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Abstract

We describe a genome-wide analytical approach, SNP and Haplotype Regional Heritability
Mapping (SNHap-RHM), that provides regional estimates of the heritability across locally
defined regions in the genome. This approach utilises relationship matrices that are based on
sharing of SNP and haplotype alleles at local haplotype blocks delimited by recombination
boundaries in the genome. We implemented the approach on simulated data and show that
the haplotype-based regional GRMs capture variation that is complementary to that captured
by SNP-based regional GRMs, and thus justifying the fitting of the two GRMs jointly in a single
analysis (SNHap-RHM). SNHap-RHM captures regions in the genome contributing to the
phenotypic variation that existing genome-wide analysis methods may fail to capture. We
further demonstrate that there are real benefits to be gained from this approach by applying
it to real data from about 20,000 individuals from the Generation Scotland: Scottish Family
Health Study. We analysed height and major depressive disorder (MDD). We identified seven
genomic regions that are genome-wide significant for height, and three regions significant at
a suggestive threshold (p-value < 1 X 107> ) for MDD. These significant regions have genes
mapped to within 400kb of them. The genes mapped for height have been reported to be
associated with height in humans. Similarly, those mapped for MDD have been reported to
be associated with major depressive disorder and other psychiatry phenotypes. The results
show that SNHap-RHM presents an exciting new opportunity to analyse complex traits by
allowing the joint mapping of novel genomic regions tagged by either SNPs or haplotypes,

potentially leading to the recovery of some of the “missing” heritability.

Keywords: MDD; height; haplotypes; regional heritability mapping; missing heritability; rare

variation; genome-wide analysis
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Author Summary

In untangling the genetic contribution to observed phenotype differences, situations can arise
where causative variants might be tagged by haplotypes and not in linkage disequilibrium
with individual SNPs. This scenario is likely for relatively newly arisen and rarer variants. Here,
we propose a regional heritability method, SNHap-RHM, that jointly fits haplotype-based and
SNP-based genomic relationship matrices (GRMs) to capture genomic regions harbouring rare
variants that the SNP-based GRMs might miss. By analysing ~20,000 Scottish individuals, we
show by simulation that the two GRMs are very specific to the type of variant effects they can
capture; — the haplotype-based GRMs specifically target haplotype effects which are mostly
missed by SNP-based GRMs and vice versa. Applying the method to height and major
depressive disorder led to the uncovering of regions in the genome that harbour genes
associated with those traits. These results are uniquely important because first they confirm
that effects tagged by haplotypes may be missed by conventional SNP-based methods.
Secondly, our method, SNHap-RHM, presents an exciting new opportunity to analyse complex
traits by allowing the joint mapping of genomic regions tagged by either SNPs or haplotypes,

potentially leading to the recovery of some of the “missing” heritability.
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Introduction

Estimates of the genetic component of complex trait variation using genotyped SNPs
led to the conclusion that a proportion of the heritability of complex traits is still unexplained
or “missing” (1,2). Full sequence data will contain all the variants that account for all the
heritability of complex traits (3). Moreover, some of these true causal variants may be rare
(4) and therefore may be in incomplete linkage disequilibrium (LD) with genotyped SNPs (5).
Thus, some of the “missing” heritability may be “hidden” in rare variants whose effects are
difficult to capture because of lack of statistical power. There is, therefore, some benefit to
be gained in terms of improving the heritability estimates and uncovering gene variants
involved in the control of traits by fitting genome-wide analytical models that adequately

capture the combined effects of rare genetic variants (6,7).

In light of this, we proposed a genome-wide analytical approach that draws its
theoretical basis from the genome-based restricted maximum likelihood (GREML) approach
(1,2,8-10) which utilises both local and genome-wide relationship matrices to provide
regional estimates of the heritability across locally defined regions in the genome (11,12). This
regional heritability analysis can capture the combined effect of SNPs in a region, and thus
small effect variants may be detectable. However, the analysis only captures effects

associated with common SNPs present on genotyping chips.

Haplotypes may provide a better strategy to capture genomic relationships amongst
individuals in the presence of causal rare variants. Although rare variants are not in LD with
genotyped variants and thus are difficult to capture in conventional GWAS, these rare
variants, may be in LD with some haplotypes and thus can be captured using haplotype

methods. Compared with genotyped SNPs, capturing haplotype effects may offer an

4
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88  advantage because haplotypes can be functional units (13). Therefore, haplotype effects may
89 reflect the combined effects of closely linked cis-acting causal variants (14) and using
90 haplotypes could provide real benefit over SNPs in recovering some of the “missing”
91 heritability and identifying novel trait-associated variants. Therefore, we extended the SNP-
92  based regional heritability analysis further by incorporating haplotypes in addition to SNPs in
93  the calculation of the regional GRMs used in the analysis (15). This approach includes two
94  regional GRMs and divides the genome into windows based on local haplotype blocks

95  delimited by recombination boundaries.

96 This paper further explores the properties of both the SNP-based and the haplotype-
97  based regional heritability mapping (SNP-RHM and Hap-RHM respectively). We hypothesise
98 and show by simulation that the Hap-RHM complements existing SNP-RHM analytical
99  approaches by capturing regional effects in the genome that existing SNP-based methods fail
100  to capture. This leads us to propose a mapping strategy that jointly utilises SNP and haplotype
101  GRMs in a single analysis called SNHap-RHM. We then confirm the utility of this approach by
102  applying it to real data obtained from about 20,000 individuals from the Generation Scotland:
103  Scottish Family Health Study (GS: SFHS) (16). We analysed two phenotypes: height and major
104  depressive disorder (MDD). The aim was to uncover novel genetic loci that may affect these

105 traits and improve the estimates of the genetic components of the variation in these traits.

