
1 

 

MANUSCRIPT 

 

Genome-wide association study on 13,167 individuals identifies regulators of 

hematopoietic stem and progenitor cell levels in human blood 

 

Aitzkoa Lopez de Lapuente Portilla
1,2

, Ludvig Ekdahl
1,2,*

, Caterina Cafaro
1,2,*

, Zain Ali
1,2,*

, 

Natsumi Miharada
1,2

,
 
Gudmar Thorleifsson

3
,
 
Kristijonas Žemaitis

1,2
, Antton Lamarca 

Arrizabalaga
1,2

, Malte Thodberg
1,2

, Maroulio Pertesi
1,2

, Parashar Dhapola
1,2

, Erik Bao
4,5,6

, 

Abhishek Niroula
1,2,6

, Divya Bali
1,2

, Gudmundur Norddahl
3
, Nerea Ugidos Damboriena

1,2
, 

Vijay G. Sankaran
4,5,6

, Göran Karlsson
1,2

, Unnur Thorsteinsdottir
3
, Jonas Larsson

1,2
, Kari 

Stefansson
3
, Björn Nilsson

1,2,6
 

 

1
Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden. 

2
Department of Laboratory 

Medicine, Lund University, 221 84 Lund, Sweden. 
3
deCODE genetics/Amgen Inc., 101 

Reykjavik, Iceland. 
4
Division of Hematology and Oncology, Boston Children’s Hospital and 

Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 

Boston, MA 02215, USA. 
5
Harvard Stem Cell Institute, Cambridge, MA 02215, USA. 

6
Broad Institute, Cambridge, MA 02142, USA.  

 

* 
Equal contribution (shared second authors). 

 

Correspondence: Björn Nilsson, M.D. Ph.D., Hematology and Transfusion Medicine, 

Department of Laboratory Medicine, BMC B13, 221 84 Lund, Sweden; e-mail: 

bjorn.nilsson@med.lu.se, tel +46-46-2220738, fax +46-46-130064.  

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

mailto:bjorn.nilsson@med.lu.se
https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Keywords: hematopoietic stem and progenitor cells, genome-wide association study, stem 

cell transplantation. 

 

No. of words: 3,131 in main text, 250 in abstract, 3,717 in methods. 

No. of display items: 5 figures. 

No. of supplements: 19 figures, 11 tables. 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

ABSTRACT 

 

Understanding how hematopoietic stem and progenitor cells (HSPCs) are regulated is of 

central importance for the development of new therapies for blood disorders and stem 

cell transplantation. To date, HSPC regulation has been extensively studied in vitro and 

in animal models, but less is known about the mechanisms in vivo in humans. Here, in a 

genome-wide association study on 13,167 individuals, we identify 9 significant and 2 

suggestive DNA sequence variants that influence HSPC (CD34
+
) levels in human blood. 

The identified loci associate with blood disorders, harbor known and novel HSPC genes, 

and affect gene expression in HSPCs. Interestingly, our strongest association maps to 

the PPM1H gene, encoding an evolutionarily conserved serine/threonine phosphatase 

never previously implicated in stem cell biology. PPM1H is expressed in HSPCs, and the 

allele that confers higher blood CD34
+
 cell levels downregulates PPM1H. By functional 

fine-mapping, we find that this downregulation is caused by the variant rs772557-A, 

which abrogates a MYB transcription factor binding site in PPM1H intron 1 that is 

active in specific HSPC subpopulations, including hematopoietic stem cells, and 

interacts with the promoter by chromatin looping. Furthermore, rs772557-A selectively 

increases HSPC subpopulations in which the MYB site is active, and PPM1H shRNA-

knockdown increased CD34
+
 and CD34

+
90

+
 cell proportions in umbilical cord blood 

cultures. Our findings represent the first large-scale association study on a stem cell 

trait, illuminating HSPC regulation in vivo in humans, and identifying PPM1H as a 

novel inhibition target that can potentially be utilized clinically to facilitate stem cell 

harvesting for transplantation. 
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Main text 

 

Humans blood cells originate from HSPCs
1
. Although HSPCs primarily reside in the bone 

marrow, they continuously egress into the blood, where they constitute a tiny (~0.1%) subset 

of mononuclear white blood cells. Circulating HSPCs express the surface protein CD34, 

allowing quantification by flow cytometry (Supplementary Fig. 1 and 2)
2
. Epidemiological 

studies
3,4

 show that the level of circulating CD34
+
 cells varies between individuals, but 

remains relatively stable within individuals, pointing at a genetic component. However, the 

underlying genes and DNA sequence variants remain unknown
3
.  

From a clinical viewpoint, novel HSPC regulators are highly sought-after to improve 

the treatment of blood disorders. Firstly, stem cell transplantation is a cornerstone in the 

treatment of blood cell malignancies. Today, the preferred way of harvesting stem cells for 

transplantation is by leukapheresis of peripheral blood. This requires that the CD34
+
 cell level 

in the donor’s blood is sufficiently high, and existing ways to mobilize CD34
+
 cells from the 

bone marrow into the blood are not always effective
5,6

. Finding genes that regulate CD34
+
 

levels can lead to new ways to mobilize HPSCs. Secondly, several hematologic malignancies, 

including acute myeloid leukemia (AML)
7,8

, myelodysplastic syndrome (MDS)
9,10

, and 

myeloproliferative neoplasms (MPN)
11

 are caused by abnormal HSPC activity. Uncovering 

the regulatory circuits that control HSPCs can lead to novel anti-leukemic therapies. 

  

Genome-wide association study 

To search for regulators of blood CD34
+
 cell levels in vivo in humans, we carried out a 

genome-wide association study (GWAS) in 13,167 individuals from southern Sweden (ages 

18 to 71 years; Supplementary Table 1 and Supplementary Fig. 3). To quantify blood 

CD34
+
 cells at a large scale, we developed a high-throughput flow-cytometry workflow, and 
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pattern recognition software for computer-assisted analysis of the large volumes of flow-

cytometry data (Online Methods). In each sample, we analyzed up to 1 million white blood 

cells (Supplementary Table 2), and defined the CD34
+
 cell level as the number of CD34

+
 

cells divided by the number of CD45
+
 mononuclear cells (Supplementary Fig. 1). To assess 

reproducibility, we sampled 660 individuals twice, with 3 to 36 months between samplings, 

and found a strongly significant correlation between replicates (Spearman P = 1.3×10
-84

, r
2 
= 

0.44; Supplementary Fig. 4). We observed higher blood CD34
+
 cell levels in males than in 

females, but no differences between age groups (Supplementary Fig. 5). 

Participants were genotyped on single-nucleotide polymorphism (SNP) microarrays, 

and imputed with reference whole-genome sequencing data to a final resolution of 18 million 

SNPs and small insertions-deletions (INDELs). For association analysis, we split our data 

into a discovery set of 10,949 individuals of Swedish ancestry and a follow-up set of 2,218 

individuals of non-Swedish European ancestry using principal component analysis of the 

genotype data. To correct for multiple testing, we partitioned variants into five classes based 

on genomic annotations and applied weighted Bonferroni adjustment, taking into account the 

predicted functional impact of variants within each class (Online Methods)
12

. 

In combined analysis of the two data sets, 6 loci reached significance and 2 were 

suggestive (within one order of magnitude from Bonferroni thresholds). Conditional analysis 

uncovered four independent signals at 2q22, and no underlying signals at the other loci (Fig. 

1). No significant heterogeneity was detected in the effect estimates between the discovery 

and follow-up set (Supplementary Table 3). The variance explained by the 9 significant 

variants was 4.6%. Using linkage disequilbrium (LD) score regression, we estimated the total 

heritability at 12.7%, which is comparable to other blood cell traits (e.g., mature white blood 

cell counts)
13–16

. Moreover, we detected enrichments of heritability in genomic regions with 

accessible chromatin in HSPC subpopulations
17,18

 (Fig. 2a), including hematopoietic stem 
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cells (HSC), multi-potent progenitors (MPP), and common myeloid progenitors (CMP), 

indicating that our analysis preferentially identifies variants that act by altering the regulation 

of gene expression intrinsically in HSPCs.  

 

Identification of candidate genes 

To identify candidate genes based on HSPC-intrinsic gene-regulatory effects, we generated 

expression quantitative locus (eQTL) data for sorted CD34
+
 cells from 155 blood donors by 

mRNA-sequencing (average 122,000 cells per sample). Additionally, to identify regulatory 

links between variants and genes that are not detectable at the mRNA level in peripheral 

blood, we retrieved promoter capture Hi-C (PCHi-C) data
16

 for CD34
+
 cells and ATAC-

sequencing data for 19 sorted blood cell populations, including 7 HSPC populations
11

. We 

then defined the 99% credible sets of probable causal variants (Supplementary Table 4), and 

prioritized genes as candidate genes if they: (i) had a non-synonymous coding variant within 

the credible set, (ii) had a cis-eQTL in CD34
+
 cells (Fig. 2b and Supplementary Table 5), or 

(iii) the credible set contained a regulatory variant that maps either to the promoter region, or 

to a region with a chromatin looping interaction with the promoter in CD34
+
 cells, as 

determined by PCHi-C
19

 (Supplementary Fig. 6). As regulatory variants, we considered 

variants in genomic regions with accessible chromatin in HSPCs, as determined by ATAC-

sequencing
13

 (Supplementary Table 4). If none of these criteria were fulfilled, we 

prioritized the closest gene. Using these criteria, we identified 7 candidate genes at the 

significant loci, including two known HSPC-relevant genes (CXCR4, CEBPA) and five genes 

that have never previously been implicated in hematopoietic stem cell biology (PPM1H, 

ENO1, RERE, ARHGAP45) or only studied minimally in this area (ITGA9)
20

 (Fig. 1). 
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Genetic overlap with blood disorders and other blood cell traits  

To investigate further their impact, we asked if the variants that influence blood CD34
+
 cell 

levels also associate with other traits and diseases. To address this, we searched for 

coincident associations among variants in high LD (r
2
 > 0.8) with the lead variants using 

Phenoscanner
21,22

. Consistent with HSPCs producing blood and immune cells, we detected 

coincident associations with variants known to influence mature blood cell traits (6 

significant signals, at 12q14/PPM1H, 1p36/ENO1-RERE, 19p13/ARHGAP45, 19q13/CEBPA 

and two signals at 2q22/CXCR4), as well as with hematologic malignancies and autoimmune 

disorders (2 signals, at 2p22/CXCR4 and 19p13/CEBPA) (Supplementary Table 6).  

