

1 **Title**

2 Multichromatic Near-Infrared Imaging to Assess Interstitial Lymphatic and Venous Uptake *In*
3 *Vivo*

4

5 **Authors**

6 Fabrice C. Bernard¹, Jarred Kaiser², Sarvgna K. Raval², Zhanna V. Nepiyushchikh³, Thanh N.
7 Doan², Nick J. Willett^{1,2,4,5}, J. Brandon Dixon^{1,3,5}

8 ¹Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology
9 and Emory University, Atlanta, GA

10 ²Department of Orthopaedics, Emory University, Atlanta, GA

11 ³George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology,
12 Atlanta, GA

13 ⁴Department of Orthopaedics, Atlanta Veteran's Affairs Medical Center, Atlanta, GA

14 ⁵Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology,
15 Atlanta, GA

16

17 * Correspondence:

18 J. Brandon Dixon

19 Georgia Institute of Technology

20 315 Ferst Drive

21 Room 2312

22 Atlanta, GA 30332

23 Telephone: 404-385-3915

24 Email: dixon@gatech.edu

25

26 * Correspondence:

27 Nick J. Willett

28 Atlanta Veteran Affairs Medical Center

29 1670 Clairmont Rd

30 Room 5A-115

31 Decatur, GA 30033

32 Telephone: 404-321-6111, ext. 3248

33 Email: nick.willett@emory.edu

34

35

36

37 **Abstract**

38 **Significance:** Changes in interstitial fluid clearance are implicated in many diseases. Using NIR
39 imaging with properly sized tracers could enhance our understanding of how venous and
40 lymphatic drainage are involved in disease progression or enhance drug delivery strategies.

41 **Aim:** We investigated multichromatic NIR imaging with multiple tracers to assess *in vivo*
42 microvascular clearance kinetics and pathways in different tissue spaces.

43 **Approach:** We used a chemically inert IR Dye 800CW (free dye) to target venous capillaries
44 and a purified conjugate of IR Dye 680RD with a 40 kDa PEG (PEG) to target lymphatic
45 capillaries *in vivo*. Optical imaging settings were validated and tuned *in vitro* using tissue
46 phantoms. We investigated multichromatic NIR imaging's utility in two *in vivo* tissue beds – the
47 mouse tail and rat knee joint. We then tested the ability of the approach to detect interstitial fluid
48 perturbations due to exercise.

49 **Results:** In an *in vitro* simulated tissue environment, free dye and PEG mixture allowed for
50 simultaneous detection without interference. Co-injected NIR tracers cleared from the interstitial
51 space via distinct routes allowed assessment lymphatic and venous uptake in the mouse tail. We
52 determined that exercise after injection transiently increased lymphatic drainage as measured by
53 lower normalized intensity immediately after exercise, while exercise pre-injection exhibited a
54 transient delay in clearance from the joint

55 **Conclusions:** NIR imaging enables of simultaneous imaging of lymphatic and venous-mediated
56 fluid clearance with great sensitivity and can be used to measure transient changes in clearance
57 rates and pathways.

58

59 **Key Words**

60 Tissue Optics, NIR Imaging, Venous, Lymphatic, Clearance

61

62

63

64 **Introduction**

65 The circulatory system maintains tissue homeostasis through the continuous delivery of
66 nutrients and oxygen to the tissue space and the removal of proteins and waste products. Crucial
67 to this process is the removal of interstitial fluid, proteins, and lipids by the lymphatic
68 vasculature; this fluid then returns to the circulation through absorption at the lymph nodes and
69 delivery to the central venous system through the lymphatic ducts. Recent developments in
70 optical imaging have provided new capabilities to quantify lymphatic function *in vivo*.

71 Generally, there are two routes of fluid clearance from tissues: 1) venous uptake and 2)
72 lymphatic uptake. Venous return in tissue beds is passive, size-dependent, and varies based on
73 capillary physiology^{1,2}. In contrast, lymphatic capillaries originate from the tissues and have flap-
74 like openings, which non-discriminately allow molecules of all sizes to enter. The extrinsic
75 motion of the surrounding tissue combined with the intrinsic contractility of downstream
76 lymphatics, create transient pressure gradients that allow fluid and macromolecules to enter the
77 vessel and be transported downstream. Impaired interstitial fluid clearance has been implicated
78 in various diseases, including lymphedema³, cancer⁴, and arthritis⁵. Techniques to measure
79 clearance kinetics from interstitial spaces are critical to evaluating disease state and different
80 tissues' ability to drain molecules from the interstitial spaces. These measurements have been
81 assessed classically via radiolabeled agents, which carry potential toxicity and require additional
82 safety measures⁶⁻⁸. However, the advent of near-infrared (NIR) fluorescent imaging allows for
83 cost-effective, high resolution, clinical and preclinical imaging in a variety of applications⁹⁻¹¹.

84 NIR-based technologies have advanced considerably in the last decade—both in terms of
85 imaging components as well as tracers and fluorophore-based probes—which have allowed for
86 significant new *in vivo* capabilities. The NIR imaging window includes the visible and infrared
87 light spectrum from 650-1300 nm, which due to longer wavelengths, penetrates tissues deeper
88 than higher energy light¹²⁻¹⁴. Contrast agents like indocyanine green (ICG), polyethylene glycol
89 (PEG) conjugated with NIR dyes, or NIR quantum dots have been used to visualize lymphatics
90 and blood vessels *in vivo*¹⁵⁻¹⁹. Preclinical NIR imaging has also previously enabled the
91 measurement of tracers' differential uptake as a function of size from different tissue beds^{17,20}.
92 Multichromatic NIR imaging (e.g., imaging with multiple NIR fluorescent probes) empowers
93 mapping of the drainage zones of lymph nodes in rodents^{19,21,22}. However, this has not yet been
94 widely extended to differentiate between venous uptake and lymphatic uptake simultaneously in
95 the same tissue bed.

96 We have previously shown the size-dependent uptake of 2 and 40 kDa NIR PEG into the
97 venous and lymphatic circulation, respectively, after injection into the rat knee joint²³. In that
98 study, we demonstrated that the intra-articular injection of endothelin-1 (ET-1), a vasoactive
99 compound in lymphatics and veins, transiently reduced the outflow of both PEG tracers from the
100 joint in a dose-dependent manner. Due to these experiments' monochromatic nature, we were
101 unable to assess lymphatic and venous drainage simultaneously. The inability to differentiate
102 clearance mechanisms and function between the venous and lymphatic systems is a critical
103 technological gap that has broad implications for many different tissues and disease states.
104 Coupling *in vivo* delivery with multichromatic NIR imaging could allow for the advancement of
105 the understanding of how the venous and lymphatic drainage may change in the context of
106 diseases or physical interventions. The objective of this manuscript was to develop a novel
107 technological approach that couples NIR imaging with the size-dependent clearance of tracers *in*
108 *vivo*. We hypothesized that a multichromatic imaging approach for differentially imaging the
109 lymphatic and venous systems would show the technique's utility in both the mouse tail, where

110 the superficial vessels can be clearly visualized, and in the rat knee joint, where uptake occurs
111 slowly and in deeper tissue structures. Additionally, we perturbed the joint microenvironment by
112 exercising the rats on a treadmill and detected changes in venous and lymphatic clearance within
113 the knee joint.

114

115 **Methods**

116 **Tracers for *in vivo* injection**

117 IR Dye 800CW carboxylate (free dye) (LI-COR Biosciences) was purchased as a dry
118 lyophilized powder. 20 nanomoles were resuspended in 100 μ l of sterile saline to make a 20 mM
119 stock solution and used within a few days of resuspension. For tail injections, 2.5 μ l of the stock
120 solution was used. For tissue phantom studies and knee injections, the stock solution was diluted
121 to 0.4 mM in sterile saline.

