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Abstract

Fitness functions map biological sequences to a scalar property of interest. Accurate estimation
of these functions yields biological insight and sets the foundation for model-based sequence design.
However, the amount of fitness data available to learn these functions is typically small relative to the
large combinatorial space of sequences; characterizing how much data is needed for accurate estimation
remains an open problem. There is a growing body of evidence demonstrating that empirical fitness
functions display substantial sparsity when represented in terms of epistatic interactions. Moreover, the
theory of Compressed Sensing provides scaling laws for the number of samples required to exactly recover
a sparse function. Motivated by these results, we develop a framework to study the sparsity of fitness
functions sampled from a generalization of the NK model, a widely-used random field model of fitness
functions. In particular, we present results that allow us to test the effect of the Generalized NK (GNK)
model’s interpretable parameters—sequence length, alphabet size, and assumed interactions between
sequence positions—on the sparsity of fitness functions sampled from the model and, consequently, the
number of measurements required to exactly recover these functions. We validate our framework by
demonstrating that GNK models with parameters set according to structural considerations can be
used to accurately approximate the number of samples required to recover two empirical protein fitness
functions and an RNA fitness function. In addition, we show that these GNK models identify important
higher-order epistatic interactions in the empirical fitness functions using only structural information.

Introduction

Advances in high-throughput experimental technologies now allow for the probing of the fitness of
thousands, and sometimes even millions, of biological sequences. However, these measurements generally
represent only a tiny fraction of those required to comprehensively characterize a fitness function. It
is therefore critical to develop methods that can estimate fitness functions from an incomplete set of
measurements. Many methods have been proposed for this purpose, ranging from the fitting of regularized
linear models [1], and parameterized biophysical models [2, 3] to nonparametric techniques [4, 5], and
various nonlinear machine learning approaches [6], including deep neural networks [7, 8]. In addition to
providing basic biological insight, such methods have been used to improve the efficiency and success rate
of experimental protein engineering approaches [9, 10, 11] and are crucial components of in-silico sequence
design tools [12, 13, 14, 15].

Despite these advances in fitness function estimation, the answer to one fundamental question remains
elusive—namely how many experimental fitness measurements are required to accurately estimate a fitness
function. We refer to this problem as that of determining the sample complexity of fitness function
estimation. Insights on this topic can be used to inform researchers on which of a variety of experimental
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techniques should be used to probe a particular fitness function of interest, and on how to restrict the
scope of an experimental probe such that the resulting data allows one to accurately estimate the function
under study. Our central focus herein is to elucidate the open question of the sample complexity of fitness
function estimation.

It has recently been observed that some empirical fitness functions—those for which experimental
fitness measurements are available for all possible sequences—are sparse when represented in the Walsh-
Hadamard basis, which represents fitness functions in terms of all possible “epistatic” interactions (i.e.,
nonlinear contributions to fitness due to interacting sequence positions) [16, 17, 3]. Further, this sparsity
property has been exploited to improve estimators of such functions [18, 19, 20]. Indeed, it is well known
in the field of signal processing that sparsity enables more statistically efficient estimation of functions.
Additionally, results from Compressed Sensing (CS), a sub-field of signal processing, provide scaling laws
for the number of measurements required to recover a function in terms of its sparsity [21, 22]. These
results suggest that by studying the sparsity of fitness functions in more depth, we may be able to predict
the sample complexity of fitness function estimation.

Although an increasing number of empirical fitness functions are available that could allow us to
investigate sparsity in particular example systems, these data necessarily only report on short sequences
in limited environments. A common approach in evolutionary biology to overcome the lack of sufficient
empirical fitness functions is to instead study ‘random field” models of fitness, which assign fitness values
to sequences based on stochastic processes constructed to mimic the statistical properties of natural fitness
functions [23, 24]. We follow a similar line of reasoning and study the sparsity of fitness functions
sampled from random field models, allowing us to probe properties of a much broader class of fitness
functions than the available empirical data. We make use of a particular random field model, namely a
generalization of the widely-used NK model [25]. The NK model is known to represent a rich variety of
realistic fitness functions despite requiring only two parameters to be defined: L, the sequence length,! and
K, the maximum degree of epistatic interactions. In the NK model, each sequence position interacts with
a “neighborhood” of K — 1 other positions that either include directly adjacent positions or are chosen
uniformly at randomly [23]. NK models have been shown to model a number of properties of empirical
fitness functions, including fitness correlation functions [26, 27] and adaptive walk statistics [25, 28, 29].
The Generalized NK (GNK) model [30], extends the model by allowing neighborhoods to be of arbitrary
size and content. We refer to simulated fitness functions sampled from the GNK model as ‘GNK fitness
functions’.

Buzas and Dinitz [30] calculated the sparsity of GNK fitness functions represented in the WH basis as a
function of the sequence length and the composition of the neighborhoods. Nowak and Krug [31] expanded
on this work by calculating the sparsity of GNK fitness functions with a few specific neighborhood schemes,
as a function of only the size of the neighborhoods. Notably, these works consider only binary sequences,
and use sparsity as a tool to understand the properties of adaptive walks on GNK landscapes, without
connecting it to fitness function estimation. In contrast, our aim is to determine the sample complexity
of estimating GNK fitness functions in the biologically-relevant scenarios where sequences are made up
of non-binary elements (e.g., nucleotide or amino acid alphabets). In order to do so, we extend the
results of refs. 30 and 31 to the case of non-binary alphabets by employing “Fourier” bases, which are
generalizations of the WH basis that can be constructed for any alphabet size. We then leverage CS theory
to determine the minimum number of measurements required to recover GNK fitness functions in the
Fourier basis. This framework of using CS theory in tandem with the GNK model allows us to test the
effects of sequence length, alphabet size, and interaction structure on the sample complexity of estimating
GNK fitness functions.

We validate the practical utility of our framework by demonstrating that suitably parametrized GNK
models can accurately approximate the sparsity of several empirical landscapes, and thus we can success-
fully leverage our sample complexity results to determine how many measurements are needed to estimate

In the original definition of the model, N is used for the sequence length, but here we reserve N for the number of observed
measurements.
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Fig. 1: Graphical depictions of GNK neighborhood schemes for L = 9 and K = 3. Rows on the vertical axis
represent neighborhoods and columns on the horizontal axis represents sequence positions. A square in the (i, j)"

position in the grid denotes that sequence position j is in the neighborhood V1. (a) Random Neighborhoods (b)
Adjacent Neighborhoods (c¢) Block Neighborhoods.

these landscapes. In particular, we use GNK models that incorporate structural information to show this
for two empirical protein landscapes, and one ‘quasi-empirical’ RNA landscape. Our analysis also demon-
strates that structure-based GNK models correctly identify many of the important higher-order epistatic
interactions in the corresponding empirical fitness functions despite using only second-order structural con-
tact information. This surprising insight bolsters a growing understanding of the importance of structural
contacts in shaping fitness functions.

In the next sections, we summarize the relevant background material required for our main results.

Fitness functions and estimation

A fitness function maps sequences to a scalar property of interest, such as catalytic efficiency [17],
binding affinity [2], or fluorescent brightness [32]. In particular, let S (L:9) be the set of all ¢~ possible
sequences of length L whose elements are members of an alphabet of size ¢ (e. g., ¢ = 4 for nucleotides, and
20 for amino acids); then a fitness function is any function that maps the sequence space to scalar values,
f: S84 — R, In practice, sequences may contain different alphabets at different positions, but these can
usually be mapped to a common alphabet. For instance, one position in a nucleotide sequence may be
restricted to A or T, and another to G or C, but both of these can be mapped onto the binary alphabet
{0,1}. In the SI we consider the case where the size of the alphabet may be different at each position.

Any fitness function of sequences of length L and alphabet size ¢ can be represented exactly as

f= &0, (1)

where f is the vector of all ¢ fitness values, one for each possible sequence, ® is a ¢” x ¢! orthogonal basis,
and B is the vector of ¢ coefficients corresponding to the fitness function in that basis. Although any
orthogonal basis may be used, here we restrict ® to refer to either the Walsh-Hadamard basis (when g = 2),
or the Fourier basis (for ¢ > 2), which will be defined shortly. Each row of ® represents an encoding of a
particular sequence in S&9. Now suppose we observe N fitness measurements, y € RV, for N different
sequences, each corresponding to one of the rows of ®. The goal of fitness function estimation is then
to recover a good approximation to 3 using these N measurements, which correspond to only a subset
of all possible sequences. In general, this is an underdetermined linear system that requires additional
information to be solved, and many methods have been developed for this purpose. The extent to which a
fitness function is recovered by such a method can be assessed by the mean squared error (MSE) between
the estimated and true coefficients.  Since ® is an orthogonal matrix, this is equivalent to the MSE
between the true fitness values f and those predicted using the estimated coeflicients.

The field of Compressed Sensing is primarily concerned with studying algorithms that can solve under-
determined systems, and specifying the conditions under which recovery with a specified amount of error
in the estimated coefficients can be guaranteed. Therefore, it stands to reason that CS may be helpful for
characterizing fitness function estimation problems. The LASSO algorithm is among the most widely-used
and well-studied for solving underdetermined systems, both in CS and also in machine learning [33]. The
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key determinant of success of algorithms such as LASSO in recovering a particular function is how sparse
that function is when represented in a particular basis, or how well it can be approximated by a function
that is sparse in that basis. Using the fitness function estimation problem as an example, a central result
from CS [34] states that if 3 is an S-sparse vector (meaning that is has exactly S nonzero elements), then
with high probability LASSO can recover 8 exactly with

N >C-Slogq” (2)

noiseless fitness measurements, where C' is an unknown constant. For this bound to hold, the N sequences
with observed fitness measurements must be sampled uniformly from the space of sequences [34]. It has
also been shown that if 3 is only approximately sparse (i.e., it has many small, but nonzero, coefficients),
or if there is noise in the measurements, then the error in the recovery can still be bounded (Materials and
Methods).

Eq. 2 shows that if we are able to calculate the sparsity of a fitness function, and estimate a value for
the constant C, then we can calculate the number of samples required to recover that fitness function with
LASSO. Note that the “sparsity” of a fitness function is defined as the number of nonzero coefficients when
the fitness function is expanded in a particular basis.? Sparsity is defined with respect to the particular
orthonormal basis which must therefore be chosen carefully. In the next section, we discuss bases that can
be used to represent fitness functions.

Fourier bases for fitness functions

The sparsity of a class of natural signals depends crucially on the basis with which they are represented.
Many fitness functions have been shown to be sparse in the Walsh-Hadamard (WH) basis [16, 17, 3], which
has also been used extensively in theoretical studies of fitness landscapes [35, 27, 36, 37] and even to unify
multiple definitions of epistasis [38]. The WH basis can be interpreted as encoding fitness functions in
terms of epistatic interactions [39, 38]. In particular, when a fitness function of binary sequences of length
L is represented in the form of Eq. 1 (with ® being the WH basis), then the sequence elements are encoded
as {—1,1} and the fitness function evaluated on a sequence, s = [s1, $2, ..., sz|, has the form of an intuitive
multi-linear polynomial [20],

F8)=> Bu ] s (3)

veu icU

where U == P({1,2,..., L}) is the power set of sequence position indices. Each of the 2¥ elements of U is
a set of indices that corresponds to a particular epistatic interaction, with the size of that set indicating
the order of the interaction (e.g., if a U € U is of size |[U| = r, then it represents an r*" order interaction).
The coefficient Sy is an element of 3, indexed by its corresponding epistatic interaction set.

The WH basis can only be used to represent fitness functions of binary sequences, which poses a
challenge in biological contexts where common alphabets include the nucleotide (¢ = 4) and amino acid
(¢ = 20) alphabets. This issue is typically skirted by encoding elements of a larger alphabet as binary
sequences (e.g., by using a “one-hot encoding”), and using the WH basis to represent fitness functions of
these encoded sequences. However, doing so results in an inefficient representation, which has dramatic
consequences on the calculation of sample complexities. To see this, consider the “one-hot” encoding
scheme of amino acids, where each amino acid is encoded as a length 20 bit string. The number of amino
acid sequences of length L is 20%, while the one-hot encodings of these sequences are elements of a binary
sequence space of size 2201 = 1,048,576%. This latter number also corresponds to the number of WH
coefficients required to represent the fitness function in the one-hot encoding, and is much too large to be
of any practical use.

2In a quirk of common terminology, a signal is called “sparse” when it contains many zero coefficients, but the “sparsity”
is formally defined as the number of nonzero coefficients. Thus, a ‘sparse’ signal has low “sparsity”.
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Fig. 2: The sparsity of GNK fitness functions. (A) Upper bound on sparsity of GNK fitness functions with constant
neighborhood sizes for ¢ = 2 and a range of settings of the L and K parameters (B) Upper bound for L = 20 and
a range of settings of the alphabet size ¢ and the K parameter (colors as in (A)). Alphabet sizes corresponding
to binary (¢ = 2), nucleotide (¢ = 4), and amino acid (¢ = 20) alphabets are highlighted with open circles. (C)
Sparsity of GNK fitness functions with neighborhoods constructed with each of the standard neighborhood schemes
for L = 20 and ¢ = 2, and and a range of settings of K, denoted by markers. (D) Fraction of sampled GNK fitness
functions with Random Neighborhoods recovered at a range of settings of C. Each grey curve represents sampled
fitness functions at a particular values of L € {5,6,...,13}, ¢ € {2,3,4} and K € {1,2,3,4,5}. The red curve averages
over all 907 sampled functions. The value C' = 2.62, which we chose to use for subsequent numerical experiments, is
highlighted with a dashed line.

Although it is not widely recognized in the fitness function literature, it is possible to construct bases
analogous to the WH basis for arbitrarily-sized alphabets, which we refer to as “Fourier” bases (Materials
and Methods, 40, 41). The WH basis is the Fourier basis for ¢ = 2. The Fourier basis for a larger alphabet
shares much of the WH basis’s intuition of encoding epistatic interactions between positions in a sequence.
In particular, we have an analogous expression to Eq. 3 for the Fourier basis, in which the fitness function
is represented as a sum of 2° terms, each of which corresponds to an epistatic interaction. In the WH
basis, an " epistatic interaction U in a sequence s is encoded as the scalar (HieU si) € {-1,1}, while
in the Fourier basis, it is represented by a length (¢ — 1)" vector, which we denote as ¢/(s). Similarly, in
the WH basis each epistatic interaction is associated with a single coefficient, while in the Fourier basis,
each epistatic interaction is associated with (¢ — 1)" coefficients. All together, the evaluation of a fitness
function represented in the Fourier basis on a sequence s is given by

Fs) =" (Bu)" puls). (4)
Ueu

It is shown below that when GNK fitness functions are represented in the Fourier basis, then we have the
intuitively pleasing result that all of the Fourier coefficients associated with a particular epistatic interaction
are identically distributed, and thus the GNK model can be interpreted in terms of epistatic interactions.

