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Abstract

Super-resolution imaging can generate thousands of single-particle
trajectories. These data can potentially reconstruct subcellular or-
ganization and dynamics, as well as measure disease-linked changes.
However, computational methods that can derive quantitative informa-
tion from such massive datasets are currently lacking. Here we present
data analysis and algorithms that are broadly applicable to reveal local
binding and trafficking interactions and organization of dynamic sub-
cellular sites. We applied this analysis to the endoplasmic reticulum
and neuronal membrane. The method is based on spatio-temporal time
window segmentation that explores data at multiple levels and detects
the architecture and boundaries of high density regions in areas that
are hundreds of nanometers. By statistical analysis of a large number
of datapoints, the present method allows measurements of nano-region
stability. By connecting highly dense regions, we reconstructed the net-
work topology of the ER, as well as molecular flow redistribution, and
the local space explored by trajectories. Segmenting trajectories at ap-
propriate scales extracts confined trajectories, allowing quantification
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of dynamic interactions between lysosomes and the ER. A final step of
the method reveals the motion of trajectories relative to the ensemble,
allowing reconstruction of dynamics in normal ER and the atlastin-null
mutant. Our approach allows users to track previously inaccessible
large scale dynamics at high resolution from massive datasets. The
SPtsAnalysis algorithm is available as an ImageJ plugin that can be
applied by users to large datasets of overlapping trajectories and offer
a standard of SPTs metrics.

1 Introduction

Sub-cellular compartments are focused sites where large numbers of molecules
dynamically interact to support cellular function [1]. The trajectories of ions
and proteins as they move between the cytoplasm, plasma membrane and
organelles are critical to cellular function [2, 3]. These dynamics occur at
the Endoplasmic Reticulum (ER) [4, 5, 6], the mitochondrial network, endo-
somes and lysosomes and microtubules, and are impacted by the local prop-
erties of these different environments [7]. Several experimental paradigms
can measure these constitutive molecular motions at subcellular sites, in-
cluding the reciprocal fluorescence recovery after photobleaching (FRAP)
[8, 9] which locally depletes fluorescence and measures time scales and frac-
tion of recovery. Analysis of these data can reveal trafficking at a population
level. In contrast, photoactivation [10] consists of activating molecules in a
local region of the cell and reveals their spread over a transient time-frame.
Combined with diffusion modeling and stochastic simulations, various bio-
physical properties can be measured, including diffusion coefficients and the
fraction and time scale of recovery [11]. These methods provide information
on the dynamic function of organelles, but are insufficient to identify and
reconstruct high density regions. These approaches also cannot examine
phase separation stability or the local spaces is explored by molecules at
a nanoscale resolution. Statistical analysis [12, 13] of a large ensemble of
super-resolution single-particle trajectories SPTs (Fig. 1A-B), has the po-
tential to reveal local molecular interactions. Molecules are not uniformly
distributed inside a cell but instead form heterogeneous aggregates, possi-
bly in phase-separated nanodomains, characterized by high density regions
(HDRs). Such regions are characterized by reduced velocity movement of
molecules and confinement. These local areas can be enriched with cal-
cium channels at neuronal synapses, store-operated calcium entry receptors
such as STIM1 on spine apparatus, and can also be found at ER nodes
[14, 15, 16, 17]. Interestingly, these ubiquitous structures are transient, yet
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persist with a time scale that is longer than that associated with molecular
trafficking. In short, many interactions that are critical to the cell are reg-
ulated and controlled by sub-cellular mechanisms that currently cannot be
easily captured by quantitative analysis.

To determine the underlying physical properties of molecular trafficking,
various computational modeling methods have been developed to analyze
SPTs. These models include those based on classical free [18] and confined
[19, 20, 9, 21] diffusion, active deterministic motion or a mixture of deter-
ministic and stochastic models [22]. Based on this theoretical framework,
analysis of SPTs has revealed the dynamics of local chromatin organization
in the nucleus [23, 24, 25], synaptic receptor trafficking at neuronal synapses
[26] and SVG virus assembly [12]. A significant recent advance is the analysis
of massive numbers of overlapping SPTs. This statistical analysis can reveal
the properties of molecular trajectories. However analyzing these data can
potentially also allow quantification of membrane dynamics [27] and may
give insight into organelle organization.

Here we have developed a method based on hybrid algorithms, and au-
tomated analysis pipeline for SPTs (Fig. 1C), based on the Langevin [28]
equation of motion to provide statistical analysis of these data. This method
estimates biophysical characteristics and is capable of reconstructing nan-
odomain sizes and boundaries using the classical physical model of a poten-
tial well [29, 28], well known since Kramer’s work in 1940. This method
allowed us to characterize calcium channel organisation in the membranes
of hippocampal neurons. We also present an algorithm that reconstructs a
network from SPTs based on the clustering of low-velocity trajectory frag-
ments, and use it to reconstruct ER network topology as well as estimate
the time scale of lysosome trafficking and ER network interactions. Finally,
these methods allowed us to extract the motion of trajectories relative to
the reconstructed network, thereby revealing the redistribution of trajecto-
ries inside the ER of normal and atlastin-null mutant cells [30]. The diversity
of datasets used here demonstrate the broad applicability of these methods
to cell biological processes. The methods are available to users as elementary
ImageJ plugins.
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2 Results

2.1 An algorithm that reconstructs nanodomains in high
density regions

In order to extract sub-cellular regions where a high density of molecular
interactions are occurring, we develop a novel computational approach and
automated pipeline Fig. 1C, based on stochastic equations, multiscale anal-
ysis, optimal estimators and maximum likelihood statistics. In contrast with
methods to extract density of points [31, 32] or to compute the Maximum
Likelihood Estimator (MLE) [33, 34], the present approach combines density
of points with local dynamics associated with the elementary displacement
∆X = X(t+ ∆t)−X(t), where X(t) is the position of the particle at time
t [13, 14] to extract the field of forces. We could thereby assess the nature,
organization and stability of a large amount of HDRs, by collecting statistics
that can reveal hidden cellular organization. HDRs could previously only be
characterized by manual curation based on extracting parameters of poten-
tial well, a concept in classical physics [35, 28] that describes the stability
of dynamic systems, such as the motion of a bead attached to a spring. In
contrast, using combined optimization methods, the present method allows
users to automatically extract local diffusion coefficients, energetics, local
field potential, and most importantly, local boundaries.

The method relies on an interesting observation that nanodomains of
high density tend to have an elliptic shape. Thus the first step to detect
them is to recover their center and boundaries (see method and eq. 12).
Non-automated classification algorithms have used the density of points [33]
or displacements (∆X) separately. But these procedures often lead to pa-
rameter estimations that are not completely satisfactory due to a shallow
minimum of the associated error function (see Method). This shallow min-
imum leads to large variability and possible mistakes in the estimation of
most of the nanodomain parameters such as the boundary and the energy
of nanodomains.
To overcome these difficulties, we developed a hybrid algorithm (Fig. 1C),
described in the Methods section, which combines two independent proce-
dures starting with a principal component analysis (PCA) to recover the
elliptic boundary and followed by a MLE to compute the effective diffusion
coefficient and drift properties.
To test this hybrid algorithm, we first constructed a ground truth dataset.
This dataset consists of trajectories (Fig. S1 Aa-b) generated by the stochas-
tic equation 2, where the force defining the nanodomain is defined by equa-
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tion 12 and characterized by converging arrows (Fig. S1 Ac). We use a time
discretization ∆t = 20 and 50 ms and generated 103 trajectories of size 20
points. The new algorithm comprises three steps :

1. Automatic determination of bins with the highest-density of points
(Fig. S1 Ba).

2. For each such bin, we iterate over square regions of increasing width
wk around the bin center. For each iteration k, we apply a PCA to
estimate the semi-axis ak, bk, the center ck and a score L (eq. 24)
based on the points falling in the square of size wk (Fig. S1 Bb-c).
We iterate until we reach a threshold size defined by the user, as the
maximum size of a well (Fig. S1Bc).

