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Abstract  
White matter hyperintensities (WMH) are frequently observed on structural neuroimaging of elderly 
populations and are associated with cognitive decline and increased risk of dementia. Many existing WMH 
segmentation algorithms produce suboptimal results in populations with vascular lesions or brain atrophy, 
or require parameter tuning and are computationally expensive. Additionally, most algorithms do not 
generate a confidence estimate of segmentation quality, limiting their interpretation. MRI-based 
segmentation methods are often sensitive to acquisition protocols, scanners, noise-level, and image contrast, 
failing to generalize to other populations and out-of-distribution datasets. Given these concerns, we propose 
a novel Bayesian 3D Convolutional Neural Network (CNN) with a U-Net architecture that automatically 
segments WMH, provides uncertainty estimates of the segmentation output for quality control and is robust 
to changes in acquisition protocols. We also provide a second model to differentiate deep and 
periventricular WMH. 432 subjects were recruited to train the CNNs from four multi-site imaging studies. 
A separate test set of 158 subjects was used for evaluation, including an unseen multi-site study. We 
compared our model to two established state-of-the-art techniques (BIANCA and DeepMedic), highlighting 
its accuracy and efficiency. Our Bayesian 3D U-Net achieved the highest Dice similarity coefficient of 0.89 
± 0.08 and the lowest modified Hausdorff distance of 2.98 ± 4.40 mm. We further validated our models 
highlighting their robustness on ‘clinical adversarial cases’ simulating data with low signal-to-noise ratio, 
low resolution, and different contrast (stemming from MRI sequences with different parameters). Our 
pipeline and models are available at: https://hypermapp3r.readthedocs.io 
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Introduction 
 
Clinical Motivation 
White matter hyperintensities (WMH) are commonly observed MRI-based biomarkers of cerebral small 
vessel disease and have been associated with aging and neurodegenerative diseases such as Parkinson’s 
disease (PD) and Alzheimer’s disease (AD) (S. Lee et al. 2016; Prins and Scheltens 2015; S.-J. Lee et al. 
2010). WMH have been linked to global cognitive impairment (Jokinen et al. 2020), a decline in mental 
processing speed (van den Heuvel 2006), increased risk of late onset depression (Herrmann, Le Masurier, 
and Ebmeier 2008), and increased risk of stroke, dementia, and mortality (Debette and Markus 2010). Since 
WMH often occurs in the preclinical stage of dementia, it may represent one of the pathological processes 
indicating progression from mild cognitive impairment (MCI) to dementia (Smith et al. 2008) and should 
be considered as a covariant of interest at baseline and longitudinally in future AD treatments (Carmichael 
et al. 2010). Furthermore, periventricular venous collagenosis is associated with WMH in both AD and 
non-AD patients (Keith et al. 2017).  
 
WMH appear as hyperintense (bright) on both T2-weighted (T2w) and fluid attenuated inversion recovery 
(FLAIR) MRI images and hypointense (dark) on T1-weighted (T1w) images. While T1w-based WMH 
estimates have been shown to have some degree of correlation with estimates based on T2w and FLAIR 
image (Dadar et al. 2018), the inclusion of the two sequences provides improved contrast and visualization 
of WMH borders, and thus a more accurate segmentation and volume quantification. This is especially 
important for the classification of both deep WMH (dWMH, found in deep white matter) and periventricular 
WMH (pvWMH, which extend from the ventricular wall). dWMH presence has been linked to the incidence 
of migraine (Hong et al. 2020), while increases in pvWMH have been associated with AD progression 
(Kilgore et al. 2020), as well as stroke (Hernández, Piper, and Bastin 2014). There has been debate in the 
literature regarding whether or not WMH should be differentiated based on their location, or if they should 
be considered to be the same based on continuous spectrum (Wardlaw, Valdés Hernández, and Muñoz‐
Maniega 2015). The exploration of WMH involvement in neurodegenerative disease warrants an accurate 
segmentation, quantification and classification of WMH and its subtypes. 
 
Related Works 
 
Automated segmentation 
There has been a large amount of work revolving around WMH segmentation in clinical and neuroscience 
research. Traditionally, manual tracings are employed as the gold standard. Individuals trained to segment 
WMH are aware of the features that distinguish WMH from normal-appearing white matter and other tissue 
types. The large amount of time and training required to manually segment WMH necessitate the need for 
automatic methods to segment WMH. Despite the bevy of available segmentation methods (Griffanti et al. 
2016; Zhang et al. 2020; Y. Wang et al. 2012), several challenges still exist, such as the lack of uniformity 
across different image types and differences in imaging protocols/scanners, as well as the lack of methods 
for quality control. For example, segmentation methods that rely on image intensity (Yoo et al. 2014; 
Griffanti et al. 2016) had varying degrees of success. While methods that focus on thresholding based on 
intensity often fail to detect smaller, lower intensity dWMH, thereby increasing the rate of false positives 
(Jeon et al. 2011). In addition, datasets used for training and testing are often small, and may not always be 
tested across different scanner types.  
 
Supervised methods utilize previously acquired ground truth, capitalizing on features from the data to 
produce accurate segmentations on other datasets. Many state-of-the-art (SOTA) WMH segmentation 
methods are based on a supervised learning formulation. BIANCA, short for “Brain intensity abnormality 
classification algorithm” (Griffanti et al. 2016) is a fully automated supervised method based on the k-
nearest neighbor (kNN) algorithm. The LOCally Adaptive Threshold Estimation (LOCATE) method was 
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later proposed (Sundaresan et al. 2019) to determine local thresholds that are sensitive to spatial differences 
in the lesion probabilities to improve BIANCA’s binary lesion masks. 
 
In recent years, deep learning with convolutional neural networks (CNNs) has achieved SOTA performance 
for many medical image segmentation tasks, including WMH and stroke lesions (Guerrero et al. 2018). 
Kamnitsas et al. (Kamnitsas et al. 2017) proposed a network architecture consisting of two parallel 
convolutional pathways that processes the 3D input patches at multiple scales, followed by post-processing 
using a 3D densely connected conditional random field (CRF) to remove false positives. Their method was 
originally proposed for ischemic stroke and tumor segmentation, but it can be adopted for different lesion 
segmentations. The U-Net model architecture (Ronneberger, Fischer, and Brox 2015) has been widely used 
in segmenting biomedical images due to its performance and efficiency of using GPU memory. A CNN 
model for WMH segmentation that distinguishes between WMH and stroke was presented by Guerrero et 
al. (Guerrero et al. 2018). Li et al. (Li et al. 2018) presented a U-Net and an ensemble of models trained 
with random weight initializations to reduce overfitting and boost segmentation results. A skip connection 
U-Net model was proposed by Wu et al. (Wu et al. 2019) to capture more features and improve the model’s 
receptive field and was evaluated on WMH segmentation.  
 
Uncertainty and Bayesian networks  
Uncertainty estimation is critical for understanding the reliability of segmentation networks, and for 
providing a quantitative assessment of confidence in their outputs. This is specifically important for medical 
imaging in a clinical setting. Current approaches do not provide uncertainty estimates for their segmentation 
results. Several studies have investigated uncertainty estimation for deep neural networks (Kendall and Gal 
2017; Kendall, Badrinarayanan, and Cipolla 2017; G. Wang et al. 2019). As suggested by Kendall and Gal, 
there are two major types of predictive uncertainties for deep CNNs: epistemic (model) uncertainty and 
aleatoric (image-based) uncertainty. Epistemic uncertainty describes limitations in the learning procedure 
due to limited training data. Aleatoric uncertainty depends on noise or randomness in the input image.  
 
