

1 **A burst of regulatory and protein innovation at the origin of placental mammals drove the**
2 **emergence of placenta and underpins divergent early pregnancy strategies in modern**
3 **mammals.**

4 Alysha S. Taylor^{1,2}, Haidee Tinning¹, Vladimir Ovchinnikov³, William Smith^{1,4}, Anna L. Pullinger¹,

5 Ruth A. Sutton¹, Bede Constantinides^{2,5}, Dapeng Wang^{6,7}, Niamh Forde^{*1}, Mary J O'Connell^{*2,3}

6
7 ¹Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and
8 Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, LS2 9JT, United
9 Kingdom.

10 ²School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom.

11 ³School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham,
12 NG7 2RD, United Kingdom.

13 ⁴ Leeds Fertility, Leeds Teaching Hospitals NHS Trust, York Road, Seacroft, Leeds, LS14 6UH,
14 United Kingdom.

15 ⁵Present address: Modernising Medical Microbiology Consortium, Nuffield Department of
16 Clinical Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, United Kingdom

17 ⁶LeedsOmics, University of Leeds, United Kingdom.

18 ⁷Present address: Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, United
19 Kingdom.

20

21 * Both corresponding authors contributed equally to this manuscript: Correspondence should
22 be addressed to n.forde@leeds.ac.uk or drmary.oconnell@gmail.com

23

24 **Summary paragraph:** The origin of live birth in mammals ~148 million years ago was a dramatic
25 shift in reproductive strategy, yet the molecular changes that established mammal viviparity
26 are largely unknown. Although progesterone receptor signalling predates the origin of
27 mammals and is highly conserved in, and critical for, successful mammal pregnancy, it alone
28 cannot explain the origin and subsequent diversity of implantation strategies throughout the
29 placental mammal radiation. MiRNAs are known to be flexible and dynamic regulators with a
30 well established role in the pathophysiology of mammal placenta. We propose that a dynamic
31 core microRNA (miRNA) network originated early in placental mammal evolution, responds to
32 conserved mammal pregnancy cues (e.g. progesterone), and facilitates species-specific
33 responses. Here we identify 13 miRNAs that arose at the origin of placental mammals and were
34 subsequently retained in all descendent lineages. The expression of these 13 miRNAs in
35 response to early pregnancy molecules is regulated in a species-specific manner in endometrial
36 epithelia of species with extremes of implantation strategies. Furthermore, these 13 miRNAs
37 preferentially target 84 proteins under positive selective pressure on ancestral eutherian.
38 Discovery of this core “live-birth” toolkit and specifically adapted proteins helps explain the
39 origin and evolution of the placenta in mammals.

40

41 Successful pregnancy in eutheria is contingent on a developmentally competent
42 embryo, appropriate endometrial function, and on formation of the placenta and on the
43 molecular cross-talk across these components ^{1,2}. Yet placental organ morphology, and more
44 generally, the underlying regulation of successful pregnancy, varies across mammals. Protein
45 coding alterations along with innovations in regulatory networks drive the origin and evolution
46 of novel traits ³. Moreover, bursts of evolution of new microRNAs (miRNAs) are known to be
47 associated with morphological innovation ^{4–6}, and miRNAs are known to regulate placental
48 function in both normal and pathophysiological conditions ^{7,8}. We have uncovered a core
49 placental toolkit in mammals that evolved through a synergy of molecular events involving the
50 emergence of new miRNAs combined with adaptive amino acid changes in key proteins. We
51 propose that this conserved core toolkit contributes to the diversity of implantation strategies
52 and pregnancy morphologies observed in modern eutheria (Figure 1).

53

54 **A core miRNA toolkit of 13 miRNAs arose at the origin of therian and eutherian mammals and**
55 **were never subsequently lost.**

56 Because significant miRNA family expansions have been found to correlate with major
57 transitions in animal evolution^{4–6}, we interrogated MirGeneDB⁹ and identified 112 miRNA
58 families that originated on either the therian (6 miRNA families) or eutherian stem lineage (106
59 miRNA families). Six of these miRNA families emerged on the older therian stem lineage (mir-
60 340, mir-483, mir-671, mir-675, mir-1251, and mir-3613), of which only mir-340 is
61 phylogenetically conserved in both Theria and Eutheria (Figure 2a). Given that mir-671 is
62 present in tasmanian devil and in all Eutheria sampled, we classified mir-671 as a ‘therian stem
63 lineage miRNA’. A total of 106 miRNAs emerged at the origin of eutheria, and 11 of these
64 remained conserved in all extant eutheria sampled (Figure 2a). In total, this yielded 13 miRNAs
65 that originated on stem mammal lineages and were subsequently retained in all descendent
66 lineages, henceforth referred to as “the core miRNA toolkit”. Expression and function of some
67 of the core miRNA toolkit has been demonstrated for normal placenta (e.g. mir-433¹⁰, mir-28¹¹,
68 mir-378¹²), and endometrium (e.g. mir-505¹³ and mir-542¹⁴). Others have been implicated in
69 pathophysiological pregnancies, e.g. mir-185, mir-188, mir-423 and mir-542^{15–17} have been
70 implicated in preeclampsia, mir-127¹⁰ has been associated with placentomegaly, mir-324 is
71 associated with LGA pregnancies¹⁸, mir-331 is associated with placenta from intra-amniotic
72 infection¹⁹, and mir-505 can be associated with preterm birth²⁰. Collectively all 13 members of
73 the core miRNA toolkit have been implicated in critical roles in placental mammal pregnancies.

74 Targets were identified in the human genome for the core miRNA toolkit using
75 TargetScan²¹. The predicted functions of the targets of the core miRNA toolkit include
76 reproductive functions (55 target transcripts), metabolic process (1476 target transcripts), and
77 Biological regulation (1269 target transcripts) (Supplementary Figure S1b). More specifically,
78 some of the targets were implicated in pathways associated with INPP5E regulation,
79 Neurophilin interactions, and VEGF interactions with its receptor (VEGR), each involved in the
80 process of angiogenesis. TGF-β signalling and p53 regulation are amongst the predicted targets
81 and are implicated in cell proliferation (Supplementary Figure S3). Both angiogenesis and

82 proliferation are required for successful pregnancy. The syncytins are a family of endogenous
83 retrovirus-derived protein coding regions that were domesticated in mammals and are
84 essential for promoting placental formation²² and 4/13 of the core miRNA toolkit (miR-185-3p,
85 miR-188-3p, miR-423-5p and miR-433-3p) are predicted to target the syncytins with at least 7-
86 mer binding. In the case of miR-423-5p, there are two predicted target sites for *syncytin-1*, one
87 of which has a site overlapping with that of the miR-185-3p binding site, indicating
88 dynamic/competitive binding between these miRNAs and their *syncytin-1* target. The predicted
89 targets of the core miRNA toolkit also include 130 gene families that have been proposed to
90 have emerged on the eutherian stem lineage²³. In addition, the targets included genes that
91 evolved endometrial expression on the stem eutherian lineage, and that are hypothesized to
92 have assisted in the remodelling of the uterine landscape during the evolution of the mammal
93 placenta¹.

94

95 **Evidence of positive selection on the stem eutherian lineage.**

96 Protein coding alterations (such as the birth of new genes and gene families, gene loss,
97 co-option, and selective pressure variation) along with innovations in regulatory networks drive
98 the development of novel traits³. A number of cases of positively selected amino acids
99 (indicative of protein functional shift) are known to have had a direct role in endometrial
100 function, *e.g.* the galectin family of proteins involved in immune modification at the maternal-
101 fetal interface²⁴. We looked for evidence of adaptive evolution in single gene orthologous
102 families (SGOs) on the stem eutherian lineage. We focussed on SGOs to optimise our ability to
103 assign function to orthologs and to accurately trace evolutionary histories. We chose a total of
104 ten Eutheria that demonstrate the greatest range of diversity in placental morphology, plus
105 four outgroup species, one from each of the *Monotremata*, *Marsupialia*, *Aves* and *Teleostei*
106 (Supplementary Table S1). Annotated gene families were taken from Ensembl 90²⁵. Following
107 our filtering regime we extracted a total of 1,437 SGOs. Applying codon models of evolution to
108 these SGOs, we identified signatures of positive selection on amino acid residues on the stem
109 eutherian lineage in 237 SGOs. The functions of these genes are predominantly cellular
110 processes, metabolic processes, and biological regulation (Supplementary Figure S2). Out of

111 these 237 positively selected SGOs, 115 contained positively selected amino acid residues that
112 were subsequently unaltered in all descendent lineages. The 115 SGOs are functionally
113 enriched for chromosomal maintenance, telomere activity, p53 signalling, cell cycle, and the
114 inflammatory immune response - activities that have been associated with the formation of the
115 placental tissue in pregnancy^{26–28}. We then studied whether there is a significant association
116 between the core miRNA toolkit and stem-lineage positively selected proteins.

