

1 **A warmer growing season triggers earlier following spring phenology**

2 Hongshuang Gu^{1†}, Yuxin Qiao^{1†}, Zhenxiang Xi^{1†}, Sergio Rossi^{2,3}, Nicholas G. Smith⁴, Jianquan
3 Liu^{1*}, Lei Chen^{1, 4*}

4 ¹Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of
5 Life Sciences, Sichuan University, Chengdu, China

6 ²Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi
7 (QC), G7H SB1, Canada

8 ³Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems,
9 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden,
10 Chinese Academy of Sciences, Guangzhou, China

11 ⁴Department of Biological Sciences, Texas Tech University, Lubbock, USA

12

13 [†]These authors contribute equally to this work.

14 *Corresponding author: liujq@lzu.edu.cn, lei.chen1029@gmail.com

15 Authors' ORCID iDs:

16 HG, 0000-0003-0609-7862; YQ, 0000-0002-7944-6165; ZX, 0000-0002-2851-5474; NGS,
17 0000-0001-7048-4387; JL, 0000-0002-4237-7418; LC, 0000-0001-7011-8782

18

19 **Abstract:** Under global warming, advances in spring phenology due to the rising temperature
20 have been widely reported. However, the physiological mechanisms underlying the warming-
21 induced earlier spring phenology remain poorly understood. Here, using multiple long-term and
22 large-scale phenological datasets between 1951 and 2018, we show that warmer temperatures
23 during the previous growing season between May and September led to earlier spring
24 phenology in the Northern Hemisphere. We also found that warming-induced increases in
25 maximum photosynthetic rate in the previous year advanced spring phenology, with an average
26 of 2.50 days °C⁻¹. Furthermore, we found a significant decline in the advancing effect of
27 warming during the previous growing season on spring phenology from cold to warm periods
28 over the past decades. Our results suggest that the observed warming-induced earlier spring
29 phenology may be driven by increased photosynthetic carbon assimilation in the previous
30 season, while the slowdown in the advanced spring phenology arise likely from decreased
31 carbon assimilation when warming exceeding the optimal temperatures for photosynthesis. Our
32 study highlights the vital role of photosynthetic carbon assimilation during growing season in
33 spring phenology under global warming.

34

35

36 **Introduction**

37 Plant phenology influences the fitness of individual plants and functioning of terrestrial
38 ecosystems, including the fluxes of water and energy and food webs^{1–6}. Since phenological
39 events are highly sensitive to climate variations, monitoring changes in plant phenology can
40 provide the first clear visible signals of the impact of climate change on terrestrial ecosystems^{6,7}.
41 Under global warming, advanced spring phenology due to rising temperature has been widely
42 reported^{8–12}. However, important questions regarding the physiological mechanisms underlying
43 this response remain unanswered^{13–17}. This largely hinders the prediction of spring phenology
44 and global carbon cycling under future warming conditions.

45 Generally, spring phenology is considered to be driven by temperatures in winter and
46 spring because plants need to accumulate sufficient winter chilling to end endodormancy and
47 spring forcing units to break ecodormancy before spring phenology^{18–22}. Recent studies show
48 that the response of earlier spring phenology to climate warming is declining¹⁷. However, there
49 continues to be debate about the drivers of the slowdown in the warming-induced spring
50 phenology. In fact, plants need to assimilate and store sufficient carbohydrates in the preceding
51 growing season to resist to the frost temperatures in winter and support growth reactivation in
52 spring^{23–26}. In temperate regions, nonstructural carbohydrates (NSC; soluble sugar and starch)
53 often reach the maximum levels in autumn before winter dormancy, but become depleted by
54 early summer after spring growth^{27–29}. Girdling experiments have demonstrated that a later
55 budbreak is often associated with a lower NSC availability^{30,31}. The timing of spring phenology
56 is therefore likely to depend on the photosynthetic carbon assimilation during the previous
57 growing season.

58 Under global warming, increasing temperatures may influence the photosynthetic carbon
59 assimilation and alter spring phenology in the following year³². Photosynthetic carbon uptake
60 tends to show a peaked response to temperature at leaf and canopy scale^{12,33–36}. As such, an
61 increase in temperature might increase photosynthesis in cold and temperate regions, and
62 advance spring phenology^{37,38}. When temperatures increase above the optimal threshold for
63 photosynthesis, this could explain the slowdown in warming-induced advancement in spring
64 phenology. However, previous researches have largely overlooked the effect of previous
65 growing season climate on spring phenology^{39–42}.

66 Using long-term phenological observations and remote-sensing chronologies collected in
67 the Northern Hemisphere (Fig. 1), we analyzed the effect of warming during the previous
68 growing season on spring phenology. We hypothesized that timing of spring phenology may
69 depend on the photosynthetic carbon assimilation during the previous growing season prior to
70 leaf senescence. According to this carbon-driven assumption, warmer temperatures during the
71 previous growing season are expected to increase photosynthetic carbon uptake and trigger
72 earlier spring phenology.

73

74 **Materials and Methods**

75 **PEP725 phenological network**

76 Data were provided by the European phenology database PEP725 (<http://www.pep725.eu/>),
77 which contains phenological observations of temperate species across central Europe since
78 1951⁴³. We selected the date when the first leaf stalks were visible (BBCH 11 in PEP725) to
79 represent the start of spring phenology (SOS) and date when 50% leaves had their autumnal

80 color (BBCH94 in PEP725) to represent the end of autumn phenology (EOS). Data exceeding
81 2.5 times of median absolute deviation (MAD) were considered outliers and removed⁴⁴. We
82 selected 466,988 records of nine temperate tree species (Table S1) at 2,300 sites, for a total of
83 171,202 species-site combinations with at least 30-year observations.

84

85 **PhenoCam network**

86 The PhenoCam network (<https://phenocam.sr.unh.edu/>) is a cooperative database of digital
87 phenocamera imagery which provides the dates of phenological transition between 2000 and
88 2018 worldwide^{45,46}. In the PhenoCam network, the 50%, and 90% of the Green Chromatic
89 Coordinate (G_{CC}) were calculated daily to extract the date of greenness rising and falling based
90 on the following formula:

91

$$G_{CC} = \frac{G_{DN}}{R_{DN} + G_{DN} + B_{DN}}, \quad (1)$$

92 where R_{DN} , G_{DN} and B_{DN} are the average red, green and blue digital numbers (DN), respectively.

93 We selected 50% threshold of G_{CC_90} (G_{CC} reaches 90th quantiles of its seasonal amplitude)
94 as SOS⁴⁷. We removed outliers according to the above-mentioned procedure, and we selected
95 sites with at least 8-year observations between 2000 and 2018. We also excluded agricultural
96 ecosystems to avoid human influence. The final dataset had a total of 738 records at 78 sites
97 from three vegetation types: deciduous broadleaf forests, evergreen forests and grassland.

98

99 **GIMMS NDVI_{3g} phenological product**

100 The Normalized Difference Vegetation Index (NDVI), a proxy of vegetation greenness and
101 photosynthetic activity, is commonly used to derive phenological metrics⁴⁸. We derived SOS
102 from the third generation GIMMS NDVI_{3g} dataset (<http://ecocast.arc.nasa.gov>) from Advanced
103 Very High Resolution Radiometer (AVHRR) instruments for the period 1982-2014 with a
104 spatial resolution of 8 km and a temporal resolution of 15 days⁴⁹.

105 We only kept areas outside tropics (latitudes >30 °N), which have a clear seasonal
106 phenology⁵⁰ and excluded bare lands with annual average NDVI < 0.1 to reduce bias. We
107 applied a Savizky-Golay filter⁵¹ to smooth the time series and eliminate noise of atmospheric
108 interference and satellite sensor, and used a Double Logistic 1st to extract phenology dates⁵⁰
109 according to the formula:

110

$$y(t) = a \left(\frac{1}{1 + e^{k(t-m)}} + \frac{1}{1 + e^{e(t-n)}} \right) + b, \quad (2)$$

111 where a , k , m , and n are parameters of logistic function and a is the initial background
112 NDVI value, $a + b$ represents the maximum NDVI value, t is time in days, and $y(t)$ is the NDVI
113 value at time t . The second-order derivative of the function (Eq. (2)) was calculated to extract
114 SOS and EOS at the first and second local maximum point, respectively^{52,53}.

