

Dysfunction of an energy sensor NFE2L1 triggers uncontrollable AMPK signal and glucose metabolism reprogramming

3 Qiufang Yang^{1, @}, Wenshan Zhao^{1, @}, Yadi Xing^{2, @}, Peng Li¹, Xiaowen Zhou¹, Haoming Ning¹,
4 Ranran Shi¹, Shanshan Gou¹, Yalan Chen¹, Wenjie Zhai¹, Yahong Wu¹, Guodong Li¹,
5 Zhenzhen Chen¹, Yonggang Ren³, Yanfeng Gao^{1, 4}, Yiguo Zhang⁵, Yuanming Qi^{1, 6, 7, *}, Lu
6 Qiu^{1, 5, *}

7

¹ School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; ² School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; ³ Department of Biochemistry, North Sichuan Medical College, Nanchong 637000, China; ⁴ School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; ⁵ The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and ⁶ Faculty of Sciences, Chongqing University, Chongqing 400044, China; ⁷ Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; ⁷ International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China.

17

¹⁸ ^④ Qiufang Yang, Wenshan Zhao and Yadi Xing have contributed equally to this work.

19 *Correspondence to Dr. Lu Qiu (qjulu@zzu.edu.cn) or Prof. Yuanming Qi (qym@zzu.edu.cn).

20 School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.

21 Tel.: +86 371 67783235; fax: +86 371 67783235.

22

23

24

25

28

1

30 **Abstract**

31 NFE2L1 (also called Nrf1) acts a core regulator of redox signaling and metabolism
32 homeostasis, and thus its dysfunction results in multiple systemic metabolic diseases.
33 However, the molecular mechanism(s) by which NFE2L1 regulates glucose and lipid
34 metabolism is still elusive. Here, we found that the loss of NFE2L1 in human HepG2
35 cells led to a lethal phenotype upon glucose deprivation. The uptake of glucose was
36 also affected by NFE2L1 deficiency. Further experiments unveiled that although the
37 glycosylation of NFE2L1 was monitored through the glycolysis pathway, it enabled to
38 sense the energy state and directly interacted with AMPK. These indicate that
39 NFE2L1 can serve as a dual sensor and regulator of glucose homeostasis. In-depth
40 sights into transcriptome, metabolome and seahorse data further unraveled that
41 glucose metabolism was reprogrammed by disruption of NFE2L1, so as to aggravate
42 the Warburg effect in NFE2L1-silenced hepatoma cells, along with the mitochondrial
43 damage observed under the electron microscope. Collectively, these demonstrate that
44 dysfunction of NFE2L1 triggers the uncontrollable signaling by AMPK towards
45 glucose metabolism reprogramming in the liver cancer development.

46

47 **Keywords:** NFE2L1/Nrf1; AMPK; LKB1; Reactive Oxygen Species/ROS; Glucose
48 Metabolism; Mitochondria Function

49

50 **1. Introduction**

51 Redox homeostasis is a necessary prerequisite for maintenance of physiological
52 responses, and the imbalance of redox homeostasis leads to various chronic systemic
53 diseases. Nuclear factor erythroid 2 like 1 (NFE2L1/Nrf1), a core member of the
54 cap'n'collar basic-region leucine zipper (CNC-bZIP) family, plays a critical role in
55 regulating redox homeostasis in eukaryotic cells. Conventional knockout of *NFE2L1*
56 could induce strong oxidative stress injury and result in fetal death. Also, conditional
57 knockout of *NFE2L1* can increase cellular reactive oxygen species (ROS) level [1-4].

58 Studies have revealed that *NFE2L1* plays an important role in metabolic pathway
59 and influences the development of metabolic diseases. Human GWAS study shows
60 that the single nucleotide polymorphism rs3764400 which located in the 5'-flanking
61 regions of *NFE2L1* gene is associated with obesity [5]. Overexpression of *NFE2L1*
62 led to weight loss in transgenic mice, accompanied by insulin resistance symptoms
63 such as increased pancreatic islets, increased insulin secretion, and increased blood
64 glucose levels, eventually leading to diabetes mellitus [6]. In mouse pancreatic β cells,
65 specific knockout of *NFE2L1* caused hyperinsulinemia and glucose intolerance, the
66 early symptoms of type II diabetes [7]. In adipocytes, specific knockout of *NFE2L1*
67 gene resulted in almost complete disappearance of subcutaneous adipose tissue in
68 mice, accompanied by insulin resistance, adipocyte hypertrophy and other
69 obesity-related inflammation [8]. And knockout of *NFE2L1* gene in the liver quickly
70 caused non-alcoholic steatohepatitis (NASH) in mice [2,9]. All these results indicated
71 that *NFE2L1* gene is essential for maintaining the homeostasis of lipid/carbohydrate
72 metabolism.

73 Interestingly, research has shown that glycosylation of *NFE2L1* protein mediates
74 the cleavage and nuclear entry of *NFE2L1* [10]. O-glycosylation modification in the
75 Neh6L domain of *NFE2L1* can reduce the transcription activity of *NFE2L1* protein
76 [11]. Additionally, in HepG2 cells, deletion of *NFE2L1* can cause glucose deprivation,
77 which finally induces cell death [12]. These studies suggest that *NFE2L1* may be a
78 key factor for regulating glucose metabolism homeostasis by sensing glucose levels.
79 Consistently, our previous research also showed that loss of *NFE2L1* expression can
80 disrupt AMP-activated protein kinase (AMPK) signaling pathway [13], the core
81 pathway involved in regulating energy metabolism [14,15]. In addition, metformin
82 (MET), an AMPK signaling activator and the first-line drug for the treatment of
83 diabetes, could inhibit *NFE2L1* in an AMPK-independent manner, while the *NFE2L1*
84 could disrupt the activation of AMPK signal by MET [13], indicating the upstream
85 regulation effects of *NFE2L1* on AMPK signal.

86 Previous studies have suggested that *NFE2L1* is essential for maintaining the

87 homeostasis of glucose and lipid metabolism. However, the molecular mechanism is
88 still obscure. Here, we investigated the effects of NFE2L1 deficiency on the glucose
89 metabolism process in HepG2 cells and the results showed the dual functions of
90 NFE2L1 as the sensor of glucose level and the regulator of glucose metabolism. At
91 the same time, we also identified the mechanism of NFE2L1 in regulating glucose
92 metabolism homeostasis through the verification of the effects of NFE2L1 in
93 regulating AMPK signal.

94

95 **2. Materials and Methods**

96 *2.1. Cell lines, culture and transfection*

97 The information of the cell lines used in this study was shown in Table S1. Cells
98 were growing in DMEM supplemented with 10% (v/v) FBS. The experimental cells
99 were transfected by using Lipofectamine® 3000 Transfection Kit for 8 h, and then
100 allowed for recovery from transfection in the fresh medium. The information of kits
101 were shown in Table S1.

102 *2.2. Expression constructs and other plasmids*

103 The expression constructs for NFE2L1 and LKB1 were made by cloning the target
104 sequences from full-length CDS sequences of *NFE2L1* and *LKB1* into
105 *pLVX-EGFP-puro* vector. The primers used for these expression constructs were
106 shown in Table S1.

107 *2.3. Establishment of lentiviral infected cell lines*

108 Lentiviruses for infection of HepG2^{EGFP} and HepG2^{LKB1} cells were packaged in
109 HEK293T cells. HEK293T cells (5×10^5) were seeded in 6-well plates and were
110 transfected with three plasmids (1 μ g of *pMD2.G*, 2 μ g of *psPAX2*, 3 μ g of either
111 *pEGFP* or *pLKB1::EGFP* in 1mL of transfection volume) when cell confluence
112 reached to 80%. The medium was collected and filtered by using 0.45 μ m sterile filter
113 to obtain the virus after 36~48 h. The virus was employed to transduce target cells,
114 and puromycin (100 μ M) was used to screen out the infected cells.

115 *2.4. Cell viability assay*

116 Experimental cells seeded in 96-well plates were processed according to the
117 experimental design. The cytotoxic effects of indicated compound on experimental
118 cells were determined by Cell Counting Kit-8 (CCK8) [16]. And the absorbance at
119 450 nm was measured by a microplate reader (SpectraMax iD5, USA). The
120 information of kits were shown in Table S1.

121 *2.5. Cellular ROS staining*

122 Experimental cells were allowed for growing to reach an appropriate confluence in
123 6-well plates and then incubated in a serum-free medium containing 10 μ M of
124 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) [17] at 37 $^{\circ}$ C for 20 min.
125 Thereafter, the cells were washed three times with serum-free media, before the green
126 fluorescent images were achieved by microscopy.

127 *2.6. Glucose uptake assay*

128 The uptake of 2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose
129 (2-NBDG), which is a fluorescent glucose analog, is used to visualizing the uptake
130 capacity of glucose by living cells. Experimental cells were allowed for incubated in a
131 serum-free medium containing 20 μ M of 2-NBDG at 37 $^{\circ}$ C for 10 min. Thereafter, the
132 cells were washed three times with serum-free media, before the green fluorescent
133 images were achieved by microscopy.

134 *2.7. RNA isolation and real-time quantitative PCR (qPCR)*

135 Experimental cells were subjected to isolate total RNAs using the RNAsimple Kit.
136 Then, 1 μ g total RNAs were added in a reverse-transcriptase reaction to generate the
137 first strand of cDNA, by using the RevertAid First Strand Synthesis Kit. The
138 synthesized cDNA served as the template for qPCR with distinct primers, which
139 occurred in the GoTaq[®] qPCR Master Mix. The mRNA expression level of β -actin
140 was selected as an optimal internal standard control. The primers used for qPCR and
141 the information of kits were shown in Table S1.

142 *2.8. Western blotting (WB), Co-Immunoprecipitation (Co-IP) and protein
143 deglycosylation reactions*

144 The total protein extraction buffer and WB were carried out as previously described

145 [13]. The Co-IP were carried out as previously described [18]. Before visualized by
146 WB, the deglycosylation reactions of samples with Endo H in vitro were carried out
147 as described previously [19]. The information of all antibodies used herein were
148 shown in Table S1.

149 *2.9. Transcriptome sequencing*

150 The cultured cells (HepG2^{shNC} and HepG2^{shNFE2L1}) were lysed by Trizol, and the
151 transcriptome sequencing by *Beijing Genomics Institute (BGI)* with the Order Number
152 is F21FTSCCKF2599_HOMdynrN. The samples were measured use the
153 BGISEQ-500 platform. The transcriptome sequencing results are shown in Table S2.

154 *2.10. Metabolomics testing*

155 The HepG2^{shNC} and HepG2^{shNFE2L1} cells were digested and counted, and the cell
156 pellets were obtained by low-speed centrifugation. The cell samples were
157 immediately frozen in liquid nitrogen. Metabolomics testing by *Metabolomics and*
158 *Systems Biology Company, Germany*. And the Order Number is POCMTS2016006.
159 The samples were measured with a Waters ACQUITY Reversed Phase Ultra
160 Performance Liquid Chromatography (RP-UPLC) coupled to a Thermo-Fisher
161 Exactive mass spectrometer. For each type of cells, three replicates were extracted and
162 measured.

163 *2.11. Electron Microscopy*

164 The adherent cells were digested with trypsin and fixed with 2.5% glutaraldehyde.
165 The ultrastructure of cells was examined by transmission electron microscope
166 (JEM-HT7700 model, Hitachi, Japan) with 5um, 1um, and 500nm scales,
167 respectively.