 Of note, some of the candidate genes underlie autosomal-dominant blood disorders 

characterized by aberrant HSPC function. Gain-of-function mutations in CXCR4 cause the 

Warts, Hypogammaglobulinemia, Immunodeficiency and Myelokathexis (WHIM) syndrome, 

marked by impaired egression of HSPCs and other white blood cells out of the bone 

marrow
23,24

. CEBPA mutations cause familial acute myeloid leukemia
25

. TERT mutations 

cause dyskeratosis congenital, where impaired telomere maintenance leads to problems with 

HSPC regeneration and increased risk of MDS
26

. Furthermore, somatic acquired mutations in 

CXCR4
27

, CEBPA
9,25

, and TERT
11

 have been reported in several hematologic malignancies. 

 

Gene expression in human hematopoiesis 

We next explored the expression of the candidate genes across hematopoietic cell types. First, 

in single-cell mRNA-sequencing data for 35,582 mononuclear blood cells from adult blood 

and bone marrow
28

, we observed significant enrichment of expression in HSPC vs non-HSPC 

populations (Wilcoxon P = 2.1×10
-10

 for the candidate genes at the significant loci; Fig. 2c 

and Supplementary Fig. 7). The same observation was made in bulk mRNA-sequencing 

data for sorted blood cell populations (Wilcoxon P = 7.1×10
-5

; Supplementary Fig. 8).  
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To map gene expression within the CD34
+
 compartment in better detail, we analyzed 

single-cell Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) data 

for 4,905 lineage-negative CD34
+
 adult bone marrow cells

29
. This revealed distinct 

expression biases for PPM1H, ITGA9, ENO1 and RERE (HSC, MPP, CMP and MEP bias), 

CXCR4 and ARHGAP45 (lymphoid bias), and CEBPA (GMP bias) (Fig. 2d,e and 

Supplementary Fig. 9 and 10). These data further support that the identified genes are 

relevant to HPSCs. 

 

Associations with CXCR4 

Strikingly, four of our most significant signals map to CXCR4 (C-X-C chemokine receptor 

type 4) at 2q22 (Fig. 1). This receptor binds stromal-derived-factor-1 (SDF-1; also called 

CXCL12). Among its functions, the CXCR4/SDF-1 axis regulates HSPC and immune cell 

migration. Particularly, internalization of CXCR4 is required for HSPC egression
30

. In the 

WHIM syndrome, gain-of-function mutations in the C-terminal region result in an inability to 

internalize CXCR4 after stimulation, leading to retention of HSPCs and other white blood 

cells in the bone marrow and low white blood cell counts in blood
31

. CXCR4 inhibitors 

(Plerixafor/AMD3100) are one of the current methods to mobilize CD34
+
 cells in stem cell 

donors for leukapheresis
32

. Thus, the fact that we find associations with CXCR4 provides 

compelling proof-of-principle for the idea that bona fide regulators of blood CD34
+
 cell 

levels can be found in vivo in humans by GWAS. 

The four 2q22 signals represent three common (rs309137, rs11688530, rs10193623) 

and one rare variant (rs555647251), with a total of 69 variants within their 99% credible sets 

of probable causal variants (Supplementary Table 4). Within each of these sets, we 

identified a single regulatory variant that either maps to, or has a looping interaction with, the 

CXCR4 promoter, making them plausible causal variants (Fig. 3b, Supplementary Fig. 6a, 
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and Supplementary Table 4). In the credible sets of rs11688530 and rs555647251, we 

identified rs59222832 and rs770321415 as regulatory promoter variants, located 4.7 and 1.3 

kb upstream of the transcription start site, respectively. In the other two credible sets, we 

identified the lead variants rs309137 and rs10193623 as regulatory variants with chromatin 

looping interactions with the CXCR4 promoter in CD34
+
 cells

19
. 

We asked if the 2p22 associations are caused by altered CXCR4 expression in 

connection to egression, similar to the gain-of-function mutations in WHIM syndrome. In 

agreement with this hypothesis, analysis of our CD34
+
 cell mRNA-sequencing

 
data for blood 

donors unveiled conditional CXCR4 cis-eQTLs for the three common variants (Fig. 3c), 

while the rare variant was not polymorphic in this data set. Notably, in all three cases, the 

effect on CXCR4 expression was anti-directional to the effects on blood CD34
+
 cell levels, 

consistent with CXCR4 being a negative regulator of egression. For further functional 

analysis, we used dual-sgRNA CRISPR/Cas9 to delete 587 to 1421-bp regions harboring 

each of the four putative causal variants in the acute myeloid leukemia cell line MOLM-13 

(Supplementary Table 7; Supplementary Fig. 11 and 12). In all four cases, we observed 

downregulation of CXCR4 (Fig. 3d). These data indicate that the 2q22 associations are 

caused by sequence variation in genomic regions that regulate CXCR4 expression in HSPCs. 

 

Association with PPM1H 

Our most significant association signal maps to PPM1H (protein phosphatase, Mg
2+

/Mn
2+

 

dependent 1H) at 12q14. This gene encodes an evolutionarily conserved
33

serine/threonine 

phosphatase in the phosphatase 2C (PP2C) family
34

. Its biological role is unknown, and the 

few studies that have been done suggest that PPM1H could be involved in cellular 

signaling
35–37

, trastuzumab resistance
38

, lupus
39

, and colon cancer
40

.  
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The 12q14 association is represented by 32 credible set variants in PPM1H intron 1 

(Fig. 4a, Supplementary Fig. 6b and Supplementary Table 4). Consistent with the PPM1H 

cis-eQTL in our blood donor CD34
+
 cell mRNA-sequencing data (Fig. 2b), the associated 

region shows chromatin looping interactions in CD34
+
 cells, both with the standard PPM1H 

promoter and internal promoter (Fig. 4a and Supplementary Fig. 6b). Moreover, by 

integrating ATAC- and mRNA-sequencing data for 16 sorted blood cell populations
13

, we 

discovered an approximately 500-bp-long chromosomal segment within the associated region 

where chromatin accessibility shows strong positive correlation with PPM1H expression, 

suggesting a regulatory role (Fig. 4b). This segment harbors four of the 32 credible set 

variants (rs772555, rs772556, rs772557, rs772559). Congruent with the expression pattern of 

PPM1H across hematopoietic cell types (Fig. 2c-e and Supplementary Fig. 7 to 10), the 

segment is selectively accessible in HSCs, MPPs, CMPs, and MEPs (Fig. 4b).  

We hypothesized that the 12q14 association is caused by one of the four variants in 

the identified regulatory segment. For functional fine-mapping, we carried out luciferase 

experiments with constructs representing their reference and alternative alleles in the acute 

erythroleukemia cell line K562. We observed significantly higher luciferase signal with 

rs772557-G constructs compared with rs772557-A (Fig. 4c), consistent with the direction of 

the PPM1H cis-eQTL (Fig. 2b; rs772557[A>G] is in LD with the 12q14 lead variant 

rs669585[T>G] with r
2 
= 0.98). Additionally, we observed higher chromatin accessibility at 

rs772557-G than at rs772557-A in ENCODE
41

 DNAse-sequencing data for heterozygous 

primary adult CD34
+
 cells (125 versus 47 reads; Binomial test P = 2.0×10

-8
).  

Motif analysis predicted that rs772557 alters a binding site for the transcription factor 

MYB by altering a critical recognition base (Fig. 4d and Supplementary Table 8). 

Consistent with the cis-eQTL and luciferase data, the rs772557-G allele (which confers high 

PPM1H expression) creates the site, whereas rs772557-A abrogates it. This mechanism-of-
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action was also supported by chromatin immunoprecipitation sequencing (ChIP-seq) data for 

MYB in Jurkat cells (heterozygous for rs772557), showing exclusive pull-down of reads 

harboring the rs772557-G allele (Fig. 4e and Supplementary Fig. 13). Moreover, luciferase 

experiments with co-transfected MYB siRNA showed selective attenuation of luciferase 

signal from rs772557-G but had no impact on rs772557-A, further supporting that MYB only 

drives transcription at rs772557 in the presence of the high-expressing allele (Fig. 4f).  

To demonstrate causality, we perturbed rs772557 by CRISPR/Cas9 in K562 cells. 

These cells are triploid at PPM1H, having two copies of the rs772557-G allele and one copy 

of the rs772557-A allele. Serendipitously, we identified sgRNA sequences that overlap 

rs772557 and enable allele-specific disruption. These sgRNAs cut DNA only one bp 

upstream of rs772557, and within the MYB recognition site (Supplementary Fig. 14 and 

Supplementary Table 7). Consistent with the other data, we observed downregulation of 

PPM1H with rs772557-G sgRNA, but no effect of rs772557-A sgRNA (Fig. 4g). Finally, we 

observed co-expression of MYB and PPM1H in hematopoietic cell types (Fig. 4h), and in our 

CD34
+
 mRNA-sequencing data for blood donors, we found a highly significant correlation 

between MYB and PPM1H among rs772557-G carriers (Fig. 4i), but no correlation among 

rs772557-A homozygotes (Fig. 4j). These data identify rs772557 as a causal variant. 

Because of the anti-correlation between PPM1H expression and blood CD34
+
 cell 

levels (Fig. 2b), we hypothesized that PPM1H downregulation by rs772557-A increases the 

proportion of HPSC subpopulations in which the MYB site is active (i.e., where rs772557 is 

accessible; Fig. 4b). To test this, we first calculated the correlation between rs772557 

genotype and gene expression in our CD34
+
 cell mRNA-sequencing data, and tested for 

enrichment of correlation among genes that are highly expressed in each CD34
+
 

subpopulation (Supplementary Fig. 15). We observed enrichments of positive correlations 

in the direction of rs772557-A for CMP, HSC, MEP, and MPP marker genes, and 
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enrichments of negative correlations among marker genes for lymphoid precursors (Fig. 5a 

and Supplementary Fig. 15). Second, we quantified 8 HSPC subpopulations in 642 

umbilical cord blood samples (Supplementary Fig. 16).  rs772557-A conferred increased 

proportion of CMPs, lower proportion of B/NK progenitors (Fig. 5b), and unchanged 

proportions of HSC, MEP and MPP, possibly because these populations are smaller. Third, 

also consistent with the enrichment analysis, shRNA-knockdown of PPM1H in primary 

CD34
+
 cord blood cell cultures resulted in higher proportions of CD34

+
 and CD34

+
90

+
 cells 

relative to control shRNA over time (Fig. 5c and Supplementary Fig. 17). Taken together, 

our analysis of the 12q14 signal indicates that this association is driven by rs772557, with the 

rs772557-A allele abrogating a MYB binding site, leading to PPM1H downregulation and an 

increase of HSPC subpopulations in which the MYB site is active. 