115

116 **FLUXNET dataset**

117 The flux dataset was downloaded from FLUXNET (<https://fluxnet.org/data/>). The data were
118 released in November 2016 (total 212 sites) worldwide⁵⁴. The dataset was processed with a
119 processing pipeline to reduce uncertainty by improving the data quality control. The pipeline

120 generates uniform and high-quality derived data products suitable for studies that compare
121 multiple sites⁵⁴. We selected 39 sites with at least 5-year observations and daily records > 300
122 for each year between 1992 and 2014. The Singular Spectrum Analysis (SSA) filter method⁵⁵
123 was used to smooth the time series of gross primary productivity (GPP) to minimize the noise.
124 GPP_{max}, daily maximum GPP in a year, is considered as an important index to evaluate the
125 carbon fixation of terrestrial ecosystems and the feedback of vegetation climate⁵⁶⁻⁵⁸. We
126 extracted the GPP_{max} from the smoothed GPP curve by the SSA-based de-nosing smoothing
127 method⁵⁹. SOS and EOS were extracted from smoothed daily GPP curve based on the threshold
128 method⁵¹. The spring and autumn threshold were defined as 15% of the multi-year daily GPP
129 maximum following previous studies^{60,61}, and SOS and EOS were defined as the turning point
130 when the smoothed GPP was higher or lower than spring or autumn threshold, respectively.
131

132 **Climate data**

133 Gridded daily mean temperature, precipitation, solar radiation and air humidity during 1950-
134 2015 in Europe were downloaded from the database E-OBS (<http://www.ecad.eu/>)⁶² at 0.25°
135 spatial resolution. Gridded monthly soil moistures during 1979-2015 were downloaded from
136 World Meteorological Organization (http://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=clm_wfdei_soil01) at 0.5° spatial resolution and banded with PEP725
137 dataset. Global monthly mean temperatures during 1981-2017 were downloaded from Climate
138 Research Unit (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.04/cruts.2004151.855.v4.04/) at
139 0.5° spatial resolution and matched the PhenoCam and GIMMS NDVI_{3g} datasets. Bilinear
140 interpolation method was used to extract climate data of each site or pixel using the *raster*
141 package⁶³ in R version 4.0.3⁶⁴. Environmental variables, including daily mean temperature (°C),
142 shortwave radiation (Wm⁻²), CO₂ (ppm), and precipitation (mm) of FLUXNET dataset were
143 also extracted.
144

145

146 **Statistical analysis**

147 To tested our hypotheses, we primarily used the observations from the PEP725 network
148 corresponding E-OBS climate dataset. We did this because PEP725 data was relatively more
149 reliable than the extracted phenological metrics from imagines of PhenoCam network and
150 GIMMS NDVI_{3g} product because its phenological records were taken manually *in situ*. In
151 addition, the PEP725 network covered a longer period (between 1951 and 2015) than
152 PhenoCam (between 2000 and 2018) and GIMMS NDVI_{3g} dataset (between 1982 and 2014).
153 The PhenoCam and GIMMS NDVI_{3g} phenology products were used to test the robustness and
154 generality of the results obtained from the PEP725 network. Specifically, we calculated the
155 temperature sensitivity (S_T, change in days per degree Celsius) based on mean temperatures
156 during the previous growing season from May to September (T_{GS}) and timing of spring
157 phenology using three complementary large-scale datasets (PEP725, PhenoCam, GIMMS
158 NDVI_{3g}) in the Northern Hemisphere. To clarify the underlying physiological mechanisms, we
159 further examined the relationships between GPP_{max} of previous growing season and SOS
160 between 1992 and 2014 using FLUXNET data.
161

162 **Temperature sensitivities**

163 Temperature sensitivity (S_T, change in days per degree Celsius), defined as the slope of a linear

164 regression between the dates of phenological stages and the temperature^{21,65,66}, was used to
165 investigate the effects of T_{GS} on leaf unfolding dates in the PEP725 network. The length of
166 growing season was defined as the period between SOS and EOS. The mean dates of SOS and
167 EOS from the PEP725 network were DOY 120 and DOY 280. Therefore, the period between
168 May and September was selected to represent the growing season. Linear regression models
169 were used to calculate S_T of leaf unfolding for each species at each site. In the model, the
170 response variable was the leaf unfolding date while the predictor was the T_{GS}.

171 In addition, a linear mixed-effects model was used to exclude the co-variate effects of other
172 climate factors and autumn phenology, and further examine the overall effect of T_{GS} on leaf
173 unfolding dates by pooling all records across species and study sites. In the model, the response
174 variable was leaf unfolding dates, and the predictors were temperature, radiation, precipitation,
175 soil moisture, humidity during the previous growing season between May and September and
176 leaf senescence dates of the previous year, with random intercepts among species and sites. In
177 addition, we quantified and compared the effects of climate variables of the previous growing
178 season on leaf unfolding dates using boosted regression tree, an ensemble statistical learning
179 method⁶⁷, which has been widely applied in ecological modeling and prediction^{68,69}. Because
180 radiation and soil moisture data were only available since 1980, we selected phenology and
181 climate datasets between 1984 and 2015 to perform the linear mixed-effects model and boosted
182 regression tree. Linear mixed-effects model fitting was conducted using the *lme4* package⁷⁰ of
183 R⁶⁴. Significance testing of the fixed effects terms was done using the Satterthwaite method
184 incorporated into the *lmerTest* package⁷¹ of R⁶⁴, where *P* values less than 0.05 were considered
185 significant. We performed the boosted regression trees using the *gbm* package⁷² in R⁶⁴, where
186 10-fold cross validation was used to determine the optimal number of iterations.

187

188 **Effect of past climate change on spring phenology**

189 Following Fu et al.¹⁷, we assessed the effects of past climate warming on spring phenology.
190 First, we calculated the mean T_{GS} across all the 2,300 sites in Europe from 1951 to 2015. Using
191 a 15-year smoothing window, we identified the coldest and warmest periods: 1955-1969 and
192 2000-2014 over the past 60 years. We calculated the S_T of leaf unfolding in response to the T_{GS}
193 during the two periods for each species at each site. One-way analysis of variance (ANOVA)
194 was used to test the difference in the S_T of leaf unfolding during 1955-1969 and 2000-2014.

195

196 **Structural equation modeling**

197 We used a structural equation model (SEM) to analyze the relationships between climate,
198 GPP_{max} and SOS from the 39 flux sites. The climate variables in the structural equation model
199 included temperature, radiation, soil moisture, CO₂ and precipitation during previous growing
200 season. Because the daily GPP started to increase from DOY 120, peaking at DOY 180, then
201 decreased until DOY 300 (Fig. S2), the period between May and September was also selected
202 as the growing season. This is also consistently with the period of growing season identified by
203 the dates of leaf unfolding and leaf senescence in PEP725 network. The SEM was fitted using
204 the *lavaan* package⁷³ in R⁶⁴.

205 All data analyses were conducted using R version 4.0.3⁶⁴.

206

207

208 Results

209 Temperature sensitivity (S_T , change in days per degree Celsius), is often used to describe the
210 response of plant phenology to warmer temperatures. We calculated the S_T of spring phenology
211 based on T_{GS} and dates of spring leaf unfolding obtained from PEP725 network, and start of
212 season (SOS) metrics extracted from PhenoCam, and GIMMS NDVI_{3g} images (see Methods).
213 The calculated S_T of spring phenology based on three datasets is shown in Fig. 2. Using the
214 PEP725 network, the mean S_T of leaf unfolding across nine temperate tree species between
215 1951 and 2015 was $-2.50 \text{ days} \cdot ^\circ\text{C}^{-1}$ (Fig. 2a). This suggested that a warmer previous growing
216 season advanced leaf unfolding dates. The S_T was negative across all selected nine temperate
217 tree species (Fig. 2b). The response of *Quercus robur* to T_{GS} were the strongest, with an average
218 of $-2.82 \text{ days} \cdot ^\circ\text{C}^{-1}$, significantly stronger than those of *Tilia cordata* ($-1.04 \text{ days} \cdot ^\circ\text{C}^{-1}$) and *Tilia*
219 *platyphylllos* ($-1.16 \text{ days} \cdot ^\circ\text{C}^{-1}$).

220 In addition to temperature, spring phenology has been reported to be influenced by other
221 climate variables and autumn phenology. We used a linear mixed effects model to exclude these
222 co-variate effects and further examined the effects of T_{GS} on spring leaf unfolding. We
223 consistently observed that leaf unfolding dates were advanced by increasing temperature by an
224 average of $-2.67 \text{ days} \cdot ^\circ\text{C}^{-1}$ (Table S2). Using boosted regression tree, we found the temperature
225 had the strongest effect on leaf unfolding dates (84.67%), followed by radiation (6.33%), soil
226 moisture (3.93%), precipitation (3.32%), humidity (1.75%) (Fig. S1).

227 Our PEP725 results were corroborated by PhenoCam and remote sensing data.
228 Specifically, we observed a negative effect of T_{GS} on SOS in deciduous broad-leaved forests,
229 evergreen forests and grasslands using phenological metrics extracted from the PhenoCam
230 network between 2000 and 2018 (Fig. 2c). According to the calculated S_T , the SOS in response
231 to warming of the previous growing season was the strongest in deciduous broad-leaved forests,
232 followed by evergreen forests and grasslands (Fig. 2c). Using the phenology metrics extracted
233 from remote sensing dataset between 1982 and 2014, we also observed that increasing T_{GS}
234 advanced SOS across different vegetation types in the Northern Hemisphere (Fig. 2d). Among
235 all vegetation types, the S_T of the Tundra was the lowest, followed by Temperate Broadleaf &
236 Mixed Forests and Savannas & Shrublands (Fig. 2d).

