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Abstract

Motivation: Drug repositioning is an attractive alternative to de novo drug discovery due to
reduced time and costs to bring drugs to market. Computational repositioning methods,
particularly non-black-box methods that can account for and predict a drug’s mechanism, may
provide great benefit for directing future development. By tuning both data and algorithm to utilize
relationships important to drug mechanisms, a computational repositioning algorithm can be
trained to both predict and explain mechanistically novel indications.

Results: In this work, we examined the 123 curated drug mechanism paths found in the drug
mechanism database (DrugMechDB) and after identifying the most important relationships, we
integrated 18 data sources to produce a heterogeneous knowledge graph, MechRepoNet, capable
of capturing the information in these paths. We applied the Rephetio repurposing algorithm to
MechRepoNet using only a subset of relationships known to be mechanistic in nature and found
adequate predictive ability on an evaluation set with AUROC value of 0.83. The resulting
repurposing model allowed us to prioritize paths in our knowledge graph to produce a predicted
treatment mechanism. We found that DrugMechDB paths, when present in the network were rated
highly among predicted mechanisms. We then demonstrated MechRepoNet’s ability to use
mechanistic insight to identify a drug’s mechanistic target, with a mean reciprocal rank of .525 on
a test set of known drug-target interactions. Finally, we walked through a repurposing example of
the anti-cancer drug imantinib for use in the treatment of asthma, to demonstrate this method’s
utility in providing mechanistic insight into repurposing predictions it provides.

Availability and implementation: The Python code to reproduce the entirety of this analysis is

available at: https://github.com/Sulab/MechRepoNet

Contact: asu@scripps.edu

Supplementary information: Supplemental information is available at Bioinformatics online.
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Introduction

Drug repositioning, the discovery and development of new indications for previously developed
drugs, promises a quicker, less-costly alternative to traditional de novo drug discovery (Ashburn
and Thor, 2004). Historically, many repositioning candidates have been identified through clinical
observations. Computational repositioning leverages statistical modeling to analyze drug-disease
combinations quickly in the hopes of streamlining the candidate identification process.
Unfortunately, most candidates identified through this method fail to progress beyond in vitro
studies (Oprea and Overington, 2015). Several approaches for overcoming this shortcoming have
specifically addressed increasing predictive performance on a known gold standard through either
updated algorithms (Luo ef al., 2018) or improving quality and quantity of validated examples for
training (Brown and Patel, 2018; Shameer et al, 2018). Other methods focus on improving
interpretability of predictions, aiming to uncover new experimental avenues through testable
hypotheses that may improve understanding of a drug’s effect on a disease (Malas ef al., 2019).
Integrating both computational and experimental approaches, so that the results of each inform the
other, is considered the best option for progressing the field of drug repositioning (Pushpakom et

al., 2019).

Methods for computational repurposing models frequently rely on drug-drug and/or
disease-disease similarity to produce predictions (Li et al., 2016; Liand Lu, 2012; Luo et al., 2018).
While this information is both important and predictive, a semantic network can describe complex
and contextual relationships between a drug and a disease by connecting several individual
concepts in a sequence of relationships. These concepts and relationships (collectively a ”path”)
can be represented as nodes and edges, respectively, of a knowledge graph In silico predictive
models built from such knowledge graphs have the potential to inform experimental work through
providing interpretable mechanistic explanations. However, these models heavily weight the
relatedness of two drugs, through targets or pharmacology, as well as the relatedness of diseases,

both carrying significant predictive power (Himmelstein et al., 2017; Emig et al., 2013; Mayers et
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al., 2019). In cases where there are no known treatments for a disease, or no diseases known to be
similar, which is often the case with rare diseases, these patterns lose their utility. Uncovering
connections between a drug and a disease that are less immediate may provide additional evidence
for drug repositioning. By taking the few mechanistic details that may be available about a rare
disease and identifying how a drug might interact with them could provide better insight.

In this work, we created a heterogeneous network with an emphasis on expressing
relationships describing a drug’s mechanism of action. This mechanistic repositioning network
(MechRepoNet) was then used as the data source to construct a predictive model for drug
repositioning using a modified version of the Rephetio algorithm (Himmelstein et al., 2017). Edges
representing drug-drug or disease-disease similarity were excluded from the model, enriching for
paths with mechanistic meaning. The predictions from the resulting model were shown to be highly
enriched for both the true mechanisms of action (as expressed in DrugMechDB) and a drug’s
annotated protein target. While demonstrating the value of focusing on mechanistic
interpretability, this work also underscored a fundamental challenge in computational drug
repurposing based on knowledge graphs in that many key mechanistic relationships are not readily

available in structured databases.

