

1 **Running title:** Leaf senescence and climate warming

2 **Shifts in leaf senescence across the Northern Hemisphere in response to seasonal
3 warming**

4 Lei Chen^{1,2*}, Sergio Rossi^{3,4}, Nicholas G. Smith², Jianquan Liu^{1*}

5 ¹*Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education,
6 College of Life Sciences, Sichuan University, Chengdu, China*

7 ²*Department of Biological Sciences, Texas Tech University, Lubbock, USA*

8 ³*Département des Sciences Fondamentales, Université du Québec à Chicoutimi,
9 Chicoutimi (QC), G7H SB1, Canada*

10 ⁴*Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems,
11 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical
12 Garden, Chinese Academy of Sciences, Guangzhou, China*

13

14 * Email of corresponding author:

15 Lei Chen Email: chen_lei1029@163.com

16 Jianquan Liu Email: liujq@lzu.edu.cn

17

18 **Summary**

19 Shifts in plant phenology under ongoing warming affect global vegetation dynamics
20 and carbon assimilation of the biomes. The response of leaf senescence to climate is
21 crucial for predicting changes in the physiological processes of trees at ecosystem
22 scale. We used long-term ground observations, phenological metrics derived from
23 PhenoCam, and satellite imagery of the Northern Hemisphere to show that the timings
24 of leaf senescence can advance or delay in case of warming occurring at the beginning
25 (before June) or during (after June) the main growing season, respectively. Flux data
26 demonstrated that net photosynthetic carbon assimilation converted from positive to
27 negative at the end of June. These findings suggest that leaf senescence is driven by
28 carbon assimilation and nutrient resorption at different growth stages of leaves. Our
29 results provide new insights into understanding and modelling autumn phenology and
30 carbon cycling under warming scenarios.

31 **Key words:** Climate change, phenology, carbon assimilation, nutrient resorption,
32 phenocam, flux data

33

34 **INTRODUCTION**

35 Tree phenology mirrors the timing of budburst, leaf-out, flowering, leaf senescence
36 and other related biological events (Richardson *et al.* 2013; Piao *et al.* 2019). Shifts in
37 tree phenology alter the length of the growing season (Cleland *et al.* 2007; Richardson
38 *et al.* 2018b) and influence the productivity of terrestrial forest ecosystems
39 (Richardson *et al.* 2010; Zhang *et al.* 2020). Tree phenology also drives water-energy
40 balances and trophic interactions (Edwards & Richardson 2004; Peñuelas & Filella
41 2009; Richardson *et al.* 2013; Thackeray *et al.* 2016). Phenological changes in trees
42 therefore provide a clear, visible signal of, and an important basis for modelling, how
43 global warming influences terrestrial ecosystems (Xia *et al.* 2015; Chuine & Régnière
44 2017; Zhang *et al.* 2020). There is now considerable evidence that climate warming
45 has altered tree phenology (Piao *et al.* 2019; Chen *et al.* 2020; Menzel *et al.* 2020).
46 For example, advances in the dates of spring leaf-out in response to warming have
47 been consistently observed over recent decades (Wolkovich *et al.* 2012; Fu *et al.* 2015;
48 Chen *et al.* 2018). However, responses of autumn leaf senescence in temperate trees
49 to warming are idiosyncratic. Both advanced and delayed trends in leaf senescence
50 have been reported under warming conditions (Menzel *et al.* 2006; Jeong *et al.* 2011;
51 Gill *et al.* 2015). The ecological mechanisms underlying these contradictory warming
52 responses remain unclear, making it difficult to predict how the effects of global
53 warming on leaf senescence in trees will impact forest ecosystem functioning in the
54 future (Richardson *et al.* 2010; Piao *et al.* 2019; Chen *et al.* 2020; Jeong 2020; Zhang
55 *et al.* 2020).

56 The final stage through which tree leaves pass before death is accompanied by
57 the degradation of various macromolecules (e.g., chlorophyll and other proteins)
58 (Woo *et al.* 2013). The main function of leaves at this late stage of the season is to

59 remobilize nutrients (e.g., nitrogen and phosphorus) from aging leaves into perennial
60 trunks, twigs and roots for overwintering and to support growth in the following
61 spring (Vergutz *et al.* 2012). Trees have been shown to delay leaf senescence in order
62 to remobilize more nutrients from old leaves (Estiarte & Penuelas 2015). The progress
63 of leaf senescence therefore depends on whether nutrients have been resorbed to their
64 maximum potential extent. However, the timing of leaf senescence is also determined
65 by the maximum amount of assimilated carbon that can be stored (or sink limitation
66 of photosynthesis) early in the growing season (Paul & Foyer 2001). If warming (or
67 other factors, e.g., elevated carbon dioxide and light levels) speeds up the rate of
68 photosynthesis and subsequently the rate at which this maximum storage capacity is
69 reached, then leaf senescence will be advanced (Fu *et al.* 2014; Zani *et al.* 2020). This
70 is also evidenced by the fact that trees that store nonstructural carbohydrates faster
71 show earlier leaf senescence (Fu *et al.* 2014).

72 Over the past decades, an increasing number of phenological networks have been
73 established to understand the phenological responses to climate change. As the largest
74 phenological database worldwide, Pan European Phenology (PEP725) network
75 (www.pep725.eu) (Templ *et al.* 2018) holds more than 12 million ground
76 phenological records across 256 plant species, most of which spanned the years from
77 1951 to 2015. However, PEP725 network is constrained to a relatively small spatial
78 scale consisting mostly of sites located in Central Europe. In contrast, the extracted
79 phenological metrics from PhenoCam and remote-sensing products cover a large
80 spatial scale, but only cover relatively short-term periods. In addition, eddy
81 covariance technique has been widely applied to assess the photosynthetic carbon
82 uptake and respiration of terrestrial ecosystems (Baldocchi *et al.* 2001). In particular,
83 the FLUXNET (<https://fluxnet.org/data/>) provides a uniform and high-quality dataset

84 of 212 eddy covariance flux towers worldwide. Therefore, it is important to combine
85 different complementary datasets to provide a comprehensive understanding of the
86 climatic response of autumn leaf senescence under global warming.

87 Using 500,000 phenological records for 15 temperate trees at 5,000 sites,
88 phenological metrics derived from PhenoCam and satellite imagery, and 72 sites from
89 FLUXNET network in the Northern Hemisphere (Fig. 1), we carried out detailed
90 analyses of the responses of leaf senescence to warming and aim to disentangle the
91 mechanisms underlying the observed contrasts in the responses of leaf senescence to
92 warming and provide an ecological basis for predicting the trajectory of leaf
93 senescence under future warming. We raise the hypothesis that the timing of leaf
94 senescence is driven by both carbon sink limitation and nutrient resorption. Thus, the
95 timing of leaf senescence is advanced by warmer temperatures in spring and summer,
96 which lead to the carbon storage capacity being filled more rapidly, but is delayed by
97 warmer temperatures in autumn, as a result of an extension in the remobilization of
98 nutrients from old leaves for overwintering. Responses to past climate warming can
99 provide a direct cue as to the likely trajectory of leaf senescence in the future.

100

101 **MATERIAL AND METHODS**

102 ***PEP725 phenological network***

103 Ground observation phenological data were obtained from the Pan European
104 Phenology (PEP725) network (www.pep725.eu) (Templ *et al.* 2018), one of the
105 largest phenological database worldwide, which provides open-access *in situ*
106 phenology observations in Europe collected by citizen scientists and researchers for
107 science, research and education. The PEP725 network holds more than 12 million
108 ground phenological records of 46 growth stages across 256 plant species and
109 cultivars at nearly 20, 000 sites across 30 countries in Europe, with a majority of the
110 sites being located in Germany. The phenological stages were defined according to
111 the BBCH (Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie)
112 code (Meier 2001). Although the first phenological record dated back to 1868, most
113 phenological observations were collected after 1951, the year when the plant
114 phenology network was lunched in Europe. In the PEP725 network, leaf senescence
115 was coded as 94 (BBCH). The date of leaf senescence is expressed as the day of year
116 (DOY), which was defined as autumn coloring of leaves (50%). To identify and
117 exclude outliers, median absolute deviation (MAD) method was used to filter the
118 records of leaf senescence (Leys *et al.* 2013). Using a conservative criterion, we
119 removed phenological records deviating by more than 2.5 times MAD (Leys *et al.*
120 2013). Then we selected 500,000 records of leaf senescence for 15 temperate species
121 (Table S1) at 5,000 sites with at least 10 years of data between 1951 and 2015 across
122 central Europe (Fig. 1). In addition, the corresponding records of leaf unfolding for
123 these 15 species between 1951 and 2015 at each site were collected to determine the
124 start of the growing season.

125 ***PhenoCam network***

126 Repeated photography from digital cameras set up at a fixed ground location has been
127 widely applied to characterize the temporal changes in vegetation phenology in recent
128 decades (Brown *et al.* 2016; Richardson *et al.* 2018a). The PhenoCam network is the
129 largest cooperative database of digital phenocamera imagery. The network provides
130 the dates of phenological transitions between 2000 and 2018 across different biomes
131 in North America (Seyednasrollah *et al.* 2019). In the PhenoCam network, the 50th,
132 75th and 90th percentiles of the Green Chromatic Coordinate (G_{CC}) were calculated to
133 extract the dates of increase and decrease in greenness. The formula for G_{CC} is as
134 follows:

$$135 \quad G_{CC} = \frac{G_{DN}}{R_{DN} + G_{DN} + B_{DN}}, \quad (1)$$

136 where R_{DN} , G_{DN} and B_{DN} are, respectively, the average red, green and blue digital
137 numbers (DN) across the region of interest. Previous studies have shown that the 90th
138 percentile of the GCC is effective at minimizing day-to-day variation due to weather
139 conditions (e.g. clouds and aerosols) and illumination patterns (Sonnenstag *et al.* 2012).
140 Thus, we used the date on which the 90th percentile GCC was observed to represent
141 the date of leaf senescence.

142 ***MODIS phenology product***

143 The MODIS land surface phenology product (Collection 6 MCD12Q2) provides
144 annual characteristics of vegetation phenology at a spatial resolution of 500 m
145 between 2001 and 2017 on a global scale (Friedl *et al.* 2019). The phenological
146 metrics were derived from the 8-day Enhanced Vegetation Index (EVI), which is
147 calculated using MODIS nadir BRDF adjusted surface reflectances (NBAR-EVI2).
148 Using this product, penalized cubic smoothing splines were used to fit the 8-day EVI
149 time series and extract the onset of senescence, which was defined as the date when

150 the fitted NBAR-EVI2 time series last crossed the 90th percentile of the seasonal
151 amplitude. The MCD12Q2 product was downloaded from the Land Processes
152 Distributed Active Archive Center (LPDAAC) (<https://lpdaac.usgs.gov/>). In contrast
153 to temperate and boreal regions, seasonal variations in vegetation dynamics are
154 unclear in tropical and subtropical regions. We therefore excluded tropical and
155 subtropical regions based on a map of terrestrial ecoregions worldwide (Dinerstein *et*
156 *al.* 2017). Furthermore, we excluded cropland, as well as permanent snow and ice
157 regions, based on the MODIS Landover classification product (MCD12Q1 version 6).
158 The remaining biomes included Tundra, Boreal Forests/Taiga, Temperate Conifer
159 Forests, Temperate Grasslands, Savannas & Shrublands, Mediterranean Forests,
160 Woodlands & Scrub, Deserts & Xeric Shrublands, Temperate Broadleaf & Mixed
161 Forests, Montane Grasslands & Shrublands.