Bayesian Neural Networks (BNNs) have been used to estimate model uncertainty; however, they are hard 
to implement and are computationally expensive. Previous works have used Stochastic Variational Gradient 
Descent (SVGD) to perform approximate Bayesian inference on uncertain CNN parameters (Zhu and 
Zabaras 2018). Other approximation methods have been developed such as Markov Chain Monte Carlo 
(Neal 2012) that are not scalable for large neural networks with millions of parameters, and variational 
methods (Graves 2011) to provide an analytical approximation to the posterior probability of unobserved 
variables, to perform statistical inference over these variables. Bayes by Backprop (BBB) is another 
approach that combines variational inference with traditional backpropagation to efficiently find the best 
approximation to the posterior (Blundell et al. 2015). Other studies have used ensembles of multiple models 
to generate uncertainty (Lakshminarayanan, Pritzel, and Blundell 2016). Alternatively, Monte Carlo (MC) 
Dropout has been used to demonstrate that dropout at test time can be cast as approximate Bernoulli 
variational inference to allow an efficient approximation of the model's posterior distribution without 
additional parameters (Kendall and Gal 2017). 
 
Generalization and Robustness 
Machine learning algorithms are usually evaluated by the model’s generalization and robustness (Paschali 
et al. 2018). Generalization refers to the model performance on an unseen dataset. To build a deep learning 
model that generalizes well, a large and diverse amount of data is required to avoid overfitting (LeCun, 
Bengio, and Hinton 2015). This is a significant obstacle for using deep learning in the medical domain, 
where producing high-quality labeled data is time-consuming, expensive, and requires expert knowledge. 
Robustness refers to the ability of a model to correctly classify previously unseen examples with noise and 
slight perturbations, which are more challenging to classify and segment (Rozsa, Gunther, and Boult 2018). 
MR-based segmentation methods are mostly sensitive to acquisition protocols, scanners, noise-level and 
image contrast. Paschali et al. (Paschali et al. 2018) investigated the robustness of a variety of medical 
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imaging networks on adversarial cases and found that models that achieve comparable performance in 
generalizability may have significant differences in their relative exploration of the underlying data 
manifold, therefore resulting in varying robustness and model sensitivities. Data augmentation can be used 
as a regularization strategy to control overfitting and improve the model’s robustness and performance 
(Nalepa, Marcinkiewicz, and Kawulok 2019). Common data augmentation schemes for segmentation of 
neuroimaging data include affine transformations, elastic deformation, random cropping, flipping about a 
spatial axis, adding noise and adjusting image contrast. 
 
Contributions 
In this work, we present several innovative methodological and experimental contributions. First, we 
developed and evaluated a 3D U-Net with MC Dropout as a Bayesian network to segment WMH and 
provide uncertainty quantification, generating an estimate of the model’s confidence of the predicted 
segmentation. Second, a separate model was developed to distinguish and segment dWMH and pvWMH, 
respectively using initial WMH segmentation. Third, unlike previous work, we employed an unseen multi-
site study for testing, in addition to the four large multi-site datasets with different diagnostic groups used 
for training. Fourth, we compared our methods against established SOTA techniques on a wide spectrum 
of white matter disease burden including very mild WMH cases with small volumes which are difficult to 
capture and segment. Finally, the network was trained using an augmentation scheme that included 
permutations to noise level, resolution, and contrast to achieve resistance to common changes due to 
different MRI acquisition protocols and scanners. This adversarial resistance was validated against 
simulated challenges in clinical datasets, referred to here as “clinical adversarial attacks”. Our trained 
models are publicly available, and we developed an easy-to-use pipeline with a graphical user interface for 
making them accessible to users without programming knowledge. 
 
Materials and Methods 
 
Participants 
To train the WMH segmentation model, a total of 432 subjects were recruited from four multicenter studies: 
160 subjects with cerebrovascular disease +/- vascular cognitive impairment (CVD +/- VCI) or PD (55-86, 
75% male) through the Ontario Neurodegenerative Disease Research Initiative (ONDRI) (Farhan et al. 
2017), 203 individuals with non-surgical carotid stenosis (47-92, 61% male) through the Canadian 
Atherosclerosis Imaging Network (CAIN) study (ClinicalTrials.gov: NCT01440296), 37 subjects with 
nonfluent progressive aphasia, semantic dementia (SD) and normal controls through the Language 
Impairment in Progressive Aphasia (LIPA) study (Marcotte et al. 2017) (55-80), and 32 subjects with CVD, 
VCI or Alzheimer’s disease (AD) through the Vascular Brain Health (VBH) study (Swardfager et al. 2017) 
(46-78, 50% male). Ground truth segmentations for WMH were generated using SABRE-Lesion Explorer 
semi-automated pipeline that generates intensity-based segmentations which are then manually edited by 
expert annotators trained by a neuroradiologist with an intraclass correlation of ≥ 0.9 (J. Ramirez et al. 
2011; Joel Ramirez et al. 2014)). Sequences used for the generation of the ground truth included 3D T1w 
and T2w FLAIR to accurately delineate the WMH. Participant demographics, diagnosis, Montreal 
Cognitive Assessment (MoCA) scores, and volumes for the ground truth segmentations and vascular lesions 
are summarized in Table 1. 
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Table 1. Participant demographics, clinical diagnosis, MoCA scores, ICV and ventricle volumes, WMH 
volumes, and MRI parameters in the training and test datasets. These datasets are used for training and 
testing SOTA. 

 Training Dataset 
n = 432* 

Test Dataset 
n = 158 

 
CAIN 
n=203 

ONDRI 
n= 160 

LIPA 
n=37 

VBH 
n=32 

CAIN 
n=50 

ONDRI 
n=37 

MITNEC 
n=53 

LIPA 
n=10 

VBH 
n=8 

Demographics 

Diagnostic Group 
CN PD, CVD CN, FTD 

AD, 
CVD, 
CN 

CN PD, CVD MCI, AD, 
CVD CN, FTD AD, CVD, 

CN 

Age (years) 70.4 (7.8) 68.3 (6.9) 67.0 
(7.3) 

76.4 
(9.0) 69 (7.5) 67.9 (5.6) 77 (8.7) 67.9 (12.1) 77.5 (11.7) 

Sex (n, % female) 79 (39.0) 40 (25.0) -- 14 (43.8) 22 (44.0) 12 (31.5) 24 (45.2) -- 4 (50.0) 

MOCA total score -- 25.9 (2.8) -- -- -- 25.3 (2.9) 22.2 (4.8) -- -- 

Neuroimaging Metrics 

ICV (cc) 
1241.5 
(118.5) 

1286.1 
(135.8) 

1255.7 
(132.1) 

1253.1 
(171.0) 

1234.9 
(140.0) 

1264.38 
(151.0) 

1225.8 
(174.2) 

1254.5 
(153.9) 

1291.2 
(149.6) 

vCSF (cc) 36.9 (19.7) 38.8 (19.9) 
44.3 

(20.0) 
56.5 

(37.2) 36.8 (19.7) 
33.1 
(18.1) 

53.3 
(21.6) 