Methods

Integration of data sources to build a mechanistic network MechRepoNet
Selection of data sources
We created DrugMechDB, a database that describes drug mechanisms as paths through a

heterogeneous knowledge graph (Mayers et al., 2020). DrugMechDB is a relatively small

database, with just 383 unique concepts (spanning 13 semantic types) and 432 relationships. But
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these concepts (nodes) and relationships (edges) were assembled into mechanistic paths describing
123 pairs of diseases and drugs. We examined the concept and relationship types contained within
the paths of the Drug Mechanism Database (DrugMechDB) to prioritize relationships important to
expressing drug mechanisms.

We used DrugMechDB as a roadmap in the creation of MechRepoNet, a large
heterogenous network suitable for use as an input knowledge graph for computational drug
repurposing. Data sources were evaluated based on their ability to express the semantic
relationships found in DrugMechDB in order to construct a heterogeneous network capable of
capturing these paths. Wikidata and Reactome were selected as primary data sources due to their
high level of breadth, high data quality, and open reuse policies. Nodes and edges from various
data sources that follow the schema captured in DrugMechDB and not abundant in Wikidata or
Reactome, were prioritized and added into MechRepoNet. In all, eighteen data sources were
selected for integration: Wikidata (Vrandeci¢, 2012), Reactome (Fabregat et al., 2018), InterPro
(Mitchell et al., 2019), Ensembl (Cunningham et al., 2019), miRTarBase (Chou et al., 2018),
ComplexPortal (Meldal et al., 2015), Gene Ontology (Ashburner et al., 2000), Uber-anatomy
Ontology (Mungall et al., 2012), Cell Ontology (Diehl et al., 2016), Protein Ontology (Natale et
al., 2017), Disease Ontology (Schriml et al., 2019), Human Phenotype Ontology (Kohler et al.,
2019), NCATS Inxight Drugs (NCATS Inxight: Drugs), DrugBank (Wishart et al., 2018),
DrugCentral (Ursu et al., 2017), Comparative Toxicogenomics Database (CTD) (Davis et al.,
2019), RheaDB (Morgat et al., 2017), and GAUSS (Dutta et al., 2019). Although data licensing
restrictions prevent the direct redistribution of MechRepoNet, the complete code to assemble the

graph is available at https://github.com/SuLab/MechRepoNet/.

Data model determination and data integration

To standardize the data in MechRepoNet, concepts in the graph were normalized to the
Biolink data model (Mungall et al., 2020). To reduce the number of potential features input into

the model, relationships (edges) were standardized to a simplified set of predicates. To ensure that
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edges could contribute to metapaths at multiple levels of granularity, all directed edges were
duplicated with the undirected edge equivalent.

Additional data model normalization for nodes was performed to adjust the level of
granularity of Wikidata concepts. Wikidata and mygene.info (Xin ef al., 2016) were used as
primary sources to normalize node concepts between resources, augmented by limited string

matching for chemical substances. Exact details are provided within the code repository.

Training a learning model to find mechanistic treatment paths

Learning model

We based our analysis on the Rephetio degree weighted path count (DWPC) algorithm
(Himmelstein et al., 2017), which uses a logistic regression learning model to predict
ChemicalSubstance-treats-Disease relationships. Rephetio uses features based on metapaths that
join the node types ChemicalSubstances and Diseases in a knowledge graph. “Metapaths” refer to
a specific sequence of node types and edge types, whereas “paths” are specific instances of nodes
and edges. For example, a three-node and two-edge metapath would be [ChemicalSubstance] -
inhibits - [Protein] - causes - [Disease], and a specific instance of this metapath would be the path
linking imatinib to the BCR/ABL fusion protein to chronic myelogenous leukemia.

We slightly deviated from the published Rephetio algorithm to ensure computational
tractability, since MechRepoNet was significantly larger than the Rephetio knowledge graph and
had many more potential metapaths to use as features in the machine learning model. First, whereas
Rephetio used both DWPC of each metapath and node degrees of the compound and disease nodes
as features in the model, we only used DWPC features. Second, Rephetio used a permutation
analysis for feature selection, and we replaced that with a streamlined approach based on feature
elimination by weak learners. Network permutation on MechRepoNet would be computationally

expensive as it contains over five times the number of nodes (47,031 to 250,035) and four times
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the number of edges (2,250,197 to 9,652,116). Finally, we removed all metapaths that were
primarily based on compound-compound and disease-disease similarity, enriching for metapaths
which represent a drug’s mechanism; the remaining metapaths are mechanistic paths.
(https://github.com/SuLab/MechRepoNet/blob/main/1_code/13b_Model Prep Metapath Memb

