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Abstract

Multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI)
platforms have become increasingly popular for studying complex single-cell biology in
the tumor microenvironment (TME) of cancer subjects. Studying the intensity of the
proteins that regulate important cell-functions, often known as functional markers, in
the TME becomes extremely crucial for subject-specific assessment of risks, such as
risk of recurrence and risk of death. The conventional approach requires selection of
two thresholds, one to define the cells of the TME as positive or negative for a partic-
ular functional marker, and the other to classify the subjects based on the proportion
of the positive cells. The selection of the thresholds has a large impact on the results
and an arbitrary selection can lead to an incomprehensible conclusion. In light of this
problem, we present a threshold-free distance between the subjects based on the prob-

ability densities of the functional markers. The distance can be used to classify the
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subjects into meaningful groups or can be used in a linear mixed model setup for test-
ing association with clinical outcomes. The method gets rid of the subjectivity bias of
the thresholding-based approach, enabling an easier but interpretable analysis of these
types of data. With the proposed method, we analyze a lung cancer dataset from an
mIHC platform, finding the difference in the density of functional marker HLA-DR to
be significantly associated with the overall survival. The approach is also applied on
an MIBI triple-negative breast cancer dataset to analyze effects of multiple functional
markers. Finally, we demonstrate the reliability of our method through extensive sim-
ulation studies.

Keywords: Multiplex tissue imaging; Single cell data; Marker thresholding; Kernel

density estimation; Density based distance; Survival analysis.

1 Introduction

In recent years, various technologies are being used for probing single-cell spatial biology,
for example, multiparameter immunofluorescence (Bataille and others, [2006), imaging mass
cytometry (IMC) (Giesen and others, 2014; |Chang and othersl 2017, |Ali and others|, 2020)),
multiplex immunohistochemistry (mIHC) (Halse and others, |2018; Tan and others, [2020;
Vu and others, |2021)) and multiplexed ion beam imaging (MIBI) (Angelo and others, [2014;
Seal and others, 20210). These technologies, often referred to as multiplex tissue imaging,
offer the potential for researchers to explore the bases of many different biological mecha-
nisms. Multiplex tissue imaging platforms such as Vectra 3.0 (Akoya Biosciences) (Huang

and others, 2013), Vectra Polaris (Akoya Biosciences) (Pollan and others|,|2020)), MIBI (Ion-
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path Inc.) (Keren and others, 2019; Ptacek and others, 2020) produce images with similar

structure. In particular, each image is two dimensional, collected at cell- and nucleus-level
resolution and proteins in the sample have been labeled with antibodies called “markers”
that attach to cell membranes. Typically, mIHC images have 6-8 markers, whereas MIBI
images can have more than 40 markers.

Majority of the above markers are surface or phenotypic markers, such as CD4, CD3,

CDS8, CD68 etc. (Jondal and others), |1972; |Zola and others|, [2007; |Shipkova and Wieland,

2012)) which are primarily used for cell type identification. Additionally, there are several

functional markers including HLA-DR (Jendro and others|, (1991} |Oczenski and others), |2003;

Saraiva and others| 2018), PD-1, PD-L1, Lag3 etc. (Nguyen and Ohashi, [2015; Han and

lothers), 2020; Phillips and others, 2021) that dictate or regulate important cell-functions.

Both surface and functional markers are quantified as continuous valued marker intensities.
For a phenotypic marker, a threshold is drawn to indicate whether a cell is positive or negative
for the particular marker. Then one or more of these binarized phenotypic markers are used
to classify the cells into different types based on biological knowledge of marker co-expression.

With the functional markers, the interest lies in finding out if abundance or over-expression

of the markers across the cells of the tumor microenvironment (TME) (Whiteside], 2008}

Binnewies and others| [2018) have significant impact on subject-level clinical outcomes, such

as survival or recurrence (Sahlberg and others, |2014; Koguchi and others|,[2015; Johnson and

2020)). A two-step thresholding-based approach (Bulian and others|, 2014} |Costa and

lothers), 2017; [Missassi and othersl 2021)) is typically used in this context which we describe

next.

The two steps in the thresholding-based approach involve identifying cells positive for a
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marker and classifying patients into different groups according to the proportions of positive
cells. The group labels can be used in a linear regression framework to test association
with the outcomes of interest (Chen and others), |2016; Chang and others, [2018; [Yang and
others|, [2019)). For example, Johnson and others| (2021)) defines the cells to be positive for
HLA-DR (also known as, MHCII) if the corresponding mean marker intensity is greater than
0.05. Next, they classify the subjects into two groups, MHCII: High and MHCII: Low if the
proportion of cancer cells positive for HLA-DR is greater or smaller than 5% respectively.
Finally, they test if these two groups of subjects have different 5-year overall survival. Instead
of grouping the subjects based on the proportion of positive cells, another approach would be
to directly test if the vector of the proportion of positive cells is associated with the outcome
(Patwa and others, [2021)).