162 ***Climate data***

163 Gridded daily mean (T_{mean}), maximum (T_{max}) and minimum (T_{min}) temperatures,
164 precipitation, radiation and humidity data with a spatial resolution of 0.25° in Europe
165 were collected from the database E-OBS (<http://ensembles-eu.metoffice.com>). The
166 period for temperature and precipitation data spans between 1951 and 2015, while
167 radiation and humidity data were available between 1980 and 2015. Gridded
168 CLM/ERAi soil moisture (0-10cm) data between 1980 and 2015 were downloaded
169 from KNMI Climate Explorer
170 (http://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=clm_era_soil01).
171 Global monthly mean temperature data with 0.5° spatial resolution between 2001 and
172 2018 were downloaded from the Climate Research Unit (CRU TS v4.04,
173 https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.04/cruts.2004151855.v4.04/). The
174 E-OBS and CLM/ERAi climate datasets was used to analyze the effect of temperature

175 on leaf senescence recorded *in situ* obtained from the PEP725 database. The CRU
176 climate dataset was applied to analyze the effect of climate on the leaf senescence
177 metrics extracted from the PhenoCam network and the MODIS vegetation phenology
178 (MCD12Q2) product. The bilinear interpolation method was used to extract the
179 climate data of all sites using the “raster” package (Hijmans *et al.* 2015) in R version
180 3.6.1 (R Core Team 2018).

181 The phenological records from the PEP725 database, which spanned the years
182 from 1951 to 2015, covered a much longer period than those from the PhenoCam and
183 MODIS datasets (only available since 2000). In addition, the PEP725 data were
184 relatively more reliable than phenocam- and satellite-derived phenology because its
185 leaf senescence records are taken manually *in situ*. The long-term gridded daily
186 climate data in Europe obtained from the E-OBS database can be used to calculate
187 climate index (e.g., growing degree-days) and further clarify the mechanisms
188 underlying the climatic responses of leaf senescence. We were therefore able to test
189 our hypotheses most directly using the PEP725 network and the corresponding
190 E-OBS climate dataset. The PhenoCam and MODIS phenology products were used to
191 test the robustness and generality of the results obtained from the PEP725 network in
192 our study.

193 ***Flux data***

194 The flux dataset was download from FLUXNET (<https://fluxnet.org/data/>). The
195 FLUXNET is a uniform and high-quality dataset based on regional flux networks
196 worldwide. The FLUXNET2015 dataset (the latest released version) was downloaded
197 from <http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/>, which provides data on the
198 exchange of carbon, water and energy of 212 sites across the globe, including over
199 1500 site-years, most of time series spanned between 2000 and 2014 (Pastorello *et al.*

200 2020). The FLUXNET2015 dataset has been processed using a uniform pipeline to
201 reduce the uncertainty and improve the consistency across different sites (Pastorello *et*
202 *al.* 2020), which has been widely applied to study the impact of climate change on
203 carbon cycling in terrestrial ecosystems (Liu *et al.* 2019; Banbury Morgan *et al.* 2021).
204 Due to the unclear vegetation carbon dynamics in tropical and subtropical regions, we
205 only selected 72 sites ($> 30^\circ \text{N}$) across four vegetation types: Forest, Shrub,
206 Grassland and Savanna in the Northern Hemisphere (Fig. 1).

207 ***Temperature sensitivities***

208 Temperature sensitivity (S_T , change in days per degree Celsius) is expressed as the
209 slope of a linear regression between the dates of phenological events and the
210 temperature. This approach has been widely applied to assess phenological responses
211 to global climate warming (Fu *et al.* 2015; Güsewell *et al.* 2017; Keenan *et al.* 2020).
212 The S_T of leaf senescence was therefore used to investigate the effects of temperature
213 during the growing season on leaf senescence. The length of growing season was
214 defined as the period between the dates of leaf unfolding and leaf senescence for each
215 species at each site. Using the daily climate data, we calculated the weekly and
216 monthly mean temperature during the entire season for each species at each site. Then
217 linear regression models were used to calculate the daily, weekly, and monthly S_T of
218 leaf senescence throughout the entire season for each species at each site. The linear
219 regression model was as follows:

220
$$DOY \sim \beta_0 + \beta_1 t + \varepsilon, \quad (2)$$

221 where DOY represents the date of leaf senescence; t represents the daily, weekly or
222 monthly mean temperature; β_0 is the intercept, β_1 represent the S_T of leaf senescence; ε
223 is the error of the model. In order to compare the effect of temperature on leaf
224 senescence for different species at different sites, normalized anomalies (relative to

225 the average) of temperature and leaf senescence dates were used in the linear
226 regressions to calculate the S_T of leaf senescence for each species at each site (Chen *et*
227 *al.* 2020; Keenan *et al.* 2020).

228 The mean dates of leaf unfolding and leaf senescence of the 15 studied species
229 across the selected 5,000 sites from the PEP725 network were DOY 120 and DOY
230 280. In this context, we mainly considered daily, weekly and monthly S_T of leaf
231 senescence from May to September. We applied linear regressions to test the temporal
232 changes in the daily and weekly S_T of leaf senescence. One-way analysis of variance
233 (ANOVA) followed by a Tukey's HSD (honestly significant difference) test was used
234 to examine differences in the monthly S_T of leaf senescence among months. From the
235 calculated daily, weekly and monthly S_T of leaf senescence, we found that responses
236 of leaf senescence to warming changed from negative in May and June to positive
237 between July and September. We therefore divided the entire season into two periods:
238 early season (May-June) and late season (July-September), and further calculated the
239 mean S_T during the two periods to obtain the S_T during the early ($S_{T-Early}$) and late
240 (S_{T-Late}) season, respectively. The sum of $S_{T-Early}$ and S_{T-Late} of leaf senescence was
241 used to represent the overall warming responses of leaf senescence during the whole
242 season while leaves were present.

243 In addition, linear mixed models (Zuur *et al.* 2009) were used to pool all the data
244 across species and sites and examined the overall S_T of leaf senescence during the
245 early and late season. In the models, the response variable was leaf senescence date,
246 the fixed effect was mean temperature during the early or late season, with species
247 and site included as random intercept terms.

248 We followed Fu *et al.* (2015) to assess the effects of past climate warming on
249 tree phenology. First, we calculated the mean temperature during the entire season

250 (May-September) across all the 5,000 sites in Europe from 1951 to 2015. Using a
251 20-year smoothing window, we then identified the coldest and warmest periods:
252 1953-1972 and 1992-2011. The mean temperatures across the entire season during
253 1953-1972 and 1992-2011 were 14.57 ± 0.61 and 15.52 ± 0.70 $^{\circ}\text{C}$ respectively. Finally,
254 we calculated and compared the S_T of leaf senescence during the early, late and entire
255 season between 1953-1972 and 1992-2011. One-way ANOVA was used to test the
256 difference in the S_T of leaf senescence between the two periods.

257 To test the robustness and generality of results obtained from the PEP725
258 network, we further calculated the monthly S_T of leaf senescence between May and
259 September during 2000-2018 based on the dates of leaf senescence extracted from the
260 PhenoCam network and MODIS phenology product. Because seasonal cycles in
261 cropland are considerably influenced by human activities, we first excluded those
262 sites in cropland and selected 97 sites (Fig. 1) with at least 5 years of data from the
263 PhenoCam network. Then we calculated the monthly S_T of leaf senescence between
264 May and September during the period 2000-2018 for each site across North America.
265 Because most of the selected sites (61 sites) were located in deciduous broadleaf
266 forests, we did not address the difference in the S_T of leaf senescence among biomes
267 using the PhenoCam network. Instead, we calculated and compared the monthly S_T of
268 leaf senescence between May and September among biomes in the Northern
269 Hemisphere based on the phenological metrics derived from the MODIS phenology
270 product. In contrast to temperate and boreal regions, seasonal variations in vegetation
271 dynamics are unclear in tropical and subtropical regions. We therefore excluded
272 tropical and subtropical regions based on a map of terrestrial ecoregions worldwide
273 (Dinerstein *et al.* 2017). Furthermore, we excluded cropland, as well as permanent
274 snow and ice regions, based on the MODIS Landover classification product

275 (MCD12Q1 version 6). The remaining biomes included Tundra, Boreal Forests/Taiga,
276 Temperate Conifer Forests, Temperate Grasslands, Savannas & Shrublands,
277 Mediterranean Forests, Woodlands & Scrub, Deserts & Xeric Shrublands, Temperate
278 Broadleaf & Mixed Forests, Montane Grasslands & Shrublands. One-way ANOVA
279 followed by a Tukey's HSD test was used to test the difference in the monthly S_T of
280 leaf senescence among biomes.

281 In addition to temperature, autumn phenology is also influenced by other
282 environmental factors (Misson *et al.* 2011; Liu *et al.* 2016; Chen *et al.* 2020). Using
283 partial correlation analysis, we excluded the covariate effects of soil moisture,
284 precipitation, radiation, humidity and further examined the relationship between
285 monthly mean temperature from May to September and leaf senescence dates. To test
286 the effect of drought stress on leaf senescence, we also calculated the partial
287 correlation coefficients between soil moisture and leaf senescence between May and
288 September for each species at each site. Furthermore, we quantified and compared the
289 relative influences of temperature, soil moisture, precipitation, radiation, humidity on
290 leaf senescence date in the growing season using boosted regression trees (BRTs), an
291 ensemble statistical learning method (Elith *et al.* 2008) that has been widely applied to
292 ecological modeling and prediction (Chen *et al.* 2018; Davis *et al.* 2019; Lemm *et al.*
293 2021). We performed the BRTs using the GBM package (Ridgeway 2007) of R (R
294 Core Team, 2018), where 10-fold cross validation was used to determine the optimal
295 number of iterations. Because gridded soil moisture, solar radiation, humidity data
296 was only available since 1980, the observations between 1980 and 2015 from the
297 PEP725 network were selected for the multiple factor analysis.

298 ***Effect of growing degree-days on leaf senescence***

299 Using the daily temperature from the E-OBS database, we calculated the accumulated
300 growing degree-days (GDDs) in each month during the growing season from May to
301 September at each site used in the PEP725 dataset. The base temperatures were set as
302 5 °C when calculating the GDDs. Because the temperature responses of leaf
303 senescence changed from negative in May and June to positive between July and
304 September, we divided the entire growing season into two periods, early growing
305 season (May-June) and late growing season (July-September), and calculated the
306 mean accumulated GDDs during each of the two periods. Then linear regression
307 models were used to examine the effects of GDDs on the leaf senescence dates
308 (change in days GDD^{-1}) in years under low and high nighttime temperature conditions
309 during the early and late growing season at each site selected from the PEP725
310 database. The classification of early (or late) seasons with low and high nighttime
311 temperature was based on whether the mean daily T_{\min} during the early (or late)
312 growing season for a given year at a site was, respectively, below or above the
313 long-term average during 1951-2015. One-way ANOVA was used to test for
314 differences in the effect of GDDs on leaf senescence between low and high nighttime
315 temperature conditions during the early and late growing seasons. Using the
316 FLUXNET2015 data, we calculated and compared the differences in the nighttime
317 respiration during the early season (May and June) and the number of frost days (T_{\min}
318 <0 °C) in late autumn (October and November) during years with low and high
319 nighttime temperature using one-way ANOVA analysis. The classification of the
320 seasons in years with low and high nighttime temperature was based on whether the
321 mean daily T_{\min} during the early (or late) growing season for a given year at a site was,
322 respectively, below or above the long-term average during 2000-2014.