122 40 kDa methoxy polyethylene glycol (PEG) amine (JenKem Technology) was purchased
123 as a dry lyophilized powder for PEG tracer synthesis. To conjugate 40 kDa PEG amine to IR
124 Dye 680RD, 16 mg of PEG amine was reacted with 30 μ l of 10 mg/ml IR Dye 680RD NHS ester
125 (diluted in dimethyl sulfoxide (DMSO)) in a total of 1 ml of Dulbecco's Phosphate-Buffered
126 Saline (DPBS) overnight. Unreacted IR Dye, salts, and DMSO were removed via centrifugal
127 filtration using deionized water and a 10 kDa molecular weight cutoff centrifugal filters (Amicon
128 Ultra). After centrifugation, the purified tracers were separated into 10 equal volumes of 100 μ l
129 and aliquoted to 1.6 mg of tracer per aliquot, lyophilized, and kept frozen at -20°C for long term
130 storage. For tail injections, aliquots were resuspended in 100 μ l of sterile saline, and 2.5 μ l of
131 P40D680 was injected intradermally. For tissue phantom studies and knee clearance studies,
132 aliquots were diluted to 1 mg/ml.

133

134 **Optical properties of tracers**

135 To quantify each tracer's absorbance in the visible and NIR range, 0.4 mM, and 1 mg/mL
136 of the free dye and 1mg/mL of PEG were loaded into a standard UV/vis spectrophotometer
137 (Ultraspec 2100, Biochrom). The emission and excitation spectra of free dye and PEG were
138 assessed using a microplate reader with filter-based emission and detection capabilities (Synergy
139 H4, BioTek). For PEG and free dye, fixed emission filters of 720 and 840 nm were used while
140 sweeping the excitation source from 400 – 700 and 400 – 820 nm, respectively, to generate
141 excitation curves. Following the excitation sweeps, fixed excitation wavelengths of 660 and 760
142 were used to conduct an emission sweep from 680/780 – 900 nm for PEG and free dye.

143

144 **NIR imaging setup**

145 Multichromatic NIR imaging was carried out using a customized NIR setup ^{17,24}. Briefly,
146 the system consists of a cooled EMCCD camera (Evolve eXcelon, Photometrics) attached to a
147 stereomicroscope with adjustable zoom (MVX10, Olympus), a shutter-controlled xenon arc light
148 source (Lambda LS, Sutter Instrument Company), and a manual filter wheel equipped with
149 standard Cy5.5 and ICG-B filter cubes (Chroma Technology). The electronic shutter was left
150 open during continuous imaging sessions, and images were acquired using MicroManager
151 software ²⁵.

152

153 **Dye and tracer characterization and tissue phantom studies**

154 Polydimethylsiloxane (PDMS) tissue phantoms, measuring 2 and 4 mm in thickness,
155 were created using a previously described protocol¹⁵. By weight, 88.10% silicone elastomer base

156 (Sylgard 184, Dow Corning) was mixed with 8.81% curing agent (Sylgard 184, Dow Corning),
157 1.76% Aluminum Oxide (Sigma Aldrich), and 1.32% cosmetic powder (Max Factor Crème Puff
158 Deep Beige 42). PDMS phantoms were poured into plastic molds and left to cure in the oven at
159 60°C overnight.

160 To obtain reference measurements for our NIR imagine setup, stock PEG and free dye
161 were diluted serially in two-fold dilutions in PBS. In separate 1.5 ml centrifuge tubes, free dye
162 and PEG were diluted using PBS to 0.4 mM and 1 mg/ml. The tissue phantoms were used to
163 demonstrate the effect of tissue depth on tracer intensity with the previous serially diluted
164 samples. To simulate increasing tissue depth each centrifuge tube was imaged with no tissue
165 phantom or with a 2- or 4-mm tissue phantom. To quantify the sensitivity to each tracer in the
166 presence of the other NIR tracer, each tracer was diluted using the stock solution of the other
167 tracer. The 2 mm tissue phantom was used to mimic the typical depth of the superficial
168 collecting lymphatics in rodents. All images were taken with an exposure time of 50 and 5
169 milliseconds, respectively, for free dye and PEG.
170

171 **Tail injections to visualize and quantify routes of tracer clearance**

172 To visualize the tail lymphatics and blood vessels, 20 μ l of 1% (w/v) Evans blue solution
173 was injected into the tip of the tail of an anesthetized mouse. Evans blue binds to interstitial
174 proteins and is mainly taken up by lymphatics when injected intradermally. Post-euthanasia the
175 skin was removed at the base of the tail to reveal the underlying vasculature. Images of the
176 vasculature were taken using a standard color camera to provide a comparison with NIR images.
177 For NIR imaging through the skin, isoflurane was used to anesthetize C57Bl/6J mice, and the
178 animal was placed in a recumbent position (on its side). A mixture containing 2.5 μ l of the free
179 dye and 2.5 μ l of PEG was mixed and loaded into 1 mL insulin syringes (Becton Dickinson) and
180 injected intradermally into the tip of the tail. After injection, standard tape was gently applied to
181 the base and the end of the tail to minimize drift from motion artifact during imaging. Free dye
182 and PEG signals were imaged in 2-minute increments by manually changing the filter wheel to
183 select the appropriate filter set every 1200 frames (Figure 1a). The free dye and PEG signal were
184 evaluated at 50 and 20 milliseconds, respectively, and images were captured at ten frames per
185 second.

186 Animal care and experiments were conducted under the institutional guidelines of the
187 Georgia Institute of Technology. Experimental procedures were approved by the Georgia
188 Institute of Technology Institutional Animal Care and Use Committee (IACUC).
189

190 **Intra-articular injections for clearance**

191 Male Lewis rats weighing 350-400 grams were trained to run on the treadmill over two
192 weeks. On day one, the rats were acclimated to the treadmill for 30 minutes without running. On
193 day two, the treadmill speed was set to 5 m/min for 5 minutes and 0 m/min for 25 minutes.
194 Each day the time spent running was increased by 5 minutes a day until the rats could run for 30
195 minutes on consecutive days after two weeks. Rats that failed to walk the targeted duration twice
196 over the training course were excluded from the study. All other rats were then randomly
197 selected for the experimental procedure to either run or serve as controls for the study duration.
198 Three sets of experiments were conducted with these two rat groups: 1) rats that did not run on
199 the treadmill and were co-injected bilaterally with NIR tracers (No Running), 2) rats that were
200 run on the treadmill for 30 minutes before injection (Pre-Injection Running), 3) rats that were run
201 on the treadmill for 30 minutes immediately after injection (Post-Injection Running).

202 The day before the experiment, all rats were anesthetized, the hair was removed from the
203 knees and lower abdomen, and background images of the knees were taken. Before imaging,
204 each rat was induced via 5% isoflurane on the day of the experiment, which was maintained at
205 2% after induction. Tracers were injected in both knees and imaged at set time intervals
206 (approximately 0, 1, 2, 3, 5, 7 12, & 24 hours) over the course of 24 hours.

207 Animal care and experiments were conducted per the institutional guidelines of the
208 Atlanta Veteran Affairs Medical Center (VAMC). Experimental procedures were approved by
209 the Atlanta VAMC IACUC.

