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19  Abstract: Under global warming, advances in spring phenology due to the rising temperature
20  have been widely reported. However, the physiological mechanisms underlying the warming-
21 induced earlier spring phenology remain poorly understood. Here, using multiple long-term and
22 large-scale phenological datasets between 1951 and 2018, we show that warmer temperatures
23  during the previous growing season between May and September led to earlier spring
24 phenology in the Northern Hemisphere. We also found that warming-induced increases in
25  maximum photosynthetic rate in the previous year advanced spring phenology, with an average
26  of 2.50 days <T?. Furthermore, we found a significant decline in the advancing effect of
27  warming during the previous growing season on spring phenology from cold to warm periods
28  over the past decades. Our results suggest that the observed warming-induced earlier spring
29  phenology may be driven by increased photosynthetic carbon assimilation in the previous
30  season, while the slowdown in the advanced spring phenology arise likely from decreased
31  carbon assimilation when warming exceeding the optimal temperatures for photosynthesis. Our
32 study highlights the vital role of photosynthetic carbon assimilation during growing season in
33 spring phenology under global warming.
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36  Introduction

37  Plant phenology influences the fitness of individual plants and functioning of terrestrial
38  ecosystems, including the fluxes of water and energy and food webs'®. Since phenological
39  events are highly sensitive to climate variations, monitoring changes in plant phenology can
40  provide the first clear visible signals of the impact of climate change on terrestrial ecosystems®”.
41  Under global warming, advanced spring phenology due to rising temperature has been widely
42  reported®'2. However, important questions regarding the physiological mechanisms underlying
43  this response remain unanswered'*’. This largely hinders the prediction of spring phenology
44 and global carbon cycling under future warming conditions.

45 Generally, spring phenology is considered to be driven by temperatures in winter and
46  spring because plants need to accumulate sufficient winter chilling to end endodormancy and
47  spring forcing units to break ecodormancy before spring phenology 22, Recent studies show
48  that the response of earlier spring phenology to climate warming is declining?’. However, there
49  continues to be debate about the drivers of the slowdown in the warming-induced spring
50  phenology. In fact, plants need to assimilate and store sufficient carbohydrates in the preceding
51  growing season to resist to the frost temperatures in winter and support growth reactivation in
52  spring??%, In temperate regions, nonstructural carbohydrates (NSC; soluble sugar and starch)
53  often reach the maximum levels in autumn before winter dormancy, but become depleted by
54  early summer after spring growth?”?°. Girdling experiments have demonstrated that a later
55  budbreak is often associated with a lower NSC availability®*3!, The timing of spring phenology
56 is therefore likely to depend on the photosynthetic carbon assimilation during the previous
57  growing season.

58 Under global warming, increasing temperatures may influence the photosynthetic carbon
59  assimilation and alter spring phenology in the following year *2. Photosynthetic carbon uptake
60  tends to show a peaked response to temperature at leaf and canopy scale’®33%¢ As such, an
61 increase in temperature might increase photosynthesis in cold and temperate regions, and
62  advance spring phenology®*®. When temperatures increase above the optimal threshold for
63  photosynthesis, this could explain the slowdown in warming-induced advancement in spring
64  phenology. However, previous researches have largely overlooked the effect of previous
65  growing season climate on spring phenology®®#2.

66 Using long-term phenological observations and remote-sensing chronologies collected in
67  the Northern Hemisphere (Fig. 1), we analyzed the effect of warming during the previous
68  growing season on spring phenology. We hypothesized that timing of spring phenology may
69  depend on the photosynthetic carbon assimilation during the previous growing season prior to
70  leaf senescence. According to this carbon-driven assumption, warmer temperatures during the
71  previous growing season are expected to increase photosynthetic carbon uptake and trigger
72 earlier spring phenology.