ership_Analysis.ipynb).
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Figure 1: Indication sources and schematic of model training paradigm a) Indications were initially
sourced from two data sources, Wikidata and NCATS Inxight Drugs. Inxight Drugs is a data aggregator that compiles
data from several sources including DrugBank and DrugCentral producing many indications. The Clinical
Toxicogenomic Database (CTD) contains over 14,000 indications, all originating from text-mining, with human
confirmation of the result. Path contraction along the Compound - treats - Disease - inverse subclass of - Disease path

produces a total of 69,639 indications. b) Initially, 20% of compounds with known indications were removed and
placed in a holdout set. A subset of 15% of the remaining compounds with known indications were used for
hyperparameter tuning and metapath selection. The 160 metapaths selected were used to train a model on all
indications not within the holdout set for validation of the model. Finally, all indications were used to produce a final
model for mechanistic evaluation.

Training data

A logistic regression was trained on the examples of ChemicalSubstance-treats-Disease
triples found within the knowledge graph. There were 69,639 relationships of this type, coming
from multiple data sources including Wikidata, NCATS Inxight Drugs, and CTD (Figure 1a). This
large number is attributable to the differing chemical and disease vocabulary used by the data
sources as well as the use of computational methods for producing network edges including NLP
and subclass path contraction.

Before any model tuning or training was performed, a subset of 20% of the 11,303
ChemicalSubstances with at least one known indication were selected, and their 13,605
corresponding “treats” edges were removed from the network to be used as a validation set (Figure
1b).

Hyperparameter tuning

A subset of 15% of the ChemicalSubstances with known “treats” Disease relationships
were selected for hyperparameter tuning, amounting to 1,404 ChemicalSubstances with 8,607
positive training examples (Figure 1b). Negative samples were randomly selected from the set of
non-positive ChemicalSubstance-Disease pairs. Negative samples were randomly selected instead
of chosen from contraindications to select for no-effect instead of deleterious effects between a
ChemicalSubstance and Disease pair. Negative examples were sampled at a rate of 1:1, 10:1,
100:1, and 1000:1 relative to the positive examples to test the model’s sensitivity to the known
imbalance between positive and negative treats relationships between drugs and diseases. In all

instances of model training, pairs were only utilized if at least one path existed between the
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compound and the disease. These examples were used for feature selection (see Feature selection
below) and selected features were used to tune the DWPC damping exponent (w), the elastic net
regularization strength (4), and the ratio of L; and L> penalties (a) (Zou and Hastie, 2005).
Hyperparameters were tuned using 50 iterations of the Bayesian hyperparameter optimization
method (Bergstra et al., 2013). Optimization was performed to maximize a linear combination of
the area under the receiver operator characteristic and precision recall curves, while minimizing

the variance in these values across folds.

Feature selection

The fifty-five unique metapaths that were found in DrugMechDB were all included as
features in our model. In addition, a voting strategy was employed between six different feature
selection methods, each tasked with selecting 500 metapaths. Each feature selection method
obeyed one of the following rules: Features with the largest magnitude of correlation coefficient
with respect to the target, top features after a y° test between features and targets, a recursive feature
elimination of the smallest 10% of features in a weak regression classifier with L, regularization,
the features with largest magnitude of coefficient from a weak regression classifier with L;
regularization, the largest feature importance values from a weak random forest classifier, and the
largest feature importance values from a weak gradient boosted decision tree. Each selected feature
from the 6 methods were considered a vote and features with 4 or more votes were kept for the
training model. Code describing this full feature selection process is available on github
(https://github.com/Sulab/MechRepoNet/blob/main/1 _code/13¢_Model Prep Hyperparam tuni
ng.ipynb). This process resulted in fewer than 200 of the 8,284 mechanistic metapaths being
selected as features for training. Of the 55 metapaths that were included in our model based on
DrugMechDB paths, 21 were selected as features by elastic net regularization, and 12 had positive

coefficients for the final MechRepoNet model.
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Performance evaluation

A model was trained on all the “treats” relationships in the network, less the holdout set as
described in the training data section (Figure 1b). This holdout set, along with a sampling of non-
positive relationships, was used to validate the learning model built from the data within the

network.