210

211 **Image processing and analysis**

212 Images captured using our custom NIR imaging system were saved as 16-bit depth 512 x
213 512-pixel TIF file format. For both tissue phantom experiments and *in vivo* knee joint clearance
214 experiments, the tracer's intensity in the image was quantified using a custom MATLAB
215 (MathWorks) script. The ROI for each image was quantified by averaging the 5% highest pixel
216 intensities. This ROI visually corresponded with the size and position of the knee space shown in
217 Figure 1b. Data points were fitted to a monoexponential function $f(t) = y_0 + Ae^{-kt}$, where y_0 is
218 the offset, t is the time in hours, A is the normalized peak fluorescence at the maximum intensity,
219 and k is the time constant. τ (tau) was determined as the inverse of the time constant. To compare
220 each intervention's short-term effects, we calculated the mean change in ROI intensity over the
221 first hour and subtracted the mean value of internal control rats. To determine each intervention's
222 overall effects, we calculated the time constant for each runner and normalized it to the non-
223 runner group's mean.

224 For mouse tail injections of NIR dyes, the filter was changed manually every 2 minutes.
225 To remove imaging artifacts from the manual changing of the filter, 60 seconds (600 frames) of
226 each imaging window were cropped. Fiji software was used to crop, register, and quantify
227 regions of interest (ROIs)²⁶. An ROI was drawn on the blood and lymphatic vessels to monitor
228 the signal of free dye and PEG over the experiment.

229

230 **Data presentation and statistics**

231 All clearance data are presented as mean \pm SEM. A Brown-Forsythe test was used to
232 quantify if variances were significantly different. A student's t-test with a Welch's correction
233 was used to compare venous and lymphatic area under the curve and tau in control rats. A one-
234 way ANOVA with Dunnett's multiple comparison test was used to calculate statistical
235 significance for exercise studies.

236

237 **Results**

238 **Optimization and characterization of NIR tracers using an *in vitro* tissue phantom**

239 Absorbance spectra of free dye and PEG display an absorption maximum of 765 nm and
240 672 nm, respectively (Figure 2a). Emission and excitation spectra for these tracers also show
241 each tracer's expected maxima referenced to the full-width half maximum of the filter sets on the
242 imaging system (Figure 2b). To determine the limits of detection in our imaging system as a
243 function of concentration and tissue depth, we used tissue phantoms. Individual tracers were
244 imaged in 1.5 ml centrifuge tubes with and without 2- and 4-mm phantoms. Increasing the tissue
245 phantom thickness decreased the fluorescent intensity, though even at 4 mm, the dyes could be
246 detected at a concentration of 3% of the injection concentration (Figure 2c). At a thickness of
247 2mm, which is within the depth of most superficial lymphatics in rodents, this detection limit

248 was less than 1% of the injection site's intensity. Notably, mixing the tracers did not affect the
249 sensitivity to detect one dye when contained in the background of the other tracer (Figure 2d).
250

251 **NIR tracers of different size exit through spatially distinct clearance pathways**

252 The mouse tail's unique circulatory and lymphatic vasculature was visualized via
253 intradermal injection of Evans blue and skin removal. The lymphatics immediately cleared
254 Evans blue allowing clear visualization of the two lymphatic vessels running parallel to the tail
255 vein and artery (Figure 3a). To simultaneously quantify lymphatic and venous drainage, these
256 tracers were co-injected in the mouse tail. Images for each tracer were captured during two-
257 minute imaging windows (eight recordings per tracer). Figure 3b shows that the routes of
258 clearance of free dye in the blood circulation (red) and PEG dye in the lymphatics (blue) 10
259 minutes post-injection are spatially distinct and match the expected physiology where two
260 lymphatic vessels flank a blood vessel. The free dye was initially detected in the lymphatic
261 within the first imaging window (Supplementary Video 2) as the free dye is not expected to be
262 excluded by lymphatics. The free dye intensity increased between the first, third, and fifth
263 imaging windows and remains constant by the seventh (Figure 3d). However, PEG entered the
264 lymphatics after injection and did not appear in the bloodstream over this time interval,
265 demonstrating the lymphatic specificity of PEG (Supplementary Video 1). Also, the lymphatic
266 tracer exhibited strong transient peaks in the signal intensity due to intrinsic phasic lymphatic
267 contractions. In contrast, no such peaks were present in the tracer taken up into the blood
268 circulation.
269

270 **Co-injection to assess differential tracer clearance in the joint**

271 The effect of exercise on intra-articular clearance has not been extensively studied^{27,28} ,
272 specifically in quantifying the change in venous and lymphatic drainage. Therefore, after
273 confirming size-dependent uptake from the tail, we used multichromatic imaging to assess intra-
274 articular drainage. Unlike intradermal injections, materials from the joint space clear much
275 slower²⁹⁻³¹; therefore, venous and lymphatic clearance from this interstitial depot was expected
276 to occur over one day. Simultaneously injected tracer clearance PEG and free dye profiles
277 (Figure 4a) exhibited an initial increase followed by monoexponential clearance kinetics
278 consistent with previously reported figures²³. Specifically, lymphatic tracers showed a more
279 substantial increase in intensity after the injection, whereas this increase was less pronounced for
280 the venous tracer. By 12 hours post-injection, the intensity of the free dye was not detectable
281 (Figure 4a). The normalized area under the curve (AUC) for free dye was calculated to be $3.59 \pm$
282 0.18 and 18.57 ± 1.33 for PEG ($p < 0.0001$), demonstrating significant retention of the PEG in the
283 joint space (Figure 4b). The time constant (τ) for the clearance of free dye was calculated to
284 be 4.28 ± 0.25 hrs, while the time constant for PEG was 7.11 ± 0.51 hrs ($p = 0.0003$) (Figure 4c).
285 A detectable amount of the PEG tracer remained in the joint space even after 24 hours (Figure
286 4a), likely due to some PEG tracer remaining trapped in the interstitium.
287

288 **Multichromatic imaging for measuring patterns in joint clearance**

289 To demonstrate the utility and sensitivity of multichromatic imaging to evaluate
290 differential changes in clearance mechanisms for venous and lymphatic drainage, animals were
291 exercised either pre- or post-injection. In rats that received no running intervention, clearance
292 curves for both lymphatic and venous tracers had clearance profiles as expected. (Figure 5a).
293 Qualitatively, from the initial injections, there did not appear to be differences in differences in

294 the traces of animals that were designated runners and control animals. To quantitatively
295 evaluate these differences, the normalized changes in fluorescence intensity were calculated (Fig
296 6a, c), as well as the time constant (Fig 6b, d).

297 For venous drainage, running pre-injection (0.26 ± 0.10) significantly increased ($p =$
298 0.04) the change in fluorescence intensity compared to running post-injection (-0.03 ± 0.06),
299 however neither were significantly different from control (0.06 ± 0.06) (Figure 6a). Figure 6c
300 shows the normalized tau (venous) for running post-injection was calculated to be (0.79 ± 0.13)
301 which is significantly reduced ($p = 0.04$) the compared to pre-injection running (1.188 ± 0.12)
302 (Figure 6c) however neither were significantly different than controls (1.16 ± 0.05).

303 When assessing lymphatic clearance, we observed a significant reduction ($p = 0.0003$ and
304 $p = 0.01$) in the initial change in fluorescent intensity in running post-injection (-0.19 ± 0.05)
305 compared to pre-injection (0.36 ± 0.1) and non-running controls (0.20 ± 0.1) (Figure 6b).
306 however, we did not observe any significant change in tau for lymphatic tracers for the various
307 conditions of running (Figure 6d). These data suggest the transient effect of running may be lost
308 over the much longer timescale for which lymphatic clearance occurs.

