

1 **Population structure analysis and laboratory monitoring of *Shigella* with a standardised**
2 **core-genome multilocus sequence typing scheme**

3
4 Iman Yassine, MSc^{1,2}, Sophie Lefèvre, PharmD, PhD¹, Elisabeth E. Hansen, MSc^{1‡}, Corinne
5 Ruckly¹, Isabelle Carle¹, Monique Lejay-Collin, BSc¹, Laëtitia Fabre, PhD¹, Rayane Rafei,
6 PhD², Dominique Clermont, PhD³, Maria Pardos de la Gandara, MD, PhD¹, Fouad
7 Dabboussi, PhD², Nicholas R. Thomson, PhD^{4,5}, François-Xavier Weill, MD, PhD^{1*}
8

9 ¹Institut Pasteur, Unité des bactéries pathogènes entériques, Centre National de Référence des
10 *Escherichia coli*, *Shigella* et *Salmonella*, Paris, 75015, France

11 ²Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and
12 Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon

13 ³Institut Pasteur, Collection de l’Institut Pasteur, Paris, 75015, France

14 ⁴ Wellcome Sanger Institute, Cambridge, CB10 1SA, United Kingdom

15 ⁵London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom

16 [‡]current affiliation: Harvard Medical School, Boston, 02115, United States

17 *corresponding author: francois-xavier.weill@pasteur.fr (F.- X. Weill).

18

19

20 **ABSTRACT**

21

22 The laboratory surveillance of bacillary dysentery is based on a standardised *Shigella* typing
23 scheme that classifies *Shigella* strains into four serogroups and more than 50 serotypes on the
24 basis of biochemical tests and lipopolysaccharide O-antigen serotyping. Real-time genomic
25 surveillance of *Shigella* infections has been implemented in several countries, but without the
26 use of a standardised typing scheme. We studied over 4,000 reference strains and clinical
27 isolates of *Shigella*, covering all serotypes, with both the current serotyping scheme and the
28 standardised Enterobase core-genome multilocus sequence typing scheme (cgMLST). The
29 *Shigella* genomes were grouped into eight phylogenetically distinct clusters, within the *E. coli*
30 species. The cgMLST hierarchical clustering (HC) analysis at different levels of resolution
31 (HC2000 to HC400) recognised the natural groupings for *Shigella*. By contrast, the serotyping
32 scheme was affected by horizontal gene transfer, leading to a conflation of genetically unrelated
33 *Shigella* strains and a separation of genetically related strains. The use of this cgMLST scheme
34 will enhance the laboratory surveillance of *Shigella* infections.

35

36

37 **INTRODUCTION**

38

39 *Shigella* belongs to the *Enterobacteriaceae* family, and causes bacillary dysentery, a common
40 cause of diarrhoea in low- and middle-income countries. It has been estimated that this
41 intracellular human pathogen, which is transmitted via the faecal-oral route with very low
42 infectious dose (10-100 cells), is responsible for over 210,000 deaths per year, mostly in
43 children under the age of five years¹⁻³. In high-income countries, *Shigella* infections also occur
44 in travellers and in some high-risk groups, such as men who have sex with men (MSM) and
45 Orthodox Jewish communities²⁻⁵. The morbidity of these infections is currently increasing due
46 to growing resistance to antimicrobial drugs in these bacteria^{2,3,5,6}.

47

48 Laboratory surveillance of *Shigella* infections was initiated several decades ago, and was
49 facilitated by the adoption of a standardised *Shigella* typing scheme in the late 1940s⁷. This
50 scheme, which is still in use today, is based on biochemical tests and serotyping (slide
51 agglutination with typing sera directed against the different *Shigella* lipopolysaccharide O-
52 antigens). It splits the *Shigella* genus into four serogroups (originally considered to be species):
53 *Shigella dysenteriae*, *S. boydii*, *S. flexneri*, and *S. sonnei*; these four serogroups are then
54 subdivided into more than 50 serotypes. However, modern population genetics methods, such
55 as multilocus sequence typing (MLST) analysis, and, more recently, core-genome single-
56 nucleotide variant (cgSNV) analysis, have shown that *Shigella* forms distinct lineages within
57 the species *E. coli*, from which it emerged following the acquisition of a large virulence plasmid
58 (VP) enabling the bacterium to invade intestinal cells⁸⁻¹¹. In parallel, these host-restricted
59 pathogens converged independently on the *Shigella* phenotype (non-motility, no
60 decarboxylation of lysine, no use of citrate and malonate, and other characteristics, as reported
61 by Pupo and coworkers⁸) through genome degradation. Furthermore, these recent methods have

62 shown that the current typing scheme does not capture the natural groupings of this pathogen⁸.
63 Some molecular data have been taken into account in an update of the *Shigella* serotyping
64 scheme. *S. boydii* 13, for example, was withdrawn from the classification, because it was shown
65 to belong to another species, *Escherichia albertii*, and did not contain the VP^{12,13}.

66

67 In an increasing number of countries, the laboratory surveillance of *Shigella* infections has now
68 passed from conventional serotyping to real-time genomic surveillance^{10,14}. The genomic
69 methods used were developed recently, and most of their targets lie within the O-antigen gene
70 cluster (*rfb*) or in the *S. flexneri* serotype-converting prophages, to ensure serotype
71 specificity^{14,15}. Several other genes in the accessory genome were recently targeted, resulting
72 in the assignment of *Shigella* serotypes to eight clusters¹⁶. These methods undoubtedly facilitate
73 backward compatibility between the genomic and serotyping data, but do not fully exploit the
74 unprecedented resolution of genomics. An extension of the MLST method to cover a large
75 number of core-genome genes has been developed. This high-resolution method, core-genome
76 MLST (cgMLST), has been successfully used in the surveillance of many pathogens, including
77 *Listeria monocytogenes*¹⁷ and *Salmonella enterica*¹⁸. Furthermore, cgMLST data are easy to
78 interpret with clustering threshold methods, such as the hierarchical clustering (HierCC)¹⁹
79 implemented in Enterobase¹⁸. However, cgMLST has never been used for the comprehensive
80 description of *Shigella* populations, and the utility of this method for the genomic surveillance
81 of *Shigella* infections has not previously been assessed.

82

83 In this study, by analysing over 4,000 genomes from phenotypically characterised *Shigella*
84 strains representative of the global diversity of this pathovar of *E. coli*, we aimed: i) to resolve
85 the population structure of *Shigella* by cgMLST, (ii) to create a dictionary of correspondence
86 between cgMLST HC and serotyping data, and (iii) to update the *Shigella* serotyping scheme

87 by describing new serotypes. We demonstrate that the combination of cgMLST HC with *rfb*
88 gene cluster analysis would enhance the laboratory surveillance of *Shigella* infections, while
89 maintaining backward compatibility with the current serotyping scheme.

90

91 **METHODS**

92

93 **Strains selection and typing**

94 In total, 4,187 *Shigella* reference strains and clinical isolates were studied (Supplementary Data
95 1). The strains and isolates originated from the French National Reference Centre for *E.*
96 *coli*, *Shigella*, and *Salmonella* (FNRC-ESS), Institut Pasteur, Paris, except 11 strains belonging
97 to provisional serotypes and provided by the Public Health Agency of Canada, Winnipeg,
98 Canada, the Centers for Disease Control and Prevention, Atlanta, USA, the Tokyo Metropolitan
99 Research Laboratory of Public Health, Tokyo, Japan, and the International Centre for
100 Diarrhoeal Disease Research, Bangladesh, Dhaka. The collection comprised two datasets. The
101 first dataset – the reference dataset – consisted of 317 *Shigella* reference strains covering all the
102 known serotypes – including provisional serotypes – of the four serogroups (at least one strain
103 per serotype); most of the strains studied were historical strains from various geographic
104 locations and time periods. This first dataset included 44 *S. sonnei* from four different lineages,
105 16 *S. dysenteriae* type 1 and 98 *S. flexneri* serotypes 1 to 5, X and Y, belonging to seven
106 phylogenetic groups (PGs) published in previous studies^{2,5,20,21}. The second dataset – the routine
107 dataset – consisted of 3,870 clinical isolates (of the 3,942 isolates received) sequenced by the
108 FNRC-ESS between 2017 and 2020 in the framework of the French national surveillance
109 programme for *Shigella* infections. All these strains and isolates were thoroughly characterised
110 with a panel of biochemical tests and serotyped by slide agglutination assays according to
111 standard protocols, as previously described²². Additional typing sera against KIVI 162 and SH-

112 105 were provided by the International Centre for Diarrhoeal Disease Research, and the Public
113 Health Agency of Canada, respectively.