The aforementioned thresholding-based method clearly requires judicious selection of the
cut-offs that greatly influence the subsequent steps of the analysis (Harris and others|, 2021)).
The result is bound to vary for different thresholding values; and a poor choice of thresh-
olds may produce an uninformative and uninterpretable result. There is a plethora of helpful
guidelines on choosing these thresholds in different contexts (Barnett and others}, (1999; |Kim-
ball and others| 2018; (Cossarizza and others, 2019; BIO-RAD, 2021)). However, there is no
universal solution or rule of thumb. Thus, the method remains prone to subjectivity bias
and lacks robustness.

In this paper, we propose a threshold-free method for distinguishing the difference be-
tween the subjects with respect to the functional markers. We treat the expression of every
marker as a continuous random variable having realizations in the cells of a subject. For

every marker, we compare its probability distribution or equivalently, density between every
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pair of subjects. Our exact algorithm is as follows. First, for every subject, the probabil-

ity density of each marker is estimated using kernel density estimation (KDE) (Silverman)

11981} [Sheather and Jones, [1991; (Ghosh and others, 2006)). Next, a density based distance

(Basu and others),|1998; |Jones and others|,[2001)) known as Jensen-Shannon distance (Endres

and Schindelin| 2003} [Fuglede and Topsoe, [2004)) is used to quantify the difference in the

estimated density across the subjects. The matrix of distances between subjects for every

marker can then be used to classify them into meaningful groups using hierarchical cluster-

ing (Murtagh| |1985; Murtagh and Legendre, 2014). In a linear regression framework, the

cluster-labels can be tested for association with clinical outcomes. The distance matrix can

also be directly used in a linear mixed model (Hoffman|, 2013; Seal and others, 2021d) or

equivalently, a kernel machine regression framework (Liu and othersl 2008; [Hua and Ghosh,

2015; |Ge and others| [2016} [Jensen and others, 2019)). Using our proposed method, we have

analyzed an mIHC dataset on lung cancer (Johnson and others| 2021)) from the University

of Colorado School of Medicine, finding out that the difference in HLA-DR marker density
in tumor cells is associated with 5-year overall survival of the subjects. We have also applied

the proposed method on a publicly available triple negative breast cancer (TNBC) dataset

(Keren and others|, 2018) from the MIBI platform finding the density of an immunoregula-

tory protein, PD-1 to have significant effect on overall survival. We have performed extensive
simulation studies mimicking the characteristics of the real datasets to check the reliability

and robustness of our method.
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2 Materials and Methods

Suppose there are M functional markers and N subjects with j-th subject having n; cells.
Let X};; denote the scaled expression, between 0 and 1, of k-th marker in ¢-th cell of j-th
subject for k =1,2,...,M,i=1,2,...,n;and j =1,2,...,N. Let Y (INV x 1 vector) be a

subject-level outcome of interest and C' be an N X p matrix of p subject-level covariates.

2.1 Traditional thresholding based approach for clustering sub-

jects

To study if abundance of marker k is associated with a subject’s survival or any other
outcome of interest (YY), the conventional approach is to classify the subjects into two or
more groups using a thresholding based approach. First, consider a threshold ¢; and check
how many of the n; cells of subject j have marker expression more than that threshold
i.e. the number of cells with Xj;; > t;. Such cells are referred to as the cells positive for
marker k. The proportion of the cells positive for a marker £ in subject j is denoted as,
i = Yoy I(Xkij > t1)/n;, where I(.) is the indicator function. Another threshold ¢, is
chosen to classify the subjects into two groups, one with subjects more than #,% positive
cells i.e. subjects with py; > 5, and the other with subjects less than ¢,% positive cells
i.e. subjects with py; < t2. Then, test if these two groups of people have differential rate of
survival (or, associated with some other outcome of interest). This can easily be extended
to allow more than two groups.

Denote the clustering variable as Z; = I(pg; > t2) with Zy; being a binary variable taking

values zero and one. When Y is a continuous/categorical outcome, a standard multiple linear
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regression model with Zy, = (Zy1, ..., Ziy)? as a predictor can be written as
Y =CB + Zyvyi + e,

where B,v are fixed effects and € is an N x 1 error vector following multivariate normal
distribution (MVN) with mean 0 and identity covariance matrix o2Iy. After estimating the
parameters, the null hypothesis, Hy : v, = 0, can be tested using the Wald test (Gourieroux
and others, |1982]).