3. In the termination step, we select the optimal value of the iteration
providing the optimal parameter (see Method paragraph 6.3).

The reconstruction is illustrated in Fig. S1C for three wells (see also Table
S1 and S2 where we used two time steps ∆t = 20 and 50 ms to test the
reconstruction of circular and elliptic boundaries). Finally, we showed that
this hybrid algorithm performs much better than two previous algorithms
in estimating all parameters, especially those at low energy at 4kT (Table
S1). Other algorithms are based on the local density of points [33], or on
computing the drift term [14] only.
At this stage, we have thus validated the hybrid algorithm by using a ground-
truth data sets to identify and automatically reconstruct nanodomains. Our
novel hybrid algorithm out-performed existing models for all parameter es-
timations and in terms of defining the exact shape of the nanodomain.

2.2 Analysis of SPTs for the endogeneous voltage-gated cal-
cium channels reveals their organization and weaker sta-
bility in nanodomains

We applied the hybrid algorithm to study the dynamics of calcium voltage
channels (CaV2.1) tracking on the surface of neuronal cells for two over-
expressed splice variants CaV2.1∆47 and CaV2.1+47, previously shown to
shape synaptic short-term plasticity [14]. We also examined endogenously
tagged CaV2.1 channels. Using a large number of redundant SPTs (see
Methods), we were able to automatically detect the nanodomains defined
as HDRs. We plotted the trajectories, density, diffusion maps and the drift
field associated with these HDRs (Fig. 2A-C). The algorithm allowed us
to identify the geometrical characteristics of nanodomains approximated as
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ellipses with semi-axis lengths a = 143 ± 51 nm and b = 104 ± 33 nm for
Cav2.1∆47. These parameters are similar for Cav2.1+47 (Fig. 2D), while it
was smaller for endogenous Cav2.1 with a = 100±47 nm and b = 73±31 nm.
The diffusion coefficient was D = 0.091± 0.052 µm2/s for the ∆47 variant,
D = 0.087 ± 0.045 µm2/s for the +47 variant and smaller for endogenous
CaV2.1 with D = 0.069± 0.051 µm2/s.
Interestingly although the associated energy was ∼ 3.9 kT for the two vari-
ants and 3.3 kT for endogenous CaV 2.1, we found that the associated
residence times of a receptor in a nanodomain was around 174−181 ms and
94 ms respectively (Table S3). We also tested two methods to estimate the
diffusion coefficient, either using a static grid [33] or a sliding disk convolved
with a cosine function (Fig. S1) and used this approach in subsequent anal-
yses. To conclude, these estimations of residence time were larger (almost
double) compared to the ones we reported in [14] and thus our new approach
quantifies channel dynamics in the neuronal membrane more precisely. The
approach also captures differences in variant forms of channels, revealing a
significant reduction in interactions for the endogenous fraction.

2.3 Time-lapse analysis reveals the stability of CaV nan-
odomains over time

To investigate the stability of nanodomains across time, we used a time-
lapse analysis (Fig. S3) with sliding windows of 20 s and no overlap. This
analysis allows determination of the lifetime of a nanodomain, which is given
by the number of successive windows where it is detected (Fig. S4 A). For
example, the trajectories obtained during a 250 s experiment are split into
13 20 s windows (0 − 20 s, 20 − 40 s, . . ., 240 − 260 s). We searched for
the presence of potential wells in each window (Fig S4A-B). To follow a well
across successive time windows, we consider that two wells identified at time
tk and tk+1 are the same if the distance between their centers is less than
250 nm. The ensemble of consecutive times (tq, ...tr) where a well is first
detected at time tq and disappears at time tr+1 is used to define the stability
duration τ = tr − tq. This analysis allows us to follow the size of the small
and large axis of the wells and the associated energy over time (Fig. S4C-
D). Finally, we found that 55% of the wells were present for more than 20 s
(one time window) and that their average duration is ∼ 56 s for both ∆47
and +47 variants (Fig. S4E and Table S4). However, nanodomain stability
is reduced to T = 46 s for endogenous CaV2.1. All of these durations are
longer than the ∼ 30 s that we previously reported [14], indicating that the
present algorithm advances our ability to capture the dynamics of these high
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density enigmatic subcellular domains.

2.4 The hybrid algorithm reveals that ER node are nan-
odomains defined by an attracting field of force

To further explore the range of applicability of the present hybrid algorithm,
we analysed SPTs recorded from the ER of HEK293T, COS-7 WT as well
as atlastin knockout COS-7 dATL cells. In such mutant, the morphology of
peripheral ER tubules is altered but it is unclear how the ER flow is affected.
Since nodes have been previously characterized as HDRs [17], we asked
here whether these nanodomains could further be defined as potential wells.
Applying the hybrid algorithm reveals several potential wells (Fig. 3A-B red
ellipses) precisely located at nodes forming high density regions. We further
estimated the diffusion and (Fig. 3C) drift maps, observing converging
arrows patterns in these regions (Fig. 3D and Fig. S4-A), a classical feature
of potential wells [22]. Interestingly, these HDRs were characterized by
ellipses with a large semi-axis a = 219 ± 71 nm and b = 155 ± 56 nm for
HEK293T (see also Fig. 3E and table S6 for COS-7 WT and COS-7 dATL).
The hybrid algorithm further reveals an average energy of E = 3.3 ± 0.9
kT and a mean residence time of τ = 101 ± 64 ms. Interestingly, although
the elliptic parameters are not much different in the case of COS-7 WT and
COS-7 dATL, a difference can be observed in the dynamical parameters
characterizing the transport of the material across the ER network. To
conclude, the present hybrid algorithm reveals that ER nodes concentrate
trafficking of luminal molecules by a spring-force type mechanism, the origin
of which should be further explored.

3 Organelle network reconstruction from a large
number of SPTs

We next wanted to check whether our approach can be used to define the
structure of the ER and be generalized to other organelles. For these goals,
we developed a novel method and algorithm to reconstruct the network from
SPTs.

3.1 Graph Reconstruction Algorithm (GRA) to unravel the
ER network

Although SPTs can be used to explore the ER network architecture [17], we
still lacked a method for automated reconstruction of the ER. We therefore
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developed the algorithm to see if the dynamic architecture of this complex
organelle can be recovered from SPTs.

The starting point is to colour trajectory displacements depending on
their instantaneous velocity. This reveals a dynamical segregation of the
ER into nodes and tubules (Fig. 4A-C). Based on this segregation, we
developed the Graph Reconstruction Algorithm (GRA) to recover the ER
structure from SPTs. The GRA consists of three steps: 1-identifying the
HDRs formed by low-velocity (blue regions) trajectory fragments forming
the nodes of the graph (Fig. 4D-G), 2- determining the high-velocity tra-
jectory fragments connecting the previously detected nodes (Fig. 4H-K)
and 3-constructing the associated graph (Fig. 4L), as described in Materi-
als and Methods. The first step of the method relies on the density-based
clustering algorithm (dbscan) [36], which requires that the distribution of
trajectories be quite heterogeneous so that small regions of high density are
well-separated. In an additional step, a direction can be attributed to the
links (i.e. tubules) based on the percentage of trajectories going in the same
direction between two nodes: when the percentage is around 50%, the node
is bidirectional, however if the percentage is much lower, the node is defined
as unidirectional. This procedure allows us reconstruct a two-dimensional
graph for the organelle network that can be used to study further statistical
properties.