237 To test whether earlier spring phenology was driven by increased photosynthetic carbon
238 assimilation, we further examined the relationship between daily maximum photosynthetic rate
239 (GPP_{max}) of the previous growing season and SOS between 1992 and 2014 using FLUXNET
240 data. We found that the timing of SOS showed a significant negative correlation with the GPP_{max}
241 during the growing season between 1992 and 2014 (correlation coefficient = -0.36 , $P < 0.01$,
242 Fig. 3a). This suggested that spring phenology tended to occur earlier with the increased
243 photosynthetic carbon assimilation during previous growing season. To further test the carbon-
244 driven hypothesis, we constructed a structural equation model (SEM) that included climate
245 variables, GPP_{max} and SOS (Fig. 3b). We found that spring phenology (SOS) was advanced by
246 increased GPP_{max} (slope = -2.331 , $P < 0.001$). In addition, the effect of temperature on GPP_{max}
247 was the strongest (slope = 0.319 , $P < 0.001$), followed by soil moisture (slope = 0.167 , $P < 0.001$),
248 while radiation (slope = 0.005 , $P > 0.05$), CO_2 (slope = 0.002 , $P > 0.05$) and precipitation (slope
249 = 0.001 , $P > 0.05$) almost had no effects on GPP_{max} . The detailed statistics of the SEM are listed
250 in Table S3.

251 To examine the potential effects of climate warming on leaf unfolding, we used the
252 PEP725 dataset to calculate and compare the S_T between the coldest and the warmest 15-year
253 periods: 1955-1969 and 2000-2014, respectively (Figs. 4 and S3). We found that the S_T of leaf
254 unfolding decreased by 63.1% from -1.76 ± 0.04 days $\cdot^{\circ}\text{C}^{-1}$ during 1955-1969 to -0.65 ± 0.04
255 during 2000-2014 (Fig. 4a). Between 1955 and 1969, the S_T of early-successional species is
256 -2.37 days $\cdot^{\circ}\text{C}^{-1}$ and -1.23 days $\cdot^{\circ}\text{C}^{-1}$ for late successional species. Between 2000 and 2014, S_T
257 of the early-and late-successional species were -0.13 days $\cdot^{\circ}\text{C}^{-1}$ and -0.92 days $\cdot^{\circ}\text{C}^{-1}$,
258 respectively. The S_T of the early successional species decreased more from the coldest to the
259 warmest periods (-2.24 ± 0.15 days $\cdot^{\circ}\text{C}^{-1}$) than that of late successional species (-0.31 ± 0.16
260 days $\cdot^{\circ}\text{C}^{-1}$) (Figs. 4b and S3).

261

262 Discussion

263 Global warming advances budbreak and leafing worldwide^{21,74-77}. Using three long-term and
264 large-scale phenological datasets, we show that warmer temperatures of the previous growing
265 season drive earlier phenology in the following spring in the Northern Hemisphere. We also
266 find that warming increased photosynthetic carbon assimilation, suggesting a physiological
267 mechanism by which global warming is triggering earlier spring phenology (Fig. 5).

268 In deciduous tree species, carbon gained through photosynthesis is often stored in the form
269 of non-structural carbohydrates (NSC-soluble carbohydrates and starch), which supports the
270 growth of buds and leaves in the following spring before newly grown leaves can supply
271 photosynthesis⁷⁸⁻⁸⁰. For instance, 95% of starches stored in the branches of *Fagus sylvatica* and
272 *Quercus petraea* were consumed when spring bud-break occurred⁷⁹. Needle growth of *Larix*
273 *gmelinii* in spring drew nearly 50% of the carbohydrates fixed in the previous year^{81,82}. Phloem
274 girdling showed that deficient carbon storage can significantly delay the timing of spring
275 budbreak and reduce bud size²⁷.

276 During winter dormancy, temperate tree species also need to store sufficient carbohydrates
277 prior to leaf senescence for respiration to maintain baseline functions and protect cells from
278 frost damage and ensure survival^{83,84}. Therefore, warmer temperatures in the previous growing
279 season may advance spring phenology by increasing carbon storage, supported by the negative
280 correlations between spring phenology and maximum photosynthetic rate in the previous year.

281 Recently, Zani et al.³² has reported that increased carbon assimilation during the growing
282 season drives earlier autumn leaf senescence in temperate ecosystems. When leaf senescence
283 occurred earlier, trees advanced the endodormancy^{5,85}. In this context, the requirement of
284 chilling units may be also fulfilled earlier. As a result, earlier autumn phenology facilitates an
285 earlier spring phenology⁸⁶. Therefore, increased carbon assimilation may directly drive autumn
286 phenology, and, in turn, influence spring phenology. In our analyses, we excluded the co-variate
287 effect of autumn phenology and isolated the effect of temperature of the previous growing
288 season on leaf unfolding. The relationship was negative, confirming our hypothesis that
289 increased carbon assimilation of previous season triggers an earlier spring phenology.

290 We observed that early-successional species showed a stronger response to the warming
291 during growing season compared to late-successional species. In addition to temperature, spring
292 phenology is also under photoperiodic control⁸⁷. Because photoperiod remains stable regardless
293 of climate change, plants are expected to show relatively conservative climatic responses when
294 they rely on photoperiod to determine spring phenology. However, photoperiod sensitivities

295 often vary among species⁸⁷. For example, late-successional species are reported to have a higher
296 photoperiod sensitivity compared to early-successional species^{87,88}. The higher photoperiod
297 sensitivity of late-successional species may, therefore, explain their conservative climatic
298 responses compared to early-successional species^{87,89}.

299 Recent studies have reported that the warming-induced earlier spring phenology has
300 slowed down over the past decades^{21,90,91}. Fu et al.¹⁷ reported that S_T of leaf unfolding decreased
301 by 40% from 4.0 ± 1.8 days \cdot °C $^{-1}$ during 1980-1994 to 2.3 ± 1.6 days \cdot °C $^{-1}$ during 1999-2013.
302 The observed declining effect of warming on spring phenology is generally considered a result
303 of chilling reduction in winter⁹². However, the carbon-driven earlier spring phenology is also
304 slowing down in recent decades, especially for early-successional species as found here. Duffy
305 et al.¹² showed that the mean temperatures in the warmest quarter passed the optimal for
306 photosynthesis over the past decade, with a sharp declining photosynthesis. The increased heat
307 and water stress of the last decades may lead to a spreading growth decline of forests⁹³⁻⁹⁵.
308 Therefore, the observed decline in the S_T may involve reductions in carbon assimilation by heat
309 waves and/or drought events under global warming^{96,97}.

310

311 Conclusion

312 Despite the warming-induced spring phenology observed worldwide, the underlying causes and
313 physiological mechanisms still remain unclear. In this study, we used multiple long-term and
314 large-scale datasets to provide evidence that spring phenology is advanced by warmer
315 temperatures of the previous growing season. Correspondingly, we observed that leaf unfolding
316 occurred earlier under enhanced maximum photosynthetic capability. These findings suggest
317 that an increased carbon assimilation under global warming could be involved in the observed
318 earlier leafing of trees. In addition, we observed a decline in the carry-over effect of growing-
319 season warming on spring phenology resulted likely from the reduced photosynthetic carbon
320 assimilation by heat and water stress under global warming. With an increase in projected
321 drought frequency under warming scenarios^{93,98}, we expect that temperate trees will slow down
322 the advancement of spring phenology. This may reduce the strength of forest carbon sinks under
323 future climate conditions¹⁷. Our study provides new insights into the warming-induced change
324 in spring phenology under global climate change to predict spring phenology and vegetation-
325 atmosphere feedbacks under future climatic scenarios.

326

327 References

- 328 1. Gao, M. *et al.* Divergent changes in the elevational gradient of vegetation activities over
329 the last 30 years. *Nat. Commun.* **10**, 2970 (2019).
- 330 2. Koen Hufkens *et al.* Ecological impacts of a widespread frost event following early spring
331 leaf-out. *Glob. Chang. Biol.* **18**, 2365–2377 (2012).
- 332 3. Kari Saikkonen *et al.* Climate change-driven species' range shifts filtered by
333 photoperiodism. *Nat. Clim. Chang.* **2**, 239–242 (2012).
- 334 4. Zeng, H., Jia, G., & Howard Epstein. Recent changes in phenology over the northern high
335 latitudes detected from multi-satellite data. *Environ. Res. Lett.* **6**, 45508–45518 (2011).
- 336 5. Marc Estiarte & Josep Peñuelas. Alteration of the phenology of leaf senescence and fall
337 in winter deciduous species by climate change: effects on nutrient proficiency. *Glob.*
338 *Chang. Biol.* **21**, 1005–1017 (2015).