168 *2.12. Seahorse Metabolic Analyzer*

169 The oxygen consumption rate (OCR) of cells was measured by Seahorse XF Cell
170 Mito Stress Test Kit. The experimental operation was carried out according to the
171 instructions. The OCR were measured using the Seahorse Metabolic Analyzer to
172 characterize the cell's oxidative phosphorylation level. The information of Kits were
173 shown in Table S1.

174 *2.13. Assays of ATP and Lactate Levels in cells*

175 The ATP levels and Lactate levels of cells are determined according to the
176 instruction of ATP assay kit and Lactic Acid assay kit. The experimental operation
177 was carried out according to the instructions. The information of Kits were shown in
178 Table S1.

179 *2.14. Statistical analysis*

180 The data were here presented as a fold change (means \pm S.D.), each of which
181 represents at least three independent experiments that performed in triplicate.
182 Significant differences were statistically determined by either the Student's t-test or
183 Multiple Analysis of Variations (MANOVA). The statistical significance was defined
184 by symbols '*' means $p < 0.05$, whilst the 'n.s.' letters represent 'no significant'.

185

186 **3. Results**

187 *3.1. NFE2L1 deficiency disrupts cellular energy metabolism signals and induces cell
188 death by glucose starvation*

189 Previous studies have shown that mice with NFE2L1 overexpression or knockout
190 exhibit diabetes-like phenotypes [6-8]. Metformin has shown regulatory effects on
191 NFE2L1 [13]. These studies indicated the involvement of NFE2L1 in maintaining the
192 homeostasis of glucose metabolism. To further explore the relationship between
193 NFE2L1 and glucose metabolism, HepG2 cell line with *NFE2L1* knockdown was
194 constructed (Figure 1A). Through the glucose deprivation experiment, HepG2 cells in
195 the medium without glucose lacking *NFE2L1* expression were more susceptible to
196 death (Figure 1B,C). Glucose is the major source of energy for cells, but it is not an
197 essential nutrient. Here, WZB117 [20], a glucose uptake inhibitor, was used to test the
198 effects of impaired glucose uptake on cells. The results showed that compared with
199 the control group, the *NFE2L1* knockdown cells was exhibited enhanced killing
200 activity by treating with WZB117 (Figure 1D), which indicate that loss of NFE2L1
201 may disrupt the homeostasis of energy metabolism.

202 NFE2L1 is a regulator of redox homeostasis, and most of the phenotypes related

203 to NFE2L1 are related to oxidative stress. Results showed that the ROS level in the
204 control group (HepG2^{shNC}) was increased by about 2 times when the glucose was
205 deprived for 6 hours. In *NFE2L1* knockdown cells (HepG2^{shNFE2L1}), the level of ROS
206 was increased by about 3 times, and the shrinking of cells has been observed (Figure
207 1E,F). In *NFE2L1* knockdown cells, the ROS level was increased more than 6 times
208 in comparison with the control group after glucose deprivation for 6 hours, indicating
209 the high levels of oxidative damage of *NFE2L1* knockdown cells. These results were
210 in accordance with previous studies that glucose starvation resulted in strong
211 oxidative stress to induce cell death after *NFE2L1* knockout [3,12].

212 AMPK, the core signal of energy metabolism, is the guardian of metabolism and
213 mitochondrial homeostasis [21]. Western blotting (WB) results showed knockdown of
214 *NFE2L1* caused a significant increase in the phosphorylation level of AMPK and its
215 downstream protein acetyl-CoA carboxylase alpha (ACC) [22] (Figure 1G), indicating
216 that the cells may be in a starvation state even in the sufficient nutritional conditions.
217 This phenomenon may be due to the lack of NFE2L1 in HepG2^{shNFE2L1} cells. All these
218 results suggested that NFE2L1 could function through sensing the energy state of the
219 cells.

220

221 *3.2. Glycolysis promotes glycation of NFE2L1 and lack of NFE2L1 promotes glucose*
222 *absorption*

223 In the cell culture system, in addition to glucose, other nutrients also contribute
224 to provide the beneficial environment for cell growth, including cytokines and fetal
225 bovine serum (FBS). Studies have shown that NFE2L1 could be activated by
226 FBS/mechanistic target of rapamycin kinase (mTOR)/sterol regulatory element
227 binding transcription factor 1 (SREBF1) pathway [23]. The mTOR and AMPK
228 signaling pathways could be affected by NFE2L1 overexpression or knockdown [13],
229 indicating the correlation of NFE2L1 with energy metabolism. Therefore, the
230 alternation of NFE2L1 in response to the change of glucose and serum concentration
231 was tested in the cell culture medium and the results showed that addition of FBS

232 could upregulate the total protein content of NFE2L1, and glucose could directly
233 affect the bands of NFE2L1 (Figure 2A,B). The level of p-AMPK gradually decreased
234 with the increase of serum concentration in the presence and absence of glucose
235 (Figure 2A). And the increased glucose concentration slightly altered the p-AMPK
236 level with and without FBS (Figure 2B). The p-mTOR level could be significantly
237 elevated with the presence of glucose (Figure 2A) and FBS (Figure 2B) despite the
238 concentration alternation of glucose and FBS.

239 Activation of AMPK and mTOR signals can be characterized by p-ACC and
240 phosphorylated- ribosomal protein S6 kinase B1 (p-S6K1) expression respectively. In
241 fact, as the results showed, p-AMPK was more sensitive to FBS in HepG2 cells
242 (Figure 2B), while p-ACC was more sensitive to glucose (Figure 2A). The expression
243 level of p-S6K1 increased at low concentrations of FBS and decreased when exposed
244 to higher concentrations of FBS (Figure 2A,B). With the increased concentration of
245 glucose, the level of p-S6K1 was upregulated (Figure 2A,B). In addition, the bands of
246 p-AMPK and p-S6K1 moved down with the increase of FBS, which might be due to
247 the fact that the protein synthesis upregulated in respond to the increased amount of
248 FBS, as the results showed by coomassie brilliant blue staining of protein samples in
249 Figure 2C and Figure 2D. It is important to note that the level of p-ACC has a strong
250 negative relationship with the glycation of NFE2L1 (Figure 2A,B). Combined with
251 the increase of p-ACC expression after NFE2L1 knockdown (Figure 1G) and the
252 inhibition of p-ACC by NFE2L1 overexpression, these results together suggested that
253 NFE2L1 might directly affect the catalytic activity of p-AMPK on substrates.

254 Studies have shown that glycosylation can regulate the activity of NFE2L1
255 [10,11,24,25]. Here, the effects of five common monosaccharides on NFE2L1 protein
256 were tested and the results indicated that fructose (FRU) and mannose (MAN), similar
257 as glucose (GLU), could induce the production of NFE2L1 with larger molecular
258 weight (Figure 2E), which could be ascribed to the glycosylation of NFE2L1 protein
259 as it revealed by the de-glycosylation experiment shown in Figure 2F. On the contrary,
260 galactose (GAL) and ribose (RIB) showed null effects on the molecular weight of

261 NFE2L1 protein (Figure 2F).

262 The catabolism of carbohydrates mainly undergoes anaerobic glycolysis in the
263 cytoplasm and aerobic oxidation in the mitochondria. In HepG2 cells, treatment with
264 2-Deoxy-D-glucose (2DG, a glycolysis inhibitor) [26] could effectively inhibit
265 glycolysis of NFE2L1. Inhibition of oxidative phosphorylation process using
266 Oligomycin (OM) [27] could decrease the total expression level of NFE2L1 (Figure
267 2G). Further results showed that fructose-1,6-bisphosphate (FBP), the intermediate
268 product of the glycolysis process, induced the glycation of NFE2L1, while the
269 pyruvate (PYR) had no such effects (Figure 2H). These findings implied that
270 activation of hexokinase (HK) and phosphofructokinase, liver (PFKL), the key
271 rate-limiting enzymes of glycolysis, or inhibition of pyruvate kinase M1/2 (PKM)
272 may have the function of activating NFE2L1.

273 The above results demonstrated that NFE2L1 was a glucose-sensitive protein. As
274 the results revealed in Figure 1, knockdown of NFE2L1 induced cell death by glucose
275 starvation and activation of AMPK signaling, indicating that NFE2L1 might be
276 involved in feedback regulation of energy metabolism. Our previous studies have
277 shown that NFE2L1 could be inhibited by metformin (MET), and knockdown of
278 NFE2L1 disrupted the activation of AMPK signal by MET. In addition, studies have
279 shown that MET promoted the uptake of glucose in HepG2 cells [28]. These studies
280 suggested the promotion of MET on glucose uptake in HepG2 cells might be related
281 to its inhibition of NFE2L1.

282 NFE2L1 deficiency improved the glucose uptake in HepG2 cells. Interestingly,
283 knockdown of NFE2L1 counteracted the promotion of MET on glucose uptake of
284 HepG2 cells (Figure 3A,B). Similarly, loss of NFE2L1 expression also neutralized the
285 ROS elevation induced by MET [13]. These data indicated that the inhibitory effect of
286 MET on NFE2L1 might be the main reason for the improvement of the glucose
287 uptake of HepG2 cells. However, it could not be ruled out that the glucose uptake
288 capacity of cells reached a threshold. Subsequently, the changes of glucose transporter
289 genes in transcriptome date were checked, and the data showed that the *solute carrier*

290 *family 2 member 1 (SLC2A1/GLUT1)* and *SLC2A13* were increased, while the
291 *SLC2A3*, *SLC2A6* and *SLC2A8* were depressed after *NFE2L1* knockdown (Figure 3C).
292 And the qPCR results showed that *SLC2A3* was significantly reduced, while *SLC2A4*
293 and *SLC2A6* were obviously increased (Figure 3D). The *SLC2A2*, *SLC2A5*, *SLC2A7*
294 and *SLC2A9* genes were not detected by real-time quantitative PCR (qPCR), which
295 might be due to the low or lack of expression of these genes. By comparing the
296 transcriptome and qPCR results, it was found that only *SLC2A3* was consistently
297 reduced, but it was opposite of the phenotype. Then, the protein levels of glucose
298 transporter were been detected and the results showed that the protein expression level
299 of GLUT3 was significantly increased after *NFE2L1* knockdown (Figure 3E),
300 indicating that the increase in glucose uptake caused by *NFE2L1* knockdown might
301 be related to GLUT3. In addition, the mRNA level of *SLC2A1*, of which the protein
302 level could hardly been detected, was highest, suggesting that GLUT1 might be
303 severely inhibited at the post-transcriptional level in HepG2 cells.

304

305 *3.3. NFE2L1 deficiency results in the reprogramming of glucose metabolism and*
306 *exacerbates the Warburg effect*

307 The above results revealed the function of *NFE2L1*, as glucose metabolism
308 sensor, to regulate glucose uptake. Next, the effects of *NFE2L1* knockdown on the
309 key rate-limiting enzymes implicated in glycolysis, gluconeogenesis and tricarboxylic
310 acid (TCA) cycle were tested (Figure 4A). As the results shown in Figure 4B, increase
311 of *heme oxygenase 1 (HMOX1)* and *prostaglandin-endoperoxide synthase 2*
312 (*PTGS2/COX2*), and decrease of *PTGS1* were detected accompanied by *NFE2L1*
313 knockdown, suggesting the loss of function of *NFE2L1* [3]. *HK1*, the key enzyme
314 involved in catalyzing the conversion of glucose to glucose-6-phosphate, was
315 significantly increased. *PFKL* and phosphofructokinase, muscle (*PFKM*), which
316 catalyze the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate, was
317 reduced. The expression of *PKM*, which has been involved in catalyzing the
318 conversion of phosphoenolpyruvate to pyruvate, was increased. No apparent change

319 of the key enzyme gene *dihydrolipoamide dehydrogenase (DLD)* that catalyzes the
320 entry of pyruvate into the TCA cycle was detected. The expression of the *pyruvate*
321 *carboxylase (PC)* gene was significantly reduced, indicating that the metabolic flow
322 from glycolysis to the TCA cycle might be restricted (Figure 4C).

