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Abstract 

Motivation: Drug repositioning is an attractive alternative to de novo drug discovery due to 

reduced time and costs to bring drugs to market. Computational repositioning methods, 

particularly non-black-box methods that can account for and predict a drug’s mechanism, may 

provide great benefit for directing future development. By tuning both data and algorithm to utilize 

relationships important to drug mechanisms, a computational repositioning algorithm can be 

trained to both predict and explain mechanistically novel indications.  

Results: In this work, we examined the 123 curated drug mechanism paths found in the drug 

mechanism database (DrugMechDB) and after identifying the most important relationships, we 

integrated 18 data sources to produce a heterogeneous knowledge graph, MechRepoNet, capable 

of capturing the information in these paths. We applied the Rephetio repurposing algorithm to 

MechRepoNet using only a subset of relationships known to be mechanistic in nature and found 

adequate predictive ability on an evaluation set with AUROC value of 0.83. The resulting 

repurposing model allowed us to prioritize paths in our knowledge graph to produce a predicted 

treatment mechanism. We found that DrugMechDB paths, when present in the network were rated 

highly among predicted mechanisms. We then demonstrated MechRepoNet’s ability to use 

mechanistic insight to identify a drug’s mechanistic target, with a mean reciprocal rank of .525 on 

a test set of known drug-target interactions. Finally, we walked through a repurposing example of 

the anti-cancer drug imantinib for use in the treatment of asthma, to demonstrate this method’s 

utility in providing mechanistic insight into repurposing predictions it provides.  

Availability and implementation: The Python code to reproduce the entirety of this analysis is 

available at: https://github.com/SuLab/MechRepoNet 

Contact: asu@scripps.edu 

Supplementary information: Supplemental information is available at Bioinformatics online. 
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Introduction 

Drug repositioning, the discovery and development of new indications for previously developed 

drugs, promises a quicker, less-costly alternative to traditional de novo drug discovery (Ashburn 

and Thor, 2004). Historically, many repositioning candidates have been identified through clinical 

observations. Computational repositioning leverages statistical modeling to analyze drug-disease 

combinations quickly in the hopes of streamlining the candidate identification process. 

Unfortunately, most candidates identified through this method fail to progress beyond in vitro 

studies (Oprea and Overington, 2015). Several approaches for overcoming this shortcoming have 

specifically addressed increasing predictive performance on a known gold standard through either 

updated algorithms  (Luo et al., 2018) or improving quality and quantity of validated examples for 

training (Brown and Patel, 2018; Shameer et al., 2018). Other methods focus on improving 

interpretability of predictions, aiming to uncover new experimental avenues through testable 

hypotheses that may improve understanding of a drug’s effect on a disease (Malas et al., 2019). 

Integrating both computational and experimental approaches, so that the results of each inform the 

other, is considered the best option for progressing the field of drug repositioning (Pushpakom et 

al., 2019).  

Methods for computational repurposing models frequently rely on drug-drug and/or 

disease-disease similarity to produce predictions (Li et al., 2016; Li and Lu, 2012; Luo et al., 2018). 

While this information is both important and predictive, a semantic network can describe complex 

and contextual relationships between a drug and a disease by connecting several individual 

concepts in a sequence of relationships.  These concepts and relationships (collectively a ”path”) 

can be represented as nodes and edges, respectively, of a knowledge graph In silico predictive 

models built from such knowledge graphs have the potential to inform experimental work through 

providing interpretable mechanistic explanations. However, these models heavily weight the 

relatedness of two drugs, through targets or pharmacology, as well as the relatedness of diseases, 

both carrying significant predictive power (Himmelstein et al., 2017; Emig et al., 2013; Mayers et 
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al., 2019). In cases where there are no known treatments for a disease, or no diseases known to be 

similar, which is often the case with rare diseases, these patterns lose their utility. Uncovering 

connections between a drug and a disease that are less immediate may provide additional evidence 

for drug repositioning. By taking the few mechanistic details that may be available about a rare 

disease and identifying how a drug might interact with them could provide better insight. 