Next, we consider the case of Y being a survival or recurrence outcome. Let the outcome
of the j-th individual be Y; = min(T;,U;), where T} is the time to event and U; is the
censoring time. Let 0; = I(T; < U,) be the corresponding censoring indicator. Assuming
that T and U; are conditionally independent given the covariates for j = 1,2,..., N, the
hazard function for the Cox proportional hazards (PH) model (Andersen and Gill, [1982; |Lin

and Wei, 1989, Therneau and Grambsch, 2000)) with fixed effects can be written as,
)\j(ﬂOj,ij) = )\O(t> exp(OjTﬁ—i—Zkﬂk), j = 1,2,...,]\7 (1)

where \;(¢|C}, Z;) is the hazard of the j-th subject at time ¢, given the vector of covariates
C; and the cluster label Zj; and A\o(t) is an unspecified baseline hazard at time ¢. To test
the null hypothesis: Hy : vy = 0, a likelihood ratio test (LRT) (Therneau, [1997) can be
considered. The above procedure can be conducted individually for £k = 1,..., M and the
influential markers can be reported.

As pointed out earlier, the biggest difficulty with this approach lies in choosing the
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thresholds, ¢; and ¢, appropriately. In most cases, one would run the approach for different
pairs of (¢1,t2) and choose the one that leads to the most interpretable result. Thus, the step
of threshold-selection remains entirely subjective and the results are bound to vary largely

depending on the selected thresholds.

2.2 Proposed Method: Distance based clustering using marker

probability density of subjects

To avoid the bias inherent in the thresholding-based approach, we propose a distance between
the subjects based on each marker k that would be devoid of subjectivity and can easily be
tested for association with a outcome of interest. First, we discuss the concept of divergence
or distance between two probability distributions and then, implement it in the context of

our problem.

2.2.1 Jensen-Shannon distance:

Let (X,.A) be a measurable space (Billingsley, [2008) where X denotes the sample space
and A the o-algebra of measurable events. Consider a dominating measure p and denote
the set of probability distributions as, P = {P : A — [0,1]}. In this context, the Jensen-
Shannon distance (JSD) (Endres and Schindelin, [2003; |[Fuglede and Topsoe, 2004; Nielsen,

2019) between two probability distributions, P, € P can be defined as,

_ ) log — P40 ) log 2240
d(RQ)—\//Xp( Jiog — LD (o) + [ o) ton LD duta) (2
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where p, ¢ are the Radon-Nikodym derivatives or densities (Nikodym, [1930) of P and Q
with respect to a dominating measure p. Unlike other divergences between distributions,
such as Kullback-Leibler divergence (Van Erven and Harremos, [2014)), the Jensen-Shannon
distance (JSD) satisfies the properties of being a metric (Lawvere, 1973|) between probability

measures. To formalize this, a metric d : P x P — [0, 00) satisfies the following three axioms:
1. Identity: d(P,Q) =0 iff P = @,
2. Symmetry: d(P,Q) = d(Q, P),
3. Triangle Inequality: d(P, Q) + d(Q, R) > d(P, R) where R € P.

Note that, P = @ implies p(x) = ¢(x) almost everywhere w.r.t pu (Athreya and Lahiri,
2006; [Feller, [2008). JSD can be shown to be bounded above by 2log(2) and bounded below
by 0 (Endres and Schindelin, 2003). JSD has been used in many different areas, such as
bioinformatics (Sims and others|, 2009), social sciences (DeDeo and others, 2013), and more
recently, in generative adversarial networks (GANs) (Goodfellow and others|,2014), a popular

technique in deep learning.

2.2.2 Formulation of the distance in our context:

For every subject j, we assume that the expression of marker k is a continuous random
variable, denoted by Xj;, taking values between 0 and 1. Xj; is observed in n; cells as,
Xr1j, Xr2j, - - Xgn,j- Let the probability distribution function and the density function of
X};j be denoted by, Fy; and fi; respectively. Next, we consider the set-up described in Section

with X = [0, 1] and A being the corresponding o-algebra of measurable events. Then
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the set, P contains the distribution functions, Fy; for j = 1,2,...,N and k = 1,2,..., M.
Finally, using Equation 2} the distance between two subjects (7, j') in terms of the probability

distribution of marker k£ can be quantified as,

dz.

2frj (@) . ! o 2 fryr (x)
gfkj($)+fkjf(f)3)d +/o fiy (@) gfkj(ﬂf)+fkj’($)

(3)

A large value of JSDy;;» will imply that there is a clear difference in the distribution or

1
JSDyj5r = d(Fyj, Fryr) = \//0 frj(x)lo

equivalently, density of k-th marker between the pair of subjects, (7,5’). A small value will
imply that the distributions are close. The distance matrix between all the subjects based
on k-th marker can then be constructed as, JSDj = [[JSDy;;/]].

In real data, the density function f; will be unknown. Therefore, we compute corre-
sponding kernel density estimate (KDE) fkj (Silverman), [1981; [Sheather and Jones, 1991}
Ghosh and others|, |2006) using the observations: Xy;;’s for i = 1,...,n;. fkj typically has
the form: fi;(z) = ni 2wy (x — Xpiy), where wy, is a Gaussian kernel with bandwidth

parameter h, chosen using Silverman’s rule of thumb (Silverman, 2018)). Using the KDEs,

JSDy;; from Equation can be estimated as,

R A A
TaT™ £ 2fk(xr) P 2fk "(Ir>
JSDy,jr = fri(z,)log — I + frjr(z,)log = S . (4)
; Joj (@) + frje(ar) Jej (@) + foje(ar)
where x,.,r = 1,..., R are grid-points in the interval [0, 1]. In our simulations and real data

analysis, we keep R at 1024 and choose equidistant grid-points. We have noticed that for
R > 512, the results do not alter. We make sure that the estimated densities integrate to 1

by appropriately scaling them.