323 ***Photosynthetic carbon assimilation***

324 Using the FLUXNET2015 dataset, we examined the temporal changes in the
325 photosynthesis carbon assimilation during the growing season based on the Net
326 Ecosystem Exchange (NEE). The NEE measures the net carbon exchange between
327 ecosystem and atmosphere, which approximately equals to net primary
328 productivity (NPP) when soil respiration approaches zero, but with opposite sign
329 (Chapin *et al.* 2006; Lasslop *et al.* 2010). In our study, the opposite NEE is therefore
330 used to estimate net photosynthetic carbon assimilation. Singular Spectrum Analysis
331 (SSA) was applied to smooth the daily NEE of each year at each site between 2000
332 and 2014 to minimize the noise. One-way ANOVA analysis was used to compare the
333 net carbon assimilation during the early season (before June) and late season (after
334 June).

335 All data analyses were conducted using R version 3.6.1 (R Core Team 2018).

336
337 **RESULTS**

338 Using records of leaf senescence for 15 temperature tree species at 5,000 sites from
339 the PEP725 network, we found the mean S_T of leaf senescence was negative in May
340 and June, while it gradually converted to positive between July and September (Fig.
341 2a). This suggested that increasing temperatures during early season advanced leaf
342 senescence, but increasing temperatures during the late season delayed leaf
343 senescence (see for example, *Fagus sylvatica* and *Quercus robur* in Figs S1 and S2).
344 In addition, the delaying effects of temperature on leaf senescence started from July
345 generally showed an increasing trend, reaching a maximum in September (Fig. 2a).
346 Based on the daily and weekly S_T of leaf senescence, we also observed a significant
347 increase in S_T throughout the entire season (Fig. S3).

348 According to the linear mixed models, the overall S_T of leaf senescence during
349 the early and late season across all species and sites were approximately -1.14 and

350 +1.33 days per degree Celsius, while S_T of leaf senescence of the total season was
351 +0.12 days per degree Celsius (Table S2). During the early season, the monthly S_T of
352 leaf senescence between May and June was similar (Table S2). During the late season,
353 the monthly S_T of leaf senescence in September was the strongest among all the
354 months (Table S2). The absolute S_T of leaf senescence in September was stronger
355 than that in May (Table S2).

356 Using the PhenoCam network, we again observed a transition in the S_T of leaf
357 senescence in North America from May to September (Fig. 2b). The effect of
358 temperature on leaf senescence was negative in May and July (Fig. 2b). However, a
359 positive effect was observed in August and September in North America (Fig. 2b),
360 confirming the results from the PEP725 network.

361 Based on phenology metrics extracted from MODIS, we consistently observed a
362 transition in the S_T of leaf senescence from May to September across all biomes
363 except deserts and xeric shrublands in the Northern Hemisphere (Fig. 2c). In May and
364 June, the effects of temperature on leaf senescence were negative across temperate
365 and boreal biomes (Fig. 2c). We also observed negative effects of temperatures in
366 May and June on leaf senescence in tundra, alpine and Mediterranean regions (Fig.
367 2c). The effects of temperature gradually became positive in August or September in
368 these biomes (Fig. 2c). For deserts and xeric shrublands, we similarly observed a
369 negative effect of temperature on leaf senescence in May and June (Fig. 2c). These
370 negative effects were significantly weaker in deserts and xeric shrublands compared
371 to other biomes (Fig. 2c). However, the effects of temperature remained negative
372 throughout the growing season in deserts and xeric shrublands (Fig. 2c). In these
373 environments, the negative effect of temperature on leaf senescence was stronger in
374 August than in June (Fig. 2c). When we mapped the monthly S_T of leaf senescence

375 during the growing season, we also observed a transition in the S_T of leaf senescence
376 during the growing season in the Northern Hemisphere (Fig. S4). Overall, the S_T
377 showed a significant increase from the early to the late season, as indicated by the
378 larger S_T in September than in May (Fig. S4f).

379 After excluding the effects of other climate variables, using partial correlation
380 analysis we also observed a negative response of leaf senescence to temperature during
381 the early season, but a positive response during the late season (Fig. S5). In contrast to
382 temperature, we observed no significant difference in the responses of leaf senescence
383 to soil moisture (Fig. S6). A positive effect of soil moisture on leaf senescence in May
384 and July was observed (Fig. S6). According to the calculated relative influence,
385 temperature had the strongest effect on leaf senescence, followed by soil moisture and
386 radiation (Fig. S7).

387 Using the FLUXNET2015 data, we detected an obvious changing point at the
388 end of June (DOY 180) for the net daily carbon assimilation (Fig. 3). Generally, net
389 carbon assimilation was positive during the early season (before June) but was
390 negative during the late season (after June) (Fig. 3a). This suggested that carbon
391 assimilation mainly occurs before June. The difference in the net carbon assimilation
392 between early season (before June) and late season (after June) in forest was the
393 largest, followed by grassland and savanna (Fig. 3b).

394 Results showed that the timing of leaf senescence was also advanced by greater
395 GDDs during the early season (May-June), but delayed by greater GDDs during the
396 late season (July-September) (Fig. 4ab). We found that during the early season, the
397 negative effect of GDDs on leaf senescence was stronger during years with low
398 nighttime temperatures ($P < 0.001$, Fig. 4a). In addition, during the late season the
399 positive effect of GDDs on leaf senescence was weaker during years with low

400 nighttime temperature ($P<0.001$, Fig. 4b). When nighttime temperature was higher,
401 nighttime ecosystem respiration was significantly greater during the early season (Fig.
402 4c), while the number of frost days was significantly lower during the late season (Fig.
403 4d).

404 To assess the effects of climate warming on leaf senescence, we used the
405 PEP725 dataset to calculate and compare the S_T of leaf senescence between the
406 coldest and the warmest 20-year periods: 1953-1972 and 1992-2011. We found that
407 both the $S_{T-Early}$ and S_{T-Late} of leaf senescence were significantly higher during
408 1992-2011 than those during 1953-1972 (Fig. 5, $P<0.05$). However, S_{T-Late} of leaf
409 senescence during 1992-2011 increased more compared to $S_{T-Early}$ of leaf senescence
410 (Fig. 5). This indicated that leaf senescence delayed more with the increasing
411 temperatures during the late season during 1992-2011. For example, between 1953
412 and 1972 leaf senescence of *Fagus sylvatica* at several sites was advanced by
413 increasing temperature during the late season, but was delayed by late season
414 warming between 1992 and 2011 (Fig. S8). The S_T of leaf senescence during the
415 whole growing season, i.e., the sum of $S_{T-Early}$ and S_{T-Late} of leaf senescence, also
416 showed a significant increase (Fig. 5, $P<0.05$).

417

418 **DISCUSSION**

419 Earlier leaf senescence reduces photosynthetic carbon assimilation and nutrient
420 resorption efficiency (i.e. the proportion of nutrients resorbed from old leaves)
421 (Estiarte & Penuelas 2015). However, trees experiencing late leaf senescence are
422 more at risk from frost (Schwartz 2003; Hartmann *et al.* 2013), which may reduce
423 nutrient resorption (Estiarte & Penuelas 2015). The optimal timing of leaf senescence
424 is therefore likely to be a trade-off between photosynthetic carbon assimilation and
425 autumnal nutrient resorption at different stages in the seasonal functioning of leaves

426 (Keskitalo *et al.* 2005; Fracheboud *et al.* 2009) (Fig. 6). When trees reach their
427 maximum carbon storage capacity, they will initialize nutrient resorption and
428 senescence. Accordingly, more efficient accumulation of carbohydrates with warmer
429 temperatures in the early season will result in a relatively shorter period being
430 required to reach the maximum carbon storage capacity (Peng *et al.* 2013). Thus,
431 early season warming advances leaf senescence. Using the flux data, we further found
432 net carbon assimilation converted from positive to negative at the end of June (DOY
433 180). This provides direct physiological evidence that photosynthetic carbon
434 assimilation mainly occurred during the early season (before June). However, warmer
435 temperatures later in the season may reduce the risk of late autumn frost (Vitasse *et al.*
436 2014), enhancing the activities of photosynthetic enzymes (Shi *et al.* 2014) and
437 reducing the rate of chlorophyll degradation (Fracheboud *et al.* 2009; Estiarte &
438 Penuelas 2015). This may prolong nutrient remobilization from leaves, reduce
439 degradation rate of organelle dismantling, increase leaf longevity and eventually delay
440 the final stage of leaf senescence (Kikuzawa 1995). Therefore, leaf senescence was
441 advanced by warming during the early season, but was delayed by the warming
442 during the late season in temperate regions. However, leaf senescence was advanced
443 by warming throughout both early and late seasons in deserts and xeric shrublands.
444 This may result from drought stress caused by warmer autumns in arid regions
445 increasing evaporative demand (Allen *et al.* 2010; Chen *et al.* 2017) and thus
446 initiating leaf senescence early (Estiarte & Penuelas 2015; Wu *et al.* 2018; Chen *et al.*
447 2020), supported by the positive correlations between soil moisture and leaf
448 senescence in May and July.

449 The parameter growing degree-days (GDDs) only takes into account the heat
450 accumulated above the minimum threshold of temperature that must be exceeded for

451 tree growth (Briere *et al.* 1999; Miller *et al.* 2001) and therefore provides a more
452 accurate physiological assessment of leaf senescence in response to warming (Wu *et*
453 *al.* 2018; Chen *et al.* 2020). Our observation that leaf senescence was advanced by
454 GDD-based warming during the early growing season, but was delayed by
455 GDD-based warming during the late resorption season, are consistent with the
456 contrasting warming responses of leaf senescence reported previously (Menzel *et al.*
457 2006; Jeong *et al.* 2011; Gill *et al.* 2015). These results similarly support trade-off of
458 leaf senescence between carbon assimilation and nutrient resorption. We further
459 examined this trade-off by comparing the warming responses of leaf senescence when
460 the nighttime temperature changed, because of the asymmetric effects of nighttime
461 temperature on carbon assimilation during the early growing season and frost
462 avoidance during the late resorption season (Peng *et al.* 2013; Chen *et al.* 2020). In
463 particular, accumulation of carbohydrates is likely to be more efficient when
464 nighttime temperature is low, due to reduced nighttime respiration (Peng *et al.* 2013).
465 As a result, trees will reach their maximum carbon capacity quickly when nighttime
466 temperatures are lower according to such a trade-off assumption. By contrast, trees
467 can be expected to accomplish nutrient resorption rapidly during the late season in
468 order to reduce the risk of frost when nighttime temperatures are lower (Silvestro *et al.*
469 2019). Consistent with this, we found that the signals of the effects of warming on
470 leaf senescence were stronger or weaker when the nighttime temperature was lower
471 during the early or late season respectively. All of these findings indicate that not only
472 the carbon sink limitation in the early season but also nutrient resorption in the late
473 season should be considered when modelling autumn phenology of temperate trees
474 under future warming scenarios. The results of warming modelling based mainly on
475 sink limitation in the early season predict advancing of leaf senescence (Zani *et al.*

476 2020). However, our statistical analyses of leaf senescence during the warmest
477 20-year periods across both seasons suggest that global warming may delay leaf
478 senescence in the future. Nonetheless, seasonal differences in the responses to
479 warming need to be considered when modelling autumn phenology and carbon
480 cycling.