In this work, we created a heterogeneous network with an emphasis on expressing 

relationships describing a drug’s mechanism of action. This mechanistic repositioning network 

(MechRepoNet) was then used as the data source to construct a predictive model for drug 

repositioning using a modified version of the Rephetio algorithm (Himmelstein et al., 2017). Edges 

representing drug-drug or disease-disease similarity were excluded from the model, enriching for 

paths with mechanistic meaning. The predictions from the resulting model were shown to be highly 

enriched for both the true mechanisms of action (as expressed in DrugMechDB) and a drug’s 

annotated protein target. While demonstrating the value of focusing on mechanistic 

interpretability, this work also underscored a fundamental challenge in computational drug 

repurposing based on knowledge graphs in that many key mechanistic relationships are not readily 

available in structured databases. 

 

 

Methods 

Integration of data sources to build a mechanistic network MechRepoNet 

Selection of data sources 

We created DrugMechDB, a database that describes drug mechanisms as paths through a 

heterogeneous knowledge graph (Mayers et al., 2020). DrugMechDB is a relatively small 

database, with just 383 unique concepts (spanning 13 semantic types) and 432 relationships. But 
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these concepts (nodes) and relationships (edges) were assembled into mechanistic paths describing 

123 pairs of diseases and drugs. We examined the concept and relationship types contained within 

the paths of the Drug Mechanism Database (DrugMechDB) to prioritize relationships important to 

expressing drug mechanisms.  

We used DrugMechDB as a roadmap in the creation of MechRepoNet, a large 

heterogenous network suitable for use as an input knowledge graph for computational drug 

repurposing. Data sources were evaluated based on their ability to express the semantic 

relationships found in DrugMechDB in order to construct a heterogeneous network capable of 

capturing these paths. Wikidata and Reactome were selected as primary data sources due to their 

high level of breadth, high data quality, and open reuse policies. Nodes and edges from various 

data sources that follow the schema captured in DrugMechDB and not abundant in Wikidata or 

Reactome, were prioritized and added into MechRepoNet. In all, eighteen data sources were 

selected for integration: Wikidata (Vrandečić, 2012), Reactome (Fabregat et al., 2018), InterPro 

(Mitchell et al., 2019), Ensembl (Cunningham et al., 2019), miRTarBase (Chou et al., 2018), 

ComplexPortal (Meldal et al., 2015), Gene Ontology (Ashburner et al., 2000), Uber-anatomy 

Ontology (Mungall et al., 2012), Cell Ontology (Diehl et al., 2016), Protein Ontology (Natale et 

al., 2017), Disease Ontology (Schriml et al., 2019), Human Phenotype Ontology (Köhler et al., 

2019), NCATS Inxight Drugs (NCATS Inxight: Drugs), DrugBank (Wishart et al., 2018), 

DrugCentral (Ursu et al., 2017), Comparative Toxicogenomics Database (CTD) (Davis et al., 

2019), RheaDB (Morgat et al., 2017), and GAUSS (Dutta et al., 2019). Although data licensing 

restrictions prevent the direct redistribution of MechRepoNet, the complete code to assemble the 

graph is available at https://github.com/SuLab/MechRepoNet/. 

 
Data model determination and data integration 

To standardize the data in MechRepoNet, concepts in the graph were normalized to the 

Biolink data model (Mungall et al., 2020). To reduce the number of potential features input into 

the model, relationships (edges) were standardized to a simplified set of predicates. To ensure that 
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edges could contribute to metapaths at multiple levels of granularity, all directed edges were 

duplicated with the undirected edge equivalent.  

Additional data model normalization for nodes was performed to adjust the level of 

granularity of Wikidata concepts. Wikidata and mygene.info (Xin et al., 2016) were used as 

primary sources to normalize node concepts between resources, augmented by limited string 

matching for chemical substances. Exact details are provided within the code repository. 