10


https://doi.org/10.1101/2021.09.27.462056
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462056; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

2.2.3 Using the distance in association analysis:

Next, we construct suitable tests for testing the association of the distance matrix with

dependent variable, Y.

Test based on hierarchical clustering: The estimated distance matrix (J/ST)k) can be
subjected to hierarchical clustering (Murtaghl 1985; Murtagh and Legendre, [2014) for clas-
sifying the subjects into two or more groups. Suppose, we obtain a vector of cluster labels:
Z, = (Zp1, ..., Z1n)T. Then, exactly the same models, described in Section and corre-
sponding tests, can be used to determine if the differential expression of the k-th marker is

associated with Y.

Test based on linear mixed model: The distance matrix can be transformed into a
similarity matrix (Vert and others, 2004) as, Gy = exp(—J/S]\)k). When Y is a continu-
ous/categorical outcome, Gy can be incorporated in a linear mixed model framework, par-
ticularly popular in the context of heritability estimation (Hoffman| [2013; [Seal and others,
20214d)), as,

Y:Oﬁ+gk+€7

where f is the vector of fixed effects, gr = (gx1, gr2, - - -, grn)? is the vector of random effects
following MVN(0, 02, G},) and € is an error vector following MVN(0, 0*Iy). The null hypoth-
esis: Hj : ng = 0 can be tested using a likelihood ratio test (Crainiceanu and Ruppert),
2004). Note that, such a linear mixed model setup has been shown to be equivalent to a
kernel machine regression framework by Liu and others| (2008). In a standard kernel machine

regression framework, there is one additional width parameter, p that has to be estimated.

11
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Next, we consider the case of Y being a survival or recurrence outcome. Using the same
definitions and conditional independence assumptions of 7}, U; and covariates as in Section
2.1] the hazard function for the Cox proportional hazards (PH) model with random effects

(Therneau and others|, 2015) can be written as,

where \;(t|C}, gi;) is the hazard of the j-th subject at time ¢, given the vector of covariates
C; and the random effect gi; and A\o(t) is an unspecified baseline hazard at time ¢. To test
the null hypothesis, Hy : aﬁk = 0, an LRT based on integrated partial likelihoods (Therneau
and Therneau, [2015) can be considered. However, it is to be kept in mind that usually a large
sample size is needed to obtain a precise estimate of the random effect variance (Maas and
Hox| 2005; Bell and others, 2010; |Austin and Leckie| |2018). The problem would possibly be
exacerbated in the Cox PH model with random effects because the partial likelihood would
depend on the number of events (Peduzzi and others, 1996; |Vittinghoff and McCulloch,
2007; Kocak and Onar-Thomas, 2012; Ogundimu and others, 2016|). Therefore, we do not

recommend using this test unless the sample size is sufficiently large.

3 Results

We first discuss the application of our method on the real datasets. We analyzed two datasets:
an mIHC lung cancer dataset (Johnson and others)2021) and an MIBI breast cancer dataset

(Keren and others, 2018). The first dataset has a single functional marker, HLA-DR and

12
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the second dataset has four immunoregulatory proteins, PD-1, PD-L1, Lag3 and IDO. We
applied the method proposed in Section on both the datasets. In all the analyses, the

markers were scaled to have expression value between 0 and 1.

3.1 Application to mIHC Lung Cancer data

In the mIHC lung cancer dataset, there are 153 subjects each with 3-5 images (in total,
761 images). The subjects have varying number of cells identified (from 3,755 to 16,949).
The cells come from two different tissue regions: tumor and stroma and are classified into
either of the six different cell types: CD14+, CD19+, CD4+, CD8+, CK+ and Other, based
on the expression of phenotypic markers, CD19, CD3, CK, CD8 and CD14. A functional
marker, HLA-DR (also known as MHCII), is also measured in each of the cells. Using the
thresholding-based approach described in Section [2.1] lJohnson and others| (2021)) classified
the subjects into two groups, a) MHCII: High and b) MHCII: Low based on the proportion of
CK+ tumor cells that are also positive for HLA-DR. They found out that there is significant
difference in 5-year overall survival between the groups. Analogously, we were interested
in answering the question: whether 5-year overall survival of a subject is associated with
the HLA-DR density in CK+ tumor cells. We first computed the JSD matrix between
the subjects as discussed in Section based on the density of HLADR marker in CK+
tumor cells. Next, we performed a hierarchical clustering using the computed JSD matrix
to classify the subjects into two groups. Next, we tested if there is a difference in survival
between the subjects of the two groups using the test based on the Cox PH model with

