

REVISION

A *Campylobacter* integrative and conjugative element with a CRISPR-Cas9 system targeting competing plasmids: a history of plasmid warfare?

Arnoud H.M. van Vliet ^{1,*}, Oliver Charity ², Mark Reuter ²

1. Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom.
2. Quadram Institute Bioscience, Microbes in the Food Chain programme, Norwich, United Kingdom.

* Corresponding author. Mailing address: School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford GU2 7AL, United Kingdom. Phone +44-1483-684406, E-mail: a.vanvliet@surrey.ac.uk

Running title: CRISPR-Cas on *Campylobacter* mobile elements

Keywords: *Campylobacter*, mobile genetic elements, plasmids, CRISPR-Cas

1 ABSTRACT

2 Microbial genomes are highly adaptable, with mobile genetic elements (MGEs) such as
3 integrative conjugative elements (ICE) mediating the dissemination of new genetic information
4 throughout bacterial populations. This is countered by defence mechanism such as CRISPR-Cas
5 systems, which limit invading MGEs by sequence-specific targeting. Here we report the distribution
6 of the pVir, pTet and PCC42 plasmids and a new 70-129 kb ICE (CampyICE1) in the foodborne
7 bacterial pathogens *Campylobacter jejuni* and *Campylobacter coli*. CampyICE1 contains a
8 degenerated Type II-C CRISPR system consisting of a sole Cas9 protein, which is distinct from the
9 previously described Cas9 proteins from *C. jejuni* and *C. coli*. CampyICE1 is conserved in structure
10 and gene order, containing blocks of genes predicted to be involved in recombination, regulation,
11 and conjugation. CampyICE1 was detected in 134/5,829 (2.3%) *C. jejuni* genomes and 92/1,347
12 (6.8%) *C. coli* genomes. Similar ICE were detected in a number of non-jejuni/coli *Campylobacter*
13 species, although these lacked a CRISPR-Cas system. CampyICE1 carries 3 separate short CRISPR
14 spacer arrays containing a combination of 108 unique spacers and 16 spacer variant families. A total
15 of 69 spacers and 10 spacer variant families (63.7%) were predicted to target *Campylobacter*
16 plasmids. The presence of a functional CampyICE1 Cas9 protein and matching anti-plasmid spacers
17 was associated with the absence of the pVir, pTet and pCC42 plasmids (188/214 genomes, 87.9%),
18 implicating that the CampyICE1-encoded CRISPR-Cas has contributed to the exclusion of
19 competing plasmids. In conclusion, the characteristics of the CRISPR-Cas9 system on CampyICE1
20 suggests a history of plasmid warfare in *Campylobacter*.

21

22 IMPACT STATEMENT

23 Understanding pathogen evolution is paramount for enhancing food safety and limiting
24 pathogenic disease in humans and animals. *Campylobacter* species comprise a group of human and
25 animal pathogens with a remarkable success rate, being the most frequent cause of bacterial food-
26 borne disease in high-income countries. A common theme among *Campylobacter* evolution is
27 genomic plasticity, and a significant proportion of this plasticity is driven by horizontal gene
28 transfer (HGT) that results in acquisition of complex traits in one evolutionary event. Understanding
29 the mechanisms of transfer of MGEs and how MGEs such as integrative conjugative elements
30 (ICE) exclude other MGEs is fundamental to understanding *Campylobacter* evolution. CRISPR-
31 Cas9 proteins play a role in bacterial immune systems, mediating the defence against bacteriophage,
32 plasmids, and integrative elements. The use of CRISPR-Cas by a mobile element to fight off
33 competing elements, possibly to the advantage or detriment to their host, also increases our
34 understanding of how important selfish genomic islands undergo co-evolution with bacterial
35 pathogens, and generates insight into the complex warfare between MGEs.

36

37 DATA STATEMENT

38 All genome sequences used in this study are available on the National Center for
39 Biotechnology Information (NCBI) Genome database or in the *Campylobacter* PubMLST website;
40 the assembly accession numbers (NCBI Genome) or genome ID numbers (*Campylobacter*
41 PubMLST) are listed in Table S1 (available in the online version of this article). Genome
42 assemblies were quality checked based on N₅₀, L₅₀, genome size and number of contigs. CRISPR
43 Spacer sequences and predicted targets, Cas9 alignments, presence of mobile elements and plasmids
44 are all included in the Supplementary Information.

45

46 INTRODUCTION

47 The genus *Campylobacter* is a member of the Epsilonproteobacteria, and comprises gram-
48 negative bacteria that are commonly found in the intestines of warm-blooded animals. The best
49 studied members are *C. jejuni* and *C. coli*, which are closely related thermophilic species commonly
50 found in birds and animals involved in agriculture, i.e. poultry, cattle and pigs, while they are also
51 found in many wild birds [1, 2]. They jointly represent the most common bacterial human
52 diarrhoeal pathogens in the developed world, with transmission often foodborne via undercooked
53 meat and cross-contamination in kitchen environments [3, 4]. Other related *Campylobacter* species
54 include the recently described *C. hepaticus* found in poultry [5], *C. upsaliensis* which is a zoonotic
55 *Campylobacter* species from dogs and cats [6], and the *C. lari* group consisting of several species
56 isolated from birds and animals connected to coastal environments [7].

57 Horizontal gene transfer (HGT) plays a major role in the evolution of microbial genomes [8].
58 Phages and plasmids are contributors to HGT-driven genomic plasticity, with transfer conducted by
59 either transduction or conjugation, or alternatively by natural transformation [9]. One class of
60 mobile genetic elements (MGE) are the integrative and conjugative elements (ICE), which are self-
61 transferable elements that can mediate excision, form a circular intermediate and often encode the
62 genes for the Type IV conjugative pili used to transfer to a new recipient host cell [10, 11]. ICEs
63 often contain genes required for reversible site-specific recombination, conjugation and regulation,
64 but also carry "cargo" genes that may confer antimicrobial resistance, virulence properties or
65 metabolic capabilities to recipient cells [12], as well as addiction modules ensuring stable
66 maintenance within the host cell [13].

67 Although acquisition of new genetic traits via HGT may have significant benefits for the
68 recipient cell, the newly acquired sequences can also be detrimental to the host. Therefore cells
69 have developed a diverse set of mechanisms to control entry, integration and expression of foreign
70 DNA [14]. One such system is the Clustered Regularly Interspaced Short Palindromic Repeats

71 (CRISPR) and proteins encoded by CRISPR-associated (Cas) genes, which encode the components
72 of an RNA-guided, sequence-specific immune system against invading nucleic acids, often phages,
73 plasmids and other transferable elements [15]. Many CRISPR-Cas systems have the Cas1 and Cas2
74 proteins mediating spacer acquisition [16] and other Cas proteins involved in expression,
75 maturation/processing and targeting and interference of the foreign DNA or RNA sequences,
76 commonly phages and plasmids [17]. The RNA-guided endonuclease of the Type II CRISPR-Cas
77 system is the Cas9 (Csn1/Csx12) protein, which mediates processing of CRISPR RNAs and
78 subsequent interference with the targets, in combination with a guide RNA called trans-activating
79 CRISPR RNA (tracrRNA) [18].

80 Early studies using multilocus sequence typing (MLST) indicated a high level of genetic
81 variability in *Campylobacter* species such as *C. jejuni* and *C. coli* [19], and subsequent comparative
82 genomic analyses have shown that this level of genetic variability is achieved by differences in
83 genetic content and high levels of allelic variability [20-22], likely supported by the natural
84 competence of many *Campylobacter* species. Along with a variety of small plasmids (<10 kb),
85 there are three major classes of 30-60 kb plasmids in *C. jejuni* and *C. coli* (pVir, pTet and pCC42)
86 [23-25], although these are of variable size and gene content [26]. There are also four
87 chromosomally located MGEs first identified in *C. jejuni* RM1221 [27], of which CJIE1 is a Mu-
88 like prophage, CJIE2 and CJIE4 are related temperate prophages [28-31], and CJIE3 is a putative
89 ICE which can contain the *Campylobacter* Type VI secretion system (T6SS) [32, 33].

90 In a previous study, we showed that 98% of *C. jejuni* genomes investigated contained a Type II-
91 C CRISPR-Cas system consisting of *cas9-cas1-cas2* genes and a relatively short spacer array (4.9 ±
92 2.7 spacers, N=1,942 genomes) [34]. In contrast, only 10% of *C. coli* genomes contained a copy of
93 the *C. jejuni* CRISPR-Cas system, while genomes from non-agricultural (environmental) *C. coli*
94 isolates contained a closely related, but separate Type II-C CRISPR-Cas system with the full
95 complement of *cas9-cas1-cas2* genes, or an orphan *cas9* gene without *cas1* or *cas2* genes [34]. We

96 have expanded this survey of CRISPR-Cas systems in *C. jejuni* and *C. coli*, and show that there is a
97 third, clearly distinct CRISPR-Cas system in both *C. jejuni* and *C. coli*, which is located on a
98 relatively conserved chromosomally located ICE (CampyICE1), and have investigated a possible
99 role of this CRISPR-Cas system in contributing to plasmid competition in *Campylobacter*.

