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Abstract

Multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI)

platforms have become increasingly popular for studying complex single-cell biology in

the tumor microenvironment (TME) of cancer subjects. Studying the intensity of the

proteins that regulate important cell-functions, often known as functional markers, in

the TME becomes extremely crucial for subject-specific assessment of risks, such as

risk of recurrence and risk of death. The conventional approach requires selection of

two thresholds, one to define the cells of the TME as positive or negative for a partic-

ular functional marker, and the other to classify the subjects based on the proportion

of the positive cells. The selection of the thresholds has a large impact on the results

and an arbitrary selection can lead to an incomprehensible conclusion. In light of this

problem, we present a threshold-free distance between the subjects based on the prob-

ability densities of the functional markers. The distance can be used to classify the
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subjects into meaningful groups or can be used in a linear mixed model setup for test-

ing association with clinical outcomes. The method gets rid of the subjectivity bias of

the thresholding-based approach, enabling an easier but interpretable analysis of these

types of data. With the proposed method, we analyze a lung cancer dataset from an

mIHC platform, finding the difference in the density of functional marker HLA-DR to

be significantly associated with the overall survival. The approach is also applied on

an MIBI triple-negative breast cancer dataset to analyze effects of multiple functional

markers. Finally, we demonstrate the reliability of our method through extensive sim-

ulation studies.

Keywords: Multiplex tissue imaging; Single cell data; Marker thresholding; Kernel

density estimation; Density based distance; Survival analysis.

1 Introduction

In recent years, various technologies are being used for probing single-cell spatial biology,

for example, multiparameter immunofluorescence (Bataille and others , 2006), imaging mass

cytometry (IMC) (Giesen and others , 2014; Chang and others , 2017; Ali and others , 2020),

multiplex immunohistochemistry (mIHC) (Halse and others , 2018; Tan and others , 2020;

Vu and others , 2021) and multiplexed ion beam imaging (MIBI) (Angelo and others , 2014;

Seal and others , 2021b). These technologies, often referred to as multiplex tissue imaging,

offer the potential for researchers to explore the bases of many different biological mecha-

nisms. Multiplex tissue imaging platforms such as Vectra 3.0 (Akoya Biosciences) (Huang

and others , 2013), Vectra Polaris (Akoya Biosciences) (Pollan and others , 2020), MIBI (Ion-
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path Inc.) (Keren and others , 2019; Ptacek and others , 2020) produce images with similar

structure. In particular, each image is two dimensional, collected at cell- and nucleus-level

resolution and proteins in the sample have been labeled with antibodies called “markers”

that attach to cell membranes. Typically, mIHC images have 6-8 markers, whereas MIBI

images can have more than 40 markers.

Majority of the above markers are surface or phenotypic markers, such as CD4, CD3,

CD8, CD68 etc. (Jondal and others , 1972; Zola and others , 2007; Shipkova and Wieland,

2012) which are primarily used for cell type identification. Additionally, there are several

functional markers including HLA-DR (Jendro and others , 1991; Oczenski and others , 2003;

Saraiva and others , 2018), PD-1, PD-L1, Lag3 etc. (Nguyen and Ohashi, 2015; Han and

others , 2020; Phillips and others , 2021) that dictate or regulate important cell-functions.

Both surface and functional markers are quantified as continuous valued marker intensities.

For a phenotypic marker, a threshold is drawn to indicate whether a cell is positive or negative

for the particular marker. Then one or more of these binarized phenotypic markers are used

to classify the cells into different types based on biological knowledge of marker co-expression.

With the functional markers, the interest lies in finding out if abundance or over-expression

of the markers across the cells of the tumor microenvironment (TME) (Whiteside, 2008;

Binnewies and others , 2018) have significant impact on subject-level clinical outcomes, such

as survival or recurrence (Sahlberg and others , 2014; Koguchi and others , 2015; Johnson and

others , 2020). A two-step thresholding-based approach (Bulian and others , 2014; Costa and

others , 2017; Missassi and others , 2021) is typically used in this context which we describe

next.

The two steps in the thresholding-based approach involve identifying cells positive for a
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marker and classifying patients into different groups according to the proportions of positive

cells. The group labels can be used in a linear regression framework to test association

with the outcomes of interest (Chen and others , 2016; Chang and others , 2018; Yang and

others , 2019). For example, Johnson and others (2021) defines the cells to be positive for

HLA-DR (also known as, MHCII) if the corresponding mean marker intensity is greater than

0.05. Next, they classify the subjects into two groups, MHCII: High and MHCII: Low if the

proportion of cancer cells positive for HLA-DR is greater or smaller than 5% respectively.

Finally, they test if these two groups of subjects have different 5-year overall survival. Instead

of grouping the subjects based on the proportion of positive cells, another approach would be

to directly test if the vector of the proportion of positive cells is associated with the outcome

(Patwa and others , 2021).

The aforementioned thresholding-based method clearly requires judicious selection of the

cut-offs that greatly influence the subsequent steps of the analysis (Harris and others , 2021).