106 Results

107 Overview of methods

108 We have shown previously that regional GREML analysis (Regional Heritability

109  Mapping or RHM) using fixed region sizes in the genome is a suitable mapping method for
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110 finding local genetic effects (11). The conventional RHM model fits two genomic relationship
111 matrices (GRMs) in the analyses to map genetic loci that affect trait variation: a local GRM
112 (rGRM) calculated using SNPs located in the region and a genome-wide GRM (gwGRM)
113  calculated from SNPs outside the region. We have since extended this conventional regional
114  heritability analysis to incorporate haplotypes in the calculation of the local GRM and have
115  successfully implemented this in a simulation study (15). This study, like our previous (15),
116  utilises a regional heritability model that breaks the genome into naturally defined regions by
117  delimiting them by recombination hotspots. Two types of regional heritability models are
118  then fitted in turn to the phenotypes. One model (SNP-RHM) uses SNPs to estimate local
119  genetic relationships between study individuals, and the other model (Hap-RHM) estimates

120  local genetic relationships amongst individuals using haplotypes.

121 We first explored the two models in detail using a simulation study in which we
122 simulated 20 replicates of five phenotypes using data from about 20,000 individuals of the
123 GS: SFHS cohort. We then performed a regional heritability analysis that jointly fitted the SNP
124  and the haplotype GRMs in an approach that we termed SNP and Haplotype Regional
125  Heritability Mapping (SNHap-RHM). An overview of SNHap-RHM is shown in Fig 1. We finally
126  applied SNHap-RHM to height and major depressive disorder (MDD) phenotypes of the GS:

127 SFHS.

128 Further details of the models, phenotype simulations and GS: SFHS dataset are

129  presented in the materials and methods section of the manuscript.

130  Simulation study: SNP-RHM, Hap-RHM and SNHap-RHM
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131 We performed a regional heritability analysis that fits two GRMs (one for the region
132 and one for the rest of the genome) per region across multiple genomic regions delimited by
133  recombination hotspots (where the estimated recombination frequency exceeds ten
134  centiMorgans per Megabase (10cM/Mb)). This recombination threshold resulted in a total of
135 48,772 regions across the genome. We tested two types of regional heritability models, SNP-
136 RHM and Hap-RHM, on 20 replicates of five simulated phenotypes. In SNP-RHM, the regional
137  matrix is derived from SNP genotypes whereas in Hap-RHM the regional matrix is derived
138  from haplotypes. The phenotypes were simulated to be determined by 20 regional QTL effects
139  and genome-wide polygenic effects. The regional QTL effects of the five phenotypes were
140  simulated using SNPs as causal variants for two of them and haplotypes for the remaining

141  three as described in the methods section.

142 A likelihood ratio test (LRT) was used to test the null hypothesis, Ho: that the genetic
143 variance explained by the region is not significant, against the alternative hypothesis, Hi: that
144  the region accounts for a significant proportion of the phenotypic variance. A large LRT
145  statistic is evidence against the null hypothesis, and therefore means the region explains a

146  significant proportion of the phenotypic variance.

147 The LRTs averaged over the 20 replicates of the five phenotypes are shown in Fig 2.
148  The figure shows plots of average LRT for the QTL regions and ten adjacent regions (5 to each
149  side). The results show that both models detected the simulated regional effects at the
150 genome-wide significance level (LRT = 23.9) (p-value < 1.02 x 107°, Bonferroni correction
151  for testing 48,772 regions) and can capture true causal loci in traits with different genetic
152  architectures. The LRTs were higher on average for the SNP-based model (SNP-RHM) than the

153  haplotype-based model (Hap-RHM). This could be because for Hap-RHM, the genome-wide
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154  GRM which is a SNP-based GRM does not tag any of the background haplotype effects that
155  are outside any one particular region being analysed, and thus the residual variance may be

156 inflated by the other haplotype QTLs which downwardly impact the LRTs.

157 We provide further investigation of the results from the simulation in the supporting
158 information (S1 Text). For both analysis models, we have presented detailed results of the
159  relationships between the LRT statistics, region size, variance estimates and allele frequencies
160  (S3-S10Figs). We observed that the longer haplotype blocks had many SNPs (and hence many,
161  many haplotypes, up to 14,000 in some blocks), and this impacted the estimation of the
162  simulated regional variance (S8 Fig). We, therefore, performed a hybrid-Hap-RHM analysis
163  thatrestricted the natural haplotype block sizes to 20 or fewer SNPs per haplotype block. This
164  hybrid-Hap-RHM was to investigate whether the regional variance is well captured by Hap-
165 RHM when shorter haplotypes are used. The hybrid-Hap-RHM underestimated the regional
166  variance for larger regions but did not offer any discernible improvement in the LRT statistics
167  (S9 Fig). The relationship between region size and estimated variance was different between
168  the Hap-RHM and hybrid-Hap-RHM, while we observed a similar relationship between LRTs

169  and the region size.

170 Both SNP-RHM and Hap-RHM fail to capture the simulated regional effects when the
171 simulated phenotype has a genetic architecture that does not match the analysis model, i.e.,
172 SNP or haplotype (Fig 3 and S1 Fig). These figures show the results for the situation where the
173  SNP QTL phenotypes were analysed with the haplotype-based model (Hap-RHM) and the
174  haplotype QTL phenotypes were analysed with the SNP-based model (SNP-RHM). Both

175 models fail to detect the simulated effects in such situations, therefore, showing that the
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176  models complement each other since they capture effects due to different types of genetic

177  variants (i.e., tagged by SNPs or haplotypes).