3.2 Graph Reconstruction Algorithm of the ER network of
COS-7 dATL cells reveals aberrant organization and traf-
ficking

Next we examined whether disruptions to organelle structure and dynamics
can be captured using our algorithm. Atlastin-1 is a GTPase that mediates
homotypic membrane fusion in the ER. We analyzed SPTs recorded from
an ER luminal probe in atlastin knockout (dATL) COS-7 cells. We present
colour-coded trajectories that follow their instantaneous velocity (Fig. 5A-
B), the density and diffusion maps (Fig. 5C-D), as well as the histogram
of the apparent diffusion coefficients (Fig. 5E), revealing a mean of Dapp =
1.56± 0.83 µm2/s.
We applied the GRA and obtained a graph reconstruction of the ER (Fig.
5F) where the HDRs (red) are connected by blue segments. This approach
allows quantification of the distribution of distances between nodes with
a mean dnodes = 0.83 ± 0.27 µm (Fig. 5G) and the node projected area
Snodes = 0.15 ± 0.12 µm2 (Fig. 5H). Note that the RGA could miss some
non-explored ER regions or regions that are sub-sampled. To conclude,
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the GRA allows automated reconstruction of organelle networks based on
SPT exploration once there is enough heterogeneity in the distribution of
datapoints.

3.3 Graph Reconstruction Algorithm and SPTs segmenta-
tion reveal the duration of ER-lysosome interactions

To demonstrate the broad applicability of the algorithms, we analyzed an
ensemble of trajectories from lysosomes (Fig. 9.6A). These trajectories are
characterized by a distribution of instantaneous velocities in the range [0−
3.5] µm/s (Fig. 9.6B). However low and high velocities are not segregated,
but are instead found in similar regions (Fig. 9.6A left and right). The
distribution f(v) of velocities (Fig. 9.6B), can be fitted by a sum of two
exponentials

f(v) = A exp(− v

v0
) +B exp(− v

v1
), (1)

where a best fit approximation gives v0 = 0.06 µm/s (95% confidence inter-
val [0.057, 0.072]) and v1 = 0.6 µm/s (95% confidence interval [0.383, 1.322])
(coefficient of determination R2 = 0.95), with A = 0.20 and B = 0.013. This
fit suggests that the distribution of lysosomes is largely driven by low veloc-
ity components. The rare appearance of high velocity components suggests
a possible switch between slow and fast motions. Finally, note that 86%
of displacements are associated with a velocity of less than 0.5 µm/s and
12.9% are in the range of [0.5-1.5] µm/s.
To further study how lysosomes move in the cytoplasm, we computed rel-
evant density and diffusion maps (Fig. 9.6C-D) and found that the motion
had a diffusion component (Fig. 9.6E), with an average apparent diffusion
coefficient of Dapp = 0.062±0.040 µm2/s. Interestingly, regions of low diffu-
sion coefficients colocalized with regions of high density in the density map
[37, 27] (Fig. 9.6A-C).
We then isolated regions of high density using a method based on the density
of points (Methods subsection 6.8.2), revealing an ensemble of n = 95 HDR
sub-domains, approximated by ellipses (magenta in Fig. 9.6F) of semi-axis
lengths a = 516± 196 nm (large) and b = 278± 143 nm (small) (Fig. 9.6G).
By considering the displacements connecting different regions, we recon-
structed (Method subsection 6.8.2) a network explored by the lysosomes,
Fig 9.6H, where high density regions (red circles) are connected by direct
lines (yellow). Interestingly, the histogram of average velocities between
these regions is not symmetric (Fig. 9.6I) with a mean velocity v = 1.03±0.32

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.09.18.460892doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.18.460892
http://creativecommons.org/licenses/by-nc-nd/4.0/


µm/s, which clearly deviates from diffusion, as computed from the Rayleigh
distribution. This deviation suggests that the transitions between these re-
gions are driven by an active motion. Moreover, the overlay between ER
(white) and the lysosome reconstructed network (Fig. 9.6G) suggests that
the lysosome trajectories follow the topology of the ER network [7]. To
conclude, our analysis reveals that lysosomes travel along a network that
strongly colocalizes with the ER. However, high and low velocities occur in
similar regions. Since lysosomes move along microtubules, this present sta-
tistical analysis suggests that the ER-microtubule network shapes lysosome
trafficking.

4 Trajectory re-synchronization approach reveals
single local molecular dynamic exploration in-
side an ensemble

In the previous result sections, we reconstructed the networks hidden inside
SPTs data. We shall now introduce a last step in our method which re-
synchronizes trajectories that fall inside the same subcellular are, but were
acquired at random times. This approach allows us to study the dynamics
of trajectories with respect to the ensemble of trajectories that visit the
same spatial region. The approach also enables determination of the local
spatio-temporal properties that trajectories explore at the single unit level.

4.1 Trajectory segmentation reveals ER-lysosomes interac-
tion time scale

To study the possible interactions between lysosomes and the ER (Fig. 9.7A)
reconstructed network in Fig. 9.6, we focused on the confined portion found
along individual trajectories (see method section 6.8.3 and Fig. 9.7A). We
hypothesise that the lysosome motion can switch between a directed and
confined motion (Fig. 9.7B). We first show that the lysosome can indeed
switch between directed and confined motion (Fig. 9.7C).
To recover the size of the confinement areas, we fitted ellipses over these re-
gions and obtained average semi-axes lengths (Fig. 9.7B) of a = 232±77 nm
(large) and b = 94±47 nm (small). Furthermore, this approach allowed us to
estimate the confinement strength λ by considering that the confined motion
could be generated by a spring force, modeled by an Ornstein-Uhlenbeck pro-
cess [28]. We found that the spring force is λ = 0.123±0.025 s−1 (Fig. 9.7C),
associated with an average local diffusion coefficient of D = 0.032 ± 0.002
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µm2/s (Fig. 9.7D) for a total of n = 818 confinement regions. Finally, the
distribution of times in confined regions could be well-approximated by a
single exponential with a time constant τ = 5.35 s (Fig. 9.7E). The aver-
age residence time of lysosomes in these regions is τ̄ = 30 ± 12 s which
can be interpreted as a time where lysosomes could interact with the ER.
To conclude, the present algorithm reveals that as lysosomes travel along a
network that strongly colocalizes with the ER, the velocity can switch from
large to small displacements and the trajectories can become restricted into
regions of size ∼ 200nm, on a timescale of 5 s. This could correspond to a
change in directionality of movement or a direct interaction with the ER.
Our approach can therefore extract changes in lysosome dynamics that may
reflect functional interactions from complex data.

4.2 Trajectory re-synchronization approach shows how a sin-
gle trajectory explores single nodes

After an ER network is reconstructed from SPTs by the GRA (Fig. 9.8A),
the node-tubule topology emerges. Thus it becomes possible to study how
trajectories locally explore the network by synchronizing them upon exit
from a chosen node (Fig.9.8B). Interestingly, we found that the mean in-
stantaneous velocity at exit is ve = 30.2 ± 10.2 µm/s and keeps decreasing
during the next 200 to 300 ms (Fig. 9.8C). Escape occurs in equal directions
(Fig. 9.8D), as shown in four examples where we followed their dispersal.
To characterize this dispersion, we plotted the dispersion index (section S5),
revealing two phases (Fig. 9.8B), one below 100ms, showing a rapid disper-
sion, followed by a second phase with less expansion. These two phases can
be interpreted as : for the first one, trajectories escape from a well, then in
the second phase, trajectories tend to be re-captured for a certain time in
nodes, thus preventing a fast exploration of the network.