The result is bound to vary for different thresholding values; and a poor choice of thresh-

olds may produce an uninformative and uninterpretable result. There is a plethora of helpful

guidelines on choosing these thresholds in different contexts (Barnett and others , 1999; Kim-

ball and others , 2018; Cossarizza and others , 2019; BIO-RAD, 2021). However, there is no

universal solution or rule of thumb. Thus, the method remains prone to subjectivity bias

and lacks robustness.

In this paper, we propose a threshold-free method for distinguishing the difference be-

tween the subjects with respect to the functional markers. We treat the expression of every

marker as a continuous random variable having realizations in the cells of a subject. For

every marker, we compare its probability distribution or equivalently, density between every
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pair of subjects. Our exact algorithm is as follows. First, for every subject, the probabil-

ity density of each marker is estimated using kernel density estimation (KDE) (Silverman,

1981; Sheather and Jones, 1991; Ghosh and others , 2006). Next, a density based distance

(Basu and others , 1998; Jones and others , 2001) known as Jensen-Shannon distance (Endres

and Schindelin, 2003; Fuglede and Topsoe, 2004) is used to quantify the difference in the

estimated density across the subjects. The matrix of distances between subjects for every

marker can then be used to classify them into meaningful groups using hierarchical cluster-

ing (Murtagh, 1985; Murtagh and Legendre, 2014). In a linear regression framework, the

cluster-labels can be tested for association with clinical outcomes. The distance matrix can

also be directly used in a linear mixed model (Hoffman, 2013; Seal and others , 2021a) or

equivalently, a kernel machine regression framework (Liu and others , 2008; Hua and Ghosh,

2015; Ge and others , 2016; Jensen and others , 2019). Using our proposed method, we have

analyzed an mIHC dataset on lung cancer (Johnson and others , 2021) from the University

of Colorado School of Medicine, finding out that the difference in HLA-DR marker density

in tumor cells is associated with 5-year overall survival of the subjects. We have also applied

the proposed method on a publicly available triple negative breast cancer (TNBC) dataset

(Keren and others , 2018) from the MIBI platform finding the density of an immunoregula-

tory protein, PD-1 to have significant effect on overall survival. We have performed extensive

simulation studies mimicking the characteristics of the real datasets to check the reliability

and robustness of our method.
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2 Materials and Methods

Suppose there are M functional markers and N subjects with j-th subject having nj cells.

Let Xkij denote the scaled expression, between 0 and 1, of k-th marker in i-th cell of j-th

subject for k = 1, 2, . . . ,M , i = 1, 2, . . . , nj and j = 1, 2, . . . , N. Let Y (N × 1 vector) be a

subject-level outcome of interest and C be an N × p matrix of p subject-level covariates.

2.1 Traditional thresholding based approach for clustering sub-

jects

To study if abundance of marker k is associated with a subject’s survival or any other

outcome of interest (Y ), the conventional approach is to classify the subjects into two or

more groups using a thresholding based approach. First, consider a threshold t1 and check

how many of the nj cells of subject j have marker expression more than that threshold

i.e. the number of cells with Xkij > t1. Such cells are referred to as the cells positive for

marker k. The proportion of the cells positive for a marker k in subject j is denoted as,

pkj =
∑nj

i=1 I(Xkij > t1)/nj, where I(.) is the indicator function. Another threshold t2 is

chosen to classify the subjects into two groups, one with subjects more than t2% positive

cells i.e. subjects with pkj > t2, and the other with subjects less than t2% positive cells

i.e. subjects with pkj < t2. Then, test if these two groups of people have differential rate of

survival (or, associated with some other outcome of interest). This can easily be extended

to allow more than two groups.

Denote the clustering variable as Zkj ≡ I(pkj > t2) with Zkj being a binary variable taking

values zero and one. When Y is a continuous/categorical outcome, a standard multiple linear

6

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.09.27.462056doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.462056
http://creativecommons.org/licenses/by/4.0/


regression model with Zk = (Zk1, . . . , ZkN)T as a predictor can be written as

Y = Cβββ + Zkγk + ε,

where βββ, γ are fixed effects and ε is an N × 1 error vector following multivariate normal

distribution (MVN) with mean 000 and identity covariance matrix σ2IN . After estimating the

parameters, the null hypothesis, H0 : γk = 0, can be tested using the Wald test (Gourieroux

and others , 1982).

Next, we consider the case of Y being a survival or recurrence outcome. Let the outcome

of the j-th individual be Yj = min(Tj, Uj), where Tj is the time to event and Uj is the

censoring time. Let δj ≡ I(Tj ≤ Uj) be the corresponding censoring indicator. Assuming

that Tj and Uj are conditionally independent given the covariates for j = 1, 2, . . . , N , the

hazard function for the Cox proportional hazards (PH) model (Andersen and Gill, 1982; Lin

and Wei, 1989; Therneau and Grambsch, 2000) with fixed effects can be written as,

λj(t|Cj, Zkj) = λ0(t) exp(CT
j β + Zkjγk), j = 1, 2, . . . , N (1)

where λj(t|Cj, Zkj) is the hazard of the j-th subject at time t, given the vector of covariates

Cj and the cluster label Zkj and λ0(t) is an unspecified baseline hazard at time t. To test

the null hypothesis: H0 : γk = 0, a likelihood ratio test (LRT) (Therneau, 1997) can be

considered. The above procedure can be conducted individually for k = 1, . . . ,M and the

influential markers can be reported.