323 Then the expression of key enzyme genes involved in TCA cycle was detected
324 and the results showed that *citrate synthase (CS)*, which catalyzes to produce citrate,
325 and *oxoglutarate dehydrogenase (OGDH)*, which catalyzes to produce succinyl-CoA,
326 exhibited no significant changes in mRNA levels. And *isocitrate dehydrogenase*
327 (*NADP(+) 1 (IDH1)*, which catalyzes the conversion of isocitrate to a-oxoglutarate,
328 was reduced. The level of *IDH2* and *IDH3G* was upregulated (Figure 4D). It can be
329 inferred from these results that the TCA cycle displayed no remarkable changes.
330 *phosphoenolpyruvate carboxykinase 2 (PCK2)* and *fructose-bisphosphatase 1 (FBP1)*,
331 the key rate-limiting enzymes in the gluconeogenesis process, were significantly
332 increased, while no difference of *glucose-6-phosphatase catalytic subunit 3 (G6PC3)*
333 was detected (Figure 4E), indicating that the gluconeogenesis process might be
334 enhanced as NFE2L1 absence.

335 The western blotting result showed that NFE2L1 knockdown could efficiently
336 elevate the expression of NFE2L2, HMOX1, and PTGS2 and decrease kelch like
337 ECH associated protein 1 (KEAP1) (Figure 4F), which were consistent with our
338 previous results [3]. Then the changes in the protein levels of the key enzymes of
339 sugar metabolism were detected. The WB results of these key proteins were almost
340 the same as the gene expression (Figure 4F). The protein expression of IDH1 and
341 IDH2 both decreased. Combined with the significant decrease of PC and the increase
342 of PCK2, these results indicated the enhancement of the glycolysis and
343 gluconeogenesis, while the process from anaerobic glycolysis to aerobic oxidation
344 was been blockaded. Consistently, the transcriptome data also suggested that
345 glycolysis and gluconeogenesis were enhanced after knockdown of NFE2L1 in
346 HepG2 cells (Figure 4G).

347 In the process of glucose metabolism, loss of NFE2L1 may induce increased

348 glycolysis and gluconeogenesis and the suppressive oxidative phosphorylation.
349 These results indicated that NFE2L1 deficiency might trigger the Warburg effect,
350 consistent with that specific knockout of *NFE2L1* in liver tissue could trigger the
351 Non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) in
352 the mouse model [2]. Analysis of metabolomic data showed that, in the *NFE2L1*
353 knockout HepG2 cells, the content of glucose metabolism intermediate products
354 glucose and pyruvate were increased, and amino acids closely related to glycolysis
355 intermediate products were significantly increased, such as glycerate, valine,
356 isoleucine, leucine, cysteate, cysteine, serine, glycine, and threonine (Figure 4H).
357 Malate, 2-oxoglutarate, and cis-aconitate, the TCA cycle intermediate products, were
358 significantly reduced (Figure 4H). These results implied that the absence of NFE2L1
359 produced a phenotype similar to the warburg effect. The enhancement of warburg
360 effect, one of the metabolic characteristics of tumor cells, often means the malignant
361 transformation of tumors. It is worth mentioning that the metabolome data showed
362 that the loss of NFE2L1 expression caused an increase in the levels of various amino
363 acids in cells, which might be the reason for the activation of mTOR signal caused by
364 NFE2L1 knockdown [13,29,30].

365

366 3.4. *NFE2L1* knockdown causes the damage of mitochondrial function

367 Consistent with our results, previous studies had shown that overexpression and
368 knockout of NFE2L1 could change glucose metabolism through different ways such
369 as ROS, insulin secretion, and liver metabolism [6,7,12]. However, the underlying
370 molecular mechanism by which NFE2L1 affects glucose metabolism remains to be
371 explored. As a transcription factor, NFE2L1 could influence thousands of downstream
372 genes with various functions [3,31,32], making it difficult to identify the detailed
373 mechanism of NFE2L1 in affecting glucose metabolism. Actually, the effect of
374 NFE2L1 deficiency on glucose metabolic reprogramming is likely to be a systemic
375 response.

376 Previous result showed that the TCA cycle in the mitochondria was inhibited

377 (Figure 4), which made it necessary to explore the effects of NFE2L1 on
378 mitochondrial function. Under electron microscope, it was found that NFE2L1
379 knockdown significantly reduced the number of mitochondria. The remaining
380 mitochondria caused by NFE2L1 knockdown possessed much smaller size and the
381 ridge-like structure was significantly reduced (Figure 5A,B). In NFE2L1 knockdown
382 cells, accumulation of lipid droplets could be found, which is consistent with the lipid
383 accumulation induced by special knockout of NFE2L1 in mouse live [2]. In addition,
384 more autophagosomes could be found in NFE2L1 knockdown cells (Figure 5A,B),
385 suggesting that damaged mitochondria could be transferred to autophagic
386 mitochondria to be degraded. Consistently, studies have shown that AMPK can
387 promote mitochondrial division and mitochondrial autophagy [33,34], suggesting that
388 the alternation of mitochondrial caused by NFE2L1 knockdown may be related to
389 increased AMPK signals.

390 By testing the oxygen consumption rate (OCR) of the cells, it was found that the
391 oxygen consumption of the cells was reduced to about 40% of the control group after
392 NFE2L1 knockdown (Figure 5C). The oxygen consumption of the control cells was
393 reduced by $41.56\% \pm 6.04\%$, while in the NFE2L1 knockdown cells it was reduced by
394 $22.31\% \pm 7.79\%$ (Figure 5C) after adding OM, the oxidative phosphorylation inhibitor,
395 indicating that the proportion of adenosine triphosphate (ATP) produced by
396 mitochondrial respiration was significantly reduced after NFE2L1 knockdown. In the
397 control group, the ATP content was reduced under treatment with 2DG or OM (Figure
398 5d). In addition, the lactate content significantly increased after NFE2L1 knockdown
399 (Figure 5E). These results indicated that mitochondrial function was severely
400 impaired after NFE2L1 knockdown.

401 In cells lacking NFE2L1 expression, although mitochondrial function was
402 impaired and the oxidative phosphorylation process was inhibited, the ATP content
403 increased more than twice (Figure 5D), meaning that compared with the control group,
404 cells lacking NFE2L1 needed to consume dozens of times more glucose to produce
405 these ATP through glycolysis. This might be the reason why lack of NFE2L1 led to

406 increased cellular glucose uptake and cell death by glucose deprivation. Loss of
407 NFE2L1 resulted in increased ATP in cells and the changed mitochondria morphology,
408 suggesting the potential changes of ATP synthesis-related genes. Transcriptome data
409 showed that the mRNA level of *ATP5IF1*, *ATP5ME* and *ATP5PD* genes significantly
410 increased, and *ATP5F1E*, *ATP5MC3*, *ATP5MPL* and *ATP5PF* remarkably decreased
411 after NFE2L1 knockdown (Figure 5F). No significant difference of genes related to
412 ATP synthesis was observed in mitochondria (Figure 5G) despite the impacts of
413 NFE2L1 deficiency in the characterization of mitochondria, indicating NFE2L1 might
414 indirectly regulate the total amount of ATP. It is worth noting that NFE2L1
415 knockdown could still activate AMPK signal in the presence of high ATP
416 concentration (Figure 1G), suggesting that the influence of NFE2L1 on AMPK signal
417 may be through interfering with AMPK's perception of ATP and adenosine
418 monophosphate (AMP) levels in cells.

419

420 *3.5. NFE2L1 serves as an energy-sensitive protein and directly inhibits the*
421 *phosphorylation of AMPK by serine/threonine kinase 11 (STK11/LKB1)*

422 Lack of NFE2L1 could disrupt AMPK signal which is the core energy
423 metabolism regulation pathway [13-15]. Exploring the effect of NFE2L1 on AMPK
424 signal is helpful to understand the influence of NFE2L1 on the metabolic network. To
425 verify whether NFE2L1 is affected by ATP or AMP, exogenous ATP or AMP was used
426 to treat HepG2 cells. The western blotting results suggested that the addition of
427 exogenous ATP could increase the protein level of NFE2L1, while exogenous AMP
428 showed the opposite effects (Figure 6A). This result was consistent with the response
429 of NFE2L1 to glucose and serum (Figure 2), indicating that the response of NFE2L1
430 to the energy state might be due to ATP and AMP content in the cell. Subsequently,
431 the effect of AMP on the phosphorylation of AMPK after NFE2L1 knockdown was
432 tested, and the results indicated that NFE2L1 knockdown can reverse the activation of
433 AMPK signal induced by AMP (Figure 6B,C). Interestingly, previous study showed
434 NFE2L1 knockdown can reverse the activation of AMPK signal induced by MET [13].

435 These results were consistent, which showed the inhibition of NFE2L1 expression,
436 indicating that activation of AMPK signaling by AMP and MET depended on the
437 inhibitory effect of NFE2L1.

438 In the low-energy state, the ATP content in the cell decreases while the AMP
439 content increases, which induces AMPK phosphorylation by LKB1 [35-37]. The
440 activation of AMPK by LKB1 requires the co-localization of the two proteins in the
441 plasma membrane. Here, our results showed that loss of NFE2L1, which is a
442 membrane protein [38], inhibited AMPK signal activation induced by AMP,
443 suggesting that NFE2L1 might be involved in the process of AMPK phosphorylation
444 induced by LKB1.

445 In order to verify the effect of NFE2L1 on LKB1-induced AMPK
446 phosphorylation, LKB1 overexpressing and NFE2L1 knockdown HepG2 cells were
447 constructed. Unexpectedly, in HepG2 cells, overexpression of LKB1 could activate
448 AMPK signal and significantly inhibit the protein level of NFE2L1, but showed no
449 obvious effects on the mRNA level of *NFE2L1* (Figure 6D,E), indicating the
450 coincidence of NFE2L1 reduction and AMPK phosphorylation increase. In cells with
451 NFE2L1 deficiency, overexpression of LKB1 could not further increase AMPK
452 phosphorylation (Figure 6F,G). Glucose starvation (GS) experiment results showed
453 that glucose starvation for 2h significantly increased AMPK phosphorylation, and GS
454 could still further increase AMPK phosphorylation after LKB1 overexpression
455 (Figure 6F,G). The cumulative effects of LKB1 overexpression and GS treatment on
456 AMPK phosphorylation levels suggested that the response of AMPK to low-energy
457 states might not completely depend on LKB1. In the NFE2L1 knockdown cells, with
458 the increase of the basal AMPK phosphorylation, although GS treatment further
459 increased AMPK phosphorylation, the cumulative effect of LKB1 overexpression and
460 GS treatment disappeared (Figure 6F,G), suggesting that the effects of NFE2L1 on
461 AMPK signal might mainly relied on LKB1.

