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Abstract 
 
A key aim in epidemiological neuroscience is identification of markers to assess brain health 
and monitor therapeutic interventions. Quantitative susceptibility mapping (QSM) is an 
emerging MRI technique that measures tissue magnetic susceptibility and has been shown to 
detect pathological changes in tissue iron, myelin and calcification. We developed a QSM 
processing pipeline to estimate magnetic susceptibility of multiple brain structures in 35,885 
subjects from the UK Biobank prospective epidemiological study. We identified phenotypic 
associations of magnetic susceptibility that include body iron, disease, diet, and alcohol 
consumption. Genome-wide associations related magnetic susceptibility to genetic variants 
with biological functions involving iron, calcium, myelin, and extracellular matrix. These 
patterns of associations include relationships that are unique to QSM, in particular being 
complementary to T2* measures. These new imaging phenotypes are being integrated into the 
core UK Biobank measures provided to researchers world-wide, creating potential to discover 
novel, non-invasive markers of brain health. 
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Introduction 
 
Magnetic resonance imaging (MRI) of the brain visualises anatomical structures on the scale 
of millimetres, but is sensitive to microscopic tissue features. This sensitivity confers the 
potential to detect the earliest stages of disease for therapeutic development and disease 
monitoring. A common challenge to this aim is a lack of risk factors that can be used to design 
cohorts targeting asymptomatic early disease; a powerful alternative is to prospectively image 
healthy individuals at large scale and track subsequent disease. The UK Biobank study is 
collecting brain imaging in 100,000 participants who are largely healthy when scanned1. 
Participants have been deeply phenotyped and genotyped, and consent to long-term access to 
their health records. UK Biobank has identified relationships between brain imaging markers 
and phenotypes including obesity2, vascular disease3 and ageing4,5. It has also enabled major 
new insights into the genetic correlates of imaging phenotypes6,7, identifying genes with known 
links to psychiatric illness8,9, vascular disease10,11 and neurodegeneration12. 
 
UK Biobank is not yet fully exploiting the available brain imaging data, particularly the 
susceptibility-weighted MRI (swMRI) scan. swMRI signals are influenced by iron, myelin and 
calcium content due to the shifted magnetic susceptibility (χ) of these constituents relative to 
tissue water13,14. The signal magnitude from swMRI has been analysed to provide estimates of 
signal decay time (T2*)1,15, but the signal phase has not previously been analysed. Recently-
developed algorithms for quantitative susceptibility mapping (QSM) transform swMRI phase 
data into quantitative estimates of χ14,16. While derived from the same scan as T2*, QSM 
conveys distinct information. QSM estimates the mean χ within a voxel, reflecting bulk content 
of susceptibility-shifted sources like iron, whereas T2* reflecting the variance of χ-induced 
magnetic field fluctuations, reflecting compartmentalisation of these same sources. A 
consequence of this is that paramagnetic substances (e.g., iron) and diamagnetic substances 
(e.g., myelin) have the opposite effect on χ in QSM, but the same effect on T2*. QSM has been 
demonstrated to detect disease-relevant changes, such as iron accumulation in 
neurodegenerative disorders17,18, and to provide an index of microstructural changes to tissue 
in normal ageing19. The UK Biobank brain thus creates unique opportunities to investigate 
QSM in previously unexplored territory, including as an early disease marker.  
 
We developed a QSM pipeline for UK Biobank that was run on the current release of 35,885 
participants, with repeat imaging in 1,447 participants. We conducted a comprehensive 
evaluation of established QSM algorithms and produced imaging-derived phenotypes (IDPs) 
of χ in a range of brain structures. We identified associations between these IDPs and non-
imaging phenotypes, including diet, blood assays and health outcomes. We conducted the first 
genome-wide association studies (GWAS) using QSM-derived phenotypes, identifying 
relationships with genes with known relevance to iron, myelin and calcium, as well as less 
readily interpretable associations. Importantly, we found that QSM and T2* had distinct 
patterns of associations despite being derived from a single swMRI scan. QSM had higher 
heritability and two-timepoint agreement than T2* IDPs. Our QSM processing is now being 
incorporated into the core UK Biobank brain imaging processing pipeline15 to provide spatial 
χ maps and IDPs to researchers worldwide. These results demonstrate the richness of 
information in QSM data and the added value of QSM to the UK Biobank resource. 
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Results 
 
Data analyses 
 
We conducted an extensive evaluation of existing algorithms for each QSM processing step to 
establish an automated QSM pipeline. The final pipeline is illustrated in Fig. 1a. Details of 
evaluations are given in Supplementary §1.1. Briefly, individual channel phase images for each 
echo are combined using MCPC-3D-S20, unwrapped using a Laplacian-based algorithm21, and 
the two echoes are combined with weighted averaging.22. Brain-edge voxels with extremely 
large phase variance (primarily near sinuses) are detected and excluded. Background fields are 
removed using the V-SHARP algorithm23. Finally, χ maps are calculated using iLSQR24 and 
referenced to cerebrospinal fluid in the lateral ventricles.  
 
The pipeline was run on the 35,273 subjects with usable swMRI data, and each subject’s χ map 
was transformed to MNI standard space. A QSM population-average template (Fig. 1b) was 
produced by averaging all χ maps, and an “aging” template (Supplementary Fig. S23b,d) was 
calculated as the difference between the average χ maps for youngest (<52yo) and oldest 
(>75yo) subjects.  
 
Median T2* IDPs in 14 major subcortical grey matter regions (accumbens, amygdala, caudate, 
hippocampus, pallidum, putamen and thalamus, both left and right) are already available in the 
current UK Biobank data release. We produced equivalent QSM-based IDPs, calculated as 
median χ values in these same 14 subcortical masks. We additionally extracted the median χ 
or T2* in the substantia nigra (left and right), bringing the total number of subcortical regions 
for both χ and T2* to 16. The UK Biobank also provides masks of white matter hyperintensities 
(WMH) derived from the T2-weighted structurals, which we used to derive the difference in χ 
or T2* between white matter hyperintensity (WMH) lesions and normal-appearing white 
matter15.  
 
We observed strong correlations between WMH IDPs (both QSM and T2*) and WMH volume 
(Fig. 1c). Due to the relatively thick slices in the swMRI data, this correlation could reflect 
partial volume confounds. QSM and T2* WMH IDPs were thus additionally processed by 
regressing out the WMH volume, resulting in a total of 18 IDPs (16 subcortical and 2 WMH 
IDPs) for QSM or T2*. 
 
We incorporated a new confound regressor based on a physical model25 that accounts for biases 
in T2* estimates introduced by macroscopic field gradients (Supplementary §2). As expected, 
this confound regressor correlated significantly with T2* IDPs (Fig. 1d) but not QSM 
(Supplementary Fig. S16), and as such was incorporated into phenotypic and genetic 
associations using T2*, but not QSM IDPs. 
 
A reproducibility analysis using the two-timepoint data from 1,447 subjects demonstrated that 
subcortical QSM IDPs generally showed higher cross-scan correlation r compared with 
corresponding T2* IDPs (Supplementary Fig. S10b), particularly in the putamen, caudate, 
pallidum and substantia nigra (! > 0.8 for QSM and  0.6 < ! < 0.8 for T2*). 
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Figure 1 (a) QSM processing pipeline for UK Biobank swMRI data. Blue arrows indicate the main processing 
steps. Step 1: Channel combination using MCPC-3D-S. Step 2: Phase unwrapping using a Laplacian-based 
algorithm. Step 3: Background field removal using V-SHARP. Step 4: Dipole inversion using iLSQR. Black 
arrows indicate the brain mask evolution, and orange arrows indicate the brain mask applied at each step. 
Briefly, the brain mask provided by UK Biobank (Mask1, pink) was first used for the channel combination step. 
To exclude unreliable voxels in the vicinity of sinus cavities, the mask was subsequently refined using a ‘phase 
reliability’ map (PR, black box) (Mask2, yellow). After background field removal, the output mask from V-
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SHARP was further refined using the phase reliability map, with the resulting mask (Mask3, green) used for 
dipole inversion. Full details about the pipeline are provided in Methods. (b) QSM atlas generated by averaging 
χ maps (non-linearly registered to MNI space) from 35,273 subjects. (c) Association between QSM WMH IDP 
and WMH volume IDP (r=-0.446). (d) Example association between T2* left accumbens IDP and median field 
gradient measured in the left accumbens before (r=-0.506) and after (r=0.0612) deconfounding based on a 
physical model (details in Supplementary §2).  
 