117

118 **The core miRNA toolkit preferentially targets genes under positive selection in the stem
119 eutherian lineage.**

120 Synergy between regulatory and protein coding innovations often drives substantial
121 phenotypic novelty^{2,3,29}. Therefore, to test the hypothesis that innovation both at the level of
122 regulation and of protein coding change underpinned the origin of placentation in mammals,
123 we performed a simulation study on the targets of the 13 stem lineage miRNAs. Out of 115
124 SGOs with evidence of positive selection on the ancestral eutherian lineage, 84 were found to
125 be significantly enriched for binding sites for the 13 members of the core miRNA toolkit
126 ($p=1.35618e-11$), with a mean of 6.66 binding sites per transcript (median=4.0) (Figure 2b). We
127 determined if the number of binding sites in this subset of 84 positively selected SGOs was
128 significantly different than one would expect by random chance. We estimated the number of
129 binding sites per transcript for the core miRNA toolkit in 100 randomly sampled gene sets and
130 found it is significantly lower, with a mean=1.64 (median=1.0). This suggests that the 13
131 miRNAs in the core miRNA toolkit preferentially target the positively selected SGOs (6.66
132 binding sites compared to 1.64) (Figure 2b). Combined, this indicates that a co-evolutionary
133 process arose in a short time in early mammal evolution that resulted in altered protein
134 function, as well as a new miRNA-mediated regulatory network.

135 The functions of the 84 positively selected SGOs targeted by the core miRNA toolkit
136 broadly fall within the categories of cell cycle, DNA damage & DNA metabolic processes, and
137 regulation of hair cycle & hair cycle – a uniquely mammal characteristic (Supplementary Figure
138 S3). 21/84 SGOs are significantly more likely to interact with one another ($p<0.05$) in
139 comparison to any other gene in the genome (Supplementary Figure S2b). Of course there is

140 significant variation found in modern mammals in other facets such as telomere biology, cancer
141 incidence, body mass and maximum lifespan³⁰⁻³³, therefore innovation at this node was not
142 expected to be entirely skewed to pregnancy (Supplementary Table S2)

143

144 **Species-specific regulation of the core miRNA toolkit by key early pregnancy molecules in**
145 **species with different implantation strategies.**

146 Implantation in eutherian mammals displays wide variation in both embryological
147 morphology and bi-lateral signalling between the embryo and maternal endometrium, and
148 degree of invasiveness (invasive in human, superficial in bovine). This variation is governed, in
149 part, by conserved signalling pathways, *e.g.* the sustained actions of the hormone progesterone
150 (P4)³⁴, but also diverse molecular cues such as the maternal recognition of pregnancy signal,
151 *e.g.* chorionic gonadotrophin (hCG) in human and interferon (IFNT) in bovine^{35,36}. We asked the
152 question what molecules, that are involved in bi-lateral communication between the embryo
153 and endometrium, regulate the core mammal miRNA toolkit and if they are regulated in a
154 species-specific manner. We cultured endometrial epithelial cells from human and bovine³⁷ and
155 exposed them for 24 hr to recombinant forms of conserved (P4, CAPG, and PDI) and diverse
156 (IFNT and hCG) molecular cues important for early pregnancy success in placental mammals.
157 CAPG and PDI have recently been identified as produced by the bovine conceptus during
158 pregnancy recognition and are highly conserved (in terms of sequence identity and
159 phylogenetic distribution) across placental mammals^{37,38}. We then examined the expression of
160 the 13 stem lineage miRNAs in these cells using an LNA-based approach. Treatment of bovine
161 endometrial epithelial cells with 10µg/mL of P4 during the early luteal phase resulted in
162 increased expression of miR-505-5p (Supplementary Figure S4). In summary, treatment with
163 the evolutionarily conserved early pregnancy proteins (P4, CAPG and PDI) in the endometrial
164 epithelial cells of bovine and/or human resulted in a change in expression of 11/13 of the stem
165 lineage miRNAs (Figure 1).

166 Intriguingly, addition of recombinant bovine forms of bCAPG and bPDI proteins to
167 bovine or human endometrial epithelial cells altered expression of selected miRNAs in a
168 species-specific manner (Figure 3&4 respectively). Treatment of bovine cells with recombinant

169 bCAPG resulted in increased expression of miR-331-3p, miR-324-5p and miR-505-5p in
170 endometrial epithelial cells ($p<0.05$). Whereas in human endometrial epithelial cells treated
171 with 1000ng/ μ l bCAPG, the expression of miR-127-3p, miR-151a-3p (a paralog of mir-28
172 originating on the Eutherian stem lineage), and miR-188-5p showed a significant decrease in
173 expression compared to vehicle control ($p<0.05$: Figure 3). Treatment with recombinant bPDI
174 decreased expression of miR-185-5p in bovine epithelial cells ($P<0.05$). In human Ishikawa
175 immortalised endometrial epithelial cells treated with 1000ng/ μ l bPDI the expression of miR-
176 151a-5p, miR-185-5p, miR-378a-3p and miR-532-5p (a parologue of mir-188 originating on the
177 Eutherian stem lineage) were significantly decreased compared to vehicle control (Figure 4).

178 In contrast, addition of the species specific pregnancy recognition signals (IFNT in
179 bovine: hCG in human) to receptive endometrial epithelial cells altered expression of one
180 member of the core miRNA toolkit (Supplementary Figures S5 and S6 for IFNT and hCG data
181 respectively). These data demonstrate that the expression of the core miRNA toolkit is not
182 altered by the species-specific pregnancy recognition signals (IFNT and hCG).

183 Human and bovine represent two distinct implantation strategies for mammals and
184 these lineages last shared a common ancestor some \sim 92 million years ago, representing \sim 184
185 million years of independent evolution ^{39,40}. None of the 13 stem lineage miRNAs are regulated
186 by the species-specific pregnancy recognition signals (IFNT and hCG), but the expression of the
187 core miRNA toolkit is modified by proteins that are highly conserved amongst placental
188 mammals (CAPG and PDI). Combined, our results show that the preferential targeting of the
189 core mammal miRNA toolkit, and protein functional shift were essential to the establishment of
190 mammalian implantation, and that subsequent diversification of this network facilitated the
191 range of implantation strategies observed today.

192 In summary, this work identifies a core regulatory network that drove a major transition
193 - the origin of live birth in mammals. With the core now defined, future work can focus on the
194 accessory elements that drove the subsequent diversification of mammal placenta.

195

196

197

198 **ACKNOWLEDGEMENTS**

199 We would like to thank Dr Fuller Bazer from Texas A&M for the kind gift of recombinant
200 ovine IFNT. We would like to acknowledge the assistance of Stefania Mountevedi in helping
201 with the bovine cell isolation and culture. Recombinant proteins CAPG and PDI were generated
202 by the Protein and Proteome Analysis core (NUPPA), Newcastle University, Newcastle upon
203 Tyne, UK. This work was funded by University of Leeds under the LARS PhD scholarship (AST)
204 and Maternity leave support scheme to MOC for BC, and by the University of Nottingham
205 postdoctoral fellowship funding to MOC for VO. This work was supported by N8 agri-food pump
206 priming, QR GCRF, as well as BBSRC grant number BB/R017522/1 to NF. This work was
207 undertaken on ARC3, part of the High-Performance Computing facilities at the University of
208 Leeds, UK. Figure 1 was created using Biorender.

209

210 **CONTRIBUTIONS**

211 NF and MJOC conceived of the study and designed the experiments. AST, BC, VO and
212 MJOC carried out all evolutionary analyses and DW carried out statistical tests. NF, AST, HT, WS,
213 ALP, and RAS undertook all molecular analyses. NF and MJOC drafted the manuscript, all
214 authors contributed to revising, reading, and critiquing the manuscript.