Results

Analyzing DrugMechDB for relevant relationships

Our first task was to build a heterogeneous network capable of expressing drug
mechanisms. To help direct the creation of our network, we created DrugMechDB, a manually
curated database of drug mechanisms. DrugMechDB consisted of 123 mechanistic paths for 109
unique indications between 106 drugs and 86 diseases. This dataset spanned a diverse cross-section
of drug classes and disease areas (Supplemental Figure 1). The most common edge type in
DrugMechDB joins Drug entities with Protein entities, with 94 of the 123 paths containing a
relationship of this form (Table 1). Other common edge types join Biological Processes with

Disease, and Proteins with Biological Processes.
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DrugMechDB MRN
Concepts Tuglec Relationship Count " R
Total MRN Count.
INHIBITS 67 Yes 416,972
Drug - o4 ACTIVATES 24 Yes 472,948
Protein ’ INCREASES
o 2 Similar -
EXPRESSION
DECREASES
JREASES 1 Similar -
EXPRESSION
CAUSES 29 No -
Biological DISRUPTED IN 11 No -
Process 63 ELEVATED IN 11 No
Disease ASSOCIATED . Yes 2,052,856
WITH
REDUCES 5 -
INVOLVED IN 38 520,389
Protein - UP REGULATES 14 22,259
Biological 61 DOWN
lologiea ’ 7 Yes 16,290
Process REGULATES
ACTIVATED BY 1 No -
REGULATES 1 Yes 57,329
Taxon - % CAUSES 2% Yes 69,058
Disease
Biological o5 REQUIRED FOR 24 Similar 635,514
5
Process - Taxon REDUCES 1 No -
N
Protein - . bow 9 Yes 8,706
. 16 REGULATES
Protein
UP REGULATES 7 Yes 4,270
Compound - PART OF 8 Yes 48,991
Biological 12 DOWN
1olopled OV 3 Yes 39,706
Process REGULATES
UP REGULATES 1 Yes 38,936
Protein
Compound 9 PRODUCES 9 No -
Class
i PRODUCES 5 Similar 1,080
Protein .
9 REDUCES 3 Similar 506
Compound )
ACTIVATED BY 1 Yes 472,918

Table 1: Counts of top relationship types in DrugMechDB. The most common pairings of concepts
found in DrugMechDB and the different relationships that connect them. Whether or not these concepts are
expressed in MechReopNet is noted, with “Similar” meaning either different semantics are used with similar
meaning (e.g. “Down Regulates” instead of “Inhibits”), or that relationship exists, but something about it is
fundamentally different (e.g. Protein Regulates Protein relationships without specific up or down directionality).

MRN = MechRepoNet.
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Building a network to express drug mechanisms: MechRepoNet

Based on the analysis of mechanistic paths in DrugMechDB, we integrated 18 publicly
available data sources to produce a new mechanistic repositioning heterogeneous network
(MechRepoNet) (Figure 2a). MechRepoNet contains 250,035 concepts of 9 different semantic
types, and 9,652,116 unique edges of 68 semantic types (where the semantic type of an edge is
defined by a subject node type, an object node type, and a predicate) (Figure 2b). Most concepts
in MechRepoNet are classified as MacromolecularMachine, which includes Genes, Proteins, RNA
Products, and Complexes (Table 2). The most common edge type connects a
BiologicalProcessOrActivity to a Disease through a general association, with 2,052,856 examples,
representing 21.3% of the edges in MechRepoNet (Table 1).

While MechRepoNet contains many of the concept types found in DrugMechDB, there are
a few differences (Table 2). Most notably, we normalized concept types to the Biolink data model,
a standardized hierarchy of biomedical entity classes, to increase interoperability between data
sources (Mungall et al., 2020). Relationships in MechRepoNet were mapped to a flat list of
interaction types (Table 3). In general, the relationships in DrugMechDB are more specific than
those in MechRepoNet, primarily because data sources use imprecise semantics when describing

relationships.
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CTD 6,312,738
Gene Ontology 1,492,662
WikiData 1,185,514
Reactome 617,541
Human Phenotype Ontology 201,656
miRTarBase 94,610
Protein Ontology 76,150
Inxight Drugs 70,514
GAUSS 31,662
ensembl 31,064
InterPro 25,869
RheaDB 21,731
DrugBank 14,615
DrugCentral 13,084
Disease Ontology 4,565
ComplexPortal 1,999
Cell Ontology 855
UBERON 492 . . . . .
103 10 10° 106 107
edges (log)
(a) Edges by data source in MechRepoNet
(7 N ) B activates
/ affects
B associated_with
B capable_of
—_— W causes
W disrupts
B has_input
in_reaction_with
B in_taxon
4 inhibits
Pathwar PhenotypicFeature, acromolecularMachir iologicalProcess B marker_or_mechanism
negatively_regulates
W palliates
part_of
M positively regulates
B presents
prevents
rganismTaxen | produces
}r -« < n.egulates
L \ h / ) W site_of