 

Training a learning model to find mechanistic treatment paths 

Learning model 

We based our analysis on the Rephetio degree weighted path count (DWPC) algorithm 

(Himmelstein et al., 2017), which uses a logistic regression learning model to predict 

ChemicalSubstance-treats-Disease relationships. Rephetio uses features based on metapaths that 

join the node types ChemicalSubstances and Diseases in a knowledge graph. “Metapaths” refer to 

a specific sequence of node types and edge types, whereas “paths” are specific instances of nodes 

and edges. For example, a three-node and two-edge metapath would be [ChemicalSubstance] - 

inhibits - [Protein] - causes - [Disease], and a specific instance of this metapath would be the path 

linking imatinib to the BCR/ABL fusion protein to chronic myelogenous leukemia.  

We slightly deviated from the published Rephetio algorithm to ensure computational 

tractability, since MechRepoNet was significantly larger than the Rephetio knowledge graph and 

had many more potential metapaths to use as features in the machine learning model. First, whereas 

Rephetio used both DWPC of each metapath and node degrees of the compound and disease nodes 

as features in the model, we only used DWPC features. Second, Rephetio used a permutation 

analysis for feature selection, and we replaced that with a streamlined approach based on feature 

elimination by weak learners. Network permutation on MechRepoNet would be computationally 

expensive as it contains over five times the number of nodes (47,031 to 250,035) and four times 
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the number of edges (2,250,197 to 9,652,116). Finally, we removed all metapaths that were 

primarily based on compound-compound and disease-disease similarity, enriching for metapaths 

which represent a drug’s mechanism; the remaining metapaths are mechanistic paths. 

(https://github.com/SuLab/MechRepoNet/blob/main/1_code/13b_Model_Prep_Metapath_Memb

ership_Analysis.ipynb).  

(a)  Data sources for indications 

(b) Schematic of model training paradigm 
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Figure 1: Indication sources and schematic of model training paradigm a) Indications were initially 
sourced from two data sources, Wikidata and NCATS Inxight Drugs. Inxight Drugs is a data aggregator that compiles 
data from several sources including DrugBank and DrugCentral producing many indications. The Clinical 
Toxicogenomic Database (CTD) contains over 14,000 indications, all originating from text-mining, with human 
confirmation of the result. Path contraction along the Compound - treats - Disease - inverse subclass of - Disease path 
produces a total of 69,639 indications.  b) Initially, 20% of compounds with known indications were removed and 
placed in a holdout set. A subset of 15% of the remaining compounds with known indications were used for 
hyperparameter tuning and metapath selection. The 160 metapaths selected were used to train a model on all 
indications not within the holdout set for validation of the model. Finally, all indications were used to produce a final 
model for mechanistic evaluation. 

Training data 

A logistic regression was trained on the examples of ChemicalSubstance-treats-Disease 

triples found within the knowledge graph. There were 69,639 relationships of this type, coming 

from multiple data sources including Wikidata, NCATS Inxight Drugs, and CTD (Figure 1a). This 

large number is attributable to the differing chemical and disease vocabulary used by the data 

sources as well as the use of computational methods for producing network edges including NLP 

and subclass path contraction.  

Before any model tuning or training was performed, a subset of 20% of the 11,303 

ChemicalSubstances with at least one known indication were selected, and their 13,605 

corresponding “treats” edges were removed from the network to be used as a validation set (Figure 

1b). 