114

115 **DNA extraction and sequencing**

116 The total DNA was extracted with the Wizard Genomic DNA Kit (Promega, Madison, WI,
117 USA), the Maxwell 16-cell DNA purification kit (Promega) or the MagNA Pure DNA isolation
118 kit (Roche Molecular Systems, Indianapolis, IN, USA), in accordance with the manufacturer's
119 recommendations. The 4,187 strains and isolates were sequenced using different Illumina
120 platforms. FqCleanER version 3.0 (<https://gitlab.pasteur.fr/GIPhy/fqCleanER>) was used to
121 eliminate adapter sequences²³, correct sequencing errors²⁴, and discard low-quality reads.
122 Assemblies were generated with SPAdes²⁵ version 3.15.

123

124 **Other studied genomes**

125 With the aim of capturing the broadest possible diversity of *Shigella* populations, we searched
126 the *E. coli/Shigella* database in EnteroBase¹⁸, and selected 81 additional *Shigella* genomes
127 (reference+ dataset) not originating from the Institut Pasteur (Supplementary Methods section
128 “Other studied genomes”). We included 27 enteroinvasive *E. coli* (EIEC) and 68 *E. coli* strains
129 from the ECOR collection (Supplementary Methods section “Other studied genomes”), to place
130 our *Shigella* genomes in the phylogenetic context of the broader diversity of *E. coli*. We also
131 used the closed PacBio sequences available for all *Shigella* serotypes and described by Kim and
132 coworkers²⁶, to study the genetic organisation of the *rfb* gene cluster or various operons
133 described in the “Gene analyses” section. However, these closed genomes were not included in
134 the cgMLST analysis, as they were not edited with short reads and the numerous indels in the
135 homopolymers therefore altered the allelic distances (Supplementary Table 1).

136

137 **Characterisation of the O-antigen gene clusters**

138 The *Shigella* O-antigen biosynthetic gene (*rfb*) cluster was analysed after extraction of the
139 region between the housekeeping genes *galF* (encoding UTP-glucose-1-phosphate
140 uridylyltransferase) and *gnd* (encoding 6-phosphogluconate dehydrogenase), which are known
141 to flank the *rfb* cluster²⁷. Newly identified *rfb* clusters were annotated based on a previously
142 annotated closely matched *E. coli* cluster in the NCBI BLASTn nucleotide collection (nr/nt)
143 database (100% coverage and at least 99% identity) or with ORFfinder
144 (<https://www.ncbi.nlm.nih.gov/orffinder/>) when no matching cluster was found in the NCBI
145 BLAST database (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>). The GenBank accession codes of
146 all the *Shigella rfb* clusters are listed in Supplementary Table 2. We also used three tools for *in*
147 *silico* serotyping: SeroPred, the serotype prediction tool implemented in EnteroBase,
148 ShigaTyper¹⁴, and ShigEiFinder¹⁶. Short-read and SPAdes assemblies were used for
149 ShigaTyper and ShigEiFinder, respectively.

150

151 **Phylogenetic analyses**

152 We used the *Escherichia/Shigella* cgMLST scheme (2,513 loci) implemented in EnteroBase to
153 study our genomic datasets. The cgMLST sequence types (cgMLST STs) consist of a
154 combination of up to 2,513 integers, each corresponding to a different allele of a core gene,
155 with some missing data (core gene missing, allele not called). Genetic distances between
156 genomes were calculated from the number of shared cgMLST alleles. These bacterial genomes
157 were also assigned to clusters at multiple levels of resolution, by a hierarchical clustering
158 approach (HierCC)¹⁹ implemented in the “cgMLST V1 + HierCC” tool. The resulting HierCC
159 clusters (HCs), at 13 different, fixed cgMLST allele distances, ranging from HC0 (no allelic
160 difference allowed) to HC2350 (maximum of 2,350 allelic differences) were then assigned
161 stable cluster group numbers. The cgMLST trees were inferred with the NINJA NJ algorithm,

162 based on the “cgMLST V1 + HierCC” scheme. We visualised the cgMLST data with
163 GrapeTree²⁸.

164 We also performed cgSNV analysis, to assess the phylogenetic relationships of 398 *Shigella*
165 (317 from the reference dataset and 81 from the reference+ dataset) and 95 *E. coli* (68 ECOR
166 and 27 EIEC) strains. An *Escherichia fergusonii* genome (RHB19-C05, GenBank accession
167 no. GCF_013892435.1) was used as an outgroup for the cgSNV analysis. The paired-end reads
168 and simulated paired-end reads were mapped onto the reference genome of *E. coli* K12-
169 MG1655 (GenBank accession no. NC_000913.3) with Snippy version 4.6
170 (<https://github.com/tseemann/snippy>) using the default parameters but with a minimum read
171 coverage of 4 and a 75% read concordance at a locus for a variant to be reported. An alignment
172 of 92,688 SNVs was used for phylogenetic inference. A maximum-likelihood (ML)
173 phylogenetic tree was generated with RAxML-NG²⁹ version 1.0.1 using the general time-
174 reversible (GTR) model of nucleotide substitution with a gamma model of the between-site
175 heterogeneity rate (GTR + G) and 100 bootstrap iterations. The best-scoring ML tree of the 20
176 replicates was midpoint-rooted and visualised with interactive tree of life (iTOL)³⁰ version 6
177 (<https://itol.embl.de>).

178 A phylogenetic tree of *rfb* sequences was constructed with the sequences from 43 *Shigella*
179 (Supplementary Table 2) and 196 *E. coli* strains from DebRoy and coworkers²⁷. The *Shigella*
180 *rfb* sequences were trimmed to ensure the same start and end points as for the *E. coli* *rfb*
181 sequences from DebRoy and coworkers²⁷. A sequence alignment was generated with MEGA
182 X³¹ version 10.2.1, using ClustalW with default settings. A ML phylogeny was created with
183 RAxML-NG²⁹ version 1.0.1, using the GTR+G model and 100 bootstrap replicates. The ML
184 tree with the best score of the 20 replicates was midpoint-rooted and visualised with iTOL³⁰
185 version 6 (<https://itol.embl.de>).

186

187 **Gene analyses**

188 The presence of the *ipaH* gene, a multicity gene unique to *Shigella* and EIEC³², the presence
189 and structure of the mannitol (*mtl*)³³, raffinose³⁴, and tryptophanase (*tna*) operons³⁵, and the
190 type of the O-antigen gene cluster (*rfb*) were determined on SPAdes assemblies using the NCBI
191 BLASTn tool (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>). The target sequences are described in
192 Supplementary Table 3.

193

194 **RESULTS**

195

196 **Global population structure of *Shigella***

197 We assembled and sequenced a collection of 317 *Shigella* strains chosen on the basis of their
198 representativeness of the known diversity of *Shigella* populations (i.e., covering all serogroups
199 and serotypes, and the different lineages or phylogroups of *S. sonnei* and *S. flexneri*). The
200 genomic diversity of this reference dataset was increased further, by adding another 81 publicly
201 available *Shigella* genomes. The 398 genomes studied were from strains belonging to the *S.*
202 *flexneri* ($n = 191$), *S. dysenteriae* ($n = 83$), *S. boydii* ($n = 80$), and *S. sonnei* ($n = 44$) serogroups
203 (Supplementary Table 4). We determined the wider phylogenetic context of these *Shigella*
204 genomes, by also analysing 95 *E. coli* genomes, including 27 EIEC from eight different EIEC
205 genomic clusters and 68 (of the 72) strains from the ECOR collection, considered representative
206 of the diversity of natural populations of *E. coli*³⁶. These 493 genomes were studied by two
207 different approaches: the Enterobase *Escherichia/Shigella* cgMLST scheme and SNV-based
208 clustering.