As pointed out earlier, the biggest difficulty with this approach lies in choosing the
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thresholds, t1 and t2 appropriately. In most cases, one would run the approach for different

pairs of (t1, t2) and choose the one that leads to the most interpretable result. Thus, the step

of threshold-selection remains entirely subjective and the results are bound to vary largely

depending on the selected thresholds.

2.2 Proposed Method: Distance based clustering using marker

probability density of subjects

To avoid the bias inherent in the thresholding-based approach, we propose a distance between

the subjects based on each marker k that would be devoid of subjectivity and can easily be

tested for association with a outcome of interest. First, we discuss the concept of divergence

or distance between two probability distributions and then, implement it in the context of

our problem.

2.2.1 Jensen-Shannon distance:

Let (X ,A) be a measurable space (Billingsley, 2008) where X denotes the sample space

and A the σ-algebra of measurable events. Consider a dominating measure µ and denote

the set of probability distributions as, P = {P : A → [0, 1]}. In this context, the Jensen-

Shannon distance (JSD) (Endres and Schindelin, 2003; Fuglede and Topsoe, 2004; Nielsen,

2019) between two probability distributions, P,Q ∈ P can be defined as,

d(P,Q) =

√∫
X
p(x) log

2p(x)

p(x) + q(x)
dµ(x) +

∫
X
q(x) log

2q(x)

p(x) + q(x)
dµ(x) (2)
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where p, q are the Radon-Nikodym derivatives or densities (Nikodym, 1930) of P and Q

with respect to a dominating measure µ. Unlike other divergences between distributions,

such as Kullback-Leibler divergence (Van Erven and Harremos, 2014), the Jensen-Shannon

distance (JSD) satisfies the properties of being a metric (Lawvere, 1973) between probability

measures. To formalize this, a metric d : P×P → [0,∞) satisfies the following three axioms:

1. Identity: d(P,Q) = 0 iff P = Q,

2. Symmetry: d(P,Q) = d(Q,P ),

3. Triangle Inequality: d(P,Q) + d(Q,R) ≥ d(P,R) where R ∈ P .

Note that, P = Q implies p(x) = q(x) almost everywhere w.r.t µ (Athreya and Lahiri,

2006; Feller, 2008). JSD can be shown to be bounded above by 2 log(2) and bounded below

by 0 (Endres and Schindelin, 2003). JSD has been used in many different areas, such as

bioinformatics (Sims and others , 2009), social sciences (DeDeo and others , 2013), and more

recently, in generative adversarial networks (GANs) (Goodfellow and others , 2014), a popular

technique in deep learning.

2.2.2 Formulation of the distance in our context:

For every subject j, we assume that the expression of marker k is a continuous random

variable, denoted by Xkj, taking values between 0 and 1. Xkj is observed in nj cells as,

Xk1j, Xk2j, . . . , Xknjj. Let the probability distribution function and the density function of

Xkj be denoted by, Fkj and fkj respectively. Next, we consider the set-up described in Section

2.2.1 with X = [0, 1] and A being the corresponding σ-algebra of measurable events. Then
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the set, P contains the distribution functions, Fkj for j = 1, 2, . . . , N and k = 1, 2, . . . ,M .

Finally, using Equation 2, the distance between two subjects (j, j′) in terms of the probability

distribution of marker k can be quantified as,

JSDkjj′ = d(Fkj, Fkj′) =

√∫ 1

0

fkj(x) log
2fkj(x)

fkj(x) + fkj′(x)
dx+

∫ 1

0

fkj′(x) log
2fkj′(x)

fkj(x) + fkj′(x)
dx.

(3)

A large value of JSDkjj′ will imply that there is a clear difference in the distribution or

equivalently, density of k-th marker between the pair of subjects, (j, j′). A small value will

imply that the distributions are close. The distance matrix between all the subjects based

on k-th marker can then be constructed as, JSDk = [[JSDkjj′ ]].