178 To confirm that two models are complementary and independent of each other, we
179  implemented SNHap-RHM that fits the regional SNP and haplotype GRMs jointly, on a
180 replicate of each of the five simulated phenotypes. The significance of regional effects was
181  tested with an LRT with two degrees of freedom. The results are shown in Fig 4 and confirm
182  that the two models are complementary since even when we fitted jointly the two regional

183  matrices (SNP and Haplotype-based), we can still capture the simulated effects.

184  SNHap-RHM analysis of height and MDD in GS: SFHS

185 The heritability estimates for height and MDD in the GS: SFHS dataset, calculated using
186  the whole-genome GRM, were 81.4% (0.92) and 13.8% (1.35) respectively. There were no
187  overlaps between regions identified as significant (tested with an LRT with one degree of
188  freedom) by the haplotype and SNP-based models for either of the two traits (S2 Fig). This
189  reaffirms our hypothesis tested by simulation that the Hap-RHM is complementary to SNP-

190 RHM in mapping associated genomic loci.

191 The regional heritability results for height and MDD are presented as plots of minus-
192  Logl0 of the LRT p-values (Figs 5 and 6). The plots for the SNHap-RHM, SNP-RHM and Hap-

193  RHM analyses are shown.

194 The results for height show that nine regions passed the Bonferroni-corrected
195 genome-wide significance threshold in the analysis using SNP-RHM. No region was genome-
196  wide significant for height when analysed with Hap-RHM. Furthermore, seven of the nine

197  associated regions still come up as genome-wide significant when SNPs and haplotypes in
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198  those regions are analysed jointly using SNHap-RHM. There are GWAS reported genes that lie

199  in or are within 400kb of these regions (S1 Table).

200 For MDD, no region passed the Bonferroni-corrected genome-wide significance
201  threshold for the analysis done with the SNP-based and haplotype-based regional heritability
202 models (Fig 6). Three regions passed the suggestive significance threshold at p-value <
203 1 x 107" for Hap-RHM analysis of MDD. A further nine regions were significant at p-value <
204 5x 107" for the haplotype-based analysis, and one region for the SNP-based analysis (S2
205 Table). Figure 6 shows that when the two local GRMs are fitted jointly using SNHap-RHM, the
206  genomic regions associated with MDD can still be mapped. The associated regions mapped
207 by the haplotype-based model for MDD contain genes reported by GWAS to be associated
208  with several psychiatry phenotypes (Fig 6 and S2 Table). The most strongly associated region
209  was within 400kb of the DCC gene. This gene is part of the NETRIN1 pathway, which has been
210 reported to be associated with major depressive disorder in two GWAS samples (GS: SFHS
211 and Psychiatric Genomics Consortium) (17). Zeng et al. (17) used a SNP-RHM guided by
212 pathway analysis (to first uncover pathway association and then localise DCC within the
213  pathway) to show the DCC association with major depressive disorder. The second most

214  strongly associated region was on chromosome 8, and this region had no gene mapped to it.

215 A linear mixed effects model was used to test for association of the SNPs within the
216  suggestive significant region identified by the haplotype-based model on chromosome 3 for
217  MDD. The model tested for association of SNPs by fitting their allelic dosages individually in a
218  regression model and fitting a GRM to account for relatedness of individuals. The region on
219 chromosome 3 was chosen in this example because there is a psychiatric phenotype

220  associated gene, MYRIP (18), mapped to it, unlike the DCC region which has the gene outside

10
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221 the region. The results are shown in Table 1. Five SNPs within this region are nominally
222 significant at p-value < 0.05. Four out of these five SNPs confer about 2% increased risk of
223 the disease each. These four SNPs lie within the MYRIP gene sequence. The MYRIP gene is
224  expressed in the brain (19). A SNP (rs9985399) in this gene is reported to be associated with
225  brain processing speed in the Lothian birth cohort (18). Brain processing speed is an important
226  cognitive function that is compromised in psychiatric illness such as schizophrenia and
227  depression, and old age. Also, a SNP (rs6599077) in the MYRIP gene region is associated with
228  sleep duration (20). Sleep durations outside the normal range (both short sleep and long
229  sleep) is significantly associated with increased risk of depression (21-24). The MYRIP gene is
230 also reported to have a role in insulin secretion (25) and low insulin levels have been linked

231  to depression (26—28).

232  Table 1. SNP-based association test of MDD in the MYRIP gene region.

SNP information Major Depressive Disorder association

SNP ID Chr Pos MAF OR Log (OR) SE (logOR) p
rs9842160 3 39844703 0.14 0.97 -0.030 0.013 0.02
rs9858242 3 39847606 0.19 1.02 0.025 0.011 0.03
rs1599902 3 39954674 0.41 1.02 0.019 0.009 0.04
rs7618607 3 39947936 0.41 1.02 0.019 0.009 0.04
rs9860916 3 39944942 0.41 1.02 0.019 0.009 0.04

The columns are the SNP ID, chromosome, genome position of SNP, minor allele frequency, odds ratio,
log of odds ratio, standard error of log odds ratio and association p-value.