The Generalized NK model

Sampling fitness functions from a random field model provides a means to simulate fitness functions of
sequences of any length or alphabet size. A random field model specifies a stochastic process that assigns
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Fig. 3: Minimum number of measurements required to exactly recover GNK fitness functions with constant neigh-
borhood sizes. (A) Upper bound on the minimum N required to recover GNK fitness functions with constant
neighborhood sizes for ¢ = 2 and a range of settings of the L and K parameters. (B) Upper bound for L = 20 and
a range of settings of the alphabet size ¢ and the K parameter (colors as in (A)). Alphabet sizes corresponding to
binary (¢ = 2), nucleotide (¢ = 4), and amino acid (¢ = 20) alphabets are highlighted with open circles.

fitness values to all possible sequences. This process implicitly defines a joint probability distribution over
the fitness values of all sequences, and another over all of the Fourier coefficients, 3.

Herein, we focus on the Generalized NK (GNK) model [30]. In order to be defined, the GNK model
requires the specification of the sequence length L, alphabet size ¢, and an interaction “neighborhood” for
each position in the sequence. A neighborhood, VUl for sequence position j is a set of position indices that
contains j itself, and K; — 1 other indices, where we define K; := VU] to be the size of the neighborhood.
Given L, ¢, and a neighborhood for each position, the GNK model assigns fitness to every sequence in
the sequence space via a series of stochastic steps ( Materials and Methods). In the GNK model, two
sequences have correlated fitness values to the extent that they share subsequences corresponding to the
positions in the neighborhoods. For example, consider a GNK model defined for nucleotide sequences of
length 3, where the first neighborhood is VIl = {1,3}. Then the sequences ACG and AAG will have
partially correlated fitness values because they both contain the subsequence AG in positions 1 and 3. One
of the key intuitions of the GNK model is that larger neighborhoods will produce more “rugged” fitness
functions in which many fitness values are uncorrelated, because it is less likely for two sequences to share
subsequences when the neighborhoods are large. Note that larger neighbourhoods also implies the presence
higher order epistatic interactions.

The key choice in specifying the GNK model is in how the neighborhoods are constructed. We will
characterize the sparsity induced by three “standard” schemes for constructing neighborhoods [31, 36]: the
Random, Adjacent and Block Neighborhood schemes. These schemes all restrict every neighborhood to be
the same size, K, which provides a basis for comparing how different interaction structures induce sparsity
in fitness functions. Graphical depictions of these three schemes are shown in Fig. 1. We will additionally
consider a novel scheme where neighborhoods are constructed based on contacts between residues in an
atomistic protein structure, which is described in more detail in a later section.

Notably, the GNK model is an example of a spin glass, a popular model in statistical physics, with
different neighborhood schemes corresponding to different types of spin glasses [42]. Further, the recovery
of sparse spin glass Hamiltonians has been investigated in some depth [43].

In the next section, we present results that enable us to calculate the sparsity of GNK fitness functions
given the sequence length, alphabet size, and a set of neighborhoods. The proofs of these results are given
in the SI.


https://doi.org/10.1101/2021.05.24.445506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.4455086; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Results

The sparsity of GNK fitness functions

A somewhat remarkable feature of the GNK model is that it can be shown that the Fourier coefficients
of GNK fitness functions are independent normal random variables whose mean and variance can be
calculated exactly given the sequence length, alphabet size, and neighborhoods. In particular, the Fourier
coefficients of fitness functions sampled from the GNK model are distributed according to 8 ~ N (0, AI),
where X is a vector of variances corresponding to each element of 3 and I is the ¢” x ¢ identity matrix.
Further, each of the (¢ —1)" Fourier coefficients corresponding to an r** order epistatic interaction, U, have
equal variances given by

L
€= S orw e v, )
j=1

where, with a slight abuse of notation, I(U C V[j]) is an indicator function that is equal to one if U is a
subset of the neighborhood VUl and zero otherwise. Eq. 5 shows that the variance of a Fourier coefficient is
roughly proportional to the number of neighborhoods that contain the corresponding epistatic interaction
as a subset. Most importantly for our purposes, Eq. 5 implies that a Fourier coefficient only has nonzero
variance when the corresponding epistatic interaction is a subset of at least one neighborhood; otherwise
the coefficients are deterministically zero. Consequently, we can use Eq. 5 to calculate the total number
of Fourier coefficients that are not deterministically zero in a specified GNK model, which is equal to the
sparsity of all fitness functions sampled from the model. In particular, the sparsity, S(f), of a fitness
functions f sampled from a GNK model is given by

S(H) =Y (-1, (6)

veT

where T := U]L:1 2 (V) is the union of the powersets of the neighborhoods. Eq. 6 makes the connection
between neighborhoods and epistatic interactions concrete: the GNK model assigns nonzero Fourier coef-
ficients to any epistatic interactions whose positions are included in at least one of the neighborhoods. For
example, if positions 3 and 4 in a sequence are both in some neighborhood VUl then all elements of B34}
are nonzero. Further, by the same reasoning, the coefficients corresponding to all subsets of positions {3,4}
are also nonzero (i.e., the coefficients corresponding to the first order effects associated with positions 3
and 4).

Eq. 6 provides a general formula for the sparsity of GNK fitness functions as a function of L, ¢ and
the neighborhoods. We can use this formula to calculate the sparsity of GNK fitness functions with each
of the standard neighborhood schemes—Random, Adjacent and Block—for a given neighborhood size,
K. In the Materials and Methods, we provide exact results for the sparsity of GNK fitness functions
with Adjacent and Block neighborhoods, and the expected sparsity of GNK fitness functions with for
Random neighborhoods. We also provide an upper bound on sparsity of GNK fitness functions with any
neighborhood scheme with constant neighborhood size, K. In Figs. 2A and 2B we plot this upper bound
for a variety of settings of L, ¢ and K. Further, in Fig. 2C we plot the upper bound along with the exact
or expected sparsity of GNK fitness functions with each of the standard neighborhood schemes. We can
see that even at the same setting of K, different neighborhood schemes result in striking differences in the
sparsity of sampled fitness functions.

Exact recovery of GNK fitness functions

The sparsity result of Eq. 6 allows us to apply CS theory to determine the number of fitness measure-
ments required to recover GNK fitness functions exactly. Specifically, we can use Eq. 2 to determine a
minimal N such that exact recovery is guaranteed for an S(f)-sparse fitness function f when there is no
measurement noise. However, to do so, we first need to determine an appropriate value for the constant
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C in Eq. 2, which we did via straightforward numerical experiments. In particular, we used LASSO to es-
timate GNK fitness functions using varying numbers of randomly sampled, noiseless fitness measurements
and from these estimates, determined the minimum number of training samples required to exactly recover
the fitness functions (allowing for a small amount of numerical error-see Materials and Methods for more
details). We then determined the minimum value of C' such that Eq. 2 holds in each tested case. Fig.
2D summarizes the experiments, showing that C' = 2.62 is sufficiently large to ensure recovery of all of
the over 900 tested fitness functions, and we use this value for all further calculations. A more detailed
analysis of these experiments is shown in Fig. S3, which makes clear that the minimum possible setting
of C is a function of L, ¢, and K, and therefore that C' = 2.62 may be a conservative setting for certain
reasonable settings of these parameters.

We next used this estimate of C, along with our results for the sparsity of GNK fitness functions, and
the CS result of Eq. 2, to determine the minimum number of measurements required to exactly recover
GNK fitness functions. Figs. 3A and 3B show examples of these calculations, where we used the bound on
sparsity for GNK fitness functions with constant neighborhood sizes to calculate an upper bound on the
minimum number of samples required to recover these fitness functions. A number of important insights
can be derived from Fig. 3. First, the number of measurements required to perfectly estimate these
fitness functions is many orders of magnitude smaller than the total size of sequence space. Consider, for
instance the point in Fig. 3a where L = 50 and thus the size of sequence space is 2°0 ~ 10'%, 10 orders of
magnitude greater than the largest plotted sample complexity. Additionally, comparing Figs. 3A and 3B
clearly indicates that increasing the alphabet size within biologically relevant ranges increases the number
of samples required to recover fitness functions at a faster rate than increasing the length of the sequence.

Analysis of empirical protein fitness functions

In order to validate our framework, we next tested the extent to which our results could be used to
predict the sample complexity of estimating empirical protein fitness functions. To do so, we made use of
a novel scheme for constructing GNK neighborhoods, which we call the Structural neighborhood scheme,
that uses information derived from 3D structure of a given protein. In particular, Structural neighborhoods
are constructed based on contacts between amino acid residues in a given atomistic protein structure where,
following refs. 4 and 45, we define two residues to be in contact if any two atoms in the residues are within
4.5A of each other. Then the Structural neighborhood of a position j contains all positions that are in
structural contact with it.

An interesting aspect of the Structural neighborhood scheme is how it encodes epistatic interactions
through Eq. 6. In particular, in a GNK model with Structural neighborhoods, higher-order epistatic inter-
actions arise from only pairwise structural contact information—that is, an r*® order epistatic interaction
has nonzero Fourier coefficients when r — 1 positions are in structural contact with a central position..

We instantiated GNK models with Structural neighbourhoods for two proteins: the TagBFP fluorescent
protein (PDB: 3M24 [46]) and the protein encoded by the His3 gene in Saccharomyces cerevisiae (His3p).
We then used the results described in the previous section to calculate the sparsity of GNK fitness functions
with these Structural neighborhoods, the sample complexity of estimating these functions, and the variance
of each the functions’ Fourier coefficients.

Both TagBFP and His3p are associated with empirical fitness functions with complete or nearly com-
plete sets of experimental measurements. We calculated the Fourier coefficients associated with each of
these empirical fitness functions using Ordinary Least Squares (or regression with a small amount of reg-
ularization when the measurements were only nearly complete), so as to be able to compare the resulting
sparsity and magnitude of the empirical Fourier coefficients to those of the corresponding GNK fitness
functions with Structural neighborhoods. Next, to assess whether the sample complexity of estimating
GNK fitness functions with Structural neighborhoods can be used to inform the sample complexity of
estimating real protein fitness functions, we fit LASSO estimates of the empirical fitness functions with
varying numbers of randomly sampled empirical measurements, and determined how well each recovered
the empirical fitness function.
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Fig. 4: Comparison of empirical fitness functions to GNK models with Structural Neighborhoods. First row:
comparison to mTagBFP2 fitness function from ref. 18. Second row: comparison to His3p fitness function from ref.
44. Third row: comparison to quasi-empirical fitness function of the Hammerhead ribozyme HH9. (A) Structural
Neighborhoods derived from crystal structural of TagBFP (first row), I-TASSER predicted structure of His3p (second
row), and predicted secondary structures of the Hammerhead Ribozyme HH9 (third row). (B) Magnitude of empirical
Fourier coefficients (upper plot, in blue) compared to expected magnitudes of coefficients in the GNK model (reverse
plot, in red). Dashed lines separate orders of epistatic interactions, with each group of 7! order interactions indicated.
(C) Percent variance explained by the largest Fourier coefficients in the empirical fitness functions and in fitness
functions sampled from the GNK model. The dotted line indicates the exact sparsity of the GNK fitness functions,
which is 56 is in the first row 76 in the second, and 1,033 in the third, at which points 97.1%, 90.4%, and 97.5% of
the empirical variances are explained, respectively. (D) Error of LASSO estimates of empirical fitness functions at
a range of training set sizes. Each point on the horizontal axis represents the number of training samples, IV, that
are used to fit the LASSO estimate of the fitness function. Each point on the blue curve represents the R? between
the estimated and empirical fitness functions, averaged over 50 randomly sampled training sets of size N. The point
at the number of samples required to exactly recover the GNK model with Structural Neighborhoods (N = 575 in
the first row, N = 660 in the second, and N = 13,036 in the third) is highlighted with a red dot and dashed lines;
at this number of samples, the mean prediction R? is 0.948 in the first row, 0.870 in the second, and 0.969 in the
third. Error bars indicate the standard deviation of R? over training replicates. Insets show paired plots between the
estimated and predicted fitness function for one example training set of size N = 575 (first row), N = 660 (second
row), and N = 13,036 (third row).

In the case of the TagBFP structure, the associated empirical fitness function contains functional
observations (blue fluorescence brightness) of mutations to the mTagBFP2 protein [18], which is closely
related to TagBFP but has no available structure. This data contains measurements for all combinations
of mutations in 13 positions, where each position is allowed to mutate to only one other amino acid (i.e.,
L =13 and ¢q = 2), yielding 2'3 = 8192 total fitness observations. A graphical depiction of the Structural
neighborhoods associated with these 13 positions is shown in the first row of Fig. 4A. Using Eq. 6 for
the GNK model with these Structural neighborhoods yielded a sparsity of S(f) = 56, while application of
Eq. 5 enabled us to determine the distribution of these 56 non-zero Fourier coefficients and the epistatic
interactions that they corresponded to.

For the case of His3p, we used a nearly combinatorial complete empirical fitness function that is
embedded in the data of ref. 44. In particular, the data contains 2030 out of the possible 2048 fitness
observations for sequences corresponding to 11 positions in His3p, each taking on one of two amino acids
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(i.e., L =11 and ¢ = 2). We constructed Structural neighborhoods based on the I-TASSER [47] predicted
structure of His3p [44] (Fig. 4A, second row), which resulted in sparsity S(f) = 76 for GNK fitness
functions with these neighborhoods, and we again computed the distribution of these coefficients and
determined the corresponding epistatic interactions.

The comparisons of the mTagBFP and His3p empirical fitness functions with the associated GNK
models with Structural neighborhoods are summarized in Fig. 4. First, we examined the magnitudes
of the Fourier coeflicients of the empirical and GNK fitness functions. Since the Fourier coefficients in
the GNK model are independent normal random variables, the expected magnitude of a coefficient with
variance \ is \/2A\/r. A comparison of all coefficients corresponding to up to 5% and 6™ order epistatic
interactions are shown in Fig. 4B for the mTagBFP and His3p cases, respectively. Many of the epistatic
interactions with the largest empirical coefficients also have nonzero coefficients in the GNK model with
Structural neighborhoods, suggesting that these models are reasonable approximations to protein fitness
functions. In the SI, we quantify the overlap between the largest coefficients in the empirical and GNK
fitness functions by performing statistical tests that show that the coefficients identified as being nonzero
by the GNK model have significantly higher ranks in the empirical coefficients than those identified as
being zero (Figs S10-S13)

Although none of the empirical Fourier coefficients are exactly zero, these coefficients display substantial
approximate sparsity. In particular, over 95% and 80% of the total variance in the coefficients can be
explained by the 25 coeflicients with the largest magnitude in the mTagBFP and His3p fitness functions,
respectively. To more holistically assess whether GNK fitness functions with Structural neighborhoods
approximate the sparsity of the empirical fitness functions well, we compared the percent variance explained
by the S Fourier coefficients with the largest magnitudes in both the empirical and GNK fitness functions,
for a range of settings of S. Fig. 4C shows the results of this comparison, with the blue curve showing
the percent variance explained by the largest empirical coefficients, and the red curve and red shaded
region showing the mean and standard deviation, respectively, of the percent variance explained by the
largest coefficients in 1,000 sampled GNK fitness functions. Considering that these plots show only the
first few of all possible coefficients that could be included on the horizontal axis (75 out of the 8,192 for
mTagBFP and 100 out of 2,048 for His3p), it is clear that the GNK model approximates the sparsity of
the empirical fitness function qualitatively well. Of particular importance is the point at which all of the
nonzero coefficients of the GNK fitness functions are included in the calculation (i.e., 100% of the variance
is explained), which occurs at S = 56 and 76 in the mTagBFP and His3p cases, respectively; at this point,
more than 90% of the empirical variance is explained in both cases.