73

74 Materials and Methods

75  PEP725 phenological network

76  Data were provided by the European phenology database PEP725 (http://www.pep725.eu/),
77  which contains phenological observations of temperate species across central Europe since
78  1951%. We selected the date when the first leaf stalks were visible (BBCH 11 in PEP725) to
79  represent the start of spring phenology (SOS) and date when 50% leaves had their autumnal
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80  color (BBCH94 in PEP725) to represent the end of autumn phenology (EOS). Data exceeding
81 2.5 times of median absolute deviation (MAD) were considered outliers and removed*. We
82  selected 466,988 records of nine temperate tree species (Table S1) at 2,300 sites, for a total of
83 171,202 species-site combinations with at least 30-year observations.

84

85  PhenoCam network

86  The PhenoCam network (https://phenocam.sr.unh.edu/) is a cooperative database of digital
87  phenocamera imagery which provides the dates of phenological transition between 2000 and
88 2018 worldwide*, In the PhenoCam network, the 50%, and 90% of the Green Chromatic
89  Coordinate (Gcc) were calculated daily to extract the date of greenness rising and falling based
90  on the following formula:

— Goy
Ron +Gpn +Boy -

91 Cec 1)
92 where Rpy, Gpy and Bpy are the average red, green and blue digital numbers (DN), respectively.
93 We selected 50% threshold of Gee 90 (Gec reaches 90™ quantiles of its seasonal amplitude)
94  as SOS*. We removed outliers according to the above-mentioned procedure, and we selected
95  sites with at least 8-year observations between 2000 and 2018. We also excluded agricultural
96  ecosystems to avoid human influence. The final dataset had a total of 738 records at 78 sites
97  from three vegetation types: deciduous broadleaf forests, evergreen forests and grassland.
98
99  GIMMS NDVIsq phenological product
100  The Normalized Difference Vegetation Index (NDVI), a proxy of vegetation greenness and
101 photosynthetic activity, is commonly used to derive phenological metrics*. We derived SOS
102  from the third generation GIMMS NDV I3, dataset (http://ecocast.arc.nasa.gov) from Advanced
103  Very High Resolution Radiometer (AVHRR) instruments for the period 1982-2014 with a
104  spatial resolution of 8 km and a temporal resolution of 15 days*.
105 We only kept areas outside tropics (latitudes >30 N), which have a clear seasonal
106  phenology® and excluded bare lands with annual average NDVI < 0.1 to reduce bias. We
107  applied a Savizky-Golay filter®! to smooth the time series and eliminate noise of atmospheric
108 interference and satellite sensor, and used a Double Logistic 1% to extract phenology dates®
109  according to the formula:

_ 1
110 y(t) —a (1+ ek(tfm) + 1+ ee(tfn) j-l_ b ' (2)
111 where a, k, m, and n are parameters of logistic function and a is the initial background

112 NDVI value, a + b represents the maximum NDVI value, ¢ is time in days, and y(¢) is the NDVI
113 value at time ¢. The second-order derivative of the function (Eq. (2)) was calculated to extract
114 SOS and EOS at the first and second local maximum point, respectively®>®3,

115

116  FLUXNET dataset

117 The flux dataset was downloaded from FLUXNET (https://fluxnet.org/data/). The data were
118  released in November 2016 (total 212 sites) worldwide®. The dataset was processed with a

119  processing pipeline to reduce uncertainty by improving the data quality control. The pipeline
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120  generates uniform and high-quality derived data products suitable for studies that compare
121  multiple sites®. We selected 39 sites with at least 5-year observations and daily records > 300
122 for each year between 1992 and 2014. The Singular Spectrum Analysis (SSA) filter method®
123 was used to smooth the time series of gross primary productivity (GPP) to minimize the noise.
124 GPPpax, daily maximum GPP in a year, is considered as an important index to evaluate the
125  carbon fixation of terrestrial ecosystems and the feedback of vegetation climate®®8 We
126 extracted the GPPmax from the smoothed GPP curve by the SSA-based de-nosing smoothing
127  method®. SOS and EOS were extracted from smoothed daily GPP curve based on the threshold
128  method®. The spring and autumn threshold were defined as 15% of the multi-year daily GPP

129  maximum following previous studies®®®!