339 6. Richardson, A. *et al.* Climate change, phenology, and phenological control of vegetation
340 feedbacks to the climate system. *Agric. For. Meteorol.* **169**, 156–173 (2013).

341 7. Josep Penuelas, This Rutishauser, & Iolanda Filella. Phenology Feedbacks on Climate
342 Change. *Science* **324**, 887–888 (2009).

343 8. Fu, Y. H. *et al.* Three times greater weight of daytime than of night-time temperature on
344 leaf unfolding phenology in temperate trees. *New Phytol.* **212**, 590–597 (2016).

345 9. Annette Menzel *et al.* European phenological response to climate change matches the
346 warming pattern. *Glob. Chang. Biol.* **12**, 1969–1976 (2006).

347 10. Peuelas, J. & Iolanda Filella. Responses to a Warming World. *Science* **294**, 793–795
348 (2001).

349 11. Piao, S. *et al.* Leaf onset in the northern hemisphere triggered by daytime temperature.
350 *Nat. Commun.* **6**, 6911 (2015).

351 12. Duffy, K. A. *et al.* How close are we to the temperature tipping point of the terrestrial
352 biosphere? *Sci. Adv.* **7**, eaay1052 (2021).

353 13. Keenan, T. F., Richardson, A. D. & Hufkens, K. On quantifying the apparent temperature
354 sensitivity of plant phenology. *New Phytol.* **225**, 1033–1040 (2020).

355 14. Niu, S., Fu, Y., Gu, L. & Luo, Y. Temperature Sensitivity of Canopy Photosynthesis
356 Phenology in Northern Ecosystems. *Phenology: An Integrative Environmental Science*
357 503–519 doi:10.1007/978-94-007-6925-0_27 (2013).

358 15. Meineke, E. K., Davis, C. C. & Davies, T. J. Phenological sensitivity to temperature
359 mediates herbivory. *Glob. Chang. Biol.* **27**, 2315–2327 (2021).

360 16. Huanjiang Wang, Quansheng Ge, This Rutishauser, Yuxiao Dai, & Junhu Dai.
361 Parameterization of temperature sensitivity of spring phenology and its application in
362 explaining diverse phenological responses to temperature change. *Sci. Rep.* **5**, 8833
363 (2015).

364 17. Fu, Y. H. *et al.* Declining global warming effects on the phenology of spring leaf unfolding.
365 *Nature* **526**, 104–107 (2015).

366 18. Carol K Augspurger. Reconstructing patterns of temperature, phenology, and frost
367 damage over 124 years: Spring damage risk is increasing. *Ecology* **94**, 41–50 (2013).

368 19. Jochner, S., Beck, I., Behrendt, H., Traidl-Hoffmann, C. & Menzel, A. Effects of extreme
369 spring temperatures on phenology: a case study from Munich and Ingolstadt. *Clim. Res.*
370 **12**, 101–112 (2010).

371 20. Meng, F., Zhang, L. irong, Zhang, Z., Jiang, L. & Wang, Y. Enhanced spring temperature
372 sensitivity of carbon emission links to earlier phenology. *Sci. Total Environ.* **745**, 140999
373 (2020).

374 21. Güsewell, R., Furrer, R., Gehrig, R. & Pietragalla, B. Changes in temperature sensitivity
375 of spring phenology with recent climate warming in Switzerland are related to shifts of
376 the preseason. *Glob. Chang. Biol.* **23**, 5189–5202 (2017).

377 22. Wang, T. *et al.* The influence of local spring temperature variance on temperature
378 sensitivity of spring phenology. *Glob. Chang. Biol.* **20**, 1473–1480 (2014).

379 23. Huang, J.-G. *et al.* Intra-annual wood formation of subtropical Chinese red pine shows
380 better growth in dry season than wet season. *Tree Physiol.* **38**, 1225–1236 (2018).

381 24. Knowles, J. F., Scott, R. L., Biederman, J. A., Blanken, P. D. & Barron-Gafford, G. A.
382 Montane forest productivity across a semi-arid climatic gradient. *Glob. Chang. Biol.* **26**,
383 6945–6958 (2020).

384 25. Strimbeck, G. R., Trygve, D. K., Paul, G. S. & Paula, F. M. Dynamics of low-temperature
385 acclimation in temperate and boreal conifer foliage in a mild winter climate. *Tree Physiol.*
386 **28**, 1365–1374 (2008).

387 26. Smart, D. R. Exposure to elevated carbon dioxide concentration in the dark lowers the
388 respiration quotient of *Vitis* cane wood. *Tree Physiol.* **24**, 115–120 (2004).

389 27. Roxas, A. A., Orozco, J., Guzmán-Delgado, P., & Zwieniecki, M. A. Spring phenology is
390 affected by fall non-structural carbohydrates concentration and winter sugar redistribution
391 in three Mediterranean nut tree species. *Tree Physiol.* **1**-14 (2021).

392 28. Palacio, S., Maestro, M., & G Montserrat-Martí. Seasonal dynamics of non-structural
393 carbohydrates in two species of mediterranean sub-shrubs with different leaf phenology.
394 *Environ. Exp. Bot.* **59**, 34–42 (2007).

395 29. Fierravanti, A., Rossi, S., Kneeshaw, D., De Grandpré, L. & Deslauriers, A. Low Non-
396 structural Carbon Accumulation in Spring Reduces Growth and Increases Mortality in
397 Conifers Defoliated by Spruce Budworm. *Front. For. Glob. Chang.* **2**, (2019).

398 30. Fajstavr, M., Giagli, K., Vavrcík, H., Gryc, V. & Urban, J. The effect of stem girdling on
399 xylem and phloem formation in Scots pine. *Silva Fennica* **51**, 1760 (2017).

400 31. Fajstavr, M. *et al.* The cambial response of Scots pine trees to girdling and water stress.
401 *Iawa Journal* **41**, 159–185 (2020).

402 32. Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-
403 season productivity drives earlier autumn leaf senescence in temperate trees. *Science* **370**,
404 1066–1071 (2020).

405 33. Lin, Y.-S., Medlyn, B. E. & Ellsworth, D. S. Temperature responses of leaf net
406 photosynthesis: the role of component processes. *Tree Physiol.* **32**, 219–231 (2012).

407 34. Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models:
408 incorporating acclimation to temperature and CO₂. *Glob. Chang. Biol.* **19**, 45–63 (2013).

409 35. Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change:
410 elevated CO₂ and temperature impacts on photosynthesis, photorespiration and
411 respiration. *New Phytol.* **221**, 32–49 (2019).

412 36. Huang, M. *et al.* Air temperature optima of vegetation productivity across global biomes.
413 *Nat. Ecol. Evol.* **3**, 772–779 (2019).

414 37. Smith, N. G., Lombardozzi, D., Tawfik, A., Bonan, G. & Dukes, J. S. Biophysical
415 consequences of photosynthetic temperature acclimation for climate. *J. Adv. Model.* **9**,
416 536–547 (2017).

417 38. Saxe, H., Cannell, M. G. R., Johnsen, Ø., Ryan, M. G. & Vourlitis, G. Tree and forest
418 functioning in response to global warming. *New Phytol.* **149**, 369–399 (2001).

419 39. Bigras, F. J. & Bertrand, A. Responses of *Picea mariana* to elevated CO₂ concentration
420 during growth, cold hardening and dehardening: phenology, cold tolerance,
421 photosynthesis and growth. *Tree Physiol.* **26**, 875–888 (2006).

422 40. M.Ewa, J. & Reinhart, C. Effects of elevated atmospheric CO₂ on phenology, growth and
423 crown structure of Scots pine (*Pinus sylvestris*) seedlings after two years of exposure in
424 the field. *Tree Physiol.* **19**, 289–300 (1999).

425 41. Penuelas & J. Phenology. Responses to a warming world. *Science* **294**, 793–795 (2001).

426 42. Rebecca, S.-D. *et al.* Divergent carbon cycle response of forest and grass-dominated

427 northern temperate ecosystems to record winter warming. *Glob. Chang. Biol.* **26**, 1519–

428 1531 (2019).

429 43. Templ, B. *et al.* Pan European Phenological database (PEP725): a single point of access

430 for European data. *Int. J. Biometeorol.* **62**, 1109–1113 (2018).

431 44. Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: Do not use

432 standard deviation around the mean, use absolute deviation around the median. *J. Exp.*

433 *Soc. Psychol.* **49**, 764–766 (2013).

434 45. Brown, M. T., Campbell, D. E., De Vilbiss, C. & Ulgiati, S. The geobiosphere energy

435 baseline: A synthesis. *Ecol. Modell.* **339**, 92–95 (2016).

436 46. Richardson, A. D. *et al.* Tracking vegetation phenology across diverse North American

437 biomes using PhenoCam imagery. *Sci. Data.* **5**, 180028 (2018).