Associations between IDPs and non-imaging phenotypes 
 
We carried out univariate (pairwise) association analyses between 17,485 UK Biobank non-
imaging phenotypes and QSM/T2* IDPs. For the remainder of this manuscript, we refer to all 
non-imaging phenotypes as “phenotypes”, to distinguish them from IDPs. These phenotypes 
have been grouped into 17 categories including early life factors (e.g., birth weight, maternal 
smoking), lifestyle (e.g., diet, alcohol consumption), physical/body measures (e.g., BMI, blood 
assays), cognitive test scores (e.g., numeric memory), health outcomes (e.g., clinical diagnosis 
– ICD10) and mental health variables (e.g., major depression).  
 
The full set of 629,460 (17,485 phenotypes × 36 IDPs) correlations was corrected for multiple 
comparisons. We follow the convention for Manhattan plots and display results using -log10P 
(Fig. 2). Bonferroni correction for family-wise error (FWE) control at Pcorrected<0.05 was 
applied, corresponding to a -log10Puncorrected of 7.10. Additionally, a less conservative option 
for multiple comparison correction is false discovery rate (FDR), which for a 5% FDR resulted 
in -log10Puncorrected>3.13. In this manuscript, we primarily focus on associations passing the 
Bonferroni-corrected threshold, according to which we identified statistically-significant 
associations of 251 phenotypes with QSM IDPs, and 224 phenotypes with T2* IDPs. The total 
number of significant associations is much larger than this, as this count pools multiple time-
point measurements of the same phenotype, and multiple IDPs associating with the same 
phenotype. The full list of significant phenotypic associations is provided in Supplementary 
Table S1. 
 
We compared the strength of QSM and T2* associations for each phenotype category (full 
results in Supplementary §3). Associations in some phenotype categories (e.g., alcohol 
consumption) are more specific to QSM IDPs (Fig. 3a, b) whereas other categories (e.g., 
cardiac) are more specific to T2* IDPs (Fig. 3c, d). However, the majority of phenotype 
categories show a mixed pattern of associations, including both common and distinct 
associations (e.g., blood assays) (Fig. 3e). This overall picture agrees with the expectation that 
QSM and T2* measures do not trivially recapitulate the same tissue properties, but together 
provide rich information from a single scan. 
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Figure 2 Visualization of univariate cross-subject association tests between 18 QSM IDPs and the 17,485 
phenotypes in UK Biobank. Each circle represents a single IDP-phenotype association. The dashed horizontal 
line indicates the –log10P Bonferroni threshold of 7.10. All associations above this line are considered 
significant. Dashed vertical lines are used to distinguish between different phenotype categories (a) Manhattan 
plot showing associations between 16 subcortical QSM IDPs and phenotypes in 17 categories. (b) Manhattan 
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plot showing associations between the QSM white matter hyperintensity (WMH) IDPs and all phenotypes 
(separated into 9 major categories). Shown behind (grey) are the associations without regressing out WMH 
volume. 
 

 
Figure 3 Example comparisons of phenotypic associations with QSM and T2* subcortical IDPs 
(ROI/phenotype pair shown if PQSM or PT2* passed the Bonferroni-corrected threshold). Here, we display results 
for (a,b) alcohol consumption, (c,d) cardiac and (e) blood assays categories. (a,c) Bland-Altman plot showing 
comparisons of -log10P values for QSM and T2* associations with (a) alcohol consumption and (c) cardiac 
categories. (b,d,e) Transformed Bland-Altman plot that aims to emphasise whether a given association is 
specific to QSM, T2*, or common to both. Each column represents one unique phenotype from the 
corresponding Bland-Altman plot, ordered from left to right by the number of associated regions. The vertical-
axis is given by the angle of each point in a Bland-Altman plot with respect to the y=0 line. Hence, datapoints at 
the top (or bottom) of the plot represent an association that is highly specific to QSM (or T2*), and datapoints in 
the middle are phenotypes that associate with both QSM and T2* in a given brain region. The background 
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colour of each column represents the average -log10P for significant associations with that phenotype. Unlike the 
Bland-Altman plot, this visualisation emphasises the modality specificity over the strength of correlation. For 
example, it is more apparent in (b) compared to (a) that thalamus-alcohol associations are highly specific to 
QSM. Here, the three categories reveal more QSM-specific (a,c), T2*-specific (b,d) and mixed (e) association 
patterns. 
 
Having identified phenotypes that associate with QSM IDPs, we conducted voxel-wise 
regressions with these same phenotypes into χ maps to investigate the spatial regions driving 
these associations. Figure 4 shows voxel-wise associations of χ with 6 representative 
phenotypes. Voxel-wise association maps with lead associations in each phenotype category, 
are provided in Supplementary §4. In general, voxel-wise association maps are highly 
symmetric, including extended homogeneous regions, more focal associations with sub-
regions, and associations with brain areas not included in the ROIs used to generate QSM IDPs. 
 

 
Figure 4 Voxel-wise association maps of 6 example phenotypes with χ maps aligned in MNI space. Pearson 
correlation r is shown as color overlay (red-yellow for positive r and blue for negative r) on the population-
average χ map. (a) mean corpuscular haemoglobin identifies all subcortical regions captured by our IDPs, as 
well as the red nucleus and cerebellar regions. Particularly, the putamen, caudate, substantia nigra and red 
nucleus exhibit homogeneous correlations across the entire region; (b) multiple sclerosis (self-reported) 
identifies sub-regions of thalamus (including the pulvinar nucleus and lateral geniculate nucleus), as well as 
focal white matter regions such as the optic radiation; (c) Anaemia (ICD10) identifies putamen, caudate, red 
nucleus and cerebellar regions, as well as sub-regions of substantia nigra and thalamus; (d) diabetes diagnosed 
by doctor identifies sub-regions of caudate, putamen, pallidum and substantia nigra, in addition to white matter 
regions including the splenium of the corpus callosum and optic radiations; (e) tea intake identifies sub-regions 
of the caudate, pallidum and substantia nigra; (f) frequency of consuming six or more units of alcohol identifies 
putamen and sub-regions of thalamus, caudate and substantia nigra.  
 
We now describe associations in specific phenotype categories in more detail, focusing on 
associations that recapitulate previous studies or are more specific to QSM IDPs. An overview 
of these categories is given in Table 1. 
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Table 1. Summary of association results in 4 phenotype categories 
 

Phenotype 
category 

Number of 
phenotypes 

Brain regions (IDPs) 
Phenotype/IDP associations used to derive 
voxel-wise maps in Fig. 4 

Blood assays 33 
all 16 subcortical regions, 

WMH IDPs 
mean corpuscular haemoglobin vs χ in right 
putamen (! = 0.16, -log10P=190.37) 

Health 
outcomes 

44 

MS: thalamus, WMH IDPs; 
anaemia: putamen, caudate, 

substantia nigra; 
diabetes: pallidum, substantia 

nigra, caudate, putamen 

multiple sclerosis (self-reported) vs χ in 
right thalamus (! = −0.028, -log10P=6.85); 
Anaemia (ICD10) vs χ in left putamen (! =
−0.048, -log10P=18.65); 
diabetes diagnosed by doctor vs χ in right 
pallidum (! = 0.047, -log10P=17.38) 

Food and 
drink 

22 
substantia nigra, pallidum, 

caudate, putamen, hippocampus 
tea intake vs χ in right substantia nigra (! =
−0.069, -log10P=37.01)  

Alcohol 
consumption 

10 putamen, caudate, thalamus 
frequency of consuming six or more units of 
alcohol vs χ in thalamus (! = −0.043, -
log10P=9.94) 

 
Phenotypic associations with QSM IDPs in four categories  
 
Blood assays 
 
Phenotypic associations with blood assays include haemoglobin, cell counts, cell morphology 
and blood constituents. The strongest of these are haemoglobin-related phenotypes, which 
show strong, positive correlations with QSM IDPs (Fig. 2a and Supplementary Table S1). 
The voxel-wise map of association with mean corpuscular haemoglobin (Fig. 4a) (the 
strongest phenotypic correlation) reveals spatially contiguous positive associations in all 
subcortical regions captured by our IDPs, as well as the red nucleus and cerebellar regions. 
Here, the putamen, caudate, substantia nigra and red nucleus exhibit homogeneous correlations 
across the entire region, while voxels in the pallidum, hippocampus and thalamus localise to 
specific sub-regions. Haemoglobin-related blood measures are used clinically as a marker for 
a subject’s iron level26, and the positive sign of associations with haemoglobin measures is 
consistent with both QSM’s established relationship with iron, and the positive correlation with 
iron concentration from post-mortem studies27. Associations with QSM WMH IDPs are 
distinct to subcortical regions, exhibiting specificity to red blood cells and haematocrit. 
 