4.3 Trajectory re-synchronization reveals novel local dynam-
ics within dATL ER-tubules

We next analyzed SPTs recorded in the ER of COS-7 dATL cells which lack
the ER membrane-shaping protein atlastin (double knockout of the ATL-2/3
genes [30]) and exhibit a disrupted peripheral ER morphology with elongated
tubules [30]. These SPTs revealed changes in the local space exploration of
trajectories (Fig. S7A). Under normal conditions, trajectories are mostly
located in nodes [17], while here trajectories predominantly explore long
tubules (fig. S7B) with lengths of 5.4 ± 2.44 µm, much longer than the
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∼1 µm found for the tubules of WT cells. Inside these tubules, we found
that trajectories exhibit a ”stuttering” behavior around different positions
that lasts for seconds. To characterize this behavior, we estimated several
parameters such as the duration that a trajectory spent around a given
position τll = 79± 76 ms (Fig. S7D), the transition time between different
positions τt = 27± 15 ms (Fig. S7E), the length of a transition step ∆ll =
0.53 ± 0.45 µm(Fig. S7F) and finally the standard deviation around the
stable positions SD = 0.14± 0.07 µm (Fig. S7G).

To conclude, following the reconstruction of networks using our algo-
rithm we were able to re-position and re-synchronize SPTs. Using analyses
of the ER-lysosome, ER in normal COS-7 cells, and ER in COS-7 dATL
cells, the algorithm revealed trajectories explored by the local geometrical
space and the associated time scales.

5 Discussion and concluding remarks

We present here a general method and the associated algorithms that can au-
tomatically characterize nanodomains where trajectories accumulate. Our
approach generate graph representations organelle networks from SPTs. Au-
tomatically finding nanodomains is useful to extract large statistics (size,
energy of potential wells, mean residence time of particles) and compare
their properties. Further, by quantifying the trajectories inside and outside
HDRs, we could recover membrane organization, as well as determine the
local redistribution of dynamic organelles and proteins. By reconstructing a
graph of ER or lysosome networks from SPTs we can recover molecular flow
at the nanoscale level. We found here that HDRs could be characterized as
attractive nanoregion (potential wells), and this generic representation sug-
gests a universal mechanism of molecular stabilization that probably requires
further investigation. Interestingly, these structures can be transiently re-
modeled in time as revealed by the present time-lapse analysis.

5.1 Universality of high density nanoregions characterized
as potential wells

High density nanoregions are now associated with potential wells for several
receptors and channels such as CaV [14], AMPAR [13], Glycine receptors [38]
or GAGs [39, 40]. Interestingly, nodes of the ER can also be characterized as
potential wells, which may reflect retention of luminal flow or to allow protein
maturation. This representation suggests a generic membrane organization
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to retain particles (receptors, channels, proteins,etc...) in a field of force
with long-range interactions.

Interestingly, the geometry of these regions and their energy profile are
independent of the experimental conditions, further confirming again their
stability. Note that the physical nature of potential well remains unclear
[41]. The present method could be applied to analyse molecular crowding
and the dynamics of nanodomains, thus clarifying processes relevant for
phase separation at synapses [42]. With the development of new labelling
methods, improved fluorophores and the ability to tag endogenous popula-
tions of molecules via CRISPR/Cas, it will soon be possible to investigate
phase separation at a population level and with SPT, to track endogenous
dynamics, offering novel opportunities for the present approach.

5.2 Trafficking in networks

The present method allowed us to reconstruct the ER network. The recon-
struction algorithm reveals that lysosome trajectories follow ER network.
This reconstructed network is further segregated into nodes and links, but
low and high velocities are now much more mixed compared to the recon-
struction obtained from luminal proteins. It is possible that lysosomes follow
the cytoskeleton network which is correlated with the ER [7].

In addition, the distribution of lysosome velocity follows a double expo-
nential (displacement histogram in Fig. 9.6) with fast (∼0.6 µm/s) and slow
(∼0.06 µm/s) components. However, a more detailed analysis revealed that
these velocities can be further subdivided into: 1) confined motion (Fig. 9.7)
characterized by a residence time of ∼ 5 s. 2) deterministic motion between
HDRs (Fig.9.7 F-G), characterized by a distribution of velocity with an av-
erage of 1.03 µm/s. It would be interesting to better characterize the switch
between confined and rectilinear motion. Regions of deterministic velocities
and those where diffusion can be found are often not well separated, suggest-
ing that lysosomes can use various modes of transport, independently of the
subregions where there are located. We found however some regions charac-
terized by a high density of trajectories, with a low velocity, suggesting that
there are possible trapping mechanisms to retain lysosomes in specific sub-
regions of the ER, possibly at exit sites [43]. This mode of motion is quite
different from the internal motion inside the ER lumen or on its membrane:
in the first case, the node-tubule topology is associated with a diffusion-
drift dynamics, while in the second case, the motion on the ER membrane
is likely diffusion-based [17]. To conclude, the present analysis reveals that
the confined time is around 5s, suggesting that during this time, lysosomes
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may be trapped in interaction with the ER.
Future work should reveal interaction times between Lysosomes and the

ER. By applying our algorithm to different cells and organelles, we have
shown that information on the boundaries and dynamics of subcellular inter-
actions can be revealed from large SPT datasets. The automated algorithms
presented here can be applied by users to analyse hundreds of thousands of
trajectories and to study nanodomains with almost no human intervention
and are available as an elementary ImageJ plugin.
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6 Material and Methods

The method section is organized as several subsections describing the phys-
ical model to interpret SPTs, the associated data estimators, the poten-
tial well description, several hybrid algorithms to analyse automatically the
regions of high densities and finally a method to reconstruct a graph for
organelle networks.

6.1 Diffusion model, velocity, vector fields and empirical es-
timators

In the Smoluchowski’s limit of the Langevin equation [28], the position X(t)
of a molecule is described by

Ẋ =
F (X(t), t)

γ
+
√

2DẆ, (2)

where F (X) is a field of force, W is a white noise, γ is the friction coefficient
[44] and D is the diffusion coefficient. At a coarser spatio-temporal scale,
the motion can be coarse-grained as a stochastic process [13, 37]

Ẋ = a(X) +
√

2B(X)Ẇ , (3)

where a(X) is the drift field and B(X) the diffusion matrix. The effective
diffusion tensor is given by D(X) = 1

2B(X)BT (X) (.T denotes the transpo-
sition) [45, 44]. The drift of the stochastic model from eq. 3 can be recovered
from SPTs acquired at any infinitesimal time step ∆t by estimating the con-
ditional moments of the trajectory displacements ∆X = X(t+ ∆t)−X(t)
[44, 46, 47, 37, 22]

a(x) = lim
∆t→0

E[∆X(t) |X(t) = x]

∆t
, (4)

D(x) = lim
∆t→0

E[∆X(t)T∆X(t) |X(t) = x]

2∆t
. (5)

The notation E[· |X(t) = x] represents averaging over all trajectories that
are passing at point x at time t. To estimate the local drift a(X) and
diffusion coefficients D(X) at each point X of the membrane and at a fixed
time resolution ∆t, we use a similar procedure to the one for the estimation
of the density (section 6.4) based on a square grid.
The local estimators to recover the vector field and diffusion tensor [33]
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consist in grouping points of trajectories within a lattice of square bins
S(xk,∆x) centered at xk and of width ∆x. For an ensemble of N two-

dimensional trajectories {Xi(tj) = (x
(1)
i (tj), x

(2)
i (tj)), i = 1..N, j = 1..Mi}

with Mi the number of points in trajectory Xi and successive points are
recorded with an acquisition time tj+1 − tj = ∆t. The discretization of eq.
4 for the drift a(xk) = (a(1)(xk), a

(2)(xk)) in a bin centered at position xk is

a(u)(xk) ≈
1

Nk

N∑
i=1

Mi−1∑
j=0,xi(tj)∈S(xk,∆x)

(
x

(u)
i (tj+1)− x(u)

i (tj)

∆t

)
, (6)

where u = 1..2 and Nk is the number of points from any trajectory falling
in the square S (xk, r). Similarly, the components of the effective diffusion
tensor D(xk) are approximated by the empirical sums

D(u,v)(xk) ≈
1

Nk

N∑
i=1

Mi−1∑
j=0,X i(tj)∈S(xk,∆x)

[x
(u)
i (tj+1)− x(u)

i (tj)][x
(v)
i (tj+1)− x(v)

i (tj)]

2∆t
.