215

216 **REFERENCES**

- 218 1. Lynch, V. J. *et al.* Ancient transposable elements transformed the uterine regulatory
219 landscape and transcriptome during the evolution of mammalian pregnancy. *Cell Rep.*
220 **10**, 551–561 (2015).
- 221 2. Kin, K. *et al.* The Transcriptomic Evolution of Mammalian Pregnancy: Gene Expression
222 Innovations in Endometrial Stromal Fibroblasts. *Genome Biol. Evol.* **8**, 2459–2473 (2016).
- 223 3. Wagner, G. P. Evolutionary innovations and novelties: Let us get down to business! *Zool.*
224 *Anz.* **256**, 75–81 (2015).
- 225 4. Hertel, J. *et al.* The expansion of the metazoan microRNA repertoire. *BMC Genomics* **7**,
226 25 (2006).
- 227 5. Prochnik, S. E., Rokhsar, D. S. & Aboobaker, A. A. Evidence for a microRNA expansion
228 in the bilaterian ancestor. *Dev. Genes Evol.* **217**, 73–77 (2007).
- 229 6. Grimson, A. *et al.* The early origins of microRNAs and Piwi-interacting RNAs in animals.
230 *Nature* **455**, 10.1038/nature07415 (2008).

231 7. Keniry, A. *et al.* The H19 lincRNA is a developmental reservoir of miR-675 which
232 suppresses growth and Igf1r. *Nat. Cell Biol.* **14**, 659–665 (2012).

233 8. Munaut, C. *et al.* Dysregulated circulating miRNAs in preeclampsia. *Biomed. reports* **5**,
234 686–692 (2016).

235 9. Fromm, B. *et al.* MirGeneDB 2.0: the metazoan microRNA complement. *Nucleic Acids*
236 *Res.* **48**, D132–D141 (2020).

237 10. Ito, M. *et al.* A trans-homologue interaction between reciprocally imprinted miR-127 and
238 Rtl1 regulates placenta development. *Development* **142**, 2425–2430 (2015).

239 11. Farrokhnia, F., Aplin, J. D., Westwood, M. & Forbes, K. MicroRNA regulation of mitogenic
240 signaling networks in the human placenta. *J. Biol. Chem.* **289**, 30404–30416 (2014).

241 12. Luo, L. *et al.* MicroRNA-378a-5p promotes trophoblast cell survival, migration and
242 invasion by targeting Nodal. *J. Cell Sci.* **125**, 3124 LP – 3132 (2012).

243 13. Morales-Prieto, D. M. *et al.* MicroRNA expression profiles of trophoblastic cells. *Placenta*
244 **33**, 725–734 (2012).

245 14. Tochigi, H. *et al.* Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing
246 human endometrial stromal cells. *Sci. Rep.* **7**, 40001 (2017).

247 15. Fu, G., Brkić, J., Hayder, H. & Peng, C. MicroRNAs in human placental development and
248 pregnancy complications. *Int. J. Mol. Sci.* **14**, 5519–5544 (2013).

249 16. Harapan, H. & Andalas, M. The role of microRNAs in the proliferation, differentiation,
250 invasion, and apoptosis of trophoblasts during the occurrence of preeclampsia—A
251 systematic review. *Tzu Chi Med. J.* **27**, 54–64 (2015).

252 17. Hosseini, M. K., Gunel, T., Gumusoglu, E., Benian, A. & Aydinli, K. MicroRNA expression
253 profiling in placenta and maternal plasma in early pregnancy loss. *Mol. Med. Rep.* **17**,
254 4941–4952 (2018).

255 18. Rahman, M. L. *et al.* Regulation of birthweight by placenta-derived miRNAs: evidence
256 from an arsenic-exposed birth cohort in Bangladesh. *Epigenetics* **13**, 573–590 (2018).

257 19. do Imperio, G. E. *et al.* Chorioamnionitis Induces a Specific Signature of Placental ABC
258 Transporters Associated with an Increase of miR-331-5p in the Human Preterm Placenta.
259 *Cell. Physiol. Biochem.* **45**, 591–604 (2018).

260 20. Fallen, S. *et al.* Extracellular vesicle RNAs reflect placenta dysfunction and are a
261 biomarker source for preterm labour. *J. Cell. Mol. Med.* **22**, 2760–2773 (2018).

262 21. Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target
263 sites in mammalian mRNAs. *Elife* **4**, 1–38 (2015).

264 22. Esnault, C., Cornelis, G., Heidmann, O. & Heidmann, T. Differential Evolutionary Fate of

265 an Ancestral Primate Endogenous Retrovirus Envelope Gene, the EnvV Syncytin,
266 Captured for a Function in Placentation. *PLOS Genet.* **9**, e1003400 (2013).

267 23. Dunwell, T. L., Paps, J. & Holland, P. W. H. Novel and divergent genes in the evolution of
268 placental mammals. *Proceedings. Biol. Sci.* **284**, 20171357 (2017).

269 24. Than, N. G. *et al.* A primate subfamily of galectins expressed at the maternal–fetal
270 interface that promote immune cell death. *Proc. Natl. Acad. Sci.* **106**, 9731 LP – 9736
271 (2009).

272 25. Yates, A. *et al.* Ensembl 2016. *Nucleic Acids Res.* **44**, D710–D716 (2016).

273 26. Hauguel-de Mouzon, S. & Guerre-Millo, M. The Placenta Cytokine Network and
274 Inflammatory Signals. *Placenta* **27**, 794–798 (2006).

275 27. Woods, L., Perez-Garcia, V. & Hemberger, M. Regulation of Placental Development and
276 Its Impact on Fetal Growth—New Insights From Mouse Models . *Frontiers in*
277 *Endocrinology* **9**, 570 (2018).

278 28. Gal, H. *et al.* Molecular pathways of senescence regulate placental structure and
279 function. *EMBO J.* **38**, e100849–e100849 (2019).

280 29. Lynch, V. J., Leclerc, R. D., May, G. & Wagner, G. P. Transposon-mediated rewiring of
281 gene regulatory networks contributed to the evolution of pregnancy in mammals. *Nat.*
282 *Genet.* **43**, 1154–9 (2011).

283 30. Tian, X. *et al.* Evolution of telomere maintenance and tumour suppressor mechanisms
284 across mammals. *Philos. Trans. R. Soc. B Biol. Sci.* **373**, 20160443 (2018).

285 31. McNab, B. K. An analysis of the factors that influence the level and scaling of mammalian
286 BMR. *Comp. Biochem. Physiol. Part A Mol. Integr. Physiol.* **151**, 5–28 (2008).

287 32. Garratt, M., Gaillard, J.-M. J., Brooks, R. C. P., Lemaitre, J.-F. & Lemaître, J.-F.
288 Diversification of the eutherian placenta is associated with changes in the pace of life.
289 *Proc. Natl. Acad. Sci. USA* **110**, 7760–7765 (2013).

290 33. Welch, J. J., Bininda-Emonds, O. R. P. & Bromham, L. Correlates of substitution rate
291 variation in mammalian protein-coding sequences. *BMC Evol. Biol.* **8**, 53 (2008).