209

210 According to cgMLST, all these genomes belonged to the same hierarchical cluster, HC2350_1
211 (Supplementary Data 1). As expected, all the *Shigella* and EIEC genomes contained the

212 pathogenicity gene *ipaH*, whereas the ECOR genomes did not (Supplementary Fig. 1). A
213 NINJA neighbour-joining (NJ) tree of core genomic allelic distances was generated with the
214 dataset for the 493 *Shigella* and *E. coli* genomes (Fig. 1A). The differential contribution of the
215 reference and reference+ datasets to *Shigella* population diversity is shown in Supplementary
216 Fig. 2. Visual examination of the colour-coded HC2000 tree revealed that the *Shigella* genomes
217 were grouped into eight different HC2000 clusters (Fig. 1B). Seven of these HC2000 clusters
218 contained exclusively *Shigella* genomes. The eighth, HC2000_2, contained *S. dysenteriae* type
219 8 and *E. coli* (EIEC and ECOR) genomes. Four HC2000 clusters contained *Shigella* genomes
220 from a single serotype: HC2000_305 (*S. sonnei*), HC2000_1463 (*S. dysenteriae* type 1),
221 HC2000_44944 (*S. dysenteriae* 10), and HC2000_45542 (*S. boydii* 12). These clusters are
222 referred to below as SON, SD1, SD10, and SB12, respectively. Three clusters, HC2000_1465,
223 HC2000_4118, and HC2000_192, consisted of multiple serogroups and serotypes (Figs. 1-4).
224 The first of these clusters, HC2000_1465, contained various serotypes of *S. dysenteriae* (3, 4-
225 7, 9, 11-15, provisional (prov.) 93-119, prov. SH-103, prov. 97-10607, prov. SH-105, prov. 96-
226 3162 and prov. 204/96), *S. boydii* (1-4, 6, 8, 10, 11, 14, 18-20, and prov. 07-6597), and *S.*
227 *flexneri* type 6 (Fig. 2), consistent with Cluster 1 described by Pupo and coworkers⁸ in their
228 MLST analysis of 46 diverse *Shigella* strains. The HC2000_1465 cluster, named S1, can be
229 divided into five HC1100 clusters (Fig. 2). Only the HC1100_36524 cluster (subcluster S1d)
230 contained strains from a single serotype, *S. dysenteriae* 7. The HC1100_45518 cluster (S1e)
231 contained only *S. flexneri* 6 strains, but most strains from this serotype were in another HC1100,
232 HC1100_1465 (S1b), along with *S. dysenteriae* 3 (Supplementary Results section “Aerogenic
233 strains of *S. boydii* 14 and *S. dysenteriae* 3”) and various serotypes of *S. boydii*. The
234 HC1100_1466 cluster (S1c) contained *S. dysenteriae* 5 and various serotypes of *S. boydii*.
235 Finally, the HC1100_4194 cluster (S1a) included only *S. dysenteriae* strains, but from diverse
236 serotypes. *S. dysenteriae* 3 was found in two different S1 subclusters, S1a and S1b. At a higher

237 level of resolution, four *Shigella* serotypes were grouped within specific HC400 clusters,
238 whereas the other serotypes were split between two to six HC400 clusters (Supplementary
239 Table 5).

240

241 The second cluster, HC2000_4118, comprised various serotypes of *S. dysenteriae* (2, prov.
242 E670/74, prov. 96-265, and prov. BEDP 02-5104) and *S. boydii* (5, 7, 9, 11, 15-17) (Fig. 3).
243 This cluster, consisting exclusively of indole-positive strains (Supplementary Results sections
244 “Genomic analysis of the phenotypic markers used in the current *Shigella* typing scheme”),
245 corresponds to the Cluster 2 described by Pupo and coworkers⁸. The HC2000_4118 cluster,
246 hereafter referred to as S2, could be divided into six distinct HC1100 clusters (Fig. 3). Five of
247 these HC1100 clusters contained exclusively *S. boydii*; the sixth, HC1100_4191 (subcluster
248 S2d), contained *S. boydii* 15 and all the *S. dysenteriae* serotypes found in S2. Three HC1100
249 clusters contained a single serotype: HC1100_11401 (S2f) for *S. boydii* 7, HC1100_7057 (S2e)
250 for *S. boydii* 9, and HC1100_11421 (S2c) for *S. boydii* 11. This last serotype was also found in
251 the S1 cluster (S1b subcluster). At higher resolution, it was possible to assign some serotypes
252 to a particular HC400 cluster. This was the case for *S. boydii* 16 (HC400_11449) and *S. boydii*
253 17 (HC400_11452). However, at this level of resolution, other serotypes were split between
254 two to four clusters (Supplementary Table 5).

255

256 The third cluster, HC2000_192, comprised *S. boydii* prov. E1621-54 (now proposed as *S. boydii*
257 22; see next section) and all serotypes and subserotypes of *S. flexneri*, with the exception of *S.*
258 *flexneri* 6, which grouped in S1 (Fig. 4). This cluster seems to correspond to the Cluster 3
259 reported by Pupo and coworkers⁸, except that *S. boydii* 12 rather than *S. boydii* prov. E1621-54
260 was reported in Cluster 3 in this previous study (Supplementary Results section “Genomic
261 clustering of *Shigella* reference strains”). This HC2000_192 cluster, hereafter referred to as S3,

262 could be divided into seven distinct HC1100 clusters (Fig. 4A). One of these S3 subclusters,
263 HC1100_11429, contained exclusively *S. boydii* prov. E1621-54. The other six HC1100
264 clusters contained two or more *S. flexneri* serotypes per cluster. Connor and coworkers²
265 previously subdivided >350 genomes of *S. flexneri* 1-5, X, Y into seven phylogenetic groups
266 (PGs), based on a Bayesian analysis of population structure. As 140 *S. flexneri* genomes from
267 our study were included in the analysis by Connor and coworkers², we compared the clustering
268 by cgMLST HC1100 to that obtained by PG. HC1100_204, HC1100_543, HC1100_1468,
269 HC1100_11594, HC1100_1530 corresponded to PG2, PG4, PG5, PG6 and PG7, respectively
270 (Fig. 4). HC1100_192 encompassed PG1 and PG3, and the use of a higher HC resolution made
271 it possible to link HC400_192 to PG3. However, PG1 did not correspond to a single HC400
272 cluster. Instead, it corresponded to two such clusters: HC400_237 and HC400_327.

273

274 We evaluated the accuracy of cgMLST HC for grouping *Shigella* genomes into different
275 phylogenetic clusters by employing another approach: using the same dataset of 493 *E. coli* and
276 *Shigella* genomes, we constructed a ML tree based on 92,688 SNV differences, and compared
277 this SNV-based clustering (with strong bootstrap support) to the cgMLST HC data. There were
278 no observable differences between the two approaches (Fig. 5).

279

280 To confirm the robustness of the population structure of *Shigella* established by cgMLST
281 analysis of our reference datasets, we also applied cgMLST to 3,870 clinical *Shigella* isolates
282 received by the FNRC-ESS between 2017 and 2020, in the framework of the French national
283 surveillance programme for *Shigella* infections. All these isolates were characterised
284 phenotypically, on the basis of biochemical reactions and serotyping. They belonged to *S.*
285 *dysenteriae* ($n = 53$), *S. boydii* ($n = 101$), *S. flexneri* ($n = 1,555$), and *S. sonnei* ($n = 2,161$). All
286 but one of these 3,870 genomes were assigned to known serotype/HC2000/HC1100/HC400

287 combinations, without inconsistencies (Supplementary Data 1, Supplementary Fig. 2). The
288 exception was an HC1100_204 (PG2) *S. flexneri* isolate, grouped into a new HC400 cluster,
289 HC400_11853.

290

291 **Updating the *Shigella* typing scheme**

292 In recent decades, several provisional new serotypes of *S. dysenteriae* and *S. boydii* have been
293 described by different groups across the world^{37,38}. However, the phylogenetic relationships
294 between these provisional serotypes and between these serotypes and other *Shigella* populations
295 have not been investigated. We characterised these relationships in detail (Supplementary
296 Results section “Updating the *Shigella* typing scheme”). We found that all these provisional
297 serotypes belonged to the three main *Shigella* clusters, S1 to S3 (Figs. 2-4), and that many of
298 those reported under different names were actually identical. We propose adding *S. dysenteriae*
299 16-18, and *S. boydii* 21 and 22 to the current serotyping scheme, retaining provisional status for
300 *S. dysenteriae* prov. BEDP 02-5104. All the reference strains for these new serotypes are now
301 available from the *Collection de l’ Institut Pasteur* (CIP) or the National Collection of Type
302 Cultures (NCTC) (Supplementary Results section “Updating the *Shigella* typing scheme”).

