composition. Unfortunately,
= making such a prediction remains challenging because of our limited knowledge of the diverse
s physical'’, biochemical'®, and ecological'®?° processes governing the microbial dynamics.

3 To overcome the above challenge, here we present a deep learning framework that automatically
s learns the map between species assemblages and community compositions from training data
s only, without knowledge of the underlying microbial dynamics. We systematically validated our
s framework using synthetic data generated by classical ecological dynamics models, demonstrating
s its robustness to changes in the system dynamics and to measurement errors. Then, we applied our
s framework to experimental data of both in vitro and in vivo communities, including ocean and soil
« microbial communities®"?>, Drosophila melanogaster gut microbiota®®, and human gut and oral
» microbiota**. Across these diverse microbial communities, we show how our framework learns to
« predict accurate out-of-sample compositions given a few training samples. Our results show how
s deep learning can be an enabling ingredient for understanding and managing complex microbial

4 communities.
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« Methods

s Consider the pool £2 = {1,---, N} of all microbial species that can inhabit an ecological habitat
« of interest, such as the human gut. A microbiome sample obtained from this habitat can be
s considered as a local community assembled from 2 with a particular species assemblage. The
w species assemblage of a sample is characterized by a binary vector z € {0, 1}V, where its i -th entry
so z; satisfies z; = 1 (or z; = 0) if the i-th species is present (or absent) in this sample. Each sample
s is also associated with a composition vector p € AN, where p; is the relative abundance of the
s i-th species, and AN = { pE R]ZVO| YD = 1} is the probability simplex. Mathematically, our
s3 problem is to learn the map

¢:ze€{0, 13N — pe AV, (1)

s« which assigns the composition vector p = ¢(z) based on the species assemblage z.

55 Knowing the above map would be instrumental in understanding the assembly rules of microbial
ss communities?”. However, learning this map is a fundamental challenge because the map depends
sz on many physical, biochemical, and ecological processes influencing the dynamics of microbial
= communities. These processes include the spatial structure of the ecological habitat!’, the chemical
s gradients of available resources'®, and inter/intra-species interactions?’, to name a few. For large
so microbial communities like the human gut microbiota, our knowledge of all these processes is still
s» rudimentary, hindering our ability to predict microbial compositions from species assemblages.

62 Next, we show it is possible to predict the microbial composition from species assemblage
& without knowing the mechanistic details of the above processes. Our solution is a deep learning
s« framework that learns the map ¢ directly from a dataset © of S samples, each of which is associated

es With a pair (z, p), see Fig. 1.

« Conditions for predicting compositions from species assemblages.

& 'To ensure that the problem of learning ¢ from D is mathematically well-posed, we make the
s following assumptions. First, we assume that the species pool in the habitat has universal dynamics?®
e (i.e., different local communities of this habitat can be described by the same population dynamics
7 model with the same parameters). This assumption is necessary because, otherwise, the map ¢
7 does not exist, implying that predicting community compositions from species assemblages has
72 to be done in a sample-specific manner, which is a daunting task. For in vitro communities, this

73 assumption is satisfied if samples were collected from the same experiment or multiple experiments
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7+ but with very similar environmental conditions. For in vivo communities, empirical evidence
75 indicates that the human gut and oral microbiota of healthy adults, as well as certain environment
s microbiota, display strong universal dynamics?®. Second, we assume that the compositions of
77 those collected samples represent steady states of the microbial communities. This assumption is
72 natural because the map ¢ is not well defined for highly fluctuating microbial compositions. We
7o note that observational studies of host-associated microbial communities such as the human gut
s mMmicrobiota indicate that they remain close to stable steady states in the absence of drastic dietary
& change or antibiotic administrations***"-?®, Finally, we assume that for each species assemblage
2 z € {0, 1} there is a unique steady-state composition p € AY. In particular, this assumption
ss requires that the true multi-stability does not exist for the species pool (or any subset of it) in
s« this habitat. This assumption is required because, otherwise, the map ¢ is not injective, and the
ss prediction of community compositions becomes mathematically ill-defined. In practice, we expect
ss that the above three assumptions cannot be strictly satisfied. Therefore, any algorithm that predicts
&7 microbial compositions from species assemblages needs to be systematically tested to ensure its

ss robustness against errors due to the violation of such approximations.