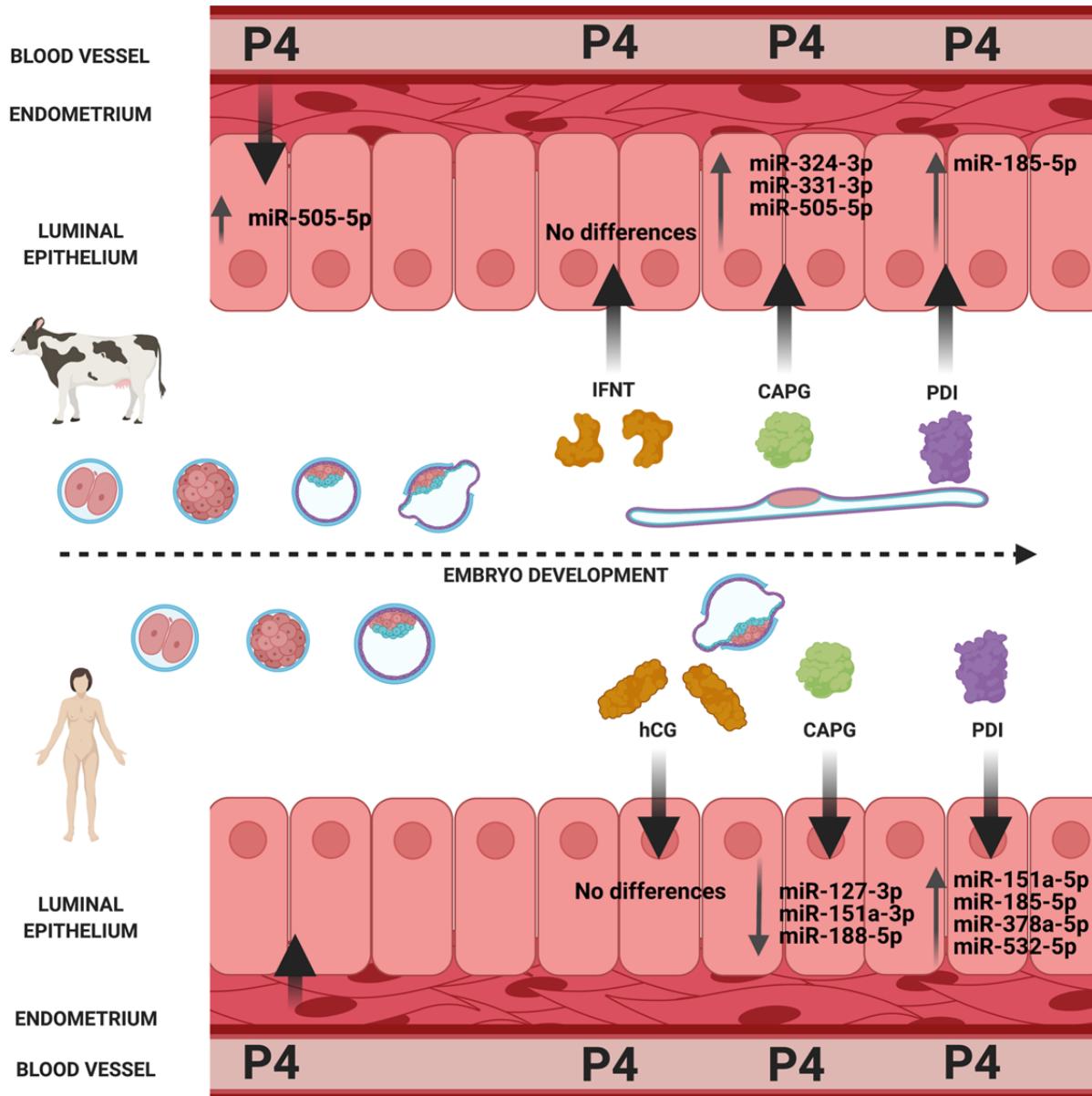
292 34. Spencer, T. E. & Bazer, F. W. Temporal and Spatial Alterations in Uterine Estrogen
293 Receptor and Progesterone Receptor Gene Expression During the Estrous Cycle and
294 Early Pregnancy in the Ewe1. *Biol. Reprod.* **53**, 1527–1543 (1995).

295 35. Godkin, J. D., Bazer, F. W., Moffatt, J., Sessions, F. & Roberts, R. M. Purification and
296 properties of a major, low molecular weight protein released by the trophoblast of sheep
297 blastocysts at Day 13–21. *Reproduction* **65**, 141–150 (1982).

298 36. Morgan, F. J. & Canfield, R. E. Nature of the Subunits of Human Chorionic Gonadotropin.

299 *Endocrinology* **88**, 1045–1053 (1971).

300 37. Tinning, H. *et al.* The role of CAPG in molecular communication between the embryo and
301 the uterine endometrium: Is its function conserved in species with different implantation
302 strategies? *FASEB J.* **34**, 11015–11029 (2020).


303 38. Forde, N. *et al.* Conceptus-Induced Changes in the Endometrial Transcriptome: How
304 Soon Does the Cow Know She Is Pregnant?1. *Biol. Reprod.* **85**, 144–156 (2011).

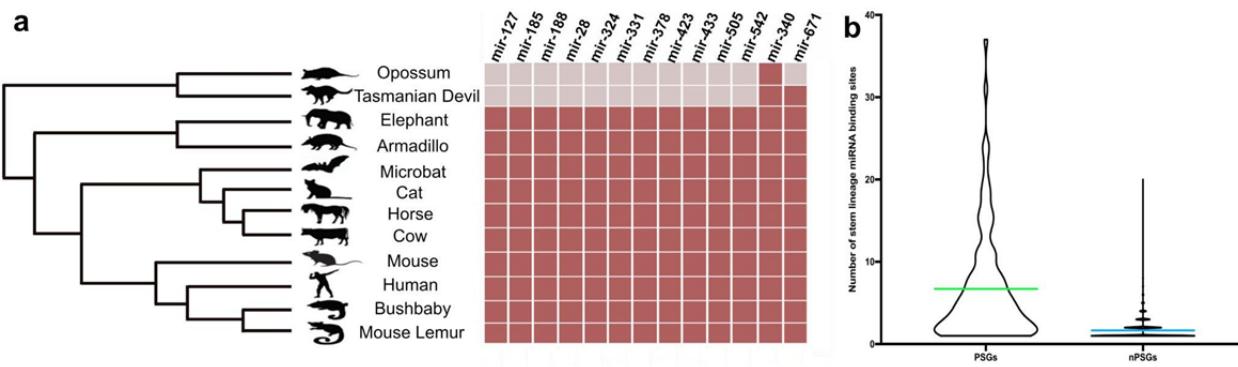
305

306
307
308
309
310

FIGURES

Figure 1:

311
312


313 **Figure 1. Regulation of core miRNA toolkit by early pregnancy markers.** The endometrial
314 epithelium of bovine (superficial implantation strategy) (top panel) or human (invasive
315 implantation strategy) (bottom panel) are regulated by molecules important for endometrial
316 function in early pregnancy in eutheria (P4: progesterone; hCG: human chorionic

317 *gonadotrophin; Interferon Tau: IFNT; Macrophage capping protein: CAPG, and protein disulfide
318 isomerase: PDI).*

319

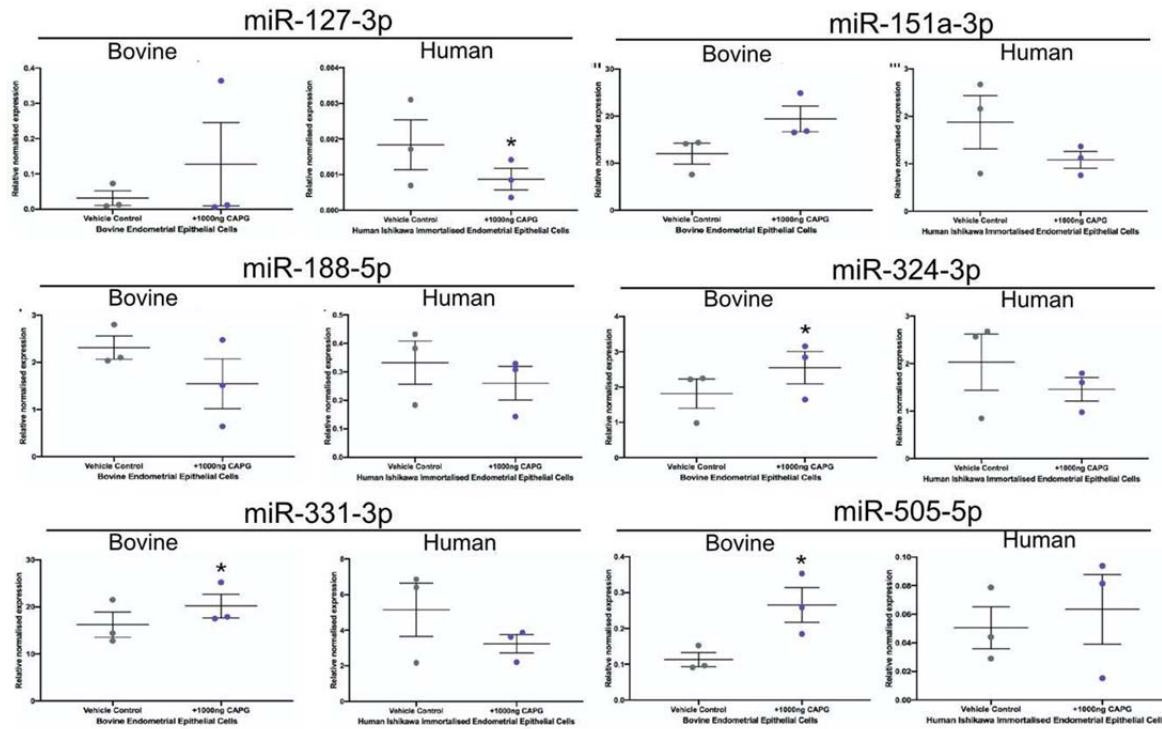
320

321 **Figure 2:**

327 **Figure 2: Phylogenetic distribution of the miRNA families and their levels of targeting in**
328 **positively selected genes. (a) Phylogenetic distribution of miRNA families specific to therian and**
329 **eutherian mammals. The mammal phylogeny displaying the species sampled in our analysis.**
330 **The corresponding matrix shows the presence (dark red) or absence (pale grey) of miRNA**
331 **families across the species sampled. (b) Violin plot comparing the number of target miRNA**
332 **binding sites from the core miRNA toolkit per transcript in the 84 genes that underwent positive**
333 **selection on the stem Eutherian lineage (PSGs) (left) compared to sets of randomly sampled**
334 **targets of the miRNAs that do not have signatures of positive selection on the stem Eutherian**
335 **lineage (nPSG) (right). For each of the 84 PSGs, the mean number of predicted miRNA binding**
336 **sites was determined for each target transcript in human (depicted in green). This was**
337 **compared to the mean number of binding sites for each of the nPSGs (depicted in blue). The**
338 **mean number of binding sites was determined to be significantly different between the two**
339 **datasets when $p \leq 0.05$, two-sample t-test with unequal variance.**