(7)

The centers of the bin and their size ∆x are free parameters that are opti-
mized during the estimation procedure.

6.1.1 Variant estimation of the diffusion coefficient and drift

To increase the accuracy of the diffusion and drift maps, we weighted the
points in the moving windows with a cosine function (would also be possible
to use wavelets). In that case, the new estimator for the drift field is now

a(u)(xk) ≈

∑N
i=1

∑Mi−1
j=0,xj(tj)∈D(xk,r)

(
x

(u)
i (tj+1)− x(u)

i (tj)
)

∆t wi,j(xk, r)


∑N

i=1

∑Ns−1
j=0,xi(tj)∈D(xk,r)

wi,j(xk, r)

(8)

with Nk the number of points of the trajectories falling in the disk D(xk, r)
of radius r and centered at xk. The weight of a displacement starting at
Xi(tj) with respect to the disk D(xk,∆x) is given by

wi,j(xk, r) = cos

(
π

2

||Xi(tj)− xk||
r

)
, (9)
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with ||.|| the Euclidean norm. In that case, we can choose a refined grid
S(xk, (∆x)′) with bin size (∆x)′ = ∆x/lsc, where lsc is a scaling factor. The
role of the cosine weights w is to decrease continuously the influence of the
points falling near the boundary.
Similarly, the generalized formula for the effective diffusion tensor D(xk) are
given by the weighted sums

D(u,v)(xk) ≈

∑N
j=1

∑Mi−1

i=0,Xi(tj)∈D(xk,r)

(
(x

(u)
i (tj+1)−x(u)

i (tj))(x
(v)
i (tj+1)−x(v)

i (tj))
)
wi,j(xk,r)

2∆t∑N
i=1

∑Mi−1

j=0,Xi(tj)∈D(xk,r)
wi,j(xk, r)

,

where the weights w are given by eq. 9.

6.1.2 Local point density estimation

The local density of points ρ can be determined using a procedure similar
to the drift or diffusion estimation by the image plane into a square bin
S(xk,∆x). We then compute for each square of S centered at xk

ρ∆x(xk) =
Nk

(∆x)2
, (10)

where Nk is the number of trajectory points falling into the bin centered
at xk. In practice, it usually helps to smooth this density estimation by
applying a local average using a small d× d kernel with d ∼ 1, 3, 5.

6.2 Estimating potential well parameters

In this subsection, we present the estimators for the two main parameters
of potential wells: the extent of their boundary and their associated energy
[13, 38, 33]. We recall that the diffusion coefficient inside a well is considered
to be constant and is computed from the second moment of the displacement
for all points falling inside the boundary of the well (see eq. 4). The potential
well model allows to estimate the residence time using the classical escape
time formula [44, 13] for a circular well

τe ≈
Dr2

4A2
e
A
D , (11)

with r the radius of the well, A its attraction coefficient and D its diffusion
coefficient. In the case of an elliptic well, we obtain an approximate circular
boundary using the harmonic mean of the semi-axes r =

√
ab, where a and

b are the large and the small-axes lengths respectively. This approximation
holds for a ≈ b.
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6.2.1 Parabolic potential well representation

To extract the energy of well, we consider the basin of attraction of a trun-
cated elliptic parabola with the associated energy function

U(X) =


A

(x(1) − µ(1)

a

)2

+

(
x(2) − µ(2))

b

)2

− 1

 , X ∈ B

0 otherwise
(12)

where X = [x(1), x(2)], µ = [µ(1),µ(2)] is the center of the well, a, b are the
elliptic semi-axes lengths and the elliptic boundary is defined by

B = {Xsuch that A

(x(1) − µ(1)

a

)2

+

(
x(2) − µ(2))

b

)2

− 1

 = 0}. (13)

6.2.2 Recovering the center µ

The center of the nanodomain B is estimated as the center of mass of the
cloud of points falling inside the HDR. We use the empirical averaging for-
mula

µ =
1

N

N∑
i=1

Xi, (14)

where N is the total number of points such that Xi ∈ B.

6.2.3 Covariance matrix Σ

We use the sample estimator of the Covariance matrix defined for a cloud

of N two-dimensional points Xi = (x
(1)
i , x

(2)
i ) as

σ(u,v) =
1

N − 1

N∑
i=1

(
x

(u)
i − µ

(u)
)(

x
(v)
i − µ

(v)
)
. (15)

6.2.4 Confidence ellipse estimation ε = (µ, a, b, ϕ)

We define the boundary of the well as the X% confidence ellipse of the asso-
ciated Gaussian density distribution of center µ and covariance Σ. Using the
singular value decomposition method, we decompose the covariance matrix
Σ as

Σ = UDV (16)
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where U, V are unitary matrices and D is diagonal. The values in D rep-
resent the variance in each dimension along the principal components. The
values of D follow a Chi-Square distribution with n = 2 degrees of freedom.
Therefore the semi-axes lengths a, b can be obtained at the x% from D as

a =

√
ψxD(1,1), b =

√
ψxD(2,2), (17)

with ψx is given by P (v < ψx) = x for a Chi-Square distribution with two
degrees of freedom (for example ψ99 = 9.210, ψ95 = 5.991 and ψ90 = 4.605).
Finally, the orientation ϕ of the ellipse is defined by the angle

ϕ = atan

(
U (2,1)

U (1,1)

)
. (18)

6.2.5 Maximum likelihood estimators (MLE) based on an Ornstein-
Uhlenbeck model

Using the potential well representation from eq. 2 in the stochastic model
presented in eq.12 leads to a truncated Ornstein-Uhlenbeck process, centered
at µ, with an attraction coefficient λ and diffusion coefficient σ =

√
2D. The

probability density function p(X(tj+1)|X(tj)) for j = 1..(M−1) of observing
two successive positions of the same trajectoryX(tj) andX(tj+1), separated
by a time step tj+1 − tj = ∆t is given by

X(tj+1)|X(tj) ∼ N (m(X(tj)), s), (19)

with

m(X(tj)) = X(tj)e
−λ∆t + µ(1− e−λ∆t) (20)

and

s =
σ2(1− e−2λ∆t)

2λ
, (21)

which we rewrite as

m(X(tj)) = µλβ +X(tj)(1− λβ)

s = σ2(β − 1
2λβ

2), (22)

and

β =
1− e−λ∆t

λ
. (23)

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.09.18.460892doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.18.460892
http://creativecommons.org/licenses/by-nc-nd/4.0/


The log-likelihood function of observing the successive pairs (Xi(tj),Xi(tj+1)),
i = 1 . . . N , possibly from various trajectories, is given by

L(µ, λ, σ|X1, .., Xn) =

N∑
i=1

log(p(Xi(tj+1), Xi(tj)) (24)

=
N∑
i=1

[
log

(
1√
2πs

)
− (Xi(tj+1)−m(Xi(tj)))

2

2s

]

= −1

2

N∑
i=1

[
log(2πs) +

(Xi(tj+1)−m(Xi(tj)))
2

s

]
.