481 In addition to temperature, photoperiod may influence tree phenology (Körner &
482 Basler 2010). As photoperiod remains unchanged across years for a given location, a
483 relatively conservative climatic response is therefore expected when trees rely on the
484 photoperiod to determine phenology (Basler & Körner 2012; Way & Montgomery
485 2015; Flynn & Wolkovich 2018). Compared with spring leaf out, leaf senescence has
486 been reported to show a more conservative warming response (Menzel *et al.* 2006).
487 For this reason, autumnal phenological events are commonly considered to be more
488 sensitive to photoperiod compared with spring events (Way & Montgomery 2015).
489 However, such a conservative response to warming may be due to the
490 counterbalancing effects of warming on leaf senescence at different seasons.
491 Additionally, despite the photoperiodic control of leaf senescence (Way &
492 Montgomery 2015; Singh *et al.* 2017), we found that temperature alone had strong
493 predictive power even when photoperiod was not considered, indicating the dominant
494 role of temperature in leaf senescence.

495 Overall, our findings based on three large and complementary datasets illustrate
496 that the onset of leaf senescence is advanced under early season warming, but delayed
497 when warming occurs in the late stages of the growing season. Although further
498 controlled warming experiments in different seasons should be conducted to test the
499 contrasting seasonal climatic responses of leaf senescence, our study provides new
500 insights into how to accurately predict whether leaf senescence will be delayed or

501 advanced in response to climate warming (Menzel *et al.* 2006). If future warming
502 spans both early and late seasons in temperate regions, as found previously (Menzel *et*
503 *al.* 2006; Gill *et al.* 2015), leaf senescence could be delayed, rather than advanced.

504

505 **ACKNOWLEDGEMENTS**

506 We acknowledge all members of the PEP725 network for collecting and providing the
507 phenological data. This research was supported by the Strategic Priority Research
508 Program of the Chinese Academy of Sciences (XDB31010300) and the National Key
509 Research and Development Program of China (2017YFC0505203), and also by the
510 National Natural Science Foundation of China (grant numbers 31590821, 91731301
511 and 31561123001), the Fundamental Research Funds for the Central Universities
512 (2018CDDY-S02-SCU and SCU2019D013), and National High-Level Talents Special
513 Support Plans.

514

515 **AUTHOR CONTRIBUTIONS**

516 LC and JL designed the research. LC performed the data analysis. LC wrote the paper
517 with the inputs of SR, NGS and JL. All authors contributed to the interpretation of the
518 results and approved the final manuscript.

519

520 **DATA ACCESSIBILITY**

521 The ground observation phenological data are available at www.pep725.eu. The
522 phenological metrics derived from digital camera imagery are available at
523 <https://lpdaac.usgs.gov/>. The phenology data extracted from satellite images can be
524 downloaded from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1674. The climate

525 data used in this study are available at <http://ensembles-eu.metoffice.com> and
526 <https://crudata.uea.ac.uk/cru/data/hrg/> *cru_ts_4.04/cruts.2004151855.v4.04/*.

527

528 REFERENCES

529 Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier,
530 M. *et al.* (2010). A global overview of drought and heat-induced tree mortality
531 reveals emerging climate change risks for forests. *For. Ecol. Manag.*, 259,
532 660-684.

533 Banbury Morgan, R., Herrmann, V., Kunert, N., Bond-Lamberty, B., Muller-Landau,
534 H.C. & Anderson-Teixeira, K.J. (2021). Global patterns of forest autotrophic
535 carbon fluxes. *Glob. Chang. Biol.*, 27, 2840-2855.

536 Basler, D. & Körner, C. (2012). Photoperiod sensitivity of bud burst in 14 temperate
537 forest tree species. *Agric For Meteorol*, 165, 73-81.

538 Baldocchi, D., Falge, E., Gu, L.H., Olson, R., Hollinger, D., Running, S. *et al.* (2001).
539 FLUXNET: A New Tool to Study the Temporal and Spatial Variability of
540 Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. *B.
541 Am. Meteorol. Soc.*, 82, 2415–2434.

542 Briere, J.F., Pracros, P., Le Roux, A.Y. & Pierre, J.S. (1999). A novel rate model of
543 temperature-dependent development for arthropods. *Environ. Entomol.*, 28,
544 22-29.

545 Brown, T.B., Hultine, K.R., Steltzer, H., Denny, E.G., Denslow, M.W., Granados, J. *et
546 al.* (2016). Using phenocams to monitor our changing Earth: toward a global
547 phenocam network. *Front. Ecol. Environ.*, 14, 84-93.

548 Chapin, F.S., Woodwell, G.M., Randerson, J.T., Rastetter, E.B., Lovett, G.M.,
549 Baldocchi, D.D. *et al.* (2006). Reconciling carbon-cycle concepts, terminology,
550 and methods. *Ecosystems*, 9, 1041-1050.

551 Chen, L., Hänninen, H., Rossi, S., Smith, N.G., Pau, S., Liu, Z. *et al.* (2020). Leaf
552 senescence exhibits stronger climatic responses during warm than during cold
553 autumns. *Nat. Clim. Change*, 10, 777-780.

554 Chen, L., Huang, J.G., Dawson, A., Zhai, L., Stadt, K.J., Comeau, P.G. *et al.* (2018).
555 Contributions of insects and droughts to growth decline of trembling aspen
556 mixed boreal forest of western Canada. *Glob. Chang. Biol.*, 24, 655-667.

557 Chen, L., Huang, J.G., Alam, S.A., Zhai, L., Dawson, A., Stadt, K.J. *et al.* (2017).
558 Drought causes reduced growth of trembling aspen in western Canada. *Glob.*
559 *Chang. Biol.*, 23, 2887-2902.

560 Chen, L., Huang, J.G., Ma, Q., Hänninen, H., Rossi, S., Piao, S. *et al.* (2018). Spring
561 phenology at different altitudes is becoming more uniform under global
562 warming in Europe. *Glob. Chang. Biol.*, 24, 3969-3975.

563 Chuine, I. & Régnière, J. (2017). Process-based models of phenology for plants and
564 animals. *Annu. Rev. Ecol. Evol. Syst.*, 48, 159-182.

565 Cleland, E.E., Chuine, I., Menzel, A., Mooney, H.A. & Schwartz, M.D. (2007).
566 Shifting plant phenology in response to global change. *Trends Ecol. Evol.*, 22,
567 357-365.

568 Davis, K.T., Dobrowski, S.Z., Higuera, P.E., Holden, Z.A., Veblen, T.T., Rother, M.T.
569 *et al.* (2019). Wildfires and climate change push low-elevation forests across a
570 critical climate threshold for tree regeneration. *Proc. Nat. Acad. Sci. USA*, 116,
571 6193-6198.

572 Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D., Wikramanayake, E. *et*
573 *al.* (2017). An ecoregion-based approach to protecting half the terrestrial realm.
574 *Bioscience*, 67, 534-545.

575 Edwards, M. & Richardson, A.J. (2004). Impact of climate change on marine pelagic

576 phenology and trophic mismatch. *Nature*, 430, 881-884.

577 Elith, J., Leathwick, J.R. & Hastie, T. (2008). A working guide to boosted regression
578 trees. *J. Anim. Ecol.*, 77, 802-813.

579 Estiarte, M. & Penuelas, J. (2015). Alteration of the phenology of leaf senescence and
580 fall in winter deciduous species by climate change: effects on nutrient
581 proficiency. *Glob. Chang. Biol.*, 21, 1005-1017.

582 Flynn, D. & Wolkovich, E. (2018). Temperature and photoperiod drive spring
583 phenology across all species in a temperate forest community. *New Phytol.*,
584 219, 1353-1362.

585 Fracheboud, Y., Luquez, V., Björkén, L., Sjödin, A., Tuominen, H. & Jansson, S.
586 (2009). The control of autumn senescence in European aspen. *Plant Physiol.*,
587 149, 1982-1991.

588 Friedl, M., Gray, J. & Sulla-Menashe, D. (2019). MCD12Q2 MODIS/Terra+ Aqua
589 Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006. NASA
590 *EOSDIS LP DAAC; NASA: Washington, DC, USA*.

591 Fu, Y., Campioli, M., Vitasse, Y., De Boeck, H.J., Van den Berge, J., AbdElgawad, H.
592 *et al.* (2014). Variation in leaf flushing date influences autumnal senescence
593 and next year's flushing date in two temperate tree species. *Proc. Nat. Acad.*
594 *Sci.*, 111, 7355-7360.

595 Fu, Y.H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G. *et al.* (2015). Declining
596 global warming effects on the phenology of spring leaf unfolding. *Nature*, 526,
597 104-107.

598 Gill, A.L., Gallinat, A.S., Sanders-DeMott, R., Rigden, A.J., Short Gianotti, D.J.,
599 Mantooth, J.A. *et al.* (2015). Changes in autumn senescence in northern
600 hemisphere deciduous trees: a meta-analysis of autumn phenology studies.

601 *Ann. Bot.*, 116, 875-888.

602 Grömping, U. (2006). Relative importance for linear regression in R: the package
603 relaimpo. *J. Stat. Softw.*, 17, 1-27.

604 Güsewell, S., Furrer, R., Gehrig, R. & Pietragalla, B. (2017). Changes in temperature
605 sensitivity of spring phenology with recent climate warming in Switzerland
606 are related to shifts of the preseason. *Glob. Chang. Biol.*, 23, 5189-5202.

607 Hartmann, D.L., Tank, A.M.K., Rusticucci, M., Alexander, L.V., Brönnimann, S.,
608 Charabi, Y.A.R. *et al.* (2013). Observations: atmosphere and surface. In:
609 *Climate change 2013 the physical science basis: Working group I contribution
610 to the fifth assessment report of the intergovernmental panel on climate
611 change*. Cambridge University Press, pp. 159-254.

612 Hijmans, R.J., van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J.A. *et*
613 *al.* (2015). Package ‘raster’. *R package*.

614 Jeong, S. (2020). Autumn greening in a warming climate. *Nat. Clim. Change*, 10,
615 712-713.

616 Jeong, S.J., HO, C.H., GIM, H.J. & Brown, M.E. (2011). Phenology shifts at start vs.
617 end of growing season in temperate vegetation over the Northern Hemisphere
618 for the period 1982–2008. *Glob. Chang. Biol.*, 17, 2385-2399.

619 Keenan, T.F., Richardson, A.D. & Hufkens, K. (2020). On quantifying the apparent
620 temperature sensitivity of plant phenology. *New Phytol.*, 225, 1033-1040.

621 Keskitalo, J., Bergquist, G., Gardeström, P. & Jansson, S. (2005). A cellular timetable
622 of autumn senescence. *Plant Physiol.*, 139, 1635-1648.