fixed effects described in Equation . Figure (1) shows the Kaplan-Meier curves (Efron, [1988))
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of the two groups of subjects. We noticed that Hazard Ratio (HR) is large (> 2) and the
p-value is significant (< 0.015) indicating that 5-year overall survival is associated with the
probability density of HLA-DR in CK+ tumor cells. Figure [2 shows individual and mean
HLA-DR probability density of different subjects from the two clusters. We noticed that the
individual densities from cluster 1 were more right-skewed compared to those from cluster
2 which led to the mean density of cluster 1 having very high mode compared to that of
cluster 2. We also checked the degree of conformity between [Johnson and others (2021) ’s
classification and the classification based on our method. Table (1] displays the comparison
between the classifications. Accompanying values of Rand index (RI) and adjusted Rand
index (ARI) were respectively, 0.64 and 0.29 which made us conclude that the classifications
moderately agreed with each other. Figure|3|shows individual and mean HLA-DR probability
density of the subjects from groups, MHCII: High and MHCII: Low. We noticed that some
of the subjects from MHCII: High group actually had density functions similar to the average
density of MHCII: Low group meaning that the thresholding-based method was incapable
of fully capturing the differences between the density profiles.

We also used the test based on Cox PH model with random effects from Section 2.2.3]
in this case. The estimated variance of the random effect was 0.38. Following Therneau
and others| (2015))’s interpretation of the variance parameter in this context, we concluded
that there are multiple subjects in the study with quite large relative risks, exp(1/0.38) =
1.855 fold greater than the average subjects. However, the LRT based on integrated partial

likelihoods was not significant.
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3.2 Application to TNBC MIBI data

The triple-negative breast cancer (TNBC) MIBI dataset has images from 41 subjects. Keren
and others| (2018)) categorized these subjects into three groups: “cold”, “compartmentalized”
and “mixed” based on the level of immune infiltration in the TME. We were interested in
studying the density of the immunoregulatory protein markers, PD1, PD-L1, and Lag3 which
have been shown to have immunological relevance (Keren and others|,2018; |Patwa and others),
2021). PD1 and Lag3 are primarily expressed in immune cells and “cold” subjects have very
few immune cells expressing them. Thus, we focused our analysis on 33 non-“cold” subjects.
For PD1 and Lag3, we studied their density only in immune cells of a subject and for PD-L1
we studied its density both in immune and tumor cells of a subject. For every marker, we
computed the JSD matrix between the subjects and performed a hierarchical clustering to
classify the subjects into two groups as discussed in [2.2.2] Then, we tested the vector of
cluster labels for association with two available outcomes: recurrence and survival. Figure
shows the Kaplan-Meier curves corresponding to the three markers for both survival (left
column) and recurrence (right column). We noticed that the HR of survival was large (HR
= 2.824) and significant (p < 0.0346) for PD1 marker, indicating that the differences in
PD1 marker density is associated with risk of death. For PD1, the HR of recurrence was
large as well (HR = 2.065) but was not significant. For other two markers, we did not find
any significant results (at level 0.05). However, it is worth pointing out that the HR of both
survival and recurrence for PD-L1 were quite large (3.49 and 2.84 respectively), alluding to a
possible association of PD-L1 marker density with both risk of death and risk of recurrence.

We should also keep in mind that the sample size for this particular analysis was quite low
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which could limit our power.

3.3 Simulation study application

Next, we assessed the performance of JSD based clustering (from Section in different
simulation setups. We tried to replicate the characteristics of the real dataset discussed in
Section 3.1} In Figure[2] we showcased the mean of HLA-DR probability densities of the sub-
jects from the two clusters identified by JSD based clustering method. We found that these
mean densities can be well approximated using Beta distributions (Gupta and Nadarajahl,
2004) with different set of parameters (a, #). To find out the set of parameters (a, §) that
would approximately replicate the mean densities of the two clusters observed, we consid-
ered the following strategy. To replicate the mean density of cluster 1, we first computed its
empirical mode, say m;. We wanted to find parameters «, 5 so that Beta(ay, 51) had the

same mode and a density function very similar to the empirical one. Matching the modes

a;—1
a1 +p1—-2"

implies, m; = For a given value of 3, «; is fixed and can be computed using the
last equation. We considered multiple values of 3; and chose the one for which the simulated
density appeared to be closest to the real one. We repeated the above steps for replicating
the mean density of cluster 2 as well.

The modes of the mean densities of cluster 1 and 2 were respectively, m; = 0.0039 and
mo = 0.0176. The mean density of cluster 1 was well approximated by a Beta distribution
with oy = 2.17,8; = 300 and the mean density of cluster 2 by a Beta distribution with
ag = 1.78, By = 45. Refer to Figure[fland [6]to check how well the real and simulated densities

agree. Finding the suitable sets of parameters of Beta distribution that best summarized

16


https://doi.org/10.1101/2021.09.27.462056
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462056; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

the real data mean densities, we focused on two different simulation studies next.