» Limitations of traditional deep learning frameworks.

w0 Under the above assumptions, a straightforward approach to learning the map ¢ from © would be
o using deep neural networks?’2° such as a feedforward Residual Network?! (ResNet). As a top-rated
 tool in image processing, ResNet is a cascade of L > 1 hidden layers where the state 7, € RV of
s the £-th hidden layer satisfies iy = hy—1 + fo(hy—1),£ = 1,---, L, for some parametrized function
« fp with parameters 6. These hidden layers are plugged to the input 1y = gi,(z) and the output
s p = gout(hy) layers, where gj, and goyt are some functions. Crucially, for our problem, any
o architecture must satisfy two restrictions: (1) vector p must be compositional (i.e., p € AN); and (2)
o7 the predicted relative abundance of any absent species must be identically zero (i.e., z; = 0 should
e« imply that p; = 0). Simultaneously satisfying both restrictions requires that the output layer is a
» normalization of the form p; = z;hp i/ ) ;i ZjhL,j, and that fy is a non-negative function (because
w0 hy > 0is required to ensure the normalization is correct). We found that it is possible to train such a
11 ResNet for predicting compositions in simple cases like small in vitro communities (Supplementary
12 Note S2.1). But for large in vivo communities like the human gut microbiota, ResNet does not
w3 perform very well (Supplementary Fig. S1). This result is likely due to the normalization of the

s output layer, which challenges the training of neural networks because of vanishing gradients°.


https://doi.org/10.1101/2021.06.17.448886
http://creativecommons.org/licenses/by-nc-nd/4.0/

105

106

107

108

110

111

112

118

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

131

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448886; this version posted June 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

The vanishing gradient problem is often solved by using other normalization layers such as the
softmax or sparsemax layers*>. However, we cannot use these layers because they do not satisfy
the second restriction. We also note that ResNet becomes a universal approximation only in the

limit L — oo, which again complicates the training?>.

A new deep learning framework.

To overcome the limitations of traditional deep learning frameworks based on neural networks (such
as ResNet) in predicting microbial compositions from species assemblages, we developed cNODE
(compositional Neural Ordinary Differential Equation), see Fig. 1b. The cNODE framework is
based on the notion of Neural Ordinary Differential Equations, which can be interpreted as a
continuous limit of ResNet where the hidden layers /’s are replaced by an ordinary differential
equation (ODE)*. In cNODE, an input species assemblage z € {0, 1}V is first transformed into the
initial condition 2#(0) = z/17z € AV, where 1 = (1,---,1)7 € R¥ (left in Fig. 1b). This initial

condition is used to solve the set of nonlinear ODEs

dh(7)
dr

= h(v) © [fo(h(v)) =L h()" fo(h(v))]. 2)

Here, the independent variable t > 0 represents a virtual “time”. The expression 2 © v is the
entry-wise multiplication of the vectors #,v € R¥. The function f5 : AY — R can be any
continuous function parametrized by 6. For example, it can be the linear function fy(h) = ©h with
parameter matrix ©@ € RV (bottom in Fig. 1b), or a more complicated function represented by
a feedforward deep neural network. Note that Eq. (2) is a general form of the replicator equation
—a canonical model in evolutionary game theory*— with fp representing the fitness function. By
choosing a final integration “time” t. > 0, Eq. (2) is numerically integrated to obtain the prediction
p = h(z.) that is the output of cNODE (right in Fig. 1b). We choose . = 1 without loss of
generality, as 7 in Eq. (2) can be rescaled by multiplying fy by a constant. The cNODE thus
implements the map

Po:z€{0, 1N — pe AV, 3)

taking an input species assemblage z to the predicted composition p (see Supplementary Note S1
for implementation details). Note that Eq. (2) is key to cNODE because its architecture guarantees
that the two restrictions imposed before are naturally satisfied. Namely, p € AN because the

conditions #(0) € AN and 17dA/dr = 0 imply that 4#(7) € AY for all ¢ > 0. Additionally, z; = 0
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implies p; = 0 because /(0) and z have the same zero pattern, and the right-hand side of Eq. (2) is
entry-wise multiplied by 4.