623 Kikuzawa, K. (1995). Leaf phenology as an optimal strategy for carbon gain in plants.
624 *Can. J. Bot.*, 73, 158-163.

625 Körner, C. & Basler, D. (2010). Phenology under global warming. *Science*, 327,

626 1461-1462.

627 Lasslop, G., Reichstein, M., Papale, D., Richardson, A.D., Arneth, A., Barr, A. *et al.*
628 (2010). Separation of net ecosystem exchange into assimilation and respiration
629 using a light response curve approach: critical issues and global evaluation.
630 *Glob. Chang. Biol.*, 16, 187-208.

631 Lemm, J.U., Venohr, M., Globenvik, L., Stefanidis, K., Panagopoulos, Y., van Gils, J.
632 *et al.* (2021). Multiple stressors determine river ecological status at the
633 European scale: Towards an integrated understanding of river status
634 deterioration. *Glob. Chang. Biol.*, 27, 1962-1975.

635 Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. (2013). Detecting outliers: Do
636 not use standard deviation around the mean, use absolute deviation around the
637 median. *J Exp Soc Psychol*, 49, 764-766.

638 Liu, Q., Fu, Y.H., Zeng, Z., Huang, M., Li, X. & Piao, S. (2016). Temperature,
639 precipitation, and insolation effects on autumn vegetation phenology in
640 temperate China. *Glob. Chang. Biol.*, 22, 644-655.

641 Meier, U. (2001). BBCH-Monograph: growth stages of mono-and dicotyledonous
642 plants. Technical Report, 2 Edn. Federal Biological Research Centre for
643 Agriculture.

644 Menzel, A., Sparks, T.H., Estrella, N., Koch, E., Aasa, A., Ahas, R. *et al.* (2006).
645 European phenological response to climate change matches the warming
646 pattern. *Glob. Chang. Biol.*, 12, 1969-1976.

647 Menzel, A., Yuan, Y., Matiu, M., Sparks, T., Scheifinger, H., Gehrig, R. *et al.* (2020).
648 Climate change fingerprints in recent European plant phenology. *Glob. Chang.*
649 *Biol.*, 26, 2599-2612.

650 Miller, P., Lanier, W. & Brandt, S. (2001). Using growing degree days to predict plant

651 stages. *Ag/Extension Communications Coordinator, Communications Services,*
652 Montana State University-Bozeman, Bozeman, MO.

653 Misson, L., Degueldre, D., Collin, C., Rodriguez, R., Rocheteau, A., Ourcival, J.M. *et*
654 *al.* (2011). Phenological responses to extreme droughts in a Mediterranean
655 forest. *Glob. Chang. Biol.*, 17, 1036-1048.

656 Paul, M.J. & Foyer, C.H. (2001). Sink regulation of photosynthesis. *J. Exp. Bot.*, 52,
657 1383-1400.

658 Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W. *et al.*
659 (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for
660 eddy covariance data. *Sci. Data*, 7, 1-27.

661 Peng, S., Piao, S., Ciais, P., Myneni, R.B., Chen, A., Chevallier, F. *et al.* (2013).
662 Asymmetric effects of daytime and night-time warming on Northern
663 Hemisphere vegetation. *Nature*, 501, 88-92.

664 Peñuelas, J. & Filella, I. (2009). Phenology feedbacks on climate change. *Science*,
665 324, 887-888.

666 Piao, S., Liu, Q., Chen, A., Janssens, I.A., Fu, Y., Dai, J. *et al.* (2019). Plant
667 phenology and global climate change: Current progresses and challenges.
668 *Glob. Chang. Biol.*, 25, 1922-1940.

669 R Core Team (2018). R: A language and environment for statistical computing.

670 Richardson, A.D., Andy Black, T., Ciais, P., Delbart, N., Friedl, M.A., Gobron, N. *et*
671 *al.* (2010). Influence of spring and autumn phenological transitions on forest
672 ecosystem productivity. *Philos. Trans. R. Soc. Lond., B, Biol. Sci.*, 365,
673 3227-3246.

674 Richardson, A.D., Hufkens, K., Milliman, T., Aubrecht, D.M., Chen, M., Gray, J.M. *et*
675 *al.* (2018a). Tracking vegetation phenology across diverse North American

676 biomes using PhenoCam imagery. *Sci. Data*, 5, 180028.

677 Richardson, A.D., Hufkens, K., Milliman, T., Aubrecht, D.M., Furze, M.E.,
678 Seyednasrollah, B. *et al.* (2018b). Ecosystem warming extends vegetation
679 activity but heightens vulnerability to cold temperatures. *Nature*, 560,
680 368-371.

681 Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O. & Toomey,
682 M. (2013). Climate change, phenology, and phenological control of vegetation
683 feedbacks to the climate system. *Agric For Meteorol*, 169, 156-173.

684 Ridgeway, G. (2007). Generalized Boosted Models: A guide to the gbm package. R
685 version 2.1.5.

686 Schwartz, M.D. (2003). *Phenology: an integrative environmental science*. Springer.

687 Seyednasrollah, B., Young, A.M., Hufkens, K., Milliman, T., Friedl, M.A., Froliking, S.
688 *et al.* (2019). Tracking vegetation phenology across diverse biomes using
689 Version 2.0 of the PhenoCam Dataset. *Sci. Data*, 6, 1-11.

690 Shi, C., Sun, G., Zhang, H., Xiao, B., Ze, B., Zhang, N. *et al.* (2014). Effects of
691 warming on chlorophyll degradation and carbohydrate accumulation of alpine
692 herbaceous species during plant senescence on the Tibetan Plateau. *PLoS One*,
693 9, e107874.

694 Silvestro, R., Rossi, S., Zhang, S., Froment, I., Huang, J.G. & Saracino, A. (2019).
695 From phenology to forest management: Ecotypes selection can avoid early or
696 late frosts, but not both. *For. Ecol. Manag.*, 436, 21-26.

697 Singh, R.K., Svystun, T., AlDahmash, B., Jönsson, A.M. & Bhalerao, R.P. (2017).
698 Photoperiod□and temperature□mediated control of phenology in trees—a
699 molecular perspective. *New Phytol.*, 213, 511-524.

700 Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A.M., Friedl, M., Braswell,

701 B.H. *et al.* (2012). Digital repeat photography for phenological research in
702 forest ecosystems. *Agric. For. Meteorol.*, 152, 159-177.

703 Templ, B., Koch, E., Bolmgren, K., Ungersböck, M., Paul, A., Scheifinger, H. *et al.*
704 (2018). Pan European Phenological database (PEP725): a single point of
705 access for European data. *Int. J. Biometeorol.*, 62, 1109-1113.

706 Thackeray, S., Henrys, P., Hemming, D., Bell, J., Botham, M., Burthe, S. *et al.* (2016).
707 Phenological sensitivity to climate across taxa and trophic levels. *Nature*, 535,
708 241-245.

709 Vergutz, L., Manzoni, S., Porporato, A., Novais, R.F. & Jackson, R.B. (2012). Global
710 resorption efficiencies and concentrations of carbon and nutrients in leaves of
711 terrestrial plants. *Ecol. Monogr.*, 82, 205-220.

712 Vitasse, Y., Lenz, A. & Körner, C. (2014). The interaction between freezing tolerance
713 and phenology in temperate deciduous trees. *Front. Plant Sci.*, 5, 541.

714 Way, D.A. & Montgomery, R.A. (2015). Photoperiod constraints on tree phenology,
715 performance and migration in a warming world. *Plant Cell Environ.*, 38,
716 1725-1736.

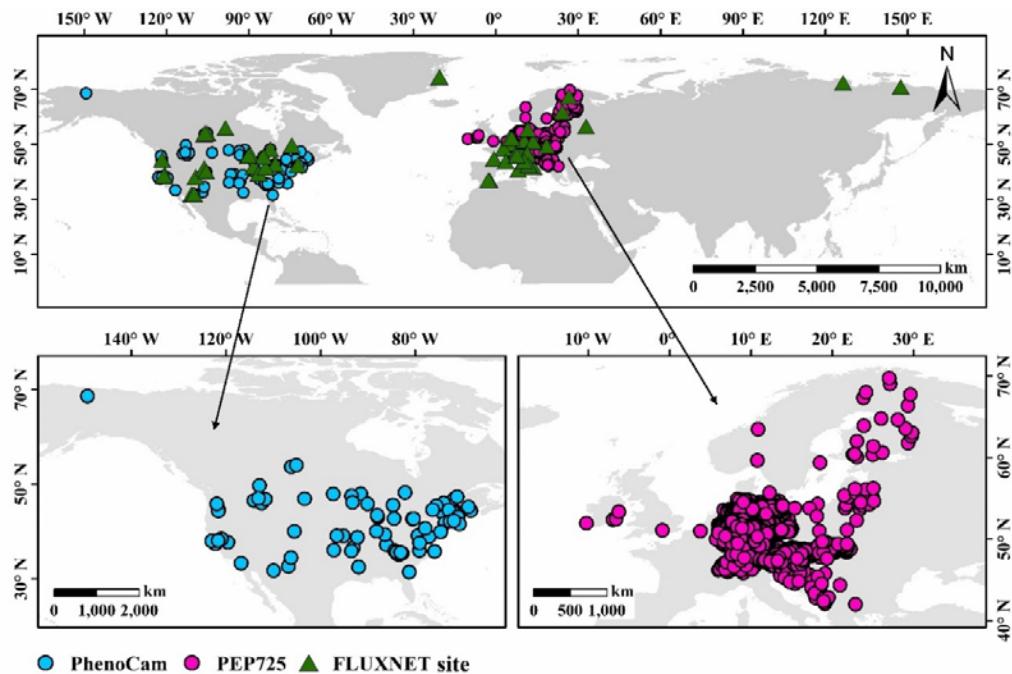
717 Wolkovich, E., Cook, B., Allen, J.M., Crimmins, T., Betancourt, J., Travers, S. *et al.*
718 (2012). Warming experiments underpredict plant phenological responses to
719 climate change. *Nature*, 485, 494-497.

720 Woo, H.R., Kim, H.J., Nam, H.G. & Lim, P.O. (2013). Plant leaf senescence and
721 death-regulation by multiple layers of control and implications for aging in
722 general. *J. Cell. Sci.*, 126, 4823-4833.

723 Wu, C., Wang, X., Wang, H., Ciais, P., Peñuelas, J., Myneni, R.B. *et al.* (2018).
724 Contrasting responses of autumn-leaf senescence to daytime and night-time
725 warming. *Nat. Clim. Change*, 8, 1092-1096.

726 Xia, J., Niu, S., Ciais, P., Janssens, I.A., Chen, J., Ammann, C. *et al.* (2015). Joint
727 control of terrestrial gross primary productivity by plant phenology and
728 physiology. *Proc. Nat. Acad. Sci.*, 112, 2788-2793.

729 Zani, D., Crowther, T.W., Mo, L., Renner, S.S. & Zohner, C.M. (2020). Increased
730 growing-season productivity drives earlier autumn leaf senescence in
731 temperate trees. *Science*, 370, 1066-1071.


732 Zhang, Y., Commane, R., Zhou, S., Williams, A.P. & Gentine, P. (2020). Light
733 limitation regulates the response of autumn terrestrial carbon uptake to
734 warming. *Nat. Clim. Change*, 10, 739-743.