Hyperparameter tuning 

A subset of 15% of the ChemicalSubstances with known “treats” Disease relationships 

were selected for hyperparameter tuning, amounting to 1,404 ChemicalSubstances with 8,607 

positive training examples (Figure 1b). Negative samples were randomly selected from the set of 

non-positive ChemicalSubstance-Disease pairs. Negative samples were randomly selected instead 

of chosen from contraindications to select for no-effect instead of deleterious effects between a 

ChemicalSubstance and Disease pair. Negative examples were sampled at a rate of 1:1, 10:1, 

100:1, and 1000:1 relative to the positive examples to test the model’s sensitivity to the known 

imbalance between positive and negative treats relationships between drugs and diseases. In all 

instances of model training, pairs were only utilized if at least one path existed between the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.04.15.440028doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440028
http://creativecommons.org/licenses/by/4.0/


9 

compound and the disease. These examples were used for feature selection (see Feature selection 

below) and selected features were used to tune the DWPC damping exponent (w), the elastic net 

regularization strength (λ), and the ratio of L1 and L2 penalties (α) (Zou and Hastie, 2005). 

Hyperparameters were tuned using 50 iterations of the Bayesian hyperparameter optimization 

method (Bergstra et al., 2013). Optimization was performed to maximize a linear combination of 

the area under the receiver operator characteristic and precision recall curves, while minimizing 

the variance in these values across folds. 

Feature selection 

The fifty-five unique metapaths that were found in DrugMechDB were all included as 

features in our model. In addition, a voting strategy was employed between six different feature 

selection methods, each tasked with selecting 500 metapaths. Each feature selection method 

obeyed one of the following rules: Features with the largest magnitude of correlation coefficient 

with respect to the target, top features after a χ2 test between features and targets, a recursive feature 

elimination of the smallest 10% of features in a weak regression classifier with L2 regularization, 

the features with largest magnitude of coefficient from a weak regression classifier with L1 

regularization, the largest feature importance values from a weak random forest classifier, and the 

largest feature importance values from a weak gradient boosted decision tree. Each selected feature 

from the 6 methods were considered a vote and features with 4 or more votes were kept for the 

training model. Code describing this full feature selection process is available on github 

(https://github.com/SuLab/MechRepoNet/blob/main/1_code/13c_Model_Prep_Hyperparam_tuni

ng.ipynb). This process resulted in fewer than 200 of the 8,284 mechanistic metapaths being 

selected as features for training. Of the 55 metapaths that were included in our model based on 

DrugMechDB paths, 21 were selected as features by elastic net regularization, and 12 had positive 

coefficients for the final MechRepoNet model. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.04.15.440028doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440028
http://creativecommons.org/licenses/by/4.0/


10 

Performance evaluation 

A model was trained on all the “treats” relationships in the network, less the holdout set as 

described in the training data section (Figure 1b). This holdout set, along with a sampling of non-

positive relationships, was used to validate the learning model built from the data within the 

network. 

Results 

Analyzing DrugMechDB for relevant relationships 

Our first task was to build a heterogeneous network capable of expressing drug 

mechanisms. To help direct the creation of our network, we created DrugMechDB, a manually 

curated database of drug mechanisms. DrugMechDB consisted of 123 mechanistic paths for 109 

unique indications between 106 drugs and 86 diseases. This dataset spanned a diverse cross-section 

of drug classes and disease areas (Supplemental Figure 1). The most common edge type in 

DrugMechDB joins Drug entities with Protein entities, with 94 of the 123 paths containing a 

relationship of this form (Table 1). Other common edge types join Biological Processes with 

Disease, and Proteins with Biological Processes.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.04.15.440028doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440028
http://creativecommons.org/licenses/by/4.0/


11 

 
 
Table 1: Counts of top relationship types in DrugMechDB. The most common pairings of concepts 
found in DrugMechDB and the different relationships that connect them. Whether or not these concepts are 
expressed in MechReopNet is noted, with “Similar” meaning either different semantics are used with similar 
meaning (e.g. “Down Regulates” instead of “Inhibits”), or that relationship exists, but something about it is 
fundamentally different (e.g. Protein Regulates Protein relationships without specific up or down directionality). 
MRN = MechRepoNet. 
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Building a network to express drug mechanisms: MechRepoNet 

Based on the analysis of mechanistic paths in DrugMechDB, we integrated 18 publicly 

available data sources to produce a new mechanistic repositioning heterogeneous network 

(MechRepoNet) (Figure 2a). MechRepoNet contains 250,035 concepts of 9 different semantic 

types, and 9,652,116 unique edges of 68 semantic types (where the semantic type of an edge is 

defined by a subject node type, an object node type, and a predicate) (Figure 2b). Most concepts 

in MechRepoNet are classified as MacromolecularMachine, which includes Genes, Proteins, RNA 

Products, and Complexes (Table 2). The most common edge type connects a 

BiologicalProcessOrActivity to a Disease through a general association, with 2,052,856 examples, 

representing 21.3% of the edges in MechRepoNet (Table 1).  