(b) MechRepoNet data model

treats

Figure 2: Data within MechRepoNet. (a) The number of edges provided by each data source integrated into
MechRepoNet. (b) A graphic representation of the MechRepoNet data model.
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Node type Abbreviation Identifier Sources Count
AnatomicalEntity A GO, UBERON, CL 3,580
BiologicalProcessOrActivity BP GO 21,065
CHEBI, IKEY, MESH, UNII,
ChemicalSubstane C ' ' ' ' 40,766
hemicalSubstance PCID, CHEMBL, WD, DB 7
DOID, MESH, MONDO,
Diseas D ' ' 13,961
ease OMIM, WD, UMLS -
GeneFamily GF InterPro 10,807
NCBIGene, WD, UniProt, RNAC,
M lecularMachi G ' ' " 136,991
acromolecularMachine REACT, CPX, ENSC, PR _
OrganismTaxon T NCBITaxon, WD 12,074
Pathway PW REACT, WP, KEGG, WD 5,363
PhenotypicFeature P HP, WD, MESH, OMIM 5,428
Table 2: Concept types in MechRepoNet
lationship type Abbreviati J
Relationship type Abbreviation Count Relationship type obreviation  Count
(cont.) (cont.) (cont.)
activates a 511,884 negatively regulates nr 21,439
affects af 986,843 palliates pl 2,519
associated_with aw 4,488,453 part_of po 1,252,343
capable_of co 513 positively_regulates  pr 32,319
causes co 69,058 presents ps 66,965
disrupts d 541 prevents pv 1,318
has_input hi 10,905 produces p 1,008
in_reaction_with rx 152,741 regulates X 215,855
in_taxon it 1,208,845 site_of SO 31,791
inhibits in 456,678 treats t 75,798
marker_or_mechanism m 64,300

Table 3: Relationship types in MechRepoNet

We next examined the degree to which DrugMechDB paths could be found within

MechRepoNet. We found that 92.2% of the 383 unique concepts in DrugMechDB are also

contained within MechRepoNet (Figure 3a). Most of the missing concepts are either proteins from

infectious taxa, or the taxa themselves (Supplemental Table S1). Evaluating relationships as simple

edges (ignoring edge predicates), we found that 167, or 45% of the 369 unique node parings found
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in DrugMechDB are also contained with MechRepoNet (additional details in Figure 3b). Of the
202 missing pairings, 58 are due to one or both concepts not being present, whereas the other 144
have both concepts present, but the connection between them is absent. Finally, we found that 20
mechanistic paths from DrugMechDB are fully expressed in MechRepoNet, and another 27 only

have one edge missing (Figure 3c).

Anatomy 3/3
50/50
3/3
3/3
4/4
4/4
6/6

85/86

Biological Process
Cellular Component
Molecular Function
Pathway

Phenotype

Protein Family

Disease

Drug 102 /106
Compound 18/19
Taxon 14 /17
Protein 55/73

Compound Class 3/4

Cell Type 3/5
0.0 0.2 0.4 0.6 0.8 1.0
Fraction found

(a) Nodes found by type
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Figure 3: Comparison of concepts, edges and paths found in DrugMechDB and

MechRepoNet. (a) Number of unique concepts in DrugMechDB, represented in MechRepoNet by type. (b)
Analysis of edges in DrugMechDB and comparison to MechRepoNet. Bubble size is proportional to the number of
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MechRepoNet. (¢) Number of paths with 0 to 4 edges missing from MechRepoNet for each of the 123 DrugMechDB
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Metapaths for feature extraction

MechRepoNet contains 17,277 unique metapaths of length 2, 3, and 4 between a
ChemicalSubstance and a Disease. Removing those that express compound-compound or disease-
disease similarity (see Methods) resulted in 8,284 remaining metapaths. Even though these
metapaths may exist within the data model of a network, it is not guaranteed that there are paths
within the network that follow that metapath structure. Of the 8,284 mechanistic metapaths, 7,012
(84.6%), were found to be present in MechRepoNet. A feature selection voting scheme (see
Methods) filtered this list down to 105 metapaths. After adding the 55 metapaths found in
DrugMechDB, we ended up with a final set of 160 metapaths to use as features for training our

learning model.

Learning model results

Here, we characterize the performance of our mechanistically focused analysis. Regardless
of negative to positive sampling ratio, the models performed well on the validation set (see Figure
1 for experimental setup) with the area under the curve for the receiver operating characteristic
(ROC AUC) of 0.83 (for the 100 to 1 negative to positive ratio) which indicates a high rate of true
positives for each false positive result (Figure 4a). Since ROC AUC results can be skewed by the
class imbalance from our sampling scheme (100 to 1 negative to positive ChemicalSubstances to
Disease pairs), we also computed the AUC for the precision-recall curve (PRC AUC). The PRC
AUC was much lower at 0.03, which is expected in a complicated task with imbalanced classes
(Figure 4b).