3.3.1 Simulation with densities close to the real mean density of cluster 1:

We assumed that there were two groups with N; and Ny subjects (N = N; + Ny). We
considered N; = 60, Ny = 40. We assumed that each subject j had same number of cells
i.e. nj = n. Two values of n: 200 and 2000 were considered. The marker data for a cell of
a subject from group 1 was simulated from Beta(2.17, 300) i.e. the distribution which best
summarized the real mean density of cluster 1. The marker data of a subject from group
2 was simulated from Beta(z, 300) where z is such that the mode of this distribution was

higher than 0.0039 by a percentage of [ i.e. z satisfied

(100 + 1) x—1
0.0039 = .
100 x4+ 300 — 2

Five different values of I: 10, 20, 100, 150 and 200 were considered. We wanted to study how
well JSD based clustering approach can classify the subjects into their respective groups.
We used two measures: adjusted Rand index (ARI) (Santos and Embrechts, 2009), adjusted
mutual information (AMI) (Romano and othersl 2014) which are popular in semi-supervised
learning literature. We compared our method with the thresholding based approach de-
scribed in Section As discussed earlier, the thresholding based approach requires two
thresholds ¢; and t5. Since, we did not know what thresholds would possibly be suitable
in this simulation setup, we varied t; between 95% and 97.5% quantiles of the full marker
data (concatenating marker data of all the subjects) and kept ¢5 at 0.01. These two methods

were referred to as 95% and 97.5% thresholding respectively. Table [2| lists the performance
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of all these methods. We noticed that when the number of cells and difference in modes
were both small (n = 200,/ = 10), all the methods performed poorly in terms of ARI and
AMI. However, the performance of JSD based clustering improved hugely when the number
of cells increased (n = 2000). Even for a moderate difference in modes (I = 50), JSD based
clustering achieved close to 1 accuracy, whereas thresholding methods kept achieving little

to zero accuracy.

3.3.2 Simulation with densities close to the real mean density of cluster 2:

We again considered two groups respectively with N; and N, subjects each of whom had n
cells. This time, the marker data for a cell of a subject from group 1 was simulated from
Beta(1.78, 45) i.e. the distribution which best summarized the real mean density of cluster
2. The marker data for a cell of a subject from group 2 was simulated from Beta(x, 45)
where x is such that the mode of this distribution was higher than 0.0176 by a percentage
of [ i.e. x satisfied

(100 + 1) x—1

0.0176 = .
100 x+45—2

We again considered Ny = 60, Ny = 40 (and thus, N = 100). Two values of n: 200 and
2000 and five values of [: 10, 20, 100, 150, 200 were considered. Table [3] lists the performance
of all the methods. Once again, JSD based clusetring outperformed the thresholding based
approaches in all the cases. One interesting observation is that the thresholding based
approaches seemed to be performing worse in this simulation setup compared to the previous
one. Possibly, a different set of (¢1,%2) would have been more appropriate in this scenario.

It reiterates the point that the subjectivity of the thresholding based approaches can hugely
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alter or affect the performance.

3.3.3 Simulation favoring the thresholding based approach

Next, we devised a simulation where the true values of the thresholds: (¢;,t2) were known.
And the marker data generation process was dependent on those. Recall that t; controls
how we define a cell to be positive for a marker and ¢, controls how we cluster the subjects
into two groups. The simulation strategy was as follows. We considered two groups with
respectively N; and N, subjects, each with n cells. We kept N; = 40 and N, = 60 and
varied n between 200 and 2000. We wanted the subjects in group 1 to have t,% positive cells
and the subjects in group 2 to have more than t,% positive cells. We describe the process of
simulating the marker data of the non-positive cells first. For subjects in group 1, we made
sure that they had (100 — ¢5)% non-positive cells by randomly choosing (100 — t5)n /100 cells
out of the total of n. Let Z denote the set of indices of those non-positive cells for subject
j. Next, the marker data of i-th cell from set Z, X;; was simulated from Beta(2.17,300).
To avoid any notational confusion, we highlight that X;; can be thought of as Xj;; from the
methods section. Since we were dealing with a single marker, we dropped the index k for

simplicity. Once, all the X{js were generated, the values were scaled to be in the range (0,

t1) using the transformation, X7; = (ma;f:z ;";T;ZZ’I Xij) t; for 1 € Z. Next, we describe the
process of simulating the marker data of the positive cells. The marker data of the positive
cells (i.e. Xj;'s for i € Z¢) were again simulated from Beta(2.17,300) and a constant of ¢
was added to them, X7, = maz{X;;j+1t1,1}, i € Z¢. Thus, we had generated whole cell-level

data of a subject j from group 1, X7 for i € {1,...,n} making sure there were only #,%

cells having marker expression more than ;.