233

234  Comparison with published GWAS SNPs

235 For both traits, the SNPs in the regions that were significant at p-value < 5 x 107>

236  were compared to SNPs reported in the GWAS catalogue (29) to be significant for the two

11
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237  traits. The GWAS catalogue was accessed on the 15% of January 2021. The results are
238 presented in Table 2. The SNP-based and haplotype-based models identified 1,380 and 45
239  SNPsrespectively for height, and 78 and 495 SNPs respectively for MDD taking all SNPs within
240  haplotype blocks significant at p-value < 5 x 1075. Out of the 1,380 SNPs identified for height
241 by the SNP-based model, 57 SNPs spanning 20 haplotype regions were in common with

242  published GWAS results for height.

243  Table 2. Comparison of SNPs within significant regions identified by both models and published
244  GWAS results for height and MDD.

Number of SNPS Number of overlapping SNPS
Trait SNP-RHM Hap-RHM pubGWAS SNP-RHM & SNP-RHM & Hap-RHM &
Hap-RHM pubGWAS pubGWAS
Height 1380 45 4960 0 57 0
MDD 78 495 1815 0 0 0

The columns are the name of trait, number of SNPS in regions identified by SNP-RHM and HAP-RHM with
p-value < 5 x 107> and SNPS in published GWAS (pubGWAS) for the traits, and the number of SNPS
overlapping between the three.

245

246 Discussion

247 We have proposed and implemented a genome-wide analytical method that analyses
248  genomic regions using a regional heritability model (11). We have since extended this method
249  to include haplotypes by fitting a regional haplotype-based GRM (Hap-RHM) and redefined
250 genomic regions in our analysis to be delimited by recombination hotspots generated using
251  HapMap Phase 11 (15,30). In this study, we build on our previous regional heritability methods
252 by exploring the properties of the SNP and haplotype-based regional heritability mapping
253  models by simulation and demonstrate that the two variance components fitted are largely

254  independent of each other (S2 Fig). The novelty in this study is that we show that the two

12
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255  regional matrices fitted in SNP-RHM and Hap-RHM capture two different kinds of effects in
256  terms of genetic architecture, and thus the two variance components can be fitted jointly (by
257  fitting the SNP and haplotype regional matrices together) in a joint marker regional

258 heritability mapping procedure that we call SNHap-RHM.

259 We hypothesised that the Hap-RHM would complement the SNP-RHM. We
260 investigated this hypothesis in a simulation study in which we simulated 20 replicates each of
261  two types of SNP QTL phenotypes and three types of haplotype QTL phenotypes. The results
262  show that the two heritability models can capture the effects of causal variants within
263  genomic loci associated with the phenotype analysed. The results also show that the two
264  models are specific about the type of causal effect they can capture, therefore, providing
265  support for the hypothesis that haplotype-based regional heritability models will complement
266  SNP-based regional heritability models. We provide further support for this hypothesis by
267  fitting the two GRMs jointly and showing (using an LRT with two degrees of freedom) that we

268  can still capture the simulated effects and real effects from real data.

269 We applied SNHap-RHM to height and MDD phenotypes from the Generation
270  Scotland: Scottish Family Health Study. Again, we draw comparisons between the effects
271  captured by the SNP-RHM and the Hap-RHM. The SNP-RHM identified more Bonferroni-
272 corrected genome-wide (GW) significant regions (p-value < 1.02 X 107°) for height
273  compared to MDD. Fifty-seven of the SNPs identified for height by the SNP-RHM have been
274  reported by other studies to be associated with height. These SNPs spanned 20 genomic
275  regions in the GS: SFHS cohort. Height is a highly polygenic trait with many common genetic
276  variants accounting for most of the additive genetic variation (31). These common genetic

277  variants may be in LD with genotyped SNPs on SNP chips (these chips are disproportionately

13
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278  enriched for common SNPs). Therefore, the SNP-based regional heritability model is better

279  suited for capturing SNP loci in height compared to MDD.

280 MDD is a very heterogeneous phenotype, and thus every MDD case could have a set
281  of genetic and non-genetic risk factors exclusive to them (32). These unique genetic risk
282  factors will mean that a lot of the genetic variants driving the disease will be rare at the
283  population level. Three genomic regions were identified for MDD by the haplotype-based
284  regional heritability model at the suggestive level, p-value < 1 X 107°. The Hap-RHM works
285  well for MDD because MDD is believed to be driven by rare genetic variants, and the model
286  can capture rare genetic variants. The haplotype model can capture rare variants because of
287 the LD between rare variants (both typed and untyped) and the flanking variants that
288  aggregate to form the haplotypes within the genomic regions. There were no overlaps
289  between regions identified by the Hap-RHM and SNP-RHM for each trait, which again
290  supports the hypothesis that the two models complement each other in mapping associated

291 loci.

292 In both traits, the top significant regions we mapped at p-value < 5 X 10~° had genes
293  mapped to those regions or within 400kb of those regions. For height, these genes have been
294  reported to be associated with height in humans (33—39). For MDD, these genes have been
295 reported to be associated with major depressive disorder and other psychiatry phenotypes
296  (17,18,40-43). In one of such regions for MDD, five SNPs within the region are individually
297  significantly associated with MDD at the nominal level (p-value < 0.05). Four of these SNPs
298 lie within the gene sequence of MYRIP, and they each confer 2% disease risk. A conventional
299  GWAS analysis would have missed these nominally associated SNPs because they will not

300 reach the suggestive significance threshold, let alone genome-wide (GW) significance.
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301 However, analysing these SNPs within the region as haplotypes allowed us to detect the
302 combined effect of these SNPs in the region at a suggestive-significance level even with our
303 relatively small sample size compared to recent genome-wide association studies of MDD:

304 322,580 (44) and 480,359 (43).