45.1 
(18.2) 

48.3 
(21.3) 

pvWMH (cc) 
7.7 (9.3) 7.2 (10.1) 6.7 (9.9) 20.1 

(22.6) 
6.2 (4.9) 

5.5 (7.9) 
32.5 

(22.0) 2.8 (1.6) 
33.6 

(35.2) 

dWMH (cc) 1.1 (1.6) 0.7 (1.0) 0.6 (0.7) 2.1 (2.4) 0.8 (1.1) 0.6 (0.8) 2.2 (1.2) 0.5 (0.5) 2.4 (2.3) 

MRI acquisition parameters 

T1 
(SPGR) 

In-plane Resolution (mm) 0.94 x 1.1 1 x 1 0.9 x 0.9 0.94 x 1.1 1 x 1 0.9 x 0.9 

Slice thickness (mm) 1.4 1 1 1.4 1 1 

FOV (mm) 240 256 220 240 256 220 

FLAIR 

In-plane Resolution (mm) 1 x 1.1 0.94 x 0.94 0.9 x 0.9 1 x 1.1 0.94 x 0.94 0.9 x 0.9 

Slice thickness (mm) 3 3 3 3 3 3 

FOV (mm) 230 240 220 240 240 220 

Filed strength 3T 3T 3T 3T 3T 3T 
* 378 used for training and 54 for validation during training 
Data is presented as mean ± standard deviation unless otherwise specified. ICV= intracranial volume; 
MoCA=Montreal Cognitive Assessment; vCSF= ventricular cerebrospinal fluid; pvWMH=periventricular white 
matter hyperintensities; dWMH=deep white matter hyperintensities; CN=cognitively normal; PD=Parkinson’s 
Disease; VCI=vascular cognitive impairment; MCI=mild cognitive impairment; AD=Alzheimer’s disease; 
CVD=cerebrovascular disease; FTD=Frontotemporal dementia. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2021. ; https://doi.org/10.1101/2021.08.18.456666doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456666
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
6 

The models were tested on a total of 158 subjects, including 53 with severe WMH burden (Fazekas 3/3) 
from the Medical Imaging Trials NEtwork of Canada (MITNEC) Project C6 (ClinicalTrials.gov: 
NCT02330510), a separate fifth multicenter (unseen) study not part of those used for training. The 
breakdown of subjects from the five studies is presented in Table 1.  
 
Data preprocessing  
The preprocessing techniques used in this study are described in our prior work (Goubran et al. 2019). 
Briefly, we conducted the following data preprocessing steps on all images prior to training: 1) bias-field 
correction for B1 inhomogeneities using the N4 algorithm (Tustison et al. 2010), 2) skull-stripping to 
separate brain from non-brain tissues (Ntiri et al. 2021), 3) background-cropping using a bounding box such 
that all voxels outside the bounding box are zero-valued, and 4) Z-score intensity normalization using the 
mean as the subtrahend and the standard deviation as the divisor for each patient volume.  
 
Bayesian 3D CNN architecture 
Our networks are based on the U-Net architecture (Ronneberger, Fischer, and Brox 2015; Çiçek et al. 2016), 
which consists of encoder and decoder pathways, with pooling and upsampling operations. The architecture 
of the network (Figure 1A) was based on the original U-Net (Çiçek et al. 2016; Ronneberger, Fischer, and 
Brox 2015), with some modifications in our 3D implementation. Similar to our prior work (Goubran et al. 
2019), residual blocks were added to each encoding layer. Residual blocks resolve the gradient degradation 
problem that occurs with deeper networks with an increasing number of layers. Also similar to our previous 
work (Ntiri et al. 2021), dilated convolutions were used which help to enlarge the field of view (FOV) of 
convolutional filters without losing resolution or coverage (Yu and Koltun 2015). Instance normalization 
was used instead of batch normalization (Ioffe and Szegedy 2015) to avoid instability associated with batch 
normalization due to the stochasticity generated by small batch sizes. The network has a depth of 5 layers 
and 16 initial filters. Here, motivated by approximate Bayesian formulations in deep learning (Gal and 
Ghahramani 2016), Monte Carlo (MC) dropout layers were added to the network as one of the main 
contributions of the proposed network. To turn our baseline CNN into a Bayesian CNN, we added MC 
dropout layers in residual blocks after the first dilated convolution layer which is equivalent to placing a 
Bernoulli distribution over the weights.  
 
To optimize the location and rate of MC dropout, validation experiments were performed, testing MC 
dropout on 1) all layers (both encoder and decoder), 2) encoder layers, 3) three central layers both encoder 
and decoder, and using dropout rates of 0.3 and 0.5. Based on these experiments, we observed that adding 
dropout on the encoder layers (the residual blocks) with a dropout rate of 0.3 produced the best results on 
the validation data. 
 
Each encoder layer consists of a convolutional layer and a residual block (He et al. 2016). At each residual 
block, the input is split into two paths. The first path consisted of two dilated convolutional layers with 
kernel sizes 7x7x7 with a MC dropout layer with a rate of 0.3 between the two convolutions, while an 
identity map was applied to the input data in the second path. Element-wise addition was then applied to 
the results of the first and second paths, combining the outputs of the two.  
 
At each decoder layer before the final layer, the upsampling block from the previous level is concatenated 
with the corresponding features on the encoder level. Upsampling modules consisted of an upsampling 
layer of size 3x3x3, followed by a convolutional layer. The output from the upsampling module was 
concatenated with the summation output from the respective later on the contracting side, before being 
passed to a feature block. The feature block consisted of two convolutional layers (one dilated convolution) 
with a stride of 1x1x1, and kernels of size 7x7x7 and 1x1x1, respectively. The number of filters was halved 
at each decoder step. At the last layer, the concatenated feature map is passed to a sigmoid function to 
generate a probability map for the class/voxels of interest.  
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Adversarial resistance and augmentation experiments  
Data augmentation is an effective way to enlarge the size and quality of training data to improve model 
generalizability and avoid overfitting due to a limited dataset. Augmentation can equip a deep network with 
desired invariance and robustness properties. A large list of data augmentation strategies/schemes were 
evaluated to improve the adversarial resistance of our WMH model to common changes stemming from 
MRI sequences with different parameters, protocols, and scanners. The effects of three types of 
augmentations on model performance were evaluated: 1) Geometrical affine transformations, 2) Histogram-
based transformations and 3) Pixel-level transformations. Affine transformations included flipping, changes 
in orientations, random cropping, and random scaling. Histogram-based transformations included 
histogram equalization, scaling and brightness modification, while pixel-level transformations included the 
addition of Rician noise (Gudbjartsson and Patz 1995), contrast shifting/scaling and gamma intensity 
transformations. Based on these experiments an optimal set of augmentations including four 
transformations per scan were performed on each of the subjects, including flipping along the horizontal 
axis (Left-Right axis), random rotating by an angle 𝛼 = ±90 along 𝑦 and 𝑧 axis, introducing Rician noise 
generated by applying the magnitude operation to images with added complex noise, where each channel 
of the noise is independently sampled from a Gaussian distribution with random standard deviation 𝜎	 =
(0.01, 0.2), and changing image intensity by gamma 𝛾 = (0.1, 0.5) such that each pixel/voxel intensity is 
updated as: 

(
𝑥	 − 	𝑚𝑖𝑛(𝑥)

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦_𝑟𝑎𝑛𝑔𝑒
)! ∗ 	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦_𝑟𝑎𝑛𝑔𝑒	 + 	𝑚𝑖𝑛(𝑥)	 

where 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦_𝑟𝑎𝑛𝑔𝑒 is 𝑚𝑎𝑥(𝑥) 	− 	𝑚𝑖𝑛(𝑥). 
 