303

304 **Performance of available *in silico* serotype prediction tools**

305 *In silico* serotyping tools have been developed by various groups, and can be used to maintain
306 links with the current *Shigella* serotyping system. We assessed the performances of the three
307 tools currently available: the Enterobase “SeroPred” tool¹⁸, ShigaTyper¹⁴, and ShigEiFinder¹⁶
308 with our 317 genomes from well-characterised reference strains. ShigEiFinder (Supplementary
309 Table 6) gave the best serotype prediction results. However, 100% of the strains belonging to
310 *S. boydii* 10 and to the new serotype *S. dysenteriae* 17, and 14-20% of the strains from *S. boydii*
311 11, *S. boydii* 14, and *S. dysenteriae* 2 were not identified. All the strains from *S. dysenteriae*

312 prov. BEDP 02-5104 were incorrectly predicted to be *S. dysenteriae* 2, whereas 83% of the
313 strains from the new serotype *S. dysenteriae* 16 were incorrectly predicted to be *S. dysenteriae*
314 prov. 96-265 and 13% were not assigned.

315

316

317

318 **DISCUSSION**

319 We present here a broad overview of the population of *Shigella*. The hierarchical clustering of
320 cgMLST data and a cgSNV analysis showed that *Shigella* strains belong to eight
321 phylogenetically distinct clusters, within the species *E. coli*. Our results are consistent with
322 previous studies suggesting multiple origins of the *Shigella* phenotype^{8,39}. However, the higher
323 resolution of cgMLST, and comprehensive sampling from thousands of phenotypically
324 characterised isolates and reference strains covering all serotypes, including provisional
325 serotypes and atypical strains, made it possible to complete, and in some cases amend, the
326 *Shigella* population structure obtained in previous studies.

327

328 The 70-year-old *Shigella* typing scheme, which is still in use today, was based on biochemical
329 characteristics, antigenic relationships, and tradition⁷. We show here that, unlike cgMLST, this
330 scheme does not always reveal natural groupings. In particular, the *Shigella* serogroups/species
331 are artificial constructs developed from data for antigen and metabolic markers affected by
332 Insertion Sequence (IS) element mobilisation and horizontal gene transfer. The presence of
333 large numbers of ISs and their expansions in *Shigella* genomes may alter the nature of both the
334 O-antigen and the rare phenotypic markers identified in this bacterium with weak metabolic
335 activity, by disrupting coding sequences or causing genome rearrangements and deletions⁹. For
336 example, *S. boydii* 6 and 20 arose in subcluster 1c following the acquisition of a single IS within
337 the *rfb* cluster of *S. boydii* 10 and 1, respectively. Serotype diversification, which is observed
338 mostly in clusters S1 to S3, also occurs via horizontal gene transfer of the O antigen-encoding
339 *rfb* cluster from *Escherichia* donors^{8,27}. Horizontal gene transfer outside of the *rfb* cluster can
340 also alter the serotype of a strain, as illustrated particularly clearly by the S3 cluster. All the *S.*
341 *flexneri* strains in this cluster share the same O-antigen backbone structure and their serotypes
342 are determined by glucosylation and/or O-acetylation modifications to the O-antigen

343 tetrasaccharide repeat, conferred by prophage-encoded *gtr* and/or *oac* genes, respectively¹⁵.
344 Plasmid-mediated serotype conversion by the O-antigen phosphoethanolamine transferase gene
345 (*opt*) has also been reported in *S. flexneri*¹⁵. Each of the seven *S. flexneri* phylogenetic groups
346 (PGs) described by Connor and coworkers², based on a cgSNV analysis, contained two or more
347 of these serotypes. As this serotyping method does not reflect the genetic relatedness between
348 *Shigella* isolates, and has a number of other disadvantages, including being time-consuming,
349 with intra- and interspecies cross-reactivity, and the impossibility of typing rough strains and
350 new serotypes^{14,37}, modern laboratory surveillance of *Shigella* infections should now be based
351 on phylogenetically relevant methods rather than simply on molecular or *in silico*
352 serotyping^{10,14–16}. In our hands, the cgMLST HC analysis proved to be the method of choice for
353 monitoring the trends in *Shigella* types. The different types of *Shigella* can be identified with
354 HC2000. Higher resolution, with HC1100 and, in certain cases, HC400, can reveal additional
355 subclusters. This is particularly interesting for S3, which contains the *S. flexneri* 1-5, X, and Y
356 serotypes generated via horizontal gene transfer rather than by vertical descent. We therefore
357 recommend integrating the seven phylogenetic groups (PG1-PG7) described for *S. flexneri* into
358 routine genomic surveillance for *S. flexneri*. These PGs can be easily inferred from cgMLST
359 HC1000/HC400; it is even possible to obtain up to eight groups (after subdividing PG1 into
360 PG1a and PG1b). The cgMLST HC analysis also provides, in a single step, a wide range of
361 clustering levels, from HC0 (no allelic difference allowed) to HC2350 (maximum of 2,350
362 allelic differences), with a standard nomenclature. For the most frequent *Shigella* serotypes,
363 such as *S. sonnei* and *S. flexneri* 2a, higher resolution levels, such as HC5 and HC10, can also
364 help to identify a single-source outbreak or an epidemic strain, before confirmation by cgSNV
365 analysis. The use of cgMLST HC data also makes it possible to query Enterobase, which
366 contains over 160,000 *E. coli*/*Shigella* genomes, to identify strains with similar HC types. This
367 can facilitate the investigation of unusual types of *Shigella* or outbreaks with an international

368 dimension. HC10 was recently used to investigate the origins of an outbreak of *S. sonnei*
369 infections in Belgium, and made it possible to link this outbreak to South America⁴⁰.

370

371 However, the use of cgMLST HC data in surveillance should be paired with *in silico* serotyping,
372 to achieve backward compatibility with the current serotyping scheme. This is a very important
373 point for the maintenance of international surveillance with laboratories that cannot currently
374 afford genomic surveillance and to prevent disjunction with the seven decades of serotyping
375 data accumulated worldwide. For this purpose, we found that ShigEiFinder¹⁶ had the best
376 performance of the three available tools. However, it requires optimisation for certain serotypes.
377 The complete set of *rfb* sequences provided by our study would be helpful for improving this
378 tool.

379

380 In conclusion, by studying >4,000 serotyped reference strains and routine isolates covering the
381 overall diversity of *Shigella*, we were able to demonstrate that cgMLST is a robust and portable
382 genomic method revealing natural groupings for this pathovar of *E. coli*. The cgMLST method
383 has strong added value in the framework of the laboratory monitoring of *Shigella*, as it prevents
384 genetically unrelated strains being conflated, and genetically related strains being separated.
385 However, we strongly recommend combining cgMLST with *in silico* serotyping to maintain
386 backward compatibility with the current *Shigella* serotyping scheme.

387

388 **SUPPLEMENTARY INFORMATION**

389 Supplementary Information is linked to the online version of the paper at
390 www.nature.com/nature.

391

392

393 **ACKNOWLEDGMENTS**

394 We thank all corresponding laboratories for sending isolates to the French National Reference
395 Centre for *E. coli*, *Shigella*, and *Salmonella*. We also thank N. Strockbine, K. Talukder, L.
396 Peterson, and S. Matsushita for sending some *Shigella* provisional serotypes, and the
397 sequencing teams at the Institut Pasteur (P2M-Plateforme de Microbiologie Mutualisée) and
398 the Wellcome Sanger Institute for sequencing the samples.

399

400 **FUNDING**

401 *Institut Pasteur*; *Santé publique France*; Fellowship from Association AZM and Saadeh, and
402 the Lebanese Association for Scientific Research (LASeR) for IY. NRT is funded by the
403 Wellcome Trust (grant 206194). The funders had no role in study design, data collection and
404 analysis, decision to publish, or preparation of the manuscript. For the purpose of Open Access,
405 the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript
406 version arising from this submission.

407

408 **AUTHOR CONTRIBUTIONS**

409 FXW conceived and designed the study. IY, EH, LF and FXW did the genomic analyses.
410 IY and FXW contributed to data interpretation and visualisation. CR, IC and MLC conducted
411 the laboratory experiments. SL, CR, IC, MLC, MPG, DC, and FXW contributed to isolate
412 acquisition and data collection. FXW, FD, RR and NRT were responsible for funding
413 acquisition. FXW and IY drafted the article. LF, EH, RR, DC, MPG, SL, FD, and NRT critically
414 reviewed the draft. All authors read and approved the final manuscript. IY and FXW accessed
415 and verified the underlying data.