309

310 Discussion

311 In this manuscript, we demonstrated the ability of multichromatic NIR imaging's ability
312 to assess interstitial clearance mechanisms from multiple tissue beds. Clearance pathways and
313 rates are essential in tissue homeostasis and dictate how biomolecules interact with their intended
314 targets. Clearance to lymphatics or venous circulation has is understudied *in vivo*. Using tissue
315 phantoms, we established the exposure time and tissue depth limitations required for *in vivo*
316 imaging. We determined that sensitivity/cross talk between the dyes did not exist, confirming
317 that the changes in signal intensity resulted from changes in concentration or position of our
318 tracers within our ROIs. We then used the mouse tail, a tissue drainage bed with well-defined
319 physiology, to show that we could target lymphatic and venous circulation and quantify function.
320 Lastly, we demonstrated the capacity to quantitatively image routes of clearance from the joint
321 space. We utilized an exercise-based intervention to confirm that the technique had the
322 sensitivity to assess clearance changes.

323 Our study demonstrated the size dependence of interstitial molecules via venous and
324 lymphatic pathways via simultaneous imaging. Proulx et al. showed that NIR tracers that clear
325 through lymphatics have a delayed uptake into the systemic circulation compared to molecules
326 that drain directly into the blood stream¹⁸. In our mouse tail study, the free dye intensity in the
327 blood ROI is initially low. That signal intensifies in the tail vein over time, likely due to a renal
328 clearance not surpassing the intradermal depot clearance over this total imaging window³². Thus,
329 this dye's intensity in the blood circulation continuously increases as the concentration delivered
330 to the blood over time increases. The PEG tracer signal intensity traces exhibited the
331 characteristic phasic contractions attributed to lymphatic pumping. Therefore, our mouse tail
332 experiment validated our two tracers' size-based partitioning to distinct routes of clearance.

333 The joint space is a unique interstitial space comprised of synovial fluid—hyaluronic
334 acid, lubricin, and filtered serum—that hydrates the joint tissues and buffers the outflow of
335 materials from the joint space^{33,34}. A solute that leaves the joint space must diffuse through the
336 synovial fluid, then into the synovial membrane. The synovial membrane is a specialized tissue
337 that retains the synovial fluid while also housing the venous and lymphatic fluid exchange
338 machinery to clear solute from the joint^{25,35}. Smaller materials can more easily diffuse through
339 the synovial fluid matrix and thus exit the joint space faster³⁶. Larger molecules can more easily

340 entangle in the synovial fluid matrix and therefore have longer residence times within the joint
341 space³⁷. Using multichromatic imaging with sized tracers enables quantifying venous and
342 lymphatic clearance kinetics in the joint, simultaneously rather than separately as done in the
343 previous studies³⁸ and furthers the ability to determine the relationship between lymphatic and
344 venous uptake *in vivo*.

345 Exercise has been shown in previous studies to increase interstitial³⁹, venous⁴⁰, and
346 lymphatic⁴¹ flow to the muscle. In this study, we used exercise as an intervention to demonstrate
347 the sensitivity of multichromatic NIR imaging to measure changes to venous and lymphatic
348 clearance. In the joint space, exercise and joint loading have increased intra-articular pressure
349 and cartilage flux. In this study, we showed that injection that was followed by exercise
350 transiently increased lymphatic outflow from the joint; however, exercise did not have a
351 significant effect on venous clearance. Interestingly, running pre-injection led to delayed
352 clearance of both free dye and PEG, as exhibited by the presence of a larger peak intensity from
353 the joint than their respective controls, which could be a consequence of altered hydrodynamic
354 forces or delayed dye dispersion.

355 Our current setup limited our temporal sampling frequency in both *in vivo* experiments.
356 For running experiments, sampling frequency was limited by the time required for an animal to
357 recover from and back under anesthesia. An ideal setup would be a wearable sensor that would
358 go around the knee, which allows us to see the concentration in real-time without anesthesia.
359 Similarly, in capturing the routes of clearance in the tail, we could only use one channel at a time
360 due to our stereoscope's filter imaging limitations. Two cameras and light paths, or a
361 computerized filter wheel, would simultaneously assess these two tracers with higher temporal
362 frequency to quantify the relationship between vascular and lymphatic uptake *in vivo*.
363 Additionally, the tracer sizes were designed to evaluate the particulate transport within fluid;
364 however, there are also cell-mediated mechanisms by which transport occurs *in vivo*, which
365 could be imaged using these multichromatic approaches.

366 We conclude that multichromatic NIR imaging is capable of simultaneous imaging of
367 lymphatic and venous-mediated fluid clearance with great sensitivity and can be used to measure
368 transient changes in clearance rates and pathways. The fluorophores and materials could be
369 refined to provide more colors and construct sizes in the NIR range for 3 or 4 color imaging. The
370 NIR-II imaging window could be used to visualize deeper structures *in vivo*. This methodology
371 can be applied in future studies that assess the effects of diseases or surgical interventions on
372 interstitial solute transport and tissue fluid homeostasis.

373

374

375 **Figure Captions**

376 **Figure 1: *In vivo* NIR imaging methods**

377 **a.** Mouse tail injection and imaging methods. **b.** Intra-articular injections for assessing the effect
378 of exercise.

379

380 **Figure 2: Sensitivity Analysis of Near-Infrared Dyes with Tissue Phantoms**

381 **a.** Absorbance spectra show a unique absorption profile for each tracer. **b.** Solid and dashed lines
382 show the excitation/emission spectra for 800CW carboxylate (free dye) and 680RD 40 kDa PEG
383 (PEG), respectively. Our NIR stereoscope filter cube setup is represented by the bars above the
384 graph, showing that our optical configuration is designed to read each tracer's unique signal. **c.**
385 Tissue phantoms used to determine the effect of tissue depth on detecting free dye and PEG
386 showed reduced intensity as a function of phantom depth and serial two-fold dilution.
387 Consequentially, we were able to see a reduction in signal intensity below the background
388 (dotted line) and, therefore, could reach the limit for these tracers at this tracer at 25 ms exposure
389 and 100 ms exposure time respectively, using a 4 mm tissue phantom. **d.** Free dye was serially
390 diluted using a stock solution of PEG and vice versa. There was no change in overall intensity
391 and sensitivity for each tracer due to mixing and imaging in a 2 mm phantom.

392

393 **Figure 3: Co-injection of NIR tracers results in differential uptake of 800 CW Carboxylate
394 and 680RD PEG 40 kDa**

395 **a.** Evans blue dye injected into the tail of a mouse immediately before euthanasia shows the
396 concentration of Evans blue dye in the lymphatics (blue arrows) that flank the blood vessels (red
397 arrows) (scale bar = 1000 um). **b.** Free dye and PEG show the uptake of each NIR tracer in vein
398 and lymphatics 10 minutes post injection (scale bar = 1000um). **c.** Free dye can initially be seen
399 in the lymphatic; however, over time free dye concentrates in the circulation revealing the tail
400 vein. PEG shows the sustained uptake of PEG dye into lymphatics. **d.** Measurement of signal
401 intensity over the course of the four imaging windows for each respective tracer shows large
402 phasic lymphatic contractions for the PEG tracer and increasing free dye signal over time.

403 **Figure 4:** Co-injection of NIR tracers allows for the simultaneous detection of lymphatic and
404 vascular mediated clearance from the joint space.