               
Figure 1. A) Proposed architecture for the Bayesian 3D U-Net convolutional neural network with residual 
blocks and dilated convolutions. B) Overall inference pipeline to generate WMH segmentation and 
uncertainty maps as well as a second network to differentiate dWMH and pvWMH. 
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Loss function 
An “equally weighted” formulation of the Dice coefficient was used as the loss function to mitigate the 
class imbalance issue, in which the majority of voxels in the image do not represent the structure of interest 
(Milletari, Navab, and Ahmadi 2016). The Dice coefficient is a measure of similarity, determined by a 
calculation of the overlap between two binary images. Given a predicted binary volume	𝑃 and the ground 
truth binary volume 𝐺, the Dice coefficient is defined as: 
 

𝐷 = 2.
∑ 𝑝"𝑔"#
"

∑ 𝑝"$ +	∑ 𝑔"$	#
"

#
"

 

 
where the sums run over the 𝑁	voxels, of the predicted binary volume 𝑝" ∈ 𝑃 and the ground truth binary 
volume 𝑔" ∈ 𝐺. When differentiated with respect to 𝑝% (j-th voxel of the prediction), in order to calculate 
back-propagated gradients, we get: 
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Model training 
All models were trained for 200 epochs. Early stopping was set to 50 epochs where validation loss did not 
improve to avoid overfitting. The Adam optimizer (Kingma and Ba 2014) was used with an initial learning 
rate of 5x10-3, and a learning rate drop of 0.5 (after 10 epochs where validation loss did not improve). We 
have selected these training hyperparameters based on experiments. 
 
A multi-contrast network that relies on T1w and FLAIR sequences as inputs were trained. The network was 
trained on images with various voxel sizes on the whole image, as opposed to patches. Out of the 537 
subjects with WMH segmentations used in this study (not including the unseen study used only for testing), 
378 (~70%) were used for training, 54 (~10%) for validation during training (from across all the studies), 
and 105 (~20%) for testing. We tested different optimizers, learning and decay rates. The networks were 
trained on a V100-SXM2 graphics card with 32G of memory and a Volta architecture (NVIDIA, Santa 
Clara, CA). 
 
Segmentation and uncertainty  
The MC dropout sampling technique which places a Bernoulli distribution over the network’s weights is 
implemented to estimate the uncertainty. At test time, by retrieving 𝑁 stochastic outputs, the posterior 
distribution 𝑝(𝑌|𝑋) can then be approximated (Gal and Ghahramani 2016). With a set 𝑦	 = 	 {𝑦&, 𝑦$. . , 𝑦#} 
from 𝑝(𝑌|𝑋), the final prediction 𝑦P is obtained for 𝑋	by maximum likelihood estimation:  
 

𝑦P 	= 𝑎𝑟𝑔𝑚𝑎𝑥'	𝑝(𝑦|𝑋) 	≈ 𝑀𝑜𝑑𝑒(𝑦)		 
 

where 𝑀𝑜𝑑𝑒(𝑦) is the most frequent element in 𝑦. This corresponds to the majority voting of multiple 
predictions. 
 
The uncertainty is estimated by measuring how diverse the predictions are. Both variance and entropy of 
distribution 𝑝(𝑌|𝑋) can be used to estimate the uncertainty. However, the variance captures the spread 
among predictions. In this paper we use variance which provides a voxel-wise model uncertainty map:  
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dWMH and pvWMH segmentation 
Distinguishing the dWMH and pvWMH is critical because of their different clinical implications. In this 
work, we trained a second network to distinguish and segment dWMH and pvWMH. Since multi-class 
segmentation is more challenging than binary-class segmentation, we trained two separate networks to 
perform WMH segmentation. The second network was trained on T1w, FLAIR, and binary ground truth as 
inputs and multi-class ground truth as labels. During inference, the first network generates binary 
predictions using T1w and FLAIR sequences as inputs. Then, the second network, getting the advantage of 
the output of the first model, segments dWMH and pvWMH using T1w and FLAIR sequences, and the 
initial binary WMH segmentation from the first model. The inference pipeline is shown in Figure 1B. 
 
Evaluation on clinical datasets 
Our WMH model performance was compared against two other established SOTA segmentation tools: 1) 
BIANCA from the FSL suite (Griffanti et al. 2016), which is a fully automated and supervised method for 
WHM detection based on the k-nearest (k-NN) algorithm, and 2) DeepMedic (Kamnitsas et al. 2015, 2017) 
which is a 3D multi-scale CNN designed with parallel pathways that the second path operates on down-
samples images. All segmentation tools used in the analysis were trained and evaluated on the same dataset 
(training (n = 432) and test (n = 158)) for a fair comparison. To train BIANCA, skull-stripped T1 and 
FLAIR sequences were used as input data. We used the following optimized BIANCA parameters for 
training: 1) spatial weighting (sw) = 1, i.e.  the data is simply variance normalized; 2) no patch; 3) location 
of training points = no border location for non-WMH training points, i.e. excluding non-WMH voxels near 
the lesion's edge from the training set; and 4) the number of training points = Fixed + unbalanced with 2000 
WMH points and 10,000 non-WMH points (Griffanti et al. 2016). Since the output of BIANCA is a 
probability map of voxels to be classified as WMH, a thresholding step was employed using a 0.9 cutoff to 
obtain a binary mask. 
 
DeepMedic was also trained using both skull-stripped T1 and FLAIR images. The model architecture 
included 11-layers (8 layers for the convolutional pathway and 3 layers for final classification), with the 
convolutional pathway further subdivided into three convolutional pathways. The convolution kernels of 
the three pathways were the size 3x3x3. The inputs of the three pathways were centred at the same image 
location, but the second and third segments were extracted from a down-sampled version of the image by 
a factor of 3 and 5, respectively. DeepMedic was trained with 37x37x37 patches and a batch size of 10 for 
a total of 700 epochs. The weights of the network were updated by an Adam optimized with an initial 
learning rate 10−3 following the schedule of l0×0.1epoch, and L2 penalty weight decay of 10−4. A cross-
entropy loss is used. Data augmentation was applied during the training procedure through random flipping 
in the x-, y-, and z-axes with a probability of 50% and the addition of random noise. 
 
Evaluation metrics 
Volume and shape-based metrics were used to evaluate the segmentation performance of the segmentation 
methods including the Pearson correlation coefficient, the Dice similarity coefficient (DSC), the modified 
Hausdorff distance (HD95), the absolute volume difference (AVD), recall and F1-score for individual 
lesions. The Pearson correlation coefficient (Pearson and Galton 1895) was used as a measure of the 
correlation between the volumes from each segmentation prediction 𝑃, and volumes from ground truth 
manually segmented data 𝐺.  
 