  

Additional associations 

Among the remaining significant associations, 1p36/ENO1-RERE and 3p22/ITGA9 displayed 

strong cis-eQTLs and preferential expression of candidate genes in CD34
+
 cells (Fig. 2b-c). 

First, ENO1 encodes alpha-enolase, a glycolytic enzyme. However, alternative translation 

also produces a shorter isoform that binds the MYC promoter and has been reported to act as 

a tumor suppressor
42

. RERE encodes a transcription factor that forms a complex with the 

retinoic acid receptor and increases transcription of its target genes
43

. Retinoic acid signalling 

has been linked to HSC self-renewal in mice
44

. In acute promyelocytic leukemia (APL), 

genetically perturbed retinoic acid signalling blocks HSPCs from differentiating into mature 

white blood cells; this block can be overcome by treatment with all-trans-retinoic acid
45

. 

Concordant with the cis-eQTLs, we identified putative causal regulatory variants in the 

region between ENO1 and RERE, showing chromatin looping interaction with ENO1 and 

RERE promoters (Supplementary Fig. 6c and Supplementary Table 4). Second, ITGA9 
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encodes the cell surface protein integrin alpha-9. Although one previous study
20

 has linked 

ITGA9 expression to HSPCs, its precise function in human hematopoiesis remains unclear. 

Our analysis now identifies ITGA9 as a functional cell surface marker that participates in the 

regulation of blood CD34
+
 cell levels. The associated region maps to ITGA9 introns 3 and 4, 

and several regulatory variants show looping interactions with the promoter (Supplementary 

Fig. 6d and Supplementary Table 4). In addition to the cis-eQTL data (Fig. 2b), flow 

cytometry analysis in 458 adults confirmed that the 3p22 variant impacts ITGA9 protein 

expression on blood CD34
+
 cells (Supplementary Fig. 18). 

Finally, among the suggestive associations, we particularly noted the 8q24 locus. 

While this signal primary maps to CCDC26, PCHi-C analysis in blood CD34
+
 cells revealed 

a long-distance looping interaction with the MYC promoter, located 1.86 Mb away 

(Supplementary Fig. 6h). The 8q24 signal is represented by 31 variants located between 

position 129,590,035 and 129,612,415 on chromosome 8 (Supplementary Table 4). This 

region was recently identified as an evolutionarily conserved “super-enhancer” required for 

Myc expression in mouse HSPCs
46

. The super-enhancer comprises eight enhancer modules 

(A to H; Supplementary Table 9), collectively called the Blood ENhancer Cluster (BENC). 

The 8p24 signal spans BENC module D. Deletion of this module in mice has been found to 

affect Myc expression mainly in HSCs and MPP cells
46

. Our data now identify BENC module 

D as critical for the regulation of blood CD34
+
 cell levels in humans. 

 

Discussion 

We conducted a large-scale genome-wide association study on blood CD34
+
 levels. Unlike 

studies in model systems, we exploit natural genetic variation to expose HSPC regulators in 

vivo in humans. The validity of our approach is confirmed by several observations, including 
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enrichment of heritability and gene expression in HSPCs, and discovery of variants at loci 

that are known to be HSPC-relevant, particularly CXCR4. 

We identify five novel regulators (PPM1H, ENO1, RERE, ITGA9, and ARHGAP45) 

based on cis-eQTLs, chromatin looping, or coding variants. For our strongest signal, we 

identify an anti-correlation between PPM1H expression and CD34
+
 cell levels, indicating that 

PPM1H could be exploitable clinically as an inhibition target to facilitate stem cell harvesting 

by leukapheresis. Hence, intriguing challenges ahead will be to map the signalling networks 

within the PPM1H pathway, and to search for PPM1H inhibitors. Towards this, a first step 

will be to map PPM1H dephosphorylation targets. While initial proteomic studies in non-

hematopoietic cells have identified RAB8A, RAB10, RAB35, SMAD1/2 as tentative 

targets
35,37

, the dephosphorylation network in HSPCs remains unexplored.  Other notable 

findings include ENO1 as a regulatory enzyme with links to the MYC pathway, RERE as a 

transcription factor with links to retinoic acid signalling, and ITGA9 as a functional cell 

surface marker involved in the regulation of blood CD34
+
 levels.  

In all, we report the first large-scale GWAS on a stem cell trait, prove that HSPC 

regulators can be exposed in vivo in humans through genetic variation, and identify several 

novel regulatory pathways that can be investigated further with the ultimate aim of improving 

the treatment of blood disorders and stem cell transplantation. 

 

Supplementary information 

Supplementary information is available in the online version of the paper. 
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Figure legends 

 

Figure 1: Genome-wide association study. Sequence variants influencing blood CD34
+
 cell 

levels identified in combined analysis of association data for 10,949 individuals of Swedish 

ancestry and 2,218 individuals of non-Swedish European ancestry. We identified 9 

significant and 2 suggestive (*) associations (Supplementary Table 3). The listed variants 

are the most significant (lead) variants for each association. We prioritized genes as candidate 

genes if they: (i) had a coding variant within the 99% credible set of probable causal variants 

(Supplementary Table 4); (ii) had a cis-eQTL in CD34
+
 cells from 155 blood donors 

(Supplementary Table 5); or (iii) the credible set contained a regulatory variant that maps 

either to the promoter, or to a region with a chromatin looping interaction with the promoter 

in CD34
+
 cells, as determined by PCHi-C. As regulatory variants, we considered variants in 

genomic regions whose chromatin is accessible in HSPCs, as determined by ATAC-

sequencing. If none of these criteria were fulfilled, we prioritized the closest gene. The 

criterion used to call each gene a candidate gene is indicated in the matrix. 
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Figure 2: Effects on gene expression in HSPCs. (a) LD score regression shows enrichments 

of heritability in regions with accessible chromatin in HSPC subpopulations. (b) To identify 

candidate genes with HSPC-intrinsic gene-regulatory effects, we generated eQTL data for 

sorted CD34
+
 cells from 155 blood donors. These figures illustrate strong cis-eQTLs 

identified at PPM1H, ENO1, RERE and ITGA9 (Supplementary Table 5). Data are residual 

FPKM values after correction for 10 expression principal components. Wedges indicate 

directions of effects on blood CD34
+
 cell levels for the same variant. Notably, we detected an 

anti-correlation between PPM1H expression and CD34
+
 levels for the 12q14 variant. (c) 

Candidate gene expression in scRNA-seq data from blood and bone marrow mononuclear 

cells
28

, showing enriched expression in HSPC populations (Supplementary Fig. 7 and 8). 

(c,d) To map expression within the CD34
+
 compartment in better detail, we analyzed CITE-

seq (i.e., mRNA-sequencing with antibody-derived tags) data for 4,905 lineage-negative 

CD34
+
 cells from adult bone marrow: (d) bulked expression in cell clusters inferred from 

mRNA levels; (e) bulked expression in clusters inferred from antibody-derived tags 

representing classical HSPC surface markers (Supplementary Fig. 9 and 10). Abbreviations: 

Hematopoietic stem cells (HSC), multi-potent progenitors (MPP), common myeloid 

progenitors (CMP), granulocyte-monocyte progenitors (GMP), common lymphoid 

progenitors CLP), lymphoid-primed multipotent progenitors (LMPP), erythroid progenitors 

(ERY), megakaryocyte-erythrocyte progenitors (MEP), mast cell/basophil progenitors, (MB), 

dendritic cells (DC), plasma cells (PC), CD4
+
 T-cells (CD4), CD8

+
 T-cells (CD8), B-cells 

(B), pre B-cells (PreB), lymphoid progenitors (Ly), natural killer cells (NK), basophil (Baso), 

neutrophil (Neut), monocyte (Mono), cycling cells (Cyc). 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

Figure 3: Associations with CXCR4. (a) We detected four conditionally independent 

associations at 2p22, represented by a total of 69 credible set variants clustered around 

CXCR4 (Supplementary Table 4). The credible sets are indicated in red (lead variant 

rs309137), green (rs11688530), cyan (rs555647251) and blue (rs10193623). The rs309137, 

rs11688530 and rs10193623 credible sets represent common variants, whereas rs555647251 

represents a rare variant. By integrating ATAC-sequencing and PCHi-C data for CD34
+
 cells, 

we identified a single plausible causal variant within each credible set. rs309137 (“V1”) and 

rs10193623 (“V4”) have chromatin looping interactions with the CXCR4 promoter (red and 

blue arches; y-axis indicates PCHi-C P-score). rs59222832 (“V2”; credible set of 

rs11688530), and rs770321415 (“V3”; credible set of rs555647251) map to the CXCR4 

promoter. (b) Chromatin accessibility at the four plausible causal variants; y-axis indicates 

ATAC-sequencing signal. (c) Using multi-variate regression, we detected conditional CXCR4 

cis-eQTLs for the three common variants in our CD34
+
 cell mRNA-sequencing

 
data from 

blood donors. Wedges indicate directions of effects on blood CD34
+
 cell levels. Of note, the 

effects of these three variants on CXCR4 expression are anti-directional to their effects on 

blood CD34
+
 cell levels. Data are residual FPKM values after correction for covariate SNPs 

and 10 principal components. (e) Using dual-sgRNA CRISPR/Cas9, we deleted 587 to 1421-

bp regions harboring the four putative causal variants in MOLM-13 cells, resulting in 

downregulation of CXCR4.  
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Figure 4: Association with PPM1H. (a) Top: the 12q14 signal is represented by a credible 

set of 32 variants in PPM1H intron 1. Middle: chromatin looping interactions in CD34
+
 cells 

with standard and internal promoter (red arches; y-axis indicates PCHi-C P-score). Bottom: 

we identified an approximately 500-bp-long chromosomal segment (red peak) where ATAC-

sequencing signal (100-bp sliding window) shows strong positive correlation with PPM1H 

expression across 16 sorted blood cell populations
13

 (y-axis indicates false discovery rate for 

Pearson correlation). (b) Four credible set variants map to the identified regulatory segment 

that is accessible in HSC, MPP, CMP and MEPs (y-axis indicates ATAC-seq signal). (c) 