340

341


342

343

344

345 **Figure 3:**

Response to treatment with CAPG

346

347 **Figure 3. Regulation of stem lineage miRNAs in bovine and human endometrial epithelial cells**
348 **treated with bCAPG.** Expression of stem lineage miRNAs miR-127-3p, miR-151a-3p, miR-188-
349 5p, miR-324-3p, miR-331-3p, and miR-505-5p in either bovine (left hand side of each pair) or
350 human (right hand side of each pair) endometrial epithelial cells. Primary bovine endometrial
351 epithelial cells were treated with vehicle control (grey circle), or 1000ng/μl bCAPG (purple circle)
352 for 24 hours. Human Ishikawa immortalized endometrial epithelial cells were treated with
353 vehicle control (grey circle), or 1000ng/μl bCAPG (purple circle) for 24 hours. Significant
354 differences in miRNA expression values determined when $p \leq 0.05$ are depicted by an asterisk (*).

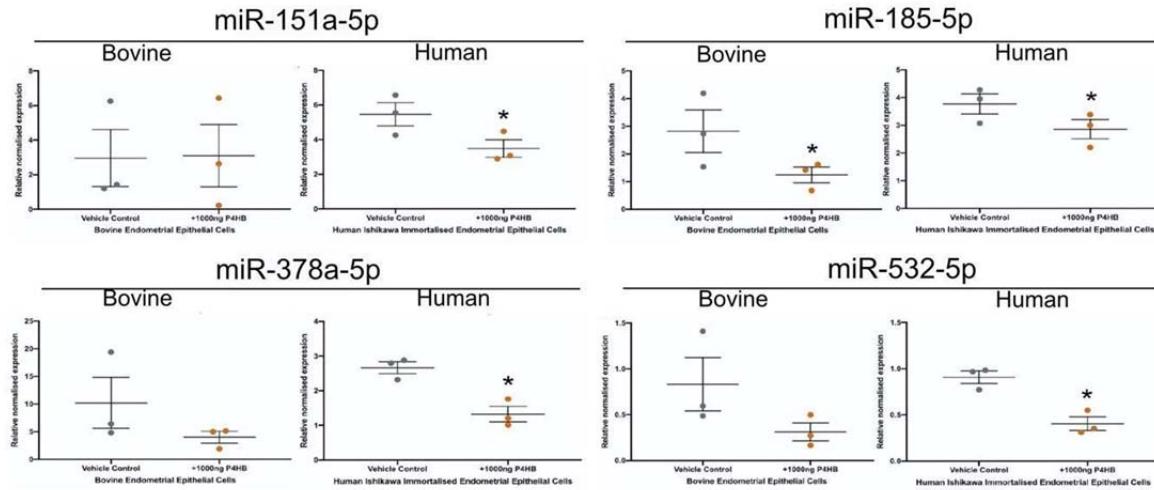
355

356

357

358

359


360

361

362

363 **Figure 4:**

Response to treatment with PDI

364

365 **Figure 4: Regulation of stem lineage miRNAs in bovine and human endometrial epithelial cells**
366 **treated with bPDI.** Expression of stem lineage miRNAs miR-127-3p, miR-151a-3p, miR-188-5p,
367 miR-324-3p, miR-331-3p, and miR-505-5p in either bovine (left hand side of each pair) or human
368 (right hand side of each pair) endometrial epithelial cells. Primary bovine endometrial epithelial
369 cells were treated with vehicle control (grey circle), or 1000ng/µl bPDI (orange circle) for 24
370 hours. Human Ishikawa immortalized endometrial epithelial cells were treated with vehicle
371 control (grey circle), or 1000ng/µl bPDI (orange circle) for 24 hours. Significant differences in
372 miRNA expression values determined when $p \leq 0.05$ are depicted by an asterisk (*).