These promising sparsity comparisons suggest that the sample complexity of estimating GNK fitness
functions with Structural neighborhoods may be used to approximate the number of measurements required
to effectively estimate protein fitness functions. We confirmed this by using LASSO to estimate the
empirical fitness functions with varying number of training points and regularization parameter chosen by
cross-validation (Fig. 4D). Our theory predicts that 548 and 630 samples are minimally needed for exact
recovery of the GNK fitness functions with mTagBFP and His3p Structural neighborhoods, respectively.
In both cases, we see these sample sizes produce effective estimates of the corresponding empirical fitness
functions, with a mean R? of 0.95 and 0.87 for estimates of the mTagBFP and His3p fitness functions,
respectively.

In the SI we show analogous results to those in Fig. 4 for another nearly complete subset of the His3p
fitness data of ref. 44 that contains 48,219 out of 55,296 fitness measurements for the same 11 positions
discussed above and alphabets that differ in size at each position. Altogether, these results suggest the
GNK model with Structural neighborhoods can be used to approximate the sparsity of protein fitness
functions, and the sample complexity of estimating such functions.

Analysis of a quasi-empirical RNA fitness function

As further validation, we next tested the ability of our framework to predict the sample complex-
ity of estimating a quasi-empirical RNA landscape. In particular, we studied the fitness function of all
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possible mutations to the Erinaceus Furopaes Hammerhead ribozyme HH9 wild type sequence (RFAM:
AANNO01066007.1) at positions 2, 20, 21, 30, 43, 44, 52, and 70 where the fitness of each sequence in this
L = 8, ¢ = 4 sequence space is given by the Minimum Free Energy (MFE) of the secondary structures
associated with the sequence, as calculated by the ViennaRNA package [48]. We follow [49] in referring to
this as a ’quasi-empirical’ fitness function, as it is constructed from an established physical model rather
than direct experimental measurements. The magnitudes of the Fourier coefficients associated with this
fitness function are shown as blue bars in the third row of Fig. 4B. This is a sparse landscape, with the
largest 150 out of 65,536 possible coefficients explaining over 90% of the quasi-empirical variance.

We then used a GNK model with RNA-specific Structural neighborhoods to predict the sample com-
plexity of estimating this quasi-empirical landscape. In order to construct these neighborhoods, we first
used ViennaRNA to sample 10,000 secondary structures from the Boltzmann ensemble of structures as-
sociated with the wild-type sequence. We then built neighborhoods where a position j was included in
the neighborhood of position k if (i) j and k were directly adjacent in the sequence or (ii) j and k were
paired in any of the sampled secondary structures (Fig. 4A, third row). The expected magnitude of the
Fourier coefficients in the GNK model with these neighborhoods are shown as red bars in Fig. 4B. Once
again we see that the GNK model with Structural neighborhoods identifies many of the most important
higher-order epistatic interactions in this fitness function.

As with the empirical protein fitness functions, we compared the sparsity of the GNK and quasi-
empirical fitness functions (Fig. 4C, third row) and tested the ability of our framework to predict the
sample complexity of estimating the quasi-empirical fitness function with LASSO (Fig. 4D, third row).
These results demonstrate that a suitably parameterized GNK model can accurately model the sparsity
of a realistic RNA fitness function, which bolsters our results on empirical protein fitness functions and
further suggests that the GNK model can be a practical tool for estimating the sample complexity of fitness
function estimation.

Discussion

By leveraging perspectives from the fields of Compressed Sensing and evolutionary biology, we developed
a framework for calculating the sparsity of fitness functions and the number of fitness measurements
required to exactly recover those functions with the LASSO algorithm (or another sparse recovery algorithm
with CS guarantees) under a well-defined set of assumptions. These assumptions are that (i) the fitness
functions are sampled from a specified GNK model, (ii) fitness measurements are noiseless, (iii) fitness
measurements correspond to sequences sampled uniformly at random from the space of sequences, and (iv)
the fitness functions are represented in the Fourier basis. Under these assumptions, our results allow us to
test the effect of sequence length, alphabet size, and positional interaction structure on the sparsity and
sample complexity of fitness function estimation.

We have additionally demonstrated that in certain cases our results can be used to estimate the sample
complexity of estimating protein fitness functions when assumptions (i) and (ii) may not be exactly satisfied.
In particular, we showed that GNK models with Structural neighborhoods accurately approximate the
sparsity of two empirical protein fitness functions and a quasi-empirical RNA fitness function, and can be
used to estimate the number of measurements required to recover those empirical fitness functions with
high accuracy. The success of applying our framework to these fitness functions, which are neither exactly
sparse nor noiseless (in the case of the protein fitness functions), is at least partially due to the fact that
sparse recovery algorithms such as LASSO are robust to approximate sparsity and noisy measurements
(Materials and Methods, Eq. 8).

It should be noted that assumptions (iii) and (iv) likely result in conservative estimates for the sample
complexity of fitness function estimation. Uniform sampling of sequences is optimal when one has no a
priori knowledge about the fitness function; however, if one knows which coefficients in a fitness function
are likely to be nonzero, then it may be possible to construct alternative sampling schemes, or deterministic
sets of sequences to measure, such that the fitness function can be recovered with many fewer measurements
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than with uniform sampling. Additionally, it may be possible to construct a basis in which certain classes of
fitness functions are more sparse than in the Fourier basis, and this will in turn result in fewer measurements
being required to recover those fitness functions when they are represented in the alternative basis.

Our sample complexity predictions could be used to a certain extent to guide experimental probes of
fitness by suggesting how one should restrict the scope of mutagenesis such that recovery of the resulting
fitness function can be expected with a certain amount of data. Using protein mutagenesis experiments
as an example, this could be done by limiting the number of positions that are mutated, perhaps based
on biophysical considerations [50, 3] or previous experimental results [51, 52, 53, 54], or by allowing each
position to mutate to only a restricted alphabets of amino acids, for instance by choosing only amino acids
that are present in homologous sequences [18, 44, 17]. Of course, one should take care not to minimize the
sample size requirements at the expense of probing important areas of the protein or nucleotides sequences
under study.

Complementing our main contributions, we have also demonstrated that GNK models with Structural
neighborhoods can predict the identity of many of the largest higher-order epistatic interactions in empirical
protein fitness functions (Fig. 4B, first and second rows). There are a number of false positives (i.e.
coefficients that the GNK model identifies as nonzero, but are very small in the empirical fitness function)
and false negatives in these plots that deserve some comment. To explain these errors, it is first important
to remember that the red bars in Fig. 4B represent the ezpected magnitudes of zero-mean GNK coefficients;
even among fitness functions sampled directly from the GNK model, we would expect to see “false positives”
where the sampled magnitudes were smaller than the expected magnitudes. The false negatives may be
explained by three similar causes, all regarding the insufficiency of using a single crystal or predicted
structure to construct Structural neighborhoods for proteins. First, the structures we used may simply
be inaccurate: in one case, we use the TagBFP crystal structure, while the fitness function reports on
mutations to mTagBFP2; in the His3p case we use an I-TASSER predicted structure that may have
inaccuracies. Secondly, static structures do not capture dynamical effects that may impact fitness; for
instance two residues may be in contact in a non-native conformation of the protein that differs from the
crystallized or predicted conformation. Finally, the crystal or predicted structures of wild-type proteins
cannot capture the potential structural changes that may occur when the protein is mutated, as is done to
collect fitness data. Additionally, we used a fixed contact threshold of 4.5A, but adjusting this threshold
can moderately change the GNK Fourier coefficients (Figs. S4-S7); most notably the largest empirical
r = 6 coefficient in the His3p fitness function is identified as being nonzero by the GNK model when we
increase the cutoff distance to 7A.

Few attempts have been made at understanding how many measurements are required to estimate
fitness functions, despite the practical importance of this question for experimental design. By making the
connection between this question and the known sparsity of fitness functions in certain bases, we provide
a much-needed framework for probing the sample complexity of estimating fitness functions. Further,
we show that the GNK model, given protein and RNA structural information, can gauge the sparsity of
empirical fitness functions enough to make useful statements about the sample complexity of estimating
such functions. As data collection progresses, the tools and understanding to probe sample complexity
may have to correspondingly progress, but our work provides a solid foundation on which to do so.

Materials and Methods

Compressed Sensing

As described in the main text, the fitness function estimation problem is to solve the underdetermined
linear system y = X3 for an unknown 3, where y is a vector of IV fitness measurements, and X is a matrix
containing the N corresponding rows of ® that represent the sequences with fitness measurements. Herein
we assume that each element of y is corrupted with independent Gaussian noise with variance o2. LASSO
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solves for an estimate of the Fourier coefficients by solving following convex optimization program:

mgnlly—XB\lgﬂLVI!BIIl (7)

where v is a hyperparameter that determines the strength of regularization. Candes and Plan [34] proved
that when the rows of an orthogonal basis such as ® are sampled uniformly at random, and the number of
samples satisfies Eq. 2, then the solution to the program in Eq. 7, denoted 3*, satisfies with high probability

18— B*2 < cl‘ﬂ_gs”lwga, (8)

VS

where C7, and Cy are constants and Bg is the best S-sparse approximation to 3, i.e., the vector that
contains the S elements of 3 with the largest magnitude and sets all others elements to zero. Eq. 8 has a
number of important implications. First, it tells us that if 3 is itself S-sparse, then, in a noiseless setting,
it can be recovered ezactly with O(Slogq*) measurements. Otherwise, if 3 is not exactly sparse but is
well approximated by a sparse vector, then it can be approximately recovered with error on the order of
%H B — Bs||1, which is proportional to the sum of the magnitudes of the ¢* — S elements of 8 with the
smallest magnitudes.

We primarily focus on cases where a fitness function is exactly sparse in the Fourier basis and we can
calculate the sparsity. Although natural fitness functions are unlikely to be exactly sparse, they may be
well approximated by sparse vectors, and Eq. 8 tells us that the error of the estimator will be well controlled
in this case. Similarly, measurement noise in experimental fitness data is unavoidable, but Eq. 8 shows
that the error induced by this noise is dependent on the variance of the measurement noise, and not on
the properties of the fitness function itself. Since here we are primarily concerned with understanding how
assumed properties of fitness functions affect the sample complexity of estimating those functions, it is thus
most appropriate to consider the noiseless setting and leave the estimation of error due to measurement
noise to future work.

Fourier bases

Our generalization of the WH basis to larger alphabets is based on the theory of Graph Fourier bases.
The Graph Fourier basis corresponding to a given graph is a complete set of orthogonal eigenvectors of
the Graph Laplacian of the graph. Graph Fourier bases have many useful properties and have been used
extensively for processing signals defined on graphs [55].

The WH basis is specifically the Graph Fourier basis corresponding to the Hamming graph H(L,2)
[56]. The vertices of H(L,2) represent all unique binary sequences of length L; two sequences are adjacent
in H(L,?2) if they differ in exactly one position (i.e., the Hamming distance between the two sequences is
equal to one). The Hamming graphs H(L, q) are defined in the same way for sequences with alphabet size
g. Thus, we can construct an analogous Graph Fourier basis to the WH basis to represent sequences with
larger alphabets by calculating the eigenvectors of the Graph Laplacian of H(L,q). Since we only consider
functions defined on Hamming graphs, we refer to Graph Fourier bases corresponding to Hamming graphs
simply as Fourier bases.

An important property of the Hamming graph H (L, ¢) is that it can be constructed as the L-fold Graph
Cartesian product of the “complete graph” of size ¢ [56]. The complete graph of size ¢, denoted K(q), has
q vertices (which represent elements of the alphabet in our case) and edges between all pairs of vertices.
Due to the spectral properties of graph products, the eigenvectors of the Hamming graph (i. e., the Fourier
basis) can be calculated as a function of the eigenvectors of the complete graph. An orthonormal set of
eigenvectors of the Graph Laplacian of the complete graph K(q) is given by the columns of the following

Householder matrix: .
2wWw
5 9)

P _ s
T wls

q =
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where w := 1, — ,/qge1, 1, is the vector of length ¢ whose elements are all equal to one, e; is the length ¢
with the first element set to 1 and all others set to zero, and I, is the ¢ x ¢ identity matrix.

The complete graph is equal to the Hamming graph H(1,g), and thus Equation Eq. 9 constructs the
Fourier basis for sequences of length one and alphabet size ¢. Each row of P, corresponds to a sequence
of length one; the first column is constant for all rows while the remaining ¢ — 1 columns encode the
alphabet elements (i.e., the final ¢ — 1 elements of a row uniquely identify the alphabet element that
the row corresponds to). More specifically, let f’q be the matrix containing the final ¢ — 1 unnormalized

columns of P, such that P, = ﬁ [1 | f’q}, where | denotes column-wise concatenation. Then the i*" row

of f’q encodes the i element of the alphabet; we denote each of these encodings as Pq(s), where s is an
element of the alphabet (i. e., each py(s) is a row of P,,).

Then, it can be shown that the Fourier basis corresponding to the Hamming graph H(L,q), which
can be used to represent fitness functions of sequences of length L and alphabet size g, is given by the
L-fold Kronecker product of the eigenvectors of the complete graph. More concretely, an orthonormal set
of eigenvectors of the Graph Laplacian of the Hamming graph H (L, ¢) is given by the columns of following
the ¢¥ x ¢! matrix [57]:

L
=P, (10)
i=1

where P, is defined in Eq. 9. In the basis defined in Eq. 10, an epistatic interaction between positions in
the set U is encoded by the length (¢ — 1)Vl vector ¢y (s) = ﬁ @icvr Pq(si). These encodings are used
q

in the Fourier basis representation of fitness functions shown in Eq. 4. The results of Eq. 9 and Eq. 10
are proved in the SI. Note that an equivalent form of this basis for ¢ = 4 was given in ref. 40 and an
alternative form for any alphabet size was given in ref. 41.

GNK Model

Given sequence length, L, alphabet size, ¢, and set of neighborhoods V = {VU] }jLzl, a fitness function
sampled from the GNK model assigns a fitness to every sequence s € (&9 with the following two steps:

1. Let sl = (8k)peyv be the subsequence of s corresponding to the indices in the neighborhood
vl Assign a ‘subsequence fitness’, fj(s[j]) to every possible subsequence, sbl, by drawing a value
from the normal distribution with mean equal to zero and variance equal to 1/L. In other words,
fi (V) ~ N(0,1/1) for every sbil € S50 and for every j = 1,2, ..., L.

2. For every s € S(19) the subsequence fitness values are summed to produce the total fitness values

fls) =30 fi(sU)).

This definition of the GNK model is slightly more restrictive than that presented in ref. 30. In
particular, in ref. 30 the authors allow subsequence fitness values to be sampled from any appropriate
distribution whereas for simplicity we consider only the case where subsequence fitness values are sampled
from the scaled unit normal distribution.