Luciferase analysis revealed higher activity with rs772557-G compared to rs772557-A 

constructs in the cis-eQTL direction (P-value for one-sided Student’s t-test; Fig. 2b). Signals 

normalized to hg38 reference (left) alleles. (d) MYB binding site that is altered by rs772557; 

rs772557-G creates binding site, while rs772557-A abrogates it, by changing a critical 

recognition base (arrow). (e) ChIP-seq data for MYB in Jurkat cells (rs772557-heterozygous) 

show exclusive pull-down of reads harboring rs772557-G. (f) siRNA knockdown of MYB in 

K562 cells selectively attenuates rs772557-G luciferase activity. (g) Allele-specific CRISPR-

Cas9 disruption at rs772557 (Supplementary Fig. 14) in K562 cells, heterozygous for 

rs772557. We observed PPM1H downregulation with rs772557-G, but not with rs772557-A, 

sgRNA. (h) PPM1H and MYB are co-expressed in hematopoiesis
28

. (i,j) Analysis of our 

CD34
+
 mRNA-sequencing data for blood donors revealed a correlation between MYB and 

PPM1H expression in rs772557-G carriers, and no correlation in non-carriers. Data are log2-

transformed FPKM values, median-centered per genotype group. 
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Figure 5: Effects of PPM1H downregulation. Since our cis-eQTL analysis identified an 

anti-correlation between blood CD34
+
 cell levels and PPM1H expression (Fig. 2), we 

explored the effects of PPM1H downregulation on HSPC levels in better detail. (a) We first 

searched for effects of rs772557 on cell type composition within the CD34
+
 compartment in 

adults. For this, we calculated correlations between rs772557 genotype and gene expression 

in our CD34
+
 mRNA-sequencing data for blood donors, and tested for enrichment of 

correlation within sets of marker genes for HPSC subpopulations (Supplementary Fig. 15). 

This composite plot shows the distributions of Pearson correlation coefficients for the top 250 

marker genes inferred using mRNA-sequencing data for sorted cells
13

. We detected 

enrichments of positive correlations in the direction of rs772557-A allele for CMP, HSC, 

MEP, and MPP (red), and of negative correlations for CLP and LMPP (blue), compared to 

other genes in the genome (black) (details in Supplementary Fig. 15). This finding is 

consistent with rs772557-A increasing the relative abundance of CD34
+
 subpopulations in 

which the rs772557 region is accessible (Fig. 4b). (b) Quantifying HSPC subpopulations in 

642 umbilical cord blood samples (Supplementary Fig. 16), we observed association 

between rs772552-A and increased proportion of CMP and lower proportion of B/NK 

progenitors. (c) shRNA-knockdown of PPM1H induced an increase in the proportions of 

CD34
+
 and CD34

+
90

+
 primary cord blood cells out of green fluorescent protein (GFP)-

positive. Data are proportion at day 7, 14 and 21 after transduction, normalized to shRNA-

control. P-value is for permutation testing, taking into account the structure of the 

experimental design (Online Methods). 
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Online methods 

 

Subjects 

For the genome-wide association study, we collected 16,931 peripheral blood samples from 

random blood donors (n=7,773) and primary care patients (n=9,158) during three time 

periods (November 2015 to April 2016, “Phase I”, January 2017 to November 2017, “Phase 

II”, and August 2018 to April 2019 “Phase III”; Supplementary Table 1). Samples from 

blood donors were obtained from Clinical Immunology and Transfusion Medicine, Skåne 

University Hospital, Lund, Sweden. By Swedish law, men are allowed to donate blood every 

3 months, women every 4 months. Hence, by collecting samples for slightly longer periods of 

time, we ensured collection of repeat donors samples, allowing us to assess reproducibility 

(Supplementary Fig. 4). Samples from primary care patients were surplus material from the 

clinical routine blood chemistry pipeline at Clinical Chemistry, Skåne University Hospital, 

Lund, Sweden. By programming the sample processing robot at Clinical Chemistry, samples 

from patients between 18 and 71 years-of-age from primary care clinics in the Lund area 

were selected automatically. Making use of the fact that the processing robot had a 100,000-

sample history buffer, we minimized the number repeat samples from primary care patients. 

Samples were collected subject to ethical approval (Lund University Ethical Review Board; 

dnr 2018/2). Except for information about age and sex (Supplementary Fig. 3), the samples 

were irreversibly anonymized by clinical personnel before being forwarded to us for analysis. 

Following genotype and phenotype data quality control, and removal of duplicate individuals, 

a total of 13,167 unique individuals remained (Supplementary Table 1). Out of the 9 

significant variants, only the rare variant rs555647251 showed Bonferroni-significant 

heterogeneity between blood donors and primary care patients (Supplementary Table 10). 
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Flow-cytometry phenotyping for the association study 

Collected samples were first diluted 1:10 in 0.84% ammonium chloride and incubated at 

room temperature for 10 min for erythrocyte lysis. After centrifugation at 1,200 g x 5 min and 

supernatant removal, leukocytes were resuspended in 20 mL of wash buffer (PBS with 6 mM 

EDTA) and centrifuged at 1,200 g x 5 min. Washing was done twice. After supernatant 

removal, cells were resuspended in residual wash buffer, and 60 uL of cell suspension were 

plated in 96-well plates and centrifuged at 1,200 g x 1 min. Supernatant was removed and 

pelleted cells were resuspended in 30 uL of staining buffer (PBS containing 6 mM EDTA and 

0.1% BSA) including 0.2 µL of APC-H7 mouse anti-human CD45 (clone 2D1; BD #560178) 

and 0.09 µL of PE-CF594 mouse anti-human CD34, clone 563 (BD #562449), for 15 min at 

room temperature, in the dark. After a wash step with 100 µL of wash buffer, plates were 

centrifuged at 1200 g x 1 min, supernatant was removed and pelleted stained cells were re-

suspended in 250 µL of staining buffer. Flow-cytometry analysis was performed using a BD 

FACS Canto II™ (Phase I), BD LSR Fortessa™ (Phase II), and BioRad ZE5™ (Phase III). 

The numbers of events recorded per sample are summarized in Supplementary Table 2. 

 

Gating of flow-cytometry data for association study 

To quantify blood CD34
+
 cell levels, we first gated singlet cells based on forward scatter area 

(FSC-A) and forward scatter height (FSC-H). From singlets, we then gated peripheral blood 

mononuclear cells (PBMC) based on FSC-A and side scatter area (SSC-A). Finally, from 

PBMCs, we gated CD34
+
45

low
 cells and CD45

+
 cells. In CD34 and CD45 intensity space, 

CD34
+
 cells form a discrete cluster. We defined the CD34

+
 level (frequency) as the number 

of CD34
+
45

low
 cells divided by the number of CD45

+
 PBMCs (Supplementary Fig. 1). 

To facilitate the analysis of our flow cytometry data, we developed pattern 

recognition software (https://github.com/LudvigEk/HSPC-regulators-in-human-blood) that 
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mimics the manual gating strategy. First, to gate singlets, we used an ellipsoid boundary 

calculated using principal component analysis in FSC-A and FSC-H space (Supplementary 

Fig. 1a). Second, to gate PBMCs, we employed Dijkstraa’s shortest path algorithm to infer an 

optimal FSC-A-dependent SSC-A boundary between PBMCs and granulocytes by searching 

for the lowest total event density path from the left edge (minimal FSC-A) to right edge 

(maximal FSC-A). Having set the Dijkstraa boundary, the definition of PBMCs was refined 

by overlaying an ellipsoid gate defined by principal component analysis of FSC-A and SSC-

A values (Supplementary Fig. 1b). Third, in CD34 and CD45 space, debris and CD45
+
 cells 

were separated by finding the CD45 intensity value corresponding to the lowest event density 

among CD34
-
 events. Having found a CD45 threshold, the CD34 intensity standard deviation 

of the CD45
+
 cluster was estimated. Using the estimated parameters, CD34 and CD45 

intensity boundaries were inferred for the CD34
+
45

low
 cluster.  

To validate our gating software, we compared blood CD34
+
 levels obtained with 

computer gating to blood CD34
+
 levels obtained with manual gating for 2,838 of our 

samples, and observed a highly significant correlation (Spearman correlation P < 4.94×10
-324

 

and r
2 

= 0.836; Supplementary Fig. 19). Phase I and II samples were gated using computer 

gating. For extra quality control, we plotted the computer gating results (all three gating 

steps) and visually inspected each of these plots to verify high-quality gating. Phase III 

samples were gated manually using Flojwo V10.6.1 (Becton, Dickinson & Company). 

 

Genotyping and association analysis 

The Swedish samples were genotyped with Illumina single-nucleotide polymorphism 

microarrays and phased together with 570,100 samples from North-Western Europe using 

Eagle2
47

.  Samples and variants with <98% yield were excluded. We created a haplotype 

reference panel by phasing the whole-genome sequence (WGS) genotypes for 15,575 
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individuals from North-Western Europe, including 3,012 individuals of Swedish ancestry, 

together with the phased microarray data, and to impute the genotypes from the haplotype 

reference panel into the phased microarray data using methods described previously
48,49

.  

Genetic ancestry analysis was done in two stages for the Swedish sample sets. Firstly, 

ADMIXTURE v1.23
50

 was run in supervised mode with 1,000 Genomes populations CEU, 

CHB, and YRI
51

 as training samples and Swedish individuals as test samples. Input data for 

ADMIXTURE had long-range LD regions removed
52

 and was then LD-pruned with PLINK 

v.190b3a
53

 using the --indep-pairwise 200 25 0.3 option. Samples with < 0.9 CEU ancestry 

were excluded. Secondly, remaining samples were projected onto a principal component 

analysis (PCA), calculated with an in-house European reference panel to calculate the 20 first 

principal components for each population. UMAP
54

 was used to reduce the coordinates of test 

samples on 20 principal components to two dimensions. Additional European samples not in 

the original reference set were also projected onto the PCA and UMAP components to 

identify ancestries, and samples with Swedish ancestry were identified. This included 10,949 

unique individuals with blood CD34
+
 cell level measurements. After excluding samples of 

Swedish ancestry, the process was repeated for the remaining samples with blood CD34
+
 cell 

level measurements and 2,218 unique individuals with > 0.7 CEU ancestry were identified 

and principle components were created separately for those individuals. 