We train cNODE by adjusting the parameters 6 to approximate ¢ with ¢g. To do this, we first
choose a distance or dissimilarity function d(p, ¢) to quantify how dissimilar are two compositions
p.q € AN . One can use any Minkowski distance or dissimilarity function. In the rest of this paper,
we choose the Bray-Curtis*® dissimilarity to present our results. Specifically, for a dataset ©; C D,

we use the loss function
1

|D; |

E(®) = Y d(p.¢e(2)). 4

(z,p)eD;

Second, we randomly split the dataset © into training ©; and test D, datasets. Next, we choose an
adequate functional form for fy. In our experiments, we found that the linear function fy(h) = Oh,
©® e RY*N provides accurate predictions for the composition of in silico, in vitro, and in vivo
communities. Despite fy is linear, the map ¢y is nonlinear because it is the solution of the nonlinear
ODE of Eq. (2). Finally, we adjust the parameters 6§ by minimizing Eq. (4) on D; using a
gradient-based meta-learning algorithm?’. This learning algorithm enhances the generalizability
of cNODE (Supplementary Note S1.2 and Supplementary Fig. S1). Once trained, we calculate
cNODE’s test prediction error E(D,) that quantifies cNODE’s performance in predicting the
compositions of never-seen-before species assemblages. Test prediction errors could be due to a
poor adjustment of the parameters (i.e., inaccurate prediction of the training set), low ability to
generalize (i.e., inaccurate predictions of the test dataset), or violations of our three assumptions
(universal dynamics, steady-state samples, no true multi-stability).

Figure 1 shows the result of applying cNODE to fly gut microbiome samples collected in an
experimental study?. In this study, germ-free flies (Drosophila melanogaster) were colonized with
all possible combinations of N = 5 core species of fly gut bacteria, i.e., Lactobacillus plantarum
(species-1), Lactobacillus brevis (species-2), Acetobacter pasteurianus (species-3), Acetobacter
tropicalis (species-4), and Acetobacter orientalis (species-5). The dataset contains 41 replicates for
the composition of each of the 2 — 1 = 31 local communities with different species assamblages.
To apply ctNODE, we aggregated all replicates and calculated their average composition, resulting
in one “representative” sample per species assamblage (Supplementary Note S4). We also excluded
the trivial samples with a single species, resulting in § = 26 samples. We trained cNODE by
randomly choosing 21 of those samples (80%) as the training dataset (Fig. la). Once trained,
cNODE accurately predicts microbial compositions in the test dataset of 5 species assemblages (Fig.

I¢). For example, cNODE predicts that in the assemblage of species 3 with species 4, species 3 will
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13 become nearly extinct, which agrees well with the experimental result (sample 26 in Fig. 1c).

« Results

w In silico validation of cNODE.

s 10 systematically evaluate the performance cNODE, we generated in silico data for pools of

17 N = 100 species with population dynamics given by the classic Generalized Lotka-Volterra (GLV)

168 l'IlOdE:P8

dx; (¢)
dr

N
=xi(t) | ri+ ) aigx@) |, i=1- N )