Health outcomes 
 
QSM IDPs are associated with multiple sclerosis (MS), anaemia and diabetes. Multiple 
sclerosis is significantly associated with QSM WMH IDPs, which is in line with previous 
studies that reported altered χ in MS lesions28. Previous literature reported decreased χ in the 
thalamus (particularly pulvinar nucleus) for MS patients compared to healthy volunteers29. 
Associations between QSM right thalamus IDP and multiple sclerosis (self-reported) (! =
−0.028, -log10P=6.85) is significant at the FDR-corrected threshold (-log10P=3.13), but is just 
below the Bonferroni-corrected threshold (-log10P=7.1). The voxel-wise association map with 
multiple sclerosis (self-reported) (Fig. 4b) reveals spatially contiguous negative associations 
in sub-regions of thalamus (including the pulvinar nucleus and lateral geniculate nucleus), as 
well as focal white matter regions such as the optic radiation. This suggests that the sub-
threshold association at IDP level may be due to the use of ROIs covering the entire thalamus 
that dilute significance of results that are specific to sub-regions. Interestingly, previous 
literature has reported structural damage of the thalamic lateral geniculate nucleus in MS 
patients30, reflecting potential damage of the visual pathway in MS. Associations with self-
reported and diagnosed anaemia are consistent with a reduction in tissue iron27, finding 
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negative correlations with χ and positive correlations with T2*. The voxel-wise association 
map with anaemia (ICD10) (Fig. 4c) reveals spatially contiguous negative associations in the 
putamen, caudate, red nucleus and cerebellar regions, as well as sub-regions of substantia nigra 
and thalamus. QSM associations with diabetes include formal diagnosis, self-report, and 
relevant medication (insulin and metformin). The voxel-wise association map with diabetes 
diagnosed by doctor (Fig. 4d) reveals spatially contiguous positive associations in the caudate, 
putamen, pallidum and substantia nigra regions, in addition to white matter including the 
splenium of the corpus callosum and optic radiations. Body iron overload in diabetes has been 
frequently reported31, with a recent brain imaging study finding increased χ in the caudate, 
putamen and pallidum in type 2 diabetes32, in agreement with our results. Finally, QSM WMH 
IDPs correlated with hypertension and measures of blood pressure; vascular risk factors 
(including hypertension) have been reported to have an effect on MS pathology33 which may 
result in changes of χ in WMH lesions.  
 
Food and drink 
 
QSM IDPs are associated with food and drink intake include tea, coffee, meat and carbohydrate 
consumptions, as well as dietary supplements (Supplementary Table S1). The strongest 
associations relate to tea consumption, which correlates negatively with χ. Although no direct 
link between tea intake and χ measures have been described previously, polyphenols in both 
green and black tea have been reported as brain-permeable, natural iron chelators that have 
demonstrated neuroprotective effects34,35. The voxel-wise association map with tea intake (Fig. 
4e) reveals spatially contiguous negative associations in sub-regions of the caudate, pallidum 
and substantia nigra. This spatial pattern of correlations is in line with a previous rodent study 
in which black tea extract reduced oxidative stress levels in the substantia nigra and striatum34.  
 
Alcohol consumption 
 
Alcohol consumption correlated more strongly with QSM IDPs than T2* IDPs in all cases (Fig. 
3a, b). Voxel-wise association map with frequency of consuming six or more units of alcohol 
(Fig. 4f) reveals spatially contiguous positive associations in the putamen and sub-regions of 
substantia nigra and caudate, but also negative associations in sub-regions of the thalamus. 
These results recapitulate a previous study finding higher χ in the putamen, caudate and 
substantia nigra in subjects with alcohol use disorder36 which has been linked to abnormal body 
iron accumulation37,38. χ in the thalamus correlated with phenotypes relating to the quantity of 
alcohol consumption, in some cases (e.g., frequency of consuming six or more units of alcohol) 
having no significant correlation with T2*. The thalamus is involved in the frontocerebellar 
circuit and Papez circuit, which are particularly affected by alcohol consumption39,40. Although 
no previous studies have linked χ in the thalamus with alcohol use disorder, neuroimaging 
studies have reported reductions in thalamic volume and connectivity in alcohol use disorder 
patients39,40.   
 
Associations between IDPs and genetic variants 
 
Heritability of QSM and T2* IDPs 
 
Following previous studies6,7, we use linkage score regression41 to estimates narrow sense 
heritability42 (ℎ!) as the fraction of IDP variance that is explained by a linear combination of 
genetic variants. ℎ!  ranges from 0 (independent of genotype) to 1 (entirely determined by 
genotype). Subcortical QSM and T2* IDPs are highly heritable, being more than one standard 
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error >0 (Fig. 5a). In all but one IDP, QSM has higher heritability than T2*. χ in the putamen 
and substantia nigra showed the highest heritability (0.323-0.342), while T2* in the amygdala 
and accumbens showed two of the lowest heritability estimates (0.0357-0.0684). Heritability 
of all brain IDPs in UK Biobank were previously reported in the range of 0.000-0.4057. The 
heritability of χ in right putamen (ℎ!=0.342) is >98% among UK Biobank brain IDPs, and 
roughly half the heritability of human height42. 
 
Genome-wide associations studies of IDPs 
 
We carried out a GWAS for each QSM and T2* IDP following a previously-described 
approach6,7 using the second release of over 90 million imputed genetic variants. Subjects were 
divided into discovery (n=19,720) and replication (n=9,859) cohorts. The standard single-
phenotype GWAS threshold (-log10P=7.5) and also a more stringent threshold after additional 
Bonferroni correction to account for the number of GWASs (18 × 2) carried out (resulting in 
a Bonferroni threshold of -log10P=9.06) were used. We report the genetic variant with the 
strongest “peak” association in each region of linkage disequilibrium (LD, see Methods). 
Figure 5b displays a Manhattan plot for QSM right pallidum IDP. In total, QSM IDPs 
identified 292 peak associations (265 replicated), T2* IDPs identified 225 peak associations 
(199 replicated). Figure 5c provides a summary of peak associations from the set of GWASs. 
The strongest genetic association across all GWASs was found between QSM right pallium 
IDP and variant rs13107325, which is shown in Fig.5d. Figure 5e provides a summary of the 
distribution of -log10P values of all peak associations identified in GWASs. Supplementary §5 
includes Manhattan plots for all GWASs and Supplementary Tables S2-3 provides the full 
list of peak associations. 
 
We used the Peaks software7 (https://github.com/wnfldchen/peaks) to automatically generate 
clusters of peak associations between genetic variants and IDPs. A cluster is defined using the 
discovery cohort as a set of IDP-variant pairs for which all genetic variants are within a 0.25-
cM distance of the top variant within the cluster. We classify a cluster as replicating if at least 
one of its IDP-variant pairs had nominal significance (P<0.05) in the replication cohort. We 
used FUMA43 to map the genetic variants of each cluster to related genes.  
 