We used linear regression to test for association between blood CD34
+
 cell levels and 

genotypes for the discovery and follow-up sets separately using deCODE software
48

. Prior to 

association the blood CD34
+
 level measurements were adjusted for gender and 20 principal 

components and standardized using an inverse normal transform. The association was 

restricted to 18,061,173 variants with MAF > 0.05%, imputation info > 0.9 and that passed 

various quality test. We used LD score regression to account for distribution inflation due to 

cryptic relatedness and population stratification
55

.  
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For the meta-analysis we used a fixed-effects inverse variance method to combine the 

results from the discovery and follow-up dataset
56

. We tested for heterogeneity by comparing 

the null hypothesis of the effect being the same in both sets to the alternative hypothesis of 

each set having a different effect using a likelihood ratio test (Cochran´s Q) reported as Phet. 

Genome-wide significance was determined using class-based Bonferroni significance 

thresholds adjusting for the 18 million variants tested. Sequence variants were split into 

classes based on their genome annotation, and the significance threshold for each class was 

based on the number of variants in that class
57

. The adjusted significance thresholds used are 

4.5×10
−7

 for variants with high impact (including stop-gained and stop-loss, frameshift, splice 

acceptor or donor and initiator codon variants), 9.0×10
−8

 for variants with moderate impacts 

(including missense, splice-region variants, in-frame deletions and insertions), 8.2×10
−9

 for 

low-impact variants (including synonymous, 3′ and 5′ UTR, and upstream and downstream 

variants) and 1.4×10
−9 

for all other variants, including those in intergenic regions. 

We used step-wise conditional analysis using genotype data to look for additional 

signals at each locus. The conditional analysis was done for the discovery and follow-up 

dataset separately, and the results combined. At each locus, we tested all variants in a 2 Mb 

region centred at the lead variant and significance threshold was set at 110
-6

 for a secondary 

signal. We calculated 99% credible sets of plausible causal variants for each independent 

association signal
58

, weighting the variants using the same weights as were used to define the 

class specific genome-wide significance thresholds. 

 

Chromatin accessibility data 

Previously published ATAC-seq data for sorted hematopoietic cell types were downloaded 

from the Sequence Read Archive
17,18

. Reads were processed as the MM ATAC-seq libraries 

using the hg38 reference genome. Next, we created a master peak file by aggregating the 
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summits of each population and enumerating the fragments overlapping each peak for each 

population as previously described. In addition to the ATAC-seq data for sorted blood cells, 

we used DNA DNAse-sequencing data for heterozygous primary adult CD34
+
 cellsfrom 

ENCODE Phase 3 (accession no. ENCSR098PTC, ENCFF971ZOL, ENCFF814EOK).  

For MOLM-13 cells, we generated ATAC-seq libraries from 50,000 cells as described 

in ref
59

. Libraries were prepared using the Nextera DNA Library Prep kit and sequenced on 

an Illumina Novaseq 6000 Sequencing System with a read length of 50 bases in paired-end 

mode. Adapter sequences in sequence reads were removed using Trimmomatic (v0.36
60

) and 

aligned using Bowtie2 to hg38. Duplicate and mitochondrial reads were filtered out using 

SAMtools
61

 and Picard (http://broadinstitute.github.io/picard).  

 

ChIP-seq data 

To test of allele-specific binding of MYB to rs772557, we used MYB ChIP-sequencing data 

for Jurkat cells
62

. Raw SRA files were obtained from the Sequence Read Archive (accession 

no. SRR1603653) and converted to FASTQ format using fastq-dump. The raw FASTQ file 

was aligned using bowtie2, and the resulting SAM file was sorted and indexed using 

samtools. For Jurkat WGS, a SAM file containing the region of interest was downloaded 

from the Sequence Read Archive (accession no. SRR5349449
63

).  

 

Heritability estimation 

Total SNP heritability was estimated with the LDSC software
55,64

 with default settings, 

intercept 1.0, and Baseline model v1.1 as control.  To estimate cell type-specific partitioned 

heritability based on chromatin accessibility, we used LD-scores based on ATAC-sequencing 

data for sorted blood cell types available for LDSC
55

, extended with ATAC-sequencing data 

for mDC and pDC
18

 (NCBI Gene Expression Omnibus accession no. GSE119453).  
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Promoter capture Hi-C data analysis 

A table of significant PCHi-C contacts for CD34+ cells was obtained from the ArrayExpress 

repository (accession number: E-MTAB-2323
65

). These data had been previously processed 

using the GOTHiC Bioconductor package and filtered to interactions with FDR < 0.05 in two 

biological replicates. The log of the observed/expected ratio shown in locus plots is an 

estimate of effect size or interaction frequency. 

 

Expression quantitative trait locus (eQTL) analysis in blood CD34
+
 cells 

We purified CD34
+
 cells from 155 leukocytes depletion filters (Reveos

TM
) from random 

blood donors within 8 h of donation. We first enriched CD34
+
 cells using the MACSprep 

CD34
+
 MicroBead kit (Miltenyi Biotech; #130-120-673). The enriched cells were stained 

using 5 uL of APC-H7 mouse anti-human CD45, clone 2D1 (BD #560178) and 22 uL of PE-

CF594 mouse anti-human CD34, clone 563 (BD #562449) for 15 min at room temperature. 

Cells were washed with 500 µL of wash buffer and centrifuged at 900 rpm g x 5 min. 

Pelleted stained cells were re-suspended in 350 µL of staining buffer. CD34
+
CD45

dim
 

mononuclear cells were sorted using a BD FACSAria
TM

 III (BD Biosciences) into lysis 

buffer (Qiagen; RLT buffer #74004; containing 1% -mercaptoethanol), vortexed, and snap 

frozen. From each sample, 14,000 to 358,000 cells (average 122,000) were sorted. The 

samples were thawed on ice and RNA was extracted using the RNeasy plus micro kit 

(Qiagen; 74034) and treated with RNAse-Free DNase Qiagen; #79256).  

cDNA libraries were prepared using the SMARTer Stranded Total RNA-Seq Kit v2  

Pico Input Kit (Clontech, Takara) and sequenced on an Illumina NovaSeq 6000 Sequencing 

System with a read length of 100 bases in paired-end mode. After trimming the first three 

bases using Trimmomatic v0.36
60

, the sequenced reads were aligned to the human reference 
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genome (human GRCh38 primary assembly) using STAR (v2.5.2b
66

). Fragments aligned to 

human genes were quantified using featureCounts
67

, with the following settings: paired-end 

mode (-p), strand specific (-s 2), no multimapping reads counted, counting exonic reads. Raw 

gene counts were transformed to FPKM using in-house Python scripts. 

 To test for associations between variants and gene expression, we used linear 

modeling with the variant genotype is independent variable and 10 principal-component 

covariates, calculated using genes with average FPKM > 1.0 in our mRNA-sequencing data 

set. For CXCR4, we included the three common variants as independent variables in the same 

model. P-values were calculated using Student’s t-test for the independent variables. 

 

Gene expression data and analysis 

To map candidate gene expression in hematopoietic cell types, we used published single-cell 

mRNA sequencing data for 35,582 mononuclear cells from blood and bone marrow
28

, and 

bulk mRNA-sequencing data for sorted blood cell populations
18

. The definitions of the cell 

populations in these data sets are detailed in the original publications. Additionally, we used 

CITE-seq data on 4,905 CD34
+
 cells from adult bone marrow. Definitions of cell populations 

are detailed in ref.
29

. For dimension-reduction of single-cell data, we used uniform manifold 

approximation and projection (UMAP)
68

, and imputed gene expression using the MAGIC 

tool
69

. Plots were generated using SCANPY
70

. 

 

CRISPR/Cas9 perturbation of variant regions 

We used dual-sgRNA CRISPR/Cas9 to delete the regions harboring the four candidate causal 

variants at CXCR4 (Supplementary Table 7), and an allele-specific single-sgRNA 

CRISPR/Cas9 approach to abrogate the MYB binding site at rs772557 at PPM1H 

(Supplementary Fig. 14). sgRNAs were cloned into the pSpCas9(BB)-2A-GFP PX458 
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vector (Addgene; #48138), and transfected into MOLM13 cells (CXCR4 variants) or K562 

cells (PPM1H rs772557 variant) using the Neon system (Thermo Fisher Scientific). At 24 

hours post-transfection, GFP-positive cells were isolated by fluorescence-activated cell 

sorting. To verify CRISPR/Cas9 deletion in MOLM13 cells, DNA was extracted, the targeted 

regions amplified by PCR (Supplementary Table 7), purified using the NucleoSpin Gel and 

PCR Clean-up kit, loaded onto a 1% agarose gel. The deletion efficiency was estimated as the 

intensity of the deletion band divided by the sum of the intensity of the deletion band and the 

intensity of the wild type band. For allele-specific CRISPR/Cas9 towards rs772557 in K562 

cells, perturbation was verified using Sanger sequencing and the Tracking of Indels by 

Decomposition (TIDE, https://tide.nki.nl/). As control, we used sgRNAs targeting a random 

non-coding region on a different chromosome (here an intronic region in the WAC gene on 

chromosome 10). RNA was extracted from the same cells using the RNeasy plus micro kit 

(Qiagen; #74034), reverse-transcribed using Sensiscript RT Kit (Qiagen; #205213) and 

Oligo-dT Primers (Qiagen; #79237), and quantified by Taqman assays (Thermo Fisher; 

#Hs00324748_m1 for PPM1H and Hs01060665_g1 for ACTB, as control). 

 

Luciferase experiments 

For the PPM1H variants, 200-bp sequences representing the reference and alternative allele 

of rs772555, rs772556, rs772557 and rs772559 in their genomic contexts were synthesized as 

gBlocks and cloned into the pGL3-Basic plasmid using KpnI and BglII restriction sites. Each 

sequence was centered on the variant and the two constructs differed only for the variant. 240 

ng of Renilla luciferase construct were co-transfected with 10 ug of firefly construct in 5 

million K562 ells, using the Neon electroporation system (Thermo Fisher Scientific). At 24 h 

post-electroporation, luciferase and renilla activity were measured using DualGlo Luciferase 

(Promega; #E1960) on a GLOMAX 20/20 Luminometer. Based on luciferase/renilla 
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readings, log2 scores were calculated for each variant reflecting the luciferase activity of the 

alternative allele relative to the corresponding reference allele. For co-electroporation 

experiments with MYB siRNA, luciferase plasmids were co-transfected with 400 nM Qiagen 

FlexiTube siRNA solution targeting MYB (Qiagen; #1027415) or 400nM Qiagen Negative 

Control siRNA (Qiagen; #1022076). Lysates for luciferase activity measurement and 

Western blot were collected simultaneously, 24 hours after electroporation. Electroporation 

conditions were not modified for co-transfection with siRNA and knockdown was confirmed 

by Western Blot using a recombinant c-Myb antibody (Abcam; #ab109127). 