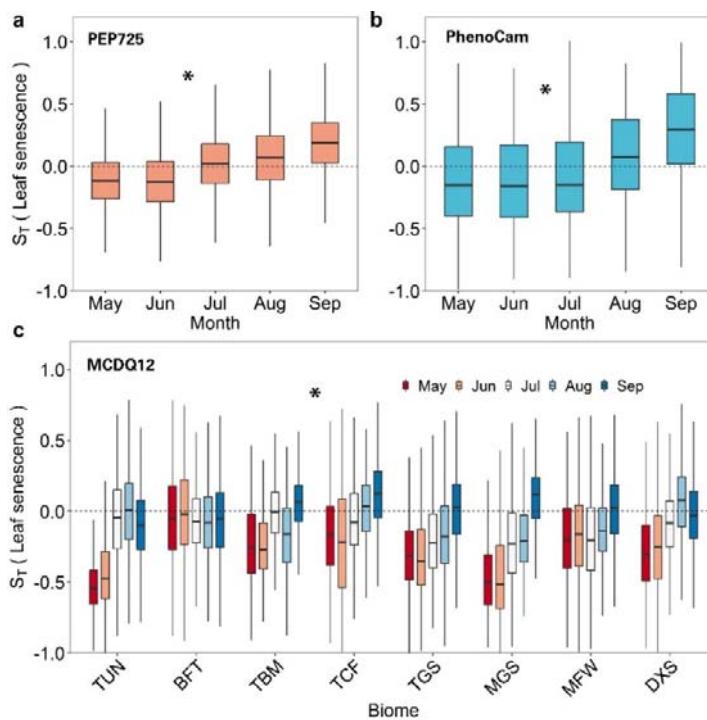
735 Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A. & Smith, G.M. (2009). Mixed
736 Effects Models and Extensions in Ecology with R. Springer, New York.

737

738

739

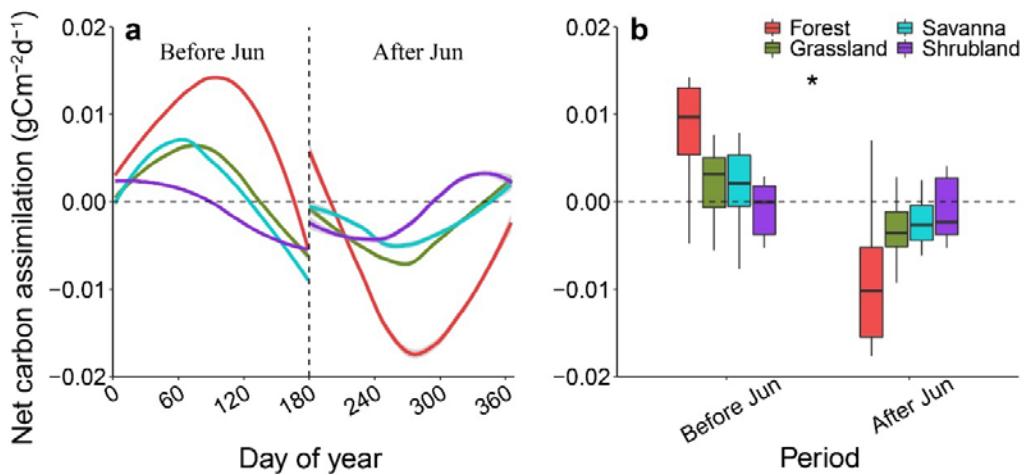
740


Fig. 1 Locations of the phenological and FLUXNET sites used in this study.

741 Phenological sites includes 5000 sites across central Europe selected from the Pan
742 European Phenology (PEP725) database and 97 sites located in North America
743 obtained from the PhenoCam network. A total 72 flux sites ($>30^{\circ}\text{N}$) from the
744 FLUXNET2015 dataset was selected.

745

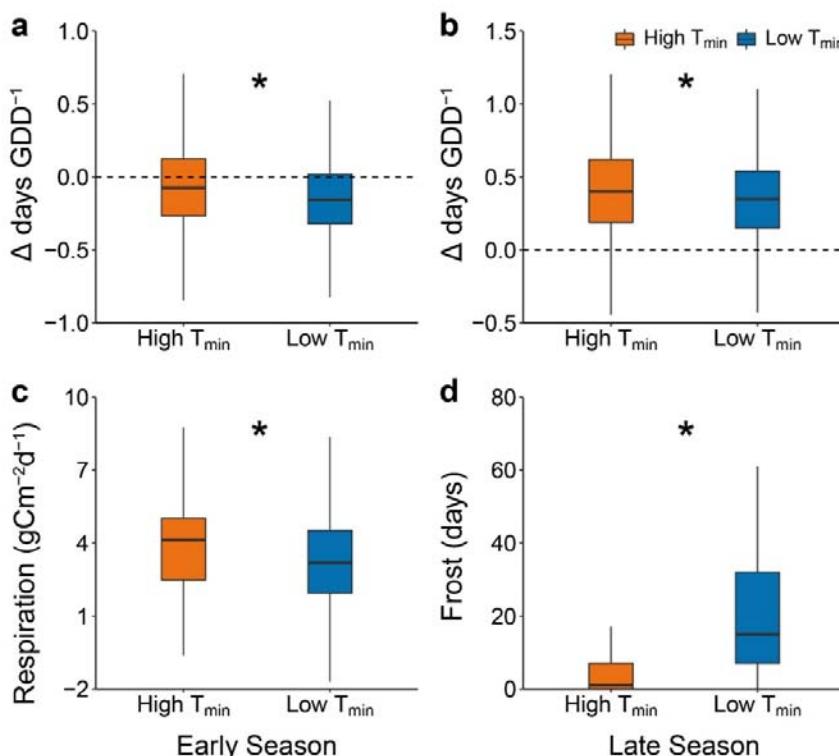
746


747

748

749 **Fig. 2** Temperature sensitivities (S_T , change in days \square^{-1}) of leaf senescence during
750 the growing season between May and September. The calculated S_T was based on (a)
751 records of leaf senescence for 15 temperate tree species at 5,000 sites in Europe, and
752 phenological metrics extracted from (b) the PhenoCam network and (c) the MODIS
753 phenology product (MCD12Q2 version 6) for different biomes. The length of each
754 box indicates the interquartile range, the horizontal line inside each box the median,
755 and the bottom and top of the box the first and third quartiles respectively. The biomes
756 are Tundra (TUN), Boreal Forests/Taiga (BFT), Temperate Broadleaf & Mixed
757 Forests (TBM), Temperate Conifer Forests (TCF), Temperate Grasslands, Savannas
758 & Shrublands (TGS), Montane Grasslands & Shrublands (MGS), Mediterranean
759 Forests, Woodlands & Scrub (MFW), and Deserts & Xeric Shrublands (DXS). The
760 asterisks indicate a significant difference in the S_T during the early (May-June) and
761 the late (July-September) season ($P<0.05$).

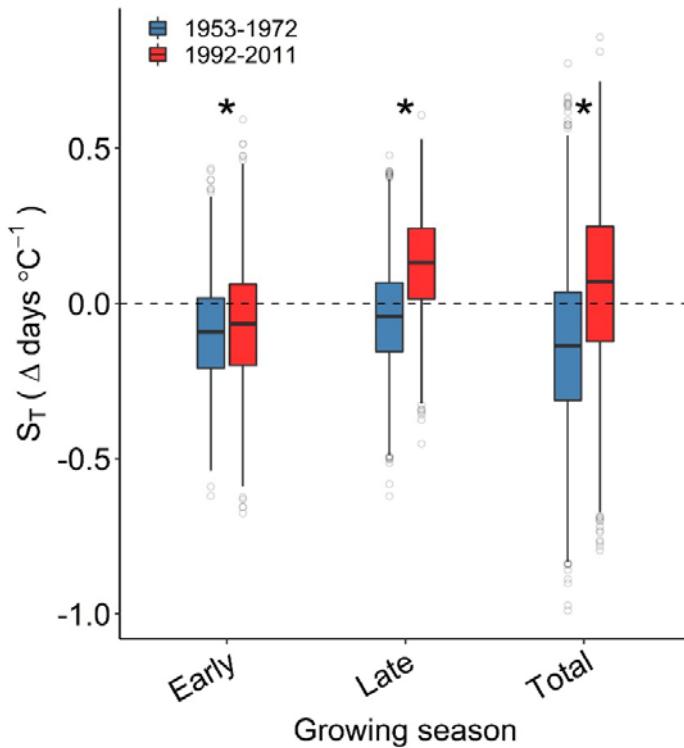
762



763

764 **Fig. 3** Change in the net daily photosynthetic carbon assimilation ($\text{g Cm}^{-2}\text{d}^{-1}$). The
765 estimation of the net carbon assimilation was calculated by multiplying the Net
766 Ecosystem Exchange (NEE) by -1 . The length of each box in (b) indicates the
767 interquartile range, the horizontal line inside each box the median, and the bottom and
768 top of the box the first and third quartiles respectively. The asterisks indicate a
769 significant difference in the net photosynthetic carbon assimilation during the early
770 season (before June) and late season (after June). Different color lines and boxes
771 represent different vegetation types. The dashed vertical line indicates the change point
772 of net photosynthetic carbon assimilation (DOY 180).

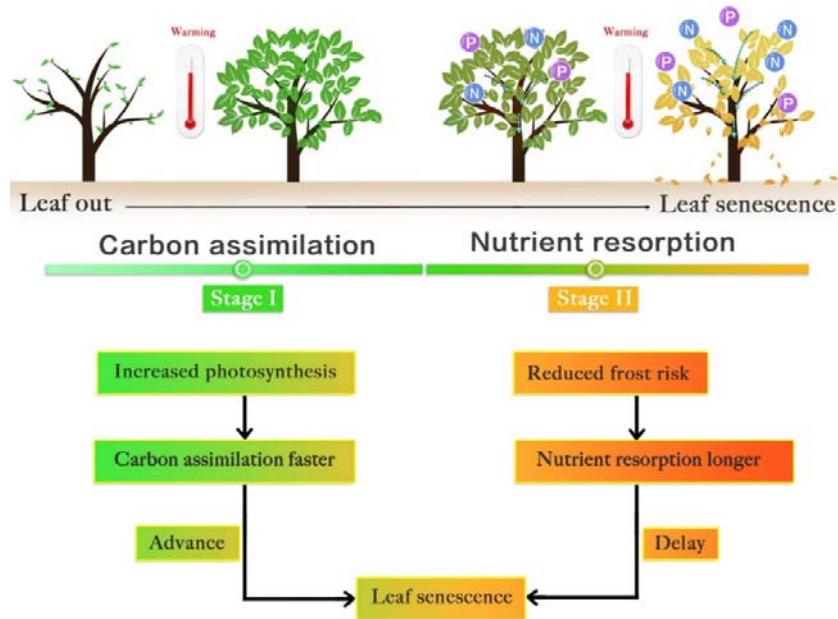
773


774

775

776 **Fig. 4 (a, b)** Effects of growing degree-days (GDD) on leaf senescence during the
777 early and late season in 15 temperate tree species at 5,000 sites in Europe between
778 1951 and 2015 using data from the Pan European Phenology (PEP725) network. **(c, d)**
779 Difference in the nighttime respiration during the early season and frost days ($T_{\min} <$
780 0°C) in late autumn (October and November) using the FLUXNET data. The results
781 are represented separately for seasons with low and high nighttime temperatures
782 (daily minimum temperature, T_{\min} , $^{\circ}\text{C}$). The classification of the seasons was based on
783 whether the mean daily T_{\min} during the (early or late) season for a given year was,
784 respectively, below or above its long-term average. The length of each box indicates
785 the interquartile range, the horizontal line inside each box the median, and the bottom
786 and top of the box the first and third quartiles respectively. The asterisks indicate a
787 significant difference in seasons with low and high nighttime temperature ($P < 0.05$).
788

789



790

791 **Fig. 5** Temperature sensitivities (S_T , change in days $^\circ\text{C}^{-1}$) of leaf senescence in 15
792 temperate tree species during 1953-1972 and 1992-2011. Calculations of the S_T values
793 were based on the temperature in early (May and June), late (July-September) and
794 entire (May-September) growing seasons. The length of each box indicates the
795 interquartile range, the horizontal line inside each box the median, and the bottom and
796 top of the box the first and third quartiles respectively. The asterisks indicate a
797 significant difference in the S_T between 1953-1972 and 1992-2011 ($P<0.05$).