438 47. Klosterman, S. T. *et al.* Evaluating remote sensing of deciduous forest phenology at

439 multiple spatial scales using PhenoCam imagery. *Biogeosciences* **11**, 4305–4320 (2014).

440 48. Zhang, Y. *et al.* Seasonal and interannual changes in vegetation activity of tropical forests

441 in Southeast Asia. *Agric. For. Meteorol.* **224**, 1–10 (2016).

442 49. Pinzon, J. E. & Tucker, C. J. A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series.

443 *Remote Sens.* **6**, 6929–6960 (2014).

444 50. Wang, X. *et al.* No trends in spring and autumn phenology during the global warming

445 hiatus. *Nat. Commun.* **10**, 2389 (2019).

446 51. Wang, X. *et al.* Validation of MODIS-GPP product at 10 flux sites in northern China. *Int.*

447 *J. Remote Sens.* **34**, 587–599 (2013).

448 52. Julien, Y. & Sobrino, J. A. Global land surface phenology trends from GIMMS database.

449 *Int. J. Remote Sens.* **30**, 3495–3513 (2009).

450 53. Zhang, X. *et al.* Monitoring vegetation phenology using MODIS. *Remote Sens. Environ.*

451 **84**, 471–475 (2003).

452 54. Pastorello, G. *et al.* The FLUXNET2015 dataset and the ONEFlux processing pipeline

453 for eddy covariance data. *Sci. Data.* **7**, 225 (2020).

454 55. Kalman & Dan. A singularly valuable decomposition: The SVD of a matrix. *The College*

455 *Mathematics Journal* **39**, 2233–2241 (1996).

456 56. Huang, K. *et al.* Enhanced peak growth of global vegetation and its key mechanisms. *Nat.*

457 *Ecol. Evol.* **2**, 1897–1905 (2018).

458 57. Tang, Y., Xu, X., Zhou, Z., Qu, Y. & Sun, Y. Estimating global maximum gross primary

459 productivity of vegetation based on the combination of MODIS greenness and

460 temperature data. *Ecol. Inform.* **63**, 101307 (2021).

461 58. Xia, J. *et al.* Joint control of terrestrial gross primary productivity by plant phenology and

462 physiology. *Proc. Natl. Acad. Sci. U.S.A.* **112**, 2788–2793 (2015).

463 59. Hu, Z. *et al.* Joint structural and physiological control on the interannual variation in

464 productivity in a temperate grassland: A data-model comparison. *Glob. Chang. Biol.* **24**,

465 2965–2979 (2018).

466 60. Richardson, A. D. *et al.* Influence of spring and autumn phenological transitions on forest

467 ecosystem productivity. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* **365**, 3227–3246 (2010).

468 61. Wu, C. *et al.* Interannual variability of net carbon exchange is related to the lag between
469 the end-dates of net carbon uptake and photosynthesis: Evidence from long records at two
470 contrasting forest stands. *Agric. For. Meteorol.* **164**, 29–38 (2012).

471 62. Cornes, R. C., Schrier, G. van der, Besselaar, E. J. M. van den & Jones, P. D. An Ensemble
472 Version of the E-OBS Temperature and Precipitation Data Sets. *J. Geophys. Res. Atmos.*
473 **123**, 9391–9409 (2018).

474 63. Hijmans, R. J. *raster: Geographic Data Analysis and Modeling*. (2020).

475 64. R Core Team. *R: A Language and Environment for Statistical Computing*. (2020).

476 65. Suonan, J., Classen, A. T., Sanders, N. J. & He, J.-S. Plant phenological sensitivity to
477 climate change on the Tibetan Plateau and relative to other areas of the world. *Ecosphere*
478 **10**, e02543 (2019).

479 66. Wang, C., Cao, R., Chen, J., Rao, Y. & Tang, Y. Temperature sensitivity of spring
480 vegetation phenology correlates to within-spring warming speed over the Northern
481 Hemisphere. *Ecol. Indic.* **50**, 62–68 (2015).

482 67. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. *J
483 Anim. Ecol.* **77**, 802–813 (2008).

484 68. Davis, K. T. *et al.* Wildfires and climate change push low-elevation forests across a critical
485 climate threshold for tree regeneration. *Proc. Natl. Acad. Sci. U.S.A.* **116**, 6193–6198
486 (2019).

487 69. Lemm, J. U. *et al.* Multiple stressors determine river ecological status at the European
488 scale: Towards an integrated understanding of river status deterioration. *Glob. Chang.
489 Biol.* **27**, 1962–1975 (2021).

490 70. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models
491 Using lme4. *J. Stat. Softw.* **67**, 1–48 (2015).

492 71. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in
493 Linear Mixed Effects Models. *J. Stat. Softw.* **82**, 1–26 (2017).

494 72. Greenwell, B., Boehmke, B., Cunningham, J. & Developers, G. B. M. *gbm: Generalized
495 Boosted Regression Models*. (2020).

496 73. Rosseel, Y. *lavaan: An R Package for Structural Equation Modeling*. 48 (2012).

497 74. Asch & Rebecca, G. Climate change and decadal shifts in the phenology of larval fishes
498 in the California Current ecosystem. *Proc. Natl. Acad. Sci. U.S.A.* **112**, 4065–4074 (2015).

499 75. RaphaSaarn. False estimates of the advance of spring. *Nature* 600 (2001).

500 76. Wheeler, H. C., Hye, T. T., Schmidt, N. M., Svenning, J. C. & Forchhammer, M. C.
501 Phenological mismatch with abiotic conditions—implications for flowering in Arctic
502 plants. *Ecology* **96**, 775–787 (2015).

503 77. Yu, H., Luedeling, E. & Xu, J. Winter and spring warming result in delayed spring
504 phenology on the Tibetan Plateau. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 22151–22156 (2010).

505 78. Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in
506 forest trees – from what we can measure to what we want to know. *New Phytol.* **211**, 386–
507 403 (2016).

508 79. Tamir, K., Yann, V., & H Günter. Coordination between growth, phenology and carbon
509 storage in three coexisting deciduous tree species in a temperate forest. *Tree Physiol.* **36**,
510 847–855 (2016).

511 80. Tixier, A., Gambetta, G. A., Godfrey, J., Orozco, J. & Zwieniecki, M. A. Non-structural
512 Carbohydrates in Dormant Woody Perennials; The Tale of Winter Survival and Spring
513 Arrival. *Front. For. Glob. Chang.* **2**, 18 (2019).

514 81. Kagawa, A. & Maximov, S. Seasonal course of translocation, storage and remobilization
515 of ¹³C pulse-labeled photoassimilate in naturally growing *Larix gmelinii* saplings. *New*
516 *Phytol.* **171**, 793–804 (2010).

517 82. Siegwolf *et al.* Examining the response of needle carbohydrates from Siberian larch trees
518 to climate using compound-specific C-13 and concentration analyses. *Plant Cell Environ.*
519 **38**, 2340–2352 (2015).

520 83. Erica, F., Eduardo, F., Helen, B. & Eike, L. A Conceptual Framework for Winter
521 Dormancy in Deciduous Trees. *Agronomy* **10**, 241 (2020).

522 84. Majken, P., Brandt, A. U. & Lillie, A. Winter warming delays dormancy release, advances
523 budburst, alters carbohydrate metabolism and reduces yield in a temperate shrub. *Aob*
524 *Plants* **7**, plv024 (2015).

525 85. Malyshev, A. V. Warming Events Advance or Delay Spring Phenology by Affecting Bud
526 Dormancy Depth in Trees. *Front. Plant Sci.* **11**, 856 (2020).

527 86. Liu, Q. *et al.* Modeling leaf senescence of deciduous tree species in Europe. *Glob. Chang.*
528 *Biol.* **26**, (2020).

529 87. Basler, D. & Körner, C. Photoperiod sensitivity of bud burst in 14 temperate forest tree
530 species. *Agric. For. Meteorol.* **165**, 73–81 (2012).

531 88. Basler, D. & Körner, C. Photoperiod and temperature responses of bud swelling and bud
532 burst in four temperate forest tree species. *Tree Physiol.* **34**, 377–388 (2014).

533 89. Körner, C. & Basler, D. Phenology Under Global Warming. *Science* **327**, 1461 (2010).

534 90. Daphné, A. *et al.* Warmer winters reduce the advance of tree spring phenology induced
535 by warmer springs in the Alps. *Agric. For. Meteorol.* **252**, 220–230 (2018).

536 91. Vitasse, Signarbieux, & YSH. Global warming leads to more uniform spring phenology
537 across elevations. *Proc. Natl. Acad. Sci. U.S.A.* **155**, (1004).

538 92. Clark, J. S., Salk, C., Melillo, J. & Mohan, J. Tree phenology responses to winter chilling,
539 spring warming, at north and south range limits. *Funct. Ecol.* **28**, 1344–1355 (2014).

540 93. Brzostek, E. R. *et al.* Chronic water stress reduces tree growth and the carbon sink of
541 deciduous hardwood forests. *Glob. Chang. Biol.* **20**, 2531–2539 (2014).