j=1
1o Above, x;(t) denotes the abundance of the i-th species at time ¢+ > 0. The GLV model has
70 as parameters the interaction matrix A = (a;;) € RN*N "and the intrinsic growth-rate vector
w1 = (r;) € RN, The parameter a;; denotes the inter- (if j # i) or intra- (if j = i) species
w72 Interaction strength of species j to the per-capita growth rate of species i. The parameter r; is
s the intrinsic growth rate of species i. The interaction matrix A determines the ecological network
7 G(A) underlying the species pool. Namely, this network has one node per species and edges
s (J = 1) € G(A) if aj; # 0. The connectivity C € [0, 1] of this network is the proportion of edges
i7s it has compared to the N2 edges in a complete network. Despite its simplicity, the GLV model
77 successfully describes the population dynamics of microbial communities in diverse environments,
s from the soil* and lakes*’ to the human gut!!*!*2, To validate cNODE, we generated synthetic
179 microbiome samples as steady-state compositions of GLV models with random parameters by
wo choosing a;; ~ Bernoulli(C)Normal(0,0) if i # j, a;; = —1, and r; ~ Uniform[0, 1], for
w1 different values of connectivity C and characteristic inter-species interaction strength o > 0
12 (Supplementary Note S3).

183 Figure 2a shows the prediction error in synthetic training and test datasets, each of which has
1« N samples generated by the GLV model of N species, with 0 = 0.5 and different values of C.
s The prediction error in the training set, £(D;), keeps decreasing with the increasing number of
18 training epochs, especially for high C values (as shown in dashed and dotted cyan lines in Fig.
w7 2a). Interestingly, the prediction error in the test dataset, E (D), reaches a plateau after enough
s number of training epochs regardless of the C values (see solid, dashed and dotted yellows lines in
189 Fig. 2a), which is a clear evidence of an adequate training of cNODE with low overfitting. Note

190 that the plateau of E (D) increases with C. We confirm this result in datasets with different sizes
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191 of the training dataset (Fig. 2b). Moreover, we found that the plateau increases with increasing
192 characteristic interaction strength o (Fig. 2c). Fortunately, the increase of E(D;) (due to increasing
s C or o) can be compensated by increasing the sample size of the training set ©;. Indeed, as shown
1 in Fig. 2b,c, E(D,) decreases with increasing |D;|/N.

195 To systematically evaluate the robustness of cNODE against violation of its three key assump-
196 tions, we performed three types of validations. In the first validation, we generated datasets that
197 violate the assumption of universal dynamics. For this, given a “base” GLV model with parameters
198 (A, r), we consider two forms of universality loss (Supplementary Note S3). First, samples are
199 generated using a GLV with the same ecological network but with those non-zero interaction
200 strengths a;; replaced by a;; + Normal(0, n), where n > 0 characterizes the changes in the typical
201 interaction strength. Second, samples are generated using a GLV with slightly different ecological
22 networks obtained by randomly rewiring a proportion p € [0, 1] of their edges. We find that
23 cNODE is robust to both forms of universality loss as its asymptotic prediction error changes
204« continuously, maintaining a reasonably low prediction error up to n = 0.4 and p = 0.1 (Fig. 2d
2s and Supplementary Fig. S2).

206 In the second validation, we evaluated the robustness of cNODE against measurement noises in
207 the relative abundance of species. For this, for each sample, we first change the relative abundance of
208 the i-th species from p; to max{0, p; + Normal(0, )}, where ¢ > 0 characterizes the measurement
20 noise intensity. Then, we normalize the vector p to ensure it is still compositional, i.e., p € AV,
210 Due to the measurement noise, some species that were absent may be measured as present, and
211 vice-versa. In this case, we find that cNODE performs adequately up to ¢ = 0.025 (Fig. 2f)

212 In the third validation, we generated datasets with true multi-stability by simulating a population
213 dynamics model with nonlinear functional responses (Supplementary Notes S3). For each species
214 collection, these functional responses generate two interior equilibria in different “regimes”: one
215 regime with low biomass, and the other regime with high biomass. We then train cNODE with
21s  datasets obtained by choosing a fraction (1 — w) of samples from the first regime, and the rest from
27 the second regime. We find that cNODE is robust enough to provide reasonable predictions up to

218 U = 0.2 (Flg 2d)

2o Evaluation of cNODE using real data.