Standard neighborhood schemes

We consider three standard neighborhood schemes: the Random, Adjacent and Block neighborhood
schemes. In all of these, each neighborhood is of the same size, K (i.e., K; = K for all j =1,2,...,L). In
the Random scheme, each neighborhood VUl contains j and K —1 other position indices selected uniformly
at random from {1,2,...,L}\j. In the Adjacent scheme when K is an odd number, each neighborhood
VUl contains the K; L positions immediately clockwise and counterclockwise to j when the positions are

K—2

arranged in a circle. When K is an even number, the neighborhood includes the 5= counterclockwise

positions and the % clockwise positions. The Block scheme (also known as the Block Model [58, 59]),
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splits positions into % blocks of size K and lets each block be “fully connected” in the sense that every

neighborhood of a position in the block contains all other positions in the block, but no positions outside
of the block. In order for Block neighborhoods to be defined, L must be a multiple of K.

Standard neighborhood sparsity calculations

The sparsity of GNK fitness functions with the standard neighborhood schemes can be calculated
exactly as functions of L, ¢, and K. The following results are used in the main text and are all proved in
the SI. First, the sparsity of any GNK fitness with uniform neighborhood sizes is bounded above by

S(f) <1+ Lg—1)+ L(¢" — Kq+K —1) (11)

All curves in Figs. 2A and 2B are calculated with this bound, and it is also used for the sample
complexity calculations shown in Fig. 3. It is also plotted as the dashed blue curve in Fig. 2C with L = 20
and ¢ = 2. Additionally, the sparsity of GNK fitness functions with Block neighborhoods can be calculated

exactly and is given by
L
S(f) =" =1 +1. (12)

Eq. 12 is plotted as the red curve in Fig. 2C with L = 20 and ¢ = 2. Similarly, the sparsity of GNK fitness
functions with Adjacent neighborhoods is given by

S(f)=1+L¢" (q—1) (13)

which is plotted as the green curve in Fig. 2C with L = 20 and ¢ = 2. Finally, the expected sparsity
of GNK fitness functions with Random neighborhoods, with the expectation taken over the randomly
assigned neighborhoods, is given by

K
Bis(] =3 (F oo -1y (14)

r=0

where

pr) =1 (a0 (1-aeh=r)

and a(r) = (([L(:ll))!! ((I].f::));. Eq. 14 with L = 20 and ¢ = 2 is shown as the solid blue curve in Fig. 2C. The

results of Eqgs. -14 are proved in the SI.

Numerical calculation of C

In order to determine an appropriate value of C', we (i) sampled a fitness function from a GNK model,

(ii) subsampled N sequence-fitness pairs uniformly at random from the complete fitness function for a

range of settings of N, (iii) ran LASSO on each of the subsampled data sets and (iv) determined the

smallest N such that the fitness function is exactly recovered by LASSO. Letting N be the minimum N
for which exact recovery occurs, then X
A N

O S oen(e) )

is the minimum value of C' that satisfies Eq. 2, where S(f) is calculated with Eq. 6. We ran multiple

replicates of this experiment for neighborhoods sampled according to the RN scheme, for different settings
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of L, q and K. This resulted in a test for 907 total fitness functions. For each of these fitness functions,
we ran LASSO with 5 randomly sampled training sets for each size N, and a regularization parameter,
v, determined by cross-validation. We deemed the fitness function exactly recovered when the estimates
resulting from all 5 training sets explained 99.99% of the variance in the fitness function’s coefficients.

Equipped with an estimate of C, we can calculate the minimum number of samples required to exactly
recover a GNK fitness function by using Eq. 2 along with the sparsity calculations discussed in the previous
section. Specifically,

N = [Co-5(f)logio(a")] (16)

is the minimum number of samples that guarantees exact recovery, where || represents the ceiling operator.
Eq. 16 was used along with the bound in Eq. to calculate the curves in Fig. 3.
Percent variance explained

In Fig. 4C, we computed the percent of total variance in the Fourier coefficients explained by the S
coefficients with the largest magnitudes, for a range of settings of S. The percent variance explained by
the S largest elements of the vector of coefficients 3 is calculated as

a2
% variance explained(S) := 100% - (1 — Hﬁiﬂnf‘b) . (17)
2

Data and code availability

The data sets and code used for our analyses are available at https://github.com/dhbrookes/FitnessSparsity.
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S1 Additional details on mTagBFP2 fitness function

The data of ref. 18 reports on the fluorescence of every intermediate between the mTagBFP2 blue
fluorescent and mKate2 red fluorescent proteins. These two proteins differ in only 13 positions, and the
red and blue fluorescence of all 213 possible combinations of the two sequences at these positions was tested.
Table S1 shows the alphabet of each position in these empirical fitness functions. For our analysis of this
data, we considered only the reported blue fluorescence of each tested sequence. Since there is no available
structure for mTagBFP2, we calculated the Structural neighborhoods with the structure of TagBFP, a blue
fluorescent protein from which mTagBFP2 is derived by making the mutations S2_S2delinsVSKGE /I174A
[60]. No crystal structure is available for mKate2 or a closely related protein (e.g., mKate) that would
have allowed to us to perform analogous analysis on the red fluorescent data.

Since the empirical fitness function in the data of ref. 18 is combinatorially complete, we can solve
for the Fourier coefficients with Ordinary Least Squares (OLS) regression. In particular, letting y be the
empirical fitness values and ® the WH basis encoding all binary sequences of length 13, then the OLS
estimate of the empirical Fourier coefficients is B = (®7®)"'1®Ty = Ty, where the second equality is
due to the orthogonality of ®. The magnitudes of 3 are plotted in Figure 4B (first row).

H Position |20 45 63 127 143 158 168 172 174 197 206 207 231 H

mTagBFP2 | D V L T F N S A A Y N N K
mKate2 N A M P S A G C L R D K R

Table S1: Alphabets at each mutated position in the empirical fitness function of ref. 18. The first row indicates
the index of the position in the complete protein sequence, the second row and third rows indicate the amino acids
present at these positions in the mTagBFP2 and mKate2 sequences, respectively.

S2 Additional details and results on His3p fitness function

The complete data of ref. 44 reports the fitness of 875,151 unique amino acid sequences of the protein
encoded by the His3 gene in yeast (which we refer to as His3p). In this case, the fitness was defined as
the cellular growth rate when the the sequences were expressed in a strain of yeast. Embedded within
this data, there exist a number of nearly combinatorially complete fitness functions. By ‘embedded’ we
mean that if one only considers data reporting on a subset of the mutated positions, and a subset of the
possible mutations at those positions, then nearly all combinations of the considered mutations at the
considered positions have fitness values associated with them. Two such nearly complete fitness functions
can be constructed by considering the 11 sequences positions 145,147, 148,151,152, 154,164, 165, 168, 169,
and 170. If one considers only the two most frequently occurring amino acids at these positions, then
2,030 out of the 2! = 2,048 possible combinations of those amino acids at those positions have fitness
data associated with them. The two most frequent amino acids at each of these positions are shown
in Table S2. We will refer to the fitness function corresponding to these 11 positions and alphabets as
the His3p(small) fitness function. The His3p(small) empirical fitness function is analyzed in the main
text and compared to GNK fitnesss functions with Structural neighborhoods (Figure 4, second row).
These Structural neighborhoods were constructed using the I-TASSER, predicted structure of His3p that
is analyzed in ref. 44. Determining the empirical Fourier coefficients for the His3p(small)) fitness function
requires solving a very slightly underdetermined linear system (2,030 rows and 2,048 columns). In order
to do so, we solved for a LASSO estimate using all 2,030 fitness measurements with a small amount of
regularization (v = 1 x 107!2); the magnitudes of the resulting coefficients are shown in the second row of
Figure 4B.

If one further considers larger alphabets at certain positions, then there is another nearly complete
empirical fitness function associated with the 11 positions that are considered in the His3p(small) fitness
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function. In particular, consider alphabets of size q = [2,2,3,2,2,3,3,4,2,4] corresponding to each of
the 11 positions; the particular alphabets corresponding to each position are shown in Table S3. We
refer to the fitness function corresponding to these alphabets as the His3p(big) fitness function. The data
of ref. 44 contains fitness measurements for 48,219 out of the Hzlil q; = 55,296 sequences in the space
corresponding to the alphabets in Table S3. We show how to construct Fourier bases for fitness functions
of sequences with hybrid alphabet sizes in Section S7. The Fourier basis for L = 11 sequence positions
and hybrid alphabet sizes q has 55,296 associated coefficients. We used LASSO with v = 1 x 107 to
solve for the Fourier coefficients of the His3p(big) fitness functions. The magnitudes of these coefficients
corresponding to up to 4*" order epistatic interactions are shown in blue in Figure S1IA. We additionally
show in Section S7 how to extend our results on GNK fitness functions to the case of hybrid alphabet
sizes. We used these results to calculate the sparsity of GNK fitness functions with L = 11, alphabet
sizes q and Structural Neighborhoods as in Figure 4D in the main text, as well as the the number of
measurements required to recover those fitness functions. Figures SIA and S1B and show the results of
comparing the Fourier coefficients and sparsity of the His3p(big) empirical fitness function to the GNK
fitness functions (these are calculated with the same methodology as Figures 4B and 4C). Figure S1C shows
the result of estimating the His3p(big) fitness function with randomly sampled measurements (analogous
to Figure 4D in the main text). We again see that GNK fitness functions with Structural Neighborhoods
can approximate the sparsity of, higher-order epistatic interactions in, and number of samples required to
estimate empirical protein fitness functions. These results also demonstrate that the Fourier bases produce
sparse representations of fitness functions with non-binary alphabets.

H 145 147 148 151 152 154 164 165 168 169 170 H

L F R K I Q L D A G G
I L Q M vV E M H S E S

Table S2: Alphabets at each mutated position in the His3p(small) fitness function. The first row indicates the
sequence position. and the rows indicate amino acids that make up the alphabet at each position.

145 147 148 151 152 154 164 165 168 169 170
L F R K I Q L D A G G
I L Q M VvV E M H S E S
K H 1 E R A

D Q Q T

Table S3: Alphabets at each mutated position in the His3p(big) fitness function. The first row indicates the
sequence position. and the rows indicate amino acids that make up the alphabet at each position.
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Fig. S1: Comparison of His3p(big) empirical fitness function to the GNK model with Structural Neighborhoods
from Figure 4A (second row) in the main text. (A) Magnitude of empirical Fourier coefficients (upper plot, in blue)
compared to the standard deviations of coefficients in the GNK model (reverse plot, in red). Dashed lines separate
orders of epistatic interactions, with each group of r*" order interactions indicated. (B) Percent of variance explained
by the largest Fourier coefficients in the empirical fitness function and in fitness functions sampled from the GNK
model. The dotted line indicates the exact sparsity of the GNK fitness functions (526) at which point 81.4% of the
empirical variances is explained. (C) Error of LASSO estimates of empirical fitness functions at a range of training
set sizes. Each point on the horizontal axis represents the number of training samples, N, that are used to fit the
LASSO estimate of the fitness function. Each point on the blue curve represents the R? between the estimated and
empirical fitness functions, averaged over 50 randomly sampled training sets of size N. The point at the number
of samples required to exactly recover the GNK model with Structural Neighborhoods (N = 6,537) is highlighted
with a red dot and dashed lines; at this number of samples, the mean prediction R? is 0.728. Error bars indicate
the standard deviation of R? over training replicates. Inset shows paired plot between the estimated and predicted
fitness function for one example training set of size N = 6, 537.
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S3 Additional details on quasi-empirical Hammerhead ribozyme HH9
fitness function

In order to construct the quasi-empirical fitness function of the Erinaceus Furopaes Hammerhead
ribozyme HH9 that is discussed in the main text, we first chose 8 positions on the wild type sequence of
the ribozyme (RFAM: AANN01066007.1) to mutate. We chose positions by hand based on the predicted
Minimum Free Energy (MFE) secondary structure of the wild type sequence, which is shown below in
Fig. S2, with the aim of choosing positions that were at a range of distances from one another in the
predicted structure. Ultimately we chose positions 2, 20, 21, 30, 43, 44, 52, and 70, and created the list
of 48 = 65,536 sequences with all combinations of nucleotide substitutions at these positions. We then
used the ViennaRNA package [48] to predict the Minimum Free Energy (MFE) of each sequence, which
we used as the fitness value of each sequence. We then solved for the Fourier coefficients of this fitness
function with OLS regression. In particular, letting ® be the Fourier basis for sequences with L = 8 and
g = 4, and y be the corresponding vector of MFE values, we estimate the Fourier coefficients, ,3 of the
fitness function as ﬁ = ®”y. The magnitudes of B are shown as blue bars in the third row of Fig. 4B.
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Fig. S2: Minimum free energy secondary structure of of the Erinaceus Furopaes Hammerhead ribozyme HH9 wild

type sequence, as predicted by ViennaRNA [48] and visualized with forna [61]. The positions that were chosen to
mutate are indicated with thick black outlines.
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S4 Additional details on numerical calculation of C

In order to determine an appropriate value of the C' constant, we sampled fitness functions from the
GNK model with Random Neighborhoods at different settings of L, ¢, and K, and determined the number
of randomly sampled fitness measurements required to estimate these fitness functions. Figure 2D shows
the results of these tests averaged over all settings of L,q, and K. In Figure S3, we display these results
in more detail by showing the results for particular settings of L and ¢ in separate plots. The curve in the
plots of Figure S3 are also displayed as grey curves in Figure 2D.
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Fig. S3: Fraction of GNK fitness functions with Random Neighborhoods recovered at a range of settings of C'. Each
plot corresponds to fitness functions with the setting of L and ¢ indicated above the plot. Colors indicate the value
of K used when sampling Random Neighborhoods. The value C' = 2.62 is highlighted with a dashed line in each
plot.
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S5 Additional analyses of empirical protein fitness functions

In this section, we present further analyses of the TagBFP and His3p fitness functions discussed in the
main text and the associated GNK models with Structural neighborhoods.

S5.1 Effect of contact threshold on Fourier coefficients of GNNK fitness functions with
Structural Neighborhoods

In the main text, we deem two positions of a protein sequence to be in structural contact when any pair
of atoms in the residues at these positions are within a threshold distance of 4.5A of one another in a given
atomistic protein structure. We then used this definition of structural contacts to constructed Structural
neighborhoods for GNK fitness functions. Here we test how modifying the threshold distance for defining
structural contacts affects various properties of the Structural neighborhoods, and the GNK models that
use these neighborhoods.

One interpretation of the Structural neighborhoods is as a binarization of the pairwise distance matrix
between pairs of positions. In other words, given a pairwise distance matrix and a threshold distance,
one can simply set distances less than the threshold distance equal to 1 and all other equal to zero to
produce the graphical depictions of the Structural neighborhoods shown in the first and second rows of
Fig. 4A. The non-binarized pairwise distance matrices of TagBFP and His3p are shown below in Fig. S4;
these matrices provide more detail on the structural relationships between the positions and allows us to
assess the effect of different thresholds on the composition of the Structural neighborhoods. By binarizing
these distance matrices, one can construct the Structural neighborhoods corresponding to any threshold
distance.

To assess the effect of modifying the threshold distance on GNK models with Structural neighborhoods,
we determined the Structural neighborhoods corresponding to a range of threshold distances in both the
TagBFP and His3p cases. We then Eq. Eq. 5 to calculate the variance of the Fourier coefficients of GNK
fitness functions that used the Structural neighborhoods at each threshold distance. The magnitudes of
these Fourier coefficients compared to the magnitudes of the corresponding empirical Fourier coefficients
are shown in Figs. S5 (for the TagBFP fitness function) and S6 (for the His3p fitness function). We
then used Eq. Eq. 2 to calculate the sparsity of GNK fitness functions with Structural neighborhoods
constructed using a range of threshold distances; the results of these calculations are shown in S7.
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Fig. S4: Pairwise distance matrices of the TagBFP (A) and His3p (B) structures, for positions that are mutated in
the corresponding fitness functions. Each value in the grid reports the minimum distance between any pair of atoms
in the residues at the positions indicated in the labels of the grid. The grids are colored based on these distances.