The ROC AUC and the corresponding AUC for the precision-recall curve (PRC AUC) did
not change significantly when sampling ratio increases or decreases from the initial 100 to 1
negative to positive sampling scheme. The minor effect on ROC AUC and PRC was attributed to
the hyperparameter tuning step, which adjusts the model hyperparameters to each models sampling
scheme, causing the six weak learners to choose slightly different features to push to elastic net

regularization.
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When varying the ratio of negative to positive sampling, the distribution of prediction
probabilities shifted lower as the negative to positive ratio increased (Supplemental Figure 2).
However, the ranked performance of the individual models did not change the prediction hits@k
significantly (Supplemental Table S2). This further provides evidence that while the increased
negative to positive sampling ratio may affect the prediction probability of the model generated,
the models maintained their performance.

While these performance metrics indicate that there is still plenty of room for algorithmic
improvements (and superior methods may even already exist), these results are sufficient to
examine the interpretability of predictions proposed by this metapath-based model. Of the 160
features used to train the model, 89 were assigned positive coefficient values by the regression
model, making their associated metapaths meaningful in the mechanistic descriptions of the
prediction. From the 55 DrugMechDB metapaths, 27 were selected by the model with positive
coefficients (Table 4). The selected features contained all the graph’s 9 node types, with
MacromolecularMachine nodes appearing most frequently after ChemicalSubstance and Disease

nodes which are guaranteed to be present in every metapath (Figure 5).
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o —— 100 to 1 (AUC = 0.0
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Figure 4: MechRepoNet model validation performance Model’s performance on holdout set of 20%
of indications (a) ROC & (b) precision recall for 1:1, 10:1, 100:1 and 1000:1 negative to positive
ChemicalSubstance to Disease pairs. The green line is the chosen model and the red y=x denotes a coin flip.
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Metapath Coefficint Metapath (.‘-oeﬂfwlent

(continued) (continued)
CinGpoPWawD 1.449461 CafGitTitBPawD 0.197495
CinGpoBPitTeD 1.147065 CafGitThiBPawD 0.192309
CinBPawD 1.106648 CinGpoAawD 0.191279
CinBPitTeD 0.805034 CaGnrBPpoCmD 0.180797
CinGmPpsD 0.806721 CaGpoBPawD 0.175543
CinGrxCmD 0.610118 CinGpoBPawPpsD  0.173977
CinGmD 0.608036 CaGnr>GpoBPawD  0.167894
CinGpoBPawD 0.548079 CinGrxCpoBPawD  0.149697
CinGnr>GnrBPawD  0.515218 CinGrxCinGawD 0.109253
CaGnr>GprBPawD  0.505722 CafGpoAcoBPawD  0.10243
CaBPawD 0.37717 CinGpr>GpoAawD  0.086991
CaGnr>GrxCmD 0.28347 CinGawPpsD 0.040159
CaGprBPpAsoD 0.245871 CinGpoApoGtD 0.000009
CinGawD 0.220636

Table 4: Positive model coefficients for DrugMechDB metapaths. This table contains all the
metapaths that were assigned positive coefficients by the logistic regression as well as the coefficient value. Node
abbreviations are in capital letters, and relationship abbreviations are in lower case. Node abbreviations are
capitalized while edge abbreviations are lower case. See Tables 2 and 3 for node and edge abbreviations. For
example, the 'CinGpoPWawD' indicates a metapath corresponding to ChemicalSubstance -inhibits-
MacromolecularMachine -part of- Pathway -associated with- Disease.

DrugMechDB paths found in MechRepoNet were utilized to evaluate the model’s selected
metapaths. Of the 20 DrugMechDB paths, the model identified 12 instances where the
corresponding MechRepoNet metapath had a positive coefficient. The coefficient values of the 12
metapaths were compared against other metapaths selected by the model (that do not exist in
DrugMechDB). Metapaths with higher coefficients are better predictors than those with lower
coefficients. Of the 12 MechRepoNet metapaths, 11 had predicted metapaths above the 90

percentile of all paths (Table 5). In some cases, these rankings may be high enough to quickly
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support a repurposing prediction, but in others there are still hundreds, or thousands of paths ranked
above the mechanistic path in DrugMechDB, making the mechanistic path unlikely to be
discovered. These cases present opportunities for further curation efforts to improve metapath
predictive performance. For this reason, several filtering strategies can be employed to enrich for

these paths.