405 **a.** Clearance profiles for PEG and free dye show the characteristic lymphatic and venous
406 clearance, respectively. **b.** The areas under the curves show a significantly lower AUC for free
407 dye compared to the PEG. **c.** First-order clearance constant tau was calculated for each tracer and
408 is significantly higher for the lymphatic draining PEG vs the venous draining free dye.

409

410 **Figure 5:** Clearance Profiles for PEG and free dye with running.

411 **a-c.** Clearance profile of lymphatic specific tracer (PEG) for no running, pre-injection running
412 and post-injection running experiments. **d-f.** Clearance profile for venous draining (free dye) for
413 No running, pre-injection running, and post-injection running experiments.

414

415 **Figure 6: Effect of running on Normalized Change in Intensity and Normalized Tau**

416 **a, b.** The normalized intensity was calculated to assess the transient effect of running on dye
417 dispersion in the joint. For each experiment, all runners were normalized to the mean of non-
418 running controls. Compared to the control experiment running pre- or post-injection did not
419 significantly change the initial free dye intensity; however, at the second captured timepoint,

420 post-injection normalized intensity was significantly decreased compared to pre-injection
421 running (*, p = 0.04). After 1 hour, lymphatic intensity was significantly decreased compared to
422 controls (*, p = 0.01) and pre-injection running (***, p = 0.0003) **c, d**. Time constant (tau) for
423 each condition was normalized to the controls for each day. Compared to intraexperimental non-
424 running controls, there are no significant differences in clearance rate for either tracer. Compared
425 to running pre-injection, clearance rate is significantly decreased (*, p = 0.04).
426

427 **Supplementary Video 1:** Lymphatic uptake of PEG in mouse tail in four discontinuous imaging
428 windows post-intradermal injection.

429 **Supplementary Video 2:** Venous uptake/concentration of free dye over four discontinuous
430 imaging windows post intradermal injection.

431 **Supplementary Video 3:** Superimposed videos of lymphatic and venous uptake of PEG and free
432 dye in the mouse tail.

433 **Disclosures**

434 The authors declare that there are no conflicts of interest related to this article.

435 **Data and materials availability**

436 The raw data for this study were generated at Georgia Tech and Emory University. Data
437 or materials supporting this study's findings are available from the corresponding authors BD
438 and NW.

439 **Acknowledgments**

440 We are grateful to Dr. Elefteria Michalaki, who carefully reviewed this manuscript. The
441 veterinary staff at the Veterans Affairs Medical Center Veterinary Medical Unit and the Georgia
442 Tech Physiological Research Lab for assistance. This research was funded in part by funding
443 from the Department of Defense PRMRP grant PR171379 and the National Institutes of Health
444 National Heart, Lung, and Blood Institute grant R01HL133216-02.

445

446

447 **References**

- 448 1. Hemant, S. Physiologic upper limits of pore size of different blood capillary types and
449 another perspective on the dual pore theory of microvascular permeability. *J. Angiogenes.*
450 *Res.* **2**, 1–19 (2010).
- 451 2. Pappenheimer, J. R., Renkin, E. M. & Borrero, L. M. Filtration, Diffusion and Molecular
452 Sieving Through Peripheral Capillary Membranes. *Am. J. Physiol. Content* **167**, 13–46
453 (1951).
- 454 3. Olszewski, W. L. The lymphatic system in body homeostasis: physiological conditions.
455 *Lymphat. Res. Biol.* **1**, (2003).
- 456 4. Zhao, J., Salmon, H. & Sarntinoranont, M. Effect of heterogeneous vasculature on
457 interstitial transport within a solid tumor. *Microvasc. Res.* **73**, 224–236 (2007).

458 5. Bouda, E. M. *et al.* The role of the lymphatic system in inflammatory-erosive arthritis. *Semin. Cell Dev. Biol.* **38**, 90–97 (2015).

459 6. Frush, D. P. & Applegate, K. Computed tomography and radiation: Understanding the
460 issues. *J. Am. Coll. Radiol.* **1**, 113–119 (2004).

461 7. Goodman, T. R. Understanding the Cancer-CT Conundrum. *44*, 469–474 (2010).

462 8. Kim, S. J. & Kim, K. A. Safety issues and updates under MR environments. *Eur. J.*
463 *Radiol.* **89**, 7–13 (2017).

464 9. Moreno, M. J., Ling, B. & Stanimirovic, D. B. In vivo near-infrared fluorescent optical
465 imaging for CNS drug discovery. *Expert Opin. Drug Discov.* **15**, 903–915 (2020).

466 10. Tian, Y., Qiang, S. & Wang, L. Gold Nanomaterials for Imaging-Guided Near-Infrared in
467 vivo Cancer Therapy. *Front. Bioeng. Biotechnol.* **7**, (2019).

468 11. Zeng, H. C., Hu, J. L., Bai, J. W. & Zhang, G. J. Detection of Sentinel Lymph Nodes with
469 Near-Infrared Imaging in Malignancies. *Mol. Imaging Biol.* **21**, 219–227 (2019).

470 12. Stolik, S., Delgado, J. A., Pérez, A. & Anasagasti, L. Measurement of the penetration
471 depths of red and near infrared light in human "ex vivo" tissues. *J. Photochem. Photobiol.*
472 *B Biol.* **57**, 90–93 (2000).

473 13. Ash, C., Dubec, M., Donne, K. & Bashford, T. Effect of wavelength and beam width on
474 penetration in light-tissue interaction using computational methods. *Lasers Med. Sci.* **32**,
475 1909–1918 (2017).

476 14. Jagdeo, J. R., Adams, L. E., Brody, N. I. & Siegel, D. M. Transcranial Red and Near
477 Infrared Light Transmission in a Cadaveric Model. *PLoS One* **7**, 1–10 (2012).

478 15. Weiler, M., Kassis, T. & Dixon, J. B. Sensitivity analysis of near-infrared functional
479 lymphatic imaging. *J. Biomed. Opt.* **17**, 066019 (2012).

480 16. Weiler, M. & Dixon, J. B. Differential transport function of lymphatic vessels in the rat
481 tail model and the long-term effects of indocyanine green as assessed with near-infrared
482 imaging. *Front. Physiol.* **4 AUG**, 1–10 (2013).

483 17. Proulx, S. T. *et al.* Use of a PEG-conjugated bright near-infrared dye for functional
484 imaging of rerouting of tumor lymphatic drainage after sentinel lymph node metastasis.
485 *Biomaterials* **34**, 5128–5137 (2013).

486 18. Proulx, S. T., Ma, Q., Andina, D., Leroux, J.-C. & Detmar, M. Quantitative measurement
487 of lymphatic function in mice by noninvasive near-infrared imaging of a peripheral vein.
488 *JCI Insight* **2**, 1–13 (2017).

489 19. Kobayashi, H. *et al.* Simultaneous multicolor imaging of five different lymphatic basins
490 using quantum dots. *Nano Lett.* **7**, 1711–1716 (2007).

491 20. Mwangi, T. K. *et al.* Intra-articular clearance of labeled dextrans from naive and arthritic
492 rat knee joints. *J. Control. Release* **283**, 76–83 (2018).

493 21. Hama, Y., Koyama, Y., Urano, Y., Choyke, P. L. & Kobayashi, H. Simultaneous two-
494 color spectral fluorescence lymphangiography with near infrared quantum dots to map
495 two lymphatic flows from the breast and the upper extremity. *Breast Cancer Res. Treat.*
496 **103**, 23–28 (2007).

497 22. Ruddell, A. *et al.* Dynamic contrast-enhanced magnetic resonance imaging of tumor-
498 induced lymph flow. *Neoplasia* **10**, 706–713 (2008).