416

417

418

419 **DATA AVAILABILITY STATEMENT**

420 Short-read sequence data were submitted to EnteroBase¹⁸ (<https://enterobase.warwick.ac.uk/>),
421 and to the European Nucleotide Archive (<https://www.ebi.ac.uk/ena/>) under study numbers
422 PRJEB44801, PRJEB2846, and PRJEB2128. The GrapeTree of the reference and reference+
423 datasets is publicly available from EnteroBase
424 (http://enterobase.warwick.ac.uk/ms_tree?tree_id=55118). All the GenBank and ENA
425 accession numbers of the genomes used in this study are listed in Supplementary Data 1.

426

427 **AUTHOR INFORMATION**

428 Reprints and permissions information is available at www.nature.com/reprints

429

430 The authors have no competing financial interests to declare.

431

432 Correspondence and requests for materials should be addressed to F.-X.W. (francois-xavier.weill@pasteur.fr).
433

434

435

436 **REFERENCES**

437 1. Khalil, I. A. *et al.* Morbidity and mortality due to *Shigella* and enterotoxigenic
438 *Escherichia coli* diarrhoea: the Global Burden of Disease Study 1990–2016. *Lancet*
439 *Infect. Dis* **18**, 1229–1240 (2018).

440 2. Connor, T. R. *et al.* Species-wide whole genome sequencing reveals historical global
441 spread and recent local persistence in *Shigella flexneri*. *Elife* **4**, e07335 (2015).

442 3. Hawkey, J. *et al.* Global population structure and genotyping framework for genomic
443 surveillance of the major dysentery pathogen, *Shigella sonnei*. *Nat. Commun.* **12**, 2684
444 (2021).

445 4. Baker, K. S. *et al.* Travel- and community-based transmission of multidrug-resistant
446 *Shigella sonnei* lineage among international Orthodox Jewish communities. *Emerg.*
447 *Infect. Dis.* **22**, 1545–1553 (2016).

448 5. Baker, K. S. *et al.* Intercontinental dissemination of azithromycin-resistant shigellosis
449 through sexual transmission: a cross-sectional study. *Lancet Infect. Dis.* **15**, 913–921
450 (2015).

451 6. Baker, K. S. *et al.* Horizontal antimicrobial resistance transfer drives epidemics of
452 multiple *Shigella* species. *Nat. Commun.* **9**, 1462 (2018).

453 7. Ewing, W. H. *Shigella* nomenclature. *J. Bacteriol.* **57**, 633–638 (1949).

454 8. Pupo, G. M., Lan, R. & Reeves, P. R. Multiple independent origins of *Shigella* clones of
455 *Escherichia coli* and convergent evolution of many of their characteristics. *Proc. Natl.*
456 *Acad. Sci. U. S. A.* **97**, 10567–10572 (2000).

457 9. Hawkey, J., Monk, J. M., Billman-Jacobe, H., Palsson, B. & Holt, K. E. Impact of
458 insertion sequences on convergent evolution of *Shigella* species. *PLoS Genet.* **16**,
459 e1008931 (2020).

460 10. Chattaway, M. A., Schaefer, U., Tewolde, R., Dallman, T. J. & Jenkins, C. Identification
461 of *Escherichia coli* and *Shigella* species from whole-genome sequences. *J. Clin.*
462 *Microbiol.* **55**, 616–623 (2017).

463 11. Pettengill, E. A., Pettengill, J. B. & Binet, R. Phylogenetic analyses of *Shigella* and
464 Enteroinvasive *Escherichia coli* for the identification of molecular epidemiological
465 markers: Whole-genome comparative analysis does not support distinct genera
466 designation. *Front. Microbiol.* **6**, 1573 (2015).

467 12. Hyma, K. E. *et al.* Evolutionary genetics of a new pathogenic *Escherichia* species:
468 *Escherichia albertii* and related *Shigella boydii* strains. *J. Bacteriol.* **187**, 619–628 (2005).

469 13. Strockbine, N. A. & Maurelli, A. T. *Shigella*. in *Bergey's Manual of Systematics of*
470 *Archaea and Bacteria*. Editors M. E. Trujillo, P. Dedysh, B. DeVos, B. Hedlund, P.
471 Kampfer, F. A. Rainey, *et al.* (Hoboken, NJ: John Wiley & Sons, Inc.).

472 14. Wu, Y., Lau, H. K., Lee, T., Lau, D. K. & Payne, J. *In Silico* serotyping based on whole-
473 genome sequencing improves the accuracy of *Shigella* identification. *Appl. Environ.*
474 *Microbiol.* **85**, e00165-19 (2019).

475 15. Brengi, S. P. *et al.* PCR-based method for *Shigella flexneri* serotyping: International
476 multicenter validation. *J. Clin. Microbiol.* **57**, e01592-18 (2019).

477 16. Zhang, X., Payne, M., Nguyen, T., Kaur, S. & Lan, R. Cluster-specific gene markers
478 enhance *Shigella* and Enteroinvasive *Escherichia coli* *in silico* serotyping. *bioRxiv*
479 2021.01.30.428723 (2021) doi:10.1101/2021.01.30.428723.

480 17. Moura, A. *et al.* Whole genome-based population biology and epidemiological
481 surveillance of *Listeria monocytogenes*. *Nat. Microbiol.* **2**, 1–10 (2016).

482 18. Zhou, Z. *et al.* The Enterobase user's guide, with case studies on *Salmonella*
483 transmissions, *Yersinia pestis* phylogeny, and *Escherichia* core genomic diversity.
484 *Genome Res.* **30**, 138–152 (2020).

485 19. Zhou, Z., Charlesworth, J. & Achtman, M. HierCC: A multi-level clustering scheme for
486 population assignments based on core genome MLST. *Bioinformatics*
487 doi:10.1093/bioinformatics/btab234 (2021).

488 20. Holt, K. E. *et al.* *Shigella sonnei* genome sequencing and phylogenetic analysis indicate
489 recent global dissemination from Europe. *Nat. Genet.* **44**, 1056–1059 (2012).

490 21. Njamkepo, E. *et al.* Global phylogeography and evolutionary history of *Shigella*
491 *dysenteriae* type 1. *Nat. Microbiol.* **1**, 16027 (2016).

492 22. Langendorf, C. *et al.* Enteric bacterial pathogens in children with diarrhea in Niger:
493 diversity and antimicrobial resistance. *PLoS One* **10**, e0120275 (2015).

494 23. Criscuolo, A. & Brisse, S. AlienTrimmer: a tool to quickly and accurately trim off
495 multiple short contaminant sequences from high-throughput sequencing reads. *Genomics*
496 **102**, 500–506 (2013).

497 24. Liu, Y., Schröder, J. & Schmidt, B. Musket: a multistage k-mer spectrum-based error
498 corrector for Illumina sequence data. *Bioinformatics* **29**, 308–315 (2013).

499 25. Bankevich, A. *et al.* SPAdes: a new genome assembly algorithm and its applications to
500 single-cell sequencing. *J. Comput. Biol.* **19**, 455–477 (2012).

501 26. Kim, J. *et al.* High-quality whole-genome sequences for 59 historical *Shigella* strains
502 generated with Pacbio sequencing. *Genome Announc.* **6**, e00282-18 (2018).

503 27. DebRoy, C. *et al.* Comparison of O-antigen gene clusters of all O-serogroups of
504 *Escherichia coli* and proposal for adopting a new nomenclature for O-typing. *PLoS One*
505 **11**, e0147434 (2016).

506 28. Zhou, Z. *et al.* GrapeTree: visualization of core genomic relationships among 100,000
507 bacterial pathogens. *Genome Res.* **28**, 1395–1404 (2018).

508 29. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast,
509 scalable and user-friendly tool for maximum likelihood phylogenetic inference.
510 *Bioinformatics* **35**, 4453–4455 (2019).

511 30. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic
512 tree display and annotation. *Nucleic Acids Res.* doi:10.1093/nar/gkab301 (2021).

513 31. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular
514 evolutionary genetics analysis across computing platforms. *Mol. Biol. Evol.* **35**, 1547–
515 1549 (2018).

516 32. Venkatesan, M. M., Buysse, J. M. & Kopecko, D. J. Use of *Shigella flexneri ipaC* and
517 *ipaH* gene sequences for the general identification of *Shigella* spp. and enteroinvasive
518 *Escherichia coli*. *J. Clin. Microbiol.* **27**, 2687–2691 (1989).

519 33. Figge, R. M., Ramseier, T. M. & Saier, M. H. The mannitol repressor (MtlR) of
520 *Escherichia coli*. *J. Bacteriol.* **176**, 840–847 (1994).