100

101 **MATERIALS AND METHODS**

102

103 **Identification of CRISPR-Cas systems**

104 A collection of complete and draft genome sequences of *C. jejuni* (N=5,829) and *C. coli*
105 (N=1,347) (Table S1) were obtained from the NCBI Genomes database
106 (<http://www.ncbi.nlm.nih.gov/genome/browse/>) and the *Campylobacter* pubMLST website
107 (<http://pubmlst.org/campylobacter/>) [35]. Genome assemblies were quality checked based on N₅₀,
108 L₅₀, genome size and number of contigs, and have been used previously for studying gene
109 distribution in *Campylobacter* [36, 37]. Genome sequences for non-*jejuni/coli* *Campylobacter*
110 species such as *C. hepaticus*, *C. lari* group and *C. upsaliensis* were obtained from the NCBI genome
111 database using ncbi-genome-download version 0.2.11 (<https://github.com/kblin/ncbi-genome->
112 download/). Genome sequences were annotated with Prokka version 1.13 [38], and the annotation
113 searched for Cas9 orthologs using the *C. jejuni* Cj1523c (Cas9) amino acid sequence using
114 BLASTP, while genome sequences were searched using TBLASTN to identify inactivated copies
115 of *cas9* genes. CRISPR arrays were identified as described previously [34], using the CRISPRfinder
116 software (<http://crispr.u-psud.fr/Server/>) [39] and the CRISPR Recognition Tool CRT [40], further
117 supported by BLAST searches and manual curation. Conservation of sequences was represented
118 using Weblogo [41].

119

120 **Prediction of putative targets of CRISPR spacers**

121 A total of 108 unique and 16 variant families of the CampyICE1 CRISPR spacer sequences
122 were used as query on the CRISPRTarget website
123 (http://brownlabtools.otago.ac.nz/CRISPRTarget/crispr_analysis.html) [42], and used to search the
124 Genbank-Phage, Refseq-Plasmid, and Refseq-Viral databases. Only *Campylobacter* targets were
125 included for further analysis. Hits with plasmids from the pVir, pTet and pCC42 families were

126 recorded. Individual genomes with plasmid-specific spacers and positive for either pVir, pTet or
127 pCC42 were searched for the target sequences of that genome using BLAST.

128

129 **Analysis of MGE and plasmid distribution**

130 Genome sequences were screened using Abricate (<https://github.com/tseemann/abricate>)
131 version 0.9.8, with each mobile element/plasmid subdivided into 600 nt fragments used as
132 individual queries, and each 600 nt query sequence was only scored positive with a minimum
133 coverage of 70% and minimum sequence identity of 80%. The CJIE1, CJIE2, CJIE3 and CJIE4
134 elements were obtained from *C. jejuni* reference strain RM1221 [27]. Nucleotide positions in the
135 RM1221 genome (accession number CP000025) were 207,005-244,247 (CJIE1), 498,503-538,770
136 (CJIE2), 1,021,082-1,071,873 (CJIE3), and 1,335,703:1,371,932 (CJIE4). The T6SS genes were
137 taken from *C. jejuni* 108 (accession number JX436460). For the CampyICE1 element, genome
138 sequences were screened with the CampyICE1 element from *C. jejuni* strain CCN26 (accession
139 number NZ_FBML01, nucleotide positions contig 11: 109,469-134,196 and reverse strand contig
140 17: 19,482-78,836), the Clade 1a *C. coli* strain RM1875 (accession number CP007183, nucleotide
141 positions 1,235,330-1,320,414) and the *C. coli* Clade 2 strain C8C3 (accession number FBQX01,
142 nucleotide positions 905,906-996,822). The pCC42 plasmid sequence was obtained from *C. coli* 15-
143 537360 (accession number CP006703), whereas the pTet (accession number CP000549) and pVir
144 (accession number CP000550) plasmid sequences were obtained from *C. jejuni* 81-176. Other
145 plasmids used were pRM3194 (accession number CP014345), pHELV-1 (accession number
146 CP020479) and pSCJK2-1 (accession number CP038863). Genomes were scored as positive for a
147 mobile element or plasmid if >50% positive for 600 nt queries. Samples scoring between 30-50%
148 were manually inspected for distribution of matches and given a final score. Clinker version 0.0.20
149 [43] was used to generate comparative gene maps of MGE and plasmids, using the default settings.
150 Table S1 includes the presence/absence information of the pCC42, pTet and pVir plasmids, and the

151 CJIE1, CJIE2, CJIE3 and CJIE4 MGE.

152

153 **Phylogenetic trees**

154 Core genome MLST allelic profiles were generated for the 5,829 *C. jejuni* and 1,347 *C. coli*
155 genomes using a 678 gene set described previously [44]. Allele calling was performed using
156 chewBBACA version 2.6 [45] using the default settings. The phylogenetic trees were generated
157 using GrapeTree version 1.5.0 [46] with the RapidNJ implementation of Neighbor-Joining, and
158 annotated using the standard 7-gene MLST clonal complexes as determined using the MLST
159 program version 2.19 (<https://github.com/tseemann/mlst>).

160 Cas9 protein sequences were aligned with MEGA7 using the MUSCLE algorithm with the
161 default settings [47], and phylogenetic trees constructed using the MEGA7 Neighbor-joining
162 option, pairwise deletion and the Jones-Taylor-Thornton (JTT) model, with 500 bootstraps. Trees
163 were visualised using MEGA7 [47] and Figtree version 1.4.2
164 (<http://tree.bio.ed.ac.uk/software/figtree/>).

165

166 **RESULTS**

167

168 ***Campylobacter jejuni* and *C. coli* contain a third type II-C Cas9-encoding gene**

169 A collection of 5,829 *C. jejuni* and 1,347 *C. coli* genomes was searched for the presence of
170 Cas9 orthologs using the *C. jejuni* NCTC11168 Cj1523c and *C. coli* 76639 BN865_15240c amino
171 acid sequences, representative of the two type II-C Cas9 proteins previously detected in *C. jejuni*
172 and *C. coli* [34]. In addition to the *cas9* genes representative of the *C. jejuni*/agricultural *C. coli* and
173 the non-agricultural *C. coli* genomes, a third *cas9* gene was detected in 134 (2.3%) of *C. jejuni*
174 genomes and 92 (6.8%) of *C. coli* genomes, predicted to encode a 965 amino acid protein, with 4 *C.*
175 *jejuni* and 3 *C. coli* genomes containing an interrupted *cas9* gene. This new *cas9* gene did not have
176 adjacent *cas1* or *cas2* genes. Alignment of the predicted new Cas9 proteins from *C. jejuni* and the
177 *C. coli* clades with Cas9 proteins from members of the genera *Campylobacter* and *Helicobacter*
178 showed that the new Cas9 proteins form a separate cluster (Fig. 1), suggesting these have originated
179 from a more distant common ancestor. Alignment of the additional Cas9 proteins from *C. jejuni* and
180 the different *C. coli* genetic clades showed that the three RuvC motifs, the HNH motif and R-rich
181 region were all conserved (Fig. S1).

182

183 **The novel CRISPR-Cas system is located on an integrative conjugative mobile element**

184 We first looked for the genomic region containing the gene encoding the new Cas9 protein in
185 completed *C. jejuni* and *C. coli* genomes. Only two complete *C. coli* genomes contained the
186 additional *cas9* gene; an inactivated copy of the *cas9* gene was found on the *C. coli* RM1875
187 genome, while a complete copy of the gene was present in *C. coli* C8C3. The *cas9* gene was
188 flanked by a short CRISPR-repeat region with five to six repeats, similar to the *Campylobacter*
189 repeat lengths reported previously [34]. Investigation of the surrounding genes showed the
190 downstream presence of a putative Type IV conjugative transfer system, with *traG*, *traN*, *traL* and

191 *traE* genes, as well as a *parM* gene encoding the chromosome segregation protein ParM, while
192 upstream of *cas9*, genes annotated as DNA primase, thymidine kinase, XerC tyrosine recombinase,
193 and an integrase were detected, with the integrase flanked by a tRNA-Met gene as integration site
194 (Fig. 2A), thus matching the common components of an ICE [10]. We have named the *cas9*-
195 containing ICE element CampyICE1.

196 The *C. coli* RM1875 and *C. coli* C8C3 CampyICE1-containing genomic regions were used to
197 search the 134 *C. jejuni* and 92 *C. coli* genomes containing the CampyICE1-*cas9* gene for
198 additional contigs matching the additional CampyICE1 sequences, and ordered these contigs
199 accordingly. We were able to reconstruct the CampyICE1 genomic regions for 81 *C. coli* and 133
200 *C. jejuni* genomes, annotated these and each showed genetic synteny. The size of the ICE ranged
201 from 70.0-129.3 kb (average 87.7 kb, n=214), and each CampyICE1 region started with a gene
202 encoding a putative integrase (in Genbank often annotated as 30S ribosomal subunit protein),
203 followed by a XerC tyrosine recombinase. There were six relatively conserved blocks of genes
204 downstream, of which the third block ends with the *cas9* gene, and the fourth and the fifth blocks
205 contain genes encoding conjugation proteins (Fig. 2A). Finally, the mobile element also contained
206 up to three putative CRISPR arrays, each with at most a few repeats. The conservation of the
207 CampyICE1 gene synteny is shown in Figure 2B using three *C. coli* and three *C. jejuni* examples.

208 Searches of the Genbank sequence database for orthologs of CampyICE1 allowed the
209 identification of a similar element in *C. jejuni* subsp. *doylei*, where the element is split into two
210 parts, but lacks the gene block containing the *cas9* gene. There were also regions with sequence and
211 CampyICE1 gene structure similarity in *C. upsaliensis* plasmid pCU110 and *C. iguaniorum* plasmid
212 pCIG1485E, although both lack the *cas9* gene (Fig. S2). Subsequent searches in other
213 *Campylobacter* spp genomes in the Genbank database allowed the identification of other plasmids
214 and potential ICE elements with similar layouts from diverse *Campylobacter* species such as *C.*
215 *helveticus*, *C. insulaenigrae*, *C. lari* and *C. subantarcticus*, but none of those contained the *cas9*

216 gene (Fig. S2).