499 23. Doan, T. N., Bernard, F. C., McKinney, J. M., Dixon, J. B. & Willett, N. J. Endothelin-1
500 inhibits size dependent lymphatic clearance of PEG-based conjugates after intra-articular
501 injection into the rat knee. *Acta Biomater.* **93**, 270–281 (2019).

502 24. Weiler, M. J., Cribb, M. T., Nepiyushchikh, Z., Nelson, T. S. & Dixon, J. B. A novel

503

504 mouse tail lymphedema model for observing lymphatic pump failure during lymphedema
505 development. *Sci. Rep.* **9**, 1–15 (2019).

506 25. Edelstein, A. D. *et al.* Advanced methods of microscope control using μ Manager software.
507 *J. Biol. Methods* **1**, 10 (2014).

508 26. Schindelin, J. *et al.* Fiji: An open-source platform for biological-image analysis. *Nat.*
509 *Methods* **9**, 676–682 (2012).

510 27. James, M. J., Cleland, L. G., Gaffney, R. D., Proudman, S. M. & Chatterton, B. E. Effect
511 of exercise on 99mTc-DTPA clearance from knees with effusions. *J. Rheumatol.* **21**, 501–
512 4 (1994).

513 28. Dulin, J. A. *et al.* Influence of exercise on the distribution of technetium Tc 99m
514 medronate following intra-articular injection in horses. *Am. J. Vet. Res.* **73**, 418–425
515 (2012).

516 29. Modi, S., Stanton, A. W. B., Mortimer, P. S. & Levick, J. R. Clinical Assessment of
517 Human Lymph Flow Using Removal Rate Constants of Interstitial Macromolecules: A
518 Critical Review of Lymphoscintigraphy. *Lymphat. Res. Biol.* **5**, 183–202 (2007).

519 30. Karlsen, T. V., McCormack, E., Mujic, M., Tenstad, O. & Wiig, H. Minimally invasive
520 quantification of lymph flow in mice and rats by imaging depot clearance of near-infrared
521 albumin. *Am. J. Physiol. Heart Circ. Physiol.* **302**, H391–401 (2012).

522 31. Wallis, W. J., Simkin, P. A., Nelp, W. B. & Foster, D. M. Intraarticular volume and
523 clearance in human synovial effusions. *Arthritis Rheum.* **28**, 441–9 (1985).

524 32. Carr, J. A. *et al.* Shortwave infrared fluorescence imaging with the clinically approved
525 near-infrared dye indocyanine green. *Proc. Natl. Acad. Sci. U. S. A.* **115**, 4465–4470
526 (2018).

527 33. Coleman, P. J., Scott, D., Mason, R. M. & Levick, J. R. Role of hyaluronan chain length
528 in buffering interstitial flow across synovium in rabbits. *J. Physiol.* **526**, 425–434 (2000).

529 34. Coleman, P. J., Scott, D., Ray, J., Mason, R. M. & Levick, J. R. Hyaluronan secretion into
530 the synovial cavity of rabbit knees and comparison with albumin turnover. *J. Physiol.* **503**,
531 645–656 (1997).

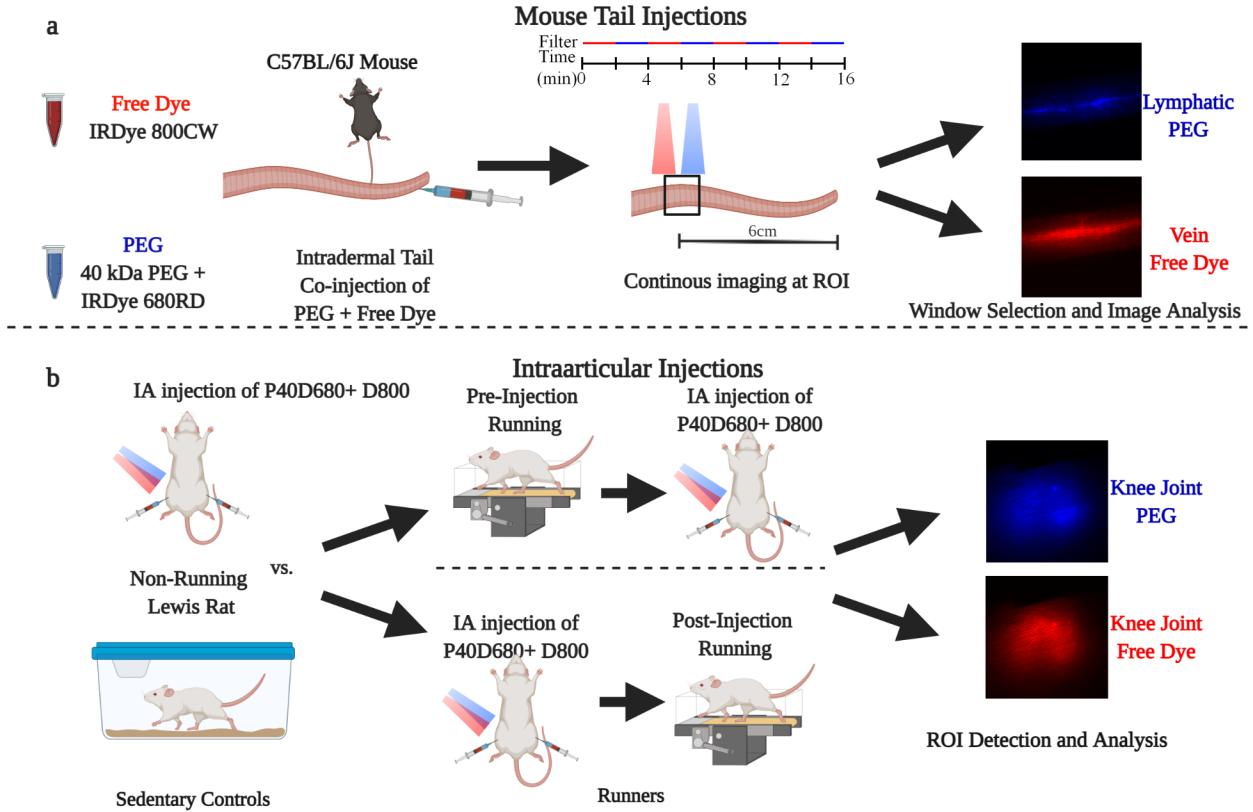
532 35. Simkin, P. A. & Bassett, J. E. Pathways of microvascular permeability in the synovium of
533 normal and diseased human knees. *J. Rheumatol.* **38**, 2635–42 (2011).

534 36. Hadler, N. M. Synovial fluids facilitate small solute diffusivity. *Ann. Rheum. Dis.* **39**,
535 580–585 (1980).

536 37. Kohlhof, H. *et al.* Single Molecule Microscopy Reveals an Increased Hyaluronan
537 Diffusion Rate in Synovial Fluid from Knees Affected by Osteoarthritis. *Sci. Rep.* **6**,
538 (2016).

539 38. Mwangi, T. K. *et al.* Intra-articular clearance of labeled dextrans from naive and arthritic
540 rat knee joints. *J. Control. Release* **283**, 76–83 (2018).

541 39. Schütze, H., Hildebrandt, W. & Stegemann, J. The interstitial fluid content in working
542 muscle modifies the cardiovascular response to exercise. *Eur. J. Appl. Physiol. Occup.*
543 *Physiol.* **62**, 332–6 (1991).


544 40. Joyner, M. J. & Casey, D. P. Regulation of increased blood flow (Hyperemia) to muscles
545 during exercise: A hierarchy of competing physiological needs. *Physiol. Rev.* **95**, 549–601
546 (2015).