27


https://doi.org/10.1101/2021.05.24.445506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.4455086; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

r=1 Structural contact threshold: 3.5 A Structural contact threshold: 4 A
{ r=2
= 0'5-’§r:3 %r:4 ET:5 § 1 } E 5
9] i i i i i i 1
5 : : ! ! ! i
= i i H i
20254 ! ]
(&) | | 1
5 e |
%‘ O J‘; Al ! sl Ny i L TR |
@ H\' I T T ‘
[ i ! |
o i i
Q i i
s} \ | !
20259 | : L
= ' i i
2 f |
= 054 o
Structural contact threshold: 4.5 A Structural contact threshold: 5 A
: Al Ta I . - Ll T |
‘ "\ lﬂ‘\ lU I | | ‘”\ “\ W\ [ |
Structural contact threshold: 5.5 A Structural contact threshold: 6 A
i Al TR - L - il it Lo . L |
"\ l\H lU' I | | ‘”\ “\ W\ [ |
Structural contact threshold: 6.5 A Structural contact threshold: 7 A
Al it il . L | cdilly Wl L |
IU MI: W\ ‘\ I W\ I I : E w ‘H\ W\ ‘ I ‘ 1

Fig. S5: Comparison between magnitudes of Fourier coefficients in the mTagBFP2 empirical fitness function and
GNK models with Structural neighborhoods derived from the TagBFP crystal structure at a range of threshold
distances. Coloring and details of each plot are as in Fig. 4B of the main text. The title of each plot indicates the
threshold distance used to determine Structural neighborhoods of the GNK models whose coefficients are displayed
as red bars in the plots.
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Fig. S6: Comparison between magnitudes of Fourier coefficients in the mTagBFP2 empirical fitness function and
GNK models with Structural neighborhoods derived from the I-TASSER predicted structure of His3p at a range of
threshold distances. Coloring and details of each plot are as in Fig. 4B of the main text. The title of each plot
indicates the threshold distance used to determine Structural neighborhoods of the GNK models whose expected
coefficient magnitudes are displayed as red bars in the plot.
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Fig. S7: Effect of structural contact threshold distance on sparsity of GNK fitness functions with Structural neigh-
borhoods based on the (A) TagBFP crystal structure and (B) I-TASSER predicted structure of His3p. The horizontal
axis of each plot indicates the threshold distance used to define structural contacts and thus used to construct the
Structural Neighborhoods. The vertical axis indicates the sparsity of the GNK fitness functions when the Structural
Neighborhoods are defined with each threshold distance. The threshold distance used in the main text (4.5A) and
the corresponding sparsities are indicated with dashed lines.
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S5.2 Distribution of largest coefficients by order of interaction

It is not immediately clear from the presentation of Fig. 4B how the largest Fourier coefficients in the
empirical and GNK fitness functions are distributed among the orders of epistatic interactions. Fig. S8
shows the fraction of the largest S coefficients that correspond to epistatic interactions of each order, with
S equal to the sparsity of GNK fitness functions.

>
o

0.30¢t
,, 0357 MMM Empirical . B Empirical
2 BN GNK 2 B GNK
b= b=
[ [
2 025 g 0.0}
2 e
= 0.20f -
) ¢ 0.15
2p 2P
= 0.15¢ =
e Z 0.10t
£ o10] 5
51 151
2 005l 2 005

0.00 0.00

1 2 4
Order of interaction Order of interaction

o 1 2 3 4 5 6 7

Fig. S8: Fraction of Fourier coefficients with the largest magnitudes that are of each order of interactions in the
(A) mTagBFP2 empirical fitness function and associated GNK model with Structural neighborhoods and (B) His3p
empirical fitness function and associated GNK model with Structural neighborhoods. Blue bars indicate the fraction
of the largest S empirical coefficients that are of each order of interactions and red bars indicate the fraction of
the GNK coefficients with the largest expected magnitudes that are of each order of interactions. S is equal to the
sparsity of the GNK fitness functions in each case: S =56 in (A) and S = 76 in (B).

S5.3 Analysis of the overlap between empirical and GNK Fourier coefficients

Here we provide more analysis of the overlap between the Fourier coefficients of the empirical protein
fitness functions and the corresponding GNK models with Structural neighborhoods than is shown in Fig.
4B.

First, Fig. S9 contains scatter plots that compare the magnitudes of the Fourier coefficients of the
empirical protein fitness functions with the expected magnitudes of the corresponding GNK models with
Structural neighborhoods. In both cases, we see statistically significant correlation between the expected
magnitudes of the GNK coefficients and the magnitudes of the empirical coefficients (p = 9.5 x 107310
and p = 9.5 x 10772 in the TagBFP and His3p cases, respectively). However, this visualization and
quantification technique is not ideal for informing on our claims because it focuses on the coefficients’
magnitude more than the sparsity of the coefficients. Indeed, what is more important for our results is
that the GNK model identifies many of the largest empirical coefficients as being nonzero, which is analyzed
more concretely in later plots and described below.

In particular, Fig. S10 shows the fraction of the GNK coeflicients with the largest expected magnitudes
that are also among the empirical coefficients with the largest magnitudes. For example, among the largest
25 coefficients in the TagBFP empirical fitness function, 76% are also among the 25 GNK coefficients with
the largest expected magnitudes (which corresponds 19 out of 25 overlapping coefficients). Further, there
is 96% overlap between the 25 largest His3p(small) empirical and GNK coefficients (i.e. there are 24 out
of 25 overlapping coefficients). At the sparsities of the GNK models (56 and 76 coefficients, respectively,
for the TagBFP and His3p(small) cases), there is 41% and 62% overlap between the largest empirical and
GNK coefficients in the TagBFP and His3p(small) cases.

31


https://doi.org/10.1101/2021.05.24.445506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.4455086; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Further, we performed statistical tests to determine whether the GNK models with Structural neigh-
borhoods were able to identify the largest coefficients in the empirical fitness functions. To start, we
partitioned the empirical coefficients into two sets: those that are identified as being nonzero in the GNK
fitness functions and those that are zero in the GNK fitness functions. Kernel Density Estimates (KDEs)
of the density of magnitudes of the coefficients in these two sets are shown in Fig. S11. All KDEs were
calculated with the Scikit-learn package [62] using a Gaussian kernel with bandwith equal to 0.01. Vi-
sually, it appears that the empirical coefficients corresponding to nonzero GNK coefficients indeed tend
to be larger than those associated with zero GNK coefficients. To quantify this claim, we performed a
Wilcoxon rank-sum test [63] to test the null hypothesis that the two sets of coefficients are sampled from
the same population, against the alternative hypothesis that the empirical coefficients corresponding to
nonzero GNK coefficients are sampled from a population that is stochastically greater that of the coef-
ficients corresponding to zero GNK coefficients. The p-values resulting from this test are shown in both
panels, demonstrating that we can safely reject the null hypothesis in both cases.

We also made these density visualizations and ran the associated statistical test for coefficients corre-
sponding to every order of epistatic interaction where the GNK model has more than one nonzero coefficient
(ignoring r=0 and r=1, where the GNK model assigns nonzero variance to all coefficients). Figs. S12 and
S13 show these visualizations for the mTagBFP and His3p fitness functions, with the order of interactions
indicated by the title of the panels and the p-values of each statistical test displayed in the panels. In all
cases, we can reject the null hypothesis at a significance threshold of 0.01.
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Fig. S9: Comparison of the correlation between the magnitudes of the Fourier coefficients of the (A) mTagBFP2 and
(B) His3p empirical fitness functions and the expected magnitudes of the Fourier coefficients of the corresponding
GNK models with Structural neighborhoods.
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Fig. S10: Fraction overlap between Fourier coefficients with largest magnitudes of empirical protein fitness functions
and the Fourier coefficients with the largest expected magnitudes in the associated GNK models with Structural
neighborhoods. The horizontal axis indicates the number of the largest empirical coefficients that are considered.
At a value S on the horizontal axis, the vertical indicates the number of the S largest empirical coefficients that are
also among the S coefficients in the GNK model with the largest expected magnitude. The panels correspond to the
(A) mTagBFP2 empirical fitness function and associated GNK model with Structural neighborhoods and (B) His3p
empirical fitness function and associated GNK model with Structural neighborhoods.
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Fig. S11: Kernel density estimates of the density of magnitudes of empirical Fourier coefficients that are identified
as zero (blue) and nonzero (orange) by GNK models with Structural neighborhoods. The raw magnitudes of the
coefficients in each set are shown by the vertical bars below the density plots. The panels correspond to the (A)
mTagBFP2 empirical fitness function and (B) His3p empirical fitness function. The p-values associated with a
Wilcoxon rank-sum test comparing the two populations of magnitudes in each panel are shown in that panel.
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Fig. S12: Kernel density estimates of the density of magnitudes of Fourier coefficients in the mTagBFP2 empirical
fitness function that are identified as zero (blue) and nonzero (orange) by the associated GNK model with Structural
neighborhoods. Each panel corresponds to a particular order of epistatic interaction, indicated by the title of the
panel. The p-values associated with a Wilcoxon rank-sum test comparing the two populations of magnitudes in each
panel are shown in that panel.
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Fig. S13: Kernel density estimates of the density of magnitudes of Fourier coefficients in the His3p empirical
fitness function that are identified as zero (blue) and nonzero (orange) by the associated GNK model with Structural
neighborhoods. Each panel corresponds to a particular order of epistatic interaction, indicated by the title of the
panel. The p-values associated with a Wilcoxon rank-sum test comparing the two populations of magnitudes in each
panel are shown in that panel.The p-values associated with a Wilcoxon rank-sum test comparing the two populations

of magnitudes in each panel are shown in that panel.
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S5.4 Comparison of error bound for GNK and empirical fitness functions

In the main text, we have been primarily concerned with the exact recovery of fitness functions. How-
ever, Eq. 8 also provides a means to probe the amount of error that may result from using fewer training
samples than are needed for exact recovery. In particular, the function I8 = Bsli /S roughly sets the scale
for the decay in error as more samples are added (in the sense that it is proportional to the bound on
error in the noiseless case). Below we plot this function for the (A) TagBFP and (B) His3p(small) (B)
empirical fitness functions, together with the mean and variance of this quantity for 1,000 samples of the
corresponding GNK models with Structural neighborhoods (in the same manner that we calculated the
percent variance explained curves in Fig. 4C).
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Fig. S14: Comparison of the noiseless error bound of Eq. Eq. 8 for empirical protein fitness functions and GNK
fitness functions with Structural neighborhoods. Blue curves represent the error bound for the empirical fitness
functions, while red curves represent the mean bound of sampled GNK fitness functions, and the red shaded region
represent the standard deviation of the bound among these samples. The panels correspond to (A) the mTagBFP2
empirical fitness function and corresponding GNK model and (B) the His3p empirical fitness function and corre-
sponding GNK model. Note that each vector of coefficients has been normalized such that the L1 norm is equal to
1, so that the GNK and empirical coefficients can be compared.
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S6 Proofs and additional theoretical results

In this section, we formally state the mathematical results from the main text and provide proofs.

S6.1 Graph theory preliminaries

Much of the following requires substantial graph-theoretic construction, so we first introduce the req-
uisite notation and simple definitions. We will use the notation V(G) and E(G) to denote the vertex and
edge sets of a graph G. The graph is then specified by G = (V(G), E(G)). The “degree” of a vertex
v is the number of other vertices that are adjacent to v. A k-regular graph is a graph in which every
vertex has degree equal to k. The Graph Laplacian of a graph G with vertices V(G) = {g;}}'_; is given by
L(G) = D(G) — A(G) where D(G) is an n x n diagonal matrix whose i*" diagonal element is equal to the
degree of vertex i and A(G) is the n x n adjacency matrix of G with elements given by

1 if g; is adjacent to g; in G,

0 otherwise.

Aij(G) = {

Graph Laplacians and adjacency matrices are real, symmetric matrices and thus have orthonormal sets
of eigenvectors. In the case of a k-regular graph, L(G) = kI — A(G). Thus the Laplacian and adjacency
matrices share eigenvectors, and the eigenvalues of the Laplacian are given by
Aj(L) =k —Xj(A) for j =1,...,L where A\;j(A) are the eigenvalues of the adjacency matrix.

We will make use of the Cartesian product of graphs, defined below:

Definition 1 (Cartesian Product of Graphs). The Cartesian product between two graphs G = (V(G), E(G))
and H = (V(H),E(H)) is defined as GOH = (V(G) x V(H), E(GOH)), where two vertices (g,h) and
(¢',h') are adjacent in GOH if and only if either

1. g = ¢ and h is adjacent to b’ in H, or
2. h=Hh and g is adjacent to ¢’ in G.

A direct consequence of Definition 1 is that the adjacency matrix of the Cartesian product can be
constructed from the adjacency matrices of its components as [64]:

A(GOH) = A(G) @1, + 1, ® A(H), (S1)

where m = |V(H)| and n = |V (G)]| are the number of vertices in H and G, respectively.
We will additionally make use of the Lexicographic product of graphs [57].

Definition 2 (Lexicographic Product of Graphs). The Lexicographic product between two graphs G =
(V(G),E(G)) and H = (V(H),E(H)) is defined as Go H = (V(G) x V(H), E(G o H)), where two vertices
(g,h) and (¢', ') are adjacent in G o H if and only if either

1. g is adjacent to ¢’ in G, or

2. g = ¢’ and h is adjacent to h/ in H.

The adjacency matrix of a Lexicographic product of graphs is given by [64]:
AGoH)=AG)®J,+1,2 A(H), (S2)

where J,, is the m X m matrix with every element equal to one.

The graphs described up until now have been ‘simple’ graphs, where each edge connects exactly two ver-
tices and vertices are connected by at most one edge. We will also discuss ‘hypergraphs’, where ‘edges’ are
sets that may contain more than two vertices (these are referred to as ‘hyperedges’). Let H = (V(H), E(H))
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be a hypergraph with n vertices, V(H) = {h;}",, and p hyperedges, E(H) = {ej}le. The incidence ma-
trix of H, denoted F(H),9 is the n x p matrix with elements

Py (1) = {1 se

0 otherwise.
The degree of a vertex in a hypergraph is equal to the number of hyperedges that contain that vertex,
and a k-regular hypergraph is one in which all vertices have degree equal to k. The clique multigraph
corresponding to a hypergraph is the multigraph (another extension of simple graphs where two vertices
can have multiple simple edges between them) with the same vertices as the hypergraph, and as many
edges between two vertices as the number of times those vertices co-occur in a hyperedge of the hypergraph
(i.e., if two vertices are both in two separate hyperedges of the hypergraph, then they will have two edges
between them in the clique multigraph) [65]. The (i, 7)™ element of the adjacency matrix of a multigraph
is equal to the number of edges that connect the i and j*™ vertices.

Below are two Lemmas regarding the spectrum of Cartesian and lexicographic graph products that will
be useful [66].