217

218 **Distribution of CampyICE1 and other mobile elements and linkage to MLST-clonal
219 complexes**

220 To assess whether the distribution of CampyICE1 and other MGEs was linked to specific
221 MLST-types or isolation source, we screened a collection of 5,829 *C. jejuni* and 1,347 *C. coli*
222 genomes [36] using BLAST+ for the presence of CampyICE1, CJIE1, CJIE2, CJIE3, CJIE4, the
223 plasmids pVir, pTet, pCC42, and the CJIE3-associated T6SS (Table 1). The CJIE1 element was the
224 most common in *C. jejuni*, while CJIE4 was the least common of the MGEs from *C. jejuni*
225 RM1221, although still more common than CampyICE1. In *C. coli*, the CJIE1, CJIE2 and CJIE3
226 elements were present in similar fractions, and again much more common than CJIE4 and
227 CampyICE1 (Table 1). There was clear variation within the CJIE1-CJIE4 genetic elements, mostly
228 in length but also in gene content (Fig. S3), with the CJIE3 element differing due to the presence or
229 absence of the T6SS. With regard to the three plasmids, pVir was rare in both *C. jejuni* and *C. coli*,
230 while pTet is present in approximately a quarter of the *C. jejuni* and *C. coli* genomes. The pCC42
231 plasmid was relatively rare in *C. jejuni*, but the most common plasmid in *C. coli* (Table 1). The
232 plasmids showed more conservation of gene structure and content (Fig. S4), although there were
233 combinations of plasmids and mobile elements that lead to megaplasmids with phage elements or
234 the T6SS [48] which were not separately included in this analysis.

235 The *C. jejuni* genomes were clustered in a phylogenetic tree based on a 678 gene core genome
236 (cg)MLST scheme [44], which grouped the genomes mostly according to clonal complexes of the
237 seven-gene MLST for *C. jejuni* (Fig. 3) and the different *C. coli* clades (Fig. 4). With the exception
238 of CJIE3 and the associated T6SS in *C. jejuni*, there was no clear association with specific MLST
239 clonal complexes in either *C. jejuni* or *C. coli*. In *C. jejuni*, CJIE3 without the T6SS was restricted
240 to clonal complexes ST-354 and ST-257, while the CJIE3 with T6SS was mostly found in clonal

241 complexes ST-464, ST-353, ST-573 and ST-403 (Fig. 3). There was no obvious link between
242 isolation source and any of the MGEs, although it should be noted that the dataset used is biased
243 towards human isolates. Similar to the mobile elements, the pVir, pTet and pCC42 plasmids did not
244 show an association with either MLST clonal complex in *C. jejuni* or *C. coli* clade, or isolation
245 source (Fig. 3, Fig. 4). The specific distribution per genome is provided in Table S1.

246

247 **The majority of CampyICE1 CRISPR spacers are predicted to target *Campylobacter* plasmids**

248 CRISPR arrays consist of the CRISPR repeats and the individual spacers, which are used to
249 generate the cRNAs used for interference, and the tracrRNA [18]. The layout of the CampyICE1
250 CRISPR arrays is distinct from most other Type II CRISPR-Cas systems, where the CRISPR array
251 and tracrRNA are often found directly next to the Cas genes. In contrast, the CampyICE1 system
252 does not contain the ubiquitous *cas1* and *cas2* genes, and has a total of three CRISPR arrays spaced
253 over the element (Fig. 2). We were able to identify spacers from 81 *C. coli* and 133 *C. jejuni*
254 CampyICE1 elements. The first array contained 3.0 ± 1.5 spacers (N=197, range 1-6), and also
255 contained a putative tracrRNA in the opposite transcriptional orientation (Fig. 5A), while the
256 second CRISPR array contained 3.1 ± 1.7 spacers (N=208, range 1-10) and lacked a potential
257 tracrRNA. The third CRISPR array is shorter and contained 1.0 ± 0.6 spacers (N=182, range 1-3).
258 The tracrRNA and repeat sequence are distinct from the previously described *C. jejuni* and *C. coli*
259 CRISPR systems [34], with the changes in the repeat sequence being mirrored in the tracrRNA
260 sequence, thus unlikely to affect functionality (Fig. 5A, 5B). The predicted Protospacer Adjacent
261 Motif (PAM) was 5'-A(C/T)A(C/T) (Fig. 5A), which matches well with the 5'-ACAc PAM-motif
262 described for the *C. jejuni* Cas9 protein [34, 49].

263 Comparison of the spacers from 214 CampyICE1 elements showed that these consisted of 108
264 unique spacer sequences, and an additional 40 spacers that were subdivided in 16 variant families,
265 where 2-6 spacers had one or two nucleotide differences to each other and were predicted to match

266 the same targets (Table S2). The spacers were used to search phage and plasmid databases for
267 putative targets, and a total of 62 unique spacers and eight variant families were predicted to target
268 the *Campylobacter* plasmids pCC42 (31 unique spacers, two variants), pTet (16 unique spacers, six
269 variants) and pVir (15 unique spacers, see Fig. 5C for an example). Furthermore there were spacers
270 predicted to target the *Campylobacter helveticus* plasmid pHELV-1 (one unique spacer) and
271 pSCJK2-1 from *C. jejuni* SCJK2 (six unique spacers, two variants). The pHELV-1 and pSCJK2-1
272 plasmids were not detected in the 5,829 *C. jejuni* and 1,347 *C. coli* genomes used in this study. The
273 predicted targets on the plasmids pCC42, pTet and pVir were plotted against the plasmid maps (Fig.
274 5D), and showed that targets for pCC42 and pVir were found in multiple genes on these two
275 plasmids, whereas the targets on pTet were limited to two genes, of which YSU_08860 is not
276 universally present on plasmids of the pTet family (Fig. 5D).

277

278 **Plasmid-mapping CampyICE1 CRISPR spacers are associated with an absence of the**
279 **corresponding plasmids**

280 To assess whether the CampyICE1 CRISPR-Cas9 system can function to exclude plasmid by
281 using plasmid-mapping spacers, the 226 *C. jejuni* and *C. coli* CampyICE1-positive genome
282 assemblies were searched for the presence of plasmid contigs and matches with spacer sequences
283 (Table S3 and Table S4). As one possible escape for CRISPR-Cas9 surveillance could be sequence
284 mutations/changes in the plasmids, we also checked whether the predicted plasmid-matching spacer
285 would recognise any sequence in the genome assemblies (which include plasmid contigs). Of the *C.*
286 *coli* assemblies, spacers were detected in 81/92 assemblies, and 56 had no plasmid/spacer matches.
287 Of the 25 assemblies where there were plasmid/spacer matches, three had an inactivated
288 CampyICE1 *cas9* gene, and 11 did not have sequences matching the spacer(s) or only partial
289 matches in their genome assembly, suggesting that mutations in the plasmid sequence have made
290 the spacer unusable. This left 11 *C. coli* assemblies with a functional *cas9* gene and spacer matching

291 the pCC42 plasmid. Similarly, for *C. jejuni*, spacers were detected in 133/134 genomes, and 109
292 had no plasmid/spacer matches. Of the 24 assemblies where there were plasmid/spacer matches,
293 two had an inactivated CampyICE1 *cas9* gene with frameshifts and stop codons, and seven did not
294 have sequences matching the spacer(s) or only partial matches in their genome assembly. This left
295 15 *C. jejuni* assemblies with a functional *cas9* gene and spacer matching the pCC42 (seven) and
296 pTet (eight) plasmids. The matching of spacers, CampyICE1 Cas9 status and plasmid
297 presence/absence is given in Figure 6, with more detailed data in Table S3 and Table S4.

298

299 **DISCUSSION**

300 In the last 25 years, CRISPR-Cas has gone from a relatively obscure repeat system in bacteria
301 to a Nobel Prize winning phenomenon [50]. CRISPR-Cas systems are widespread in prokaryotic
302 organisms, and while early reports predicted them to be a bacterial version of the adaptive immune
303 system against phages, it is now clear that they target a wide variety of MGEs, and can also have a
304 diverse set of alternative functions. Recent studies show that CRISPR-Cas systems are not just
305 located on genomes, but can also be found on MGEs. Type IV and Type I CRISPR-Cas systems
306 have been reported on enterobacterial plasmids [51, 52], and have been predicted to function in
307 competition between plasmids [53]. *Vibrionaceae* species contain a variety of CRISPR-Cas systems
308 associated with putative MGEs and genomic islands [54, 55], although data on their potential role in
309 MGE competition are still lacking. To our knowledge, our study is the first to feature an incomplete
310 Type II-C CRISPR-Cas9 system that is associated with an MGE, and where the majority of spacers
311 matched competing plasmids. We have shown that CampyICE1 is highly conserved in both *C.*
312 *jejuni* and *C. coli*, that it has up to three short spacer arrays on the ICE, and that the presence of a
313 functional CampyICE1 CRISPR-Cas system and anti-plasmid spacers is associated with the
314 absence of the three targeted plasmid types in *C. jejuni* and *C. coli*.