The DSC is a measure of the overlap between two datasets. Given a predicted binary mask, 𝑃	and a binary 
ground truth volume 𝐺, the Dice similarity coefficient is defined as: 
 

𝐷𝑆𝐶(𝐺, 𝑃) = 	2.
|𝐺 ∩ 𝑃|
|𝐺| 	+	 |𝑃|
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The Hausdorff distance measures how far two surfaces occupying the same space are. Given two sets of 
points representing objects occupying the same space, 𝐺 and 𝑃, where 𝑥	 ∈ 	𝐺 and 𝑦	 ∈ 	𝑃, the Hausdorff 
distance from 𝑃 to 𝐺 is defined as the largest value in a derived set of closest distances between all points. 
 

Ȟ(𝐺, 𝑃) = 𝑚𝑎𝑥+∈-{𝑚𝑖𝑛'∈.{||𝑥, 𝑦||}} 
 
In the above function, ||𝑥, 𝑦||	is the Euclidean distance between points 𝑥 and 𝑦. Because the Hausdorff 
distance between the two sets relative to 𝐺 is not equal to the distance relative to 𝑃, the bidirectional 
Hausdorff distance is equal to the maximum value between the two directions. A smaller distance is 
indicative of a greater degree of similarity between the segmentation and the manual tracing. Here we used 
the 95th percentile instead of the maximum (100th percentile) distance to obtain a more robust distance 
estimate. 
 
The AVD between the volumes of both ground truth (𝐺) and predicted (𝑃) images were also computed. An 
AVD of 0 signifies that the ground truth and the segmentation have the same number of voxels, though it 
is not indicative of a perfect segmentation. Let	𝑉- 	and 	𝑉.	be the volume of lesion regions in 𝐺 and 𝑃 
respectively. Then the AVD as a percentage is defined as: 
 

𝐴𝑉𝐷	 = |	0!1	0"|
	0!

	  
Each individual lesion is defined as a 3D connected component. Given this definition, let 𝑁-  be the number 
of individual lesions delineated in 𝐺, and 	𝑁2. be the number of correctly detected lesions after comparing 
𝑃 to 𝐺. Each individual lesion is defined as a 3D connected component. The Sensitivity for individual 
lesions (Recall) is defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙(𝐺, 𝑃) 	=
	𝑁2.
	𝑁-

	 

Let	𝑁3. be the number of wrongly detected lesions in 𝑃. Then the F1-score for individual lesions is defined 
as: 

𝐹1(𝐺, 𝑃) = 	
	𝑁2.

		𝑁2. 	+ 	𝑁3.
 

The non-parametric Mann-Whitney U test was employed with an α-level of 0.05 to assess the improvement 
between our models and all tested methods on these evaluation metrics.  
 
Clinical adversarial attacks 
In order to validate the robustness of our model on data with lower resolution or quality, we generated 
“clinical adversarial cases” to further test the model's robustness. These cases included: introduction of 
noise (to simulate data with lower signal-to-noise ratio ‘SNR’), downsampling of image resolution (to 
simulate typically short clinical scans performed on low field strength magnets), and different contrasts (to 
simulate data with different scanners). Noise was introduced using a Rician distribution sampled from two 
channels of Gaussian noise with a standard deviation of 𝜎. Input images were downsampled by a factor of 
2 across all dimensions. The image intensities were changed with 𝛾. All other SOTA methods were 
compared to our models on the most challenging adversarial cases, specifically: those with induced noise 
of 𝜎 = 0.2, those downsampled by a factor of 2 in each spatial axis, as well as changing image intensity 
with 𝛾 = 0.5. 
 
Results 
 
In this section, we first present our model segmentation results and the accompanying uncertainty maps to 
highlight the application of the uncertainty for quality control. We then compare the performance of our 
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models to SOTA methods using volume and shape-based evaluation metrics. We also evaluate the second 
model’s performance across dWMH and pvWMH segmentation. Furthermore, we focus on the evaluation 
of more challenging mild cases across tested methods. The models are finally tested against generated 
clinical adversarial cases to evaluate their robustness towards increased noise, lower resolution and different 
contrasts. 
 
Uncertainty maps for quality control  
Figure 2 highlights qualitative WMH segmentation results for an example subject based on the Bayesian 
model with Monte Carlo simulation (𝑁 = 20 models) to obtain epistemic uncertainty. This example 
demonstrates instances of both over-segmentation and under-segmentation. It can be observed that the 
uncertainty map shows high confidence (low uncertainty) in correctly segmented regions and lower 
confidence (high uncertainty) in mis-segmented regions as highlighted by red (under-segmentation) and 
green (over-segmentation) arrows. Uncertainty map can thus represent an estimate of segmentation 
confidence for quality control in both clinical and research settings. 
 
Evaluation of clinical datasets 
Average DSC, modified HD95, AVD, recall and F-1 score for HyperMapper Baseline, HyperMapper 
Bayesian, BIANCA, and DeepMedic for WMH segmentations are summarized in Table 2 and Figure 3. 
Our Bayesian model had the highest DSC (0.89 ± 0.08) and the lowest HD95 (2.98 ± 4.40 mm) across 
tested methods. The Bayesian model outperformed the Baseline model, which demonstrates that test-time 
dropout helps improve segmentation accuracy besides providing an uncertainty map, with the caveat of 
increased computation time. BIANCA achieved the highest recall, which indicates a high proportion of true 
positive voxels; however, it produced the lowest F-1 score, which represents low precision or a high number 
of false positive voxels. Notably, our models had the highest F-1 score which represents lower false 
positives. DeepMedic and BIANCA had 1.5 to 10 times higher Hausdorff values than our Bayesian model. 
In addition, our models were faster than BIANCA and DeepMedic. Pearson correlations between manual 
segmentation volume and volume quantified by the three tested methods are summarized in Suppl. Figure 
1. Our models and DeepMedic had the highest volume correlations with manual WMH compared to the 
other tested techniques (𝑟 = 0.99, 𝑝	 < 	0.0001), while BIANCA had the lowest volume correlations (𝑟 =
0.91, 𝑝	 < 	0.0001). A qualitative comparison between all WMH segmentation methods on one subject is 
shown in Figure 4. 
 
The cases with the highest and lowest DSC between the manual segmentations and the Bayesian model’s 
predictions, along with their uncertainties are displayed in Figure 5 (A and B, respectively). In both cases, 
the model was able to accurately segment a wide spectrum of white matter disease burden including both 
very mild and highly severe WMH. Visual inspection of the case with the lowest DSC demonstrates some 
of the challenges of this segmentation task, such as overlooking hyperintensities in the parietal lobe and 
ventricle wall. The majority of these challenges were captured in the corresponding uncertainty maps as the 
high variance between different test-time models.  
 
While our training data had only one human rater per image, we also calculated all the evaluation metrics 
(DSC, modified HD95, AVD, Recall, and the F1 score) on an additional dataset of three human raters with 
a sample of N=20 to evaluate inter-rater differences. The results are summarized in Suppl. Table 1 and 
Suppl. Figure 2. Although this additional dataset did not include all the required input sequences to test 
our model, the raters achieved a Dice similarity that is higher than the one achieved by our model on our 
test data (0.94 vs 0.89). While this is not a direct comparison, this result is to be expected since these are 
expert trained raters, the dataset is homogenous (unlike our unseen test data from other studies) and the 
sample size is smaller than our test data. It should also be noted that our model’s mean Hausdorff distance 
(HD95) was lower than the inter-rater HD95, probably due to inconsistencies in manual labelling of very 
small WMH lesions. 
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Figure 2. An example of WMH segmentation and uncertainty estimation, showing on a FLAIR scan, the 
Bayesian model’s prediction and estimated epistemic uncertainty in A) axial B) sagittal, and C) coronal 
views. Blue represents the overlap between ground truth and prediction, red (and green arrow heads) 
represent ground truth voxels missing in prediction (under-segmentation), green represent (and green arrow 
heads) prediction voxels not in the ground truth (over-segmentation). Red boxes represent “false positive” 
voxels (model predictions) that are indeed positive voxels and were missed in the manual editing of the 
semi-automated ground truth labels. 
 