521 34. Aslanidis, C. & Schmitt, R. Regulatory elements of the raffinose operon: nucleotide
522 sequences of operator and repressor genes. *J. Bacteriol.* **172**, 2178–2180 (1990).

523 35. Rezwan, F., Lan, R. & Reeves, P. R. Molecular basis of the indole-negative reaction in
524 *Shigella* strains: extensive damages to the *tna* operon by insertion sequences. *J. Bacteriol.*
525 **186**, 7460–7465 (2004).

526 36. Ochman, H. & Selander, R. K. Standard reference strains of *Escherichia coli* from natural
527 populations. *J. Bacteriol.* **157**, 690–693 (1984).

528 37. Coimbra, R. S. *et al.* Molecular and phenotypic characterization of potentially New
529 *Shigella dysenteriae* serotype. *J. Clin. Microbiol.* **39**, 618–621 (2001).

530 38. Melito, P. L. *et al.* A novel *Shigella dysenteriae* serovar isolated in Canada. *J. Clin.*
531 *Microbiol.* **43**, 740–744 (2005).

532 39. Yang, J. *et al.* Revisiting the molecular evolutionary history of *Shigella* spp. *J. Mol. Evol.*
533 **64**, 71–79 (2007).

534 40. Van den Bossche, A. *et al.* Outbreak of Central American born *Shigella sonnei* in two
535 youth camps in Belgium in the summer of 2019. *Eur. J. Clin. Microbiol. Infect. Dis.* **40**,
536 1573–1577 (2021).

537

538

539 **Figure 1.** A NINJA neighbour-joining GrapeTree showing the population structure of *Shigella*
540 spp. based on the cgMLST allelic differences between 493 *Shigella* and *E. coli* reference
541 genomes. (A) The tree nodes are colour-coded by *Shigella* serogroup and *E. coli* pathovar. (B)
542 The tree nodes are colour-coded by HC2000 data. HC2000 clusters with fewer than two isolates
543 are represented by white nodes. The different *Shigella* cgMLST clusters are labelled. For the
544 SON cluster, the different genomic lineages of *S. sonnei* are indicated with Latin numerals. For
545 the *S. flexneri* serotypes in cluster S3, the phylogenetic groups (PG1 to PG7) identified by
546 Connor and coworkers² are also indicated. The interactive version of the tree is publicly
547 available from http://enterobase.warwick.ac.uk/ms_tree?tree_id=55118

548

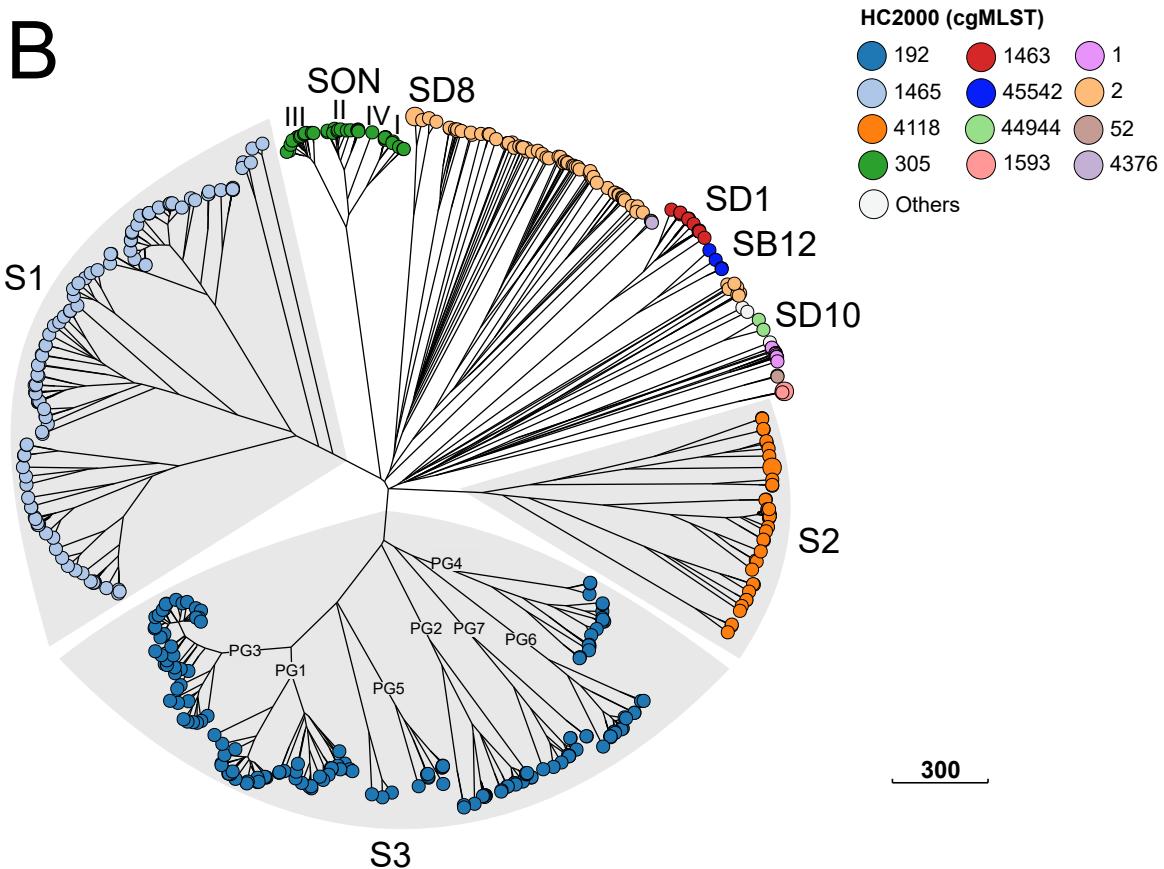
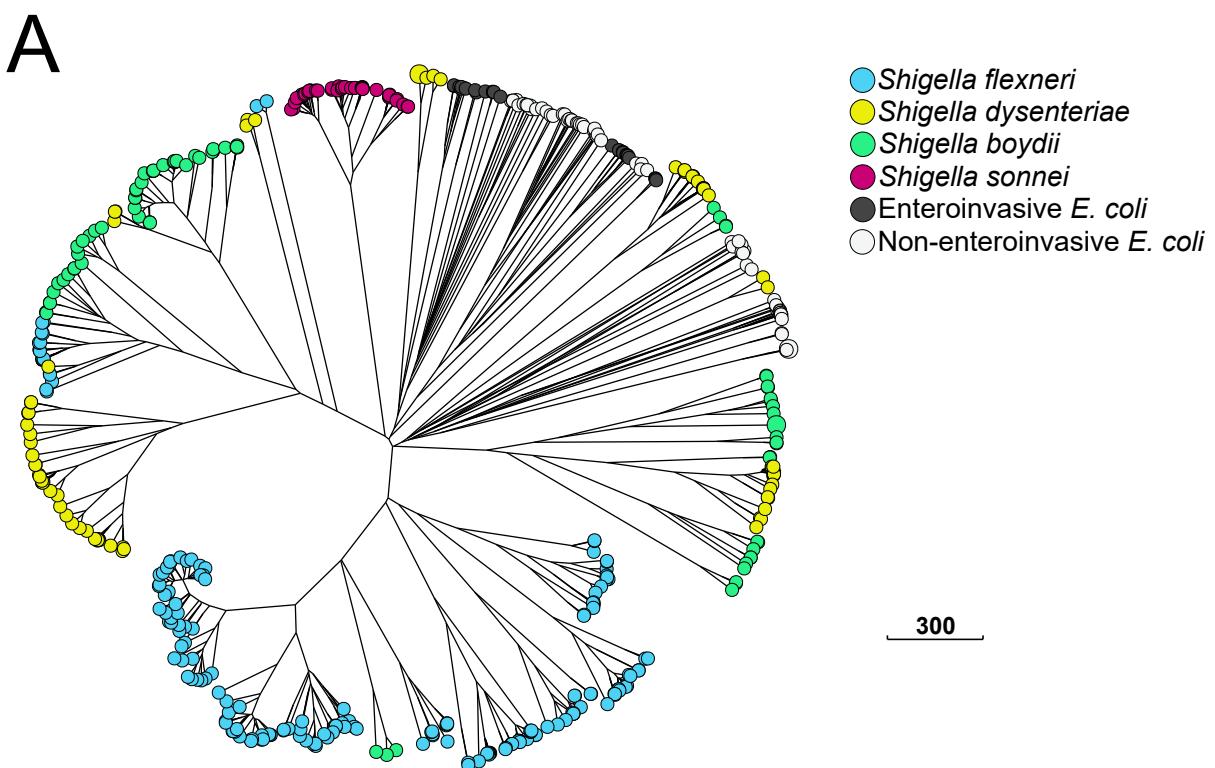
549 **Figure 2.** A NINJA neighbour-joining GrapeTree showing the population structure of the
550 *Shigella* S1 cluster (HC2000_1465). This subtree is based on the tree shown in Figure 1. The
551 tree nodes are colour-coded by serogroup. The numbers within nodes indicate the serotype.
552 HC1100 designation is indicated next to each subcluster. Novel and provisional (prov.) *Shigella*
553 serotypes are also shown. NST, = non-serotypable.