In real data, the density function fkj will be unknown. Therefore, we compute corre-

sponding kernel density estimate (KDE) f̂kj (Silverman, 1981; Sheather and Jones, 1991;

Ghosh and others , 2006) using the observations: Xkij’s for i = 1, . . . , nj. f̂kj typically has

the form: f̂kj(x) = 1
ni

∑nj

i=1wh (x−Xkij), where wh is a Gaussian kernel with bandwidth

parameter h, chosen using Silverman’s rule of thumb (Silverman, 2018). Using the KDEs,

JSDkjj′ from Equation (3) can be estimated as,

ĴSDkjj′ =

√√√√ R∑
r=1

[
f̂kj(xr) log

2f̂kj(xr)

f̂kj(xr) + f̂kj′(xr)
+ f̂kj′(xr) log

2f̂kj′(xr)

f̂kj(xr) + f̂kj′(xr)

]
, (4)

where xr, r = 1, . . . , R are grid-points in the interval [0, 1]. In our simulations and real data

analysis, we keep R at 1024 and choose equidistant grid-points. We have noticed that for

R ≥ 512, the results do not alter. We make sure that the estimated densities integrate to 1

by appropriately scaling them.
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2.2.3 Using the distance in association analysis:

Next, we construct suitable tests for testing the association of the distance matrix with

dependent variable, Y .

Test based on hierarchical clustering: The estimated distance matrix (ĴSDk) can be

subjected to hierarchical clustering (Murtagh, 1985; Murtagh and Legendre, 2014) for clas-

sifying the subjects into two or more groups. Suppose, we obtain a vector of cluster labels:

Zk = (Zk1, . . . , ZkN)T . Then, exactly the same models, described in Section 2.1 and corre-

sponding tests, can be used to determine if the differential expression of the k-th marker is

associated with Y .

Test based on linear mixed model: The distance matrix can be transformed into a

similarity matrix (Vert and others , 2004) as, Gk = exp(−ĴSDk). When Y is a continu-

ous/categorical outcome, Gk can be incorporated in a linear mixed model framework, par-

ticularly popular in the context of heritability estimation (Hoffman, 2013; Seal and others ,

2021a), as,

Y = Cβββ + gk + ε,

where βββ is the vector of fixed effects, gk = (gk1, gk2, . . . , gkn)T is the vector of random effects

following MVN(000, σ2
gkGk) and ε is an error vector following MVN(000, σ2IN). The null hypoth-

esis: H0 : σ2
gk = 0 can be tested using a likelihood ratio test (Crainiceanu and Ruppert,

2004). Note that, such a linear mixed model setup has been shown to be equivalent to a

kernel machine regression framework by Liu and others (2008). In a standard kernel machine

regression framework, there is one additional width parameter, ρ that has to be estimated.
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Next, we consider the case of Y being a survival or recurrence outcome. Using the same

definitions and conditional independence assumptions of Tj, Uj and covariates as in Section

2.1, the hazard function for the Cox proportional hazards (PH) model with random effects

(Therneau and others , 2015) can be written as,

λj(t|Cj, gkj) = λ0(t) exp(CT
j β + gkj), j = 1, 2, . . . , n (5)

where λj(t|Cj, gkj) is the hazard of the j-th subject at time t, given the vector of covariates

Cj and the random effect gkj and λ0(t) is an unspecified baseline hazard at time t. To test

the null hypothesis, H0 : σ2
gk = 0, an LRT based on integrated partial likelihoods (Therneau

and Therneau, 2015) can be considered. However, it is to be kept in mind that usually a large

sample size is needed to obtain a precise estimate of the random effect variance (Maas and

Hox, 2005; Bell and others , 2010; Austin and Leckie, 2018). The problem would possibly be

exacerbated in the Cox PH model with random effects because the partial likelihood would

depend on the number of events (Peduzzi and others , 1996; Vittinghoff and McCulloch,

2007; Kocak and Onar-Thomas, 2012; Ogundimu and others , 2016). Therefore, we do not

recommend using this test unless the sample size is sufficiently large.

3 Results

We first discuss the application of our method on the real datasets. We analyzed two datasets:

an mIHC lung cancer dataset (Johnson and others , 2021) and an MIBI breast cancer dataset

(Keren and others , 2018). The first dataset has a single functional marker, HLA-DR and
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the second dataset has four immunoregulatory proteins, PD-1, PD-L1, Lag3 and IDO. We

applied the method proposed in Section 2.2 on both the datasets. In all the analyses, the

markers were scaled to have expression value between 0 and 1.

3.1 Application to mIHC Lung Cancer data

In the mIHC lung cancer dataset, there are 153 subjects each with 3-5 images (in total,

761 images). The subjects have varying number of cells identified (from 3,755 to 16,949).

The cells come from two different tissue regions: tumor and stroma and are classified into

either of the six different cell types: CD14+, CD19+, CD4+, CD8+, CK+ and Other, based

on the expression of phenotypic markers, CD19, CD3, CK, CD8 and CD14. A functional

marker, HLA-DR (also known as MHCII), is also measured in each of the cells. Using the

thresholding-based approach described in Section 2.1, Johnson and others (2021) classified

the subjects into two groups, a) MHCII: High and b) MHCII: Low based on the proportion of