547 41. Havas, E. *et al.* Lymph flow dynamics in exercising human skeletal muscle as detected by
548 scintigraphy. *J. Physiol.* **504**, 233–239 (1997).

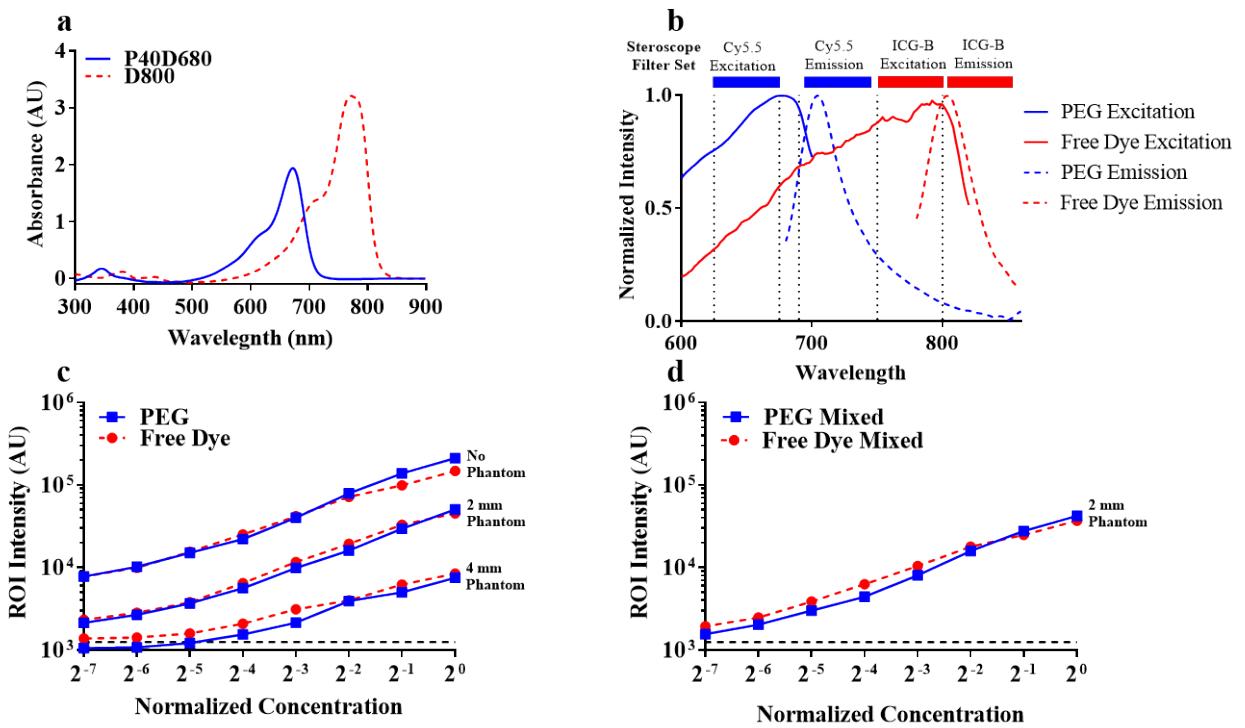
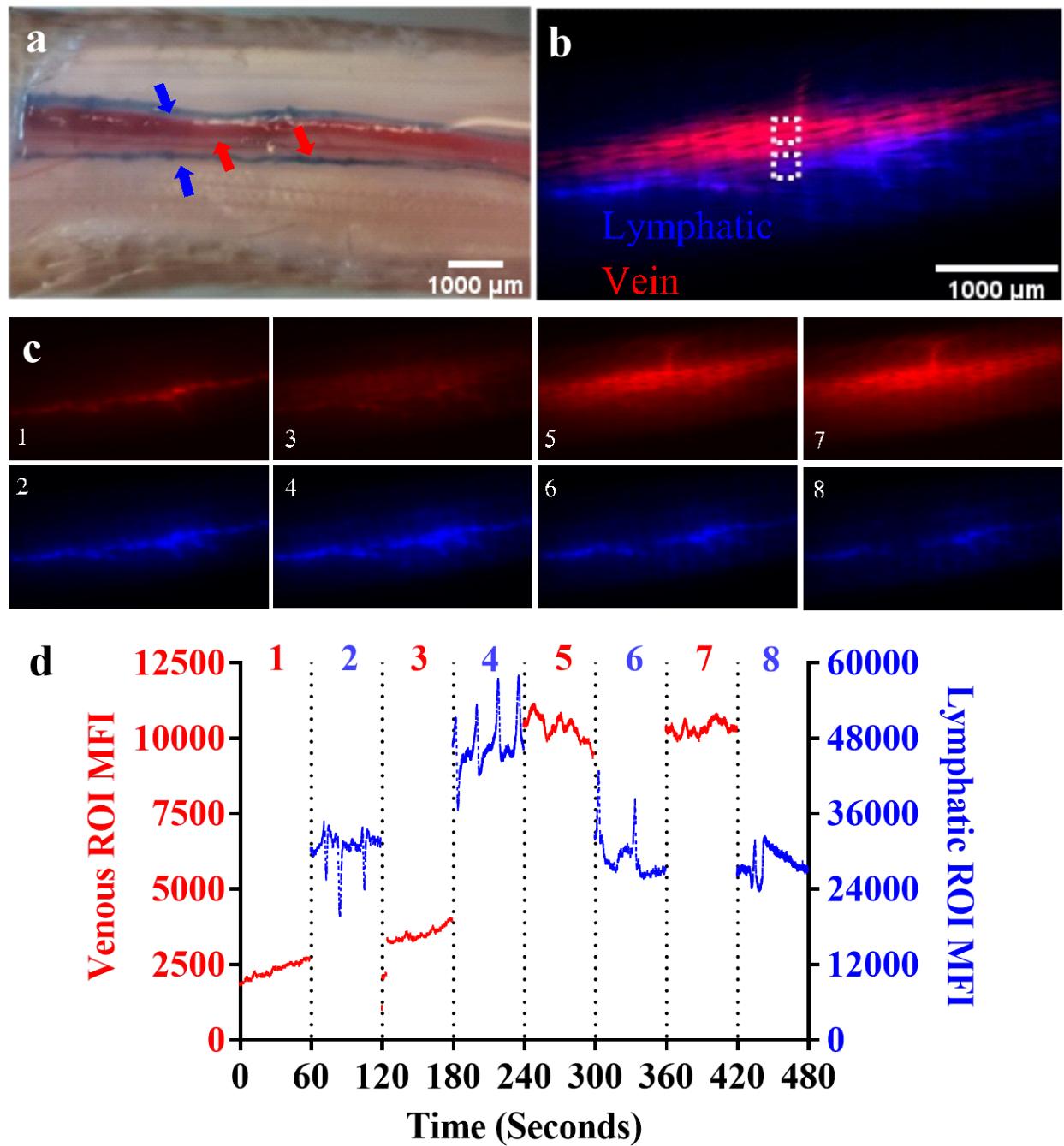
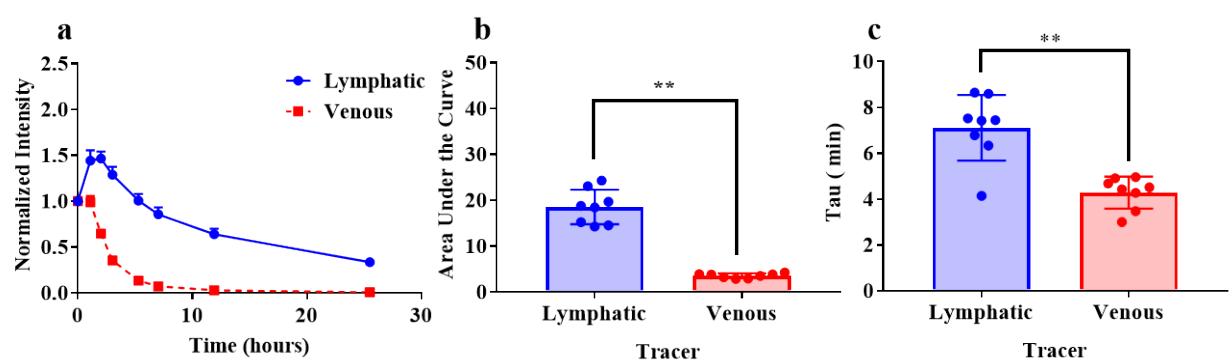
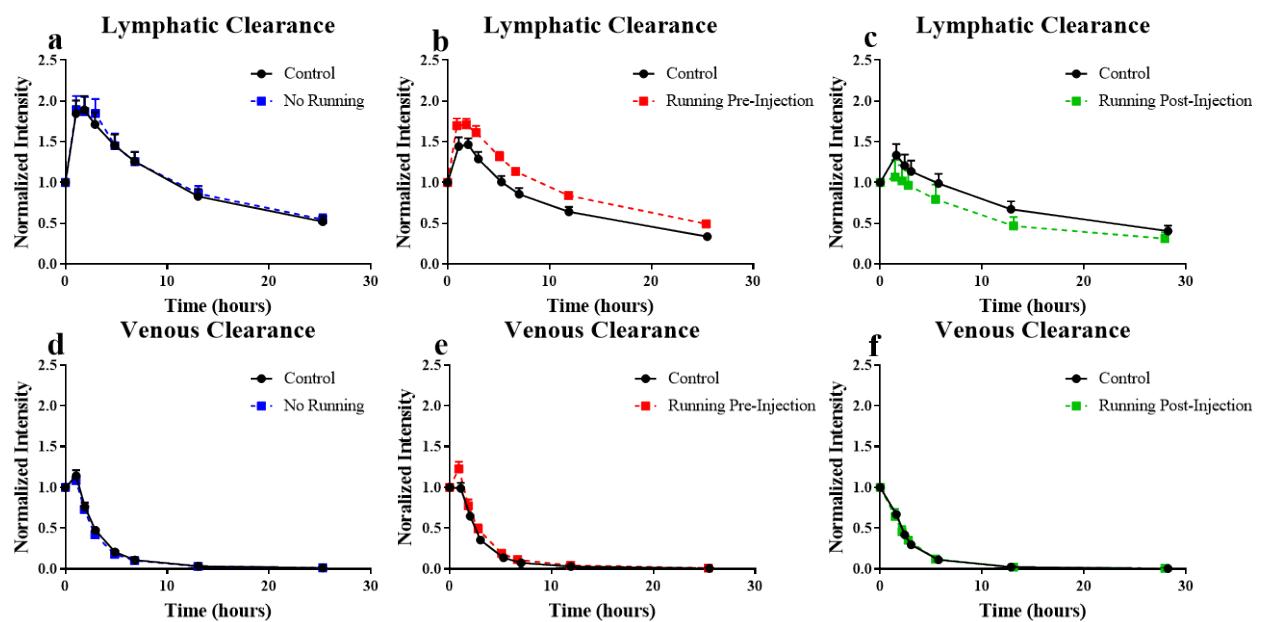