462 Subsequently, protein immunoprecipitation experiments were utilized to explore
463 the action mode of NFE2L1 on LKB1-AMPK. The results showed that AMPK could

464 interact with NFE2L1 protein rather than LKB1 (Figure 6H), suggesting that NFE2L1
465 might directly bind to AMPK and inhibit LKB1's phosphorylation. In addition, ACC
466 could also interact with NFE2L1 (Figure 6H). Combined with the negative correlation
467 between phosphorylated ACC and NFE2L1 (Figure 2A,B), we could speculate that
468 NFE2L1 may regulate lipid metabolism by directly binding to ACC and inhibiting its
469 phosphorylation.

470

471 **4. Discussion**

472 The rational use of nutrients is a necessary prerequisite for the survival of
473 multicellular organisms. In this process, the perception and feedback of the energy
474 state of cells is crucial. NFE2L1 has been considered to play an important role in
475 regulating system redox homeostasis, carbohydrate and lipid metabolism homeostasis,
476 embryonic development and cancer [4]. The transcription factor NFE2L1
477 systematically regulates the transcription of antioxidant-related genes through the
478 recognition of antioxidant/electrophile-response element (ARE/EPRE) [39]. However,
479 the molecular mechanism of metabolism-related phenotypes caused by NFE2L1
480 overexpression or knockout is still elusive. Identification of the molecular mechanism
481 of NFE2L1 in regulating substance and energy metabolism will deepen the
482 recognition of the molecular and physiological functions of NFE2L1, which could
483 benefit for the treatment of obesity, diabetes, non-alcoholic fatty liver disease and
484 other systemic metabolic diseases.

485 NFE2L1 is essential for maintaining intracellular redox homeostasis which is a
486 prerequisite for cells to maintain normal metabolic processes. Loss of NFE2L1 can
487 not only directly increase ROS levels, but also induce strong oxidative stress to cause
488 the death of embryos [1]. In the NFE2L1 knockdown cell line, glucose deprivation
489 could induce cell death, which might be related to the imbalance of redox homeostasis
490 (Figure 1). These results were consistent with previous studies [12]. NFE2L1 could
491 negatively regulate glucose uptake (Figure 3). These results demonstrated the dual
492 functions of NFE2L1 as the sensor and the regulator of glucose homeostasis.

493 The increased glucose uptake caused by NFE2L1 knockdown might be related to
494 the increased of GLUT3 (Figure 3). Previous reports mostly focused on studying the
495 relationship between NFE2L1 and GLUT1, GLUT2, GLUT4 respectively [6,7,12].
496 However, the interaction of NFE2L1 with GLUT3, the transporter with the highest
497 affinity for glucose [40], has not been explored. Recently, more and more studies have
498 shown that GLUT3 plays a vital role in regulating glycolysis, cancer stem cell
499 survival, and cancer cell metastasis [41-43]. In addition, GLUT3, which can be
500 activated by AMPK signals [44], is mainly expressed in tissues with high glucose
501 requirements and poor glucose microenvironment, such as the brain [45]. Here, we
502 found that knockdown of NFE2L1 could significantly increase GLUT3 expression,
503 which might be attributed to AMPK activation. NFE2L1 specific knockout led to
504 neurodegenerative diseases in the nervous system [46] and metabolic disorders and
505 hepatocellular carcinogenesis in liver tissue [2]. However, the expression of GLUT3
506 gene was decreased in NFE2L1 knockdown cells, making it not easy to identify the
507 underlying molecular mechanism. It is worth mentioning that the glycosylation and
508 deglycosylation of NFE2L1 are necessary to activate its transcription factor activity
509 [19]. Meanwhile, the glycation of NFE2L1 strictly depended on the glycolysis process
510 (Figure 2E-H). These results suggested that the NFE2L1 functioned as a key factor in
511 mediating the glucose homeostasis and redox homeostasis in cells.

512 Studies have shown that NFE2L1 is sensitive to nutrients in the environment [23].
513 However, the growth of cells lacking NFE2L1 depended almost solely on glucose. By
514 detecting the key rate-limiting enzymes involved in glucose metabolism and the
515 proteomic of glucose metabolites, we found that loss of NFE2L1 significantly
516 inhibited the oxidative phosphorylation process and enhanced the glycolysis and
517 gluconeogenesis process (Figure 4). Obviously, NFE2L1 deficiency in HepG2 cells
518 triggered and enhanced the Warburg effect, which might be the cause of spontaneous
519 NASH that could be finally developed into HCC in the liver of *NFE2L1* knockout
520 mice [2].

521 Overexpression of NFE2L1 can reverse the mitochondrial damage caused by

522 N-glycanase 1 (NGLY1) knockout [25], suggesting that NFE2L1 is essential for the
523 maintenance of mitochondrial morphology and function. Here, we also observed that
524 knockdown of NFE2L1 can cause mitochondrial damage (Figure 5). However, the
525 relationship between the Warburg effect and mitochondrial function damage caused
526 by NFE2L1 deficiency is still hard to determine. Once mitochondria, as the most
527 important organelle for the production of ATP, are damaged, cells may need to
528 consume more glucose to produce ATP through glycolysis. As the results showed,
529 glucose uptake capacity increased after NFE2L1 knockdown. And after deprivation of
530 glucose, cells with NFE2L1 knockdown died. Strikingly, The ATP content in
531 HepG2^{shNFE2L1} cells was significantly higher than that in HepG2^{shNC} cells (Figure 5D),
532 which is consistent with the results of Zhu et al. [12]. OM, the inhibitor of oxidative
533 phosphorylation, could hardly inhibit ATP production in HepG2^{shNFE2L1} cells,
534 indicating that these ATP were rarely produced from the oxidative phosphorylation
535 process (Figure 5D). In short, HepG2^{shNFE2L1} cells need to maintain a higher level of
536 ATP content with lower ATP production efficiency. This may be the reason of the
537 dependence of the growth of HepG2^{shNFE2L1} cells on glucose.

538 AMPK functions as the core regulator of energy metabolism to sense the levels
539 of ATP and AMP. The binding of AMP with AMPK is necessary for the activation of
540 AMPK by phosphorylation [37]. In the low energy state, the increase of AMP caused
541 by the consumption of ATP can activate AMPK signals to promote catabolism and
542 inhibit synthesis reactions which could finally produce more ATP [15]. The increase
543 of phosphorylated AMPK level after NFE2L1 knockdown (Figure 1E) might be
544 responsible for the reprogramming of glucose metabolism and the increase of ATP
545 (Figures 3, 4). Under normal circumstances, high levels of ATP could inhibit AMPK
546 signaling to maintain energy homeostasis. Obviously, NFE2L1 knockdown destroyed
547 the energy homeostasis maintained by this mechanism. High ATP content and highly
548 activated AMPK signals coexist in the HepG2^{shNFE2L1} cells, suggesting the problem of
549 the negative feedback regulation of AMPK signals.

550 In the HepG2^{shNFE2L1} cells, AMP lost the ability of increasing the level of AMPK

551 phosphorylation (Figure 6B,C), which once again confirmed that NFE2L1 might be
552 involved in AMPK signal perception of ATP and AMP. In other words, AMP binding
553 is not necessary for the phosphorylation of AMPK in the absence of NFE2L1.
554 Interestingly, various methods that can improve AMPK phosphorylation can also lead
555 to decreased NFE2L1, including FBS starvation [23], glucose starvation [13], MET
556 treatment [13], AMP treatment (Figure 6A), and LKB1 overexpression (Figure 6D).
557 On the contrary, treatments with EGF and insulin [23] that can inhibit AMPK
558 phosphorylation are accompanied by the increase of NFE2L1. In addition, NFE2L1
559 could interact with AMPK protein (Figure 6H). All these results revealed that
560 NFE2L1 could bind to AMPK in the cytoplasm to inhibit the phosphorylation of
561 AMPK in addition to the function as a transcription factor in the nucleus. In a
562 low-energy state, the binding of NFE2L1 with AMPK reduced due to the lower
563 expression level of NFE2L1 protein, which decreased the inhibition of NFE2L1 to
564 AMPK activity (Figure 6I). Also, AMPK could bind with NFE2L1 and inhibit the
565 degradation of NFE2L1. However, the sequential relationship between the decrease of
566 NFE2L1 protein and the increase of AMPK phosphorylation is still unknown.
567 Whether the effects of AMP/ATP and LKB1 on AMPK depend on NFE2L1 requires
568 to be explored.

569 As an environment-sensitive protein, NFE2L1 could be changed in response to
570 various stresses even the environmental temperature changes [4,47]. NFE2L1 could
571 function as a transcription factor to directly regulate the transcription and expression
572 of thousands of genes involved in almost all biological processes [32,48]. In addition,
573 with the half-life of about 0.5h, NFE2L1 protein is always in the process of dynamic
574 synthesis and degradation [13]. These characteristics make NFE2L1 own the ability of
575 mediating the interaction and dialogue between the internal homeostasis and the
576 external environment. In this study, we discovered for the first time that NFE2L1
577 could directly regulate the activity of AMPK signaling in a way independent of the
578 function of transcription factor. The findings could deepen the understanding of the
579 molecular mechanism of NFE2L1 in regulating material and energy metabolism, and

580 redox homeostasis, which is valuable for targeting NFE2L1 to prevent or treat
581 systemic diseases.

582

583 **5. Conclusions**

584 In conclusion, the results of glucose starvation, glucose uptake, selective inhibition
585 of glucose metabolism and protein deglycosylation experiments suggested that
586 NFE2L1 could act as the sensor and the regulator of glucose homeostasis.
587 Transcriptome, metabolome, seahorse and electron microscopy results revealed that
588 impaired NFE2L1 caused reprogram of glucose metabolism, damaged the
589 mitochondrial and aggravated the Warburg effect. And the energy signal transmission
590 and Co-IP experiments found that NFE2L1 could sense the energy state and regulate
591 AMPK signaling pathway by directly interact with AMPK protein. The novel
592 AMP/NFE2L1/AMPK signaling pathway that discovered in this study may be the
593 core mechanism of NFE2L1 in metabolism and metabolic diseases.

594

595 **Supplementary Materials:** The following are available online at [xxx](#). **Table S1.** The
596 key resources in this study. **Table S2.** The transcriptome sequencing data of
597 HepG2^{shNC} and HepG2^{shNFE2L1} cell lines.

598 **Author Contributions:** LQ and YQ conceived the research and designed the
599 experiments; QY, WZ, YX, PL, XZ, HN, RS, SG, and YC conducted the experiments,
600 acquired and analyzed the data with the critical assistance from WJZ, YW, GL, ZC,
601 YR, YX, YG and YZ; all authors contribute to writing the manuscript; WZ, XZ, YX,
602 YZ and LQ revised the manuscript. All authors read and approved the final
603 manuscript.

604 **Funding:** This work was supported by the Postdoctoral Research Grant in Henan
605 Province (201901006, 201902006), the China Postdoctoral Science Foundation
606 (2020M672286), the Program for Innovative Talents of Science and Technology in
607 Henan Province (18HASTIT042), Science Foundation for Excellent Young Scholars

608 in Henan (202300410358) and National Natural Science Foundation of China
609 (U1904147, U20A20369, 81822043).

610 **Data Availability Statement:** The data presented in this study are available in this
611 manuscript.