, and SOS and EOS were defined as the turning point
130  when the smoothed GPP was higher or lower than spring or autumn threshold, respectively.
131

132 Climate data

133 Gridded daily mean temperature, precipitation, solar radiation and air humidity during 1950-
134 2015 in Europe were downloaded from the database E-OBS (http://www.ecad.eu/)®? at 0.25°
135  spatial resolution. Gridded monthly soil moistures during 1979-2015 were downloaded from
136  World Meteorological  Organization  (http://climexp.knmi.nl/select.cgi?id=someone@
137 somewhere&field=clm_wfdei_soil01) at 0.5° spatial resolution and banded with PEP725
138  dataset. Global monthly mean temperatures during 1981-2017 were downloaded from Climate
139  Research Unit (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.04/cruts.2004151 855.v4.04/) at
140  0.5%spatial resolution and matched the PhenoCam and GIMMS NDVI3, datasets. Bilinear
141 interpolation method was used to extract climate data of each site or pixel using the raster
142 package® in R version 4.0.3%. Environmental variables, including daily mean temperature (C),
143 shortwave radiation (Wm2), CO, (ppm), and precipitation (mm) of FLUXNET dataset were
144  also extracted.

145

146  Statistical analysis

147  To tested our hypotheses, we primarily used the observations from the PEP725 network
148  corresponding E-OBS climate dataset. We did this because PEP725 data was relatively more
149  reliable than the extracted phenological metrics from imagines of PhenoCam network and
150 GIMMS NDVIsy product because its phenological records were taken manually in situ. In
151  addition, the PEP725 network covered a longer period (between 1951 and 2015) than
152 PhenoCam (between 2000 and 2018) and GIMMS NDV 34 dataset (between 1982 and 2014).
153  The PhenoCam and GIMMS NDV sy phenology products were used to test the robustness and
154  generality of the results obtained from the PEP725 network. Specifically, we calculated the
155  temperature sensitivity (St, change in days per degree Celsius) based on mean temperatures
156  during the previous growing season from May to September (Tgs) and timing of spring
157  phenology using three complementary large-scale datasets (PEP725, PhenoCam, GIMMS
158  NDVI;,) in the Northern Hemisphere. To clarify the underlying physiological mechanisms, we
159  further examined the relationships between GPPmax of previous growing season and SOS
160  between 1992 and 2014 using FLUXNET data.

161

162  Temperature sensitivities

163  Temperature sensitivity (St, change in days per degree Celsius), defined as the slope of a linear
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164  regression between the dates of phenological stages and the temperature?:%5% was used to
165 investigate the effects of Tgs on leaf unfolding dates in the PEP725 network. The length of
166  growing season was defined as the period between SOS and EOS. The mean dates of SOS and
167  EOS from the PEP725 network were DOY 120 and DOY 280. Therefore, the period between
168  May and September was selected to represent the growing season. Linear regression models
169  were used to calculate St of leaf unfolding for each species at each site. In the model, the
170  response variable was the leaf unfolding date while the predictor was the Tgs.

171 In addition, a linear mixed-effects model was used to exclude the co-variate effects of other
172 climate factors and autumn phenology, and further examine the overall effect of Tgs on leaf
173 unfolding dates by pooling all records across species and study sites. In the model, the response
174  variable was leaf unfolding dates, and the predictors were temperature, radiation, precipitation,
175  soil moisture, humidity during the previous growing season between May and September and
176  leaf senescence dates of the previous year, with random intercepts among species and sites. In
177  addition, we quantified and compared the effects of climate variables of the previous growing
178  season on leaf unfolding dates using boosted regression tree, an ensemble statistical learning
179  method®’, which has been widely applied in ecological modeling and prediction®%, Because
180  radiation and soil moisture data were only available since 1980, we selected phenology and
181  climate datasets between 1984 and 2015 to perform the linear mixed-effects model and boosted
182  regression tree. Linear mixed-effects model fitting was conducted using the Ime4 package’®of
183 R, Significance testing of the fixed effects terms was done using the Satterthwaite method
184  incorporated into the ImerTest package’ of R, where P values less than 0.05 were considered
185  significant. We performed the boosted regression trees using the gbm package’® in R%, where
186  10-fold cross validation was used to determine the optimal number of iterations.