549

Figure 1


NIR Imaging Methods


Figure 2


Figure 3

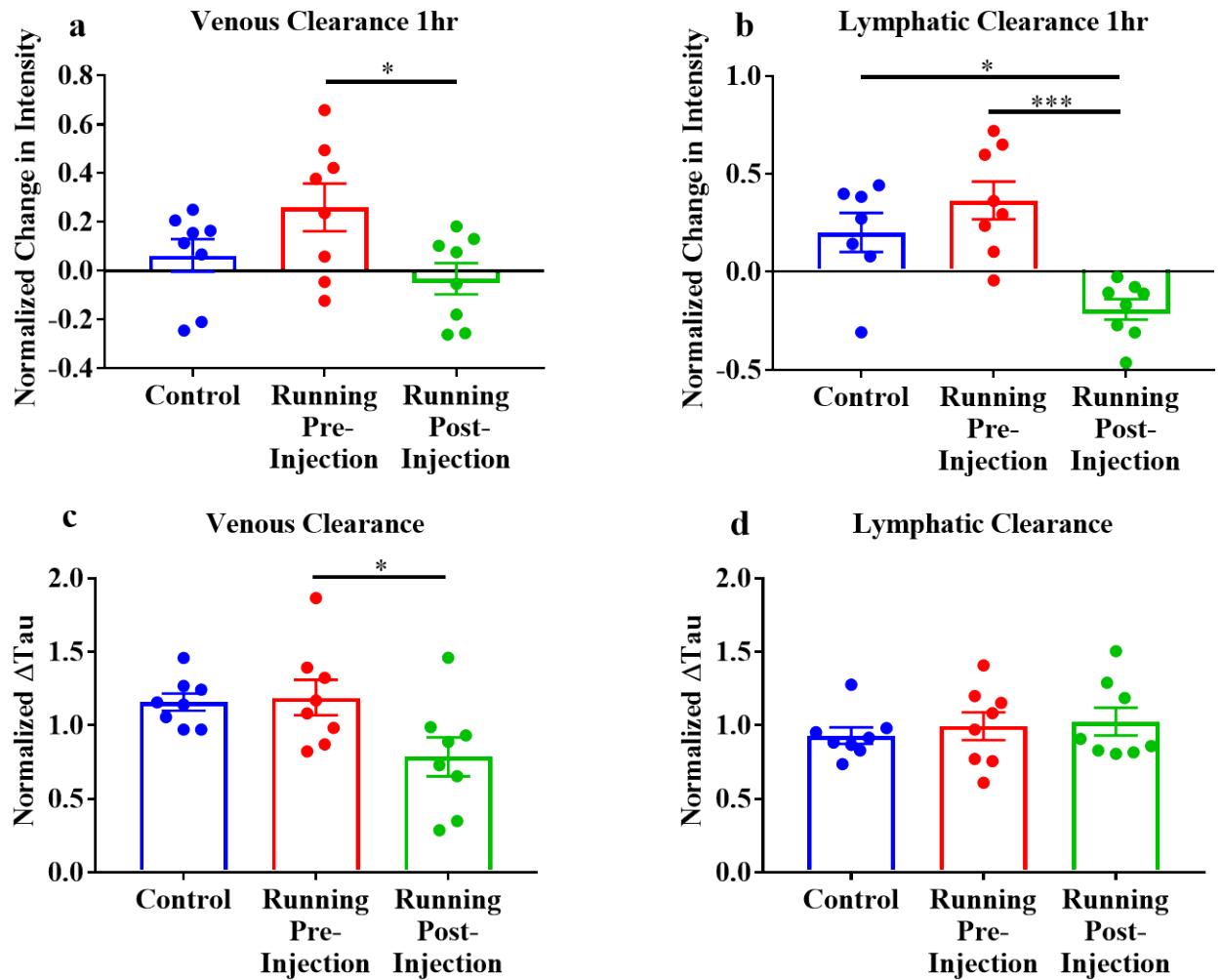

Figure 4

Figure 5

Figure 6