612 **Conflicts of Interest:** The authors declare no conflict of interests.

613

614 **References**

- 615 1. Chen, L.Y.; Kwong, M.; Lu, R.H.; Ginzinger, D.; Lee, C.; Leung, L.; Chan, J.Y. Nrf1 is
616 critical for redox balance and survival of liver cells during development. *Mol Cell Biol*
617 **2003**, *23*, 4673-4686.
- 618 2. Xu, Z.R.; Chen, L.Y.; Leung, L.; Yen, T.S.B.; Lee, C.; Chan, J.Y. Liver-specific
619 inactivation of the nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and
620 hepatic neoplasia. *P Natl Acad Sci USA* **2005**, *102*, 4120-4125.
- 621 3. Qiu, L.; Wang, M.; Hu, S.; Ru, X.; Ren, Y.; Zhang, Z.; Yu, S.; Zhang, Y. Oncogenic
622 activation of nrf2, though as a master antioxidant transcription factor, liberated by
623 specific knockout of the full-length nrf1 alpha that acts as a dominant tumor repressor.
624 *Cancers* **2018**, *10*, 520.
- 625 4. Zhang, Y.G.; Xiang, Y.C. Molecular and cellular basis for the unique functioning of nrf1,
626 an indispensable transcription factor for maintaining cell homoeostasis and organ
627 integrity. *Biochemical Journal* **2016**, *473*, 961-1000.
- 628 5. Speliotes, E.K.; Willer, C.J.; Berndt, S.I.; Monda, K.L.; Thorleifsson, G.; Jackson, A.U.;
629 Lango Allen, H.; Lindgren, C.M.; Luan, J.; Magi, R., *et al.* Association analyses of
630 249,796 individuals reveal 18 new loci associated with body mass index. *Nat Genet*

631 2010, 42, 937-948.

632 6. Hirotsu, Y.; Higashi, C.; Fukutomi, T.; Katsuoka, F.; Tsujita, T.; Yagishita, Y.;
633 Matsuyama, Y.; Motohashi, H.; Urano, A.; Yamamoto, M. Transcription factor
634 nf-e2-related factor 1 impairs glucose metabolism in mice. *Genes to cells : devoted to*
635 *molecular & cellular mechanisms* 2014, 19, 650-665.

636 7. Zheng, H.Z.; Fu, J.Q.; Xue, P.; Zhao, R.; Dong, J.; Liu, D.X.; Yamamoto, M.; Tong,
637 Q.C.; Teng, W.P.; Qu, W.D., *et al.* Cnc-bzip protein nrf1-dependent regulation of
638 glucose-stimulated insulin secretion. *Antioxid Redox Sign* 2015, 22, 819-831.

639 8. Hou, Y.Y.; Liu, Z.Y.; Zuo, Z.; Gao, T.C.; Fu, J.Q.; Wang, H.H.; Xu, Y.Y.; Liu, D.X.;
640 Yamamoto, M.; Zhu, B.B., *et al.* Adipocyte-specific deficiency of nfe2l1 disrupts
641 plasticity of white adipose tissues and metabolic homeostasis in mice. *Biochem Biophys
642 Res Co* 2018, 503, 264-270.

643 9. Parola, M.; Novo, E. Nrf1 gene expression in the liver: A single gene linking oxidative
644 stress to nafld, nash and hepatic tumours. *J Hepato* 2005, 43, 1096-1097.

645 10. Zhang, Y.G.; Ren, Y.G.; Li, S.J.; Hayes, J.D. Transcription factor nrf1 is topologically
646 repartitioned across membranes to enable target gene transactivation through its
647 acidic glucose-responsive domains. *Plos One* 2014, 9, e93458.

648 11. Chen, J.Y.; Liu, X.P.; Lue, F.L.; Lu, X.P.; Ru, Y.; Ren, Y.G.; Yao, L.B.; Zhang, Y.G.
649 Transcription factor nrf1 is negatively regulated by its o-glcnylation status. *Febs Lett*
650 2015, 589, 2347-2358.

651 12. Zhu, Y.P.; Zheng, Z.; Xiang, Y.C.; Zhang, Y.G. Glucose starvation-induced rapid
652 death of nrf1 alpha-deficient, but not nrf2-deficient, hepatoma cells results from its

653 fatal defects in the redox metabolism reprogramming. *Oxidative Medicine and Cellular*
654 *Longevity* **2020**, *2020*, 4959821.

655 13. Gou, S.; Qiu, L.; Yang, Q.; Li, P.; Zhou, X.; Sun, Y.; Zhou, X.; Zhao, W.; Zhai, W.; Li,
656 G., *et al.* Metformin leads to accumulation of reactive oxygen species by inhibiting the
657 nfe2l1 expression in human hepatocellular carcinoma cells. *Toxicol Appl Pharmacol*
658 **2021**, *420*, 115523.

659 14. Garcia, D.; Shaw, R.J. Ampk: Mechanisms of cellular energy sensing and restoration
660 of metabolic balance. *Mol Cell* **2017**, *66*, 789-800.

661 15. Lin, S.C.; Hardie, D.G. Ampk: Sensing glucose as well as cellular energy status. *Cell*
662 *Metab* **2018**, *27*, 299-313.

663 16. Ishiyama, M.; Miyazono, Y.; Sasamoto, K.; Ohkura, Y.; Ueno, K. A highly
664 water-soluble disulfonated tetrazolium salt as a chromogenic indicator for nadh as well
665 as cell viability. *Talanta* **1997**, *44*, 1299-1305.

666 17. Szychowski, K.A.; Rybczynska-Tkaczyk, K.; Leja, M.L.; Wojtowicz, A.K.; Gminski, J.
667 Tetrabromobisphenol a (tbbpa)-stimulated reactive oxygen species (ros) production in
668 cell-free model using the 2',7'-dichlorodihydrofluorescein diacetate (h2DCFDA)
669 assay-limitations of method. *Environ Sci Pollut Res Int* **2016**, *23*, 12246-12252.

670 18. Wang, H.F.; Sun, Y.X.; Zhou, X.M.; Chen, C.X.; Jiao, L.; Li, W.Q.; Gou, S.S.; Li, Y.Y.;
671 Du, J.F.; Chen, G.Y., *et al.* Cd47/sirp alpha blocking peptide identification and
672 synergistic effect with irradiation for cancer immunotherapy. *J Immunother Cancer*
673 **2020**, *8*, e000905.

674 19. Zhang, Y.; Lucocq, J.M.; Yamamoto, M.; Hayes, J.D. The nhb1 (n-terminal homology

675 box 1) sequence in transcription factor nrf1 is required to anchor it to the endoplasmic

676 reticulum and also to enable its asparagine-glycosylation. *Biochemical Journal* **2007**,

677 *408*, 161-172.

678 20. Liu, Y.; Cao, Y.Y.; Zhang, W.H.; Bergmeier, S.; Qian, Y.R.; Akbar, H.; Colvin, R.; Ding,

679 J.; Tong, L.Y.; Wu, S.Y., *et al.* A small-molecule inhibitor of glucose transporter 1

680 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in

681 vitro and in vivo. *Mol Cancer Ther* **2012**, *11*, 1672-1682.

682 21. Herzig, S.; Shaw, R.J. Ampk: Guardian of metabolism and mitochondrial homeostasis.

683 *Nat Rev Mol Cell Biol* **2018**, *19*, 121-135.

684 22. Corton, J.M.; Gillespie, J.G.; Hardie, D.G. Role of the amp-activated protein kinase in

685 the cellular stress response. *Curr Biol* **1994**, *4*, 315-324.

686 23. Zhang, Y.N.; Nicholatos, J.; Dreier, J.R.; Ricoult, S.J.H.; Widenmaier, S.B.;

687 Hotamisligil, G.S.; Kwiatkowski, D.J.; Manning, B.D. Coordinated regulation of protein

688 synthesis and degradation by mtorc1. *Nature* **2014**, *513*, 440-+.

689 24. Lehrbach, N.J.; Breen, P.C.; Ruvkun, G. Protein sequence editing of skn-1a/nrf1 by

690 peptide:N-glycanase controls proteasome gene expression. *Cell* **2019**, *177*, 737-750

691 e715.

692 25. Yang, K.; Huang, R.; Fujihira, H.; Suzuki, T.; Yan, N. N-glycanase ngly1 regulates

693 mitochondrial homeostasis and inflammation through nrf1. *J Exp Med* **2018**, *215*,

694 2600-2616.

695 26. Marsh, J.; Mukherjee, P.; Seyfried, T.N. Drug/diet synergy for managing malignant

696 astrocytoma in mice: 2-deoxy-d-glucose and the restricted ketogenic diet. *Nutr Metab*

697 (Lond) **2008**, *5*, 33.

698 27. Jastroch, M.; Divakaruni, A.S.; Mookerjee, S.; Treberg, J.R.; Brand, M.D.

699 Mitochondrial proton and electron leaks. *Essays Biochem* **2010**, *47*, 53-67.

700 28. Cai, L.Y.; Jin, X.; Zhang, J.N.; Li, L.; Zhao, J.F. Metformin suppresses nrf2-mediated

701 chemoresistance in hepatocellular carcinoma cells by increasing glycolysis. *Aging-US*

702 **2020**, *12*, 17582-17600.

703 29. Jewell, J.L.; Russell, R.C.; Guan, K.L. Amino acid signalling upstream of mtor. *Nat*

704 *Rev Mol Cell Biol* **2013**, *14*, 133-139.

705 30. Abu-Remaileh, M.; Wyant, G.A.; Kim, C.; Laqtom, N.N.; Abbasi, M.; Chan, S.H.;

706 Freinkman, E.; Sabatini, D.M. Lysosomal metabolomics reveals v-atpase- and

707 mtor-dependent regulation of amino acid efflux from lysosomes. *Science* **2017**, *358*,

708 807-813.

709 31. Cui, M.; Wang, Z.; Chen, K.; Shah, A.M.; Tan, W.; Duan, L.; Sanchez-Ortiz, E.; Li, H.;

710 Xu, L.; Liu, N., *et al.* Dynamic transcriptional responses to injury of regenerative and

711 non-regenerative cardiomyocytes revealed by single-nucleus rna sequencing. *Dev*

712 *Cell* **2020**, *53*, 102-116 e108.

713 32. Liu, P.; Kerins, M.J.; Tian, W.; Neupane, D.; Zhang, D.D.; Ooi, A. Differential and

714 overlapping targets of the transcriptional regulators nrf1, nrf2, and nrf3 in human cells.

715 *J Biol Chem* **2019**, *294*, 18131-18149.

716 33. Toyama, E.Q.; Herzog, S.; Courchet, J.; Lewis, T.L.; Loson, O.C.; Hellberg, K.; Young,

717 N.P.; Chen, H.; Polleux, F.; Chan, D.C., *et al.* Amp-activated protein kinase mediates

718 mitochondrial fission in response to energy stress. *Science* **2016**, *351*, 275-281.

719 34. Egan, D.F.; Shackelford, D.B.; Mihaylova, M.M.; Gelino, S.; Kohnz, R.A.; Mair, W.;
720 Vasquez, D.S.; Joshi, A.; Gwinn, D.M.; Taylor, R., *et al.* Phosphorylation of ulk1 (hatg1)
721 by amp-activated protein kinase connects energy sensing to mitophagy. *Science* **2011**,
722 *331*, 456-461.