While MechRepoNet contains many of the concept types found in DrugMechDB, there are 

a few differences (Table 2). Most notably, we normalized concept types to the Biolink data model, 

a standardized hierarchy of biomedical entity classes, to increase interoperability between data 

sources (Mungall et al., 2020). Relationships in MechRepoNet were mapped to a flat list of 

interaction types (Table 3).  In general, the relationships in DrugMechDB are more specific than 

those in MechRepoNet, primarily because data sources use imprecise semantics when describing 

relationships.  
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(a) Edges by data source in MechRepoNet 

(b) MechRepoNet data model 
 

Figure 2: Data within MechRepoNet. (a) The number of edges provided by each data source integrated into 
MechRepoNet. (b) A graphic representation of the MechRepoNet data model.  
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Table 2: Concept types in MechRepoNet 

 

 
 
Table 3: Relationship types in MechRepoNet 
 

 

We next examined the degree to which DrugMechDB paths could be found within 

MechRepoNet. We found that 92.2% of the 383 unique concepts in DrugMechDB are also 

contained within MechRepoNet (Figure 3a). Most of the missing concepts are either proteins from 

infectious taxa, or the taxa themselves (Supplemental Table S1). Evaluating relationships as simple 

edges (ignoring edge predicates), we found that 167, or 45% of the 369 unique node parings found 
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in DrugMechDB are also contained with MechRepoNet (additional details in Figure 3b). Of the 

202 missing pairings, 58 are due to one or both concepts not being present, whereas the other 144 

have both concepts present, but the connection between them is absent. Finally, we found that 20 

mechanistic paths from DrugMechDB are fully expressed in MechRepoNet, and another 27 only 

have one edge missing (Figure 3c). 

 
 

(a) Nodes found by type 
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(c) Edges missing per path 

Figure 3: Comparison of concepts, edges and paths found in DrugMechDB and 
MechRepoNet. (a) Number of unique concepts in DrugMechDB, represented in MechRepoNet by type. (b) 
Analysis of edges in DrugMechDB and comparison to MechRepoNet. Bubble size is proportional to the number of 
edges in DrugMechDB, and darker bubbles indicate greater percentage overlap between DrugMechDB and 
MechRepoNet. (c) Number of paths with 0 to 4 edges missing from MechRepoNet for each of the 123 DrugMechDB 
paths. 
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Metapaths for feature extraction 

MechRepoNet contains 17,277 unique metapaths of length 2, 3, and 4 between a 

ChemicalSubstance and a Disease. Removing those that express compound-compound or disease-

disease similarity (see Methods) resulted in 8,284 remaining metapaths. Even though these 

metapaths may exist within the data model of a network, it is not guaranteed that there are paths 

within the network that follow that metapath structure. Of the 8,284 mechanistic metapaths, 7,012 

(84.6%), were found to be present in MechRepoNet. A feature selection voting scheme (see 

Methods) filtered this list down to 105 metapaths.  After adding the 55 metapaths found in 

DrugMechDB, we ended up with a final set of 160 metapaths to use as features for training our 

learning model. 