305 The current study's primary strength is that we show the ability of SNHap-RHM to
306 incorporate SNP and haplotype information jointly to map genomic regions that affect
307 complex traits. This gives SNHap-RHM a uniquely useful role to play in the future of complex
308 traits analysis. The plummeting costs of whole-genome resequencing (45) have shifted
309 research focus in GWA studies towards sequence data analysis (46). Although whole-genome
310 sequence data analysis allows incorporating all the genetic variants that drive the phenotypic
311  variation, there may still be some variants whose individual effects may be too small to be
312 picked up in a conventional GWA analysis. However, regionally analysing sequence
313 information can help overcome this because multiple small-effect variants in a region can add
314  up to a substantial regional effect that can be captured by a regional SNP GRM or tagged by
315 a haplotype GRM. Moreover, by defining haplotype blocks using recombination hotspots,
316  whole-genome information can be summarised naturally without setting an arbitrary number
317 of SNPs, and that facilitates integration and comparison across studies. More so, regional
318 heritability analysis of sequence data would be an efficient way to deal with the burden of

319  multiple testing, which has long been a problem of conventional GWAS.

320 One limitation of the current study is the computation burden of the analyses, which
321  necessitates the pre-correction of the phenotypes with the whole-genome GRM before
322  performing SNHap-RHM. This was a leave-one-chromosome-out step involving 22 separate

323 GREML analyses, each fitting a whole-genome GRM that excluded SNPs from one
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324  chromosome (47). For our sample of about 20,000 individuals, the precorrection step reduced
325 the computation time needed to perform GREML analysis at each region by approximately
326  33% (15 minutes) and used about 20% (16 gigabytes) less memory. Although this was done
327 tospeed up the analysis, the precorrection step was used as an approximation to account for
328 the background polygenic effects of genetic markers outside each region; this would have
329 been about 48,772 separate GREMLs to account for each region. Also, due to the two degrees
330 of freedom test applied in SNHap-RHM, we observed a slight drop in the significance of the
331  associated regions in both height and MDD when SNHap-RHM was applied to those traits.
332  One option would be to use a less stringent test for SNHap-RHM, effectively testing regions
333 assuming only one degree of freedom so that if only one of the variance components
334  significantly contributed to the phenotypic variance the region would be identified for

335 subsequent formal testing of the individual variance components.

336 Finally, although this study thoroughly evaluates the robustness of SNP and Haplotype
337 RHM using simulation and demonstrates the utility of SNHap-RHM in real phenotype analysis,
338  seeking replication in other cohorts will improve our understanding and, more importantly,

339 demonstrate that the analysis is portable across studies and genotyping platforms.

320 Conclusion

341 We have implemented a regional heritability analysis and undertaken analyses of
342 regions in the genome delimited by recombination boundaries and shown by simulation that
343  haplotype-based GRMs can capture genetic variance that may be missed by conventional
344  SNP-based GRMs. We then applied this method in the analysis of real phenotype data from
345  GS: SFHS. Again, we show that the haplotype-based regional heritability model uncovers

346  associations in regions of the genome that explain genetic variance missed by the SNP-based
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347 heritability model. In light of this, we further showed that regional effects can still be captured
348 when the two regional GRMs (SNP and haplotype-based) are fitted jointly: an analytical
349 procedure we termed SNHap-RHM. This SNHap-RHM presents an exciting new opportunity
350 to analyse complex traits by allowing the joint mapping of novel genomic regions tagged by
351  either SNPs or haplotypes, potentially leading to the recovery of some of the “missing”

352  heritability.

353 Materials and Methods

354 Ethics Statement

355  Ethical approval for the GS: SFHS study was obtained from the Tayside Committee on Medical

356  Research Ethics (on behalf of the National Health Service).

357 The general statistical setting of a regional heritability analysis

358 Consider a vector y of phenotype values with length n, the linear mixed-effects model

359 for fitting the effects of genomic region i and background polygenic markers is given as:
360 y=Xp+Wu; +Zu, +e

361  where y is a vector of phenotypes, X is a design matrix of fixed effects, and B is a vector of
362 fixed effects, W; is a design matrix relating phenotype measures to genetic markers in region
363 i and u; is a vector of random genetic effects due to region i assumed to be multivariate
364  normal, MVN(O, aﬁiLui). L,, is a relationship matrix calculated using markers (SNPs or
365 haplotypes) in region i: calculated in the subsequent sections as G for the SNP and H for the
366 haplotype-based models. Z is a design matrix for background polygenic effects of markers

367  outside the region i and u, is a vector of random polygenic effect of genetic markers excluded
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368  from region i, assumed to be multivariate normal, MVN(O, aﬁbBub). B, is a relationship
369  matrix calculated using the markers outside the region i: calculated in the subsequent section
370 inthesamewayas G . And e is a vector of residual effects assumed to be multivariate normal,

371 MVN(0, c2I). I is an identity matrix.

372 Under the model, the vector of phenotypes y is assumed to be normally distributed,

373  N(XB,V) where the variance is
374 V = 0f Ly, + 05, By, + 021
375 SNP-RHM: SNP-based regional heritability model

376 A SNP-based regional heritability analysis was first reported by Nagamine et al. (11).
377  The regional heritability analysis approach we employ here differs from the analysis done by
378 Nagamine et al. (11) in the way the regions are defined. That analysis defined local regions by
379  breaking the genome into smaller user-defined windows of p SNPs, which overlapped by g