CK+ tumor cells that are also positive for HLA-DR. They found out that there is significant

difference in 5-year overall survival between the groups. Analogously, we were interested

in answering the question: whether 5-year overall survival of a subject is associated with

the HLA-DR density in CK+ tumor cells. We first computed the JSD matrix between

the subjects as discussed in Section 2.2.2 based on the density of HLADR marker in CK+

tumor cells. Next, we performed a hierarchical clustering using the computed JSD matrix

to classify the subjects into two groups. Next, we tested if there is a difference in survival

between the subjects of the two groups using the test based on the Cox PH model with

fixed effects described in Equation 1. Figure 1 shows the Kaplan-Meier curves (Efron, 1988)

13

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.09.27.462056doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.462056
http://creativecommons.org/licenses/by/4.0/


of the two groups of subjects. We noticed that Hazard Ratio (HR) is large (> 2) and the

p-value is significant (< 0.015) indicating that 5-year overall survival is associated with the

probability density of HLA-DR in CK+ tumor cells. Figure 2 shows individual and mean

HLA-DR probability density of different subjects from the two clusters. We noticed that the

individual densities from cluster 1 were more right-skewed compared to those from cluster

2 which led to the mean density of cluster 1 having very high mode compared to that of

cluster 2. We also checked the degree of conformity between Johnson and others (2021) ’s

classification and the classification based on our method. Table 1 displays the comparison

between the classifications. Accompanying values of Rand index (RI) and adjusted Rand

index (ARI) were respectively, 0.64 and 0.29 which made us conclude that the classifications

moderately agreed with each other. Figure 3 shows individual and mean HLA-DR probability

density of the subjects from groups, MHCII: High and MHCII: Low. We noticed that some

of the subjects from MHCII: High group actually had density functions similar to the average

density of MHCII: Low group meaning that the thresholding-based method was incapable

of fully capturing the differences between the density profiles.

We also used the test based on Cox PH model with random effects from Section 2.2.3

in this case. The estimated variance of the random effect was 0.38. Following Therneau

and others (2015)’s interpretation of the variance parameter in this context, we concluded

that there are multiple subjects in the study with quite large relative risks, exp(
√

0.38) =

1.855 fold greater than the average subjects. However, the LRT based on integrated partial

likelihoods was not significant.
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3.2 Application to TNBC MIBI data

The triple-negative breast cancer (TNBC) MIBI dataset has images from 41 subjects. Keren

and others (2018) categorized these subjects into three groups: “cold”, “compartmentalized”

and “mixed” based on the level of immune infiltration in the TME. We were interested in

studying the density of the immunoregulatory protein markers, PD1, PD-L1, and Lag3 which

have been shown to have immunological relevance (Keren and others , 2018; Patwa and others ,

2021). PD1 and Lag3 are primarily expressed in immune cells and “cold” subjects have very

few immune cells expressing them. Thus, we focused our analysis on 33 non-“cold” subjects.

For PD1 and Lag3, we studied their density only in immune cells of a subject and for PD-L1

we studied its density both in immune and tumor cells of a subject. For every marker, we

computed the JSD matrix between the subjects and performed a hierarchical clustering to

classify the subjects into two groups as discussed in 2.2.2. Then, we tested the vector of

cluster labels for association with two available outcomes: recurrence and survival. Figure

4 shows the Kaplan-Meier curves corresponding to the three markers for both survival (left

column) and recurrence (right column). We noticed that the HR of survival was large (HR

= 2.824) and significant (p < 0.0346) for PD1 marker, indicating that the differences in

PD1 marker density is associated with risk of death. For PD1, the HR of recurrence was

large as well (HR = 2.065) but was not significant. For other two markers, we did not find

any significant results (at level 0.05). However, it is worth pointing out that the HR of both

survival and recurrence for PD-L1 were quite large (3.49 and 2.84 respectively), alluding to a

possible association of PD-L1 marker density with both risk of death and risk of recurrence.

We should also keep in mind that the sample size for this particular analysis was quite low
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which could limit our power.

3.3 Simulation study application

Next, we assessed the performance of JSD based clustering (from Section 2.2) in different

simulation setups. We tried to replicate the characteristics of the real dataset discussed in

Section 3.1. In Figure 2, we showcased the mean of HLA-DR probability densities of the sub-

jects from the two clusters identified by JSD based clustering method. We found that these

mean densities can be well approximated using Beta distributions (Gupta and Nadarajah,

2004) with different set of parameters (α, β). To find out the set of parameters (α, β) that

would approximately replicate the mean densities of the two clusters observed, we consid-

ered the following strategy. To replicate the mean density of cluster 1, we first computed its

empirical mode, say m1. We wanted to find parameters α1, β1 so that Beta(α1, β1) had the

same mode and a density function very similar to the empirical one. Matching the modes

implies, m1 = α1−1
α1+β1−2 . For a given value of β1, α1 is fixed and can be computed using the

last equation. We considered multiple values of β1 and chose the one for which the simulated

density appeared to be closest to the real one. We repeated the above steps for replicating

the mean density of cluster 2 as well.