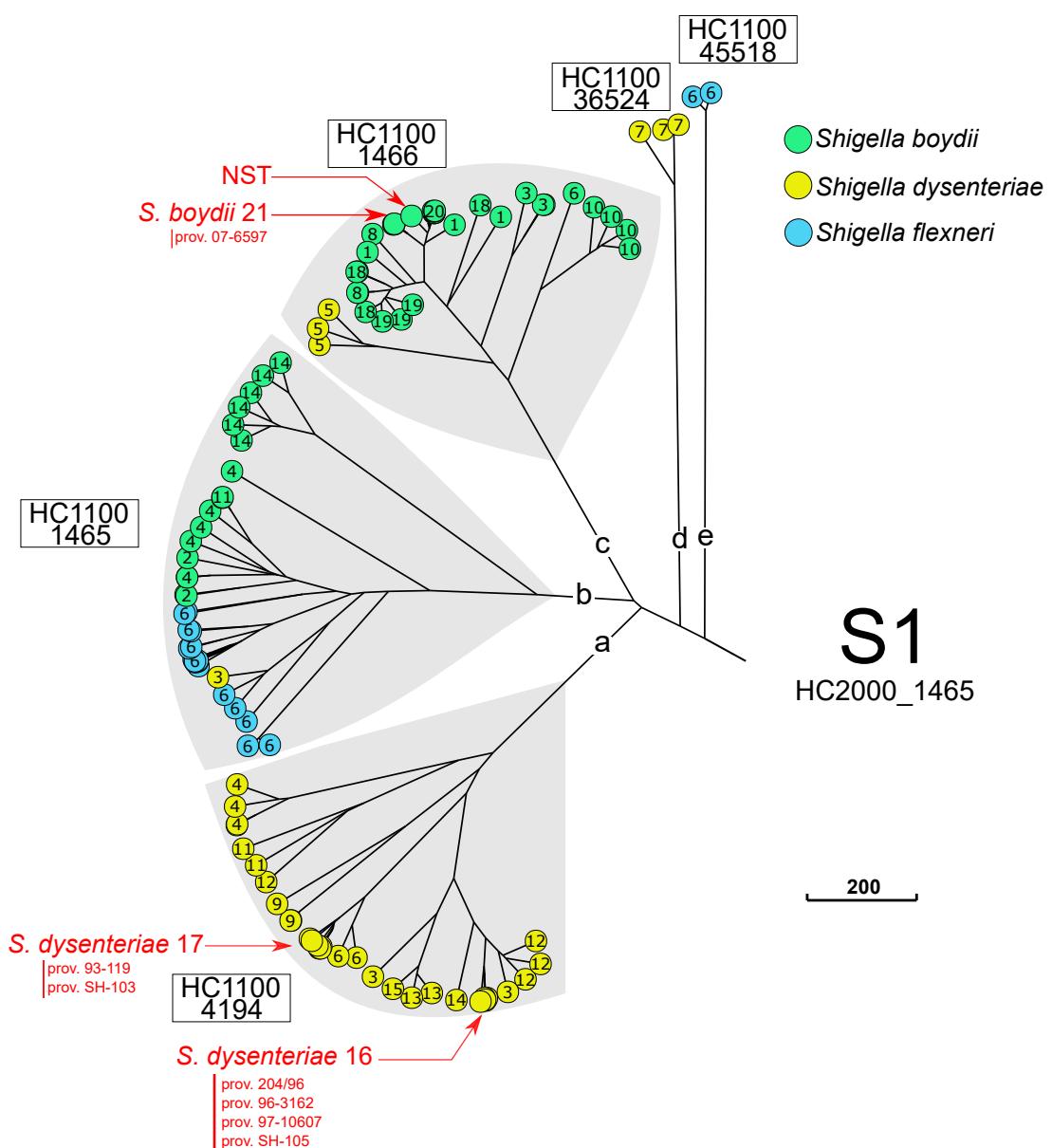
554

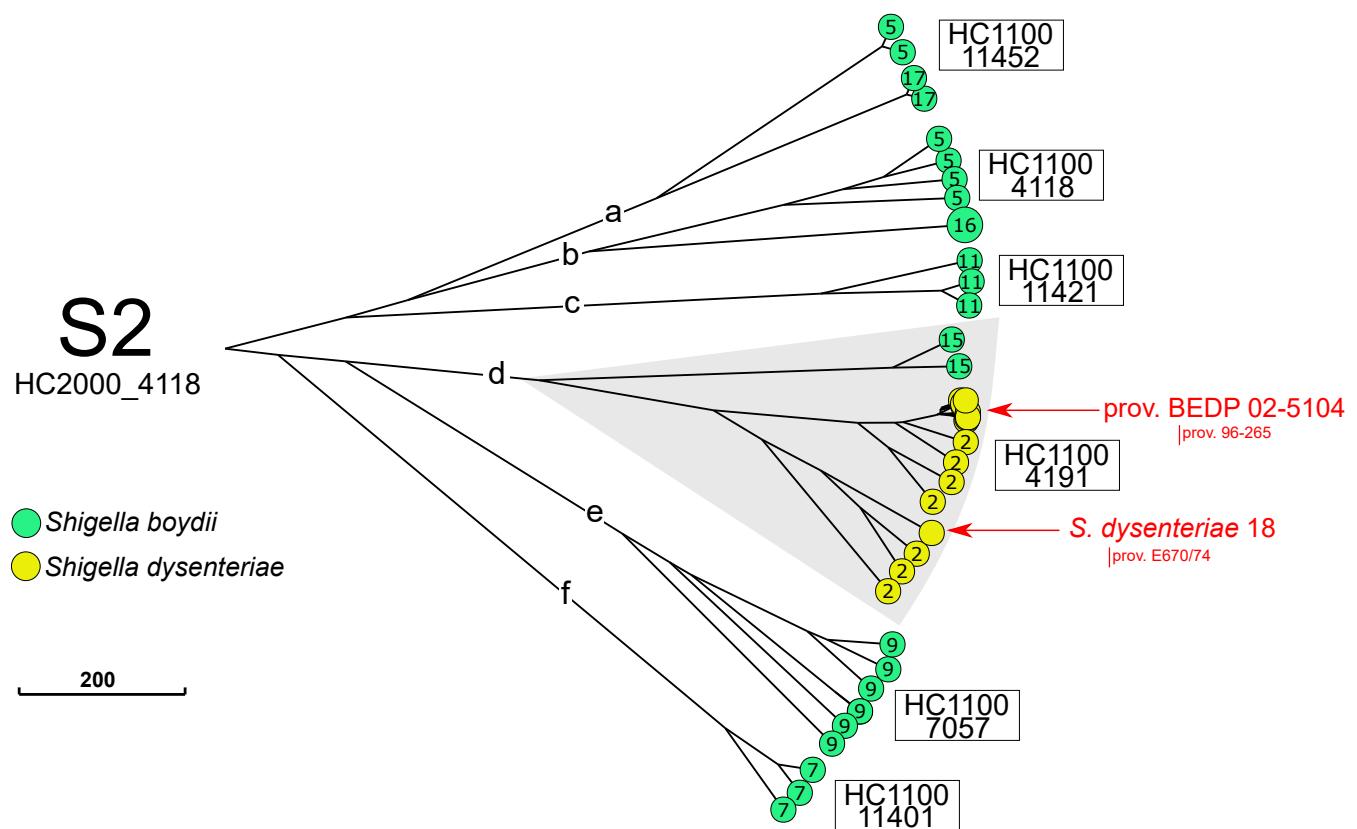
555 **Figure 3.** A NINJA neighbour-joining GrapeTree showing the population structure of the
556 *Shigella* S2 cluster (HC2000_4118). This subtree is based on the tree shown in Figure 1. The
557 tree nodes are colour-coded by serogroup. The numbers within nodes indicate the serotype.
558 HC1100 designation is indicated next to each subcluster. Novel and provisional (prov.) *Shigella*
559 serotypes are also shown.