380 SNPs. Here, however, we define regions based on recombination boundaries in the genome.

381 The regional heritability model fits two genetic relationship matrices (GRMs): one local
382  GRM for the region and a whole-genome GRM for the remaining SNPs in the genome that are
383  outside the region. The GRMs are genomic relatedness matrices calculated as the weighted
384  proportion of the local or genome-wide autosomal SNPs shared identity by state (IBS)
385 between pairs of individuals. The SNP IBS matrices are calculated as follows, following the

386 second scaling factor proposed by VanRaden (48)

387 G=——
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388 where mis the total number of r local or b background autosomal SNPs, and M is a matrix of
389 genotype codes for the sampled individuals centred by loci means and normalised by the

390 standard deviation of each locus. M is calculated as follows for individual i at locus j

(xij — 2pj)

M, =—d “TJ7
Y +\/ 2pj(1 —Pj)

391

392 where x;; is the genotype code at locus j for individual i and takes the values 0, 1 and 2 for
393  AA, Aa and aa genotypes respectively, p; is the frequency of allele ‘@’ at locus j. The SNP-

394  based relationship for individuals i and k is therefore calculated as follows

1 m Xi: —20:)(x,: — 2D;
395 G = — X (xij — 2p)) Cexj — 2p5)
m j=1 2p;i(1—pj)

396 Hap-RHM: Haplotype-based regional heritability model

397 The haplotype-based regional heritability model follows theoretically from the SNP-
398 based analysis and utilises haplotypes instead of SNPs as the genetic markers for the regional
399 analysis. The analysis fits two GRMs, a haplotype-based regional GRM and a SNP-based
400 background genome-wide GRM. The haplotype-based GRM is similar to the SNP-based GRM
401 defined in the previous section. For a locally defined region (haplotype block) containing h

402  haplotype variants, the haplotype-based kinship for individuals i and k is calculated as follows

1 h d:: —2p)(d.: — 2p:
403 Hik =Ele 1( ij p})( kj p})
]:

ij(l - Pj)

404  where d;; is the diplotype code (coded as the number of copies of haplotype j) for individual
405 i and takes the values O, 1 and 2 for the h.h;, h.h;, h;h; diplotypes respectively where
406  haplotype t is any haplotype other than haplotype j, i.e. t # j, p; is the haplotype frequency

407  for haplotype j.
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408 Phenotype simulations

409 Five phenotypes were simulated using available genotypic information of 20,032
410 individuals from the Generation Scotland: Scottish Family Health Study (16). A total of 593,932
411  genotyped SNPs were used, and missing genotypes were filled in by imputation. A total of
412 555,091 SNPs remained after a QC that removed SNPs of MAF < 0.01 and SNPs that were out

413  of Hardy-Weinberg equilibrium at p-value < 0.000001.

414 The five phenotypes were simulated to have a total variance of 1. This total is
415  composed of 0.6 environmental (residual) variance and genetic variance of 0.4. The genetic
416  variance was partitioned into two components, a polygenic variance of 0.3 and a total QTL
417  variance of 0.1 (20 QTLs, each explaining a variance of 0.005). A common polygenic variance
418  was simulated for all five phenotypes from 20,000 markers randomly selected across the
419 genome. The polygenic variance was simulated to be normally distributed with zero mean

420 and variance of 0.3.

421 For each phenotype, 20 regions (haplotype blocks) were randomly selected, one on
422  each autosome (except chromosomes 6 and 8 because of the unusually high LD in the MHC
423  regions on chromosome 6 and a large inversion on chromosome 8 (49)), to simulate
424  quantitative trait loci (QTL). This gave a total of 20 QTLs for each phenotype. The regions were
425 delimited by natural boundaries: recombination hotspots where the estimated
426  recombination frequency exceeds ten centiMorgans per Megabase (10cM/Mb) with the
427  estimated recombination frequency between boundaries being less than ten centiMorgans
428  per Megabase (10cM/Mb) based on the Genome Reference Consortium Human Build 37 (50).
429  This recombination threshold resulted in a total of 48,772 regions across the genome. The
430 number and type of marker used to simulate the QTL are what defined the five phenotypes.
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431  Thefive phenotypes are, a 1-SNP QTL within the haplotype block, a multiple-SNP (5 SNPs) QTL
432  within the haplotype block, two types of 1-haplotype QTL within the haplotype block (taking
433  either a common or a rare haplotype as causal) and multiple (5) haplotype QTL within the

434  haplotype block. Details of these phenotypes are described below.

435 For the haplotype QTL phenotypes, a haplotype block is treated as a single genetic
436  locus having multiple alleles. Each haplotype variant within a block is considered as an allele
437  of that locus. Each study individual will carry two alleles, or have a diplotype, for each locus
438  or haplotype block. The genotype data used to simulate the phenotypes were phased using
439  SHAPEIT2 (51) to produce the haplotypes for study individuals. The multiple haplotype QTL
440 phenotypes were simulated by randomly sampling two rare haplotypes and three common
441  haplotypes within each haplotype block to give five haplotypes per block. The two types of 1-
442  haplotype QTL phenotypes were simulated by randomly sampling a rare haplotype per
443  haplotype block for one type and for the other type a common haplotype was randomly
444  sampled within each haplotype block. S10 Fig gives an indication of the frequencies for the
445  rare (0.00002 to 0.036) and common haplotype (0.008 to 0.906) randomly sampled to
446  simulate the phenotypes. There is a slight overlap between the frequencies for rare and
447  common haplotypes because the regions had already been randomly selected before
448  proceeding to randomly select rare and common haplotypes in those regions. Which means

449  whatis rare in one region may be common in another.