 

Motif analysis 

To identify differentially binding transcription factors, we used the PERFECTOS-APE tool 

(http://opera.autosome.ru/perfectosape) with the HOCOMOCO-10, JASPAR, HT-SELEX, 

SwissRegulon and HOMER motif databases. 

 

Enrichment analysis 

To identify effects of rs772557 on specific CD34
+
 populations, we calculated the correlation 

between rs772557 genotype and the expression of all genes with median FPKM > 1.0 in our 

CD34
+
 mRNA-sequencing data set for blood donors. We then tested for enrichment for 

correlations within sets of marker genes for different CD34
+
 HSPC subpopulations, inferred 

by comparing the expression profile of each cell type to other CD34
+
 cell types in three data 

sets: (a) bulk RNA-sequencing data for sorted blood cells
18

; (b) single-cell RNA-sequencing 

data for CD34
+
 cells

29
; and (c) single-cell RNA sequencing data for mononuclear white blood 

cells from adult blood and bone marrow
28

. For analysis we used RenderCat
71

 with default 

settings. For completeness, we carried out the analysis with varying numbers of marker genes 

(25 to 500), with agreeing results. 
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Quantification of CD34
+
 cell populations in cord blood 

Umbilical cord blood (CB) samples were obtained from newborns at Skåne University 

Hospital (Lund and Malmö, Sweden) and Helsingborg Hospital (Helsingborg, Sweden), in 

compliance with regulations set by the regional ethical committee and informed consent. 

Samples were collected in Dulbecco’s modified Eagle medium (DMEM) (GE Healthcare 

Life Sciences; #SH30022.01) with 1% fetal bovine serum (Fisher Scientific; #SV30160), 1% 

penicillin-streptomycin (Cytiva; #SV30010) and 4% heparin (Leo Pharmaceutics; 20U/ml). 

Samples were processed within 48 hours by isolating mononuclear cells using the density-

gradient method (Abbott; #1019817). Mononuclear cells were isolated and frozen in FBS 

(Fisher Scientific; #SV30160) with 10% dimethyl sulfoxide (Sigma-Aldrich; #D5879), and 

kept at -80
o
C until analysis. For flow cytometry analysis, cells were thawed, incubated with 

0.8% ammonium chloride (Stem Cell Technologies; #07850) for 5 minutes at room 

temperature to remove remaining red blood cells, washed, filtered (BD #340632), and 

transferred to a polypropylene 96-well plate. After pelleting by centrifuging at 300 g for 5 

min, cells were resuspended in 30ul antibody mix (Supplementary Table 11), diluted in 

staining buffer (PBS with 4mM EDTA and 2% BSA), and incubated for 60 min at 4
o
C in the 

dark with shaking. Cells were then washed, resuspended in 200 µL PBS with 4mM EDTA 

and 2% BSA and analyzed using a four-laser BioRad ZE5
TM

 . 

 

Gating of flow-cytometry data for cord blood 

Cord blood samples were gated using pattern recognition software developed in-house 

(https://github.com/LudvigEk/HSPC-regulators-in-human-blood) that implements the 

strategy described in Supplementary Fig. 16. Similar to the strategy used in adult blood, 

singlets were separated using principal component analysis, and the PBMC gate also used the 

Dijkstraa’s shortest path algorithm to separate granulocytes from PBMCs. Debris with low 
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scatter values were also removed at this gate. The CD34
+
 cluster was identified by finding the 

highest intensity value among the CD45
+
34

+ 
cells, which often corresponds to the center of 

the cluster. The multiple gates involving lineage markers used the lowest density point in the 

corresponding marker-axis to separate the cells into two groups each time. The CD38 gate 

was fixed, considering the 30% of cells with the lowest CD38 values to be CD38- cells, while 

the rest were determined to be CD38
+
. B/NK progenitors, CMPs, GMPs, MEPs, HSCs, MLPs 

and MPPs were determined in each case by different thresholds on CD10, CD135 and 

CD45RA values. These thresholds were determined by first identifying the highest density 

point in the distribution of the relevant marker values, and then locating a point in a 

predefined interval where the density dropped below a specific fraction of that value. 

 

shRNA-knockdown in umbilical cord blood cells 

Umbilical cord blood samples were collected as in the previous section. Thawed CB-derived 

CD34
+
 cells were sorted and cultured in tissue-treated plates. Cells were maintained in 

serum-free expansion medium (SFEM) (Stem Cell Technologies; #09650) with penicillin-

streptomycin (Cytiva; #SV30010), supplemented with stem cell factor, thrombopoietin, and 

FLT3-ligand at 100 ng/ml (Peprotech; #130-096-696, #130-095-754 and #130-096-480). 

pLKOpuro clones containing these shRNA sequences targeting PPM1H were obtained: 

CCCTCATTGTGATTTGCCTTT (TRCN0000331708), GCTTGGAAAGAAGATGCTCTA 

(TRCN0000052768), CCCAAACAGGAACTCATCCAA (TRCN0000052771) (Sigma), and 

recloned into pLKO.1-EGFP vector. Lentiviruses were produced in 293T cells as previously 

described
72

. Knockdown efficiency was assessed in K562 cells cultured in RPMI media with 

10% FBS. GFP
+
 cells were sorted 2 days after transduction using a FACSAria

TM
 III (BD 

Biosciences). RNA was extracted with the RNeasy Plus Micro Kit (Qiagen; #74034). cDNA 

was generated using the Sensiscript RT Kit (Qiagen; #205211) with poly-dT primers. 
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PPM1H expression was quantified with TaqMan probes from ThermoFisher Scientific with 

ACTB as an internal control (PPM1H assay ID: Hs00324748_m1; ACTB assay ID: 

Hs01060665_g1). In the subsequent experiments on primary umbilical cord blood cells, 

transduced cells were analysed using a BD LSR Fortessa flow cytometer after staining with 

1:200 CD34-PeCy7 (BioLegend, #343516), 1:100 CD90-APC (BioLegend, #328114), and 

resuspended with CountBright™ Absolute Counting Beads (Fisher Scientific; #C36950) and 

7-AAD for dead cell exclusion. As readout, we measured the percentage and absolute count 

(using the CountBright beads) of CD34
+
 and CD34

+
90

+
 cells, the latter known to be highly 

enriched for hematopoietic stem cells. Cell enrichment was calculated by dividing CD34
+
 and 

CD34
+
90

+
 cells counts at each time point by initial cell counts, and then normalizing the 

enrichment values to the control shRNA transduced cells at the same time point. At each time 

point, three transduction replicates were recorded. The experiment was repeat three times. 

For statistical analysis, we compared normalized enrichment values at day 7, 14 and 21 for 

shRNA-transduced cells vs non-targeting shRNA control. To ensure conservative statistical 

analysis, we first averaged the transduction replicates for each experiment, then calculated P-

values using permutation testing with the data the day 7, 14, and 21 data for the same 

experiment being permuted together (100,000 permutations). 

 

Protein quantitative trait locus (pQTL) analysis 

Using flow-cytometry, we quantified ITGA9 protein expression on CD34
+
 cells in blood 

samples from 458 primary care patients, not included in the association study. Samples were 

obtained and processed as described above. Cells were stained with CD34-PE-CF594, CD45-

APC-H7 (Supplementary Table 11), and ITGA9-PE (Biolegend # 351606) at concentration 

0.02µl of antibody per 30µl of total staining volume. Gating and calculcation of median 

fluorescence intensity was done with FlowJo V10.6.1 (Becton, Dickinson & Company).  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 

 

References 

 

1.  Notta F, Zandi S, Takayama N, et al. Distinct routes of lineage development reshape 

the human blood hierarchy across ontogeny. Science (80- ). 2016;351(6269). 

doi:10.1126/science.aab2116 

2.  Barnett D, Janossy G, Lubenko A, et al. Guideline for the flow cytometric enumeration 

of CD34+ haematopoietic stem cells. Clin Lab Haematol. 1999;21(5):301-308. 

doi:10.1046/j.1365-2257.1999.00253.x 

3.  Cohen KS, Cheng S, Larson MG, et al. Circulating CD34+ progenitor cell frequency is 

associated with clinical and genetic factors. Blood. 2013;121(8):3-5. 

doi:10.1182/blood-2012-05-424846 

4.  Eidenschink L, Dizerega G, Rodgers K, Bartlett M, Wells DA, Loken MR. Basal 

levels of CD34 positive cells in peripheral blood differ between individuals and are 

stable for 18 months. Cytom Part B - Clin Cytom. 2012;82 B(1):18-25. 

doi:10.1002/cyto.b.20611 

5.  Hübel K. Mobilization and Collection of HSC. In: Carreras E, Dufour C, Mohty M, 

Kröger N, eds. Cham (CH); 2019:117-122. doi:10.1007/978-3-030-02278-5_15 

6.  Ataca Atilla P, Bakanay Ozturk SM, Demirer T. How to manage poor mobilizers for 

high dose chemotherapy and autologous stem cell  transplantation? Transfus Apher Sci  

Off J World Apher  Assoc  Off J Eur Soc Haemapheresis. 2017;56(2):190-198. 

doi:10.1016/j.transci.2016.11.005 

7.  Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of 

leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 

2004;5(7):738-743. doi:10.1038/ni1080 

8.  Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia 

after transplantation into SCID  mice. Nature. 1994;367(6464):645-648. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

 

doi:10.1038/367645a0 

9.  Nilsson L, Edén P, Olsson E, et al. The molecular signature of MDS stem cells 

supports a stem-cell origin of 5q-myelodysplastic syndromes. Blood. 

2007;110(8):3005-3014. doi:10.1182/blood-2007-03-079368 

10.  Nilsson L, Astrand-Grundstrom I, Arvidsson I, et al. Isolation and characterization of 

hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: 

Evidence for involvement at the hematopoietic stem cell level. Blood. 

2000;96(6):2012-2021. doi:10.1182/blood.v96.6.2012 

11.  Bao EL, Nandakumar SK, Liao X, et al. Inherited Myeloproliferative Neoplasm Risk 

Affects Haematopoietic Stem Cells. Vol 586.; 2020. doi:10.1038/s41586-020-2786-7 

12.  Sveinbjornsson G, Albrechtsen A, Zink F, et al. Weighting sequence variants based on 

their annotation increases power of whole-genome association studies. Nat Genet. 