Table 2. Evaluation of WMH segmentation on different methods with the following metrics: Dice similarity 
coefficient (DSC), Hausdorff distance in “mm” unit (modified as 95th percentile) (HD95), absolute volume 
difference (AVD%), sensitivity (Recall) and F-1 score for individual lesions. ↓ indicates that smaller values 
represent better performance. 
 HyperMapper 

Baseline 
HyperMapper 

Bayesian  
BIANCA DeepMedic  

Dice similarity 
coefficient  

0.892 (± 0.080) 0.893 (± 0.080) 0.604 (± 0.222) 0.858 (± 0.080) 

Hausdorff distance 
(HD95) (mm) ↓ 

3.045 (± 4.417) 2.979 (± 4.396) 29.684 (± 17.105) 4.477 (± 6.322) 

Absolute volume 
difference (%) ↓ 

9.819 (± 12.173) 9.843 (± 12.134) 108.970 (± 216.346) 13.846 (± 14.731) 

Sensitivity (Recall) 0.762 (± 0.149) 0.762 (± 0.150) 0.805 (± 0.168) 0.764 (± 0.153) 
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F-1 score 0.752 (± 0.119) 0.753 (± 0.119) 0.199 (± 0.148) 0.652 (± 0.126) 

Time (seconds) 10s 16s 24s 25s 

Figure 3. Evaluation of WMH segmentations across tested methods using the following metrics: Dice 
similarity coefficient, modified Hausdorff distance (HD95), absolute volume difference (%), and Lesion 
F1. not significant: ns, p < 0.05: *; p < 0.01: **; p < 0.001: ***; p < 0.0001: ****. 
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Figure 4. Visual comparison of the tested methods in an example subject. Blue represents the overlap 
between ground truth and prediction (true positive voxels), red (and red arrows) represents ground truth 
voxels missing in prediction (false negative voxels), green (and green arrows) represents prediction voxels 
not in ground truth (false positive voxels). 
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Figure 5. WMH segmentation and uncertainty maps of cases with the highest (A) and lowest (B) Dice 
similarity coefficients from the test set. Red arrowheads and circles highlight areas of under-segmented and 
green arrowheads and circles highlight areas that were over-segmented. Red boxes represent an enlarged 
perivascular space (PVS) in the frontal lobe that was mislabelled as WMH in the ground truth data, but 
accurately not captured by our model as WMH. 
 
Evaluation on dWMH and pvWMH 
We also evaluated our second model’s capability of classifying both dWMH and pvWMH. This distinction 
is important in the clinical setting because accurate WMH labeling is a critical feature in classifying vascular 
dementia. Dice similarity coefficients on dWMH and pvWMH were 0.58 ± 0.22 and 0.87 ± 0.09, 
respectively. These results demonstrate that segmenting dWMH is more challenging due to their size and 
location. For instance, pvWMH usually appear larger, brighter, and often form confluent lesions with higher 
contrast, while dWMH usually appears as small punctate lesions. Figure 6 highlights WMH multi-class 
segmentation results for an example subject with the first model’s WMH segmentation, dWMH/pvWMH 
segmentation, and multi-class ground truth. 
 
Evaluation on mild cases 
To highlight the clinical and research utility of our models, we further evaluated their performance on cases 
with mild WMH burden, against other SOTA methods (Table 3 and Suppl. Figure 3). Table 3 shows the 
evaluation of different methods on 50 cases with mild WMH burden (pvWMH (cc): 1.8 (1.1) and dWMH: 
0.27 (0.22)). The results demonstrate that our Bayesian model had the highest performance as assessed by 
DSC, HD95, and F1-score (0.84 ± 0.10, 5.25 ± 6.51, and 0.721 ± 0.116, respectively). They also highlight 
the higher complexity of the task and the shortcomings of existing SOTA methods in extracting unique 
features from much smaller lesions with limited volumes and extent. Therefore, their early detection is 
clinically important for neurodegenerative populations. 
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Table 3. Evaluation of WMH segmentation on mild WMH cases. ↓ indicates that smaller values represent 
better performance. 
 HyperMapper 

Baseline 
HyperMapper 

Bayesian  
BIANCA DeepMedic 

Dice similarity 
coefficient  

0.841 (± 0.097) 0.842 (± 0.097) 0.340 (± 0.067) 0.779 (± 0.092) 

Hausdorff distance 
(HD95) (mm) ↓ 

5.365 (± 6.450) 5.252 (± 6.505) 44.042 (± 9.564)  8.236 (±7.190) 

Absolute volume 
difference (%) ↓ 

11.298 (± 12.715) 11.393 (± 12.812) 275.970 (±324.757) 22.087 (± 20.971) 

Sensitivity (Recall) 0.712 (± 0.161) 0.712 (± 0.160) 0.780 (± 0.187) 0.749 (± 0.160) 

F-1 score 0.720 (± 0.116) 0.721 (± 0.116) 0.096 (± 0.048) 0.594 (± 0.120) 

 
Clinical adversarial cases 
Our model’s performance was evaluated on the effects of changes and perturbations in SNR, resolution, 
and contrast and compared against other SOTA methods (Table 4). Cases with the lowest SNR led to a 
performance drop of our Bayesian model with an average drop of 9.7% in DSC and an average increase of 
20% in HD95. While decreases in resolution resulted in an average drop of 9.4% in DSC and an increase 
of 96% in HD95. Changing image contrast produced a drop of 7.9% in DSC and an increase of 69% in 
HD95. WMH segmentation results and uncertainty maps for these simulated experiments are shown in 
Figure 7 and Suppl. Figure 9. To further validate the performance of our model against changes in imaging 
protocols, we evaluated it against clinical adversarial attacks on a population with mild WMH burden 
(Suppl. Table 2). The results show that the mild WMH cases results in a higher performance drop in our 
Bayesian model on the DSC (lower SNR: 12.3%, lower resolution: 12.6%, and changing contrast: 10.4%), 
due to the complexity of small lesions and their higher sensitivity to different attacks such as higher noise 
and lower resolution. 
 
All tested SOTA methods were compared to our Bayesian model on noisy input data with a sigma 0.2, 
downsampled data by a factor of 2 across all planes, as well as inputs with contrast changes using a gamma 
0.5 (Figures 8, Suppl. Figures 4 and 5). DeepMedic failed to generate 62 (out of 158) WMH segmentation 
masks for downsampled adversarial cases, and 1 WMH segmentation for noise induced cases. Failed cases 
were not included in the analysis or generated figures. We observed that the clinical adversarial cases had 
significant effects on other SOTA methods as apparent by the substantial decreases in Dice coefficient and 
increases in Hausdorff distance values (Table 4). A qualitative comparison between all WMH segmentation 
methods on one subject for all three adversarial attacks is included in Figure 9. The performance of 
BIANCA and DeepMedic on the selected subject (Figure 9) were high before any attacks (DSC > 0.80) 
but dropped significantly on adversarial cases. 
 