450 The individual marker contribution to the polygenic effect and the QTL effects were

451  calculated as follows

452 of = 2p;(1—p;)g}
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453

454  where sz is the contribution of a marker to the QTL or polygenic variance, g; is the effect of
455  a SNP j or haplotype j randomly sampled to have polygenic or QTL effect, p; is the frequency
456  of haplotype j or the effect allele of the SNP j. For the single marker QTL phenotypes, each
457  QTL explained a variance of 0.005. For the multiple marker QTL phenotypes, each causal
458  variant explained the same variance, with the effects scaled to account for LD in the region
459  so each QTL locus explained a variance of 0.005. For the multiple haplotype QTL effects, the

460 haplotype effects were scaled relative to the inverse of their frequency to give a total variance

461  explained by the region of 0.005.

462 Common environmental effects were randomly sampled for the five phenotypes from
463  anormal distribution N(0,52) where o2 is 0.6. This, together with a genetic variance of 0.4,
464 gave a total variance of 1 for each phenotype. The final simulated phenotype for an

465 individual i was then calculated as follows

20000 20
466 y(single markers per QTL region); = Z xijgj + Z Xijgj + e
j=1 j=1
20000 20 5
467 y(multiple markers per QTL region); = Z xijgj + Z Xijg; + e
j=1 1=1 j=1

468  where x;; is the number of copies of the effect allele of SNP j for individual i (for haplotypes,
469  thisis defined as d;;; the number of copies of haplotype j for individual i) and g; is the effect
470  of haplotype j or SNP j. Twenty replicates were analysed for each of the five phenotypes with

471  adifferent set of QTL markers sampled for each replicate.
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472 Analysis of simulated data

473 The five simulated phenotypes were analysed using the two models, the SNP-based
474  regional heritability model (SNP-RHM for the SNP QTL phenotypes) and the haplotype-based
475  regional heritability model (Hap-RHM for the haplotype QTL phenotypes). To test the
476  analytical models' specificity, we applied Hap-RHM to SNP QTL phenotypes and SNP-RHM to
477  the haplotype QTL phenotypes. We also performed a Hap-RHM analysis in which the units of
478  analysis in the haplotype blocks were restricted to regions of 20 or fewer SNPs per haplotype
479  block. This was because we observed that longer haplotype blocks had many SNPs (and hence
480 many, many haplotypes, up to 14,000 in some blocks), and this impacted the estimation of
481  the simulated regional effect. The hybrid Hap-RHM, therefore, investigates whether the
482  regional effect is well captured by the haplotype-based model when shorter haplotypes are

483 used.

484 We estimated the regional genetic variance and polygenic variance using restricted
485  maximum likelihood (REML). For each simulated phenotype, we analysed 220 regions in total
486  to map the 20 simulated QTLs. This involved analysing the region containing the QTL and ten
487  adjacent regions (five in either direction). In this way, we limit the analysis to the regions in
488  the genome with simulated effects, thereby reducing computation time considerably. Also,
489 by analysing neighbouring regions, we are able to explore the precision of estimates of the
490 location of regional effects. We assessed the significance of a region using the Likelihood Ratio
491  Test (LRT). The genome-wide significance threshold was calculated to be LRT = 23.9 (p-value

492 < 1.02 x 107°) using a Bonferroni correction for testing 48,772 regions.
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493 Also, we selected one replicate for each simulated phenotype and performed a
494  regional heritability analysis that jointly fitted the SNP and the haplotype GRM in an approach

495  that we termed SNP and Haplotype Regional Heritability Mapping (SNHap-RHM).

496 @GS: SFHS Data

497  Genotyping, quality control and phasing of Generation Scotland: Scottish

498  Family Health Study dataset

499 The data from the Generation Scotland: Scottish Family Health Study (GS: SFHS)
500 comprised 23,960 participants recruited from Scotland (16,52). The DNA from about 20,032
501  of the participants had been genotyped using the lllumina HumanOmniExpressExome8v1-2_A

502  chip (~700K genome-wide SNP chip) (16). GRCh37 was used throughout.

503 Quality control excluded SNPs and individuals with a call rate less than 98%, SNPs with
504 minor allele frequency (MAF) less than 1% and SNPs that were out of Hardy-Weinberg
505 equilibrium (p-value < 0.000001). A total of 555,091 autosomal SNPs passed quality control
506 for downstream analysis. Phasing of the GS: SFHS data was done using SHAPEIT2 (51). Best
507 guess haplotypes were used. Haplotype blocks were defined using recombination hotspots
508  with a recombination rate of 10cM/Mb inferred from the Reference Consortium Human Build

509 37 (50). Haplotypes variants within blocks were determined using the phased data.

510 Phenotype definition

511 MDD status for GS: SFHS participants was assigned following an initial mental health
512  screening questionnaire with the questions: "Have you ever seen anybody for emotional or

513  psychiatric problems?" or "Was there ever a time when you, or someone else, thought you
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514  should see someone because of the way you were feeling or acting?" Participants who
515 answered yes to one or both of the screening questions were further interviewed by the
516  Structured Clinical Interview for DSM-IV (SCID) (53). A total of 18,725 participants (2,603 MDD
517 cases and 16,122 controls) were retained for analysis for MDD. A total of 19,944 participants

518  from the GS: SFHS were analysed for height.