723 35. Houde, V.P.; Ritorto, M.S.; Gourlay, R.; Varghese, J.; Davies, P.; Shpiro, N.;
724 Sakamoto, K.; Alessi, D.R. Investigation of lkb1 ser(431) phosphorylation and cys(433)
725 farnesylation using mouse knockin analysis reveals an unexpected role of prenylation
726 in regulating ampk activity. *Biochemical Journal* **2014**, *458*, 41-56.

727 36. Zhang, C.S.; Jiang, B.; Li, M.Q.; Zhu, M.J.; Peng, Y.Y.; Zhang, Y.L.; Wu, Y.Q.; Li, T.Y.;
728 Liang, Y.; Lu, Z.L., *et al.* The lysosomal v-atpase-ragulator complex is a common
729 activator for ampk and mtorc1, acting as a switch between catabolism and anabolism.
730 *Cell Metab* **2014**, *20*, 526-540.

731 37. Zhang, Y.L.; Guo, H.; Zhang, C.S.; Lin, S.Y.; Yin, Z.; Peng, Y.; Luo, H.; Shi, Y.; Lian,
732 G.; Zhang, C., *et al.* Amp as a low-energy charge signal autonomously initiates
733 assembly of axin-ampk-lkb1 complex for ampk activation. *Cell Metab* **2013**, *18*,
734 546-555.

735 38. Zhang, Y.G.; Hayes, J.D. Identification of topological determinants in the n-terminal
736 domain of transcription factor nrf1 that control its orientation in the endoplasmic
737 reticulum membrane. *Biochemical Journal* **2010**, *430*, 497-510.

738 39. Johnsen, O.; Murphy, P.; Prydz, H.; Kolsto, A.B. Interaction of the cnc-bzip factor
739 tcf11/lcr-f1/nrf1 with mafg: Binding-site selection and regulation of transcription.
740 *Nucleic Acids Res* **1998**, *26*, 512-520.

741 40. Gould, G.W.; Holman, G.D. The glucose transporter family: Structure, function and
742 tissue-specific expression. *Biochem J* **1993**, *295 (Pt 2)*, 329-341.

743 41. Flavahan, W.A.; Wu, Q.L.; Hitomi, M.; Rahim, N.; Kim, Y.; Sloan, A.E.; Weil, R.J.;
744 Nakano, I.; Sarkaria, J.N.; Stringer, B.W., *et al.* Brain tumor initiating cells adapt to
745 restricted nutrition through preferential glucose uptake. *Nat Neurosci* **2013**, *16*,
746 1373-1382.

747 42. Wu, D.; Harrison, D.L.; Szasz, T.; Yeh, C.F.; Shentu, T.P.; Meliton, A.; Huang, R.T.;
748 Zhou, Z.; Mutlu, G.M.; Huang, J., *et al.* Single-cell metabolic imaging reveals a
749 slc2a3-dependent glycolytic burst in motile endothelial cells. *Nat Metab* **2021**, *3*,
750 714-727.

751 43. Yang, M.J.; Guo, Y.; Liu, X.Y.; Liu, N.Q. Hmga1 promotes hepatic metastasis of
752 colorectal cancer by inducing expression of glucose transporter 3 (glut3). *Med Sci
753 Monitor* **2020**, *26*, e924975.

754 44. Dai, W.X.; Xu, Y.; Mo, S.B.; Li, Q.G.; Yu, J.; Wang, R.J.; Ma, Y.L.; Ni, Y.; Xiang, W.Q.;
755 Han, L.Y., *et al.* Glut3 induced by ampk/creb1 axis is key for withstanding energy
756 stress and augments the efficacy of current colorectal cancer therapies. *Signal
757 Transduct Tar* **2020**, *5*, 177.

758 45. Maher, F.; Vannucci, S.; Takeda, J.; Simpson, I.A. Expression of mouse-glut3 and
759 human-glut3 glucose transporter proteins in brain. *Biochem Biophys Res Commun*
760 **1992**, *182*, 703-711.

761 46. Lee, C.S.; Lee, C.; Hu, T.; Nguyen, J.M.; Zhang, J.S.; Martin, M.V.; Vawter, M.P.;
762 Huang, E.J.; Chan, J.Y. Loss of nuclear factor e2-related factor 1 in the brain leads to

763 dysregulation of proteasome gene expression and neurodegeneration. *P Natl Acad*

764 *Sci USA* **2011**, *108*, 8408-8413.

765 47. Bartelt, A.; Widenmaier, S.B.; Schlein, C.; Johann, K.; Goncalves, R.L.S.; Eguchi, K.;

766 Fischer, A.W.; Parlakgul, G.; Snyder, N.A.; Nguyen, T.B., *et al.* Brown adipose tissue

767 thermogenic adaptation requires nrf1-mediated proteasomal activity. *Nat Med* **2018**,

768 *24*, 292-303.

769 48. Hamazaki, J.; Murata, S. Er-resident transcription factor nrf1 regulates proteasome

770 expression and beyond. *Int J Mol Sci* **2020**, *21*, 3683.