315 The Type II-C Cas9 protein encoded on CampyICE1 is closely related to the Cas9 proteins
316 found in other *Campylobacter* and *Helicobacter* species, but clusters separately, suggesting it may
317 have been co-opted from a genomic location in an ancestral *Campylobacteraceae* species.
318 Interestingly, CampyICE1 lacks the *cas1* and *cas2* genes [56], a feature which has also been noted
319 for the hypercompact Cas12j (CasΦ) system found on certain bacteriophages [57]. The Cas12j
320 system much resembles the CampyICE1 Cas9 system described here, as they share a limited
321 CRISPR spacer repertoire [58]. The lack of Cas1 and Cas2 components could mean that the
322 CampyICE1 system is incapable of acquiring new spacers, which is supported by the relative lack
323 of spacer diversity in the 214 genomes containing CampyICE1. However, we cannot exclude that

324 the CampyICE1 Cas9 may be able to co-opt the Cas1 and Cas2 proteins from the chromosomal
325 version of the CRISPR-Cas system in *C. jejuni* and *C. coli*, although this is speculative. We have
326 previously shown that ~98% of all *C. jejuni* genomes have a CRISPR-Cas system, while this is
327 more limited in *C. coli*, where only ~10% of *C. coli* genomes have a CRISPR-Cas system [34].
328 Since the diversity in CRISPR spacers is also low in the chromosomal version of CRISPR-Cas of *C.*
329 *jejuni* and *C. coli* and most spacers cannot (yet) be linked to mobile elements or phages [34, 59-61],
330 it may represent additional or alternative functions for Cas9 in *C. jejuni*, such as control or activity
331 in virulence [62-66]. However, this is not the case for the CampyICE1 CRISPR-Cas9 system, as a
332 majority of spacers can be linked to the three main families of plasmids in *C. jejuni* and *C. coli*:
333 pTet, pVir and pCC42.

334 In our collection of genomes, 41.7% of *C. coli* and 24.3% of *C. jejuni* genomes are predicted to
335 contain one or more of these three plasmids, in different combinations. The three plasmids do not
336 show signs of incompatibility, as 93 *C. jejuni* and 166 *C. coli* genomes had a combination of two
337 plasmids or all three plasmids together. The role of these plasmids in *C. jejuni* and *C. coli* is still
338 unclear, but they can carry virulence factors and contribute to the dissemination of antibiotic
339 resistance. However, plasmids are not absolutely required for this, and plasmid-free isolates are also
340 common. This is similar for the CJIE elements, where different combinations of the CJIE-elements
341 and CampyICE1 were detected. The different roles of the CJIE-elements in *C. jejuni* and *C. coli* is
342 still not clear, although the T6SS from CJIE3 has been linked with virulence [32, 33, 67, 68], and
343 the DNases of the CJIE1, CJIE2, and CJIE4 elements are associated with reduced biofilm formation
344 and reduced natural transformation [29, 30, 69].

345 The CRISPR-Cas9 system of the CampyICE1 element has some unique properties, as there are
346 up to three short CRISPR arrays on the mobile element, with the essential tracrRNA not located
347 with the *cas9* gene but located in another CRISPR spacer array on CampyICE1. Although the arrays
348 detected were small, there were still 108 unique spacers and 16 spacer families, with a spacer family

349 defined as spacers differing by one or two nucleotides only. The majority of CampyICE CRISPR
350 spacers and variants were predicted to target *Campylobacter* plasmids (69 spacers and 10 variants,
351 63.7%), with most spacers predicted to target pCC42, pTet and pVir, the three major plasmids in *C.*
352 *jejuni* and *C. coli*, which is a very high proportion compared to many other CRISPR-Cas studies.
353 For example, a study on type IV CRISPR-Cas systems could only match 12% of spacers with
354 targets, and this was reduced to only 7% for the non-type IV CRISPR-Cas systems [53]. In our
355 previous study [34] we were also unable to match most *Campylobacter* spacers with putative
356 targets, which is common. The presence of CampyICE1, functional CRISPR-Cas9 and anti-plasmid
357 spacers was associated with the absence of the competing plasmids targeted, suggesting that
358 CampyICE1 has used its CRISPR-Cas9 system for "plasmid warfare" as a form of incompatibility.
359 The match is not perfect, as there are several examples of a complete CampyICE1 CRISPR-Cas9
360 system with plasmid-targeting spacers, to which the spacers mapped were present with 100%
361 sequence identity between spacer and predicted plasmid contigs (Table S3, Table S4, Fig. 6). This
362 could potentially mean that the CRISPR-Cas system can prevent acquisition of new plasmids, but
363 for unknown reasons is unable to remove plasmids already present, although this is highly
364 speculative. It also suggests that the CampyICE1 plasmid restriction can be avoided by mutation of
365 the target site disrupting the sequence matching, making the system less functional, especially in a
366 bacterium known for its high levels of genetic variation. We also speculate that DNA modification
367 and transcriptional variation/regulation may play a role in spacer-target discrepancies.

368 In summary, we have identified a new putative mobile element in *C. jejuni* and *C. coli* that
369 contains a degenerated CRISPR-Cas9 system predicted to employ this CRISPR-Cas system to
370 compete with other families of *Campylobacter* plasmids. We also show that mobile elements and
371 plasmids are semi-randomly distributed within a large set of *C. jejuni* and *C. coli* genomes, and
372 display significant levels of genetic variation within the elements. This fits well with the previously
373 described genetic variability of the genus *Campylobacter*, and adds to the complexity of mobile

374 elements present within these successful foodborne human pathogens.

375

376 **FUNDING INFORMATION**

377 We gratefully acknowledge the support of the Biotechnology and Biological Sciences Research
378 Council (BBSRC) via the BBSRC Institute Strategic Programme Grant BB/J004529/1 (Gut Health
379 and Food Safety), and the BBSRC Doctoral Training Partnership to the Norwich Research Park
380 (BB/M011216/1). The funder did not contribute to the study design, data collection, analysis or
381 interpretation of the data.

382

383 **ACKNOWLEDGMENTS**

384 This publication made use of the PubMLST website (<http://pubmlst.org/>) developed by Keith
385 Jolley and sited at the University of Oxford. The development of that website was funded by the
386 Wellcome Trust.

387

388 **AUTHOR CONTRIBUTIONS**

389 A.H.M.v.V. conceived the study and study design, performed analysis and wrote the paper; O.C.
390 and M.R. contributed to study design, performed analysis and writing of the paper.

391

392 **CONFLICTS OF INTEREST**

393 The authors declare that there are no conflicts of interest.

394

REFERENCES

1. **Rossler E, Signorini ML, Romero-Scharpen A, Soto LP, Berisvil A et al.** Meta-analysis of the prevalence of thermotolerant *Campylobacter* in food-producing animals worldwide. *Zoonoses Public Health* 2019;66(4):359-369 doi: 10.1111/zph.12558
2. **Griekspoor P, Colles FM, McCarthy ND, Hansbro PM, Ashurst-Smith C et al.** Marked host specificity and lack of phylogeographic population structure of *Campylobacter jejuni* in wild birds. *Mol Ecol* 2013;22(5):1463-1472 doi: 10.1111/mec.12144
3. **Nichols GL, Richardson JF, Sheppard SK, Lane C, Sarran C.** *Campylobacter* epidemiology: a descriptive study reviewing 1 million cases in England and Wales between 1989 and 2011. *BMJ Open* 2012;2(4):e001179 doi: 10.1136/bmjopen-2012-001179
4. **Romdhane RB, Merle R.** The Data Behind Risk Analysis of *Campylobacter Jejuni* and *Campylobacter Coli* Infections. *Curr Top Microbiol Immunol* 2021;431:25-58 doi: 10.1007/978-3-030-65481-8_2
5. **Crawshaw T.** A review of the novel thermophilic *Campylobacter*, *Campylobacter hepaticus*, a pathogen of poultry. *Transbound Emerg Dis* 2019;66(4):1481-1492 doi: 10.1111/tbed.13229
6. **Campagnolo ER, Philipp LM, Long JM, Hanshaw NL.** Pet-associated *Campylobacteriosis*: A persisting public health concern. *Zoonoses Public Health* 2018;65(3):304-311 doi: 10.1111/zph.12389
7. **Miller WG, Yee E, Chapman MH, Smith TP, Bono JL et al.** Comparative genomics of the *Campylobacter lari* group. *Genome Biol Evol* 2014;6(12):3252-3266 doi: 10.1093/gbe/evu249
8. **Brockhurst MA, Harrison E, Hall JPJ, Richards T, McNally A et al.** The Ecology and Evolution of Pangenomes. *Curr Biol* 2019;29(20):R1094-R1103 doi: 10.1016/j.cub.2019.08.012
9. **Penades JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP.** Bacteriophage-mediated spread of bacterial virulence genes. *Curr Opin Microbiol*, Review 2014;23C:171-178 doi: 10.1016/j.mib.2014.11.019
10. **Johnson CM, Grossman AD.** Integrative and Conjugative Elements (ICEs): What They Do and How They Work. *Annu Rev Genet* 2015;49:577-601 doi: 10.1146/annurev-genet-112414-055018
11. **Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR.** The hidden life of integrative and conjugative elements. *FEMS Microbiol Rev* 2017;41(4):512-537 doi: 10.1093/femsre/fux008