2016;48(3):314-317. doi:10.1038/ng.3507 

13.  Ulirsch JC, Nandakumar SK, Wang L, et al. Systematic Functional Dissection of 

Common Genetic Variation Affecting Red Blood Cell Traits. Cell. 2016;165(6):1530-

1545. doi:10.1016/j.cell.2016.04.048 

14.  Astle WJ, Elding H, Jiang T, et al. The Allelic Landscape of Human Blood Cell Trait 

Variation and Links to Common Complex Disease Resource The Allelic Landscape of 

Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell. 

2016:1415-1429. doi:10.1016/j.cell.2016.10.042 

15.  Vuckovic D, Bao EL, Akbari P, et al. The Polygenic and Monogenic Basis of Blood 

Traits and Diseases. Cell. 2020;182(5):1214-1231.e11. doi:10.1016/j.cell.2020.08.008 

16.  Van Der Harst P, Zhang W, Mateo Leach I, et al. Seventy-five genetic loci influencing 

the human red blood cell. Nature. 2012;492(7429):369-375. doi:10.1038/nature11677 

17.  Corces MR, Buenrostro JD, Wu B, et al. Lineage-specific and single-cell chromatin 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 

 

accessibility charts human hematopoiesis and leukemia evolution. 2016;48(10). 

doi:10.1038/ng.3646 

18.  Ulirsch JC, Lareau CA, Bao EL, et al. Interrogation of human hematopoiesis at single-

cell and single-variant resolution. Nat Genet. 2019;51(4):683-693. 

doi:10.1038/s41588-019-0362-6 

19.  Mifsud B, Tavares-Cadete F, Young AN, et al. Mapping long-range promoter contacts 

in human cells with high-resolution capture Hi-C. Nat Genet. 2015;47(6):598-606. 

doi:10.1038/ng.3286 

20.  Peng Y, Wu D, Li F, Zhang P, Feng Y, He A. Identification of key biomarkers 

associated with cell adhesion in multiple myeloma by integrated bioinformatics 

analysis. Cancer Cell Int. 2020;20(1):1-16. doi:10.1186/s12935-020-01355-z 

21.  Staley JR, Blackshaw J, Kamat MA, et al. PhenoScanner: a database of human 

genotype-phenotype associations. Bioinformatics. 2016;32(20):3207-3209. 

doi:10.1093/bioinformatics/btw373 

22.  Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for 

searching human genotype-phenotype  associations. Bioinformatics. 

2019;35(22):4851-4853. doi:10.1093/bioinformatics/btz469 

23.  Milanesi S, Locati M, Borroni EM. Aberrant CXCR4 signaling at crossroad of WHIM 

syndrome and Waldenstrom’s macroglobulinemia. Int J Mol Sci. 2020;21(16):1-15. 

doi:10.3390/ijms21165696 

24.  Heusinkveld LE, Majumdar S, Gao JL, McDermott DH, Murphy PM. WHIM 

Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin 

Immunol. 2019;39(6):532-556. doi:10.1007/s10875-019-00665-w 

25.  Smith ML, Cavenagh JD, Lister TA, Fitzgibbon J. Mutation of CEBPA in familial 

acute myeloid leukemia. N Engl J Med. 2004;351(23):2403-2407. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

doi:10.1056/NEJMoa041331 

26.  Vulliamy T, Marrone A, Goldman F, et al. The RNA component of telomerase is 

mutated in autosomal dominant dyskeratosis  congenita. Nature. 2001;413(6854):432-

435. doi:10.1038/35096585 

27.  Ngo HT, Leleu X, Lee J, et al. SDF-1/CXCR4 and VLA-4 interaction regulates 

homing in Waldenstrom macroglobulinemia. Blood. 2008;112(1):150-158. 

doi:10.1182/blood-2007-12-129395 

28.  Granja JM, Klemm S, McGinnis LM, et al. Single-cell multiomic analysis identifies 

regulatory programs in mixed-phenotype acute leukemia. Nat Biotechnol. 

2019;37(12):1458-1465. doi:10.1038/s41587-019-0332-7 

29.  Sommarin MNE, Dhapola P, Safi F, et al. Single-Cell Multiomics Reveals Distinct 

Cell States at the Top of Human Hematopoietic Hierarchy. bioRxiv. 2021. 

doi:https://doi.org/10.1101/2021.04.01.437998 

30.  Karpova D, Bonig H. Concise review : CXCR4 / CXCL12 signaling in immature 

hematopoiesis — lessons from pharmacological and genetic models. Stem Cells. 

2015;33(8):2391-2399. 

31.  Hernandez PA, Gorlin RJ, Lukens JN, et al. Mutations in the chemokine receptor gene 

CXCR4 are associated with WHIM syndrome, a  combined immunodeficiency disease. 

Nat Genet. 2003;34(1):70-74. doi:10.1038/ng1149 

32.  Liles WC, Broxmeyer HE, Rodger E, et al. Mobilization of hematopoietic progenitor 

cells in healthy volunteers by AMD3100, a  CXCR4 antagonist. Blood. 

2003;102(8):2728-2730. doi:10.1182/blood-2003-02-0663 

33.  Madeira F, Park YM, Lee J, et al. The EMBL-EBI search and sequence analysis tools 

APIs in 2019. Nucleic Acids Res. 2019;47(W1):W636-W641. doi:10.1093/nar/gkz268 

34.  Toft N, Birgens H, Abrahamsson J, et al. Results of NOPHO ALL2008 treatment for 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

 

patients aged 1-45 years with acute  lymphoblastic leukemia. Leukemia. 

2018;32(3):606-615. doi:10.1038/leu.2017.265 

35.  Sugiura T, Noguchi Y. Substrate-dependent metal preference of PPM1H, a cancer-

associated protein phosphatase 2C: Comparison with other family members. 

BioMetals. 2009;22(3):469-477. doi:10.1007/s10534-009-9204-9 

36.  Chen MJ, Dixon JE, Manning G. Genomics and evolution of protein phosphatases. Sci 

Signal. 2017;10(474). doi:10.1126/scisignal.aag1796 

37.  Berndsen K, Lis P, Yeshaw WM, et al. PPM1H phosphatase counteracts LRRK2 

signaling by selectively dephosphorylating rab proteins. Elife. 2019;8:1-37. 

doi:10.7554/eLife.50416 

38.  Lee-Hoeflich ST, Pham TQ, Dowbenko D, et al. PPM1H Is a p27 phosphatase 

implicated in trastuzumab resistance. Cancer Discov. 2011;1(4):326-337. 

doi:10.1158/2159-8290.CD-11-0062 

39.  Ghodke-Puranik Y, Imgruet M, Dorschner JM, et al. Novel genetic associations with 

interferon in systemic lupus erythematosus  identified by replication and fine-mapping 

of trait-stratified genome-wide screen. Cytokine. 2020;132:154631. 

doi:10.1016/j.cyto.2018.12.014 

40.  Sugiura T, Noguchi Y, Sakurai K, Hattori C. Protein phosphatase 1H, overexpressed in 

colon adenocarcinoma, is associated with CSE1L. Cancer Biol Ther. 2008;7(2):285-

292. doi:10.4161/cbt.7.2.5302 

41.  Davis CA, Hitz BC, Sloan CA, et al. The Encyclopedia of DNA elements (ENCODE): 

data portal update. Nucleic Acids Res. 2018;46(D1):D794-D801. 

doi:10.1093/nar/gkx1081 

42.  Ghosh AK, Steele R, Ray RB. Functional Domains of c-&lt;em&gt;myc&lt;/em&gt; 

Promoter Binding Protein 1 Involved in Transcriptional Repression and Cell Growth 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 

 

Regulation. Mol Cell Biol. 1999;19(4):2880 LP - 2886. doi:10.1128/MCB.19.4.2880 

43.  Vilhais-Neto GC, Maruhashi M, Smith KT, et al. Rere controls retinoic acid signalling 

and somite bilateral symmetry. Nature. 2010;463(7283):953-957. 

doi:10.1038/nature08763 

44.  Cabezas-Wallscheid N, Buettner F, Sommerkamp P, et al. Vitamin A-Retinoic Acid 

Signaling Regulates Hematopoietic Stem Cell Dormancy. Cell. 2017;169(5):807-

823.e19. doi:10.1016/j.cell.2017.04.018 

45.  Geoffroy M-C, Esnault C, de Thé H. Retinoids in haematology : a timely revival? 

Blood. March 2021. doi:10.1182/blood.2020010100 

46.  Bahr C, von Paleske L, Uslu V V, et al. A Myc enhancer cluster regulates normal and 

leukaemic haematopoietic stem cell  hierarchies. Nature. 2018;553(7689):515-520. 

doi:10.1038/nature25193 

47.  Loh PR, Danecek P, Palamara PF, et al. Reference-based phasing using the Haplotype 

Reference Consortium panel. Nat Genet. 2016;48(11):1443-1448. doi:10.1038/ng.3679 

48.  Gudbjartsson DF, Helgason H, Gudjonsson SA, et al. Large-scale whole-genome 

sequencing of the Icelandic population. Nat Genet. 2015;47(5):435-444. 

doi:10.1038/ng.3247 

49.  Kong A, Masson G, Frigge ML, et al. Detection of sharing by descent, long-range 

phasing and haplotype imputation. Nat Genet. 2008;40(9):1068-1075. 

doi:10.1038/ng.216 

50.  Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in 

unrelated individuals. Genome Res. 2009;19(9):1655-1664. doi:10.1101/gr.094052.109 

51.  Auton A, Abecasis GR, Altshuler DM, et al. A global reference for human genetic 

variation. Nature. 2015;526(7571):68-74. doi:10.1038/nature15393 

52.  Price AL, Weale ME, Patterson N, et al. Long-Range LD Can Confound Genome 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 

 

Scans in Admixed Populations. Am J Hum Genet. 2008;83(1):132-135. 

doi:10.1016/j.ajhg.2008.06.005 

53.  Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome 

association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-

575. doi:10.1086/519795 

54.  Diaz-Papkovich A, Anderson-Trocmé L, Gravel S. A review of UMAP in population 

genetics. J Hum Genet. 2020. doi:10.1038/s10038-020-00851-4 

55.  Bulik-Sullivan B, Loh PR, Finucane HK, et al. LD score regression distinguishes 

confounding from polygenicity in genome-wide association studies. Nat Genet. 