We identified 89 distinct clusters, 80 of which replicated. Among the replicated clusters, 54 
had associations with both QSM and T2* IDPs, 22 were unique to QSM IDPs, and 4 were 
unique to T2* IDPs. All clusters common to QSM and T2* IDPs replicated. Note that a cluster 
can include just a single genetic variant, which was the case for 11 replicated clusters.  Table 
2 provides a summary of 19 example clusters (the full list of clusters is given in 
Supplementary Table S4). Most replicating clusters are associated with genes, including 10 
clusters with variants in exons (6 missense). Many clusters are associated with genes involved 
in functions with known relevance to tissue χ, including myelination, iron and calcium. Other 
clusters were associated with genes whose function does not have an expected relationship to 
tissue χ, including transcription factors, extracellular matrix, and intracellular trafficking. 
Below, we describe select examples in detail. 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.06.28.450248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.450248
http://creativecommons.org/licenses/by/4.0/


 
Figure 5 (a) Heritability estimates (h2) for subcortical QSM and T2* IDPs grouped according to regions. Circle 
indicates heritability estimate and error bar indicates standard error. (b) Example Manhattan plot relates to the 
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GWAS for QSM right pallidum IDP. The lower grey horizontal line indicates the -log10P threshold of 7.5 and 
the upper line the Bonferroni threshold of 9.06. (c) Stacked bar chart showing comparisons of number of peak 
associations identified in GWASs (passing the -log10P threshold of 7.5) for QSM vs T2* IDPs. (d) Scatterplot 
showing the relationship between QSM right pallidum IDP vs allele count of rs13107325 (the strongest genetic 
association across all GWASs). (e) Distribution of -log10P values of all peak associations identified in GWASs 
(blue line, left y axis). Right y axis (orange line) is showing percentage of peak associations identified with 
QSM IDPs. 
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Table 2 Information for the 19 example genetic clusters 
 

Related 
function Brain regions Cluster 

# Lead IDP Npair rsID MAF Gene Genetic function 
(cluster) eQTL -log10Pdis 

Iron 

homeostasis 

pallidum, substantia 

nigra, putamen, 

caudate, 

hippocampus, 

thalamus, 

amygdala, 

accumbens  

6 QSM Pallidum (L) 15 rs11884632 0.256 SLC40A1 downstream, 

intron 

WDR75, SLC40A1, 

C2orf88, AC013439.4 
71.271 

10 T2* Putamen (L) 18 rs4428180 0.151 TFP1:TF intron TF 42.458 

12 QSM SN (L) 7 rs9867473 0.571 TFRC UTR3 MUC20, MIR570 14.562 

27 QSM Putamen (R) 21 rs1800562 0.077 HFE exon (missense) RP1-221C16.8, U91328.19 48.973 

66 QSM Thalamus (L) 1 rs1131488 0.282 HMBS exon 

(synonymous) 

VPS11, HMBS, RP11-
110I1.14 

7.8271 

Metal ion 

transport 

caudate, putamen, 

pallidum, substantia 

nigra, accumbens, 

WMH 

15 QSM Pallidum (R) 18 rs13107325 0.070 SLC39A8 exon (missense), 

intron 
. 105.51 

47 QSM Caudate (L) 24 rs4348791 0.395 SLC39A12 upstream, intron SLC39A12 100.55 

Calcium 

homeostasis 

caudate, pallidum, 

substantia nigra, 

putamen 

49 QSM Caudate (R) 10 rs11012783 0.386 CACNB2 intergenic CACNB2, SLC39A12-AS1 75.579 

60 T2* Caudate (R) 3 rs11013321 0.395 CACNB2 intron . 9.0318 

68 T2* Putamen (R) 3 rs73192811 0.074 TPCN1 intron RITA1 10.406 

70 QSM Putamen (R) 1 rs10842717 0.376 ITPR2 intron . 7.7763 

16 QSM Pallidum (L) 12 rs13105682 0.057 BANK1 intron . 46.911 

18 QSM Pallidum (L) 7 rs76062146 0.028 BANK1 intron . 14.353 

20 QSM Pallidum (L) 2 rs71614699 0.012 BANK1 intron . 10.914 

Myelin and 

Glia 

thalamus, 

hippocampus, 

pallidum, putamen 

11 QSM Pallidum (L) 3 rs34457487 0.554 MOBP intron . 15.932 

74 QSM Putamen (L) 3 rs7203922 0.310 PLLP upstream, intron . 10.575 

80 QSM Thalamus (L) 4 rs1126642 0.043 GFAP exon (missense) . 11.181 

Extracellular 

matrix 

pallidum, substantia 

nigra, WMH 

9 QSM Pallidum (L) 5 1 0.017 COL3A1 intron . 9.5122 

25 QSM WMH 2 rs10052710 0.197 VCAN intron . 18.745 

1 2:189666936_ATTTGACACTCCTGATTCATCAC_A 

 

Columns Lead IDP and rsID represent the top IDP/variant pair in each group. Npair indicates the number of phenotype/variant pairs included in each genetic cluster. MAF: 

minor allele frequency. The -log10Pdis values provided are for the main discovery cohort. Genetic function refers to the position of the cluster’s variants with regards to the 

corresponding gene.  
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Iron transport and homeostasis 
 
Multiple clusters are related to genes implicated in iron transport and homeostasis. Cluster 6 
comprises eight genetic variants related to the ferroportin gene (SLC40A1). Voxel-wise 
association map with rs11884632 (SLC40A1, Fig. 6a) includes pallidum, sub-regions of 
substantia nigra and thalamus, red nucleus and cerebellar nuclei. Ferroportin exports iron from 
cells, and mutations in SLC40A1 lead to hemochromatosis44. Three functionally-related 
clusters identified associations with the transferrin gene (TF, cluster 10), the transferrin 
receptor gene (TFRC, cluster 12), and the homeostatic iron regulator gene (HFE, cluster 27, 
including a missense variant). Voxel-wise association map with rs1800562 (HFE, Fig. 6b) 
includes putamen, red nucleus, cerebellar regions, sub-regions of caudate, substantia nigra, and 
thalamus. Voxel-wise association map with rs4428180 (TF) shows similar pattern of 
association to rs1800562 (HFE), and rs9867473 (TFRC) shows similar pattern of association 
to rs11884632 (SLC40A1) (Supplementary Fig. S26). The TF protein delivers iron to 
proliferating cells via TFRC, an interaction that is modulated by the HFE protein to regulate 
iron absorption. Mutations in HFE lead to hereditary hemochromatosis, while mutations in TF 
lead to hereditary atransferrinemia44. The variants we identified have been previously 
associated with transferrin levels45, iron biomarkers46, and Alzheimer’s disease47. Interestingly, 
associations with variants related to SLC40A1 (iron export) and HFE (iron absorption) had 
opposite signs in corresponding regions, in line with their biological functions (Fig. 6a,b). 
Cluster 66 comprises a single association of QSM in left thalamus with a potentially 
deleterious exonic variant (synonymous, CADD: 17.8) in the HMBS gene. The voxel-wise 
association map with this variant (rs1131488, HMBS) identifies sub-regions of thalamus and 
dispersed white matter (Fig. 6c). HMBS encodes an enzyme from the heme biosynthetic 
pathway. HMBS mutations are associated with acute intermittent porphyria48 and 
leukoencephalopathy, which exhibit MRI anomalies in thalamus and cerebral white matter49.  
 