542 94. Julio Camarero, J. *et al.* Forest Growth Responses to Drought at Short- and Long-Term
543 Scales in Spain: Squeezing the Stress Memory from Tree Rings. *Front. Ecol. Evol.* **6**,
544 (2018).

545 95. Xu, P. *et al.* Impacts of Water Stress on Forest Recovery and Its Interaction with Canopy
546 Height. *Int. J. Environ. Res. Public Health.* **15**, 1257 (2018).

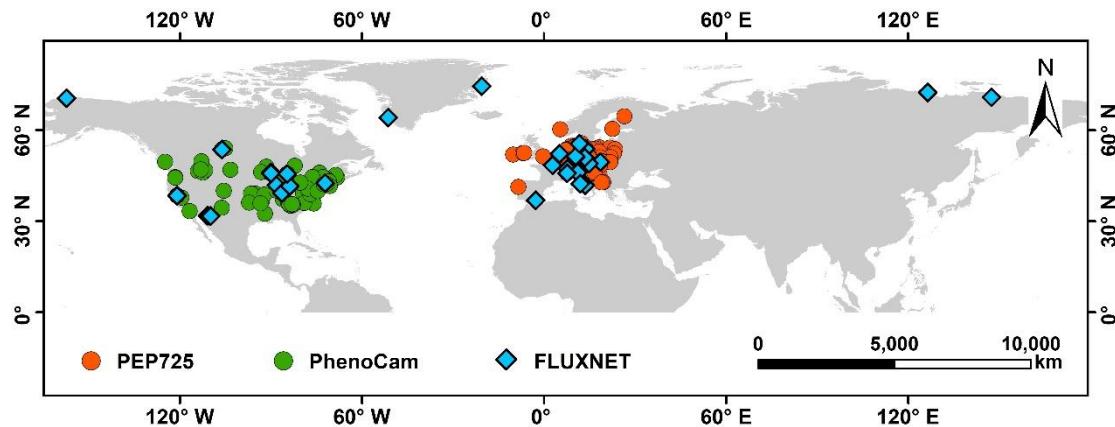
547 96. Yashavanthakumar, K. J. *et al.* Impact of heat and drought stress on phenological
548 development and yield in bread wheat. *Plant Physiol. Rep.* **26**, 357–367 (2021).

549 97. Choukri, H. *et al.* Heat and Drought Stress Impact on Phenology, Grain Yield, and
550 Nutritional Quality of Lentil (*Lens culinaris* Medikus). *Front. Nutr.* **7**, (2020).

551 98. Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity,
552 frequency, and terrestrial carbon costs of compound drought and aridity events. *Sci. Adv.*
553 **5**, eaau5740 (2019).

554

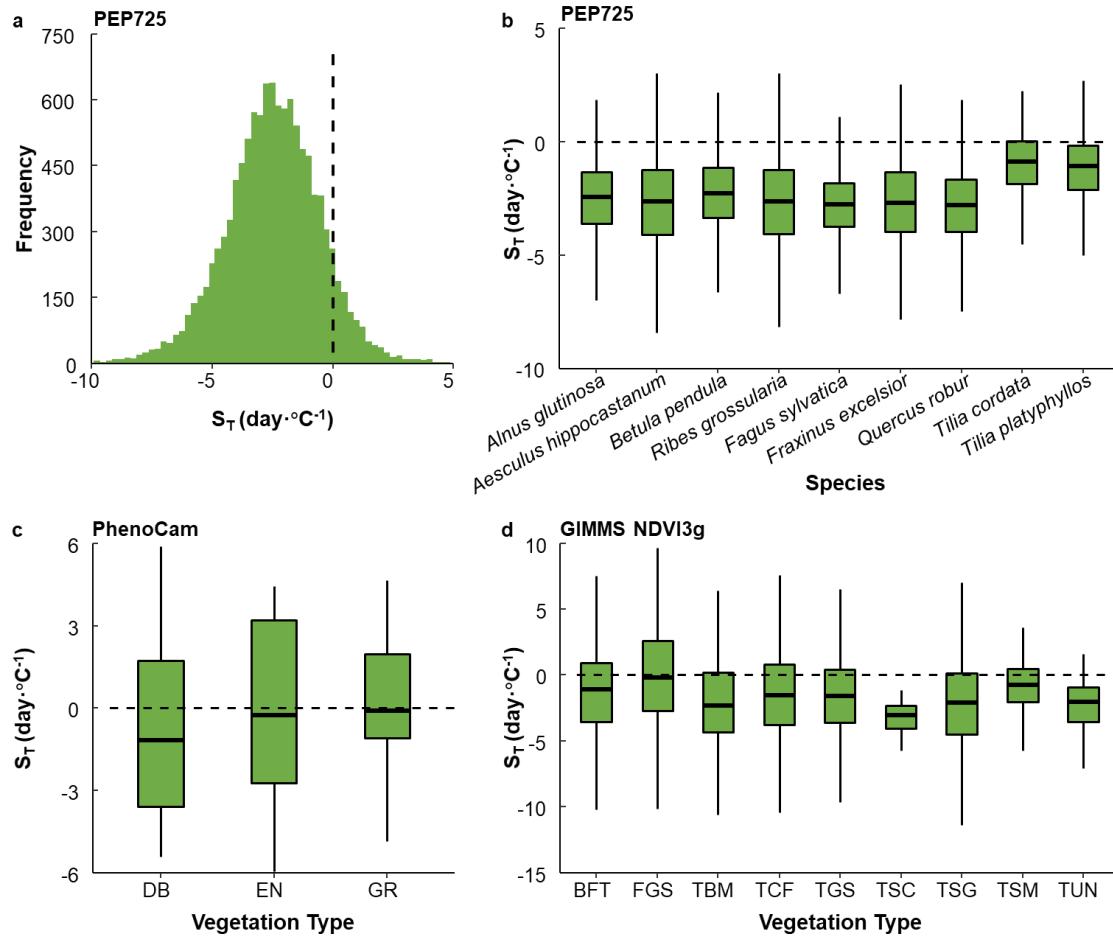
555



556

557 **Fig. 1** Distributions of the phenological observation sites in this study. Orange dots represent
558 the 2,300 sites selected from the PEP725 dataset across central Europe. Green dots and blue
559 diamonds represent 78 sites in North America from the PhenoCam network and 39 FLUXNET
560 sites, respectively.

561



562

563

Fig. 2 Temperature sensitivities (S_T , change in days per degree Celsius) of spring phenology in response to increasing temperature during previous growing season. The calculated S_T was based on (a, b) records of spring leaf unfolding for nine temperate tree species at 2,300 sites in Europe, and phenological metrics extracted from (c) the PhenoCam network and (d) the GIMMS NDVI_{3g} products for different biomes. DB, EN and GR in (c) represents deciduous broad-leaved forests, evergreen forests and grasslands, respectively. In (d), the biomes included Boreal Forests/Taiga (BFT), Flooded Grasslands & Savannas (FGS), Temperate Broadleaf & Mixed Forests (TBM), Temperate Conifer Forests (TCF), Temperate Grasslands, Savannas & Shrublands (TGS), Tropical & Subtropical Coniferous Forests (TSC), Tropical & Subtropical Grasslands, Savannas & Shrublands (TSG), Tropical & Subtropical Moist Broadleaf Forest (TSM) and Tundra (TUN). The black dash lines indicate when the S_T is equal to zero.