Disease 89
ChemicalSubstance 89
MacromolecularMachine 82
BiologicalProcessOrActivity
Pathway
PhenotypicFeature

AnatomicalEntity

OrganismTaxon

GeneFamily 41

0 20 40 60 80
Number of features

Figure 5: Feature selected concepts. Number of selected features passing through each concept type.
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MRN
: MRN
Paths MRN , Paths ) Target
: . Path Drug’s Predicted
Drug Disease between  Predicted i through Path Metapath
Percentile Target Target ,
Drug & Path Rank Target Percentile
. Path Rank
Disease
imatinib chronic
methane myeloid 1,236,778 23 99.99% ABL1 1,165 1 99.91% CatGmD
-sulfonate leukemia
1 Ary
terguride PUHIONAY 46503 1 00.09%  HTR2B 1104 1 90.91%  CafCmD
hypertension
glutethimide  insomnia 88,253 197 99.78% GABRA1 143 10 93.01% CafGpoBPawD
mosapramine  schizophrenia 4,410 15 99.66% DRD2 1,792 5 99.72% CinGpoPWawD
3 = E r
etizolam Z‘,mii‘" 12582 210 99.51%  CGABRA1 280 28 90.00%  CafGpoBPawD
isorder
vinpocetine dementia 201,650 2,612 99.10% PDE1A 134 21 84.33% CinGpoAawD
(R) major
duloseti depressive 36,692 458 08.75% SLC6A4 243 39 83.95% CafGpoBPawD
-duloxetine
disorder
rial
landiolol ;L;'rl;lation 1,218 25 07.905%  ADRBI 1005 21 07.01%  CafGpoBPawD
metolazone hypertension 13,044 296 97.73% SLC12A3 646 74 88.54% CinGpoBPawD
RR
(t ' )ad . pain 172,613 6,822 96.05% OPRMI1 051 200 69.51% CafGpoBPawD
-tramado
major
gepirone depressive 603 34 94.36% HTR1A 304 24 92.11% CafGpoBPawD
disorder
. ) absence | o 5 e
trimethadione 1 409 244 40.34% CACNAIG 141 83 41.13% CatGpoBPawD
epilepsy

Table 5: DrugMechDB paths as ranked by the repurposing model. DrugMechDB paths found in
MechRepoNet and their rankings among all paths between the drug disease pair of an indication. Rankings of subset
paths through the drug’s known mechanistic target are also examined (DMDB stands for DrugMechDB).

The most basic filtering strategy is to filter by known drug targets. Most drugs have only a
small number of known targets, so filtering this way is straightforward. When filtering these paths
by the known mechanistic targets, 9 of the 12 examples are in the top 50 paths, with 4 of 12 in the
top 10 paths, making them easy for an expert to identify from the total list of paths (Table 5). The
high rankings of the mechanistic paths that pass through known drug targets means that a drugs
mechanism for an unknown disease could potentially be found if known targets are used as a
filtration step. However, when a true mechanistic target for a drug is not known the mechanistic

targets identified from the resulting paths could also be used to identify candidate targets.
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Concept weighting to identify drug targets

The weightings used to rank paths from a drug to a disease can also be used to determine
the importance of any single concept connecting them by summing the weights of all the paths
containing a given concept. This method could have utility in prioritizing the target of a drug in
the treatment of a disease. To evaluate this method, a set 1,124 of known drug-target-disease triples
were curated from DrugCentral and compared to either all concepts or only the subset of gene
targets, in the paths that connect the drug-disease pair. Examining the percentile rank of known
mechanistic targets against all other concepts, most of the known targets ranked in the 90th
percentile (Figure 6a). When limiting the comparison to only other gene targets, the percentile rank
for the known target was less favorable, producing a distribution that approaches uniform (Figure
6a). However, as some drugs only have a very limited number of potential targets, the absolute
ranking of the known target may be informative. Examining the absolute rank of mechanistic
targets, when compared to all potential target genes, found 944 of the 1,124 in the top 100, and
637 of those in the top 10 (Figure 6b). The mean reciprocal rank of the known targets, when taking

only the highest ranked target for a given drug-disease pair, was found to be 0.525.
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Figure 6: Known target ranking results (a) Percentile rank of known mechanistic targets of a drug as compared
to either all concepts connecting a drug and disease, or only potential gene targets connecting the two. (b) Absolute rank
of known mechanistic targets of a drug when compared to other potential gene targets of the drug.
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Case Study: Explaining the link from imatinib to asthma

In 2017 Cahill ef al. reported that imatinib, a tyrosine kinase inhibitor used to treat chronic
myelogenous leukemia, could potentially be repositioned to treat asthma, with promising
preliminary results (Cabhill ef al., 2017). We wanted to determine whether the MechRepoNet model
was capable of both predicting and explaining this potential repositioning result. The probability
score returned by the model for imatinib to asthma was 0.143. However, the absolute probability
score in this sense does not have a lot of meaning, and ranking is much more important. The
ranking of the imatinib to asthma indication, compared the over 90 million potential drug-disease
combinations, was in the top 250,000 putting it in the 99.7th percentile. In terms of the drug and
disease specific percentiles, imatinib was ranked 581 of 14,804 drugs, putting it in the 95th
percentile of treatments for asthma, and asthma was ranked 143 of 6,481 diseases, or in the 97th
percentile of indications for imatinib. We note that other models can potentially improve the
ranking performance compared to our simplistic logistic regression-based approach. However,
those models lack mechanistic insight and ease of interpretability provided by our method.