Learning model results 

Here, we characterize the performance of our mechanistically focused analysis. Regardless 

of negative to positive sampling ratio, the models performed well on the validation set (see Figure 

1 for experimental setup) with the area under the curve for the receiver operating characteristic 

(ROC AUC) of 0.83 (for the 100 to 1 negative to positive ratio) which indicates a high rate of true 

positives for each false positive result (Figure 4a). Since ROC AUC results can be skewed by the 

class imbalance from our sampling scheme (100 to 1 negative to positive ChemicalSubstances to 

Disease pairs), we also computed the AUC for the precision-recall curve (PRC AUC). The PRC 

AUC was much lower at 0.03, which is expected in a complicated task with imbalanced classes 

(Figure 4b).  

The ROC AUC and the corresponding AUC for the precision-recall curve (PRC AUC) did 

not change significantly when sampling ratio increases or decreases from the initial 100 to 1 

negative to positive sampling scheme.  The minor effect on ROC AUC and PRC was attributed to 

the hyperparameter tuning step, which adjusts the model hyperparameters to each models sampling 

scheme, causing the six weak learners to choose slightly different features to push to elastic net 

regularization. 
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When varying the ratio of negative to positive sampling, the distribution of prediction 

probabilities shifted lower as the negative to positive ratio increased (Supplemental Figure 2).  

However, the ranked performance of the individual models did not change the prediction hits@k 

significantly (Supplemental Table S2).  This further provides evidence that while the increased 

negative to positive sampling ratio may affect the prediction probability of the model generated, 

the models maintained their performance. 

While these performance metrics indicate that there is still plenty of room for algorithmic 

improvements (and superior methods may even already exist), these results are sufficient to 

examine the interpretability of predictions proposed by this metapath-based model. Of the 160 

features used to train the model, 89 were assigned positive coefficient values by the regression 

model, making their associated metapaths meaningful in the mechanistic descriptions of the 

prediction. From the 55 DrugMechDB metapaths, 27 were selected by the model with positive 

coefficients (Table 4). The selected features contained all the graph’s 9 node types, with 

MacromolecularMachine nodes appearing most frequently after ChemicalSubstance and Disease 

nodes which are guaranteed to be present in every metapath (Figure 5).  

  
 
(a) Receiver Operator Curve – Holdout set 

 
(b) Precision-recall curve – Holdout set 

 
Figure 4: MechRepoNet model validation performance Model’s performance on holdout set of 20% 
of indications (a) ROC & (b) precision recall for 1:1, 10:1, 100:1 and 1000:1 negative to positive 
ChemicalSubstance to Disease pairs. The green line is the chosen model and the red y=x denotes a coin flip. 
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Table 4: Positive model coefficients for DrugMechDB metapaths. This table contains all the 
metapaths that were assigned positive coefficients by the logistic regression as well as the coefficient value. Node 
abbreviations are in capital letters, and relationship abbreviations are in lower case. Node abbreviations are 
capitalized while edge abbreviations are lower case. See Tables 2 and 3 for node and edge abbreviations. For 
example, the 'CinGpoPWawD' indicates a metapath corresponding to ChemicalSubstance -inhibits- 
MacromolecularMachine -part of- Pathway -associated with- Disease. 

 

DrugMechDB paths found in MechRepoNet were utilized to evaluate the model’s selected 

metapaths. Of the 20 DrugMechDB paths, the model identified 12 instances where the 

corresponding MechRepoNet metapath had a positive coefficient. The coefficient values of the 12 

metapaths were compared against other metapaths selected by the model (that do not exist in 

DrugMechDB). Metapaths with higher coefficients are better predictors than those with lower 

coefficients. Of the 12 MechRepoNet metapaths, 11 had predicted metapaths above the 90th 

percentile of all paths (Table 5). In some cases, these rankings may be high enough to quickly 
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support a repurposing prediction, but in others there are still hundreds, or thousands of paths ranked 

above the mechanistic path in DrugMechDB, making the mechanistic path unlikely to be 

discovered. These cases present opportunities for further curation efforts to improve metapath 

predictive performance.  For this reason, several filtering strategies can be employed to enrich for 

these paths. 