564

565

566

567

568

569

570

571

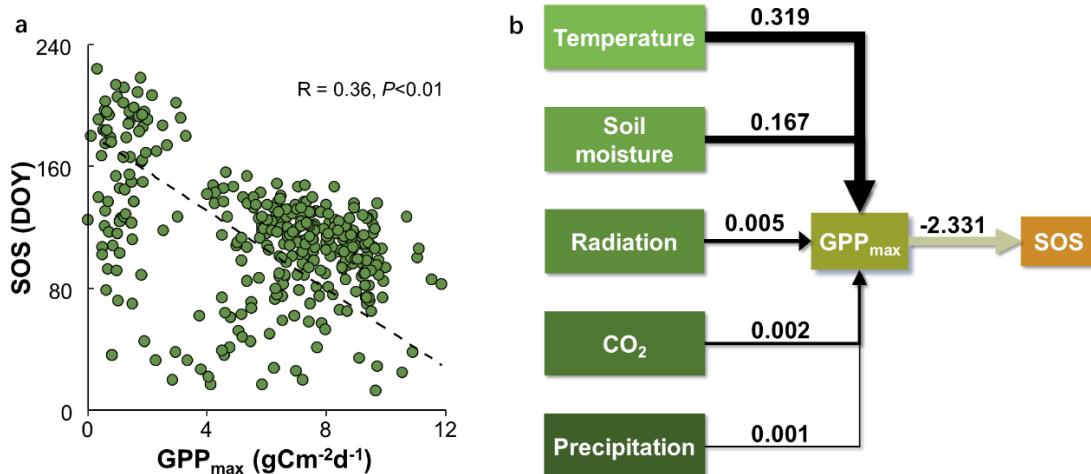
572

573

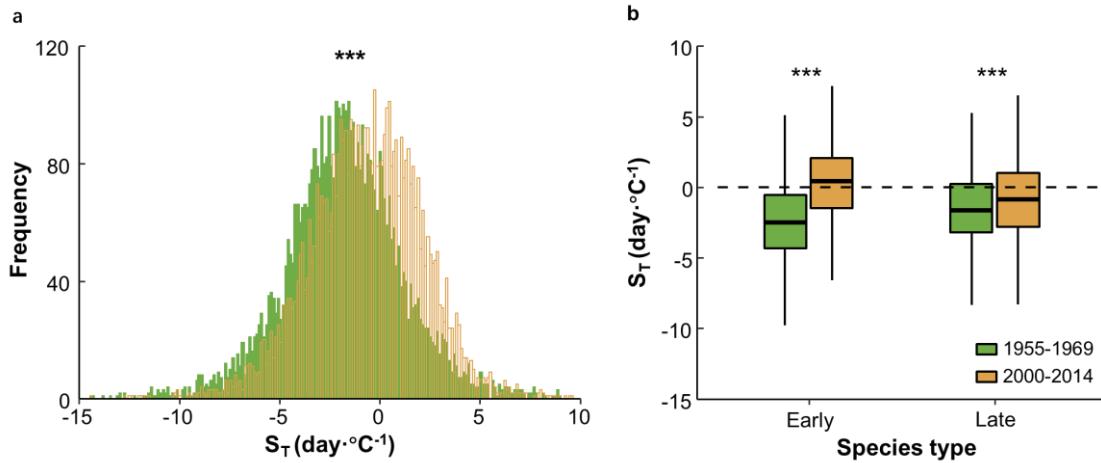
574

575

576



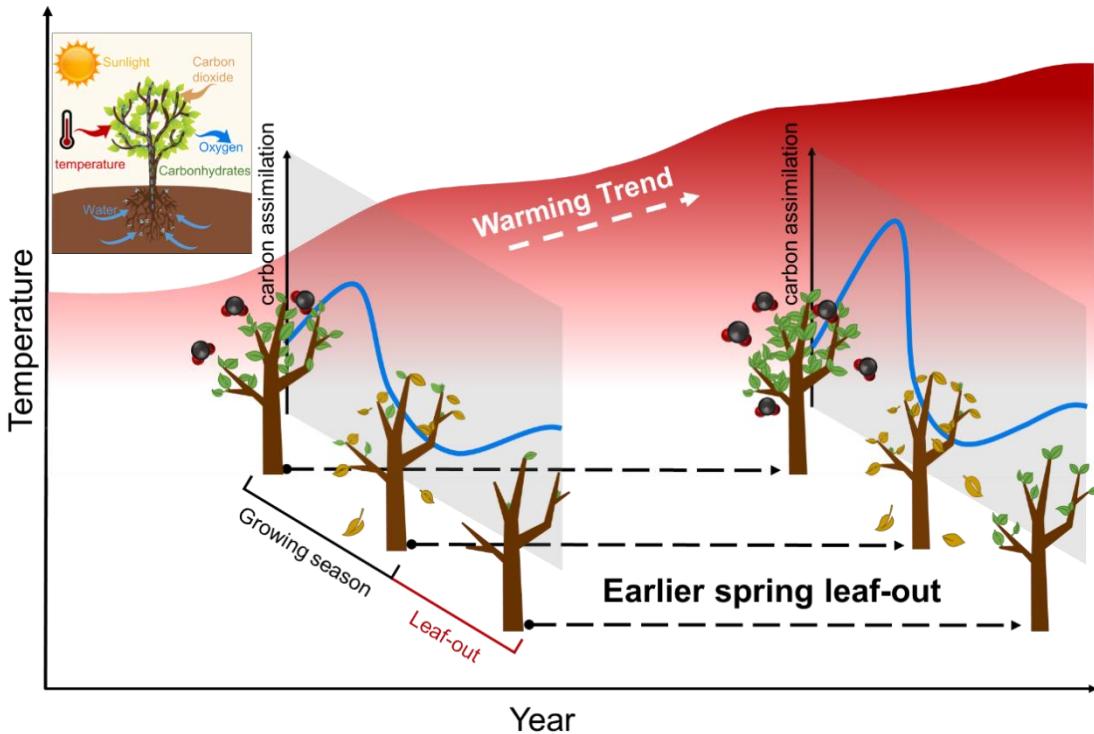
577
578 **Fig. 3** (a) Relationship between spring phenology (SOS) and GPP_{max} and (b) the constructed
579 structural equation model using the data of 39 FLUXNET sites between 1992 and 2014. The
580 black dash line represents the fitted linear regression line ($SOS = 182.38 - 12.88 \times GPP_{max}$). The
581 used variables in the structural equation model included climate variables (temperature,
582 radiation, soil moisture, CO₂ and precipitation), SOS and GPP_{max}.
583
584



585

586 **Fig. 4 (a)** Distributions of temperature sensitivities (S_T , change in days per degree Celsius) of
587 leaf unfolding during the coldest (1955-1969) and the warmest (2000-2014) periods and **(b)**
588 differences of S_T between early- and late-successional species during these two periods. The
589 calculated S_T was based on the temperature during previous growing season and leaf unfolding
590 dates obtained from the PEP725 database. The length of each box indicates the interquartile
591 range, the horizontal line inside each box the median, and the bottom and top of the box the
592 first and third quartiles respectively. The asterisks indicate a significant difference in the S_T
593 1955-1969 and 2000-2014 ($P<0.001$). The black dashed horizontal line indicates when the S_T
594 is equal to zero.

595



596

597 **Fig. 5** A schematic diagram of the earlier leaf-out in response to warming during previous
598 growing season. Warmer temperatures during the previous growing season drivers earlier spring
599 leaf-out by increasing photosynthetic carbon assimilation.

600

601

602

Supporting Information

603

Table S1. List of the 9 temperate species selected from the PEP725 phenological network.

Number	Latin name	Successional type
1	<i>Aesculus hippocastanum</i> L.	Early
2	<i>Betula pendula</i> Roth	Early
3	<i>Alnus glutinosa</i> (L.) Gaertn.	Early
4	<i>Ribes grossularia</i> L.	Early
5	<i>Fraxinus excelsior</i> L.	Late
7	<i>Fagus sylvatica</i> L.	Late
7	<i>Quercus robur</i> L.	Late
8	<i>Tilia cordata</i> Mill.	Late
9	<i>Tilia platyphyllos</i> Scop.	Late

604

605

606 **Table S2.** Results of linear mixed model that the effect of temperature during previous growing
607 season on spring phenology (SOS) after excluding the influence of other climatic factors
608 (radiation, precipitation, soil moisture, humidity) and autumn phenology (EOS).

Variables	Estimate	SE	t value	P value
Intercept	170.52	3.86	44.16	<0.001
Temperature	-2.67	5.59×10^{-2}	-47.85	<0.001
Radiation	-0.02	4.54×10^{-3}	-4.75	<0.001
Precipitation	0.01	2.37×10^{-3}	0.57	<0.001
Soil moisture	0.37	2.16×10^{-2}	17.14	<0.001
Humidity	-0.56	1.91×10^{-2}	-29.21	<0.001
EOS	0.07	2.77×10^{-3}	25.36	<0.001