19


https://doi.org/10.1101/2021.09.27.462056
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462056; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

For subjects in group 2, we had to make sure that they have more than ¢,% positive
cells. So, for such a subject j we simulated a number, ¢;; from Uniform(t,, 0.9) and repeated
all the steps used in simulating group 1 with ¢3; in place of t5. Note that for both the
groups, we used Beta(2.17,300) to simulate the initial cell-level data (X;;) and then slightly
transformed it (X};) to maintain the threshold criteria. One might as well vary the primary
distribution as well between the groups but our goal was to create the hardest possible
simulation scenario for our method where there would be no explicit difference in marker
ensities between two groups. We considered two different values of ¢;: 0.05,0.1 and five
different values of t, : 0.005,0.01,0.05,0.1 and 0.2. Table {4| lists the performance of JSD
based clustering for all combinations of the parameters. We found out that our method
performed better for higher values of ¢5. The value of t; and the value of n did not have any
apparent impact on the performance. Keep in mind that using the thresholding approach
in this simulation setup with the known values of (t1,t3) one would achieve ARI and AMI
accuracy of 1 in all the cases. However, as we have repeatedly pointed out, knowing the true

values of (t1, ;) will never be possible in real data.

4 Discussion

In multiplexed tissue imaging datasets, it is often of interest to stratify the subjects based on
the profile of functional markers for the purpose of risk assessment (e.g. risk of recurrence,
risk of death etc.). The most common approach of grouping the subjects into meaningful
clusters is a thresholding-based method which requires elaborate tuning of two or more

thresholds. In consequence, the method remains largely subjective and varies from one
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researcher to another based on their interpretation of the data. In this paper, we have
developed a threshold-free method for classifying subjects based on the probability density
of the functional markers in the tumor microenvironment (TME). The method is easy to
interpret and free from the subjectivity bias.

In our method, we treat the expression of a functional marker in a subject as a continuous
random variable and compute its kernel density estimate based on its observed value in the
cells of the TME. Once the marker density estimates for all the subjects have been computed,
we use the Jensen-Shannon distance to quantify the difference in marker densities between
the subjects. If the distance between two subjects is large, it means that they have very
different marker expression profiles. Next, the computed distance matrix is used in either of
the following two ways. It can be subjected to hierarchical clustering to group the subjects
into clusters and the cluster-labels can be tested for association with outcomes of interest
(e.g. recurrence, survival). Or it can be used directly in a linear mixed model setup for
testing association with outcomes of interest.

We analyzed two highly complex multiplex tissue imaging datasets, an mIHC lung can-
cer dataset from University of Colorado School of Medicine and a publicly available triple
negative breast cancer MIBI data. In the lung cancer dataset, we found out that the dif-
ference in HLA-DR marker density between subjects was significantly associated with their
b-year overall survival. In the breast cancer dataset, we found out that the difference in the
density of immunoregulatory protein PD-1 was associated with the overall survival. Next,
we replicated the characteristics of the lung cancer dataset in two simulation scenarios and
showcased the robustness of our method in comparison with the thresholding-based method.

In the final simulation setup, we aimed to simulate a dataset favoring the principles of the
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thresholding method. We showed that our method performed competently even in that
scenario.

In this paper, we have focused on analyzing each of the functional markers separately. Our
next goal will be to study the joint effect of multiple functional markers. One naive way of
studying the joint effect would be to sum up the distance matrices corresponding to different
functional markers creating a new distance matrix. This aggregated distance matrix would
capture the overall difference in densities of the different markers. However, the approach
is essentially assuming that the markers are independent and will be incapable of capturing
complex interplay between the markers. In that light, one possible alternative would be
to compare multivariate probability density of the markers across different subjects which,
on the other hand, can turn out to be extremely computationally demanding. Therefore,
we would study all these approaches in much greater details as a part of our next work.
Additionally, we would further validate the applicability of our method using datasets coming
from other imaging platforms, such as CODEX (Goltsev and others, 2018) and Visium

(Tippani and othersl, [2021]).

5 Software

Software in the form of a GitHub R package, together with an example data-set and complete

documentation is available at this link, https://github.com/sealx017/DenVar.
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Figure 1: KM curves of 5-year overall Survival of 153 subjects from the lung cancer dataset,
color coded by the clusters found comparing HLA-DR marker density in CK+ Tumor cells.
Also, displayed are the Hazard ratio (HR) and the p-value corresponding to the test, Hy :
~v = 0 from Equation . Notice that HR is large (> 2) and the p-value is significant as well
indicating that the two clusters have significant difference in survival probability.
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Figure 2: Individual (on the left) and mean (on the right) HLA-DR marker probability
density (in CK+ tumor cells) of the subjects from the two clusters found using JSD based
clustering proposed in Section [2.2] Notice that the individual densities from cluster 1 are
more right-skewed than the densities from cluster 2. Consequently, the mean density of
cluster 1 is also more right-skewed than that of cluster 2 and has a much higher peak.
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Figure 3: Individual (on the left) and mean (on the right) HLA-DR marker probability
density (in CK+ tumor cells) of the subjects from two groups, MHCII: High and MHCII:
Low. Notice that some of the subjects from MHCII: High group have density functions