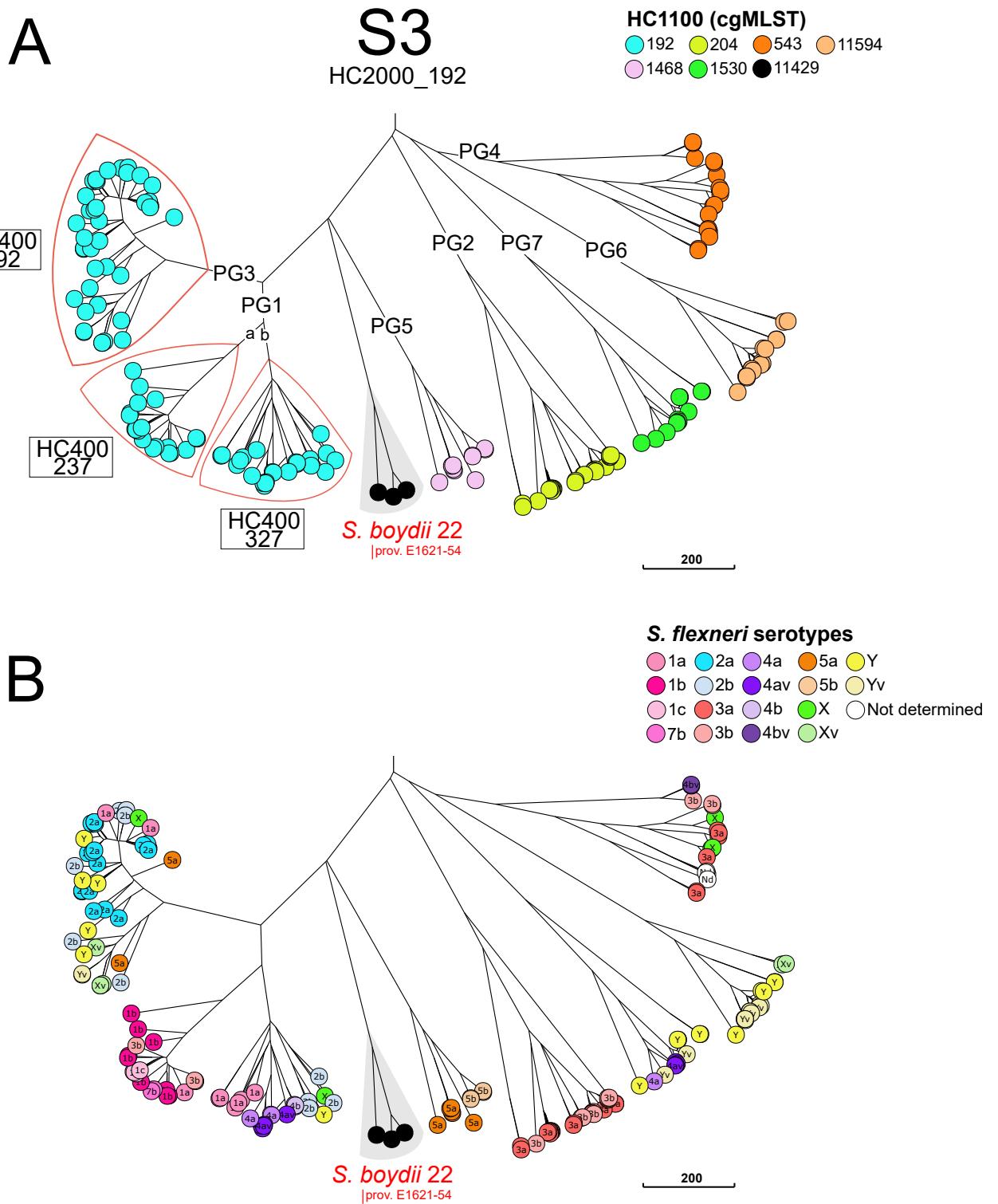
560

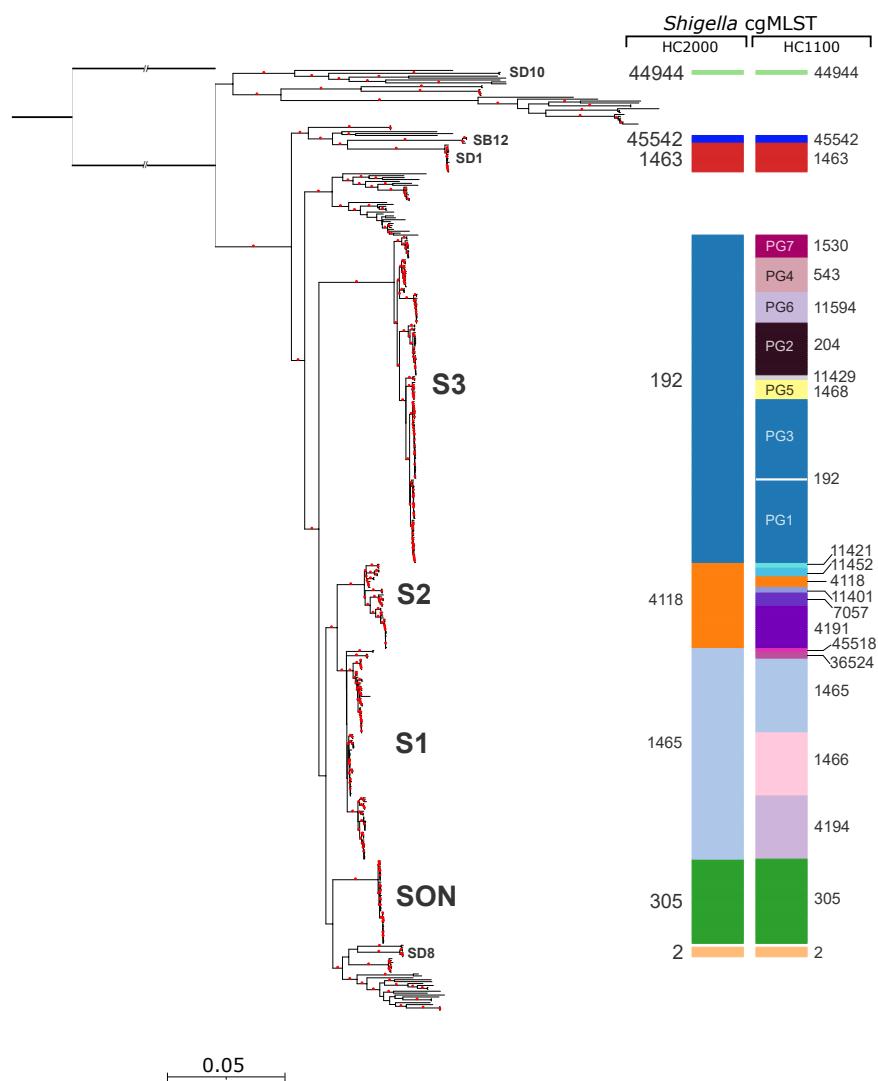
561 **Figure 4.** A NINJA neighbour-joining GrapeTree showing the population structure of the
562 *Shigella* S3 cluster (HC2000_192). This subtree is based on the tree shown in Figure 1 (A). The



563 tree nodes are colour-coded by HC1100 data. The *S. flexneri* phylogenetic groups (PG)
564 identified by Connor and coworkers² are indicated. Some HC400 clusters are indicated to
565 separate PG3 from PG1. *S. boydii* 22 (formerly prov. E1621-54) is shown. (B) The tree nodes
566 are colour-coded by *S. flexneri* serotype.


567


568 **Figure 5.** A maximum-likelihood phylogenetic tree showing the population structure of 493
569 *Shigella* and *E. coli* reference genomes based on 92,688 core-genome single-nucleotide variants
570 (SNVs). Nodes supported by bootstrap values $\geq 95\%$ are indicated by red dots. Phylogenetic
571 clades containing *Shigella* genomes are labelled with the same nomenclature as in Figure 1. All
572 the *Shigella* genomes are also labelled on the right with cgMLST HC2000 and HC1100 data.


573


574