609

610

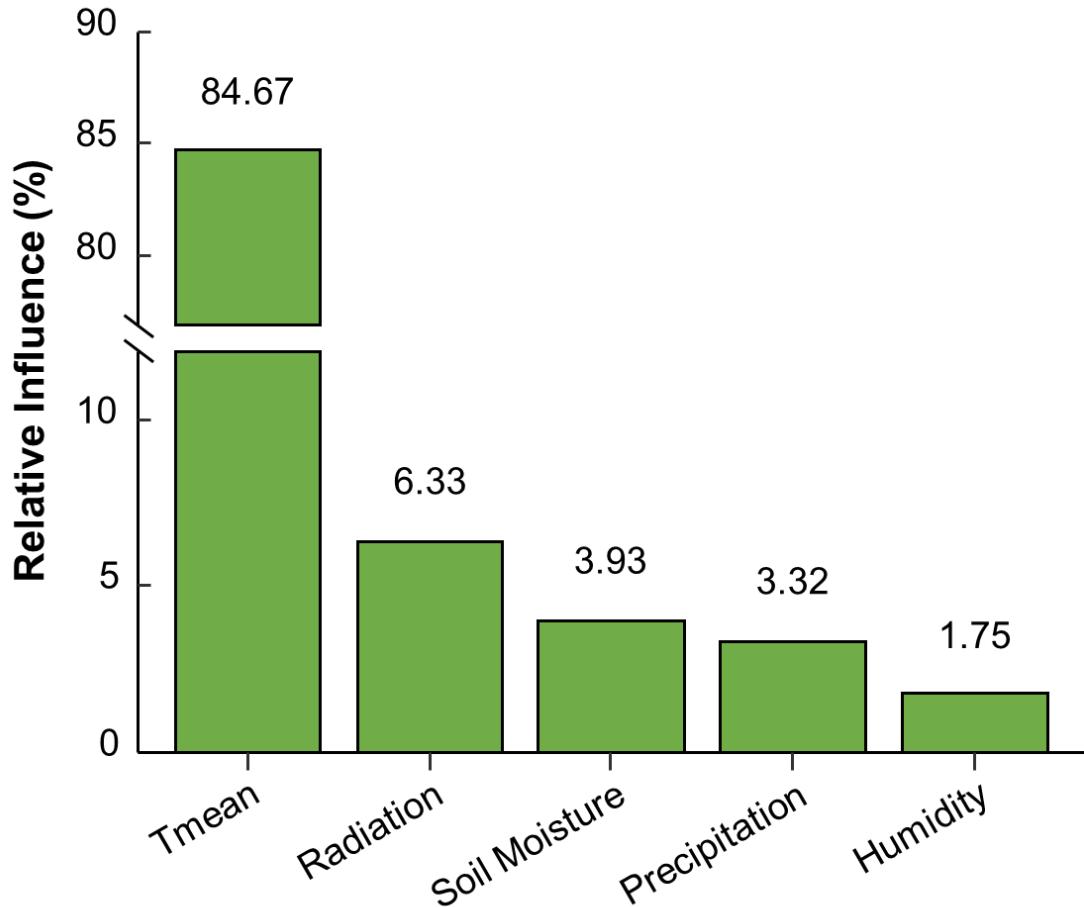
611 **Table S3.** Statistics of the structural equation models (SEMs). To display model performance,
612 we calculated the Comparative Fit Index (CFI) and the root-mean square error (RMSEA).

Statistics of the structural equation models (SEMs)

Left-hand side	Option	Right-hand side	Estimate	SE	Z value	P value
GPP _{max}	~	Temperature	0.319	0.033	9.569	<0.001
GPP _{max}	~	Soil moisture	0.167	0.026	6.347	<0.001
GPP _{max}	~	Radiation	0.005	0.004	1.179	>0.05
GPP _{max}	~	CO ₂	0.002	0.007	0.325	>0.05
GPP _{max}	~	Precipitation	0.001	0.152	0.004	>0.05
SOS	~	GPP _{max}	-2.331	0.551	-4.229	<0.001

CFI = 0.89; RMSEA = 0.20

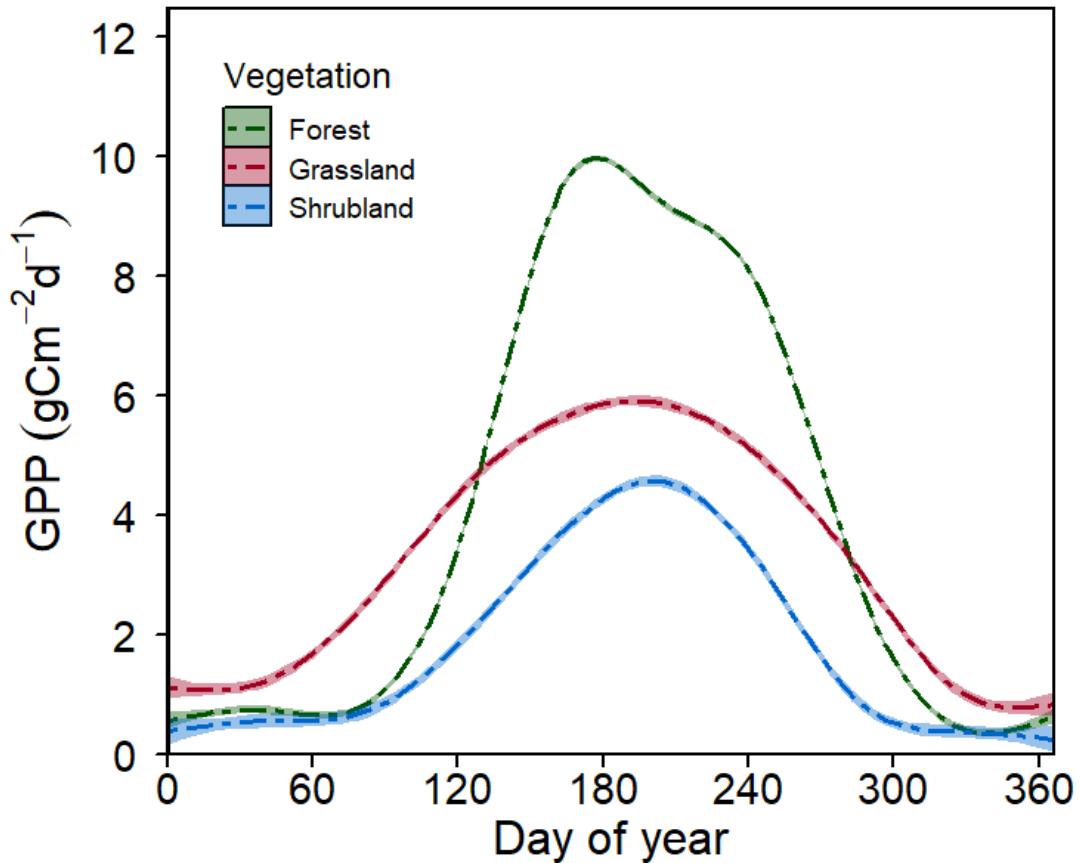
613



614

615 **Fig. S1** The relative influence of climatic factors during previous growing season on spring leaf
616 unfolding between 1984 and 2015 obtained from the PEP725 database.

617

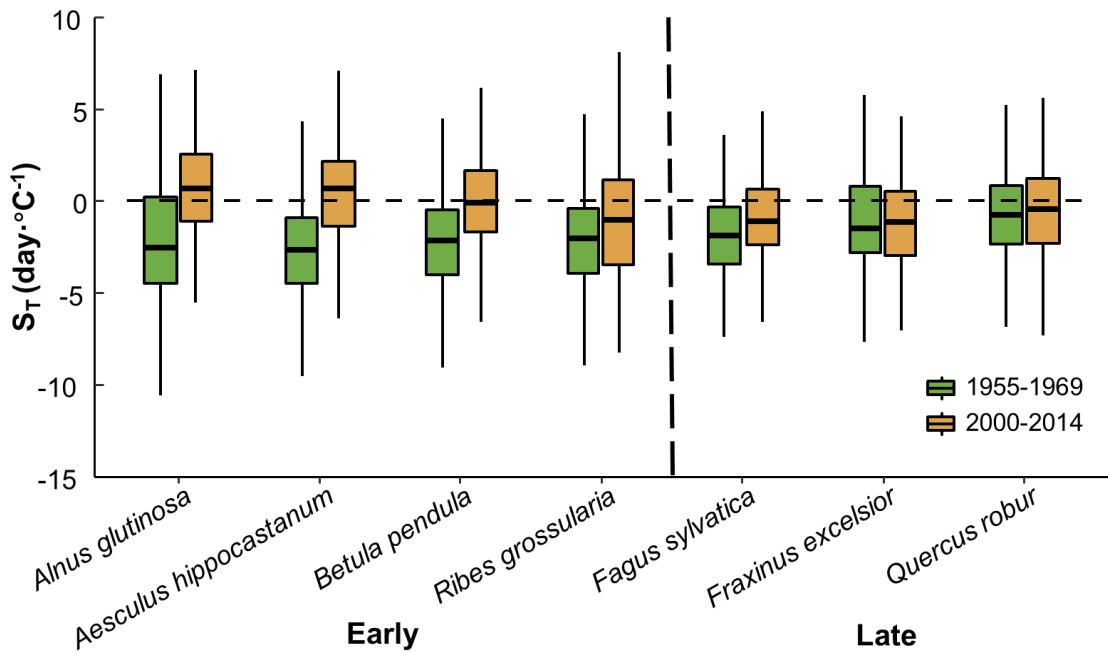


618

619 **Fig. S2** Daily gross primary productivity (GPP) changes in three vegetation types based on
620 FLUXNET.

621

622



623

624 **Fig. S3** Temperature sensitivities (S_T , change in days per degree Celsius) of leaf unfolding in
625 early- and late-successional species during 1955-1969 and 2000-2014. The calculated S_T was
626 based on the temperature during previous growing season and leaf unfolding dates obtained
627 from the PEP725 database. The length of each box indicates the interquartile range, the
628 horizontal line inside each box the median, and the bottom and top of the box the first and third
629 quartiles respectively. The black dashed horizontal line indicates when the S_T is equal to zero.