Our model had better performances across all metrics for the noise induced cases in comparison to other 
methods (Figure 8). Specifically, the Bayesian model had a significantly higher DSC and lower HD95 
relative to other SOTA methods (HyperMapper:- DSC: 0.81 ± 0.09, HD95: 3.59 ± 4.69mm; BIANCA:- 
DSC: 0.25 ± 0.13, HD95: 30.47 ± 18.45 mm; DeepMedic:- DSC: 0.64 ± 0.22, HD95: 14.09 ± 13.63 mm). 
Similar to noise induced cases, our Bayesian model had a better performance in comparison to other SOTA 
methods on adversarial attacks with lower resolution (DSC: 0.81 ± 0.10, HD95: 5.84 ± 6.48 mm). All other 
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SOTA methods encountered a substantial decrease in performance as a result of downsampling the input 
images. Although DeepMedic’s performance was comparable on in-distribution data, its performance 
dropped significantly on adversarial cases with lower resolution (DSC: 0.31 ± 0.21, HD95: 50.05 ± 21.24 
mm). A similar trend was observed in the contrast permutation adversarial experiments, where a slight drop 
in accuracy was observed using our Bayesian model (DSC: 0.82 ± 0.10, HD95 5.05 ± 6.17mm); in stark 
contrast to BIANCA (DSC: 0.39 ± 0.18, HD95: 29.50 ± 17.07 mm) and DeepMedic’s performance (DSC: 
0.67 ± 0.19, HD95: 10.74 ± 10.58 mm).  
 
The performance of our models and SOTA methods were further evaluated on adversarial attacks in 50 
mild WMH subjects (Suppl. Table 2, Suppl. Figures 6, 7, and 8), demonstrating that our Bayesian model 
had the highest performance and robustness in comparison to tested SOTA methods across different 
adversarial attacks. DeepMedic failed to generate 44 (out of 50) WMH segmentation masks for 
downsampled adversarial cases, and 1 WMH segmentation for noise induced cases. DeepMedic 
experienced a substantial decrease in performance on adversarial cases with lower SNR (DSC: 0.42 ± 0.20, 
HD95: 26.64 ± 17.41 mm), lower resolution (DSC: 0.10 ± 0.09, HD95: 76.42 ± 6.63 mm), and contrast 
changes (DSC: 0.49 ± 0.18, HD95: 20.94 ± 12.35 mm).  
 
Table 4. Evaluation of WMH segmentation on different adversarial attacks.  
 Adversarial attacks HyperMapper 

Bayesian  
BIANCA DeepMedic 

Dice similarity 
coefficient  

Noise (sigma=0.2) 0.806 (± 0.086) 0.252 (± 0.130) 0.639 (± 0.217) * 

downsampled (2x2x2) 0.809 (± 0.101) 0.348 (± 0.176) 0.306 (± 0.208) ** 

Contrast (gamma=0.5) 0.822 (± 0.102) 0.389 (± 0.184) 0.677 (± 0.198) 

Hausdorff 
distance 
(HD95) (mm) ↓ 

Noise (sigma=0.2) 3.592 (± 4.686) 31.521 (± 14.999) 14.092 (± 13.626) * 

downsampled (2x2x2) 5.836 (± 6.475) 30.469 (± 18.451) 50.049 (± 21.236) ** 

Contrast (gamma=0.5) 5.047 (± 6.172) 29.488 (± 17.077) 10.742 (± 10.5854) 

Absolute 
volume 
difference (%) 
↓ 

Noise (sigma=0.2) 15.037 (± 13.169 159.602 (± 278.002) 42.627 (± 24.601) * 

downsampled (2x2x2) 19.745 (± 18.260) 156.712 (± 325.622) 77.265 (± 18.012) ** 

Contrast (gamma=0.5) 24.454 (± 23.178) 176.860 (± 365.183) 40.007 (± 24.096) 

Sensitivity 
(Recall) 

Noise (sigma=0.2) 0.720 (± 0.136) 0.669 (± 0.168) 0.259 (± 0.124) * 

downsampled (2x2x2) 0.677 (± 0.148) 0.601 (± 0.217) 0.072 (± 0.040) ** 

Contrast (gamma=0.5) 0.601 (± 0.200) 0.759 (± 0.186) 0.348 (± 0.191) 

F-1 score Noise (sigma=0.2) 0.505 (± 0.160) 0.139 (± 0.142) 0.376 (± 0.134) * 

downsampled (2x2x2) 0.718 (± 0.010) 0.316 (± 0.169) 0.131 (± 0.066) ** 

Contrast (gamma=0.5) 0.662 (± 0.135) 0.213 (± 0.175) 0.469(± 0.166) 

*DeepMedic failed on 1 subject with increased noise, **DeepMedic failed on 62 subjects with lower resolution  
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Figure 6. An example of WMH segmentation on a FLAIR scan (axial, sagittal, and coronal view), showing 
the Bayesian model’s total WMH prediction, dWMH and pvWMH prediction, as well as ground truth 
labels. Blue labels represent Bayesian model WMH prediction, red labels represent dWMH, and green 
labels represent pvWMH. 
 

 
Figure 7. WMH segmentation and uncertainty estimates using our Bayesian model under three types of 
adversarial attacks applied to the same subject (the addition of noise with a sigma of 0.2, downsampling of 
resolution by a factor of 2x2x2, and changing contrast with 0.5 gamma). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2021. ; https://doi.org/10.1101/2021.08.18.456666doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456666
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
19 

 
Figure 8. Evaluation of WMH segmentation on cases with increased noise. not significant: ns, p < 0.05: *; 
p < 0.01: **; p < 0.001: ***; p < 0.0001: ***. 
 

 
Figure 9. Visual comparison of the segmentation methods under three types of adversarial attacks (the 
addition of gamma noise with a sigma of 0.2, downsampling of resolution by a factor of 2x2x2, and 
changing contrast with 0.5 gamma). 
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Discussion  
 
This work presented Bayesian 3D CNNs to segment total, deep and periventricular WMH, and estimate 
model uncertainty to provide a quantitative assessment of confidence in segmentation accuracy. Our models 
were trained using a heterogeneous multi-site, multi-scanner dataset with different augmentation schemes 
including the addition of noise, various resolutions, and changes in contrast, to make the model more robust 
to the challenges that commonly result from different MRI scanners and acquisition protocols. We first 
highlighted the utility of the resulting uncertainty maps for quality control. Then, we compared our models 
to available SOTA methods demonstrating our model’s performance on a test dataset including an unseen 
multi-site study. We further validated the performance of all methods on populations with mild WMH 
burden. Finally, the performance of our model was validated against SOTA methods on clinical adversarial 
attacks including lower SNR, lower resolution, and changes in contrast. 
 
Uncertainty maps for quality control  
For estimating model uncertainty, we implemented a Bayesian approach, where MC samples from the 
posterior distribution were generated by keeping the dropout layers active at test time. Variance over the 
MC samples was used to provide a voxel-wise model uncertainty map, whereas maximum likelihood 
estimation over the MC predictions provided the final segmentation. Based on our experiments and visual 
assessments, the uncertainty maps reliably represented correctly segmented regions with low uncertainty 
and mis-segmented regions with high uncertainty. Generally, the areas of high uncertainties were localized 
in the periphery of the segmentations. Furthermore, the uncertainty increased when the model was tested 
on the out-of-distribution datasets (simulating data with low signal-to-noise ratio, low resolution, and 
different contrast). Uncertainty is a key concept to highlight scans with lower segmentation accuracy. 
Uncertainty could therefore be used to either guide the expert or combined with an uncertainty-aware 
postprocessing method to improve segmentation. 
 