798

799

800

801 **Fig. 6** A schematic diagram of the contrasting responses of leaf senescence to
802 warming during two seasonal stages of tree leaf development, in which photosynthetic
803 carbon assimilation or nutrient resorption (of nitrogen, N and phosphorus, P) take
804 place respectively.

805

806

SUPPORTING INFORMATION

807

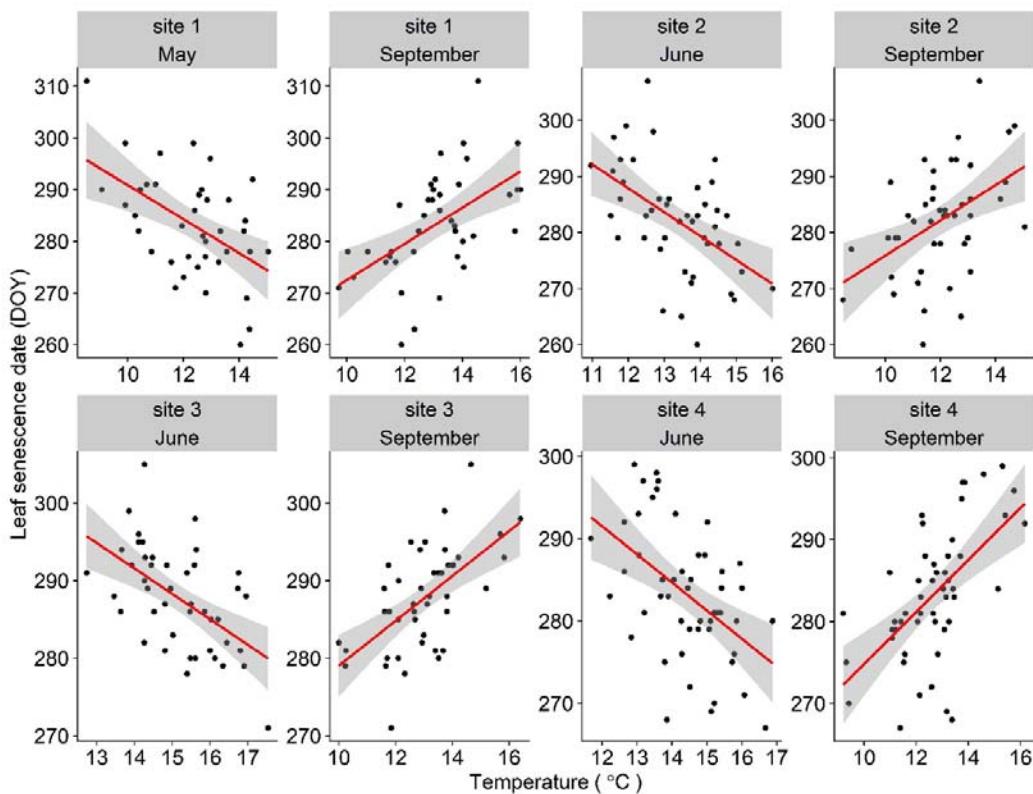
808 **Table S1** Dates of leaf senescence of the 15 temperate species selected from the
809 PEP725 phenological network. For each species, mean dates of leaf senescence
810 (Mean), lower and upper limit of the 95% confidence interval (CI), and standard
811 deviation (SD) of leaf senescence dates were listed.

Species	Latin name	Common name	Mean	SD	Lower (95%CI)	Upper (95%CI)
1	<i>Aesculus hippocastanum</i> L.	Horse chestnut	277.0	11.7	276.9	277.0
2	<i>Betula pendula</i> Roth	Silver birch	278.9	12.8	278.9	279.0
3	<i>Fagus sylvatica</i> L.	European beech	282.6	12.1	282.5	282.7
4	<i>Quercus robur</i> L.	English oak	287.9	12.1	287.9	288.0
5	<i>Prunus avium</i> (L.) L.	Sweet cherry	284.7	13.9	284.5	284.9
6	<i>Tilia cordata</i> Mill.	Lime	283.6	13.8	283.1	284.0
7	<i>Acer platanoides</i> L.	Norway maple	263.0	9.5	262.0	263.9
8	<i>Prunus domestica</i> L.	Common plum	288.7	12.2	287.2	290.2
9	<i>Larix decidua</i> Mill.	European larch	294.1	12.8	293.9	294.2
10	<i>Vitis vinifera</i> L.	Grape vine	284.9	10.7	284.5	285.4
11	<i>Malus domestica</i> Borkh.	Apple	279.7	12.7	278.5	281.0
12	<i>Corylus avellana</i> L.	Common hazel	280.6	13.4	279.8	281.4
13	<i>Sorbus aucuparia</i> L.	Rowan	274.3	12.6	273.9	274.8
14	<i>Betula pubescens</i> Ehrh.	White birch	282.8	15.1	281.9	283.7
15	<i>Populus tremula</i> L.	European aspen	271.0	14.5	269.5	272.4

812

813

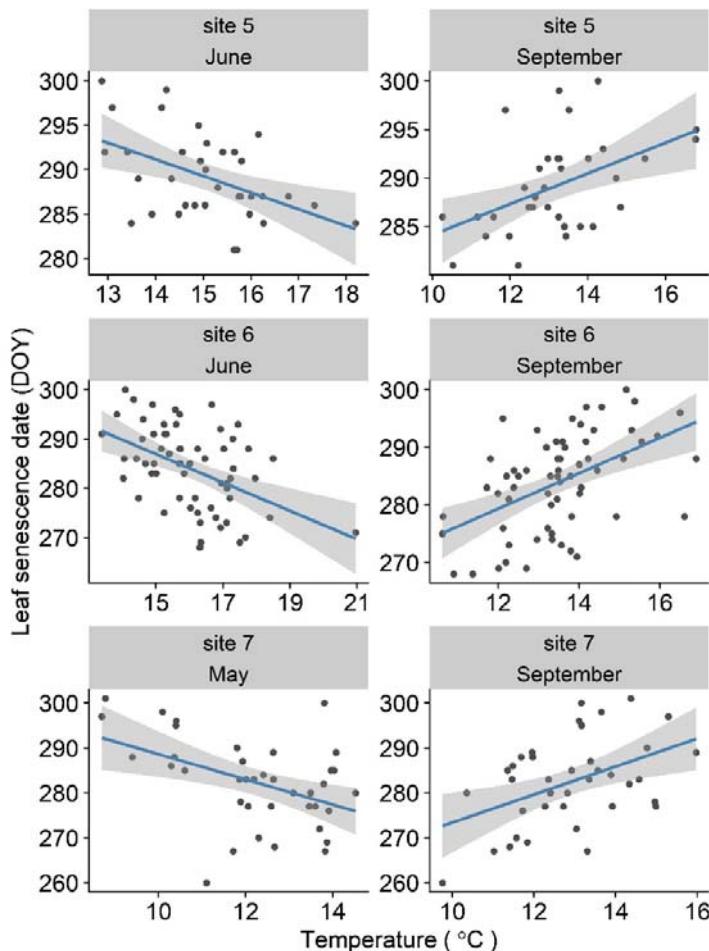
814


815

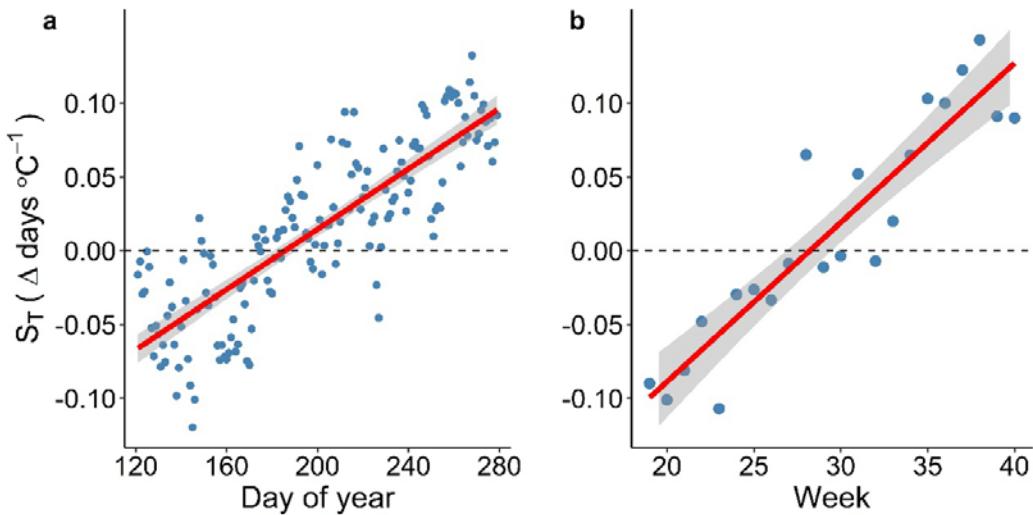
816 **Table S2** Results of the linear mixed models for the overall temperature sensitivity
817 (S_T , change in days per degree Celsius) of leaf senescence during the early (May-June)
818 and late season (July-September) across all species and site.