Metal ion transporters 
 
There are also clusters associated with genes from the SLC39 family of solute-carriers, which 
transport divalent metal cations such as Zn2+ and Fe2+. Cluster 15 comprises four genetic 
variants associated with QSM and T2* IDPs in multiple subcortical structures and WMHs. The 
top variant (rs13107325) is a missense variant of SLC39A8 (ZIP8). Voxel-wise association 
map with this variant (Fig. 6d) identifies caudate, substantia nigra and sub-regions of pallidum. 
SLC39A8 encodes a transmembrane transporter protein for zinc and iron. This genetic variant 
has been linked to blood pressure50, diabetes51, Parkinson’s disease52,53, schizophrenia52,53, 
alcohol consumption54, haemoglobin and haematocrit55, and brain morphology6,56,57. Cluster 
47 comprises eleven genetic variants related to SLC39A12 (ZIP12). The voxel-wise association 
map for the top variant (rs4348791, Fig. 6e) identifies caudate and sub-regions of putamen and 
pallidum. SLC39A12 encodes a zinc/iron transmembrane transporter that is highly expressed 
in the brain; low expression of SLC39A12 leads to impaired neural development58.  
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Figure 6 Voxel-wise association maps of top genetic variants of 10 genetic clusters with χ maps aligned in MNI 
space. Pearson correlation r is shown as color overlay (red-yellow for positive r and blue for negative r) on the 
population-average χ map. (a) rs11884632 (SLC40A1) identifies pallidum, sub-regions of substantia nigra and 
thalamus, red nucleus and cerebellar nuclei; (b) rs1800562 (HFE) identifies putamen, red nucleus, cerebellar 
regions, sub-regions of caudate, substantia nigra, and thalamus; (c) rs1131488 (HMBS) identifies sub-regions of 
thalamus and dispersed white matter; (d) rs13107325 (SLC39A8) identifies caudate, substantia nigra and sub-
regions of pallidum; (e) rs4348791 (SLC39A12) identifies caudate and sub-regions of putamen and pallidum; (f) 
rs11012783 (CACNB2) identifies caudate and sub-regions of putamen; (g) rs73192811 (TPCN1) identifies 
putamen and sub-regions of substantia nigra; (h) rs10842717 (ITPR2) identifies putamen; (i) rs13105682 
(BANK1) identifies caudate, substantia nigra and sub-regions of pallidum; (j) rs1126642 (GFAP) identifies sub-
regions of thalamus and widespread white matter regions. 
 
Calcium homeostasis  
 
Seven clusters are related to calcium channels and regulation. Clusters 49 and 60 contain 
variants related to CACNB2. Voxel-wise association map with rs11012783 (CACNB2) (Fig. 
6f) identifies caudate and sub-regions of putamen. CACNB2 encodes a subunit of voltage-gated 
calcium channels that regulate calcium influx from the extracellular space59. Variants in 
CACNB2 have been associated with autism, bipolar disorder, depression and schizophrenia60–

62. Cluster 68 includes two intronic variants in TPCN1 and cluster 70 includes one genetic 
variant in an intron of ITPR2. Voxel-wise maps exhibit a similar spatial pattern in the putamen 
for rs73192811 (TCPN1, Fig. 6g) and rs10842717 (ITPR2, Fig. 6h), but with opposite signs. 
Both TCPN1 and ITP2 encode calcium channels that control the release of calcium from 
intracellular spaces. Clusters 16, clusters 18 and clusters 20 are related to BANK1. Voxel-
wise association map with rs13105682 (BANK1) (Fig. 6i) reveals spatially contiguous 
associations in the caudate, substantia nigra and sub-regions of pallidum. BANK1 encodes a 
protein that regulates calcium mobilization from intracellular stores that is primarily related to 
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the immune system, but is also expressed in the brain. Variants in BANK1 have been related to 
working memory task-related brain activation63.  
 
Glia and myelin  
 
We observed associations with genetic variants in two genes that encode structural constituents 
of myelin sheaths. Cluster 74 includes genetic variants related to PLLP, which encodes the 
myelin protein plasmolipin, and cluster 11 includes genetic variants located in an intron of 
MOBP, which encodes the myelin-associated oligodendrocyte basic protein. Cluster 80 
includes a missense variant of GFAP, which encodes an intermediate filament protein that is 
highly specific for cells of astroglial lineage. Voxel-wise association map with rs1126642 
(GFAP) (Fig. 6j) reveals spatially contiguous associations in sub-regions of thalamus and 
widespread white matter regions. Mutations in GFAP lead to Alexander disease, a genetic 
disorder characterized by fibrinoid degeneration of astrocytes, demyelination and white matter 
anomalies64. GFAP variations have also been associated with white matter microstructure 
phenotypes and Alzheimer’s disease57,65,66. While astrocytes are present in both grey and white 
matter, GFAP expression is higher in white matter astrocytes than in grey matter astrocytes67.  
 
Extracellular matrix 
 
Many genetic associations do not have an obvious, direct link to magnetic susceptibility 
contrast. For example, cluster 25 includes a single genetic variant (rs10052710) located in an 
intron of VCAN that is associated with QSM in WMHs (both with and without regressing out 
WMH volume). VCAN encodes versican, a major component of the extracellular matrix in 
multiple tissues including the brain, which is highly expressed in the brain during 
development68. In addition to its structural role, versican can also interact with inflammation 
and the immune response69, and its expression is altered in multiple sclerosis lesions70,71. This 
and other variants in VCAN have been previously associated with multiple brain phenotypes, 
in particular to white matter microstructure metrics derived from diffusion MRI6,57,72. 
 
Discussion 
 
QSM in population imaging 
 
Unlike the other brain imaging modalities in UK Biobank, which have been (or are being) 
collected or collated previously in thousands of subjects73–76, QSM has previously been limited 
to smaller-scale studies. This UK Biobank QSM resource is approximately 2 orders of 
magnitude greater than the largest existing QSM dataset77. The number of subjects, coupled 
with the breadth of linked data, including genetics, extensive phenotyping and health outcomes, 
is expected to open up new avenues of investigation for QSM. At the time of scanning, most 
UK Biobank subjects are largely healthy, with the cohort age range designed to reflect a broad 
range of health outcomes in the coming decades. Hence, this cohort is particularly appropriate 
for identifying early markers of age-associated pathology. For example, in the imaged cohort, 
thousands of participants are expected to develop Alzheimer’s and Parkinson’s disease by 
203078. A notable future QSM resource is the Rhineland Study, which is collecting swMRI 
phase images in 20,000 individuals at 3T74; while QSM has not yet been produced in this study, 
the complementary age range (≥30 years old) will ultimately enable novel investigations on its 
own and in combination with UK Biobank data. 
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Producing accurate and reproduceable χ maps for a dataset at this scale requires a robust, fully 
automated QSM processing pipeline16. We investigated available algorithms for each 
processing stage to identify an optimal QSM pipeline for the UK Biobank swMRI data 
(Supplementary Material §1.1). This includes a novel algorithm to automatically detect and 
exclude voxels with extremely large phase variance, a major source of imaging artefacts 
(details provided in Supplementary Material §1.1). In our evaluations, we observed 
considerable variability of χ estimates across different combinations of background field 
removal and dipole inversion algorithms. Dissemination of our pipeline will thus be crucial for 
harmonisation of our IDPs with data acquired in novel settings, such as clinical scanners. This 
will, for example, enable stratification of patients using classifiers79 or nomograms80 derived 
from UK Biobank data. To date, two ongoing COVID-19 brain imaging studies have already 
adopted our QSM pipeline (C-MORE/PHOSP and COVID-CNS)81 to process their brain 
swMRI data. 
 
Using the two-timepoint data from 1,447 subjects (Supplementary Fig. S10), we found high 
cross-scan correlations ( ! > 0.8 ) with χ in four subcortical regions (putamen, caudate, 
substantia nigra and pallidum). These correlations are higher than the corresponding T2* IDPs 
(0.6 < ! < 0.8). These four regions show the highest heritability among all QSM and T2* 
IDPs (Fig. 5a), also representing some of the highest heritability values across all brain IDPs 
in UK Biobank7. Notably, these four regions also have the highest χ among all ROIs, and are 
reported to contain the highest iron concentrations in the brain82,83. χ has demonstrated a strong, 
positive linear relationship with iron concentration in post-mortem brain tissue27. These 
observations suggest that in structures where iron is the dominant χ source, QSM provides an 
accurate, reproduceable proxy for tissue iron levels. 
 