220 We evaluated cNODE using six microbiome datasets of different habitats (Supplementary Note

2 S4). The first dataset consists of S = 275 samples*’ of the ocean microbiome at phylum taxonomic
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22 level, resulting in N = 73 different taxa. The second dataset consists of S = 26 in vivo samples
2 of Drosophila melanogaster gut microbiota of N = 5 species?, as described in Fig. 1. The
2+ third dataset has S = 93 samples of in vitro communities of N = 8 soil bacterial species®!. The
s fourth dataset contains S = 113 samples of the Central Park soil microbiome?? at the phylum level
26 (N = 36 phyla). The fifth dataset contains § = 150 samples of the human oral microbiome from
27 the Human Microbiome Project®** (HMP) at the genus level (N = 73 genera). The final dataset has
2s S = 106 samples of the human gut microbiome from HMP at the genus level (N = 58 genera).

229 To evaluate cNODE, we performed the leave-one-out cross-validation on each dataset. The
20 median test prediction errors were 0.06, 0.066, 0.079, 0.107, 0.211 and 0.242 for the six datasets,
2 respectively (Fig. 3a). To understand the meaning of these errors, for each dataset we inspected
22 five pairs (p, p) corresponding to the observed and out-of-sample predicted composition of five
23 samples. We chose the five samples based on their test prediction error. Specifically, we selected
24 those samples with the minimal error, close to the first quartile, closer to the median, closer to
25 the third quartile, and with the maximal error (columns in Fig. 3b-g, from left to right ). We
26 found that samples with errors below the third quartile provide acceptable predictions (left three
27 columns in Fig. 3b-g), while samples with errors close to the third quartile or with the maximal
=s  error do demonstrate salient differences between the observed and predicted compositions (right
20 two columns in Fig. 3b-g). Note that in the sample with largest error of the human gut dataset
20 (Fig. 3g, rightmost column), the observed composition is dominated by Provotella (pink) while
21 the predicted sample is dominated by Bacteroides (blue). This drastic difference is likely due to

22 different dietary patterns*.

»  DIscussion

2« ¢cNODE is a deep learning framework to predict microbial compositions from species assemblages
25 only. We validated its performance using in silico, in vitro, and in vivo microbial communities,
26 finding that cNODE learns to perform accurate out-of-sample predictions using a few training
2»  samples. Classic methods for predicting species abundances in microbial communities require
s inference based on population dynamics models?!*!#>46 However, these methods typically require
20 high-quality time-series data of species absolute abundances, which can be difficult and expensive
20 to obtain for in vivo microbial communities. cNODE circumvents needing absolute abundances
251 Or time-series data. However, compared to the classic methods, the cost to pay is that the trained

2 function fy cannot be mechanistically interpreted because of the lack of identifiability inherent to

10
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2!

a

s compositional data*’*®. We also note a recent statistical method to predict the steady-state abundance
25 in ecological communities*’. This method also requires absolute abundance measurements. cNODE
25 can outperform this statistical method despite using only relative abundances (Supplementary Note
26 50). See also Supplementary Note S5 for a discussion of how our framework compares to other
27 related works.

h50—58

258 Deep learning techniques are actively applied in microbiome researc , such as for classifying

2 samples that shifted to a diseased state®, predicting infection complications in immunocompromised

6162 However,

20 patients®, or predicting the temporal or spatial evolution of certain species collection
261 to the best of our knowledge, the potential of deep learning for predicting the effect of changing
22 species assemblages was not explored nor validated before. Our proposed framework, based on the
s notion of neural ODE*, is a baseline that could be improved by incorporating additional information.
4 For example, incorporating available environmental information such as pH, temperature, age, BMI,
s and host’s diet could enhance the prediction accuracy. This additional information would help
26 to predict the species present in different environments. Adding “hidden variables” such as the
27 unmeasured total biomass or unmeasured resources to our ODE will enhance the expressivity of the
e cNODE®%*, but this may result in more challenging training. Finally, if available, knowledge of the
20 genetic similarity between species can be leveraged into the loss function by using the phylogenetic
2 Wasserstein distance® that provides a well-defined gradient®.

271 We anticipate that a useful application of our framework is to predict if by adding some
222 species collection to a local community we can bring the abundance of target species below the
273 practical extinction threshold. Thus, given a local community containing the target (and potentially
2+ pathogenic) species, we could use a greedy optimization algorithm to identify a minimal collection
275 of species to add such that our architecture predicts that they will decolonize the target species.