373

374

375

376

377

378

379

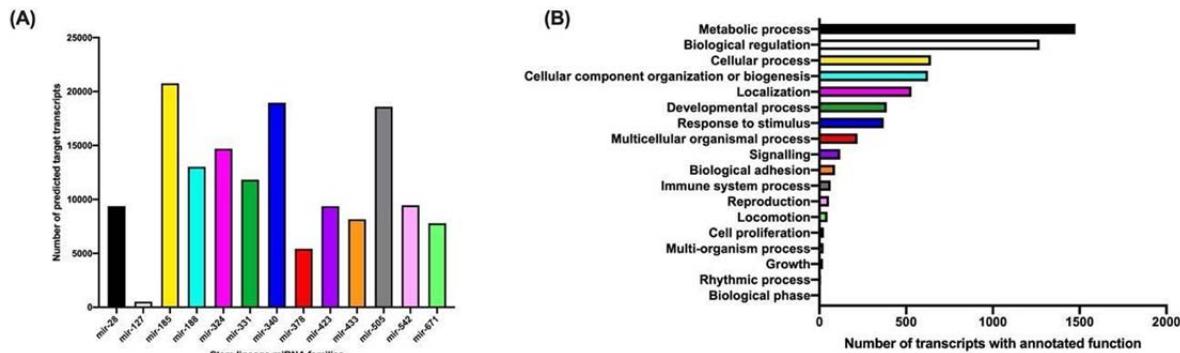
380

381

382

383

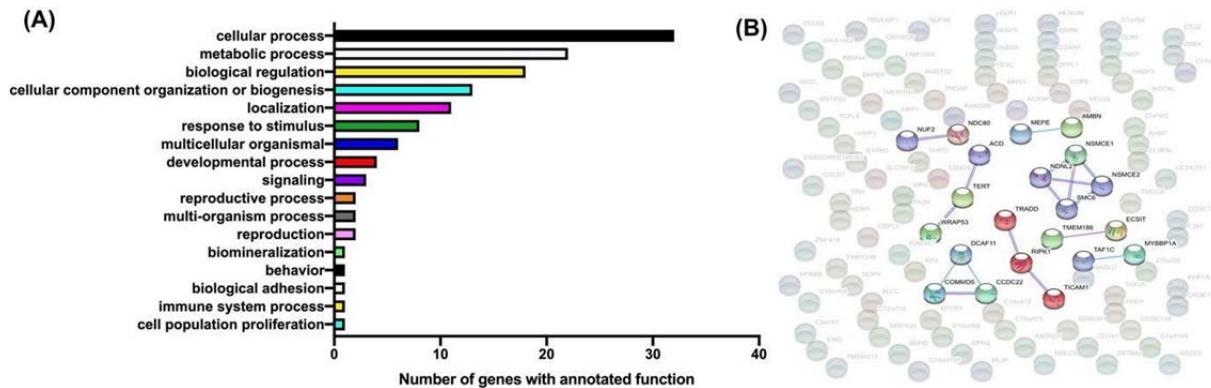
384


385

386

387
388
389
390

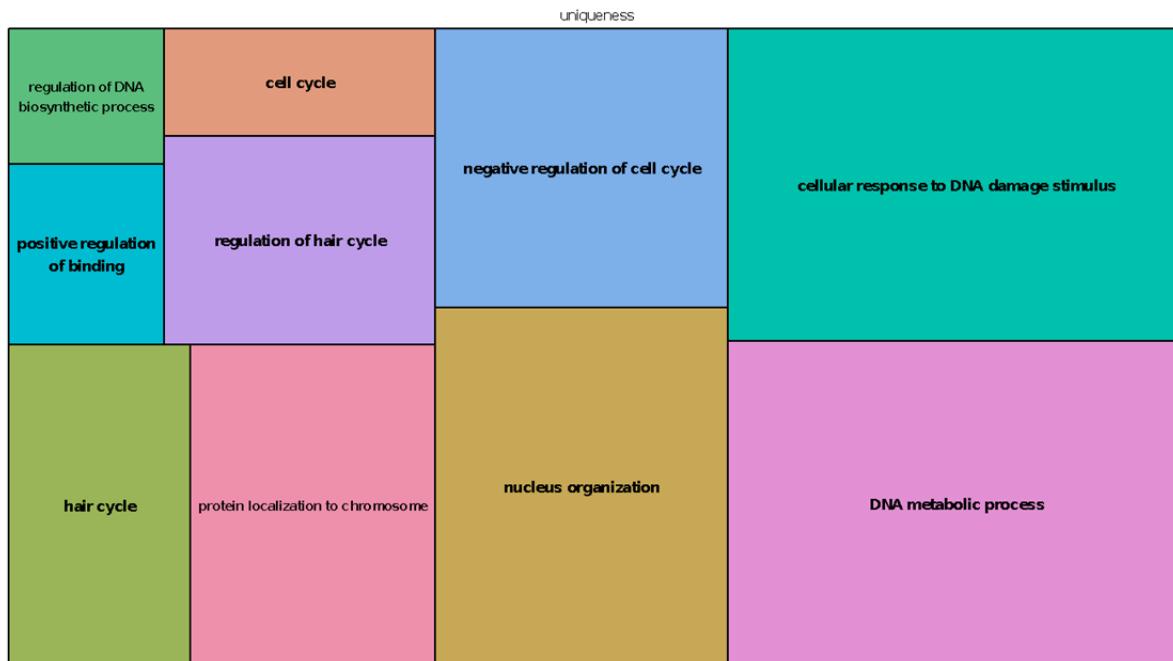
Supplementary Figures and Tables


Supplementary Figure S1:

391
392
393 **Figure S1. Number of predicted targets for each of the 13 stem lineage miRNA family and the**
394 **functional annotation of the target genes using Panther DB. (A)** Targets were predicted for
395 each of the 13 stem lineage miRNAs using TargetScan70 (Agarwal *et al.*, 2015). TargetScan
396 output was filtered for targets with 8mer-A1, 7mer-m8 and 7mer-A1 complementary binding to
397 the seed region. **(B)** Functional annotation of predicted targets of the 13 stem lineage miRNAs.
398 Filtered stem lineage miRNA target transcripts were analysed for functional enrichment using
399 PANTHERv.14 (Muruganujan *et al.*, 2018), where PANTHERv.14 found functional annotations to
400 be significantly enriched when $p \leq 0.05$.

401
402
403

404 **Supplementary Figure S2:**



405
406

407 **Figure S2. Broad functions of the genes with signatures of positive selection and sample of**
408 **their interactions. (A) Functional annotation using Gene Ontology Biological Process terms of**
409 **115 SGOs that underwent positive selection on the stem eutherian lineage and where the amino**
410 **acid substitution was fixed on all extant Eutheria tested. The absolute number (out of 115) of**
411 **positively selected genes in a given category are shown in the X axis and the functional**
412 **annotations on the Y-axis. (B) String interaction network of the same set of 115 genes. Network**
413 **has 106 total nodes and 8 edges (expected edges =4). Background nodes, with no high**
414 **confidence interactions from experimental and database sources are faded. Nodes with high**
415 **confidence interactions from experimentally determined (pink lines) or curated database (blue**
416 **lines) sources are depicted in colour. The network was found to be significantly enriched for**
417 **gene-gene interactions ($p=0.0468$). Average node degree is 0.151, with an average local**
418 **clustering coefficient of 0.104. Minimum interaction score is 0.700.**

419
420
421

422 **Supplementary Figure S3:**

423

424 **Figure S3: A standard TreeMap from REVIGO displaying the GO biological process terms**
425 **present in the 84 PSGs that were predicted targets of the 13 stem lineage miRNAs.** Rectangle

426 **size represents semantic uniqueness of GO term, defined by REVIGO as the negative of average**
427 **similarity to all other terms present in human.**

428

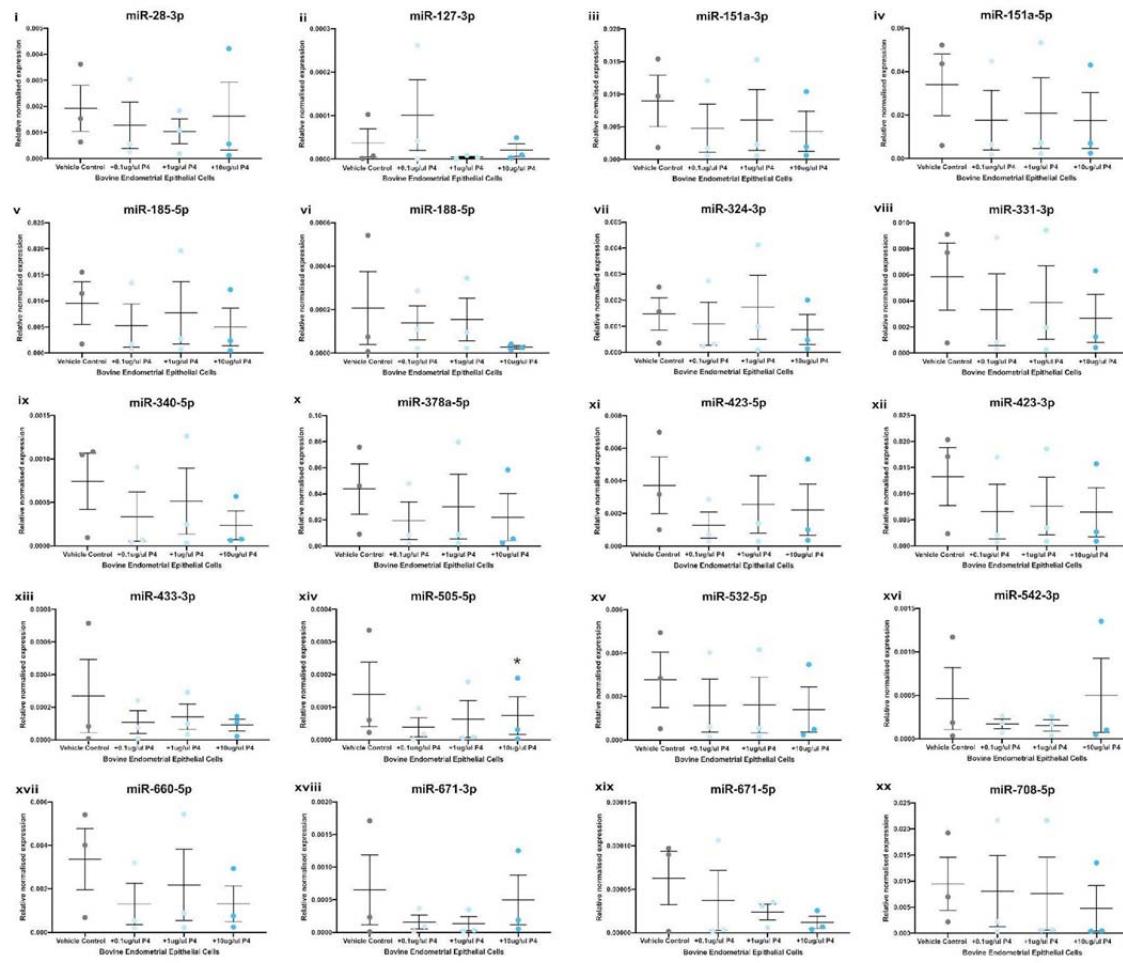
429

430

431

432

433


434

435

436

437

438 **Supplementary Figure S4:**

439

440

Figure S4. Expression of stem lineage miRNAs in bovine endometrial epithelial cells treated with P4. Expression of stem lineage miRNA (i) miR-28-3p, (ii) miR-127-3p, (iii) miR-151a-3p, (iv) miR-151a-5p, (v) miR-185-5p, (vi) miR-188-5p, (vii) miR-324-5p, (viii) miR-331-3p, (ix) miR-340-5p, (x) miR-378a-5p, (xi) miR-423-3p, (xii) miR-423-5p, (xiii) miR-433-3p, (xiv) miR-505-5p, (xv) miR-532-5p, (xvi) miR-542-3p, (xvii) miR-660-5p, (xviii) miR-671-3p, (xix) miR-671-5p and (xx) miR-708-5p in bovine endometrial epithelial cells treated with vehicle control (grey circle), 0.1μg/mL (light blue), 1.0μg/mL (medium blue) or 10μg/mL P4 (dark blue circle) for 24 hours. Significant differences in miRNA expression values determined when $p \leq 0.05$ are depicted by an asterisk (*).