187

188  Effect of past climate change on spring phenology

189  Following Fu et al.'’, we assessed the effects of past climate warming on spring phenology.
190  First, we calculated the mean Tgs across all the 2,300 sites in Europe from 1951 to 2015. Using
191  a 15-year smoothing window, we identified the coldest and warmest periods: 1955-1969 and
192  2000-2014 over the past 60 years. We calculated the St of leaf unfolding in response to the Tgs
193  during the two periods for each species at each site. One-way analysis of variance (ANOVA)
194  was used to test the difference in the St of leaf unfolding during 1955-1969 and 2000-2014.
195

196  Structural equation modeling

197  We used a structural equation model (SEM) to analyze the relationships between climate,
198  GPPmax and SOS from the 39 flux sites. The climate variables in the structural equation model
199 included temperature, radiation, soil moisture, CO; and precipitation during previous growing
200  season. Because the daily GPP started to increase from DOY 120, peaking at DOY 180, then
201  decreased until DOY 300 (Fig. S2), the period between May and September was also selected
202  asthe growing season. This is also consistently with the period of growing season identified by
203  the dates of leaf unfolding and leaf senescence in PEP725 network. The SEM was fitted using
204  the lavaan package’ in R®.

205 All data analyses were conducted using R version 4.0.3%,
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207

208  Results

209  Temperature sensitivity (St, change in days per degree Celsius), is often used to describe the
210  response of plant phenology to warmer temperatures. We calculated the St of spring phenology
211  based on Tgs and dates of spring leaf unfolding obtained from PEP725 network, and start of
212 season (SOS) metrics extracted from PhenoCam, and GIMMS NDVI;, images (see Methods).
213 The calculated St of spring phenology based on three datasets is shown in Fig. 2. Using the
214 PEP725 network, the mean St of leaf unfolding across nine temperate tree species between
215 1951 and 2015 was —2.50 days T (Fig. 2a). This suggested that a warmer previous growing
216  season advanced leaf unfolding dates. The St was negative across all selected nine temperate
217  tree species (Fig. 2b). The response of Quercus robur to Tgs were the strongest, with an average
218  of —2.82 days -C7, significantly stronger than those of Tilia cordata (—1.04 days -C™*) and Tilia
219  platyphyllos (—1.16 days <C?).

220 In addition to temperature, spring phenology has been reported to be influenced by other
221  climate variables and autumn phenology. We used a linear mixed effects model to exclude these
222  co-variate effects and further examined the effects of Tgs on spring leaf unfolding. We
223 consistently observed that leaf unfolding dates were advanced by increasing temperature by an
224 average of —2.67 days <C* (Table S2). Using boosted regression tree, we found the temperature
225  had the strongest effect on leaf unfolding dates (84.67%), followed by radiation (6.33%), soil
226 moisture (3.93%), precipitation (3.32%), humidity (1.75%) (Fig. S1).

227 Our PEP725 results were corroborated by PhenoCam and remote sensing data.
228  Specifically, we observed a negative effect of Tgs on SOS in deciduous broad-leaved forests,
229  evergreen forests and grasslands using phenological metrics extracted from the PhenoCam
230  network between 2000 and 2018 (Fig. 2¢). According to the calculated St, the SOS in response
231 to warming of the previous growing season was the strongest in deciduous broad-leaved forests,
232  followed by evergreen forests and grasslands (Fig. 2c). Using the phenology metrics extracted
233  from remote sensing dataset between 1982 and 2014, we also observed that increasing Tgs
234 advanced SOS across different vegetation types in the Norther Hemisphere (Fig. 2d). Among
235  all vegetation types, the St of the Tundra was the lowest, followed by Temperate Broadleaf &
236  Mixed Forests and Savannas & Shrublands (Fig. 2d).