The modes of the mean densities of cluster 1 and 2 were respectively, m1 = 0.0039 and

m2 = 0.0176. The mean density of cluster 1 was well approximated by a Beta distribution

with α1 = 2.17, β1 = 300 and the mean density of cluster 2 by a Beta distribution with

α2 = 1.78, β2 = 45. Refer to Figure 5 and 6 to check how well the real and simulated densities

agree. Finding the suitable sets of parameters of Beta distribution that best summarized
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the real data mean densities, we focused on two different simulation studies next.

3.3.1 Simulation with densities close to the real mean density of cluster 1:

We assumed that there were two groups with N1 and N2 subjects (N = N1 + N2). We

considered N1 = 60, N2 = 40. We assumed that each subject j had same number of cells

i.e. nj = n. Two values of n: 200 and 2000 were considered. The marker data for a cell of

a subject from group 1 was simulated from Beta(2.17, 300) i.e. the distribution which best

summarized the real mean density of cluster 1. The marker data of a subject from group

2 was simulated from Beta(x, 300) where x is such that the mode of this distribution was

higher than 0.0039 by a percentage of l i.e. x satisfied

0.0039
(100 + l)

100
=

x− 1

x+ 300− 2
.

Five different values of l: 10, 20, 100, 150 and 200 were considered. We wanted to study how

well JSD based clustering approach can classify the subjects into their respective groups.

We used two measures: adjusted Rand index (ARI) (Santos and Embrechts, 2009), adjusted

mutual information (AMI) (Romano and others , 2014) which are popular in semi-supervised

learning literature. We compared our method with the thresholding based approach de-

scribed in Section 2.1. As discussed earlier, the thresholding based approach requires two

thresholds t1 and t2. Since, we did not know what thresholds would possibly be suitable

in this simulation setup, we varied t1 between 95% and 97.5% quantiles of the full marker

data (concatenating marker data of all the subjects) and kept t2 at 0.01. These two methods

were referred to as 95% and 97.5% thresholding respectively. Table 2 lists the performance
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of all these methods. We noticed that when the number of cells and difference in modes

were both small (n = 200, l = 10), all the methods performed poorly in terms of ARI and

AMI. However, the performance of JSD based clustering improved hugely when the number

of cells increased (n = 2000). Even for a moderate difference in modes (l = 50), JSD based

clustering achieved close to 1 accuracy, whereas thresholding methods kept achieving little

to zero accuracy.

3.3.2 Simulation with densities close to the real mean density of cluster 2:

We again considered two groups respectively with N1 and N2 subjects each of whom had n

cells. This time, the marker data for a cell of a subject from group 1 was simulated from

Beta(1.78, 45) i.e. the distribution which best summarized the real mean density of cluster

2. The marker data for a cell of a subject from group 2 was simulated from Beta(x, 45)

where x is such that the mode of this distribution was higher than 0.0176 by a percentage

of l i.e. x satisfied

0.0176
(100 + l)

100
=

x− 1

x+ 45− 2
.

We again considered N1 = 60, N2 = 40 (and thus, N = 100). Two values of n: 200 and

2000 and five values of l: 10, 20, 100, 150, 200 were considered. Table 3 lists the performance

of all the methods. Once again, JSD based clusetring outperformed the thresholding based

approaches in all the cases. One interesting observation is that the thresholding based

approaches seemed to be performing worse in this simulation setup compared to the previous

one. Possibly, a different set of (t1, t2) would have been more appropriate in this scenario.

It reiterates the point that the subjectivity of the thresholding based approaches can hugely
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alter or affect the performance.

3.3.3 Simulation favoring the thresholding based approach

Next, we devised a simulation where the true values of the thresholds: (t1, t2) were known.

And the marker data generation process was dependent on those. Recall that t1 controls

how we define a cell to be positive for a marker and t2 controls how we cluster the subjects

into two groups. The simulation strategy was as follows. We considered two groups with

respectively N1 and N2 subjects, each with n cells. We kept N1 = 40 and N2 = 60 and

varied n between 200 and 2000. We wanted the subjects in group 1 to have t2% positive cells

and the subjects in group 2 to have more than t2% positive cells. We describe the process of

simulating the marker data of the non-positive cells first. For subjects in group 1, we made

sure that they had (100− t2)% non-positive cells by randomly choosing (100− t2)n/100 cells

out of the total of n. Let I denote the set of indices of those non-positive cells for subject

j. Next, the marker data of i-th cell from set I, Xij was simulated from Beta(2.17, 300).