Simply looking at the model’s top 10 paths that connect imatinib and asthma does not
immediately reveal why imatinib could treat asthma. However, one path passes through the
compound masitinib, and this compound is stated as treating asthma (Figure 7a). Masitinib is also
a tyrosine kinase inhibitor that has been shown to have some effect on reducing asthma symptoms
(Humbert et al., 2009). As both imatinib and masitinib are tyrosine kinase inhibitors, examining
their common targets yields cKIT, a proto-oncogene that plays a role in acute myeloid leukemia
(Gari et al., 1999; Edling and Hallberg, 2007). Filtering on cKIT, we find that in the top 10 paths,
three paths that pass the concept mast cell leading to biological processes associated with asthma
mast cell activation, histamine secretion by mast cell, and prostaglandin production involved in
inflammatory response (Figure 7b). The role of the mast cell in the pathophysiology of asthma is
well established and inhibiting activation of these cells could be one plausible mechanism for
imatinib’s efficacy (Bradding et al., 2006; Amin, 2012). Reexamining the top 10 paths irrespective

of target yields a path through “mast cell degranulation” where imatinib is purported to affect this
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process. Combining the results from these two sets of paths (Figures 7a & 7b) yields a more general
and equally plausible mechanism, where cKIT inhibition by imatinib, prevents cKIT’s function in
mast cell activation and degranulation, which in turn promotes asthma. This mechanism found
through examining the top weighted paths in MechRepoNet is highly consistent with that
previously (Cahill et al., 2017).
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(b) Top 10 paths that go through the target KIT

Figure 7: Top weighted paths from imatinib to asthma The paths with the 10 largest weights connecting
imatinib and asthma either (a) overall or (b) through cKIT. Paths mentioned in the text have been highlighted in
orange.

Discussion

Arguably more important than the computed confidence of a computational drug
repurposing prediction is the reasoning behind that prediction. The reasoning chain provides a
human interpretable explanation as to what mechanisms could be at play when producing a
repurposing prediction. Guided by a mechanistic prediction, a domain expert would be better able
to assess a prediction’s evidence than just the model’s probability score alone, and even guide
further experimental validation of the hypothesis. If our goal were to produce the absolute best
classifier for drug repositioning with maximized evaluation metrics, a model that includes the
much more predictive similarity metapaths, or possibly a more abstract deep learning model would
have been preferable (Zhu et al., 2020). However, this weaker predictor, being entirely based on
paths with mechanistic meaning, provides a level of human interpretability not otherwise present.

Our method outlined in this work is not only able to rank potential repurposing candidates
but also provide important biological context to the results. Each path identified through this
method consists of relationships from multiple sources, joined together through common concepts.
The data sources selected for integration individually have a high level of curation and therefore
contain extensive knowledge regarding individual drugs and diseases. However, the large amount
of data produces numerous multi-step paths from any single drug to a disease. Through well-
engineered features derived from true drug mechanisms, our repurposing model can identify the
patterns in this data most likely to be important in a treatment context.

We recognize that a limit to MechRepoNet’s mechanistic interpretability is its underlying
data, as not all features from DrugMechDB are represented in our final model. Our analysis

demonstrates that a significant challenge in computational repurposing based on knowledge graphs
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is the presence of significant gaps in the underlying knowledge graphs. Despite designing
MechRepoNet based on the edges found in DrugMechDB, we still only found 20 out of 123 (16%)
paths to be completely represented in MechRepoNet, demonstrating that many key mechanistic
relationships are not readily available in structured databases. We believe this type of analysis is
useful to guiding future curation efforts aimed at drug repurposing.

Our case study identified informative paths that potentially warrant follow-up
experimentation and further research. In these paths, every link represents a testable hypothesis
that can be verified through experimentation, or some new potential avenue of treatment that can
be explored. These predictive models can aid in research by providing new hypotheses about a
drug’s connections to a disease. Finally, our method is generalizable and could be applied to other
applications such as to predict drug-phenotype or drug-physiological process pairs and its

mechanistic rationalization for personalized medicine.
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