The corresponding maximum likelihood estimators for λ and D, λ̃ and D̃
are obtained by solving the system of equations

∂L
∂µ

= 0

∂L
∂λ

= 0 (25)

∂L
∂D

= 0,

from which we obtain the empirical estimators for the drift coefficient

λ̃N = − 1

∆t
log


(

N∑
i=1

Xi(tj+1)Xi(tj)

)
−
(

1
N

N∑
i=1

Xi(tj)

)(
N∑
i=1

Xi(tj+1)

)
(

N∑
i=1

Xi(tj)2

)
− 1

N

(
1
N

N∑
i=1

Xi(tj))

)2

 ,

(26)

and the diffusion coefficient:

D̃N =
λ

N(1− e−2λ∆t)

N∑
i=1

[Xi(tj+1)−m(Xi(tj))]
2. (27)

Note that the parameter λ in eq. 27 can be computed from the estimator
λ̃N .

6.3 Hybrid density-drift algorithm

In this sub-section, we present two variants of an algorithm to detect the
main characteristics of a potential well from some observed trajectories: the
center µ, the semi-axes lengths a ≥ b, the orientation ϕ, the field strength
A, the diffusion coefficient D and the energy E.
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6.3.1 Fixed Spatial Scale Hybrid Density-Drift (FSHDD) Algo-
rithm

Initiation Search for high-density regions: the image is partitioned by a grid
G∆x with square bins of size ∆x. from which we compute the density
map ρ∆x(x) (eq. (10)). We then select the bins from ρ∆x(x) with the
highest d% density as possible regions containing a potential well.

Iterations For each region obtained in the initiation step, we apply an itera-
tive procedure that is going to consider increasingly larger square
neighborhoods around this region. For each iteration k = 1..K, we
keep only the trajectories contained inside the square Γk,∆x of size
[(2k+ 1)× (2k+ 1)](∆x)2 and centered at point µk−1. The point µk is
the center of mass of points falling in the square Γk (eq. 14) and µ0 is
the center of the initial high-density bin. The elliptic semi-axes ak, bk
are computed as the x% confidence ellipse (eq. 17) from the covariance
matrix Ck (eq. (15)) and the angle ϕk is the orientation of the ellipse
(eq. 18). These parameters define the elliptic boundary of the well at
iteration k

εk(∆x) = (µk, ak, bk, ϕk). (28)

The field coefficient Ak and diffusion coefficient Dk are computed from
eq. 26 and eq. 27 respectively, for the trajectories contained inside εk.
Specifically, we obtain Ak from

λ
(1)
k =

2Ak
a2
k

and λ
(2)
k =

2Ak
b2k

. (29)

We repeat this procedure K times, with K = dMs
∆xe for the spatial

parameter ∆x and the maximum region size Ms, defined by the user.

Termination This step consists in selecting the best iteration among K: we evaluate
for each iteration k > 1 the likelihood score Lk = L(µk, λk, σk|X1, ..Xp ∈
εk−εk−1) defined by eq. (24) but computed for sub-trajectories falling
in the ring formed by the ellipses εk−1 and εk. The best iteration k∗

is selected as the first local maximum of the curve Lk.

6.3.2 Multiscale Hybrid algorithm (MSHA)

We generalize the hybrid density-drift (FSHDD) algorithm defined above
for a fixed spatial scale, by now varying the grid size ∆x, in the range
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∆x1 < ∆x2 < .. < ∆xN selected by the user. The purpose of this MHSA is
to select the optimal size ∆xi∗ that minimizes the error

k∗∆x∗i = min
i=1..N

L(µk∗ , λk∗ , σk∗ |X1, ..Xp ∈ εk∗(∆xi)), (30)

where k∗∆x∗i
is the iteration that minimizes L across all the spatial scales

∆xi, i = 1..N .

6.4 Density-Based Algorithm

The Density-Based Algorithm (DBA) uses the density of points estimated
around the local density maximum of a high-density region. The algorithm
uses the idea of level set of the Gaussian density distribution of points inside
a potential well. We define the level set Γα with respect to a local maximum
M∗ as the ensemble of all trajectory points falling in bins with a density
greater than αM∗:

Γα = {Xi such that ρe(x) > αM∗}, (31)

where ρe is the empirical point density, estimated over the bins of a square
grid (eq. 10) and α ∈ [0, 1] is a density threshold. For the points Xi =

(x
(1)
i , x

(2)
i ) located in Γα, the center µ of the distribution is approximated

by the empirical estimators based on eq. 14 but restricted to the points in
Γα:

µ̂(u)
α =

1

Np

Np∑
{k=1,Xk∈Γα}

x
(u)
k , (32)

with Np the number of points in the ensemble Γα and u = 1..2. Similarly,
we extend the estimator for the covariance matrix Σ (eq. 15) to

σ̂(u,v)
α =

1

Np − 1

Np∑
{k=1,Xk∈Γα}

(x
(u)
k − µ̂

(u)
α )(x

(v)
k − µ̂

(v)
α ). (33)

We now define the density-based algorithm:

Initiation Search for high-density regions: the image is partitioned by a grid
G∆x with square bins of size ∆x from which we compute the density
map ρ∆x(x) (eq. (10)). We then select the bins from ρ∆x(x) with the
highest d% density as possible regions containing a potential well.
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Iterations For each selected high-density bin, we initiated the well center µ̃0 at
the center of the bin. We then construct a refined grid centered at µ̃0

and with bin size ∆x/p, where p is chosen by the user (usually around
2 to 4). In this grid, we compute the centers µ0,αk

, for different values
of α: α1 < . . . < αN , selected by the user. The refined center µ0 is
obtained as the center of mass of the centers µ0,αk

for k = 1..N .

We then apply an iterative procedure that considers increasingly larger
concentric annulus of center µ0, width ∆r and radius rk for k = 1..K.
Where the number of iterations K is determined based on a minimal
r1 = rmin and maximal rK = rmax distances defined by the user. For
each iteration k, we compute the confidence ellipse εk = (µ0, ak, bk, ϕk)
(see sub-section 6.2.4) obtained from the covariance matrix Σk (eq. 33)
computed only for the points that fall in the annulus of radius rk. We
then search for the iteration r∗ that maximizes the ratio Cv(rk) =√
ak/bk and use it to define the refined distance to the center

re(X) =

√(
x(1) − µ(1)

0

)2
+ κ

(
x(2) − µ(2)

0

)2
, (34)

where κ = Cv(r
∗), that transforms an ellipse into a circle with the

same center.

Finally, we compute the density of points Ne(rk) falling in the annulus
of radius rk based on the refined distance measure re.

Termination We select the first iteration k∗ such that Ne(r
∗
k) > Ne(rk∗−1): it is the

first iteration where the derivative of the density with respect to the
distance to the center, stops decreasing. This criteria is more stable on
empirical data than searching for the minimum of the density (see figs.
3&4 panel B3 of [33]). The elliptic boundary of the well ε∗ is centered
at µ0, has semi-axis lengths a∗, b∗ given by a∗ = rk∗ and b∗ = κrk∗ and
orientation ϕk∗ . We then use the ML estimator (eq. 27) to estimate
the constant diffusion coefficient D inside ε∗. Finally, to compute A∗

we use the diagonal form of the covariance matrix estimated (eq. 33)
for all the points falling in ε∗:

Σ =
D

A

[
a2 0
0 b2

]
. (35)

and estimate

A∗ =
D

2

(
(a∗)2

σ11
+

(b∗)2

σ22

)
. (36)
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6.5 Drift-based algorithm

The drift based algorithm consists in using an error function in the space of
the vector field to estimate the characteristics of a well.

Initiation Search for high-density regions: the image is partitioned by a grid
G∆x with square bins of size ∆x from which we compute the density
map ρ∆x(x) (eq. (10)). We then select the bins from ρ∆x(x) with the
highest d% density as possible regions containing a potential well.

Iterations For each region selected in the initiation, we apply the following iter-
ative procedure for k = 1..K:

(a) We select only the sub-trajectories falling into a square Sk(µk,∆x)
centered at µk−1 and of size (2k + 1)∆x× (2k + 1)∆x. We take
µ0 to be the center of the high-density bin.