To avoid any notational confusion, we highlight that Xij can be thought of as Xkij from the

methods section. Since we were dealing with a single marker, we dropped the index k for

simplicity. Once, all the X ′ijs were generated, the values were scaled to be in the range (0,

t1) using the transformation, X∗ij =
(

Xij−mini∈IXij

maxi∈IXij−mini∈IXij

)
t1 for i ∈ I. Next, we describe the

process of simulating the marker data of the positive cells. The marker data of the positive

cells (i.e. Xij’s for i ∈ Ic) were again simulated from Beta(2.17, 300) and a constant of t1

was added to them, X∗ij = max{Xij + t1, 1}, i ∈ Ic. Thus, we had generated whole cell-level

data of a subject j from group 1, X∗ij for i ∈ {1, . . . , n} making sure there were only t2%

cells having marker expression more than t1.
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For subjects in group 2, we had to make sure that they have more than t2% positive

cells. So, for such a subject j we simulated a number, t∗2j from Uniform(t2, 0.9) and repeated

all the steps used in simulating group 1 with t∗2j in place of t2. Note that for both the

groups, we used Beta(2.17, 300) to simulate the initial cell-level data (Xij) and then slightly

transformed it (X∗ij) to maintain the threshold criteria. One might as well vary the primary

distribution as well between the groups but our goal was to create the hardest possible

simulation scenario for our method where there would be no explicit difference in marker

ensities between two groups. We considered two different values of t1: 0.05, 0.1 and five

different values of t2 : 0.005, 0.01, 0.05, 0.1 and 0.2. Table 4 lists the performance of JSD

based clustering for all combinations of the parameters. We found out that our method

performed better for higher values of t2. The value of t1 and the value of n did not have any

apparent impact on the performance. Keep in mind that using the thresholding approach

in this simulation setup with the known values of (t1, t2) one would achieve ARI and AMI

accuracy of 1 in all the cases. However, as we have repeatedly pointed out, knowing the true

values of (t1, t2) will never be possible in real data.

4 Discussion

In multiplexed tissue imaging datasets, it is often of interest to stratify the subjects based on

the profile of functional markers for the purpose of risk assessment (e.g. risk of recurrence,

risk of death etc.). The most common approach of grouping the subjects into meaningful

clusters is a thresholding-based method which requires elaborate tuning of two or more

thresholds. In consequence, the method remains largely subjective and varies from one
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researcher to another based on their interpretation of the data. In this paper, we have

developed a threshold-free method for classifying subjects based on the probability density

of the functional markers in the tumor microenvironment (TME). The method is easy to

interpret and free from the subjectivity bias.

In our method, we treat the expression of a functional marker in a subject as a continuous

random variable and compute its kernel density estimate based on its observed value in the

cells of the TME. Once the marker density estimates for all the subjects have been computed,

we use the Jensen-Shannon distance to quantify the difference in marker densities between

the subjects. If the distance between two subjects is large, it means that they have very

different marker expression profiles. Next, the computed distance matrix is used in either of

the following two ways. It can be subjected to hierarchical clustering to group the subjects

into clusters and the cluster-labels can be tested for association with outcomes of interest

(e.g. recurrence, survival). Or it can be used directly in a linear mixed model setup for

testing association with outcomes of interest.

We analyzed two highly complex multiplex tissue imaging datasets, an mIHC lung can-

cer dataset from University of Colorado School of Medicine and a publicly available triple

negative breast cancer MIBI data. In the lung cancer dataset, we found out that the dif-

ference in HLA-DR marker density between subjects was significantly associated with their

5-year overall survival. In the breast cancer dataset, we found out that the difference in the

density of immunoregulatory protein PD-1 was associated with the overall survival. Next,

we replicated the characteristics of the lung cancer dataset in two simulation scenarios and

showcased the robustness of our method in comparison with the thresholding-based method.

In the final simulation setup, we aimed to simulate a dataset favoring the principles of the
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thresholding method. We showed that our method performed competently even in that

scenario.

In this paper, we have focused on analyzing each of the functional markers separately. Our

next goal will be to study the joint effect of multiple functional markers. One naive way of

studying the joint effect would be to sum up the distance matrices corresponding to different

functional markers creating a new distance matrix. This aggregated distance matrix would

capture the overall difference in densities of the different markers. However, the approach

is essentially assuming that the markers are independent and will be incapable of capturing

complex interplay between the markers. In that light, one possible alternative would be

to compare multivariate probability density of the markers across different subjects which,

on the other hand, can turn out to be extremely computationally demanding. Therefore,

we would study all these approaches in much greater details as a part of our next work.

Additionally, we would further validate the applicability of our method using datasets coming

from other imaging platforms, such as CODEX (Goltsev and others , 2018) and Visium

(Tippani and others , 2021).

5 Software

Software in the form of a GitHub R package, together with an example data-set and complete