 
 
Figure 5: Feature selected concepts. Number of selected features passing through each concept type. 
 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.04.15.440028doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440028
http://creativecommons.org/licenses/by/4.0/


   
 

21 

 
 

Table 5: DrugMechDB paths as ranked by the repurposing model. DrugMechDB paths found in 
MechRepoNet and their rankings among all paths between the drug disease pair of an indication. Rankings of subset 
paths through the drug’s known mechanistic target are also examined (DMDB stands for DrugMechDB). 
 

 
The most basic filtering strategy is to filter by known drug targets. Most drugs have only a 

small number of known targets, so filtering this way is straightforward. When filtering these paths 

by the known mechanistic targets, 9 of the 12 examples are in the top 50 paths, with 4 of 12 in the 

top 10 paths, making them easy for an expert to identify from the total list of paths (Table 5). The 

high rankings of the mechanistic paths that pass through known drug targets means that a drugs 

mechanism for an unknown disease could potentially be found if known targets are used as a 

filtration step. However, when a true mechanistic target for a drug is not known the mechanistic 

targets identified from the resulting paths could also be used to identify candidate targets. 
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Concept weighting to identify drug targets 

The weightings used to rank paths from a drug to a disease can also be used to determine 

the importance of any single concept connecting them by summing the weights of all the paths 

containing a given concept. This method could have utility in prioritizing the target of a drug in 

the treatment of a disease. To evaluate this method, a set 1,124 of known drug-target-disease triples 

were curated from DrugCentral and compared to either all concepts or only the subset of gene 

targets, in the paths that connect the drug-disease pair. Examining the percentile rank of known 

mechanistic targets against all other concepts, most of the known targets ranked in the 90th 

percentile (Figure 6a). When limiting the comparison to only other gene targets, the percentile rank 

for the known target was less favorable, producing a distribution that approaches uniform (Figure 

6a). However, as some drugs only have a very limited number of potential targets, the absolute 

ranking of the known target may be informative. Examining the absolute rank of mechanistic 

targets, when compared to all potential target genes, found 944 of the 1,124 in the top 100, and 

637 of those in the top 10 (Figure 6b). The mean reciprocal rank of the known targets, when taking 

only the highest ranked target for a given drug-disease pair, was found to be 0.525.  

  
 
Figure 6: Known target ranking results (a) Percentile rank of known mechanistic targets of a drug as compared 
to either all concepts connecting a drug and disease, or only potential gene targets connecting the two. (b) Absolute rank 
of known mechanistic targets of a drug when compared to other potential gene targets of the drug. 
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Case Study: Explaining the link from imatinib to asthma 

In 2017 Cahill et al. reported that imatinib, a tyrosine kinase inhibitor used to treat chronic 

myelogenous leukemia, could potentially be repositioned to treat asthma, with promising 

preliminary results (Cahill et al., 2017). We wanted to determine whether the MechRepoNet model 

was capable of both predicting and explaining this potential repositioning result. The probability 

score returned by the model for imatinib to asthma was 0.143. However, the absolute probability 

score in this sense does not have a lot of meaning, and ranking is much more important. The 

ranking of the imatinib to asthma indication, compared the over 90 million potential drug-disease 

combinations, was in the top 250,000 putting it in the 99.7th percentile. In terms of the drug and 

disease specific percentiles, imatinib was ranked 581 of 14,804 drugs, putting it in the 95th 

percentile of treatments for asthma, and asthma was ranked 143 of 6,481 diseases, or in the 97th 

percentile of indications for imatinib. We note that other models can potentially improve the 

ranking performance compared to our simplistic logistic regression-based approach. However, 

those models lack mechanistic insight and ease of interpretability provided by our method. 