441

442

443

444

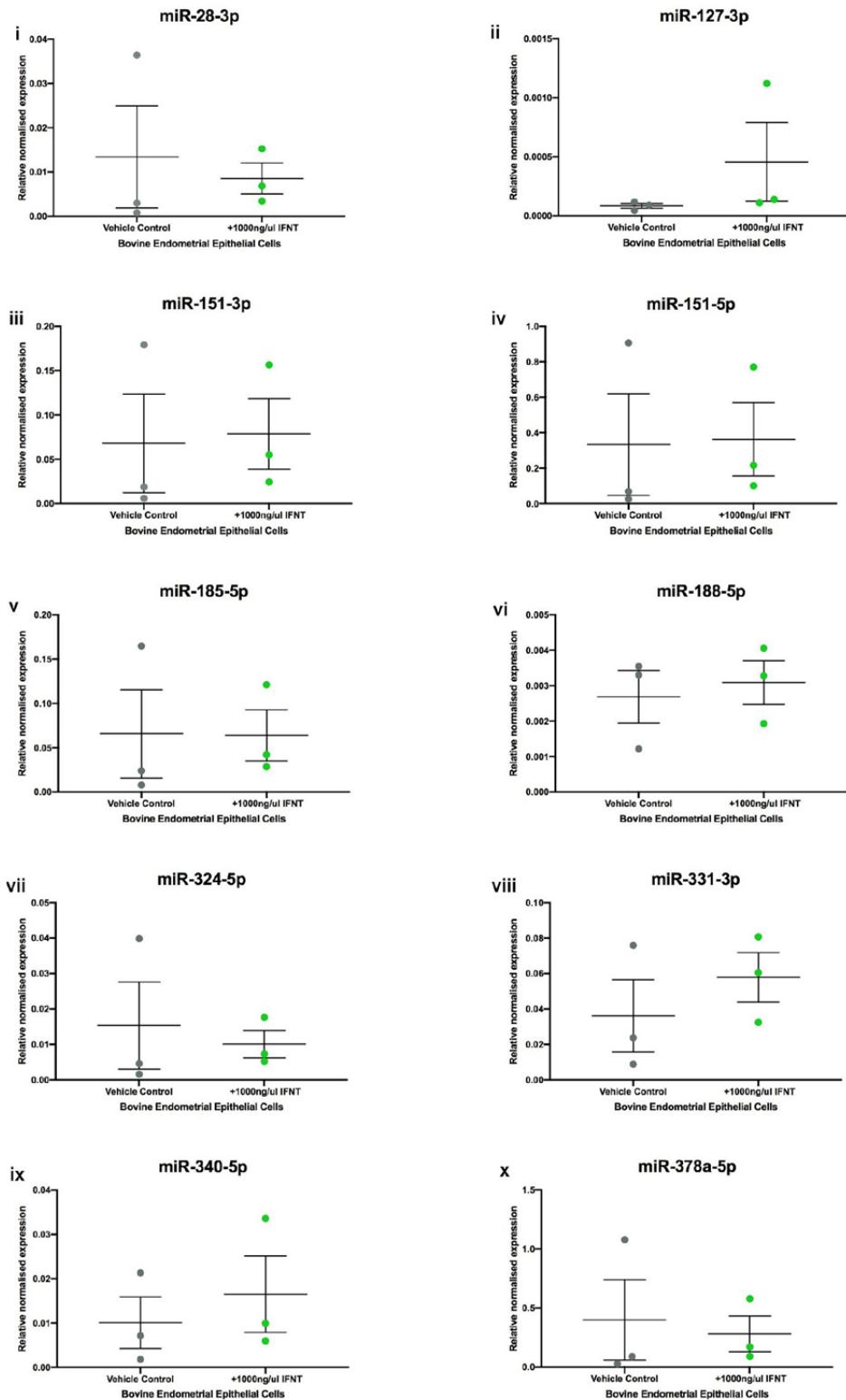
445

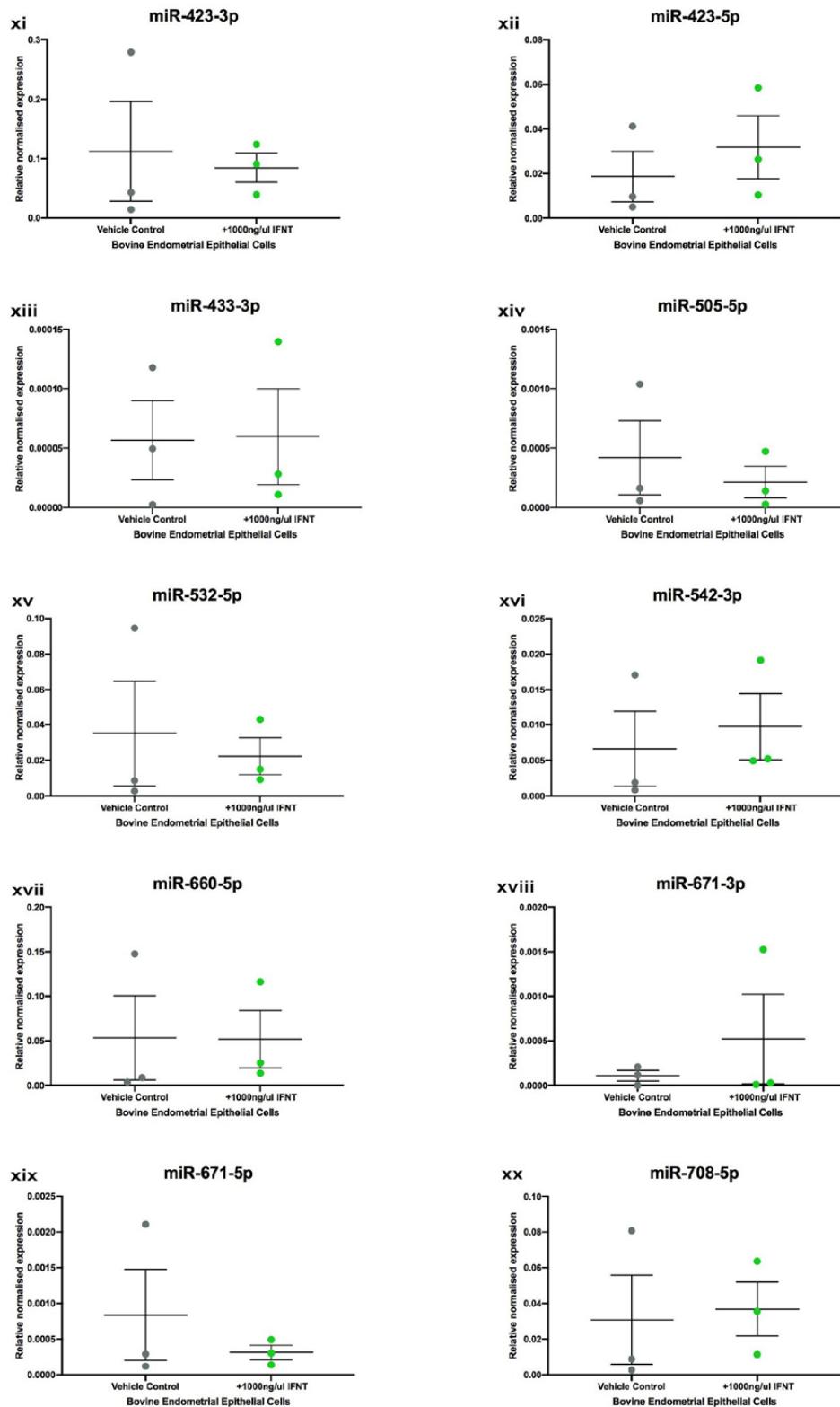
446

447

448

449


450


451

452

453

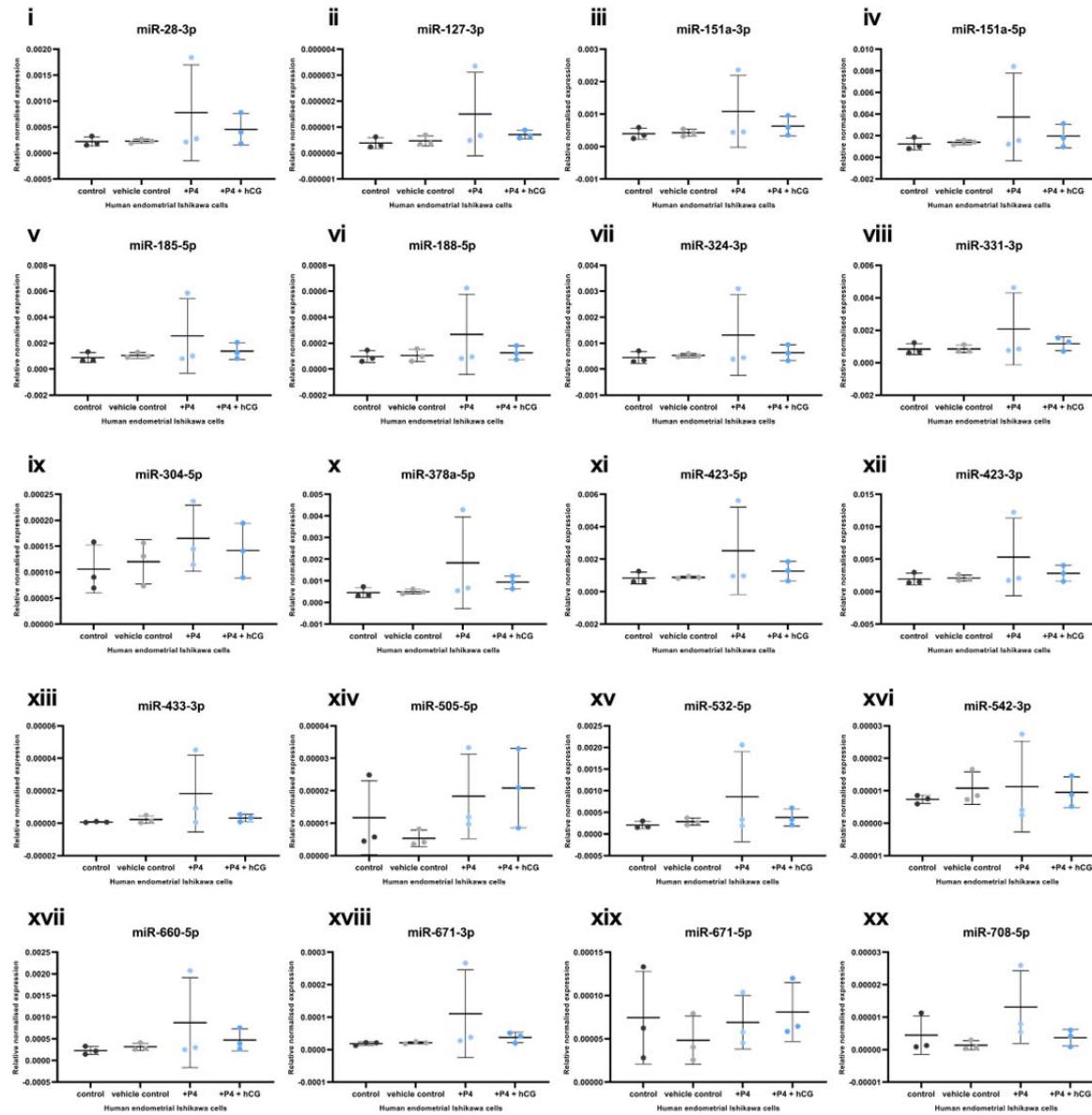
454 **Supplementary Figure S5:**
455

457
458

459 **Figure S5. Expression of stem lineage miRNAs in bovine endometrial explants treated with**
460 **recombinant oIFNT.** Expression of stem lineage miRNA (i) miR-28-3p, (ii) miR-127-3p, (iii) miR-

461 151a-3p, (iv) miR-151a-5p, (v) miR-185-5p, (vi) miR-188-5p, (vii) miR-324-5p, (viii) miR-331-3p,
462 (ix) miR- 340-5p, (x) miR-378a-5p, (xi) miR-423-3p, (xii) miR-423-5p, (xiii) miR-433-3p, (xiv) miR-
463 505-5p, (xv) miR-532-5p, (xvi) miR-542-3p, (xvii) miR- 660-5p, (xviii) miR-671-3p, (xix) miR-671-
464 5p and (xx) miR-708-5p in bovine endometrial explants treated with vehicle control (grey
465 circle), or 1000ng/µl oIFNT (green circle) for 24 hours. Significant differences in miRNA
466 expression values determined when p<0.05 are depicted by an asterisk (*).

467


468

469

470

471 **Supplementary Figure S6:**

472

473

474

475 **Figure S6. Expression of stem lineage miRNAs in human endometrial epithelial cells treated**
476 **with hCG.** Expression of stem lineage miRNA (i) miR-28-3p, (ii) miR-127-3p, (iii) miR-151a-3p,
477 (iv) miR-151a-5p, (v) miR-185-5p, (vi) miR-188-5p, (vii) miR-324-5p, (viii) miR-331-3p, (ix) miR-
478 340-5p, (x) miR-378a-5p, (xi) miR-423-3p, (xii) miR-423-5p, (xiii) miR-433-3p, (xiv) miR-505-5p,
479 (xv) miR-532-5p, (xvi) miR-542-3p, (xvii) miR-660-5p, (xviii) miR-671-3p, (xix) miR-671-5p and

480 (xx) miR-708-5p in human Ishikawa immortalized endometrial epithelial cells were treated with
481 control (dark grey circle), vehicle control (light grey circle), or P4 (light blue circle), or P4+hCG
482 (darker blue circles) for 24 hours. No differences in miRNA expression were determined
483 ($p>0.05$).
484

485 **Supplementary Table S1: Vertebrate Species sampled, genome version, coverage and**
486 **completion level.**

Clade	Species	Version	Genome Quality
Fish	Zebrafish	GRCz11	Full Genome, Chromosome Level
	Chicken	Gallus_gallus-5.0	70X Coverage, Chromosome Level
Monotremes	Platypus	OANA5	6X Coverage, Chromosome Level
Metatheria	Opossum	monDom5	7.33X Coverage, Chromosome Level
Eutheria	Elephant	Loxafr3.0	7X Coverage, Scaffold Level