Phenotypic and genetic associations with QSM 
 
The results described in detail above represent approximately 5% of identified phenotypic 
associations, leaving a rich set of results to be explored further. Some of these phenotypes have 
previously-established links to χ measures in the brain (e.g., cognitive scores84,85), but many 
phenotypes lack an obvious interpretation (e.g., χ in caudate and putamen associated with use 
of sun/uv protection). In addition to the extensive literature looking at QSM in neurological 
conditions, there is a more limited literature in mental health conditions86,87, such as depression 
and psychosis. Our results supplement this literature, identifying associations between mental 
health related risk factors including seen doctor (general practitioner, GP) for nerves, anxiety, 
tension or depression; risk taking; and ever taken cannabis (Supplementary Fig. S24). 
 
We described example associations for 19 of the 89 genetic clusters that have a plausible link 
between gene function and tissue χ. However, we also observed many associations with genetic 
variants related to biological functions that are not known to be directly related to tissue χ. This 
includes immune response, regulation of gene expression and cell function (Supplementary 
§6). This rich set of associations will require additional studies to understand the genetic 
architecture of magnetic susceptibility in the brain.  
 
In addition to providing insight into “true” associations, voxel-wise maps can help identify 
spurious associations. For example, several apparent associations at the IDP level seem to be 
driven by structural atrophy. While all ROI-based IDPs have the potential to be sensitive to 
atrophy, QSM represents an extreme of image contrast, with opposite sign of χ in grey and 
white matter. This causes small errors in grey-white boundaries to be amplified into detectable 
apparent alterations in χ. For example, QSM in substantia nigra has an apparent association 
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with total BMD (bone mineral density), but the voxel-wise map exhibits thin, intense 
associations with a positive-negative pattern at the grey-white boundary that likely reflects 
atrophy (Supplementary Fig. S23a,b). A similar spatial pattern of opposing positive and 
negative correlations exists for body mass index (BMI) in the primary motor and somatosensory 
areas (Supplementary Fig. S23c,d). 
 
Iron and calcium in quantitative swMRI 
 
Overall, the most consistent and strong pattern of associations identified in our study relate 
swMRI to iron, both phenotypically (e.g., haemoglobin content) and genetically (e.g., iron 
homeostasis). Iron is involved in many fundamental biological processes in the brain including 
neurotransmitter production, myelin synthesis and metabolic processes88. Iron homoeostasis is 
essential to normal brain function, with elevated iron causing oxidative stress and cellular 
damage88.  It remains unclear whether abnormal iron accumulation in the brain is a cause or 
consequence of neurodegeneration in diseases including Alzheimer’s, Parkinson’s and 
multiple sclerosis88.  
 
We also identified multiple strong associations with variants in genes encoding calcium 
channels. While calcification has been shown to alter tissue χ (χ in calcified lesions have been 
validated using CT attenuation values89), little is known about the impact of other calcium 
forms on tissue χ. Calcium is essential for many aspects of cell function, including division, 
differentiation, migration, and death59, as well as neurotransmitter and hormone release. 
Perturbations in calcium homeostasis, including dysregulation of calcium channel activity, 
have been reported in many neurodegenerative disorders90,91. 
 
These results suggest that the UK Biobank resource can play a key role in the development of 
swMRI-based biomarkers of iron and calcium. In particular, UK Biobank has unique value for 
investigating early, asymptomatic disease in individuals who go on to develop neurological 
conditions. swMRI measures could provide predictive markers for preventative stratification, 
treatment monitoring and imaging-based screening. 
 
T2* and QSM in UK Biobank 
 
Imaging at the population scale is a major endeavour that inevitably requires compromises to 
achieve throughput. While swMRI scans in research settings often use protocols with many 
echo times lasting 5+ minutes, the UK Biobank swMRI protocol acquires two echoes in 2.5 
minutes. QSM involves a single-parameter fit (χ) that can be calculated from one echo, 
although we explicitly use the two echoes to perform robust coil combination of phase maps. 
A minimum of two echoes are required to estimate T2* alongside an intercept parameter, 
making our T2* estimates more sensitive to noise than protocols with more echoes. 
 
Estimation of T2* is also biased by the presence of macroscopic field gradients, induced by 
air/tissue interfaces or poor shim quality25. This bias is exacerbated by the thick slices used in 
UK Biobank25. If not corrected, this can lead to spurious correlations driven by subject-wise 
variations in field homogeneity rather than tissue χ (Supplementary Fig. S15). We introduced 
deconfounding of macroscopic field gradient for T2* IDPs (see Supplementary §2). As 
expected, background field gradients do not correlate with our χ estimates (Supplementary 
Fig. S16) and this confound is not needed for QSM. 
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Despite these potential shortcomings of swMRI in UK Biobank, our results demonstrate that 
QSM and T2* contribute unique information, as reflected in distinct patterns of associations. 
Because diamagnetic and paramagnetic constituents manifest differently in QSM and T2* data, 
a combination of QSM and T2* data may be able to disentangle co-occurring changes of tissue 
iron and myelin content in neurodegeneration92. QSM processing is thus expected to be a 
valuable addition to the UK Biobank brain imaging resource. 
 
Methods  
 
MRI Data acquisition and participant information 
 
We used data from 35,885 participants in the UK Biobank early-2020 release who had 
susceptibility-weighted MRI (swMRI) data collected. Participants were 53.11% female and 
aged 45-82yo (64.04±7.5yo) at time of imaging. Of these participants, 1,447 were recruited for 
a repeat scan approximately 2 years (2.25±0.12y) after the first imaging session. A detailed 
overview of the neuroimaging acquisition protocols used in UK Biobank brain imaging has 
been previously described1. 
 
Susceptibility-weighted MRI scans were acquired on 3T Siemens Skyra MRI scanners 
(software platform VD13) with 32-channel head receive coils. swMRI data were acquired 
using a three-dimensional (3D) dual-echo gradient echo (GRE) sequence with the following 
parameters: voxel size = 0.8 × 0.8 × 3 mm3, matrix size = 256 × 288 × 48 (whole-brain 
coverage), echo times (TE1/TE2) = 9.4/20 ms, repetition time (TR) = 27 ms and in-plane 
acceleration = 2, total scan time = 2:34 min. Magnitude and phase data from each receive 
channel were saved for off-line coil combination, described below. 
 
The UK Biobank brain imaging protocol includes T1- and T2-weighted structural acquisitions 
that are used in our processing pipeline15. Specifically, the T1-weighted structural scan is used 
to align subjects into a standard-space atlas for the definition of ROIs and other masks, and T2 
FLAIR data is used to generate ventricle masks used in QSM referencing. Specifically, brain 
region masks and image registration references were derived from the T1-weighted structural 
scans acquired using a 3D MPRAGE protocol (voxel size = 1×1 × 1 mm3, matrix size = 208 
× 256 × 256, inversion time (TI)/TR = 880/2000 ms, in-plane acceleration = 2, total scan time 
= 4:54 min)15. Ventricle and white matter hyperintensity masks were derived from T2-weighted 
fluid attenuated inversion recovery (FLAIR) scans (3D SPACE, voxel size = 1.05 × 1 × 1 
mm3, matrix size = 192 × 256 × 56, TI/TR = 1800/5000 ms, in-plane acceleration = 2, total 
scan time = 5:52 min)15. Both T1 and T2 weighted structural data were processed using the UK 
Biobank image processing pipeline15. 
 
The quality control (QC) pipeline developed for UK Biobank brain imaging15 was applied to 
all subjects included in this study. Several QC measures related to T1-weighted, T2 FLAIR 
and swMRI data were used here. For example, subjects were excluded if registration from T1 
space to standard space failed or had unusable T2 FLAIR data, for example due to excessive 
head motion, atypical structure and/or anatomical abnormalities. Full details of the quality 
control pipeline have been previously described15. Finally, 35,273 participants were selected 
in this study whose data were deemed suitable for quantitative susceptibility mapping analysis 
based on QC measures. 
 