similar to the average of MHCII: Low group. It means that the grouping is not fully capturing
the density differences between the subjects.
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Figure 4: KM Plots of overall survival (left) apgd recurrence (right) of 33 subjects color coded
by the clusters found using markers: PD1, PD-L1 and Lag3, using our method. We notice
that difference in PD1 density has significant effect on overall survival.
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Figure 5: Comparing the probability density of Beta(2.17,300) to the real mean density of
cluster 1. On the left, are shown the densities on the entire range of expression value: (0,
1). On the right, we zoom into the lower expression values and the same densities are shown

only between (0, 0.3). Even though there appears to be a difference in the modes of the
densities, their overall shapes are quite close.
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Figure 6: Comparing the probability density of Beta(1.78,45) to the real mean density of
cluster 2. On the left, are shown the densities on the entire range of expression value: (0,

1). On the right, we zoom into the lower expression values and the same densities are shown
only between (0, 0.3). The overall shapes of the densities are quite similar.
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Table 1: Number of subjects common between the groups found using the thresholding-based

method and our proposed method in the lung cancer dataset.

Cluster 1 Cluster 2

MHCII: High 80
MHCII: Low 18

Table 2: Performance of different methods in the simulation with densities close to the
mean density of cluster 1 as described in Section [3.3.1] JSD based clustering performs
systematically better than the thresholding approaches in all the cases. When the number
of cells is large, JSD based clustering performs well even for small differences in modes.

Measure of Number of Percentage difference | JSD based 95% 97.5%
performance cells in modes clustering  thresholding thresholding

10 0.0744 0.0014 0.0234

20 0.3988 0.0029 0.0551

n = 200 50 0.9808 0.0236 0.2264

100 1.0000 0.1979 0.6324

ARI 200 1.0000 0.8628 0.9570

10 0.8029 0.0000 0.0000

20 0.9530 0.0000 0.0001

n = 2000 50 1.0000 0.0000 0.0299

100 1.0000 0.0040 0.8105

200 1.0000 0.9907 1.0000

10 0.0713 0.0026 0.0144

20 0.3344 0.0041 0.0358

n = 200 50 0.9662 0.0283 0.1802

100 1.0000 0.2001 0.5421

AMI 200 1.0000 0.8088 0.9239

10 0.7233 0.0000 0.0000

20 0.9976 0.0000 0.0001

n = 2000 50 1.0000 0.0000 0.0322

100 1.0000 0.0039 0.7609

200 1.0000 0.9865 1.0000
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Table 3: Performance of different methods in the simulation with densities close to the
mean density of cluster 2 as described in Section [3.3.2] JSD based clustering performs
systematically better than the thresholding approaches in all the cases. When the number
of cells is large, JSD based clustering performs well even for small differences in modes.

Measure of Number of Percentage difference | JSD based 95% 97.5%
performance cells in modes clustering  thresholding thresholding

10 0.0345 0.0005 0.0171

20 0.2003 0.0016 0.0411

n = 200 50 0.8656 0.0119 0.1395

100 0.9996 0.0699 0.4153

ARI 200 1.0000 0.5428 0.8696

10 0.5157 0.0000 0.0000

20 0.9737 0.0000 0.0001

n = 2000 50 1.0000 0.0000 0.0045

100 1.0000 0.0000 0.2627

200 1.0000 0.4074 0.9984

10 0.0363 0.0022 0.0110

20 0.1727 0.0030 0.0237

n = 200 50 0.8035 0.0142 0.1052

100 0.9993 0.0787 0.3418

AMI 200 1.0000 0.4990 0.7992

10 0.4352 0.0000 0.0000

20 0.9530 0.0000 0.0001

n = 2000 50 1.0000 0.0000 0.0052

100 1.0000 0.0000 0.2558

200 1.0000 0.3829 0.9971
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Table 4: Performance of JSD based clustering in the simulation from Section [3.3.3] The
method performs better for larger values of t,, whereas t; does not seem to affect the per-
formance.

Number of Measure of ¢, : 0.005 0.01 0.05 0.1 0.2
cells performance

ARI t1 =0.05{0.760 0.791 0.801 0.938 1.000

" — 200 t; =0.1 |0.784 0.727 0.815 0.957 0.987
AMI t; =0.05{0.764 0.772 0.756 0.922 1.000

t1=0.1 |0.712 0.719 0.765 0.943 0.987

ARI t1 =0.05{0.778 0.727 0.800 0.936 1.000

= 2000 t1=0.1 [0.784 0.727 0.808 0.965 1.000
AMI t1 =0.05{0.733 0.678 0.755 0.919 1.000

t; =0.1 [0.734 0.680 0.762 0.951 1.000
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