276 Our framework does have limitations. For example, cNODE cannot accurately predict the
2z abundance of taxa that have never been observed in the training dataset. Also, a limitation of our
278 current architecture is that it assumes that true multistability does not exist —namely, a community
279 with a given species assemblage permits only one stable steady-state, where each species in the
220 collection has a positive abundance. For complex microbial communities such as the human gut
2s1 microbiota, the highly personalized species collections make it very difficult to decide if true
2.2 multistability exists or not. Our framework could be extended to handle multistability by predicting
253 a probability density function for the abundance of each species. In such a case, true multistability

2.« would correspond to predicting a multimodal density function.

285 In conclusion, the many species and the complex, uncertain dynamics that microbial communi-

11
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265 ties exhibit have been fundamental obstacles in our ability to learn how they respond to alterations,
2s7  such as removing or adding species. Moving this field forward may require losing some ability to
2ss interpret the mechanism behind their response. In this sense, deep learning methods could enable us

29 to rationally manage and predict complex microbial communities’ dynamics.
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Figure 1: A deep learning framework to predict microbiome compositions from species assemblages.
We illustrate this framework using experimental data from a pool of N = 5 bacterial species in Drosophila
melangaster gut microbiota®: Lactobacillus plantarum (blue), Lactobacillus brevis (pink), Acetobacter
pasteurianus (yellow), Acetobacter tropicalis (green), and Acetobacter orientalis (purple). a. We randomly
split this dataset into training (D) and test (D) datasets, which contain 80% and 20% of the samples,
respectively. Each dataset contains pairs (z, p) with the species assamblage z € {0, 1}V (top) and its
corresponding composition p € AV (bottom) from each sample. b. To predict compositions from species
assamblages, our cNODE framework consists of a solver for the ODE shown in Eq. (2), together with a
chosen parametrized function fy. During training, the parameters 6 are adjusted to learn to predict the
composition p € AN of the species assamblage z € {0, 1}V in D;. c. After training, the performance is
evaluated by predicting the composition of never-seen-before species assamblages in the test dataset D,. In
this experimental microbiota, cNODE learned to perform accurate predictions of the composition in the test
dataset. For example, in the assemblage of species 3 and 4 (sample 26), cNODE correctly predicts that the
composition is strongly dominated by a single species.
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Figure 2: In silico validation of cNODE using synthetic datasets. Results are for synthetic
communities of N = 100 species generated by the with Generalized Lotka-Volterra model (panels
a-e) or a population dynamics model with nonlinear functional responses (panel f). a. Training
cNODE with N samples obtained from GLV models with connectivity C = 0.1 (solid), C = 0.15
(dashed), C = 0.2 (dotted). b. Performance of cNODE for GLV datasets with C = 0.5 and
different interaction strengths o. ¢. Performance of cNODE for GLV datasets with 0 = 0.5 and
different connectivity C. d. Performance of cNODE for GLV datasets with non-universal dynamics,
quantified by the value of 1. For all datasets, 0 = 0.1 and C = 0.5. e. Performance of cNODE for
GLYV datasets with measurement errors quantified by ¢. For all datasets, 0 = 0.1 and C = 0.5. f.
Performance of cNODE for synthetic datasets with multiple interior equilibria, quantified by the
probability p € [0, 1] of finding multiple equilibria. For all datasets, C = 0.5,0 = 0.1. In panels
b-f, thin lines represent the prediction errors for ten validations of training cNODE with a different
dataset. Mean errors are shown in thick lines.
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Figure 3: Predicting the composition of real microbiomes. a. Boxplots with the prediction error
obtained from a leave-one-out crossvalidation of each dataset. b-g: For each dataset, we show true
and predicted samples corresponding to the minimal prediction error, closer to the first quartile,
median, closer to the third quartile, maximum prediction error (including outliers). Note all shown
in panels b-g predictions are out-of-sample predictions.
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