519 SNHap-RHM of MDD and Height

520 SNHap-RHM fits jointly, the two types of regional GRMs, SNP-based and haplotype-
521  based, in the analysis of phenotypes (Fig 1). We pre-corrected the phenotypes with the whole-
522 genome GRM before performing SNHap-RHM to speed up the GREML analysis of each block.
523  This pre-correction has previously been shown to speed the regional heritability analysis by
524  Shirali et al. (15). This is a leave-one-chromosome-out step (47), which involved 22 separate
525 GREML analyses each fitting a whole-genome GRM that excluded SNPs from one
526  chromosome. The residuals from the pre-correction step were then used in the SNHap-RHM
527  analysis. The models adjusted for sex, age, age?, and the first 20 principal components
528 calculated from the study participants' genomic relationship matrix (calculated using 555,091

529  autosomal SNPs).

530 The significance of a region was tested with a likelihood ratio test (LRT) with two
531 degrees of freedom which compared a model with three variance components fitted (the two
532  regional variances together with the residual variance) against a model with only the residual
533  variance component fitted. The individual regional variance components in all regions were
534  subsequently tested with an LRT with one degree of freedom which compared a model with
535 three variance components fitted against a model with two variance components fitted (one

536  regional variance component dropped from the model).
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537 The p-values obtained from the LRTs were used to generate genome-wide association
538 plots for each phenotype (equivalent to GWAS Manhattan plots). The genome-wide
539  significance threshold was calculated to be LRT = 23.9 (p-value < 1.02 X 107%) using a
540 Bonferroni correction for testing 48,772 regions. The suggestive significance threshold of a

541  region was set at an LRT = 19.5 (p-value < 1 X 1073).

sa2  Supporting information

543  S1 Text. Investigating the SNP-RHM and Hap-RHM with simulated phenotypes.

544  S1 Fig. Plots of average LRT statistics over replicates of QTL loci across the chromosomes for

545  the 20 simulations of each of the three haplotype QTL phenotypes.

546  S2 Fig. The two analysis models (SNP-RHM and Hap-RHM) are independent of each other in

547  the analysis of height, and Major depressive disorder

548  S3 Fig. Plots of LRT statistics against QTL region size for the 20 simulations (not averaged) of

549  each of the two SNP QTL phenotypes

550  S4 Fig. Plots of LRT statistic against QTL region size for the 20 simulations of each of the three

551  haplotype QTL phenotypes.

552 S5 Fig. Plots of LRT statistic against estimated regional variance for the 20 simulations of the

553  single SNP QTL phenotype.

554  S6 Fig. Plots of LRT statistic against estimated regional variance for the 20 simulations of each

555  of the three haplotype QTL phenotypes.

556  S7 Fig. Plots of region size against estimated regional variance for the 20 simulations of the

557  two SNP QTL phenotype.
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558 S8 Fig. Plots of region size against estimated regional variance for the 20 simulations of the

559 three haplotype QTL phenotype.

560 S9 Fig. Plots for the 1-rare haplotype QTL phenotype analysed using Hap-RHM (red points)

561 and a hybrid variant of the Hap-RHM (blue points).
562  S10 Fig. Plots of LRT statistic against QTL marker frequencies.
563 S1 Table. Top genomic regions identified by SNP/ haplotype-based model for Height.

564 S2 Table. Top genomic regions identified by SNP/ haplotype-based model for MDD.
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Fig 2. Plots of Likelihood ratio test (LRT) statistics at each QTL locus and 5 regions either side averaged for the 20
simulations of each of the five QTL phenotypes. Plot (i) is SNP QTL phenotypes analysed using the SNP-RHM and plot (ii) is
the haplotype QTL phenotypes analysed using the Hap-RHM. Both models can capture the simulated QTL effects for their
respective SNP and haplotype phenotypes.
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Fig 3. Plots of average LRT statistics over replicates of QTL loci across the chromosomes for the 20 simulations of each of the two SNP
QTL phenotypes. The red dashed lines are genome-wide significance threshold (for 48,772 regions) and the black dashed lines are
Bonferroni significance threshold (for 220 regions). The upper plot (i) is the 1-SNP QTL phenotype, and the lower plot (ii) is the multiple
SNP QTL phenotype. The two phenotypes are analysed using both the SNP based model (SNP-RHM) (blue points) and the Haplotype based

model (Hap-RHM) (red points). The Hap-RHM fails to capture the simulated effects for the SNP QTLs.
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Fig 5. The genome-wide evidence of haplotype block association for height. Analysis done with SNHap-RHM, SNP-RHM and Hap-RHM.
The points are plots of -log10 of the p-values of regions tested with the LRT for the regional GREML analyses. The green lines are the
Bonferroni-corrected genome-wide significance threshold and the red lines are the suggestive significance threshold calculated to be p-

value < 1 x107>. The top association hits at p-value < 5 X107 with genes located within the region are highlighted in blue for SNP-RHM
and red for the Hap-RHM.
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Fig 6. The genome-wide evidence of haplotype block association for Major Depressive Disorder. Analysis done with SNHap-RHM, SNP-
RHM and Hap-RHM. The points are plots of -log10 of the p-values of regions tested with the LRT for the regional GREML analyses. The
green lines are the Bonferroni-corrected genome-wide significance threshold and the red lines are the suggestive significance threshold
calculated to be p-value < 1 x107°>. The top association hits at p-value < 5 X10~> with genes located within the region are highlighted
in blue for SNP-RHM and red for the Hap-RHM.
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