Season	Period	S_T	SE	<i>t</i> value	<i>P</i> value
Early	May	-0.87	0.01	-63.31	< 0.001
	Jun	-0.86	0.02	-53.74	< 0.001
	May-Jun	-1.24	0.02	-70.34	< 0.001
Late	Jul	0.42	0.01	33.90	< 0.001
	Aug	0.21	0.02	13.45	< 0.001
	Sep	1.08	0.01	75.1	< 0.001
	Jul-Sep	1.33	0.02	62.63	< 0.001
Total	May-Sep	0.12	0.03	4.69	< 0.001

819

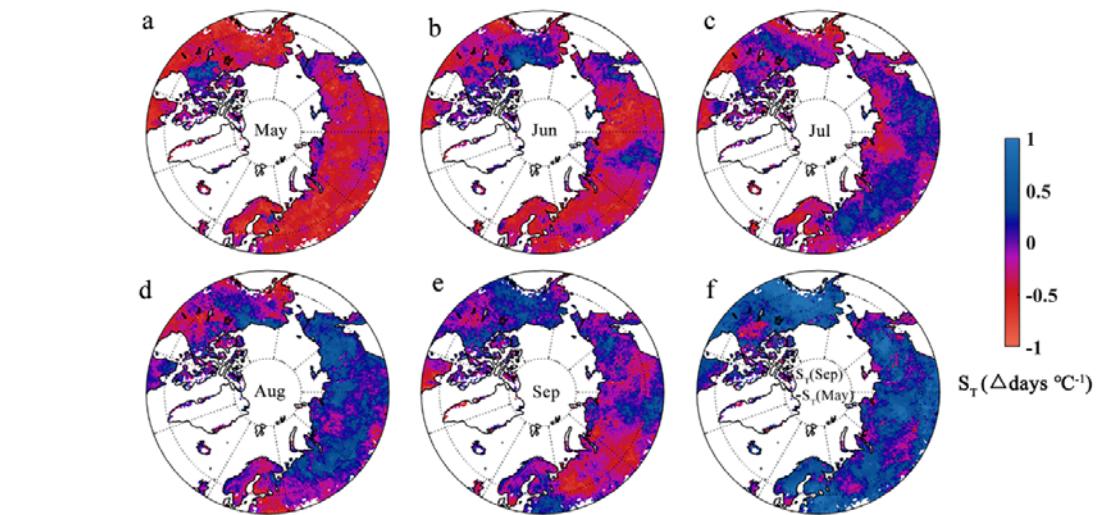

820

821


822 **Fig. S1** Effects of monthly mean temperature during the early (May and June) and late
823 (July-September) on leaf senescence dates of *Fagus sylvatica* at several sites selected
824 from the Pan European Phenology (PEP725) database. The leaf senescence date was
825 expressed as the day of year (DOY). The shaded area indicates the 95% confidence
826 intervals of the fitted regression lines.

827

828

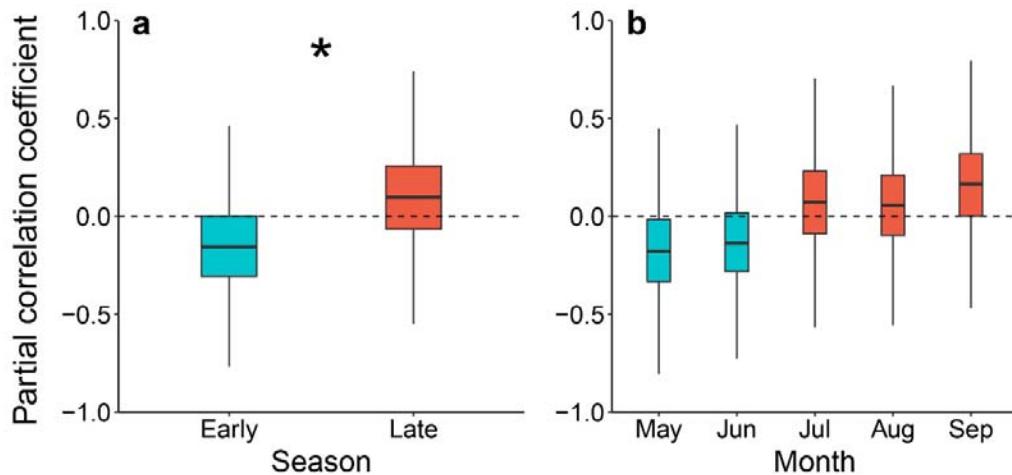

829 **Fig. S2** Effects of monthly mean temperature during the early (May and June) and late
830 (July-September) on leaf senescence dates of *Quercus robur* at several sites selected
831 from the Pan European Phenology (PEP725) database. The leaf senescence date was
832 expressed as the day of year (DOY). The shaded area indicates the 95% confidence
833 intervals of the fitted regression lines.

834

835 **Fig. S3** Daily and weekly temperature sensitivities (S_T , change in days \square^{-1}) of leaf
836 senescence during the growing season between May and September. The calculated S_T
837 values were based on records of leaf senescence for 15 temperate tree species at 5,000
838 sites in Europe. Each point represents the mean daily or weekly S_T of leaf senescence
839 calculated across all 15 species at 5000 sites. The shaded areas indicate the 95%
840 confidence intervals of the fitted regression lines.

841

842

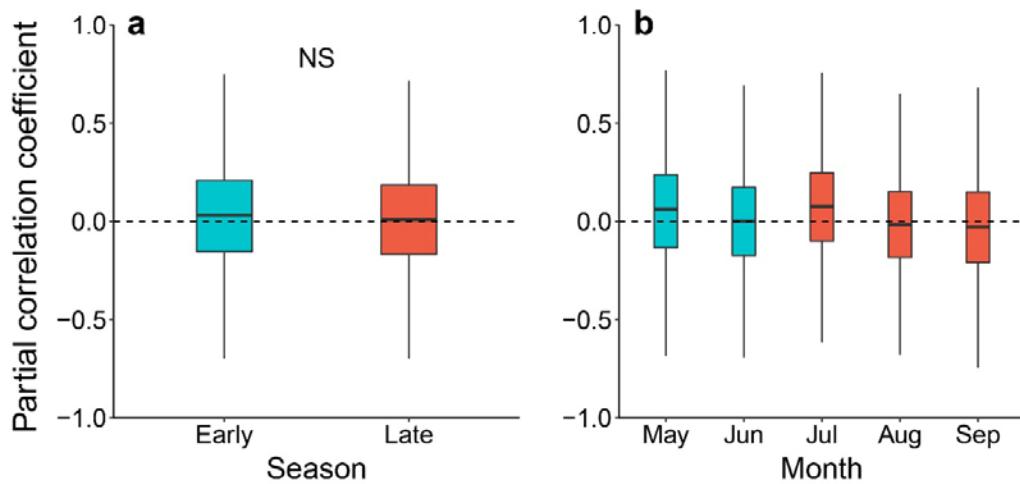

843 **Fig. S4** Spatial distribution of the monthly temperature sensitivities (S_T , change in
844 days $^{\circ}\text{C}^{-1}$) of leaf senescence between May and September in the Northern
845 Hemisphere. The calculated S_T values were based on phenological metrics extracted
846 from the MODIS phenology product (MCD12Q2 version 6). (a-e), monthly S_T from
847 May to September, (f) difference in the S_T between May and September.

848

849

850

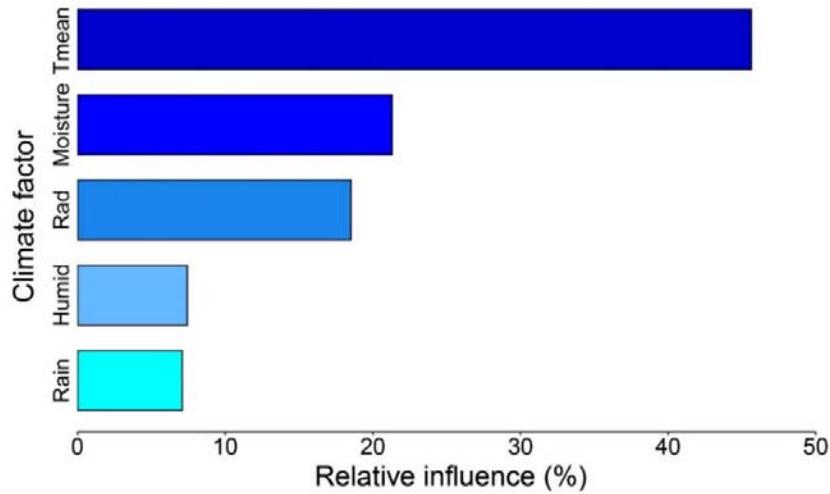
851


852

853 **Fig. S5** Partial correlation coefficients between temperature and leaf senescence
854 dates during the early (May-June) and late season (July-September). The length of
855 each box indicates the interquartile range, the horizontal line inside each box the
856 median, and the bottom and top of the box the first and third quartiles respectively.
857 The asterisk in (a) indicates a significant difference between the early and late season
858 ($P<0.05$).

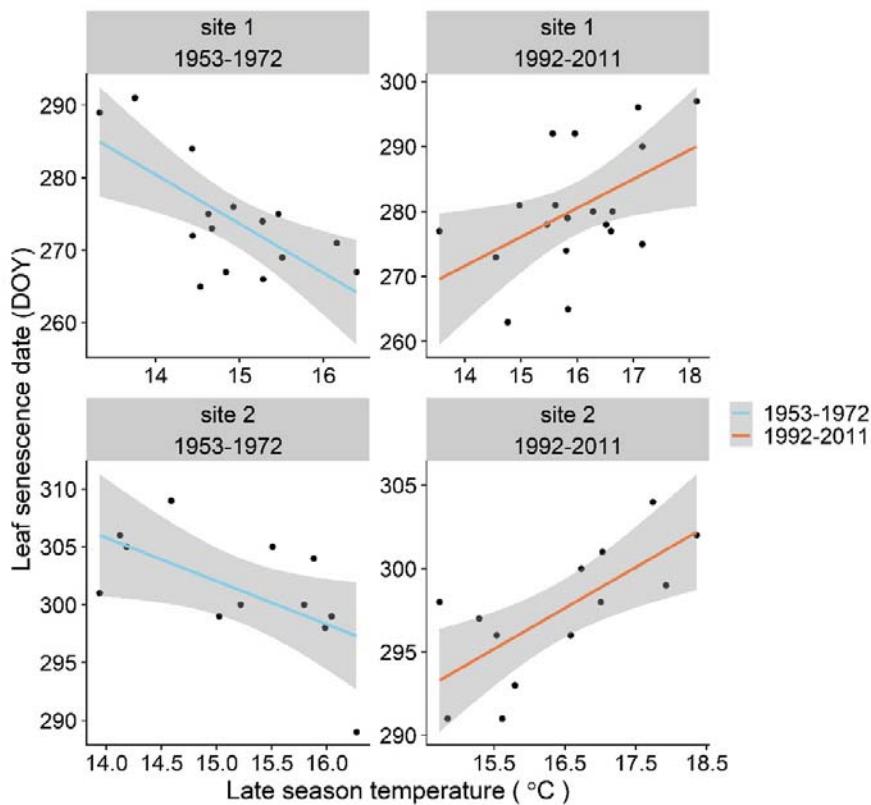
859

860


861

862

863 **Fig. S6** Partial correlation coefficients between soil moisture and leaf senescence
864 dates during the early (May-June) and late season (July-September). The length of
865 each box indicates the interquartile range, the horizontal line inside each box the
866 median, and the bottom and top of the box the first and third quartiles respectively.
867 The “NS” in (a) indicates no significant difference between the early and late season
868 ($P < 0.05$).


869

870

871 **Fig. S7** Relative influences of climate variables on leaf senescence dates during the
872 growing season. The climate variables include mean temperature, soil moisture,
873 radiation, humidity and precipitation between May and September.

874

875

876 **Fig. S8** Effects of mean temperature during the late season (July-September) on leaf
877 senescence dates of *Fagus sylvatica* (European beech) during 1953-1972 and
878 1992-2011 at several sites selected from the Pan European Phenology (PEP725)
879 network. The leaf senescence date was expressed as the day of year (DOY). The shaded
880 area indicates the 95% confidence intervals of the fitted regression lines.

881