Lemma 1. Let G and H be regular graphs with n and m vertices, respectively. Let A(G) = PAgPT and
A(H) = QAgQT be eigendecompositions of the adjacency matrices of G and H, respectively. Then the
adjacency matriz of the Cartesian product GLUIH has the eigendecomposition given by:

A(GOH) = RAORT, (S3)
where R=P®Q and Ap =Ag®1,,+1, R Ay.

Proof. We can use Equation S1 to prove the proposed Lemma directly:

RACR? = [P Q][A¢®1, +1,® Ay][P®Q]"
=[PAc®Q+P®QAy|PT ® Q"]
=PAP" ©QQ" + PPT © QAQ”
=AG)®L,+1,®A(H)
= A(GOH),
where in the second and third lines we have used the property of Kronecker products that
(A®B)(C®D)=(AB ® CD), in the second line we have also used the fact that the transpose is dis-

tributive over the Kronecker product, (C ® D)’ = CT @ D7, and the final line is a result of Equation
S1. O

Lemma 2. Let G and H be regular graphs with n and m vertices, respectively. Let A(G) = PAgPT and
A(H) = QAxQT be eigendecompositions of the adjacency matrices of G and H. Then the adjacency
matriz of the lexicographic product G o H has the eigendecomposition given by:

A(GoH) =RAR", (S4)

where R =P®Q, Ao = A¢ @B +1,® Ay, and B = mejel (i. e, Bij = m ifi = j =1 and zero
otherwise).

Proof. The adjacency matrix of any k-regular graph with m vertices has two eigenvalues, k and 0, with mul-
tiplicities 1 and m — 1, respectively. The normalized eigenvector associated with the eigenvalue k is ﬁlm

and the normalized eigenvectors associated with the eigenvalue 0 are any set of length-m orthogonormal
vectors that are orthogonal to 1,, (i.e., vectors that sum to one). Since H is a regular graph, we then have

that
Jym o ifi=1

0 otherwise

(Q"Jm)i; = {
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and
m ifi=5=1

(Q"31.,Q)ij = {

0  otherwise
Therefore, (Q”J,,Q) = B and further QBQ” = J,,,. Then we can use Eq. S2 to show:

RAR' = P2 QA¢®B+1,® Ay][P® QT
=PAPT 2 QBQT + PPT @ QA5 QT
=AG)® T, +1,2A(H)
=A(GoH)

S6.2 Graph Fourier basis results

Here we will prove results related to our construction of Graph Fourier bases. First, we prove a result
regarding the eigenvectors of the complete graph, which is presented in the main text as Eq. 9.

Proposition 1. An orthonormal set of eigenvectors of the Graph Laplacian of the complete graph K(q)
are given by the columns of the q X q matriz:

2ww!
P,=1,—- —, (S5)
T w3
where w == 14 — \/qe1, 14 is the vector of length q whose elements are all equal to one, ey is the length q
with the first element set to 1 and all others set to zero, and I, is the q X q identity matriz

Proof of Proposition 1. The Graph Laplacian of the complete graph K (q) is given by

L(K(q)) = qI; — J4 (i e., the ¢ X ¢ matrix with ¢ on the diagonal and all other elements equal to —1). This
matrix has two eigenvalues, 0 and ¢, with multiplicities 1 and g—1, respectively. The normalized eigenvector
corresponding to the zero eigenvalue is %lq. Since the graph Laplacian is symmetric, the eigenvectors
are orthogonal and therefore the remaining eigenvectors are any set of n — 1 orthogonal vectors that are
orthogonal to 1, (i.e., vectors that sum to zero) and each other. In order to show that the columns of the
Householder matrix given in Eq. S5 are orthonormal eigenvectors of the complete graph, we will prove (i)

that the first column of P, is equal to %1q and (ii) that P, is an orthogonal matrix:

(i) We can more explicitly write the w = [wq, wa, ..., w,] vector as

w=1,—/qe1 = [1 — /g, 1,1,....,1]T. Therefore, |w|3 = (1—/q)*+ (¢—1) =2(¢ — \/9)- Let o
for i = 1,2,..q be the elements of the first column of P, respectively. Then,

2w1w1

a1 = 1—
lwll3

:1_M
-4

1 1
=1- <1 — > = —,
V4 V4
and for j = 2,3, ..., q, we have
_ 2wjwn

o, =
T w3
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Therefore, all elements of the first columns of P, are equal to ﬁ.

(ii) The orthogonality of P, follows directly from the definition:

owwl r owwl
(Pq)TPq = <Iq - > (Iq - 2>

w3 [wll3
1 awwl  dwwTww?
T lwli3 w3
=1,

Thus, P, is an orthogonal matrix whose first column is %lq, and further, the columns are P, are an

orthonormal set of eigenvectors of K (q). O

It is worth noting that the adjacency matrix of the complete graph is an example of a circulant matrix,
and thus an alternative basis to that of Eq. S5 is the g-point Discrete Fourier Transform [67]. Using the
DFT matrix along with Eq. 10 results in the basis for the Hamming graph presented in [68].

We additionally have the following result showing how to construct the Graph Fourier basis correspond-
ing to the Hamming graph using the eigenvectors of the complete graph, which is presented in the main
text as Eq. 10.

Proposition 2. An orthonormal set of eigenvectors of the Graph Laplacian of the Hamming graph H (L, q)
are given by the columns of the ¢& x ¢“matriz

& =P, (S6)

where P, is defined in Eq. S5.

In order to prove Proposition 2, we need a preliminary result. First remember that the Hamming graph
H(L,q) is the L-fold Cartesian product of the complete graph K (q). We have the following result regarding
the eigenvectors and eigenvalues of the adjacency matrices of Cartesian products of regular graphs.

Lemma 3. Let G and H be regular graphs and let P and Q be matrices whose columns are eigenvectors of
the Graph Laplacians of G and H, respectively. Then the columns of P ® Q are eigenvectors of the Graph
Laplacian of the Cartesian product GUH.

Proof. For a regular graph, the degree matrix is a constant multiplied by the identity matrix. Thus, in this
case, the Graph Laplacian and adjacency matrices differ only by a constant added to the diagonal (and
a constant multiplicative factor of —1). The Graph Laplacian and adjacency matrices of a regular graph
therefore have the same eigenvectors. The result then follows from Lemma 1. O

Proof of Proposition 2. The Hamming graph H(L,q) is defined as the L-fold Cartesian product of the
complete graph K(q) [56]:
H(L,q) = O, K(q). (S7)

Thus, by Lemma 3, the eigenvectors of the Graph Laplacian of H(L, q) are the L-fold Kronecker product
of the eigenvectors of the Graph Laplacian of K(q), as given in Eq. S6. O
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S6.3 Distribution of GNK Fourier coefficients

Here we prove our result regarding the distribution of the Fourier coefficients of fitness functions sampled
from the GNK model (Eq. 5). To begin, let GNK(L, ¢, V) be probability distribution over fitness functions
induced by the GNK model for sequence length L, alphabet size ¢, and a set of neighborhoods corresponding
to each position, V = {V[j]}le. We now formally restate the result of Eq. 5.

Theorem 1. Letf = (f(s))scs(z.a) be the complete vector of evaluations of a fitness function f ~ GNK(L,q,V).
Then the Fourier coefficients of f, given by B = ®Tf, are distributed according to 3 ~ N'(0,XI) (i. e., nor-
mally distributed with zero mean and diagonal covariance). Let By be the length (¢ — 1)" sub-vector of B
representing the epistatic interaction U. Then the variance of every element of By is given by

L
Ay = %ZqL*KJJ (U C VU]) (S8)
=1

=

where I (U C V[j]) is an indicator function that is equal to one if U is a subset of or equal to VUl and zero
otherwise.

The proof of Theorem 1 is quite involved and requires a number of lemmas; the proofs of the lemmas
are shown after the proof of the main result.

In order prove Theorem 1, we will first provide an alternative definition of the GNK model in terms
of hypergraphs. To start, we’ll now assign an index to every sequence in the space of sequences, so
SLa) = {Si}?il- As in the main text, SE—J] refers to the subsequence of s; corresponding to the indices in
the neighborhood VUl Bach neighborhood in the GNK model induces a hypergraph over sequence space,
where the vertices represent all sequences in S(% and edges contain sequences that share subsequences
corresponding to the indices in the neighborhood. We formally define this hypergraph and related quantities
below.

Definition 3 (GNK hypergraph). Let G(V) = (859 E(V)) be a ‘GNK hypergraph’ corresponding to
a neighborhood V' for a GNK model defined for sequences of length L and alphabet size q. The edge set,
E(V), corresponds to every possible subsequence of length |V|, and two sequences co-occur in an edge if and
only if they share the subsequence corresponding to the positions in V. Additionally, let F(V) = F(G(V))
be the incidence matriz of G(V'), C(V) be the clique multigraph of G(V') and A(V) == A(C(V)) be the
adjacency matriz of C(V'). Finally, when it is appropriate to consider the indezed neighborhoods VUl then
we will use this indexing for all of the GNK hypergraph quantities. Specifically, define GUl = G(V[ﬂ),
Fll — F(V[j])’ cll — C(V[ﬂ), and Al = A(V[j]).

The following Lemma gives an immediate useful result of this definition.
Lemma 4. Every GNK hypergraph, G(V'), is a 1-reqular hypergraph.

We will use the GNK hypergraphs to provide an alternative definition of the GNK model, which is
shown in the following result. Note that this definition is equivalent to the matrix definition of the GNK
model of ref. 30.

Lemma 5. Define the matriz F as the column-wise concatenation of the incidence matrices FUl for j =
1,2,...,L:
Fi= [FUFE | P ] (59)

Additionally, let w ~ N (O, %I) be a length Z]Lﬂ ¢ normally distributed random vector. Then, f = Fw
contains all fitness evaluations of a fitness function f that is distributed according to GNK(L,q,V) (i.e.,
f = (f(s))ses.a and f ~ GNK(L,q,V)).
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The following conclusions regarding the statistics of the Fourier coefficients in the GNK model are
immediate from this definition of the model. In what follows, we use angled brackets, () to indicate
expectation over the random field.

Lemma 6. Let B be the Fourier coefficients of a fitness functions distributed according to GNK(L,q,V).
Then 3 is normally distributed with (3) = 0 and covariance matriz

(36") = 1 FF' S, (510)

where ® s the Fourier basis defined in Eq. S6 and F is the column-wise concatenation of the incidence
matrices of GNK hypergraphs defined in Eq. S9.

Lemma 6 provides a straightforward path towards proving Theorem 1. We now need to show that (i)
& diagonalizes FFT (i.e., ® is a basis of eigenvectors for FFT) and (ii) that the eigenvalues of FF” are
given by Eq. S8. The problem can be further simplified by first noting the following simple result, which
follows straightforwardly from the multiplication of block matrices.

Lemma 7. FF? = "0 | FUI(FUI)T.

This result tells us that if possible, it is sufficient to prove that ® diagonalizes each FU/ (Fm)T in order
to prove that @ diagonalizes FF7. Then the eigenvalues of FF” will simply be given by the sum of the
eigenvalues of the Fm(F[j])T. We are further assisted by the following result regarding the outer product
of incidence matrices of regular hypergraphs, due to [65].

Lemma 8. Let C be the clique multigraph of a k-reqular hypergraph H with incidence matriz ¥(H). Then
F(H)F(H)T = A(C) + kI, where A(C) is the adjacency matriz of C.

Lemma 8 tells us if we can determine the spectrum of the adjacency matrices AUl of the clique multi-
graphs CUl, then it is straightforward to calculate the spectrum of FUI (FM)T. In order to begin to calculate
the spectrum of AUl we recognize the following simple fact regarding these clique multigraphs (remember
that GU! is a 1-regular hypergraph by Lemma 4).

Lemma 9. The clique multigraph of a 1-reqular hypergraph is a simple graph.

We thus need to determine the spectrum of the simple graphs, C Ul cll contains edges between any
two sequences that share a subsequence corresponding to the indices in the j* neighborhood VU, In
order to calculate the spectrum of Cl!, we will first show how these clique multigraphs can be constructed
recursively. In the next few Lemmas, we will provide results for clique graphs associated with a generic
neighborhood V', and then return to considering the indexed neighborhoods VU when necessary.

Lemma 10. Let V C {1,2,...,L} be a GNK neighborhood. Additionally, let O(q) be the empty graph of
size q (i. e., the graph containing q vertices and no edges) and define the graphs By(V'), via the recursion
relation:

B (V)OO ifi+1eV
B;(V)o K(q) otherwise,
fori=1,2,..., L — 1, where
O ifleV
By(v)={0W H1et (s12)
K(q) otherwise.

Then the vertices of B;(V') represent all sequences in SS9 and two sequences
Si = [8i1,8i2, ..., 81 € SS9 gnd sj = [5j,1,5j2,--,5j1] € SE9) are adjacent in By(V) if and only if Sik =
sjk for every k € Viy) where we define Vijy = {m € V : m <} to be the | smallest elements of V.
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The simple corollary of Lemma 10 is that the clique graphs C'(V') are the final results of the recursion
in Eq. S11.

Lemma 11. Let C(V) be the clique multigraph of a GNK hypergraph G(V') and Br (V') be the graph defined
by Equations Eq. S11 and Eq. S12. Then C(V) = Br(V).

We have thus given a recursive definition of C(V'), which will allow us to calculate the spectrum of the
adjacency matrix A (V') using the spectral properties of graph products presented in Lemmas 1 and 2. In
particular, we have the following result regarding the eigenvectors of A (V).

Lemma 12. The columns of the Fourier basis ® are a complete set of orthonormal eigenvectors of the
adjacency matriz A(V') .= A(C(V)) of the clique multigraph C(V).

We could similarly use Lemmas 1 and 2 to calculate the eigenvalues of A(V); however, this would not
allow us to connect the eigenvalues to epistatic interactions, as is required to prove Theorem 1. We will
instead proceed by showing in Lemma 13 that the columns of suitably defined matrix are eigenvectors
of the adjacency matrix A (V) with eigenvalues equal to a summand of Eq. S8 up to additive constant.
Then, in Lemma 14, we will show that this matrix is indeed equal to the columns of the Fourier basis
corresponding to the epistatic interaction U. For the following results, recall from the main text that 13q

is the matrix containing the final ¢ — 1 unnormalized columns of P, such that P, = % [1 ] 134’ where |

denotes column-wise concatenation.

Lemma 13. Let U C {1,2,...,L} be a set of position indices representing an epistatic interaction and
V C{1,2,...,L} be a GNK neighborhood. Define the matriz Z;(U) with the recursion relation:

Z() P, if l+1€U
Zi(U) = VORI (513)
Z,(U)®1, otherwise
forl=1,2,.... L — 1, where
P, if 1eU
zi) =4 4t (s14)
1, otherwise

Then the columns of Zr(U) are eigenvectors of the adjacency matriz A(V'), all associated with the eigen-
value given by

w(U, V) =g~ VIUucv)-1. (S15)

Lemma 14. Define ®y as the matriz of (q — 1)|U| columns of the Fourier basis ® corresponding to the
epistatic interaction U C {1,2, ..., L}:

— ¢u(s1) —

— ¢u(se)t —

q)U = 5 (816)

— ¢U(S.qL)T -

where ¢y (s;) = ﬁ ®j€U Pq(si;) is the encoding of sequence s; in terms of the epistatic interaction U

in the Fourier basis. Then, ﬁZL(U) = ®y, where Z1,(U) is defined by Equations Eq. S13 and Eq. S14.
q

Equipped with these results, we are finally prepared to prove Theorem 1.