	Armadillo	Dasnov3.0	6X Coverage, Scaffold Level
	Mouse	GRCm38.p6	High Quality Reference Assembly
	Human	GRCh38.p12	High Quality Reference Assembly
	Mouse Lemur	Mmur_3.0	221.6X Coverage, Chromosome Level
	Bushbaby	OtoGar3	137X Coverage, Scaffold Level
	Cat	Felis_catus_9.0	72X Coverage, Chromosome Level
	Microbat	Myoluc2.0	7X Coverage, Scaffold Level
	Horse	Equ Cab 2	6.79X Coverage, Chromosome Level
	Cow	UMD3.1	9X Coverage, Chromosome Level

487 **Table S1:** Set of 14 species sampled for the selective pressure analysis. Using Ensembl 92 (Yates *et al.*,
488 2016), a dataset of genomes representative of (i) vertebrate outgroup clades, or (ii) variations in
489 placental morphology in metatherian and eutherian mammals. For each clade, genomes were chosen
490 based on genome coverage for downstream homology searching. 'Clade' refers to the taxonomic group
491 of each included species. 'Species' denotes the included species, by their common name. 'Version'
492 denotes the genome assembly version included in this analysis. 'Genome Quality' refers to the coverage
493 and assembly level of each species included in this analysis.

494

495

496 **Supplementary Table S2: Example of three functionally related proteins under positive**
497 **selection on stem eutherian lineage**

Family	Gene Name	lnL	p2	w2	Positions in the alignment predicted to be positively selected.
PTHR13211	WRAP53	-10149.383	0.04821	37.80743	72, 88, 114, 225, 253, 260, 261, 331, 423, 480, 493, 506, 510, 513, 522, 528
PTHR12066	TERT	-36003.667	0.02302	954.86770	121, 122, 140, 166, 197, 508, 878, 1020, 1110
PTHR14487	ACD	-15296.106	0.10315	30.62227	138, 143, 148, 178, 185, 200, 202, 206, 208, 209, 214, 269, 278, 296, 298, 314, 347, 363, 368, 379, 390, 394, 395, 412, 414, 450, 470, 474, 524, 530, 532, 533, 545, 548, 561, 571, 575, 586, 685, 698

498 **Table S2:** The panther family ID and common gene names are provided for a set of 3 proteins
499 extracted to illustrate the cases of positive selection identified. The lnL value associated with
500 the fit of the codeml model (PAML) to the data are provided as are the associated proportion of
501 sites (p2) that have the corresponding w2 (or Dn/Ds ratio). The sites estimated to be positively
502 selected are given in the final column, these are numbered as per aligned codon position.
503