Quantitative susceptibility mapping processing pipeline 
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Quantitative susceptibility mapping (QSM) consists of several steps including combination of 
phase data from individual channels, unwrapping of channel-combined phase data, removal of 
macroscopic (‘background’) field inhomogeneity, and estimation of voxel-wise χ through 
dipole inversion (Fig. 1a). For each step, many different algorithms have been proposed16,93,94. 
To ensure the robustness of our QSM pipeline and select the optimal pipeline for the UK 
Biobank protocol, we carried out extensive evaluations of established algorithms for each step 
of the QSM pipeline on a subset of approximately 1,500 subjects20–24,95–99. These evaluations 
used both quantitative and qualitative metrics, including the presence of streaking artifacts, the 
observation of large-scale field inhomogeneities on χ maps and cross-subject consistency of 
both χ maps (in standard space) and χ values in regions of interest (such as subcortical 
structures). Details of our QSM processing pipeline evaluations are described in 
Supplementary §1.1.  
 
QSM provides a measure of relative, rather than absolute χ94. The presence of an unknown 
offset in the estimated map for any individual is problematic for comparison of χ values across 
subjects. To address this, χ values are commonly reported as relative offset with respect to an 
internal reference region94,100. In this study, we compared the use of three widely-used 
reference regions: mean χ across (i) the whole brain, (ii) cerebrospinal fluid (CSF) and (iii) a 
white matter region (forceps minor). Evaluations were performed using subjects who had 
undergone scanning at two time points (1,447 subjects in total). Specifically, we calculated 
cross-scan correlations for each of the subcortical QSM IDPs (referenced to these three 
different regions) as well as subcortical T2* IDPs, with the assumption that negligible changes 
in χ/T2* occurred during the two timepoints. CSF-referenced QSM IDPs showed the highest 
consistency (correlation r) across two time points (Supplementary Fig. S10a) and CSF in the 
lateral ventricles was therefore chosen as the reference region. Details of the evaluation of three 
reference regions are described in the Supplementary §1.2. The final QSM processing pipeline 
for UK Biobank swMRI data is as follows: 
 
In order to generate a map of the image phase, we first need to combine (average) phase images 
from individual coil channels. The challenge is that each coil channel has a different unknown 
phase offset that will lead to phase cancellation (and resulting artefacts) if it is not first 
removed. Our pipeline combines phase images across channels using the MCPC-3D-S 
approach20. Specifically, a channel-combined phase image was first estimated using the phase 
difference method (via complex division of two echoes’ phase data, yielding an equivalent TE 
= TE1 – TE2), masked using the brain mask provided by the UK Biobank image processing 
pipeline15, and then unwrapped using PRELUDE101. This unwrapped phase image was scaled 
to correspond to TE = TE1 and then subtracted from each channel’s first echo phase image 
respectively to estimate the phase offset for each channel. The estimated phase offsets were 
subsequently smoothed in the complex domain and subtracted from the phase images (both 
echoes) of all channels prior to combination. Using this approach, a channel-combined phase 
image free from any phase cancellation artifacts was generated for each echo. 
 
The brain masks used in this study were based on those used in the standard UK Biobank image 
processing pipeline15. These masks were refined for QSM to detect and remove voxels in the 
vicinity of sinus cavities. These regions have extremely strong field variations due to the 
air/tissue interface that induce artifacts in the χ maps. For each echo, we generated a phase 
reliability map as follows. Channel-combined phase images were converted to complex data 
(assuming unit magnitude values) and convolved with a 3D spherical kernel (2mm in radius 
with probabilistic values for voxel locations inside the kernel) for voxels within the brain mask 
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(only voxels within the intersection of the kernel and brain mask were included for 
convolution). Our phase reliability map was then derived by calculating the magnitude of the 
convolved complex data: regions of strong phase variation were indicated by low magnitude 
values due to phase cancellation within the convolution kernel, while regions with relatively 
homogeneous phase had magnitude values close to one. Here, the refined mask excluded 
voxels with phase reliability values lower than 0.6 for the first echo, and 0.5 for the second 
echo. An additional step was then applied to the refined brain mask to fill any isolated holes 
(in 3D) in the middle of the bran that were not connected to the sinus cavities using the 
MATLAB function “imfill”.  
 
The channel-combined phase images were unwrapped using a Laplacian-based algorithm 
provided by the STI Suite toolbox21. The unwrapped phase images were subsequently 
combined into a single phase image via a weighted sum22 over the two echoes to increase 

signal-to-noise, with weighting factor !"!/#∙$
$%&!/# !#∗%

∑ !"(∙$$%&( !#∗⁄#()!
 22 ()(∗ was set as 40 ms for all subjects). 

This effectively weights each echo by its predicted signal-to-noise ratio.  
 
The echo-combined phase image was then filtered to remove the background field 
contributions. Our pipeline uses the variable-kernel sophisticated harmonic artifact reduction 
for phase data (V-SHARP) algorithm23 in the STI Suite toolbox with a maximum kernel size 
of 12 mm. The phase reliability and hole-filling steps described above were repeated on the 
brain mask output by V-SHARP, excluding voxels that had phase reliability values lower than 
0.7 for the first echo or 0.6 for the second echo (empirically determined). The χ map was 
generated from the V-SHARP filtered phase data using the refined brain mask. Dipole 
inversion was performed using the iLSQR algorithm24 in the STI Suite toolbox. 
 
The final step is to calculate a reference χ value for each subject to be subtracted from the 
output χ maps. As described above, we used the χ of CSF in the lateral ventricles as our 
reference. The χ map was transformed to subject’s native T1 space where the UK Biobank 
pipeline has previously generated a ventricle mask with BIANCA15,102. Inspection of the χ 
distribution in the ventricle masks (eroded by a 1mm radius spherical kernel) revealed a 
bimodal (Gaussian plus inverse gamma) distribution of χ estimates (Supplementary Fig. S9). 
This likely corresponds to both CSF and choroid plexus compartments. To extract the CSF 
component of this distribution, we used an in-house mixture modelling algorithm103. The mean 
value of the central Gaussian distribution was considered to represent CSF voxels, and was 
used as the χ reference. The χ map in the original swMRI space was referenced to CSF by 
subtracting this reference value. 
 
Image-derived phenotypes generation  
 
In this study, QSM-based image-derived phenotypes (IDPs) were generated relating to 8 
subcortical structures (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, 
substantia nigra and thalamus, left and right) and white matter hyperintensity (WMH) lesions. 
Masks for each subcortical structure in T1 space (excluding the substantia nigra) have been 
previously generated using FIRST (FMRIB’s Integrated Registration and Segmentation 
Tool)104 as part of the UK Biobank image processing pipeline. Masks for the substantia nigra 
used in this study were derived from a substantia nigra atlas105 in MNI152 space. Masks for 
white matter and white matter hyperintensity (WMH) lesions (derived from the BIANCA 
processing15,102) were provided to us in T1 space from the UK Biobank image processing 
pipeline, alongside white matter masks generated using FAST (FMRIB’s Automated 
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Segmentation Tool103). CSF referenced χ maps were transformed to both subject’s native T1 
space and MNI152 space using the provided transformations for each subject from UK 
Biobank15.  
 
FIRST-generated subcortical masks were eroded (2D 3x3 kernel) and used to extract 
subcortical regions on CSF-referenced χ maps in the T1 space of each subject. The median χ-
value (across extracted voxels) was calculated as a separate IDP for each of the left/right 
subcortical regions. The substantia nigra mask was used to extract the substantia nigra region 
on CSF referenced χ maps in the MNI152 space of each subject. To account for the 
morphological variations of substantia nigra across subjects, the substantia nigra mask was 
refined by excluding voxels that had negative χ values, with median χ values subsequently 
calculated as a separate IDP for left and right substantia nigra.  
 
For the WMH IDP, the WMH mask was first used to extract the mean χ value in lesions. We 
then extracted the χ value from normal-appearing white matter, defined as the intersection of 
FAST- and BIANCA-based white matter mask with the WMH voxels removed. The difference 
between the estimated χ values of WMH and normal white matter was calculated as an IDP. 
This approach aims to isolate χ properties that are unique to lesions, as opposed to more global 
properties of white matter χ. 
 