Proof of Theorem 1. In order to prove this theorem, we need to show (i) that the Fourier coefficients are
normally distributed with zero mean and diagonal covariance and (ii) that the variance of the coefficients
corresponding to a particular epistatic interaction are given by Eq. 5.
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First, Lemma 6 proves that the Fourier coefficients are normally distributed with zero mean. Next,
Lemma 12 proves that the Fourier basis ® diagonalizes the adjacency matrix Al of the clique multi-
graph of the GNK hypergraph GU!. Recalling that GU! is a 1-regular hypergraph, then by Lemma 8,
FUl(FU)T = AUl + 1. Therefore, the Fourier basis diagonalizes FUl(FU)T for all j = 1,2, ..., L, and thus
also diagonalizes FFT due to Lemma 7. Then, the covariance matrix of the Fourier coefficients, which is
shown in Lemma 6 to be (387) = %@TFFT@, is diagonal. The eigenvalues of FFT are then equal to the
variances of the Fourier coefficients.

Lemma 13 shows that the columns of the matrix Zy(U) defined by Equations Eq. S13 and Eq. S14
are eigenvectors of AU, Further, Lemma 14 shows that this matrix is equal to the columns of the Fourier
basis corresponding to the epistatic interaction U, ®;;. Thus, Lemma 13 shows that the eigenvalue of Al
associated with the columns ®; is given by:

w(U, VIl = =K c vy — 1.

By Lemma 8, the eigenvalues of FUl (F[j])T are simply one plus those calculated with Eq. S15. Since
the Fourier basis diagonalizes all FM(FU])T, the eigenvalues of FFT are simply the sum of those of the
FUl (FU])T. The eigenvalues of FF” associated with the eigenvectors given by the columns of ®;; are the
variances of the Fourier coefficients corresponding to the epistatic interaction U. All of this together, we
have:

1

(BuBl) = 7 (®v)' FF &y
1< o
=7 Z (@) FU(FUNT @,
j=1
1 <& ‘
=2 (WO v + 1)1
j=1
1 L
_ - L—-K; (5]
== ("Mrwcvih)T,
L )
which is the desired result for the variances of the Fourier coefficients. O

Proof of Lemma 4. Every sequence (i.e., vertex of G(V')) contains exactly one subsequence corresponding
to the position indices in V. Therefore, each vertex is contained in exactly one edge of G(V). O

Proof of Lemma 5. In order to prove this, we need to show (i) that the above formulation results in L unit
normally distributed subsequence fitness values being assigned to each sequence, where each subsequence
corresponds to the position indices in a neighborhood V! (ii) that sequences share subsequence fitness
values when they share the corresponding subsequence, and (iii) that the L subsequence fitness values are
summed to produce the total fitness value assigned to each sequence.

A direct result of Definition S6.3 is that FU! has elements given by:

. 1 if Ul _ ¢
Fy = B (S17)
0 otherwise,

where we define §j, as the k'™ possible subsequence of length K j (i-e., the k'™ element in S (KJ'"J)). Since each
hyperedge in GU! represents a subsequence of length K j» each hyperedge contains vertices that represent
sequences that share subsequence fitness values in the GNK model. Therefore, letting wll ~ N (0,I) be
a length ¢’ normally distributed random vector representing the subsequence fitness values randomly
assigned to each subsequence, then

£l — me[j],
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where £ = [f;(s1), fi(s2), .- f (s,z)]” is the vector of subsequence fitness values corresponding to neigh-
borhood j that are assigned to each sequence in (9. Since GU! is a 1-regular hypergraph (Lemma 4),
each row of FUl contains exactly one nonzero element and therefore the subsequence fitness values of each
sequence are distributed as N'(0, 1), as in the original definition of the GNK model given in the main text.
Additionally, the structure of the incidence matrix shown in Eq. S17 ensures that two sequences that share
a subsequence corresponding to the position indices in V1 also share a subsequence fitness value in £/,
as required by the GNK model.

Now, let w ~ A(0,I) be the random vector that is the concatenation of the wll random vectors
containing subsequence fitness values. Then we have:

Therefore, the elements of f are simply the sums of the L subsequence fitness values corresponding to each
sequence, which is the final step in definition of the GNK model given in the main text. O

Proof of Lemma 6. This result follows immediately from recognizing that f = Fw = ®3, and therefore
B = ®TFw. The Fourier coefficients are thus a linear transformation of a normally distributed random
vector, w, and are therefore normally distributed with mean (3) = ®TF(w) = 0 and covariance matrix
(BBT) = ®TF(wwlFT® = ®TFFT &. O

Proof of Lemma 8. Each element of F(H)F(H)T is the inner product of two rows in F(H). Since each
element in row ¢ of F(H) indicates whether vertex i is in a particular edge, the inner product of row 7 and
row j (i # j) counts the number of edges that contain both vertex i and vertex j. Of course, this is also
the number of edges connecting vertex ¢ and vertex j in the clique multigraph, and thus the off-diagonal
elements of F(H)F(H)T are equal to the elements of A(C). The diagonal elements of F(H)F(H)T are
equal to the total number of edges containing vertex i, which is L for every vertex. O

Proof of Lemma 9. Each vertex in a 1-regular hypergraph is in exactly one hyperedge, and thus the clique
multigraph has at most one edge between any two vertices. O

Proof of Lemma 10. First, both the lexicographic and Cartesian products result in graphs whose vertex
sets are the (set) Cartesian product of the vertex sets of the multiples. Since the vertex sets of both O(q)
and K (q) represent elements of the alphabet of size ¢, an I-fold graph product of these graphs will result
in each vertex representing a sequence of length .

We will prove the adjacency property of these product graphs with induction. For ease of notation, we
drop the dependence of B;(V) on V and let B; <— B;(V'). Assume that two sequences s; = [s; 1, S; 2, ..., Si1] € St
and s; = [s;1,8j2,..., 551 € 809 are adjacent in B; if and only if the adjacency condition, Sik = Sk for
every k € Vy), is satisfied. We will show that these adjacency conditions remain true for [ + 1. There are
two cases to consider: (i) [+ 1€ V and (ii)) [+1¢ V.

(i) (+1€V). Let s; = [8i]sigr1] € SUT1D and s; = [§5]s;,11] € SUT19 be sequences of length [ + 1,
where §; contains the first [ elements of s;. Since in this case [ +1 € V{1 ), we must prove that
s; and s; are adjacent in B;,; if and only if the adjacency condition is satisfied for s; and §; in B;
(which is true by inductive assumption) and s;;41 = s;;4+1. By Equation S11, B;; = B;,000(q) in
this case. Note that the vertices in B; represent the §; sequences of length [ and the vertices in O(q)
represent the new elements of the sequence, s;;41. According to the definition of the graph Cartesian
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product (Definition 1), s; and s; are adjacent in By, if and only if §; and §; are adjacent in B; and
Sii+1 = Sj1+1- Thus, in this case, the adjacency condition remains true for / + 1 under the inductive
assumption.

(ii) (I+1¢ V). In this case, | + 1 ¢ V(;;1) and therefore we need to prove that s; and s; are adjacent in
By, if and only if §; and §; are adjacent in B; or §; = §;. In this case, Bjy1 = Bjo K(g). Due to
the definition of the lexicographic product (Definition 2), s; and s; are adjacent in Byy; if and only
if (1) s; and §; are adjacent in B; or (2) §; = §; and ;41 is adjacent to s;;41 in K(g). Since all
vertices in K (q) are adjacent to one another, condition (2) simply results in s; and s; being adjacent
in By if 8; = §;. Thus, in this case, the required adjacency condition remains true for / 4 1 under
the inductive assumption.

The base case of this induction is [ = 1. If 1 € V, then V() = {1}. Since s;1 # s;,1 for all s;,s; € St
with i # j (i.e., since each length-one sequence represents an element of the alphabet, none of these
sequences are equal to one another), the graph B; should contain no edges; this is indeed the case because

B; = O(q) in the case 1 € VUl due to Eq. S12. Similarly, if ¢ V!, then V([f)] = () and all vertices of
By should be adjacent to one another; this is indeed the case because B; = K(q) when 1 ¢ VU due to

Eq. S12. O

Proof of Lemma 11. The vertex sets of both C(V) and By,(V) are given by the space of sequences S(%9).
By definition, two sequences co-occur in an edge of the hypergraph G(V') if and only if they share the sub-
sequence corresponding to the indices in V. Therefore two sequences are adjacent in the clique multigraph
C (V) if and only if they share the subsequence corresponding to the indices in V. Additionally, by Lemma
9, C(V) is a simple graph. By Lemma 10, Br(V) is a simple graph in which two sequences are adjacent if
and only if they share the subsequence corresponding to the indices in V. Thus, the vertex and edge sets
of C(V) and B (V) are equivalent, and the graphs are equivalent. O

Proof of Lemma 12. Recall from Eq. S6 that ® = ®f:1 P,, where P, is a complete set of orthonormal
eigenvectors of the complete graph K(q). Additionally, recognize that the adjacency matrix of the empty
graph, A(O(q)) has every element equal to zero and therefore any nonzero vector is an eigenvector of
A(O(q)); for our purposes we will use P, as the eigenvectors of A(O(q)). Let the columns of ®; be
orthonormal eigenvectors of the graph B;(V'), which is defined in Lemma 10. Then we have

P, ifleV
O, = )
P, otherwise,

where the first and second lines on the RHS are due to P, being a set of orthonormal eigenvectors of O(q)
and K (q), respectively. We additionally have the recursive relation:

e eoP, ifit+tlevll
O141 = .
®,® P, otherwise,

for I =1,2,...L — 1, where the first line on the RHS is due to Lemma 1 and the second is due to Lemma 2.
Therefore, @y, = ®iL:1 P, = ®. The result follows from recognizing that C'(V)) = Br(V) by Lemma 11,
and therefore @ = ® are a set of orthonormal eigenvectors of A (V). O

Proof of Lemma 13. We will prove this by induction. For ease of notation, we will drop the dependence
of the Z;(U) matrices on U, and let Z; + Z;(U). Define A; := A(B;(V)) as the adjacency of the graph
B;(V), which is the graph defined by Equations Eq. S11 and Eq. S12. Additionally let
Viy={m €V :m <1} and Uy == {m € U : m < I} be the [ smallest elements of V' and U, respectively.
Our inductive assumption will be that

AZ) = w7y,
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where we define y; == ¢'~Vo!1 (U € V(yy) — 1. In other words, we will assume that the columns of Z; are
eigenvectors of A; associated with the eigenvalue p;, and then will show that A;11Z;11 = py+1Zi41. There
are four cases to consider: (i) l+1e€Uandl+1€V, (ii))l+1e€Uandl+1¢V, (ii)l+1¢ U and
I+1eV,and (iv) {+1¢Uandl+1¢V

(i) (+1€Uandl+1€ V). Inthis case, Vji41) and Uyqyy add the element I + 1 to Vi) and Uy,

(iii)

respectively. Therefore, if Uyy C V), it will be true that Uiy € Vigyy, and if Ugy € V), then
Ut+1) € Vii41)- Additionally, in this case, [V(;11)| = [V(y)| + 1, so we have

pugr = ¢ Ve LU € Vi) - 1
= ¢ Vol1(Uy € V) -1
=t
Therefore, we must shg)w that p; is the eigenvalue of A;y; associated with the columns of Z;y;. In
this case, Z;11 = Z; ®Py. Also in this case, Bj41 = B;0O(q) (by S11), so by Eq. S1, Aj41 = Ay ®]1,.
Then we have
Ap1Z = (A1) (Z 2 Py)
=AZ ® ]-)q
=l ® Pq
= tudit1,

where the third line results from the inductive assumption. Thus, pu; = 41 is the eigenvalue of A; g
associated with the columns of Zj .

(I+1eUandl+1¢V). Inthis case, Ujyyy € Vjj41) because the element [ + 1 is in Uqqy but
not Vi1 1). Therefore, in this case 41 = —1, and we must prove the —1 is the eigenvalue of A;i4
associated with the columns of Z; 1. In this case, Z;;1 = Zl®15q. Also, in this case, Bj41 = BjoK(q),

so by Eq. S2,
A1 =A2J,+10A(K(q)
=AeJ;+1®J,—1).

Then we have,

Ai1Zi = (A @3, +10 (3, - 1)) (Zi @ Py)
=AZ 2P, +Z, 2P, ~Z, 2P,
= AZ®0,+Z,20,-7Z P,
=-7Z,0P,

= ~Zi41,

where the third line results from recognizing that each column of 15q sums to zero, so
JPy =04, where 0, is the ¢ x ¢ matrix of all zeros. Thus, p;4+1 = —1 is the eigenvalue of A;44
associated with the columns of Z; .

(I+1¢Uandl+1€V). In this case, the element [ + 1 is in V(;;1) but not Uyyq). Therefore, if
U(l) - V(l)7 it will be true that U(l+1) - V(l+1)7 and if U(l) Z V(l), then U(l+1) Z V(lJrl). Additionally,
in this case, |V(;41)| = [V{y)| + 1, so, as in case (i), we have py41 = gy, and we must prove the
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is the eigenvalue of A;;; associated with the columns of Z; ;. In this case, Z;;1 = Z; ® 1, and
A=A, ®1, (as in case (i)). Then,
Ar1Zip = (A1) (2 ® 1)
=AZ®1,
= ®1,
= iy,

where the third line results from the inductive assumption. Thus, p; = p41 is the eigenvalue of A;4y
associated with the columns of Z; .

(iV) (I+1 §é U and [+1 ¢ V) In this case, V(l—&-l) = V(l) and U(H—l) = U(l), SO I(U(I—H) C V(H—l)) = I(U(l) - V(l))
and [V(;41)] = [V(y)|- Therefore,
pugr = ¢ Ve IOy € Visy) — 1
_ ql+1f|V(z)\_](U(l) C V(l)) _

=q (ql—\V(z)II(U(l) C V(l))) _
=q (qlf‘V(MI(U(z) C V) — 1) +q-1
=qu+q—1

Thus, we must prove that qu; + ¢ — 1 is the eigenvalue of A;;; associated with the columns of Z; .
In this case, Z;11 = Z; ® 1, (as in case (iii)) and Ajy; = A @ J; +1I® (J, — 1) (as in case (ii)).
Then, we have
A2 = (Al ® Jq +I® (Jq - Iq)) (Zl ® 1q)

=AZ ® Jq]-q +7Z;® Jqlq -7 ® 1q

:ﬂlzl@)qlq“‘zl@qlq _Zl®1q

=(qu+q-1Z®1,

= (g +q—1)Zy41,

where the third line results from the inductive assumption and recognizing that J,1, = ¢1,. Thus,
ti+1 = (qu; + g — 1) is the eigenvalue of A;;; associated with the columns of Z;, 1.