12. **Partridge SR, Kwong SM, Firth N, Jensen SO.** Mobile Genetic Elements Associated with Antimicrobial Resistance. *Clin Microbiol Rev* 2018;31(4):e00088-00017 doi: 10.1128/CMR.00088-17
13. **Burrus V.** Mechanisms of stabilization of integrative and conjugative elements. *Curr Opin Microbiol* 2017;38:44-50 doi: 10.1016/j.mib.2017.03.014
14. **Labrie SJ, Samson JE, Moineau S.** Bacteriophage resistance mechanisms. *Nat Rev Microbiol* 2010;8(5):317-327 doi: 10.1038/nrmicro2315
15. **Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al.** An updated evolutionary classification of CRISPR-Cas systems. *Nat Rev Microbiol* 2015;13(11):722-736 doi: 10.1038/nrmicro3569
16. **McGinn J, Marraffini LA.** Molecular mechanisms of CRISPR-Cas spacer acquisition. *Nat Rev Microbiol* 2019;17(1):7-12 doi: 10.1038/s41579-018-0071-7
17. **Hille F, Richter H, Wong SP, Bratovic M, Ressel S et al.** The Biology of CRISPR-Cas: Backward and Forward. *Cell* 2018;172(6):1239-1259 doi: 10.1016/j.cell.2017.11.032
18. **Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS et al.** Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. *Nat Rev Microbiol* 2020;18(2):67-83 doi: 10.1038/s41579-019-0299-x
19. **Sheppard SK, McCarthy ND, Falush D, Maiden MC.** Convergence of *Campylobacter* species: implications for bacterial evolution. *Science* 2008;320(5873):237-239 doi: 10.1126/science.1155532
20. **Baig A, McNally A, Dunn S, Paszkiewicz KH, Corander J et al.** Genetic import and phenotype specific alleles associated with hyper-invasion in *Campylobacter jejuni*. *BMC Genomics* 2015;16:852 doi: 10.1186/s12864-015-2087-y
21. **Sheppard SK, Jolley KA, Maiden MC.** A Gene-By-Gene Approach to Bacterial Population Genomics: Whole Genome MLST of *Campylobacter*. *Genes (Basel)* 2012;3(2):261-277 doi: 10.3390/genes3020261
22. **Yahara K, Meric G, Taylor AJ, de Vries SP, Murray S et al.** Genome-wide association of functional traits linked with *Campylobacter jejuni* survival from farm to fork. *Environ Microbiol* 2017;19(1):361-380 doi: 10.1111/1462-2920.13628
23. **Batchelor RA, Pearson BM, Friis LM, Guerry P, Wells JM.** Nucleotide sequences and comparison of two large conjugative plasmids from different *Campylobacter* species. *Microbiology* 2004;150(Pt 10):3507-3517 doi: 10.1099/mic.0.27112-0
24. **Pearson BM, Rokney A, Crossman LC, Miller WG, Wain J et al.** Complete genome sequence of the clinical isolate *Campylobacter coli* 15-537360. *Genome Announc*

2013;1(6):e01056-01013 doi: 10.1128/genomeA.01056-13

25. **Bacon DJ, Alm RA, Burr DH, Hu L, Kopecko DJ et al.** Involvement of a plasmid in virulence of *Campylobacter jejuni* 81-176. *Infect Immun* 2000;68(8):4384-4390 doi: 10.1128/iai.68.8.4384-4390.2000
26. **Marasini D, Fakhr MK.** Complete Genome Sequences of Plasmid-Bearing Multidrug-Resistant *Campylobacter jejuni* and *Campylobacter coli* Strains with Type VI Secretion Systems, Isolated from Retail Turkey and Pork. *Genome Announc* 2017;5(47):e01360-01317 doi: 10.1128/genomeA.01360-17
27. **Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA et al.** Major structural differences and novel potential virulence mechanisms from the genomes of multiple *campylobacter* species. *PLoS biology* 2005;3(1):e15 doi: 10.1371/journal.pbio.0030015
28. **Parker CT, Quinones B, Miller WG, Horn ST, Mandrell RE.** Comparative genomic analysis of *Campylobacter jejuni* strains reveals diversity due to genomic elements similar to those present in *C. jejuni* strain RM1221. *J Clin Microbiol* 2006;44(11):4125-4135 doi: 10.1128/JCM.01231-06
29. **Gaasbeek EJ, Wagenaar JA, Guilhabert MR, van Putten JP, Parker CT et al.** Nucleases encoded by the integrated elements CJIE2 and CJIE4 inhibit natural transformation of *Campylobacter jejuni*. *J Bacteriol*, Research Support, Non-U.S. Gov't 2010;192(4):936-941 doi: 10.1128/JB.00867-09
30. **Gaasbeek EJ, Wagenaar JA, Guilhabert MR, Wosten MM, van Putten JP et al.** A DNase encoded by integrated element CJIE1 inhibits natural transformation of *Campylobacter jejuni*. *J Bacteriol* 2009;191(7):2296-2306 doi: 10.1128/JB.01430-08
31. **Clark CG, Chen CY, Berry C, Walker M, McCorrister SJ et al.** Comparison of genomes and proteomes of four whole genome-sequenced *Campylobacter jejuni* from different phylogenetic backgrounds. *PLoS One* 2018;13(1):e0190836 doi: 10.1371/journal.pone.0190836
32. **Bleumink-Pluym NM, van Alphen LB, Bouwman LI, Wosten MM, van Putten JP.** Identification of a Functional Type VI Secretion System in *Campylobacter jejuni* Conferring Capsule Polysaccharide Sensitive Cytotoxicity. *PLoS Pathog* 2013;9(5):e1003393 doi: 10.1371/journal.ppat.1003393
33. **Lertpiriyapong K, Gamazon ER, Feng Y, Park DS, Pang J et al.** *Campylobacter jejuni* type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization. *PLoS One* 2012;7(8):e42842 doi: 10.1371/journal.pone.0042842

34. **Pearson BM, Louwen R, van Baarlen P, van Vliet AHM.** Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural *Campylobacter* coli and *Campylobacter* jejuni Isolates Correlates with Lack of Shared Environments. *Genome Biol Evol* 2015;7(9):2663-2679 doi: 10.1093/gbe/evv174
35. **Jolley KA, Bray JE, Maiden MCJ.** Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. *Wellcome Open Res* 2018;3:124 doi: 10.12688/wellcomeopenres.14826.1
36. **Mehat JW, La Ragione RM, van Vliet AHM.** *Campylobacter* jejuni and *Campylobacter* coli autotransporter genes exhibit lineage-associated distribution and decay. *BMC Genomics* 2020;21(1):314 doi: 10.1186/s12864-020-6704-z
37. **Dwivedi R, Nothaft H, Garber J, Xin Kin L, Stahl M et al.** L-fucose influences chemotaxis and biofilm formation in *Campylobacter* jejuni. *Mol Microbiol* 2016;101(4):575-589 doi: 10.1111/mmi.13409
38. **Seemann T.** Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 2014;30(14):2068-2069 doi: 10.1093/bioinformatics/btu153
39. **Grissa I, Vergnaud G, Pourcel C.** CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. *Nucleic Acids Res* 2007;35:W52-57 doi: 10.1093/nar/gkm360
40. **Bland C, Ramsey TL, Sabree F, Lowe M, Brown K et al.** CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. *BMC Bioinformatics* 2007;8:209 doi: 10.1186/1471-2105-8-209
41. **Crooks GE, Hon G, Chandonia JM, Brenner SE.** WebLogo: a sequence logo generator. *Genome Res* 2004;14(6):1188-1190 doi: 10.1101/gr.849004
42. **Biswas A, Gagnon JN, Brouns SJ, Fineran PC, Brown CM.** CRISPRTarget: Bioinformatic prediction and analysis of crRNA targets. *RNA Biol* 2013;10(5):817-827 doi: 10.4161/rna.24046
43. **Gilchrist CLM, Chooi YH.** Clinker & clustermap.js: Automatic generation of gene cluster comparison figures. *Bioinformatics* 2021;btab007 doi: 10.1093/bioinformatics/btab007
44. **Rossi M, Silva M, Ribeiro-Goncalves BF, Silva DN, Machado MP et al.** INNUENDO whole genome and core genome MLST schemas and datasets for *Campylobacter* jejuni (Version 1.0) [Data set]. *Zenodo* 2018:, doi: 10.5281/zenodo.1322564 doi:
45. **Silva M, Machado MP, Silva DN, Rossi M, Moran-Gilad J et al.** chewBBACA: A complete suite for gene-by-gene schema creation and strain identification. *Microb Genom* 2018;4(3):e000166 doi: 10.1099/mgen.0.000166