While most of the QSM IDPs use the same spatial ROIs as existing T2* IDPs, the previous 
pipelines did not include T2* of substantia nigra or WMH. We thus generated three new T2* 
IDPs for (substantia nigra left and right, and WMH). This enabled a direct comparison between 
QSM and T2* for 18 IDPs. 
 
Outliers and confounds removal 
 
Each IDP’s **+,-$./* × 1 vector first had outliers removed. Outliers were defined as being 
greater than 6x the median absolute deviation from the median. The remaining distribution of 
IDPs was then quantile normalised, resulting in it being Gaussian-distributed with mean zero 
and standard deviation one. 
 
A recently expanded set of imaging confounds have been proposed in UK Biobank brain 
imaging15,106 including age, head size, sex, head motion, scanner table position, imaging centre 
and scan-date-related slow drifts. Unless stated otherwise, the full set of imaging confounds 
were regressed out from the quantile normalised IDPs before any further analyses. This was 
crucial to avoid biased or spurious associations between IDPs and other non-imaging 
measures1,106. 
 
As reported in the literature, T2* estimates are biased by the presence of macroscopic field 
gradients (for example, induced by air/tissue interface), particularly when imaging voxels are 
large (in our case, using thick slices)25. To reduce such confounding effects on association 
analyses with UK Biobank T2* IDPs, we first modelled the relationship between macroscopic 
field gradients and R2* (1/T2*) measurement errors using both simulated and UK Biobank 
data25. This produced a macroscopic field gradient confound variable specific to each subject 
and brain region, which was generated and regressed out from T2* IDPs. No association was 
found between the field gradient confounds and QSM IDPs as expected, and thus this particular 
confound was only applied to T2* data. Details of this additional deconfounding for T2* IDPs 
are described in the Supplementary §2. 
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We also observed strong negative correlations between QSM/T2* WMH IDPs and the WMH 
volume IDP provided by UK Biobank (Fig. 1d). This may indicate partial volume effects on 
the χ and T2* estimates within lesions. QSM and T2* WMH IDPs were thus additionally 
processed by regressing out the WMH volume. 
 
Associations between IDPs and non-imaging measures 
 
We investigated 17,485 phenotypes from UK Biobank. Each of the 17,485 phenotypes used 
here had data from at least 40 subjects. The phenotypes spanned 17 groups of variable types, 
including early life factors (such as maternal smoking around birth), lifestyle factors (such as 
diet, alcohol and tobacco consumption), physical body measures (such as BMI, bone density 
and blood assays), cognitive test scores, health outcomes (such as clinical diagnosis – ICD10 
and operative procedures – OPCS4) and mental health variables (such as bipolar and major 
depression status). These variables were automatically curated using the FUNPACK (the 
FMRIB UKBiobank Normalisation, Parsing And Cleaning Kit) software to ensure that all 
phenotypes variables (both quantitative and categorical) were numeric vectors and that 
resulting correlation coefficients were easy to interpret.  
 
To investigate pairwise associations between IDPs and phenotypes, univariate statistics were 
carried out using Pearson correlation across all QSM/T2* measures (including 16 subcortical 
IDPs and 2 WMH IDPs with/without regressing out WMH volume) and 17,485 phenotypes 
(quantile normalised and fully deconfounded). As UK Biobank phenotypes have varying 
amounts of missing data, the full set of associations of phenotypes against IDPs had widely-
varying degrees-of-freedom. Therefore, it is important to consider P values (and not just 
correlation r); P values were calculated and used to identify the strongest associations. 
Bonferroni multiple comparison correction across the full set of 629,460 (17,485 ×  36) 
correlations was applied, resulting in a -log10P threshold of 7.10 (for Pcorrected < 0.05). 
Additionally, a less conservative option for multiple comparison correction is false discovery 
rate (FDR)107, which for a 5% FDR resulted in a -log10P threshold of 3.13. 
 
Associations between IDPs and genetic variants 
 
We carried out genome-wide association studies (GWASs, univariate correlations) for all QSM 
and T2* IDPs, following a previously-described approach6,7. This was performed using the 
Spring 2018 UK Biobank release of imputed genetic data. From all subjects with an available 
χ map, we selected a subset of 29,579 unrelated subjects with recent UK ancestry (to avoid 
confounding effects from population structure or complex cross-subject covariance). We 
divided this set into a discovery cohort of 19,720 subjects and a replication cohort of 9,859 
subjects. We applied QC filtering to the genetic data including minor allele frequency (MAF) 
≥ 0.01, imputation information score ≥ 0.3 and Hardy-Weinberg equilibrium P value ≥ 10-7, 
which resulted in a total of 17,103,079 genetic variants (which are primarily SNPs, single-
nucleotide polymorphisms). IDPs had both imaging and genetic confounds regressed out as 
carried out in Elliott et al.6, including the above-described imaging confounds and 40 
population genetic principal components (supplied by UK Biobank). IDPs were normalized 
(resulting in zero mean and unit variance) after the original Gaussianisation and 
deconfounding. GWAS was performed using the BGENIE software108. 
 
Manhattan plots for each of the GWASs were produced, plotting the -log10P value for each 
genetic variant. The standard single-phenotype GWAS threshold (-log10P = 7.5)6,7 as well as 
an additional Bonferroni multiple comparison (accounting for 36 GWASs) corrected threshold 
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(-log10P = 9.06) are shown in the plots. Peak associations with -log10P value exceeding 7.5 
were extracted and annotated using a method described in Elliott et al.6. That is, in a region of 
high linkage disequilibrium (LD), we only report the genetic variant with the highest 
association with the IDP because the associations in the local region are most likely all due to 
a single genetic effect6,7,108. 
 
After performing the GWAS, we used Peaks software7 to automatically generate clusters of 
peak associations for all IDPs as previously described6,7. A cluster is a set of IDP/variant pairs 
for which all variants are within a 0.25-cM distance of the IDP/variant pair with highest -log10P 
value in the cluster. Additionally, we used FUMA43 to map genetic variants identified in peak 
associations to related genes and to identify eQTL and chromatin mappings/interactions for 
these variants. 
 
Following the approach described previously6, we examined the heritability (ℎ( ) of each 
subcortical IDP using LD score regression (LDSC)41 on all available subjects (combining 
discovery and reproduction cohorts). LD scores were sourced from the European population of 
the 1000 Genomes Project109. Due to limitations in 1000 Genome Project linkage 
disequilibrium score files, the X chromosome is not considered in this analysis. 
 
Voxel-wise associations with phenotypes and genetic variants  
 
The MNI152-space versions of CSF referenced χ maps from all subjects were also combined 
into a 4D MNI152 χ matrix (of size 182 × 218 × 182 × **+,-$./*). Each of the voxel vectors 
in the 4D MNI152 χ matrix had outliers removed and was quantile normalised and fully 
deconfounded. 
 
We carried out voxel-wise correlations between the χ maps and non-imaging measures (both 
phenotypes and genetic variants) that had been identified to have significant associations with 
QSM-based IDPs. Interrogating χ maps at a voxel-wise level can provide further insight into 
the spatial localization of associations and can potentially identify additional associated areas 
which were not captured by the original IDPs, either because a given brain region was explicitly 
not included or because heterogeneity within a larger brain region diluted an association with 
a sub-region. Univariate Pearson correlations were performed between fully deconfounded χ 
data vectors (voxels across the 4D MNI152 χ matrix) and phenotypes or genetic variant data 
vectors, resulting in 3D correlation maps. 
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• STI Suite, https://people.eecs.berkeley.edu/~chunlei.liu/software.html  
• MEDI toolbox, http://pre.weill.cornell.edu/mri/pages/qsm.html   
• Mixture modelling, https://github.com/allera/One_Dim_Mixture_Models  
• Peaks v1.0, novel software for extracting clusters from multi-phenotype GWASs: 

https://github.com/wnfldchen/peaks 
• bgenie v1.3, software for efficient GWASs on high-dimensional phenotype data: 

https://jmarchini.org/bgenie/ 
• LDSC v1.0.1, software for heritability analysis from summary statistics (linkage score 

regression): https://github.com/bulik/ldsc/  
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