We additionally have four analogous base cases for the induction: (i) 1 € U and 1 € V, (ii) 1 € U and
1¢V,(i)1¢Uand1le€V,and (iv) 1 ¢ U and 1 ¢ V:
(i) (1 €U and 1 € V). In this case, Uyy = V(1) = {1}, so I(Uyy € V(1)) = 1, |[V(1y] = 1, and therefore
p1 = 0. Additionally, Ay = A(O(q)) = 04, so A1Z; = nZ; = 0,.

(ii) (1 € U and 1 ¢ V). In this case, V{3y = 0, so Uy € V1), [V| = 0, and p; = —1. Additionally,
7, = f’q and Ay = A(K(q)) =J4 — Iq, SO we have A121 =J, P Pq = —Pq =—-7.

(ii)) (1 ¢ U and 1 € V). In this case U = ) and V' = {1}, so Uy € Vjy), [V| = 1, and p3 = 0. Since
A1 == A(O(q)) = Oq, then A1Z1 [lel =0.

(iv) (1 ¢ U and 1 ¢ V). In this case, Uyy = V| )—(Z) so Uny € Viuy, Vi)l = 0 and thus py = ¢ — 1.
Additionally, Z; = 1, and A; = A(K(q)) = I,, so we have
AZ =31, 1
=(¢—1)14
=(¢—1)Z.
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Thus, w1 is the eigenvalue of A associated with the columns Z; in each of these base cases.

By this induction, we have proved that pr is the eigenvalue of A associated with the columns of
Z;. 1t is clear to see that ur, = pu(U, V). The result then follows from recognizing that, due to Lemma
11, Br(V) = C(V) and therefore A, = A(V). Thus, from the induction, the columns of Zp(U) are
eigenvectors A(V') associated with the eigenvalue pur, = p(U, V). O

Proof of Lemma 14. For this proof, recall that the i*" row of f’q encodes the it" element of the alphabet.
We will denote each of these encodings as py(s), where s is an element of the alphabet (i.e., each py(s) is
a row of P q)- Let (bU S;) = \/>¢U (s;) for i = 1,2,...¢" be the unnormalized rows of ®;;. These can be
defined recursively. In particular, we have

7 (1) .
I+1 (8i) @ Pg(sip1) ifl+1eU
oy sy =400 T . (518)
¢ (8:) otherwise.
for I =1,2,..., L, where s; are the first [ positions of s;,
i ifl1eU
B (si1) = { Palont) A LEL (S19)
1 otherwise,
and d)g]L)(si) = ¢y (s;). We can then recursively define the ® matrix, by letting
T
_ S _
o) = ¢U(. ? : (S20)
— ¢g) (SqL)T _

For a given § € S0 there are ¢ sequences in SUT19) whose first [ positions are §. Further, each of these
sequences has a unique element in the final position. Thus,

— UV (5,17

U
—or VBT —| _ [P, ifl+leU o)
: Ag)(é) ®1, otherwise.
— oy (8, a)" —
Now let, 'I> \/> ‘IJ' . Applying Eq. S21 to each row in ég’q) results in:

50 o P :

= (141 ¢/ @P, ifl+1eU

P . (522)
®,/ ®1, otherwise.

which is equivalent to the recursion in Eq. S13 that defines Z;(U). Additionally, repeated application of
Eq. S19 to each element in the alphabet results in the equivalent base case to Eq. S14. Carrying out the
recursion of Eq S21 to [ = L then gives

Z.(U) =Vt = \/lay. 0

S6.4 The sparsity of GNK fitness functions

Here we prove our main result regarding the sparsity of the Fourier coefficients of fitness functions
sampled from the GNK model, which is summarized in Eq. 6. First we re-state this result formally.
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Theorem 2. Let S(f) = #supp(B) be the sparsity of a fitness function f of sequences of length L and
alphabet size q with Fourier coefficients (3, where supp(8) is the set of nonzero elements of 3 and # is the
counting measure. Then for any f ~ GNK(L,q,V),

S(H=> (g-1 (523)

UeT

almost surely, where T := UJL:1 QZ(VU}) s the union of the powerset of each neighborhoods.

Proof of Theorem 2. Theorem 1 shows that all the Fourier coefficients associated with an epistatic inter-
action U are deterministically zero if U ¢ VUl for j = 1,2,..., L, which can be alternatively stated as
U¢ 2V for j =1,2,...,L. Recalling that U = 2({1,2,...,L}), the epistatic interactions with non-
zero Fourier coefficients are the U € U = Z({1,...,L}) for which there exists a j € 1,2, ..., L such that
U c 2V, Since 2(VUl) C U, we have

{Ueu:Ue 2Vl =2vl)

and further,

L
{Uetd:3j€{1,2,...L}such thatU € 2(VU)} = | {U et : U € 2(VI])}

j=1
L
— U 2 (VU
j=1

There are (¢ — 1)IY! Fourier coefficients associated with each U € U, so letting T := U]L:1 2 (V) we have

#supp(8) > Y (¢ — 1)V,

UeT

where the bound results from recognizing that the RHS sums overs all Fourier coefficients that are deter-
ministically zero, but the coefficients with nonzero variances may still equal zero. However, recognizing that
each 8 € B with nonzero variance is a normal random variable that can equal zero with zero probability,
we have

#supp(B) = > (¢— 1)V

UeT

almost surely. O

S6.5 The sparsity of GNK fitness functions with standard neighborhood schemes

Here we prove our results regarding the sparsity of GNK fitness functions with standard neighborhood
schemes. In particular, we prove (i) an upper bound on the sparsity of any GNK fitness function with
constant neighborhood sizes ( Eq. in the main text), (ii) the sparsity of GNK fitness functions with Block
Neighborhoods (Eq. 12), (iii) the sparsity of GNK fitness functions with Adjacent Neighborhoods (Eq. 13)
and (iv) the expected sparsity of GNK fitness functions with Random Neighborhoods. Below we restate
each of these results formally, and provide proofs. We start with the bound of Eq. .

Proposition 3. Let Vi be a set of neighborhoods where K; = K for j =1,2,...,L and 1 < K < L. Then,
the sparsity of any f ~ GNK(L,q, V) is bounded above by:

S(f)<1+L(g—1)+ L(¢" — Kg+ K — 1) (S24)
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Proof. Let W bl {(W e 2(VU): |W| =7} be the number of elements of the powerset of neighborhood
J with cardlnahty r. Additionally define

L
_ UW’I[‘j]

j=1
=#{WeT:|W|=r}

as the number of elements in the union of powersets with cardinality r. For any set of neighborhoods, we
have n(0) = 1 and n(1) = L. Additionally, for any Vi with constant neighborhood size K, n(r) = 0 for
r > K. Then, for r = 2,3..., K, we have

w
Eij W
> (")
()

where the second line results from the union bound and the third from recognizing that there are (I: ) sets
of cardinality r in the powerset of a set with K elements. Using this within Theorem 2 we then have

S(f) = (¢-p
ver
L

=) n(r)g—1)"

r=0

Il
&~

K

§1+L(q—1)+LZ<I:>(q_1)r
r=0

=1+Lg-1)+L(¢* —Kq+ K —1),

where the final line results from the binomial theorem.
The next result calculates the sparsity of GNK fitness functions with Block Neighborhoods.

Proposition 4. Given an L, q, and K satisfying L mod K = 0 (i.e., K must be set such that L is a
multiple of K ), define a Block Neighborhood as

DR g EAi) ST 0 Pl P o Py I 2
VN {y, { | PLE T [ 2 K T [ K (525)
where || is the floor operator, and we assume, without loss of generality, that the positions in each block

are adjacent. Further let Vpy = {V[J] L . be a set of L Block Neighborhoods. Then, the sparsity of a
fitness function f sampled from GNK(L, q,VBN) is given by:

K —1)+1 (S26)
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Proof. There are % blocks. The blocks are fully connected, so all Zf(:o (If ) (¢q—1)" = ¢ Fourier coefficients
corresponding to intra-block epistatic interactions are nonzero. The only epistatic interaction shared by the
blocks is the zeroth order interaction, so each block contributes (qK —1) unique nonzero Fourier coefficients,
and the total number of nonzero Fourier coefficients is given by Eq. S26, where the final addition of one is
due to the shared zeroth order interaction. O

Similarly, the sparsity of GNK fitness with Adjacent Neighborhoods is shown in the following proposi-
tion.

Proposition 5. Given an L, q, and K < %, define an Adjacent Neighborhood as
VIl = {j,ajmod L+ 1, (a; + 1) mod L + 1, ..., (a; + K) mod L + 1}, (S27)

where we define aj == j — L%j — 1. Further let Van = {VE\, ngl be a set of L Adjacent Neighborhoods.

Then, the sparsity of any f ~ GNK(L,q,Van) is given by:
S(f)=1+L(g—1)¢"" (S28)

Proof. Define Wi = {(We2WVUl): |W|=r}and

!
ny(r) = U wll
j=1

forl=1,2,..,L. ForI<L—-—K+1,andr =1,2,..., K, we have

nl(r):l<[:> —(z—1)<K;1>. (S29)

This can be shown by induction. In particular, assume Eq. S29 is correct for [ < L — K 4+ 1 and then we
find:

1
n1(r) = U Wrm
j=1

l
— U WT[]] U W7[”1+1]

Jj=1

Wl]} N W7[11+1]

—-

_ ||+ i -
j=1

()7
v o(51)

where the fourth line results from recognizing that VI when [ +1 < L — K + 1 contains exactly one

position that is not in Ué‘:1 VUl: there are then (I:__ll) sets in W,[,Hl]

unique to Wyﬂ}, which leads to

!
" T r r—1 r

J=1

1

J

that contain this element and are thus
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It is clear that ni(r) = (lf), and thus Eq. S29 is proved by induction for | < L — K + 1.

Eq. S29 accounts for redundancies in Wy ) that result from overlapping positions in the neighborhoods,
without considering periodicity. There are additional redundancies that occur when [ > L — K + 1 due
to the periodicity of the neighborhoods. In particular, for [ = L — K + 2,..., L, due to periodicity V!
contains (I + k) mod L — 1 additional positions that are already in Ué‘:l VUl (outside of those that are

already Ué‘:l VUl due to non-periodic overlap). Therefore Wy] contains ((Hk) H;Od L 71) additional sets that

are already in Ué;ll Wy I due to periodicity. Then we have, for | =L — K + 2, ..., L:

nl(r):l([:> _(l_1)<KT—1> - ((l+k) rr;odL—l)

K K-1 L L—-1
() =en(t, )= ()
r r r
K K-1 K-1
()=o) - ()
r r r
K K-1
() -(5)
r r
—L<K_1>.
r—1
The result follows from recognizing that nz,(0) = 1, and therefore

S( =3 (g1

UeT

At [ = L, we then have

nr(r)

L
=S ner)g -1y
r=0

K
K —1
=14+ —1)"
n ;(7_1)@ )
=1+L(g—1)¢""

where the final line is due to the binomial theorem. O

Additionally, we are able to calculate the expected sparsity of GNK fitness functions with Random
Neighborhoods, which is shown in the following result. The proof of this follows the analogous calculations
of ref. 31, and we correct a mistake in their calculations.

Proposition 6. Let V}[zjj]v be a set of cardinality K, where the first K — 1 elements are selected uniformly

at random from {1,2,..., L} without replacement, and the final element is j. Let VrRn = {VI[%J}V JL:1 be a

collection of such sets. Then, the expected sparsity of a fitness function f sampled from GNK(L,q,Vrn),
with the expectation taken over the possible realizations of Vry, is given by:

K
EvanlS(0] = 3 (7 )ptr)(a - 17 (s30)

r=0

where

L—r
s =1-(-a() (1-aF=L) (s31)
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Proof. Consider a set W C {1,2,..., L} of cardinality r. Define o(r) as the the probability that W is a
subset of the random neighborhood V! given that j € W, which is given by

a(r) = Pr(W C VUl|j e W)

L—
_ (k20)
(%)
K-1
(L= (K —-1)!
(K =7 (L—-1)
where ( [L(:ll) is the total number of ways to construct VU and ( IL(:Z) is the number of ways to construct VU

such that every element of W is in VU, The probability that W is a subset of the random neighborhood
VUl given that j ¢ W is similarly given by:
L—r—1
(Kfrfl)
(+-1)
K-1
 (L=-r-1I(K-1)!
(K —r—1)! (L 1)
K—r
L—r
There are r neighborhoods VU for which j € W, and L — r neighborhoods for which j ¢ W. Define p(r)
as the probability that W is a subset of at least one, which is then:
p(r) =Pr(3j: W C V[j])
=1—Pr(Bj: WVl
=1-Pr(BjeW :WcVilpr(aj¢gw. . wcvhl
K — L—r
=1-(1-a(r) <1 —a(r); T)

- T

Pr(W C VUI|j ¢ W) =

= ()

There are (f) sets of cardinality r; in expectation (I;)p(r) will be subsets of at least one neighborhood,
and will therefore represent epistatic interactions or order r corresponding to (¢ — 1)" nonzero Fourier
coefficients. Eq. S30 follows from summing over all possible cardinalities r. O

S7 Extension to non-constant alphabet sizes

It is common that alphabet sizes are not constant at every position. Here we generalize our formal
results to the case of “hybrid alphabets”, where alphabet sizes may differ at each position. Consider the
case where the alphabet size at each position is given by the length L vector q = [q1, g2, ..., 1] and let S (L.a)
be the space of all sequences corresponding to the alphabet sizes in q. Denote as H(L,q) the Generalized
Hamming graph whose vertex set is S(“9 and whose edges connect sequences that differ in exactly one
position [56]. The Generalized Hamming graph can be constructed as an L-fold graph Cartesian product:

H(L,q) = 0i2, K (a:) (532)

We then have the following result for the Fourier basis corresponding to these Generalized Hamming graphs,
which follows straightforwardly applying Lemma 3 to Equation Eq. S32.

Proposition 7. An orthonormal set of eigenvectors of the Graph Laplacian of the Generalized Hamming
graph H(L,q) is given by

L
<I)(q) = ® PlIiv (833)
i=1
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where Py, is defined in Eq. S5.

In this basis, each epistatic interaction U is represented by [[,c;(gx — 1) columns of I

The Fourier basis of Eq. S33 can be used to represent fitness functions of sequences with non-constant
alphabet sizes, q. The GNK model can also be defined analogously to the definition given in the Materials
and Methods section for the case of non-constant alphabet sizes; in particular let GNK(L,q,V) be the
distribution over fitness functions of sequences of length L with non-constant alphabet sizes given by q
and neighborhood set V. We then have the following results regarding the distribution and support of the
Fourier coefficients of fitness functions sampled from this distribution. We present these results without
proof, though it is straightforward to see how to adapt the proof of Theorems 1 and 2 to prove these.

Theorem 3. Letf = (f(s))scs(.a) be the complete vector of evaluations of a fitness function f ~ GNK(L,q,V).
Then the Fourier coefficients of f, B = (®D)Tf, are distributed according to 3 ~ N (0, XI). Let By be the
length [[,c(qr — 1) sub-vector of B representing the epistatic interaction U. Then the variance of every
element of By is given by:

L L
Ao = (H qi> SUTT qlk I (U C V[ﬂ) , (S34)
i=1 j=1 \kevl]

where I (U C V[j]) is an indicator function that is equal to one if U is a subset of or equal to VU and zero
otherwise.

Theorem 4. The sparsity of any f ~ GNK(L,q,V) is given by

SH=> T[(@-1, (935)

UeT keU

almost surely.
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