237 To test whether earlier spring phenology was driven by increased photosynthetic carbon
238  assimilation, we further examined the relationship between daily maximum photosynthetic rate
239  (GPPuax) of the previous growing season and SOS between 1992 and 2014 using FLUXNET
240  data. We found that the timing of SOS showed a significant negative correlation with the GPPax
241  during the growing season between 1992 and 2014 (correlation coefficient = —0.36, P<0.01,
242  Fig. 3a). This suggested that spring phenology tended to occur earlier with the increased
243 photosynthetic carbon assimilation during previous growing season. To further test the carbon-
244  driven hypothesis, we constructed a structural equation model (SEM) that included climate
245  variables, GPPmax and SOS (Fig. 3b). We found that spring phenology (SOS) was advanced by
246  increased GPPuax (slope = —2.331, P<0.001). In addition, the effect of temperature on GPPumax
247  was the strongest (slope = 0.319, P<0.001), followed by soil moisture (slope =0.167, P<0.001),
248  while radiation (slope = 0.005, P>0.05), CO; (slope = 0.002, P>0.05) and precipitation (slope
249  =0.001, P>0.05) almost had no effects on GPPmax. The detailed statistics of the SEM are listed
250  in Table S3.
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251 To examine the potential effects of climate warming on leaf unfolding, we used the
252  PEP725 dataset to calculate and compare the St between the coldest and the warmest 15-year
253  periods: 1955-1969 and 2000-2014, respectively (Figs. 4 and S3). We found that the St of leaf
254 unfolding decreased by 63.1% from —1.76 +0.04 days *C* during 1955-1969 to —0.65 +0.04
255  during 2000-2014 (Fig. 4a). Between 1955 and 1969, the St of early-successional species is
256  —2.37 days-°C' and —1.23 days-°C"! for late successional species. Between 2000 and 2014, St
257  of the early-and late-successional species were —0.13 days-°C' and —0.92 days-°C’,
258  respectively. The St of the early successional species decreased more from the coldest to the
259  warmest periods (—2.24 + 0.15 days -T?) than that of late successional species (—0.31 + 0.16
260  days -T?) (Figs. 4b and S3).

261

262  Discussion

263  Global warming advances budbreak and leafing worldwide?:’*7". Using three long-term and
264  large-scale phenological datasets, we show that warmer temperatures of the previous growing
265  season drive earlier phenology in the following spring in the Northern Hemisphere. We also
266  find that warming increased photosynthetic carbon assimilation, suggesting a physiological
267  mechanism by which global warming is triggering earlier spring phenology (Fig. 5).

268 In deciduous tree species, carbon gained through photosynthesis is often stored in the form
269  of non-structural carbohydrates (NSC-soluble carbohydrates and starch), which supports the
270  growth of buds and leaves in the following spring before newly grown leaves can supply
271  photosynthesis’®®. For instance, 95% of starches stored in the branches of Fagus sylvatica and
272 Quercus petraea were consumed when spring bud-break occurred’®. Needle growth of Larix
273 gmelinii in spring drew nearly 50% of the carbohydrates fixed in the previous year®#, Phloem
274  girdling showed that deficient carbon storage can significantly delay the timing of spring
275  budbreak and reduce bud size?’.

276 During winter dormancy, temperate tree species also need to store sufficient carbohydrates
277  prior to leaf senescence for respiration to maintain baseline functions and protect cells from
278  frost damage and ensure survival®®, Therefore, warmer temperatures in the previous growing
279  season may advance spring phenology by increasing carbon storage, supported by the negative
280  correlations between spring phenology and maximum photosynthetic rate in the previous year.
281 Recently, Zani et al.*? has reported that increased carbon assimilation during the growing
282  season drives earlier autumn leaf senescence in temperate ecosystems. When leaf senescence
283  occurred earlier, trees advanced the endodormancy®®. In this context, the requirement of
284  chilling units may be also fulfilled earlier. As a result, earlier autumn phenology facilitates an
285 earlier spring phenology®®. Therefore, increased carbon assimilation may directly drive autumn
286  phenology, and, in turn, influence spring phenology. In our analyses, we excluded the co-variate
287  effect of autumn phenology and isolated the effect of temperature of the previous growing
288  season on leaf unfolding. The relationship was negative, confirming our hypothesis that
289  increased carbon assimilation of previous season triggers an earlier spring phenology.