(b) We estimate the elliptic well boundary εk = [µk, ak, bk, ϕk] as the
X% confidence ellipse (see sub-section 6.2.4) from the cloud of
points in Sk(ck,∆). Where X is a parameter selected by the user
(usually 90, 95 or 99).

(c) We then compute a new grid G∆x(µk) centered at µk, that we use

to estimate the local drift map (eq. 6) ak(X) = [a
(1)
k (X), a

(2)
k (X)]

and estimate the attraction coefficient Ak of the well using the
least-square regression formula

Ak =
1

2

M∑
i=1

a
(1)
k (X i)x

(1)
i

a2
+

a
(2)
k (X i)x

(2)
i

b2

M∑
i=1

(x
(1)
i )2

a4
+

(x
(2)
i )2

b4

, (37)

where Xi = [x
(1)
i , x

(2)
i ] (i = 1 . . .M) are the centers of the M

bins from G∆x(µk) that are contained inside the ellipse εk.

(d) Finally, we estimate the quality of the well (parabolic index)
based on the residual least square error:

Sk(ak, Ak) = 1−

(
M∑
i=1

a
(1)
k (X i)x

(1)
i

a2
+

a
(2)
k (X i)x

(2)
i

b2

)2

(
M∑
i=1

(x
(1)
i )2

a4
+

(x
(2)
i )2

b4

)(
M∑
i=1
||ak(Xi)||2

) . (38)
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The index Sk ∈ [0, 1] is defined such that Sk → 0 for a drift field
generated by a parabolic potential well and Sk → 1 for a random
drift vector field as observed for diffusive motion.

The number of iterations is given by N = bwmax/∆xc where wmax is
the maximum size of the region to consider and is given by the user.

Termination We select the iteration k∗ that minimizes the parabolic index S: k∗ =
arg mink=1...K Sk(ak, Ak). We estimate the diffusion coefficient inside
the well using the local estimator (eq. 4) for all the displacements
inside the ellipse εk∗ .

6.6 Sliding window analysis to study the stability of the wells
over time

To determine the stability of the potential wells, we use a non-overlapping
sliding window of 20s [14], to recover the ellipse characteristics, as shown on
different examples in Supplementary Fig. 3A,C. When a well disappears in
a given time window, but reappears latter, we kept the well for the entire
period.

6.7 Reconstructing a graph for a network explored by SPTs

We describe here an algorithm to reconstruct a graph of a network explored
by SPTs. This algorithm is based on the heterogeneous distribution of points
caused by trajectories spending more time inside nodes than in tubules.

6.7.1 Velocity based graph reconstruction algorithm (Vebgral) of
a network explored by SPTs

The Vebgral algorithmic procedure to detect nodes (junctions) and inter-
junction links (tubules) uses the large amount of recorded SPTs. The present
algorithm first generates an ensemble of points from slow trajectory segments
based on a maximum displacement length threshold vL and then uses the
dbscan algorithm [36] to cluster these points based on their local density.
The algorithm requires specification of two ensembles of parameters:

1. An ensemble of distances R = {Ru, u = 1..U} (in µm) defining the
neighborhood radius around points.

2. An ensemble of counts N = {Nv, v = 1..V } defining the numbers of
points required in the neighborhood to form a cluster [36].
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A pair of these two parameters (Ru, Nv) for any u, v define a local density
Nv
Ru

(points/µm2) inside each cluster. The values of R and N depend on
the local number of recorded trajectories and can vary inside the image. For
each dataset, these values can be determined such that the computed clusters
overlap with the structure of the organelle formed by the trajectories.

We now present the steps of the algorithm:

1. We form the ensemble of points belonging to low-velocity trajectory

fragments S = {Xi(tj), | ||∆Xi(tj)||∆t ≥ vL}.

2. We apply the dbscan procedure with parameters (RU , N1) to obtain
a first ensemble of K clusters c1, . . . , cK from the points in S.

3. We then refine these initial clusters by searching for clusters possessing
more than Nmax points. For any cluster ck possessing more than Nmax

points:

(a) We iteratively re-apply the dbscan algorithm with the more strin-
gent parameter pair (Ru, Nv) for u = 2..U and v = (V −1)..1 and
replace the initial cluster with the resulting sub-cluster(s). We
continue iterating over the generated sub-clusters until they all
possess less than Nmax points.

4. We then approximate the boundary of each cluster either by its maxi-
mum volume ellipsoid or its convex hull polygon and assign each point
discarded in step 1 to the cluster in which they fall if possible.

5. Finally, we merge any overlapping pair of clusters by computing the
boundary of the combined ensemble of points (either elliptic or the
convex hull) and we iterate this procedure until no more clusters over-
lap.

This first step allows to find the K nodes of the network. In the second step,
we define tubules by constructing a connectivity matrix C of size K × K
where ci,j (1 ≤ i, j ≤ K) is the number of trajectory displacements starting
in node i and arriving in node j. Specifically, we increment ci,j for each data
point Xk(tl) (1 ≤ k ≤ Nt, 0 ≤ l < Mk − 1) in the following cases:

1. Xk(tl) is located in node i and Xk(tl+1) in node j

2. Xk(tl) is located in node i, Xk(tl+1) does not belong to any node and
Xk(tl+2) is located in node j (in this case 0 ≤ l < Mk − 2).
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6.8 Lysosome analysis

6.8.1 Trajectories analysis for lysosome SPTs

To study the dynamics of lysosomes, we plotted the distribution of instanta-
neous velocities, computed from each trajectory displacement X(t+ ∆t)−
X(t) by

v =
X(t+ ∆t)−X(t)

∆t
, (39)

where ∆t = 1.5s. We approximate the distribution of instantaneous veloci-

ties using a two exponential model obtained by fitting f(v) = Ae
− v
v0 +Be

− v
v1

to the distribution using MATLAB’s fit toolbox. The density and diffusion
maps were computed using the estimators 4 described above.

6.8.2 Local high-density region analysis: ellipse approximation
of the boundary

High-density regions are extracted from trajectories as follows: we construct
a density map (eq. 10) based on a square grid with bin size ∆x = 480 nm.
From this density map, we select only the 5% highest density bins and in
case multiple such bins appear within a distance of two squares of each
other, only the one with the highest value was kept. For each selected bin of
center c, we computed a refined density map of size 5× 5 squares, centered
at c and with bin size ∆x′ = 200 nm. From this local map, we collected
trajectory points falling into the bins that have a density > 80% of the
maximal bin value [33] and use them to estimate the elliptic boundary of
the region from the 95% confidence ellipse (see sub-section 6.2.4). Finally,
when a pair of ellipses overlap, we replaced them by the ellipse computed
over their combined ensemble of points and iterated this procedure until no
more overlaps could be found.

6.8.3 Transient confinement detection

To detect transient confinement periods along individual trajectories, we
used the following procedure: for each point Xtj of a trajectory, we con-
sidered the ensemble of its successors etj ,n = {X(tj), . . . , X(tj+n)}, where
initially n = Nnh is set by the user. We then computed the center of mass
µtj ,n and checked that all the points X(tk) ∈ etj ,n have a distance to the
center of mass ||X(tj) − µtk,n|| < Rnh, for a chosen distance threshold Rnh
(||.|| is the Euclidean norm). We then iterate the procedure, considering in-
creasingly larger ensembles of successors n = Nnh, Nnh + 1, ...Nnh +K until
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either reaching the end of the recorded trajectory or when the next point
X(tj+n+1) do not fall into the neighborhood of the center of mass µtj ,n.
The confinement duration is then computed by considering the difference
tj+n − tj in time between the two endpoints of the ensemble. Finally, the
spring constant λ and diffusion coefficient D of the confinement is obtained
by applying the Ornstein-Ulenbeck maximum likelihood estimators [48, 33],
where the OU-process is given by

dX = −λ(X − µ)dt+
√

2DdW. (40)

6.9 ImageJ plugin

The present method and algorithms are implemented into a imageJ plugin
called ”TrajectoryAnalysis”. The plugin allows to reconstruct the various
maps (trajectories, density, drift, diffusion), detect potential wells and re-
construct the graph associated to trajectories. It allows to extract various
statistics such as the distribution of diffusion coefficients or the energy and
the size of potential wells.