Evaluation of clinical datasets 
While many WMH segmentation algorithms exist due to the importance placed on quantifying WMH in 
neuroimaging studies and neurodegenerative disorders, these algorithms commonly require manual 
parameter tuning and are computationally expensive. In addition, many current methods do not produce 
optimal results in populations with mild vascular lesions. Our models provide an open-source, accurate and 
robust solution to segment WMH and classifying dWMH and pvWMH that is fast and require no parameter 
optimization; highlighting their applicability to segment mild WMH burden. Our Bayesian model achieved 
an average DSC of 0.89 ± 0.08 and HD95 of 2.98 ± 4.40 mm for WMH segmentation in this difficult test 
dataset.  
 
The Dice similarity coefficient is commonly used to evaluate the overlap between segmentation output and 
ground truth labels; however, it is less indicative of mismatch when segmenting larger ROIs or outlier 
voxels. Thus, it should be reviewed in conjunction with surface distance metrics such as the Hausdorff 
distance as a complementary evaluation metric for measuring boundary mismatches. Although the absolute 
volume difference (AVD) serves as a measurement of the similarity in voxel counts, it was included as an 
evaluation metric to provide a fuller context to the segmentation results. To assess over-segmentation and 
under-segmentation, the values on recall (sensitivity) and F1-score were calculated. Evaluating the Dice 
similarity coefficient and Hausdorff score, along with AVD, Recall and F1-score, we demonstrated that our 
proposed model improves on current SOTA methods in terms of accuracy while providing uncertainty 
maps, performing the task in seconds.  
 
We chose a multi-site and multi-scanner dataset to train our model on ground truth data that were semi-
automatically edited by experts rather than automated outputs produced by other algorithms as they are 
expected to be more accurate. It should be noted that while manual segmentation is often considered the 
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gold standard, it may not necessarily represent the absolute truth. Therefore, some errors in segmentations 
could be due to inconsistencies in ground truth rather than lower model accuracy. Our proposed method 
outperformed the semi-automatically edited ground truth in some cases. Figures 2 and 5 highlighted a few 
instances where “false positives” are indeed positive voxels and were probably missed in manual editing of 
the semi-automated lesion segmentation. For instance, Figure 2A shows two cases (highlighted by red 
squares) where errors in segmentations are probably due to inconsistencies in ground truth rather than model 
false positives, while Figure 5B highlights a case where another vascular lesion (enlarged perivascular 
space ‘PVS’) was mislabelled as WMH in the frontal lobe in the ground truth data (highlighted by red 
squares), but (accurately) not captured by our model as WMH. It should however be noted that several 
factors may visually lead to the impression of underestimation of pvWMH by ground truth. For example, 
partial volume effects at the interface between pvWMH and surrounding normal WM may create a ‘gray’ 
zone around pvWMH that may be segmented as WMH by CNNs; additionally, increased brightness and 
lower image contrast may cause lesions to look bigger than their actual size. 
 
When considering the indirect comparison of our model’s performance to inter-rater overlap, while the 
overlap between raters was marginally higher than the one achieved by the model, this is to be expected in 
such a complex segmentation task like WMH segmentation, with often small lesions to segment, 
heterogenous brain anatomy and other confounding vascular lesions. The consistently higher performance 
of our model on several multi-site studies highlights its robustness against different scan protocols, disease 
groups, and unseen datasets.  
 
Evaluation on d/pvWMH and mild cases 
Distinguishing the dWMH and pvWMH is important due to different clinical implications such as 
classifying vascular dementia. While our model achieved a high performance on pvWMH, the task of 
segmenting dWMH was more challenging due to its shape, size and location. Initial preliminary results 
showed a worse performance when training a single multi-class model to distinguish dWMH and pvWMH 
and then generating a binary WMH segmentation (DSC: 0.85). Future work will investigate the potential 
reasons and how we could improve this single multi-class model performance. Our model’s improvement 
in performance over SOTA methods was even more apparent in populations with mild WMH burdens. The 
ability to accurately capture smaller WMH is a more challenging task of lesion detection and quantification; 
however, it is important for studying and tracking preclinical stages of neurodegenerative diseases and 
small vessel disease, as it has been shown that WMH at baseline predicts future WMH and is associated 
with dementia.  
 
Clinical adversarial cases 
Our results on the “clinical adversarial cases” suggest that our Bayesian model is largely robust to cases 
with varying degrees of noise, downsampling and contrast changes. There are several reasons why our 
model may be more robust than SOTA methods that we compared against, such as augmentation strategies, 
residual blocks, dilated convolutions, and skip-connection architecture. Many of the augmentation 
strategies have been chosen after developing pipelines (using whole-brain images) on multiple 
applications/tasks to make networks more robust. L-R flipping is one of the most used augmentation 
strategies. We also performed bias-field correction using the N4 algorithm as a preprocessing step. Tested 
SOTA methods had widely varying results when segmenting lower SNR data, lower resolution, and data 
with different contrast than the training set, with substantial volume differences and drops in quantitative 
metrics or segmentation fidelity. Notably, they failed on the majority of cases with lower resolution, 
highlighting the sensitivity of some deep learning networks to out-of-distribution data and the need for 
further validation of the generalizability of these networks. Further improvements of our models may also 
be necessary in light of some of the weaknesses found, most notably on downsampled and noisy data. For 
future work, we will investigate incorporating smooth varying maps and other augmentation strategies. In 
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addition to the simulated attacks we employed, there are other challenges that could be tested in future 
work, such as the simulation of significant subject motion that could have an effect on smaller dWMH.  
 
Though our models performed well compared to other segmentation algorithms, there are still some future 
improvements that can be made. While our models are trained on a dataset without stroke lesions, the 
stroke’s penumbra presents with similar contrast to WMH on FLAIR sequences, hence one of the main foci 
of future work is to train models to distinguish between the two lesions. Future work will also investigate 
the effect of a combined loss function (for example a weighted cross entropy loss and a weighted dice loss) 
to handle datasets with varying degrees of contrast and volume sizes. 
 
Conclusion 
 
We present a robust and efficient WMH segmentation model, which also generates an uncertainty map for 
quality control. In addition, we present a second model to classify dWMH and pvWMH using the initial 
total WMH segmentation. We trained our CNN models with expert manually edited segmentations from 
four large multi-site studies including participants with vascular lesions and atrophy, which represent 
challenging populations for segmentation techniques, and then tested them on an unseen multi-site study in 
addition to the four large multi-site datasets. Our segmentation models achieved high accuracy compared 
to SOTA algorithms on a wide spectrum of WMH burdens, especially mild WMH. Additionally, we used 
an augmentation scheme to make our model robust to simulated images with SNR, low resolution, and 
different contrasts. We are making our pipelines and models available to the research community and 
developed an easy-to-use pipeline with a graphical user interface (GUI) and thorough documentation for 
making it accessible to users without programming knowledge at: https://hypermapp3r.readthedocs.io. 
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