2015;47(3):291-295. doi:10.1038/ng.3211 

56.  MANTEL N, HAENSZEL W. Statistical aspects of the analysis of data from 

retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719-748. 

57.  Sveinbjornsson G, Albrechtsen A, Zink F, et al. Weighting sequence variants based on 

their annotation increases power of  whole-genome association studies. Nat Genet. 

2016;48(3):314-317. doi:10.1038/ng.3507 

58.  Maller JB, McVean G, Byrnes J, et al. Bayesian refinement of association signals for 

14 loci in 3 common diseases. Nat Genet. 2012;44(12):1294-1301. 

doi:10.1038/ng.2435 

59.  Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: A Method for Assaying 

Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol. 2015;109:21.29.1-

21.29.9. doi:10.1002/0471142727.mb2129s109 

60.  Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina 

sequence data. Bioinformatics. 2014;30(15):2114-2120. 

doi:10.1093/bioinformatics/btu170 

61.  Li H. A statistical framework for SNP calling, mutation discovery, association 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 

 

mapping and population genetical parameter estimation from sequencing data. 

Bioinformatics. 2011;27(21):2987-2993. doi:10.1093/bioinformatics/btr509 

62.  Mansour MR, Abraham BJ, Anders L, et al. Oncogene regulation. An oncogenic 

super-enhancer formed through somatic mutation of  a noncoding intergenic element. 

Science. 2014;346(6215):1373-1377. doi:10.1126/science.1259037 

63.  Gioia L, Siddique A, Head SR, Salomon DR, Su AI. A Genome-wide Survey of 

Mutations in the Jurkat Cell Line. bioRxiv. 2017:1-13. doi:10.1101/118117 

64.  Finucane HK, Bulik-Sullivan B, Gusev A, et al. Partitioning heritability by functional 

annotation using genome-wide association summary statistics. Nat Genet. 

2015;47(11):1228-1235. doi:10.1038/ng.3404 

65.  Mifsud B, Tavares-Cadete F, Young AN, et al. Mapping long-range promoter contacts 

in human cells with high-resolution capture Hi-C. Nat Genet. 2015;47(6):598-606. 

doi:10.1038/ng.3286 

66.  Dobin A, Davis CA, Schlesinger F, et al. STAR: Ultrafast universal RNA-seq aligner. 

Bioinformatics. 2013;29(1):15-21. doi:10.1093/bioinformatics/bts635 

67.  Liao Y, Smyth GK, Shi W. FeatureCounts: An efficient general purpose program for 

assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923-930. 

doi:10.1093/bioinformatics/btt656 

68.  Becht E, McInnes L, Healy J, et al. Dimensionality reduction for visualizing single-cell 

data using UMAP. Nat Biotechnol. 2019;37(1):38-47. doi:10.1038/nbt.4314 

69.  van Dijk D, Sharma R, Nainys J, et al. Recovering Gene Interactions from Single-Cell 

Data Using Data Diffusion. Cell. 2018;174(3):716-729.e27. 

doi:10.1016/j.cell.2018.05.061 

70.  Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data 

analysis. Genome Biol. 2018;19(1):15. doi:10.1186/s13059-017-1382-0 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

 

71.  Nilsson B, Håkansson P, Johansson M, Nelander S, Fioretos T. Threshold-free high-

power methods for the ontological analysis of genome-wide gene-expression studies. 

Genome Biol. 2007;8(5). doi:10.1186/gb-2007-8-5-r74 

72.  Ali N, Karlsson C, Aspling M, et al. Forward RNAi screens in primary human 

hematopoietic stem/progenitor cells. Blood. 2009;113(16):3690-3695. 

doi:10.1182/blood-2008-10-176396 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1

P value (10
x
) Gene Chr Lead variant MAF (%) C

o
d
in

g

C
D

3
4

+
 e

Q
T

L

C
D

3
4

+
 P

C
H

iC
/A

T
A

C

C
lo

s
e
s
t 

g
e
n

e

Variance 

explained 

(%)

-23 0 0 0.8

PPM1H 12q14 rs699585 46.1

CXCR4 2q22 rs309137 25.5

CXCR4 2q22 rs11688530 7.1

CXCR4 2q22 rs555647251 0.1

CXCR4 2q22 rs10193623 5.9

ENO1, RERE 1p36 rs2047094 49.2

ITGA9 3p22 rs201494641 13.0

CEBPA 19q13 rs12975577 49.0

ARHGAP45 19p13 rs36084354 9.5

TERT* 5p15 rs7705526 34.0

MYC* 8q24 rs1991866 44.9

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2

a
HSC

MPP
CMP

CLP

LMPP

GMP
MEP

−log10 P

NK CD4 CD8 pDC mDCB EryMono Gran Mega

0.5

1.0

1.5

2.0

2.5

b

A/A
 

A/G
 

G/G
 

-10

0

10

20

E
xp

re
ss

io
n 

(r
es

id
ua

l F
P

K
M

)

 PPM1H
 rs772559

 P = 6.8 10-51

CD34+
G/G
 

G/T
 

T/T
 

-50

0

50

100

E
xp

re
ss

io
n 

(r
es

id
ua

l F
P

K
M

)

 ENO1
 rs11121246

 P = 3.1 10-42

A/A
 

A/C
 

C/C
 

-10

-5

0

5

10

E
xp

re
ss

io
n 

(r
es

id
ua

l F
P

K
M

)

 RERE
 rs2047094

 P = 3.5 10-8

C/C
 

C/T
 

T/T
 

-10

-5

0

5

10

15

E
xp

re
ss

io
n 

(r
es

id
ua

l F
P

K
M

)

 ITGA9
 rs17227369

 P = 2.0 10-11

c d e

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3

a

0

5

10

C
D

34
+  

as
so

ci
at

io
n

−
lo

g 1
0 

P

CXCR4
DARS−AS1

DARS1MCM6
Bait

Other
0

5

10

135.85 135.90 135.95 136.00 136.05 136.10 136.15
Chromosome 2 (Mb)

Lo
op

in
g

in
te

ra
ct

io
n

−
lo

g 1
0 

P

V1 V2 V3 V4

b

500 bp 

HSC 

MPP 

LMPP 

CLP 

CMP 

GMP-A 

GMP-B 

GMP-C 

MEP 

MONO 

pDC 

MEGA 

CD4 TCELL 

CD8 TCELL 

BCELL 

PC 

NK 

mDC 
 

CRISPR 

V1: rs309137     V2: rs59222832    V3: rs770321415   V4: rs10193623 

        (lead rs11688530) (lead rs555647251) 

c

A/A
 

A/T
 

-20

0

20

40

60

80

 C
X

C
R

4 
(r

es
id

ua
l F

P
K

M
) rs10193623

 P = 5.4 10-3

CD34+
G/G
 

G/A
 

-20

0

20

40

60

 C
X

C
R

4 
(r

es
id

ua
l F

P
K

M
) rs11688530

 P = 0.037

T/T
 

T/C
 

C/C
 

-20

0

20

40

60

 C
X

C
R

4 
(r

es
id

ua
l F

P
K

M
) rs309137

 P = 0.018

d

Vec Ctrl V1 V2 V3 V4
0

0.5

1

1.5

2

 C
X

C
R

4 
m

R
N

A
 (

a.
u.

)

n.s. **
**

**
**

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4

a

PPM1H

0

5

10

15

C
D

34
+  a

ss
oc

ia
tio

n

−
lo

g 1
0 

P

Bait
Other

0

4

8

12

Lo
op

in
g

−
lo

g 1
0 

P

0
1
2
3
4

62.84 62.86 62.88 62.90 62.92 62.94 62.96 62.98
Chromosome 12 (Mb)

C
oa

cc
es

ab
ilit

y

−
lo

g 1
0 

Q

rs772557
b

rs772559
rs772557

rs772556

HSC

MPP

LMPP

CLP

CMP

GMP-A

GMP-B

GMP-C

MEP

MONO

mDC

ERY

MEGA

CD4 T

CD8 T

B

PC

NK

pDC

100 bprs772555

PPM1H intron 1

c

G A C T A G A G
0

2

4

6

Lu
ci

fe
ra

se
 a

ct
iv

ity
 (

a.
u.

)

rs772555 rs772556 rs772557 rs772559

n.s. n.s.

 P = 5.2 10-4

n.s.

d
rs772557[A>G] 

e

-30bp +30bp
chr12

rs772557

G
A

f

A G A G

1

2

3

4
Lu

ci
fe

ra
se

 a
ct

iv
ity

 (
a.

u.
)

siCtrl siMYB

 P = 2.7 10-4

MYB 

ACTB 

g

Ctrl A G
0

0.5

1

1.5

2

2.5

 P
P

M
1H

 e
xp

re
ss

io
n 

(a
.u

.)

rs772557

n.s.

 P = 4.9 10-3

 P = 7.1 10-3

h i

-1 0 1
 MYB (log

2
 FPKM)

-1

0

1

 P
P

M
1H

 (
lo

g 2 F
P

K
M

) rs772557 A/G or G/G

 P = 8.8 10-8

 r2 = 0.24

j

-1 0 1
 MYB (log

2
 FPKM)

-1

0

1

 P
P

M
1H

 (
lo

g 2 F
P

K
M

) rs772557 A/A

 P = 0.065

 r2 = 0.077

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5

a

-0.4 -0.2 0 0.2 0.4
Correlation with rs772557-A

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

di
st

rib
ut

io
n HSC, MPP, CMP,

GMP, MEP genes.
LMPP, CLP genes.
All genes.

b

A/A
235

A/G
295

G/G
112

-0.5

0

0.5

lo
g 2 C

M
P

/C
D

34
+

 r
at

io

rs772557

 P = 0.021

A/A
235

A/G
295

G/G
112

-2

-1

0

1

2

lo
g 2 B

-N
K

/C
D

34
+

 r
at

io

rs772557

 P = 0.028

c

d7 d14d21 d7 d14d21
0

1

2

3

4

5

%
G

F
P

+
34

+
 r

el
at

iv
e 

to
 s

hC
tr

l

shCtrl shPPM1H

 P = 0.024

d7 d14d21 d7 d14d21
0

1

2

3

4

5

%
G

F
P

+
34

+
90

+
 r

el
at

iv
e 

to
 s

hC
tr

l

shCtrl shPPM1H

 P = 0.013

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.03.31.437808doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437808
http://creativecommons.org/licenses/by-nc-nd/4.0/