7 Author contributions

PP and DH conceived and designed the research plan, computational meth-
ods and algorithms and wrote the manuscript. PP wrote the algorithms.
M.H., E.A. J.H. and MH designed the experiments and collected super-
resolution microscopy data.

8 Acknowledgement

D. H. ’s research has received funding from the European Research Coun-
cil (ERC) under the European Unions Horizon 2020 research and innova-
tion programme (grant agreement No 882673), Plan Cancer-INSERM Projet
19CS145-00 and ANR NEUC-0001.

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.09.18.460892doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.18.460892
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 Figures

9.1 Fig.1 High-throughput SPT analysis pipeline
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Figure 1:

legend fig. 1

High-throughput automated trajectory analysis workflow. A. Acquisition
device and raw data of a single-particle experiment. B. Raw data from A are
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transformed into trajectories using classical softwares such as Trackmate available
as an ImageJ plugin. C. Schematic description of the high-throughput analysis
implemented here: trajectories are first discretized spatially using a square grid
and a time-windows generate a segmentation in time. Thet are interpreted using
the Langevin equation, allowing us to generate high-resolution maps of the local
trajectory motion. High-density / low-velocity regions of the maps are generated
by automated machine-learning type algorithms to detect potential wells and to
reconstruct network. Outputs consist in location maps of wells, their statistics and
reconstructed network allowing to analyse how trajectories locally exploration the
nanophysiology scale.
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9.2 Fig.2 Large statistics of CaV nanodomains located on
dendrite automatically detected
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Figure 2:

legend fig. 2

Super-resolution SPTs automated analysis reveals CaV nanodomain or-
ganization. A. Examples of trajectories displaying high-density regions (red el-
lipses). B. Associated density map, presenting the local point density (in log(points/µm2))
and computed over a grid with bin sizes of 50 nm and locally averaged over a 3x3
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Gaussian kernel. C. Associated diffusion map, displaying the local diffusion co-
efficient (µm2/s) computed over a grid with bin sizes of 80 nm with at least 15
displacements and estimated with the cosine-round method (Material and Method)
with a radius of 100 nm.D-H. Population characteristics for three experimental
conditions: tracking CaV2.1-47, CaV2.1+47 or CaV2.1. Nanodomain represented
as potential wells are recovered using the hybrid algorithm. D: Distribution of
semi-axes lengths of elliptic well boundaries, E: Diffusion coefficients inside wells,
F: Field coefficients A, G: Energies of the well (kT), H: Residence time distribution
of a trajectory inside a well (H). Mean and variance values are shown in Table S3.
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9.3 Fig.3 HDR present in organelle such as the ER network

Figure 3:

legend fig. 3

ER nodes revealed by super-resolution SPTs are characterized as poten-
tial wells. A. Super-resolution ER network. Single trajectories recorded in the
lumen and coded by a given color (second) and overlay (Third) B. Single trajec-
tories coded by a given color and recorded inside the ER for three different cells
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(HEK293t, COS7, COS7-dATL). HDRs are associated with ER node (red ellipse).
B-C-D. Density, Diffusion and Drift maps for the regions shown in A.. Arrows in
the drift maps are colored according to the direction: West (purple), East (green),
South (blue) and North (red). E-J. Statistics of the wells reconstructed from the
hybrid algorithm (Material and Method): semi-axis (longest a and shortest b), dif-
fusion coefficients D, Field coefficient A, Energy of the well E and the estimated
residence time.
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9.4 Fig.4 Algorithm to automatically reconstruct a network
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legend fig. 4

Automatically network segmentation revealed by super-resolution SPTs.
A-C. SPTs (A), density map (B) and color coded distribution according to ampli-
tude of instantaneous velocity (C). Step 1: detecting regions of low velocities. D.
dbscan procedure to cluster (E) and merge them into ellipses (F) and embedding
into the network (G). Step 2: characterization of high velocity regions from the his-
togram (H), segmented between ellipses (step 1) showing one or two fast jumps (J)
and finally reconstructed in the ensemble of trajectories (K). Step 3: abstract graph
reconstruction of an ER showing nodes and tubules, that could be bi- or unidirec-
tional. Step 4: Synchronizing trajectories reveal a switching dynamics occurring
inside tubules.
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9.5 Fig.5 ER network in dATL cells

Figure 5:

legend fig. 5

ER network reconstructed in COS-7 dATL cells. A Individual trajectories color-
coded according to their instantaneous velocity shown in B. C Density and D
drift maps. E Distribution of diffusion coefficients obtained from the individual
bins of the diffusion map presented in D. F Reconstructed network, showing the
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nodes in red and links in blue overlaid on top of the individual trajectories (black).
G Distribution of distances (i.e. tubule lengths), between connected nodes. H
Distribution of the areas covered by nodes.
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9.6 Fig.6 Reconstructing ER network from lysosome trajec-
tories
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Lysosome trajectories analysis. A. Lysosome trajectories color-coded according to
individual displacement amplitudes (panel B). B. Instantaneous velocities, color-
coded with respect to the value and fitted by a double exponential distribution. C.
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Density map of points. D. Diffusion map presenting the local diffusion coefficients.
E. Histogram of the diffusion coefficients obtained in the square bins form panel D.
F. Magnification of the density map of two regions of interest, showing high-density
regions, approximated by ellipses. G. Length of semi-axes of high-density regions
approximated as ellipses. H. Reconstruction of a lysosome graph, where nodes
correspond to high-density regions. A link (in yellow) is added when at least one
trajectory starts in one node and enter to the other one (in one or two frames).I.
Average instantaneous velocities between pairs of connected nodes found in panel
F. J. Percentage of displacements with a specific instantaneous velocity. Inset,
percentage of displacements for the velocity regimes defined in panels A-B.
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9.7 Fig.7 ER network-Lysosome interaction revealed by con-
fined trajectories
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Lysosome confinement time A. Schematic representation of a lysosome switching
between a directed motion along microtubule and confined motion at ER nodes. B.
Switching dynamics representation: the confined state is characterized by a spring
constant λ a diffusion coefficient D and a confined time constant τ . C. Regions
of confinement for individual lysosome trajectories: three examples (insets). D1.
Semi-axes (small and large) of the ellipse fitted to the confinement regions. D2.
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Spring constants of an Ornstein-Ulenbeck process–confined diffusion–. D3. Diffu-
sion coefficients estimated inside a confinement region. D4. Residence times inside
a confinement region. D5. Fraction of time each trajectory spends confined (rela-
tive to the trajectory length). D6. Number of confinement events along individual
trajectories.
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9.8 Fig.8 Local space exploration after trajectory re-synchronization
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Local network exploration revealed by spatial re-synchronization of super-
resolution SPTs. A. ER reconstructed network connectivity using the GRA with
nodes (black polygons) connected by segments (blue). Four nodes (I, II, III, IV)
are selected (red arrows) inside a ER segmented network. B. Average distance
between exit points vs time after escape. We highlight 4 examples (red), average
(blue) and individual examples (black), fast (< 50ms) and a slow phase. C. Local
exploration of neighboring nodes from trajectories (various colors) exiting from the
chosen node.D. Distribution of velocities for trajectories exiting a node for the four
examples: the mean velocity decreases from a high amplitude corresponding to the
instant of exit.
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