290 We observed that early-successional species showed a stronger response to the warming
291  during growing season compared to late-successional species. In addition to temperature, spring

292  phenology is also under photoperiodic control®’

. Because photoperiod remains stable regardless
293  of climate change, plants are expected to show relatively conservative climatic responses when

294  they rely on photoperiod to determine spring phenology. However, photoperiod sensitivities
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295  often vary among species®’. For example, late-successional species are reported to have a higher
296  photoperiod sensitivity compared to early-successional species®”®. The higher photoperiod
297  sensitivity of late-successional species may, therefore, explain their conservative climatic
298  responses compared to early-successional species 878,

299 Recent studies have reported that the warming-induced earlier spring phenology has
300 slowed down over the past decades?%*%, Fu et al.!” reported that St of leaf unfolding decreased
301 by 40% from 4.0 + 1.8 days °C! during 1980-1994 to 2.3 + 1.6 days *C! during 1999-2013.
302  The observed declining effect of warming on spring phenology is generally considered a result
303  of chilling reduction in winter®2. However, the carbon-driven earlier spring phenology is also
304  slowing down in recent decades, especially for early-successional species as found here. Duffy
305 et al.!? showed that the mean temperatures in the warmest quarter passed the optimal for
306  photosynthesis over the past decade, with a sharp declining photosynthesis. The increased heat
307  and water stress of the last decades may lead to a spreading growth decline of forests®**°.
308  Therefore, the observed decline in the Stmay involve reductions in carbon assimilation by heat
309  waves and/or drought events under global warming®®’.

310

311  Conclusion

312  Despite the warming-induced spring phenology observed worldwide, the underlying causes and
313  physiological mechanisms still remain unclear. In this study, we used multiple long-term and
314  large-scale datasets to provide evidence that spring phenology is advanced by warmer
315  temperatures of the previous growing season. Correspondingly, we observed that leaf unfolding
316  occurred earlier under enhanced maximum photosynthetic capability. These findings suggest
317  that an increased carbon assimilation under global warming could be involved in the observed
318  earlier leafing of trees. In addition, we observed a decline in the carry-over effect of growing-
319  season warming on spring phenology resulted likely from the reduced photosynthetic carbon
320  assimilation by heat and water stress under global warming. With an increase in projected

321  drought frequency under warming scenarios®%

, we expect that temperate trees will slow down
322  the advancement of spring phenology. This may reduce the strength of forest carbon sinks under
323  future climate conditions'’. Our study provides new insights into the warming-induced change
324  in spring phenology under global climate change to predict spring phenology and vegetation-
325  atmosphere feedbacks under future climatic scenarios.

326
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557  Fig. 1 Distributions of the phenological observation sites in this study. Orange dots represent
558  the 2,300 sites selected from the PEP725 dataset across central Europe. Green dots and blue
559  diamonds represent 78 sites in North America from the PhenoCam network and 39 FLUXNET
560  sites, respectively.
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562
563  Fig. 2 Temperature sensitivities (St, change in days per degree Celsius) of spring phenology in

564  response to increasing temperature during previous growing season. The calculated St was
565  based on (a, b) records of spring leaf unfolding for nine temperate tree species at 2,300 sites in
566  Europe, and phenological metrics extracted from (c) the PhenoCam network and (d) the
567  GIMMS NDVIl3, products for different biomes. DB, EN and GR in (c) represents deciduous
568  broad-leaved forests, evergreen forests and grasslands, respectively. In (d), the biomes included
569  Boreal Forests/Taiga (BFT), Flooded Grasslands & Savannas (FGS), Temperate Broadleaf &
570  Mixed Forests (TBM), Temperate Conifer Forests (TCF), Temperate Grasslands, Savannas &
571  Shrublands (TGS), Tropical & Subtropical Coniferous Forests (TSC), Tropical &Subtropical
572  Grasslands, Savannas & Shrublands (TSG), Tropical & Subtropical Moist Broadleaf Forest
573  (TSM) and Tundra (TUN). The black dash lines indicate when the St is equal to zero.
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Fig. 3 (a) Relationship between spring phenology (SOS) and GPPuax and (b) the constructed
structural equation model using the data of 39 FLUXNET sites between 1992 and 2014. The
black dash line represents the fitted linear regression line (SOS = 182.38—12.88XGPPnax). The
used variables in the structural equation model included climate variables (temperature,
radiation, soil moisture, CO, and precipitation), SOS and GPPnax.
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Fig. 4 (a) Distributions of temperature sensitivities (St, change in days per degree Celsius) of
leaf unfolding during the coldest (1955-1969) and the warmest (2000-2014) periods and (b)
differences of St between early- and late-successional species during these two periods. The
calculated St was based on the temperature during previous growing season and leaf unfolding
dates obtained from the PEP725 database. The length of each box indicates the interquartile
range, the horizontal line inside each box the median, and the bottom and top of the box the
first and third quartiles respectively. The asterisks indicate a significant difference in the St
1955-1969 and 2000-2014 (P<0.001). The black dashed horizontal line indicates when the St