Simply looking at the model’s top 10 paths that connect imatinib and asthma does not 

immediately reveal why imatinib could treat asthma. However, one path passes through the 

compound masitinib, and this compound is stated as treating asthma (Figure 7a). Masitinib is also 

a tyrosine kinase inhibitor that has been shown to have some effect on reducing asthma symptoms 

(Humbert et al., 2009). As both imatinib and masitinib are tyrosine kinase inhibitors, examining 

their common targets yields cKIT, a proto-oncogene that plays a role in acute myeloid leukemia 

(Gari et al., 1999; Edling and Hallberg, 2007). Filtering on cKIT, we find that in the top 10 paths, 

three paths that pass the concept mast cell leading to biological processes associated with asthma 

mast cell activation, histamine secretion by mast cell, and prostaglandin production involved in 

inflammatory response (Figure 7b). The role of the mast cell in the pathophysiology of asthma is 

well established and inhibiting activation of these cells could be one plausible mechanism for 

imatinib’s efficacy (Bradding et al., 2006; Amin, 2012). Reexamining the top 10 paths irrespective 

of target yields a path through “mast cell degranulation” where imatinib is purported to affect this 
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process. Combining the results from these two sets of paths (Figures 7a & 7b) yields a more general 

and equally plausible mechanism, where cKIT inhibition by imatinib, prevents cKIT’s function in 

mast cell activation and degranulation, which in turn promotes asthma. This mechanism found 

through examining the top weighted paths in MechRepoNet is highly consistent with that 

previously (Cahill et al., 2017). 

 

 

(a) Top 10 paths selected by the model 
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(b) Top 10 paths that go through the target KIT 
 

Figure 7: Top weighted paths from imatinib to asthma The paths with the 10 largest weights connecting 
imatinib and asthma either (a) overall or (b) through cKIT. Paths mentioned in the text have been highlighted in 
orange.  

Discussion 

Arguably more important than the computed confidence of a computational drug 

repurposing prediction is the reasoning behind that prediction. The reasoning chain provides a 

human interpretable explanation as to what mechanisms could be at play when producing a 

repurposing prediction. Guided by a mechanistic prediction, a domain expert would be better able 

to assess a prediction’s evidence than just the model’s probability score alone, and even guide 

further experimental validation of the hypothesis. If our goal were to produce the absolute best 

classifier for drug repositioning with maximized evaluation metrics, a model that includes the 

much more predictive similarity metapaths, or possibly a more abstract deep learning model would 

have been preferable (Zhu et al., 2020). However, this weaker predictor, being entirely based on 

paths with mechanistic meaning, provides a level of human interpretability not otherwise present. 

Our method outlined in this work is not only able to rank potential repurposing candidates 

but also provide important biological context to the results. Each path identified through this 

method consists of relationships from multiple sources, joined together through common concepts. 

The data sources selected for integration individually have a high level of curation and therefore 

contain extensive knowledge regarding individual drugs and diseases. However, the large amount 

of data produces numerous multi-step paths from any single drug to a disease. Through well-

engineered features derived from true drug mechanisms, our repurposing model can identify the 

patterns in this data most likely to be important in a treatment context.  

We recognize that a limit to MechRepoNet’s mechanistic interpretability is its underlying 

data, as not all features from DrugMechDB are represented in our final model. Our analysis 

demonstrates that a significant challenge in computational repurposing based on knowledge graphs 
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is the presence of significant gaps in the underlying knowledge graphs. Despite designing 

MechRepoNet based on the edges found in DrugMechDB, we still only found 20 out of 123 (16%) 

paths to be completely represented in MechRepoNet, demonstrating that many key mechanistic 

relationships are not readily available in structured databases. We believe this type of analysis is 

useful to guiding future curation efforts aimed at drug repurposing.    

 Our case study identified informative paths that potentially warrant follow-up 

experimentation and further research. In these paths, every link represents a testable hypothesis 

that can be verified through experimentation, or some new potential avenue of treatment that can 

be explored. These predictive models can aid in research by providing new hypotheses about a 

drug’s connections to a disease. Finally, our method is generalizable and could be applied to other 

applications such as to predict drug-phenotype or drug-physiological process pairs and its 

mechanistic rationalization for personalized medicine. 
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