documentation is available at this link, https://github.com/sealx017/DenVar.
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Figure 1: KM curves of 5-year overall Survival of 153 subjects from the lung cancer dataset,
color coded by the clusters found comparing HLA-DR marker density in CK+ Tumor cells.
Also, displayed are the Hazard ratio (HR) and the p-value corresponding to the test, H0 :
γ = 0 from Equation 1. Notice that HR is large (> 2) and the p-value is significant as well
indicating that the two clusters have significant difference in survival probability.
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Figure 2: Individual (on the left) and mean (on the right) HLA-DR marker probability
density (in CK+ tumor cells) of the subjects from the two clusters found using JSD based
clustering proposed in Section 2.2. Notice that the individual densities from cluster 1 are
more right-skewed than the densities from cluster 2. Consequently, the mean density of
cluster 1 is also more right-skewed than that of cluster 2 and has a much higher peak.
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Figure 3: Individual (on the left) and mean (on the right) HLA-DR marker probability
density (in CK+ tumor cells) of the subjects from two groups, MHCII: High and MHCII:
Low. Notice that some of the subjects from MHCII: High group have density functions
similar to the average of MHCII: Low group. It means that the grouping is not fully capturing
the density differences between the subjects.
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Figure 4: KM Plots of overall survival (left) and recurrence (right) of 33 subjects color coded
by the clusters found using markers: PD1, PD-L1 and Lag3, using our method. We notice
that difference in PD1 density has significant effect on overall survival.
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Figure 5: Comparing the probability density of Beta(2.17, 300) to the real mean density of
cluster 1. On the left, are shown the densities on the entire range of expression value: (0,
1). On the right, we zoom into the lower expression values and the same densities are shown
only between (0, 0.3). Even though there appears to be a difference in the modes of the
densities, their overall shapes are quite close.
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Figure 6: Comparing the probability density of Beta(1.78, 45) to the real mean density of
cluster 2. On the left, are shown the densities on the entire range of expression value: (0,
1). On the right, we zoom into the lower expression values and the same densities are shown
only between (0, 0.3). The overall shapes of the densities are quite similar.
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Table 1: Number of subjects common between the groups found using the thresholding-based
method and our proposed method in the lung cancer dataset.

Cluster 1 Cluster 2
MHCII: High 80 17
MHCII: Low 18 38

Table 2: Performance of different methods in the simulation with densities close to the
mean density of cluster 1 as described in Section 3.3.1. JSD based clustering performs
systematically better than the thresholding approaches in all the cases. When the number
of cells is large, JSD based clustering performs well even for small differences in modes.

Measure of Number of Percentage difference JSD based 95% 97.5%
performance cells in modes clustering thresholding thresholding

ARI

n = 200

10 0.0744 0.0014 0.0234
20 0.3988 0.0029 0.0551
50 0.9808 0.0236 0.2264
100 1.0000 0.1979 0.6324
200 1.0000 0.8628 0.9570

n = 2000

10 0.8029 0.0000 0.0000
20 0.9530 0.0000 0.0001
50 1.0000 0.0000 0.0299
100 1.0000 0.0040 0.8105
200 1.0000 0.9907 1.0000

AMI

n = 200

10 0.0713 0.0026 0.0144
20 0.3344 0.0041 0.0358
50 0.9662 0.0283 0.1802
100 1.0000 0.2001 0.5421
200 1.0000 0.8088 0.9239

n = 2000

10 0.7233 0.0000 0.0000
20 0.9976 0.0000 0.0001
50 1.0000 0.0000 0.0322
100 1.0000 0.0039 0.7609
200 1.0000 0.9865 1.0000
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Table 3: Performance of different methods in the simulation with densities close to the
mean density of cluster 2 as described in Section 3.3.2. JSD based clustering performs
systematically better than the thresholding approaches in all the cases. When the number
of cells is large, JSD based clustering performs well even for small differences in modes.

Measure of Number of Percentage difference JSD based 95% 97.5%
performance cells in modes clustering thresholding thresholding

ARI

n = 200

10 0.0345 0.0005 0.0171
20 0.2003 0.0016 0.0411
50 0.8656 0.0119 0.1395
100 0.9996 0.0699 0.4153
200 1.0000 0.5428 0.8696

n = 2000

10 0.5157 0.0000 0.0000
20 0.9737 0.0000 0.0001
50 1.0000 0.0000 0.0045
100 1.0000 0.0000 0.2627
200 1.0000 0.4074 0.9984

AMI

n = 200

10 0.0363 0.0022 0.0110
20 0.1727 0.0030 0.0237
50 0.8035 0.0142 0.1052
100 0.9993 0.0787 0.3418
200 1.0000 0.4990 0.7992

n = 2000

10 0.4352 0.0000 0.0000
20 0.9530 0.0000 0.0001
50 1.0000 0.0000 0.0052
100 1.0000 0.0000 0.2558
200 1.0000 0.3829 0.9971
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Table 4: Performance of JSD based clustering in the simulation from Section 3.3.3. The
method performs better for larger values of t2, whereas t1 does not seem to affect the per-
formance.
Number of Measure of t2 : 0.005 0.01 0.05 0.1 0.2

cells performance

n = 200
ARI

t1 = 0.05 0.760 0.791 0.801 0.938 1.000
t1 = 0.1 0.784 0.727 0.815 0.957 0.987

AMI
t1 = 0.05 0.764 0.772 0.756 0.922 1.000
t1 = 0.1 0.712 0.719 0.765 0.943 0.987

n = 2000
ARI

t1 = 0.05 0.778 0.727 0.800 0.936 1.000
t1 = 0.1 0.784 0.727 0.808 0.965 1.000

AMI
t1 = 0.05 0.733 0.678 0.755 0.919 1.000
t1 = 0.1 0.734 0.680 0.762 0.951 1.000
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