is equal to zero.
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597  Fig. 5 A schematic diagram of the earlier leaf-out in response to warming during previous
598  growing season. Warmer temperatures during the previous growing season drivers earlier spring
599  leaf-out by increasing photosynthetic carbon assimilation.
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602 Supporting Information
603  Table S1. List of the 9 temperate species selected from the PEP725 phenological network.
Number Latin name Successional type
1 Aesculus hippocastanum L. Early
2 Betula pendula Roth Early
3 Alnus glutinosa (L.) Gaertn. Early
4 Ribes grossularia L. Early
5 Fraxinus excelsior L. Late
7 Fagus sylvatica L. Late
7 Quercus robur L. Late
8 Tilia cordata Mill. Late
9 Tilia platyphyllos Scop. Late

604
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605

606  Table S2. Results of linear mixed model that the effect of temperature during previous growing
607  season on spring phenology (SOS) after excluding the influence of other climatic factors
608  (radiation, precipitation, soil moisture, humidity) and autumn phenology (EOS).

Variables Estimate SE t value P value
Intercept 170.52 3.86 44.16 <0.001
Temperature -2.67 5.59x102 -47.85 <0.001
Radiation -0.02 4.54%10°3 -4.75 <0.001
Precipitation 0.01 2.37x10°3 0.57 <0.001
Soil moisture 0.37 2.16%10? 17.14 <0.001
Humidity -0.56 1.91x10? -29.21 <0.001
EOS 0.07 2.77x10° 25.36 <0.001
609
610
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611  Table S3. Statistics of the structural equation models (SEMs). To display model performance,
612  we calculated the Comparative Fit Index (CFI) and the root-mean square error (RMSEA).
Statistics of the structural equation models (SEMs)
Left-hand side  Option  Right-hand side  Estimate = SE  Zvalue P value

GPPrax ~ Temperature 0.319 0.033 9.569 <0.001
GPPmax ~ Soil moisture 0.167 0.026  6.347 <0.001
GPPrax ~ Radiation 0.005 0.004 1.179 >0.05
GPPmax ~ CO2 0.002 0.007 0.325 >0.05
GPPrax ~ Precipitation 0.001 0.152 0.004 >0.05

SOS ~ GPPrax -2.331 0.551 -4.229 <0.001

CFl =0.89; RMSEA =0.20

613
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615  Fig. S1 The relative influence of climatic factors during previous growing season on spring leaf
616  unfolding between 1984 and 2015 obtained from the PEP725 database.
617
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619  Fig. S2 Daily gross primary productivity (GPP) changes in three vegetation types based on
620 FLUXNET.
621
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624  Fig. S3 Temperature sensitivities (St, change in days per degree Celsius) of leaf unfolding in
625  early- and late-successional species during 1955-1969 and 2000-2014. The calculated St was
626  based on the temperature during previous growing season and leaf unfolding dates obtained
627  from the PEP725 database. The length of each box indicates the interquartile range, the
628  horizontal line inside each box the median, and the bottom and top of the box the first and third
629  quartiles respectively. The black dashed horizontal line indicates when the St is equal to zero.
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