46. **Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N, Vaz C et al.** GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. *Genome Res* 2018;28(9):1395-1404 doi: 10.1101/gr.232397.117
47. **Kumar S, G. S, Tamura K.** MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. *Mol Biol Evol* 2016;33:1870-1874 doi: 10.1093/molbev/msw054
48. **Marasini D, Karki AB, Bryant JM, Sheaff RJ, Fakhr MK.** Molecular characterization of megaplasmids encoding the type VI secretion system in *Campylobacter jejuni* isolated from chicken livers and gizzards. *Sci Rep* 2020;10(1):12514 doi: 10.1038/s41598-020-69155-z
49. **Dugar G, Leenay RT, Eisenbart SK, Bischler T, Aul BU et al.** CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the *Campylobacter jejuni* Cas9. *Mol Cell* 2018;69(5):893-905 doi: 10.1016/j.molcel.2018.01.032
50. **Barrangou R.** Nobel Dreams Come True for Doudna and Charpentier. *CRISPR J* 2020;3(5):317-318 doi: 10.1089/crispr.2020.29109.rba
51. **Newire E, Aydin A, Juma S, Enne VI, Roberts AP.** Identification of a Type IV-A CRISPR-Cas System Located Exclusively on IncHI1B/IncFIB Plasmids in Enterobacteriaceae. *Front Microbiol* 2020;11:1937 doi: 10.3389/fmicb.2020.01937
52. **Kamruzzaman M, Iredell JR.** CRISPR-Cas System in Antibiotic Resistance Plasmids in *Klebsiella pneumoniae*. *Front Microbiol* 2019;10:2934 doi: 10.3389/fmicb.2019.02934
53. **Pinilla-Redondo R, Mayo-Munoz D, Russel J, Garrett RA, Randau L et al.** Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. *Nucleic Acids Res* 2020;48(4):2000-2012 doi: 10.1093/nar/gkz1197
54. **McDonald ND, Regmi A, Morreale DP, Borowski JD, Boyd EF.** CRISPR-Cas systems are present predominantly on mobile genetic elements in *Vibrio* species. *BMC Genomics* 2019;20(1):105 doi: 10.1186/s12864-019-5439-1
55. **Labbate M, Orata FD, Petty NK, Jayatilleke ND, King WL et al.** A genomic island in *Vibrio cholerae* with VPI-1 site-specific recombination characteristics contains CRISPR-Cas and type VI secretion modules. *Sci Rep* 2016;6:36891 doi: 10.1038/srep36891
56. **Xiao Y, Ng S, Nam KH, Ke A.** How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration. *Nature* 2017;550(7674):137-141 doi: 10.1038/nature24020
57. **Pausch P, Al-Shayeb B, Bisom-Rapp E, Tsuchida CA, Li Z et al.** CRISPR-CasPhi from huge phages is a hypercompact genome editor. *Science* 2020;369(6501):333-337 doi: 10.1126/science.abb1400
58. **Pausch P, Soczek KM, Herbst DA, Tsuchida CA, Al-Shayeb B et al.** DNA interference states of the hypercompact CRISPR-CasPhi effector. *Nat Struct Mol Biol* 2021;28(8):652-661

doi: 10.1038/s41594-021-00632-3

59. **Hooton S, D'Angelantonio D, Hu Y, Connerton PL, Aprea G et al.** *Campylobacter* bacteriophage DA10: an excised temperate bacteriophage targeted by CRISPR-cas. *BMC Genomics* 2020;21(1):400 doi: 10.1186/s12864-020-06808-3
60. **Hooton SP, Connerton IF.** *Campylobacter jejuni* acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein. *Front Microbiol* 2014;5:744 doi: 10.3389/fmicb.2014.00744
61. **Kovanen SM, Kivistö RI, Rossi M, Hanninen ML.** A combination of MLST and CRISPR typing reveals dominant *Campylobacter jejuni* types in organically farmed laying hens. *J Appl Microbiol* 2014;117(1):249-257 doi: 10.1111/jam.12503
62. **Louwen R, Horst-Kreft D, de Boer AG, van der Graaf L, de Knecht G et al.** A novel link between *Campylobacter jejuni* bacteriophage defence, virulence and Guillain-Barre syndrome. *Eur J Clin Microbiol Infect Dis*, Research Support, Non-U.S. Gov't 2013;32(2):207-226 doi: 10.1007/s10096-012-1733-4
63. **Saha C, Horst-Kreft D, Kross I, van der Spek PJ, Louwen R et al.** *Campylobacter jejuni* Cas9 Modulates the Transcriptome in Caco-2 Intestinal Epithelial Cells. *Genes (Basel)* 2020;11(10):1193 doi: 10.3390/genes11101193
64. **Saha C, Mohanraju P, Stubbs A, Dugar G, Hoogstrate Y et al.** Guide-free Cas9 from pathogenic *Campylobacter jejuni* bacteria causes severe damage to DNA. *Sci Adv* 2020;6(25):eaaz4849 doi: 10.1126/sciadv.aaz4849
65. **Shabbir MA, Wu Q, Shabbir MZ, Sajid A, Ahmed S et al.** The CRISPR-cas system promotes antimicrobial resistance in *Campylobacter jejuni*. *Future Microbiol* 2018;13:1757-1774 doi: 10.2217/fmb-2018-0234
66. **Shabbir MAB, Tang Y, Xu Z, Lin M, Cheng G et al.** The Involvement of the Cas9 Gene in Virulence of *Campylobacter jejuni*. *Front Cell Infect Microbiol* 2018;8:285 doi: 10.3389/fcimb.2018.00285
67. **Corcionivoschi N, Gundogdu O, Moran L, Kelly C, Scates P et al.** Virulence characteristics of hcp (+) *Campylobacter jejuni* and *Campylobacter coli* isolates from retail chicken. *Gut Pathog* 2015;7:20 doi: 10.1186/s13099-015-0067-z
68. **Liaw J, Hong G, Davies C, Elmi A, Sima F et al.** The *Campylobacter jejuni* Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization. *Front Microbiol* 2019;10:2864 doi: 10.3389/fmicb.2019.02864
69. **Brown HL, Reuter M, Hanman K, Betts RP, van Vliet AHM.** Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of *Campylobacter jejuni*.

PLoS One 2015;10(3):e0121680 doi: 10.1371/journal.pone.0121680

Table 1. Prevalence of chromosomal and extrachromosomal mobile elements in 5,829 *C. jejuni* and 1,347 *C. coli* genome assemblies.

Mobile element	<i>C. jejuni</i> (N=5,829)	<i>C. coli</i> (N=1,347)
Chromosomal elements		
CampyICE1	134 (2.3%)	92 (6.8%)
CJIE1	2,136 (36.6%)	254 (18.9%)
CJIE2	1,291 (22.1%)	225 (16.7%)
CJIE3 with T6SS ^a	1,137 (19.5%)	203 (15.1%)
CJIE3 without T6SS ^b	537 (9.2%)	2 (0.1%)
CJIE4	798 (13.7%)	79 (5.9%)
Plasmids		
pCC42	253 (4.3%)	383 (28.4%)
pTet	1,177 (20.2%)	337 (25.0%)
pVir	84 (1.4%)	15 (1.1%)

a. Combined presence of the CJIE3 element and the type VI secretion system
b. Presence of the CJIE3 element, absence of the Type VI secretion system

537 **LEGENDS TO FIGURES**

538

539 **Figure 1.** Phylogenetic tree comparing the CampyICE Cas9 proteins with other *Campylobacter* and
540 *Helicobacter* Cas9 proteins. The CampyICE1 Cas9 protein (blue) is distinct from the previously
541 described Cas9 proteins of *C. jejuni* & *C. coli* (red), other *Campylobacter* spp. (green), and selected
542 *Helicobacter* spp. (black). *C. jejuni* subsp. *doylei* is shown as *C. doylei*. The tree was drawn using
543 the Neighbor-Joining method based on an alignment with the MEGA7 Muscle plugin. Bootstrap
544 values are indicated at branches which scored >95%, based on 500 iterations using MEGA7, using
545 the JTT matrix and pairwise deletion. The scale bar represents the number of amino acid
546 substitutions per site. An alignment of a subset of Cas9 proteins with domain annotation is provided
547 in Figure S1.

548

549 **Figure 2.** Structure and genetic conservation of CampyICE1 from *C. jejuni* and *C. coli*. **(A)**
550 Schematic overview of the gene structure of CampyICE1 from *C. jejuni* and *C. coli*. The relative
551 positions of the three CRISPR arrays and their transcriptional orientation is shown above the blocks
552 of genes. In the CRISPR arrays, repeats are represented by arrowheads, spacers by diamonds, with
553 the ends of the flanking genes shown. The gene category colors are shown to highlight the large
554 proportion of hypothetical proteins with no known function. **B)** Graphical comparison of
555 CampyICE1 elements from *C. jejuni* and *C. coli* genomes, presented as output of a comparison of
556 Prokka-generated annotations [38] using Clinker [43]. The colours of the arrows in the figure are
557 used to identify homologous blocks of genes, and are not related to the colours used in part A of the
558 figure.

559

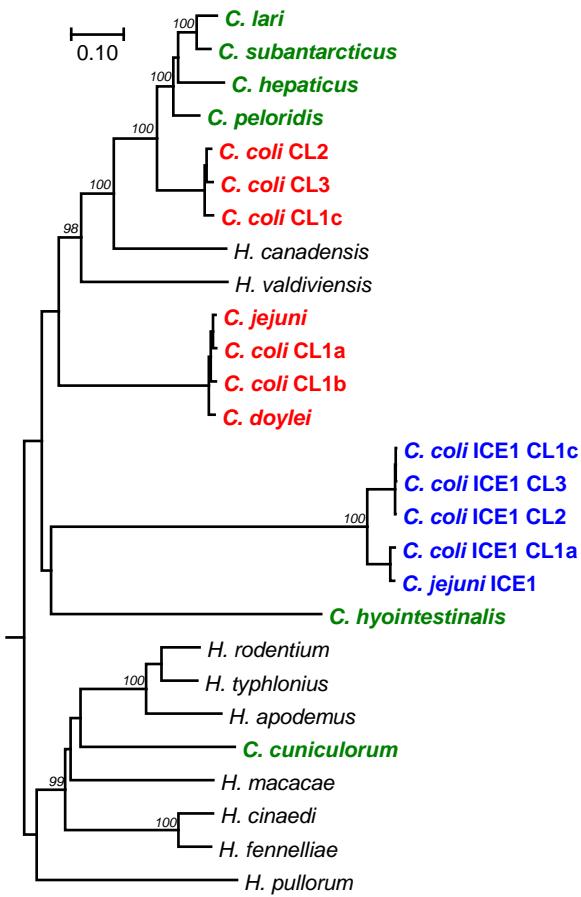
560 **Figure 3.** Distribution of mobile elements and plasmids in 5,829 *C. jejuni* genome sequences. The
561 phylogenetic tree was based on core genome MLST. Isolation source category and 7-gene MLST

562 information have been included for comparative purposes.