771

772

773

774

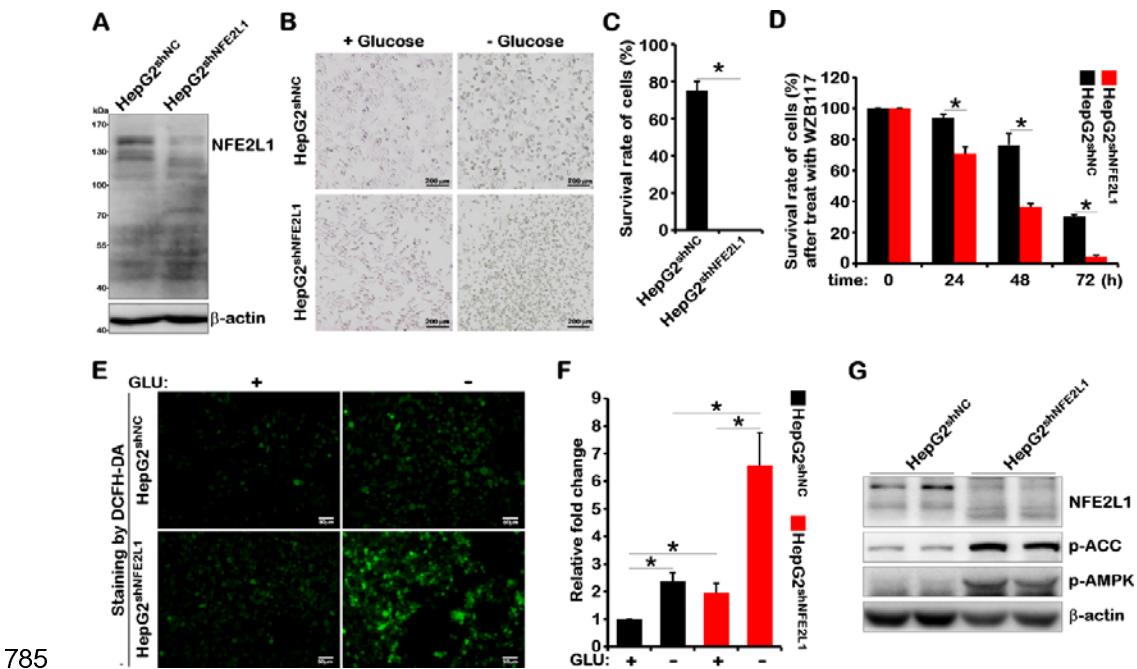
775

776

777

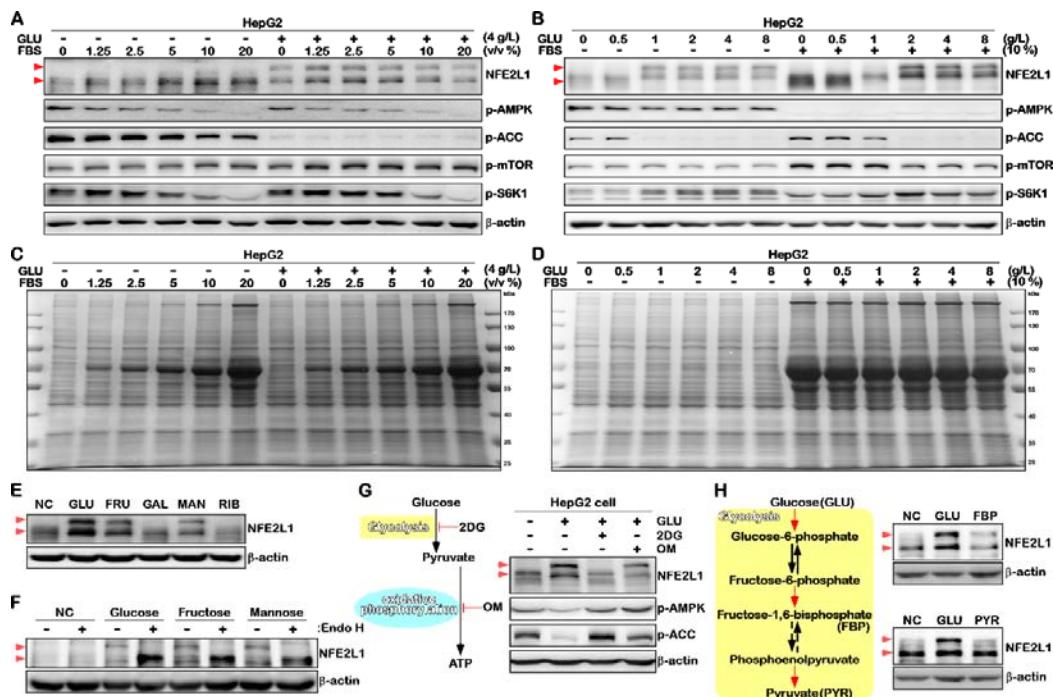
778

779


780

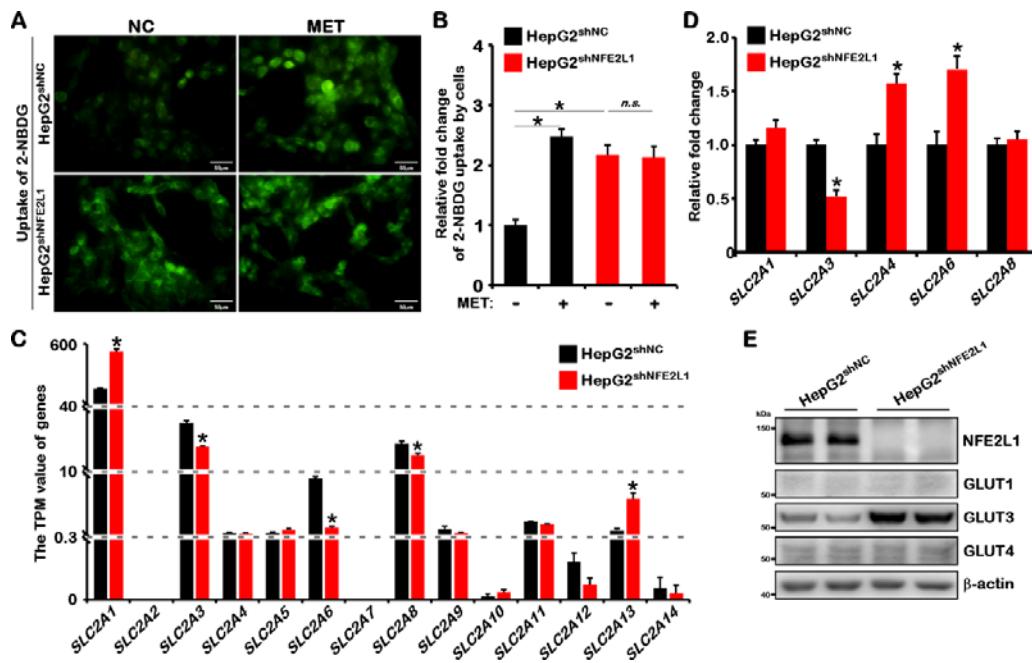
781

782

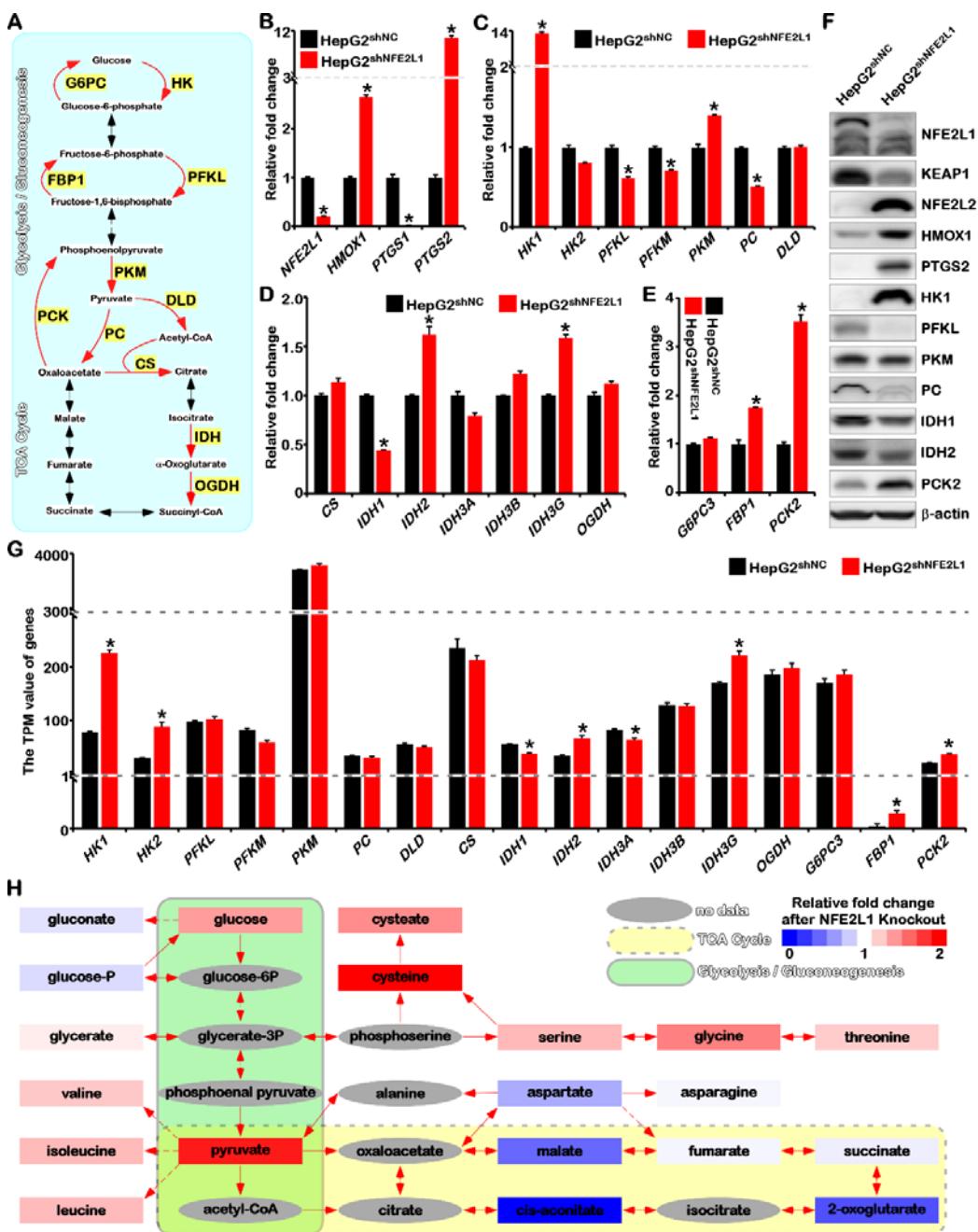

783

784 **Figures and Figure legend**

785 **Figure 1.** NFE2L1 knockdown caused HepG2 cells to be more sensitive to glucose
786 starvation. (A) The total protein of HepG2^{shNC} and HepG2^{shNFE2L1} cells were collected,
787 then the expression of NFE2L1 and β -actin were detected by WB. The HepG2^{shNC} and
788 HepG2^{shNFE2L1} cells were cultured used the DMEM with or without glucose (2 g/L or
789 0 g/L) for 18h, the morphology of cells were observed under the microscope (B), and
790 the survival rate of cells was detected by CCK8 kit (C). (F) The HepG2^{shNC} and
791 HepG2^{shNFE2L1} cells were treated with WZB117 (200 μ M), and the survival rate of
792 cells was detected in 0h, 24h, 48h, 72h by CCK8 kit, respectively. The HepG2^{shNC} and
793 HepG2^{shNFE2L1} cells were cultured used the DMEM without glucose for 6h, then the
794 ROS in cells were staining by DCFH-DA (10 μ M) for 20min and achieved by
795 microscopy (E), and the intensity of fluorescence were counted (D), the scale is 50 μ m.
796 (G) The total protein of HepG2^{shNC} and HepG2^{shNFE2L1} cells were collected, then the
797 expression of NFE2L1, pAMPK, pACC and β -actin were detected by WB. n \geq 3, '*'
798 means $p < 0.05$.


800
801

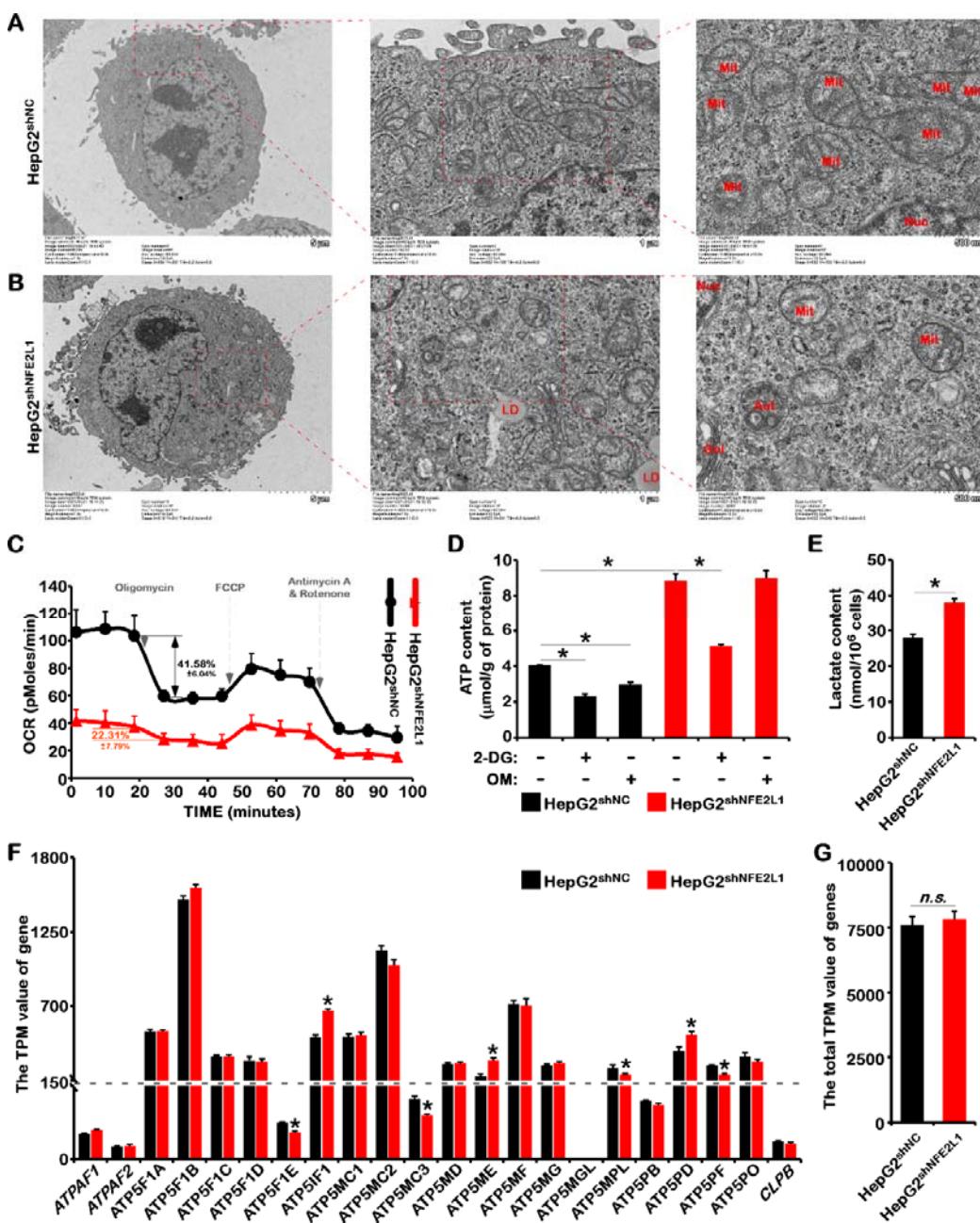
802 **Figure 2.** NFE2L1 is a glucose sensitive protein. **(A)** HepG2 cells were cultured used
 803 DMEM medium with different volume ratios of FBS (0%, 1.25%, 2.5%, 5%, 10%,
 804 20%), with or without glucose (4g/L or 0g/L) for 16h, and the total protein were
 805 collected, then the expression of NFE2L1, p-AMPK, p-ACC, p-mTOR, p-S6K1 and
 806 β -actin were detected by WB. **(B)** HepG2 cells were cultured used DMEM medium
 807 with different concentrations of glucose (0g/L, 0.5g/L, 1g/L, 2g/L, 4g/L, 8g/L), and
 808 with or without FBS (10% or 0%) for 16h, and the total protein were collected, then
 809 the expression of NFE2L1, p-AMPK, p-ACC, p-mTOR, p-S6K1 and β -actin were
 810 detected by WB. **(C)** The total protein change of the sample in (A) staining by
 811 coomassie brilliant blue. **(D)** The total protein change of the sample in (B) staining by
 812 coomassie brilliant blue. **(E)** HepG2 cells were glucose starvation for 4h and then
 813 cultured used DMEM with GLU (2g/L), FRU (30mM), GAL (30mM), MAN (30mM)
 814 and RIB (30mM) for 4h, the total protein were collected and the expression of
 815 NFE2L1 and β -actin were detected by WB. **(F)** The HepG2 cells were cultured used
 816 DMEM medium with GLU (0g/L), GLU (2g/L), FRU (30mM) or MAN (30mM) for
 817 4h, the total protein were collected and Endo H was used to deglycosylate the
 818 glycated protein in vitro, then the expression of NFE2L1 and β -actin were detected by
 819 WB.


820 WB. **(G)** The HepG2 cells were glucose starvation for 4h and then treated with GLU
821 (2g/L), GLU (2g/L) + 2DG (20mM) or GLU (2g/L) + OM (10 μ M), and the total
822 protein was collected after 4 hours, then the expression of NFE2L1, p-AMPK, p-ACC,
823 p-mTOR, p-S6K1 and β -actin were detected by WB. **(H)** The HepG2 cells were
824 glucose starvation for 4h and then treated with GLU (2g/L), FBP (30mM), or PYR
825 (30mM) for 4h, the total protein was collected and then the expression of NFE2L1
826 and β -actin were detected by WB.

827
828

829 **Figure 3.** NFE2L1 can affect the uptake of glucose for HepG2 cells. **(A)** The
830 HepG2^{shNC} and HepG2^{shNFE2L1} cells were treated with MET (1mM) for 12h, and then
831 incubated in a serum-free medium containing 20 μ M of 2-NBDG at 37 $^{\circ}$ C for 10min
832 and the green fluorescent images were achieved by microscopy, the scale is 50 μ m. **(B)**
833 The statistics show the results in **(A)**. **(C)** The TPM value of SLC2A1, SLC2A2,
834 SLC2A3, SLC2A4, SLC2A5, SLC2A6, SLC2A7, SLC2A8, SLC2A9, SLC2A10,
835 SLC2A11, SLC2A12, SLC2A13, SLC2A14 genes that related to glucose uptake of cell,
836 date comes from transcriptome sequencing. **(D)** The expression of SLC2A1-9 genes in
837 HepG2^{shNC} and HepG2^{shNFE2L1} cells were detected by qPCR. The SLC2A2, SLC2A5,

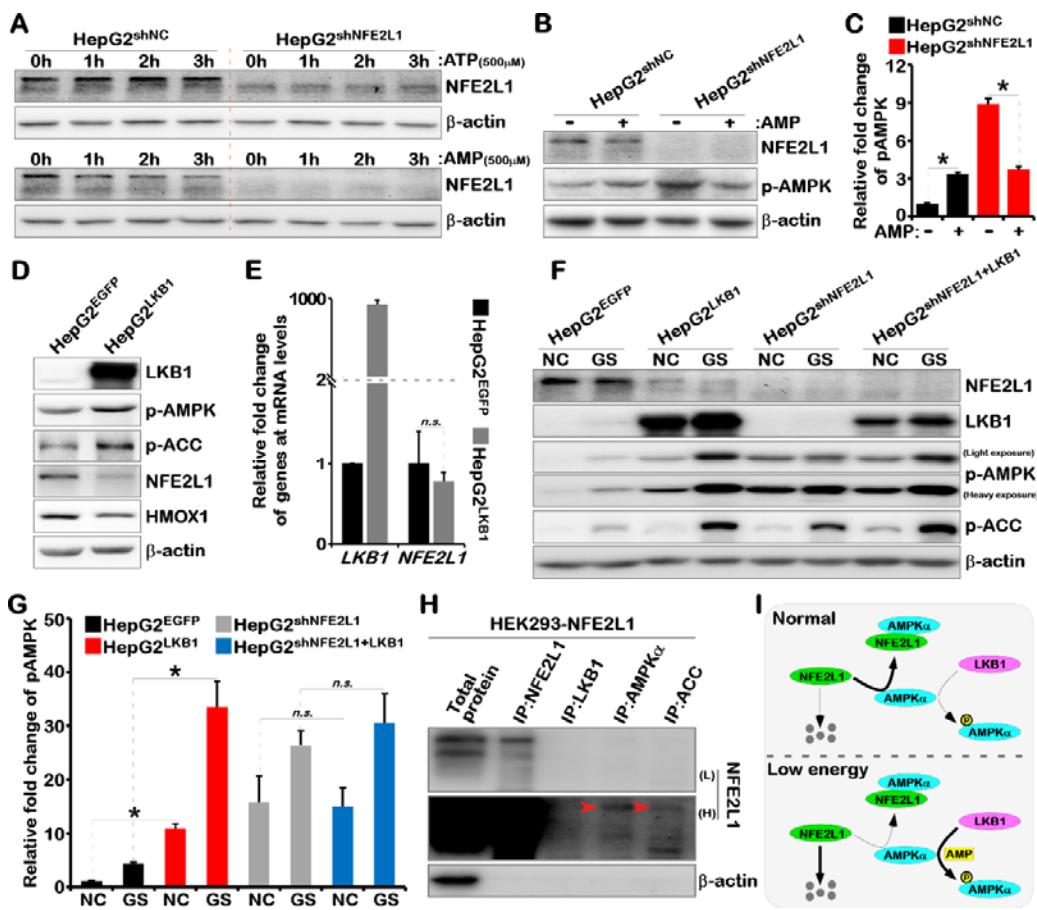
839 *SLC2A7* and *SLC2A9* have not be detected for it not expressed or extremely low, and
 840 β -actin gene was used as the internal control. (E) The expression of NFE2L1, GLUT1,
 841 GLUT3, GLUT4 and β -actin in HepG2^{shNC} and HepG2^{shNFE2L1} cells were detected by
 842 WB. $n \geq 3$, '*' means $p < 0.05$, 'n.s.' means 'no significant'.
 843
 844



845

846 **Figure 4.** Knockdown of NFE2L1 leads to reprogramming of glucose metabolism. **(A)**
847 The schematic diagram of glycolysis, gluconeogenesis and TCA metabolism process
848 and key enzymes. **(B)** The expression of *NFE2L1*, *HMOX1*, *PTGS1* and *PTGS2* genes
849 in HepG2^{shNC} and HepG2^{shNFE2L1} cells were detected by qPCR, β -actin gene was used
850 as the internal control. **(C)** The expression of *HK1*, *HK2*, *PFKL*, *PFKM*, *PKM*, *PC*
851 and *DLD* genes in HepG2^{shNC} and HepG2^{shNFE2L1} cells were detected by qPCR,
852 β -actin gene was used as the internal control. **(D)** The expression of *CS*, *IDH1*, *IDH2*,
853 *IDH3A*, *IDH3B*, *IDH3G* and *OGDH* genes in HepG2^{shNC} and HepG2^{shNFE2L1} cells
854 were detected by qPCR, β -actin gene was used as the internal control. **(E)** The
855 expression of *NFE2L1*, *G6PC3*, *FBP1* and *PCK2* genes in HepG2^{shNC} and
856 HepG2^{shNFE2L1} cells were detected by qPCR, β -actin gene was used as the internal
857 control. **(F)** The expression of NFE2L1, KEAP1, NFE2L2, HMOX1, PTGS2, HK1,
858 PFKL, PKM, PC, IDH1, IDH2, PCK2 and β -actin in HepG2^{shNC} and HepG2^{shNFE2L1}
859 cells were detected by WB. **(G)** The expression of key enzyme for glucose
860 metabolism in the transcriptome data. **(H)** The results of the metabolome showed the
861 effect of NFE2L1 on Central Metabolism. $n \geq 3$, '*' means $p < 0.05$.

862


863

864 **Figure 5.** The effect of NFE2L1 knockdown in HepG2 cells on the morphology and
 865 function of mitochondria. The morphology of mitochondria in HepG2^{shNC} cells (A)
 866 and HepG2^{shNFE2L1} cells (B) were detected by electron microscope. (C) The oxygen
 867 consumption rate (OCR) of HepG2^{shNC} and HepG2^{shNFE2L1} cells were measured by
 868 Seahorse XF Cell Mito Stress Test Kit. (D) The HepG2^{shNC} and HepG2^{shNFE2L1} cells
 869 were treated with 2DG (20mM) or OM (10μM) for 12h, and the content of ATP in
 870 cells were detected by ATP assay kit. (E) The content of lactate in HepG2^{shNC} and
 871 HepG2^{shNFE2L1} cells were detected by lactate assay kit. (F) The TPM value of genes
 872 for ATP synthase subunits in HepG2^{shNC} and HepG2^{shNFE2L1} cells were detected by
 873 RNA-seq. (G) The total TPM value of genes in HepG2^{shNC} and HepG2^{shNFE2L1} cells
 874 were detected by RNA-seq. The data are shown as mean ± SD. *p < 0.05, n.s. = no
 875 significant difference.

872 HepG2^{shNFE2L1} cells were detected by Lactic Acid assay kit. (F) The TPM value of
 873 *ATPAF1*, *ATPAF2*, *ATP5F1A*, *ATP5F1B*, *ATP5F1C*, *ATP5F1D*, *ATP5F1E*, *ATP5IF1*,
 874 *ATP5MC1*, *ATP5MC2*, *ATP5MC3*, *ATP5MD*, *ATP5ME*, *ATP5MF*, *ATP5MG*,
 875 *ATP5MGL*, *ATP5MPL*, *ATP5PB*, *ATP5PD*, *ATP5PF*, *ATP5PO* and *CLPB* genes that
 876 related to ATP synthesis in mitochondria in HepG2^{shNC} and HepG2^{shNFE2L1} cells, date
 877 comes from transcriptome sequencing. (G) The total TPM value of genes in (F). n ≥ 3,
 878 ‘*’ means $p < 0.05$, ‘n.s.’ means ‘no significant’.

879
 880

881
 882 **Figure 6.** NFE2L1 disrupts the phosphorylation of AMPK by LKB1 by directly
 883 interacting with AMPK. (A) The HepG2^{shNC} and HepG2^{shNFE2L1} cells were treated
 884 with ATP (500 μ M) or AMP (500 μ M) for 1h, 2h, 3h, respectively. The expression of
 885 NFE2L1 and β-actin were detected by WB. (B) The HepG2^{shNC} and HepG2^{shNFE2L1}
 886 cells were treated with AMP (500 μ M) for 2h and the expression of NFE2L1, p-AMPK

887 and β -actin were detected by WB. **(C)** Count and calculate the relative fold change of
888 p-AMPK in **(B)**. **(D)** The expression of LKB1, p-AMPK, p-ACC, NFE2L1, HO1 and
889 β -actin in HepG2^{EGFP} and HepG2^{LKB1} cells were detected by WB. HepG2^{EGFP} and
890 HepG2^{LKB1} cells were constructed by lentiviral infected. **(E)** The expression of *LKB1*
891 and *NFE2L1* in HepG2^{EGFP} and HepG2^{LKB1} cells were detected by qPCR, with the
892 β -actin was used as the internal control. **(F)** HepG2^{EGFP}, HepG2^{LKB1}, HepG2^{shNC} and
893 HepG2^{shNFE2L1+LKB1} cells were treated with glucose starvation (GS) for 4h, and the
894 expression of NFE2L1, LKB1, p-AMPK, p-ACC and β -actin were detected by WB.
895 **(G)** Count and calculate the relative fold change of p-AMPK in **(F)**. **(H)** The NFE2L1
896 overexpression plasmid *pLVX-NFE2L1-puro* transfected into HEK293T cells, and the
897 total protein was collected with non-denatured lysate buffer after 48h. The specific
898 antibodies of NFE2L1, LKB1, AMPK, and ACC protein were used for Co-IP
899 experiments, then NFE2L1 and β -actin were detected by WB. ‘L’ means ‘Low
900 exposure’ and ‘H’ means ‘Heavy exposure’. **(I)** The model diagram of NFE2L1
901 involved in regulating AMPK signal. $n \geq 3$, ‘*’ means $p < 0.05$, ‘n.s.’ means ‘no
902 significant’.