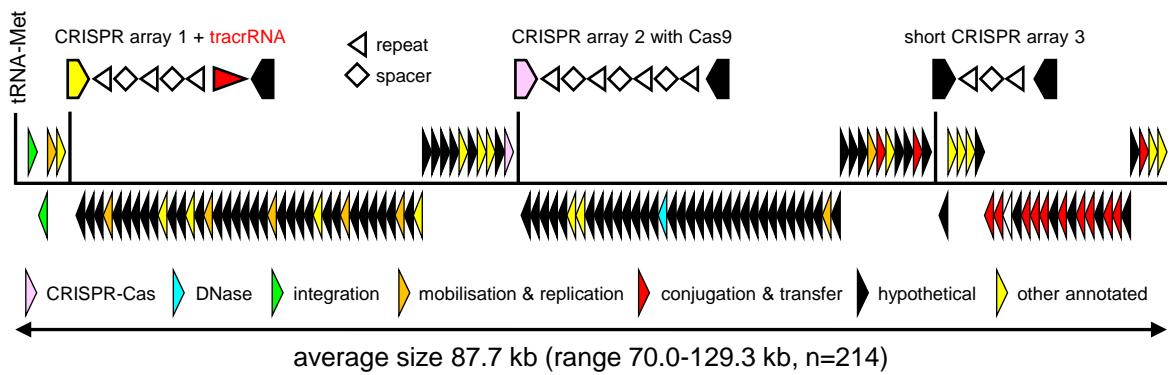
563

564 **Figure 4.** Distribution of mobile elements and plasmids in 1,347 *C. coli* genome sequences. The
565 phylogenetic tree was based on core genome MLST. Isolation source category and 7-gene MLST
566 information have been included for comparative purposes.

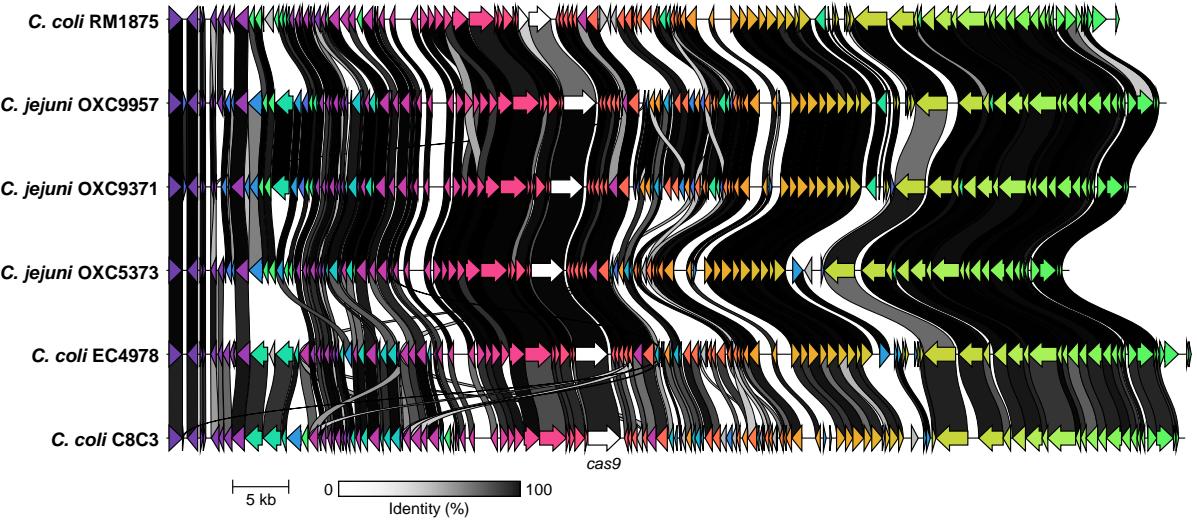
567

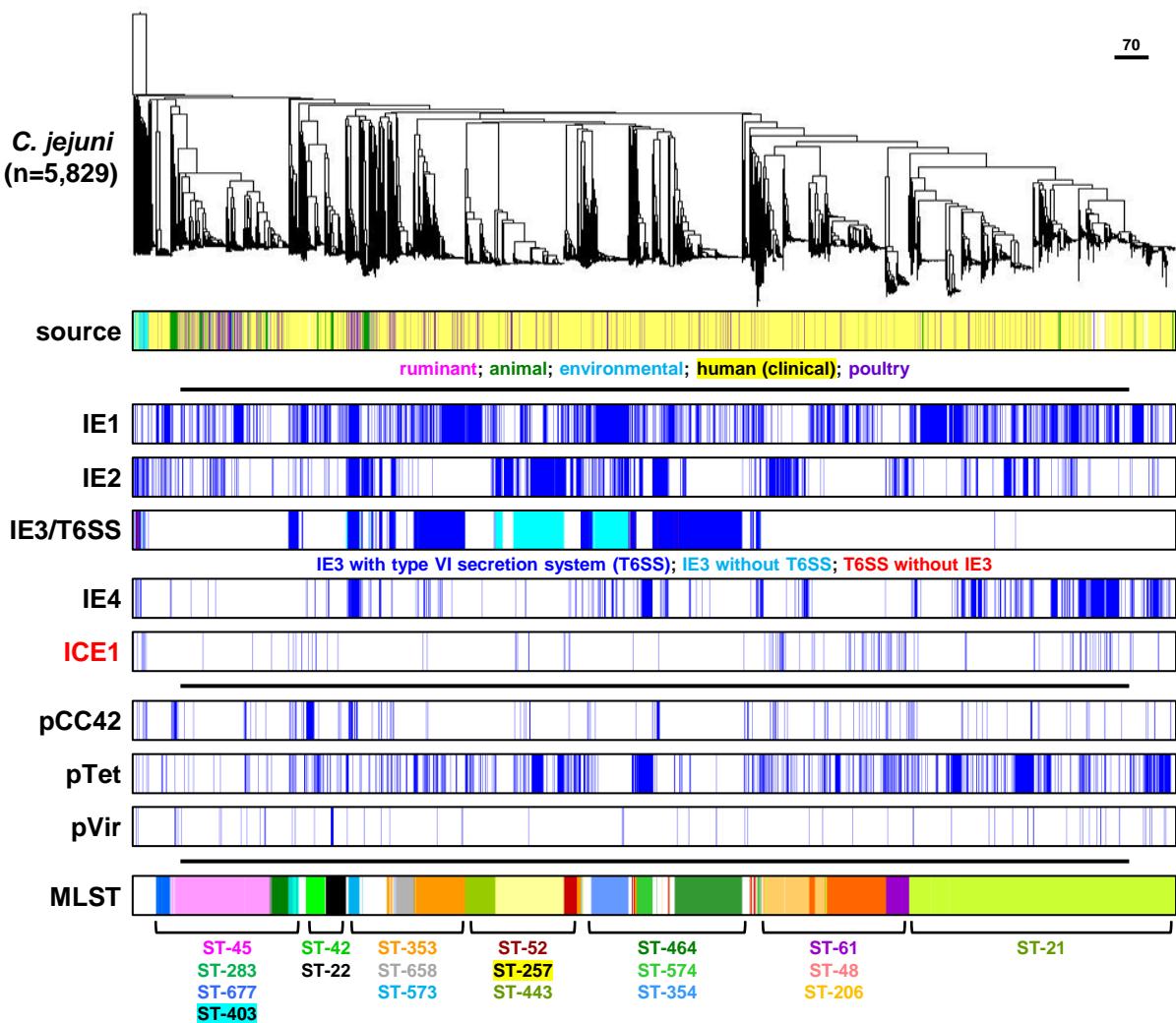

568 **Figure 5.** Characteristics of the CampyICE1 CRISPR spacers, protospacers and tracrRNA, and
569 predicted plasmid targeting by the CampyICE1 CRISPR-Cas9 system. (A) A section of the
570 CRISPR array is shown (center) with the corresponding protospacer (top) with 8 nt flanking
571 sequences which contain the PAM motif at the 3' end of the protospacer, represented using a
572 sequence logo. The tracrRNA sequence and structure are included below. (B) Comparison of the
573 CRISPR-repeats and predicted tracrRNA part of CampyICE1, *C. jejuni* and the three *C. coli* clades.
574 The tracrRNA and CRISPR-repeat show matching changes as indicated by red underlined residues.
575 Asterisks indicate conserved nucleotides, boxes indicate the complementary sequences in CRISPR
576 repeat and tracrRNA. (C) Example of a CampyICE1 CRISPR spacer perfectly matching a segment
577 of the *C. jejuni* 81-176 pVir plasmid. (D) Schematic representation of the pCC42, pTet and pVir
578 family of plasmids (based on the *C. coli* 15-537360 pCC42 plasmid and the *C. jejuni* 81-176 pTet
579 and pVir plasmids), with the locations of plasmid-targeting CampyICE1 spacers indicated. For
580 pTet, the approximate location of target gene YSU_08860 (absent from the *C. jejuni* 81-176
581 plasmid) is indicated by the dashed, green colored arrowhead. More information on specific spacers
582 and their targets is provided in Table S2.

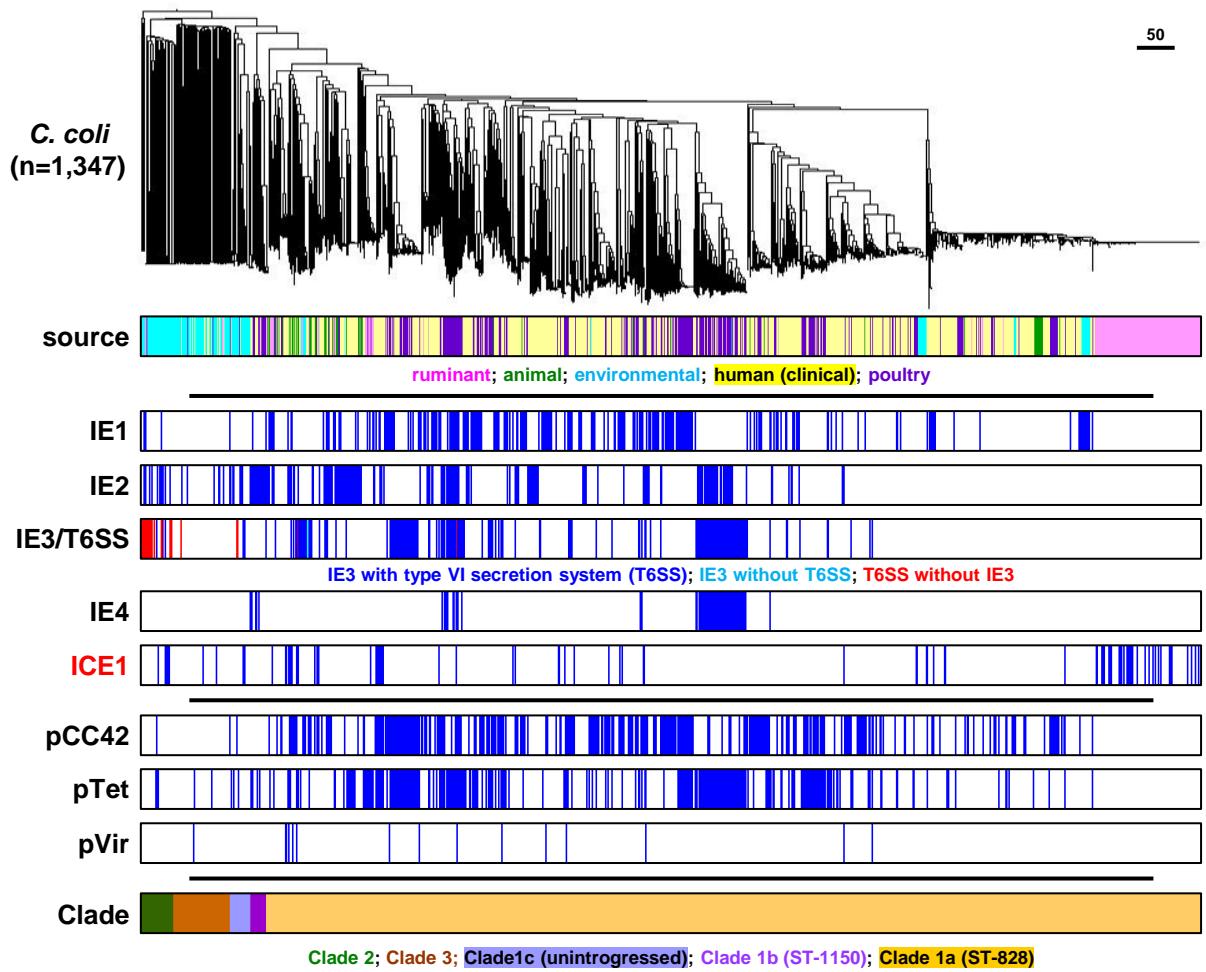
583

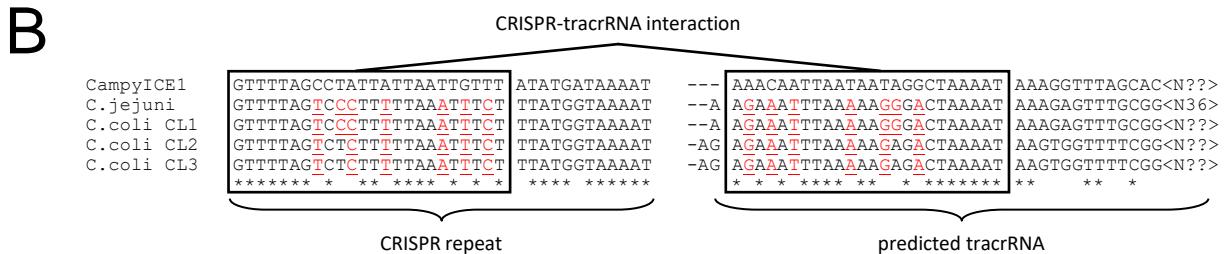
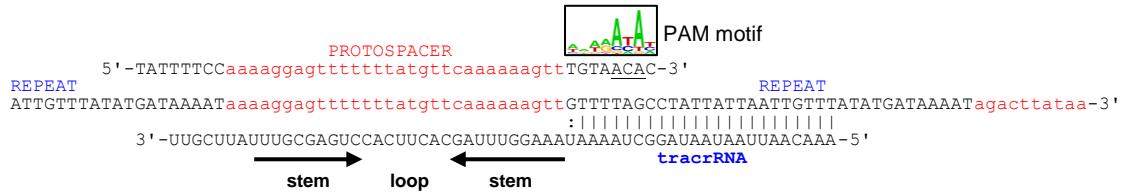

584 **Figure 6.** Low prevalence of pVir, pTet and pCC42 plasmids in CampyICE1-positive *C. jejuni* and
585 *C. coli* is associated with CRISPR-spacers targeting these plasmids. The *C. jejuni* and *C. coli*
586 isolates have been combined in this graph; specific data per isolate and spacer are available in Table

587 S3, data for *C. jejuni* and *C. coli* separately are provided in Table S4.

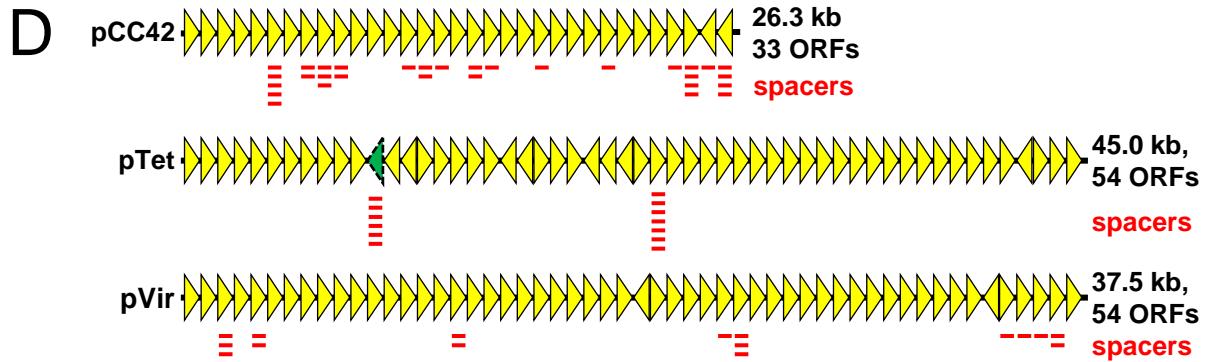

588

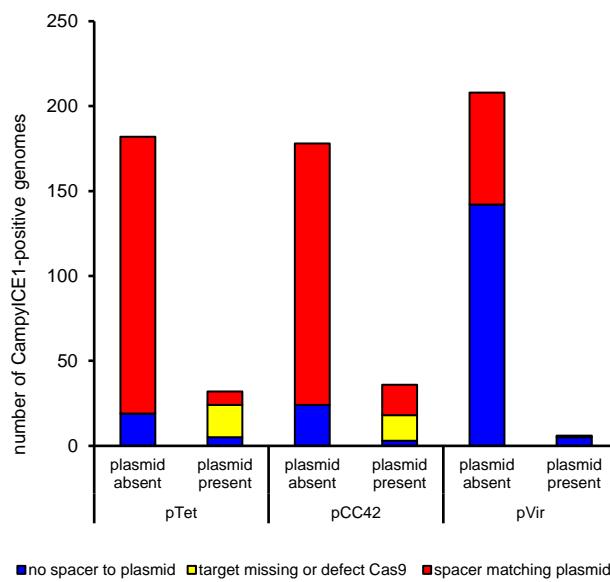



A

B




C Match to: pVir (Cj81-176) position 25057-25028, with: ice048 Spacer

```

5' -----AUUGCAAAAGCUGAGAAAAGAUAAACAAAU----- 3' CRISPR spacer RNA
          ||||||| ||||||| ||||||| ||||||| |||||
3' AATTAAATAACGTTTCGACTCTTCTATTGTTTATACTGTG 5' Protospacer
          |||||||                               ||||| |
5' TTAAAATTATTGCAAAAGCTGAGAAAGATAAACAAATATTGACAC 3' pVir
          PAM-motif

```


■ no spacer to plasmid ■ target missing or defect Cas9 ■ spacer matching plasmid