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Abstract 21 

We describe a genome-wide analytical approach, SNP and Haplotype Regional Heritability 22 

Mapping (SNHap-RHM), that provides regional estimates of the heritability across locally 23 

defined regions in the genome. This approach utilises relationship matrices that are based on 24 

sharing of SNP and haplotype alleles at local haplotype blocks delimited by recombination 25 

boundaries in the genome. We implemented the approach on simulated data and show that 26 

the haplotype-based regional GRMs capture variation that is complementary to that captured 27 

by SNP-based regional GRMs, and thus justifying the fitting of the two GRMs jointly in a single 28 

analysis (SNHap-RHM). SNHap-RHM captures regions in the genome contributing to the 29 

phenotypic variation that existing genome-wide analysis methods may fail to capture. We 30 

further demonstrate that there are real benefits to be gained from this approach by applying 31 

it to real data from about 20,000 individuals from the Generation Scotland: Scottish Family 32 

Health Study. We analysed height and major depressive disorder (MDD). We identified seven 33 

genomic regions that are genome-wide significant for height, and three regions significant at 34 

a suggestive threshold (p-value < 1 × 10!" ) for MDD. These significant regions have genes 35 

mapped to within 400kb of them. The genes mapped for height have been reported to be 36 

associated with height in humans. Similarly, those mapped for MDD have been reported to 37 

be associated with major depressive disorder and other psychiatry phenotypes. The results 38 

show that SNHap-RHM presents an exciting new opportunity to analyse complex traits by 39 

allowing the joint mapping of novel genomic regions tagged by either SNPs or haplotypes, 40 

potentially leading to the recovery of some of the “missing” heritability.  41 

Keywords: MDD; height; haplotypes; regional heritability mapping; missing heritability; rare 42 

variation; genome-wide analysis 43 
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Author Summary 44 

In untangling the genetic contribution to observed phenotype differences, situations can arise 45 

where causative variants might be tagged by haplotypes and not in linkage disequilibrium 46 

with individual SNPs. This scenario is likely for relatively newly arisen and rarer variants.  Here, 47 

we propose a regional heritability method, SNHap-RHM, that jointly fits haplotype-based and 48 

SNP-based genomic relationship matrices (GRMs) to capture genomic regions harbouring rare 49 

variants that the SNP-based GRMs might miss. By analysing ~20,000 Scottish individuals, we 50 

show by simulation that the two GRMs are very specific to the type of variant effects they can 51 

capture; – the haplotype-based GRMs specifically target haplotype effects which are mostly 52 

missed by SNP-based GRMs and vice versa. Applying the method to height and major 53 

depressive disorder led to the uncovering of regions in the genome that harbour genes 54 

associated with those traits. These results are uniquely important because first they confirm 55 

that effects tagged by haplotypes may be missed by conventional SNP-based methods. 56 

Secondly, our method, SNHap-RHM, presents an exciting new opportunity to analyse complex 57 

traits by allowing the joint mapping of genomic regions tagged by either SNPs or haplotypes, 58 

potentially leading to the recovery of some of the “missing” heritability.  59 

 60 

 61 

 62 

 63 

 64 
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Introduction 65 

Estimates of the genetic component of complex trait variation using genotyped SNPs 66 

led to the conclusion that a proportion of the heritability of complex traits is still unexplained 67 

or “missing” (1,2). Full sequence data will contain all the variants that account for all the 68 

heritability of complex traits (3). Moreover, some of these true causal variants may be rare 69 

(4) and therefore may be in incomplete linkage disequilibrium (LD) with genotyped SNPs (5). 70 

Thus, some of the “missing” heritability may be “hidden” in rare variants whose effects are 71 

difficult to capture because of lack of statistical power. There is, therefore, some benefit to 72 

be gained in terms of improving the heritability estimates and uncovering gene variants 73 

involved in the control of traits by fitting genome-wide analytical models that adequately 74 

capture the combined effects of rare genetic variants (6,7).  75 

In light of this, we proposed a genome-wide analytical approach that draws its 76 

theoretical basis from the genome-based restricted maximum likelihood (GREML) approach 77 

(1,2,8–10) which utilises both local and genome-wide relationship matrices to provide 78 

regional estimates of the heritability across locally defined regions in the genome (11,12). This 79 

regional heritability analysis can capture the combined effect of SNPs in a region, and thus 80 

small effect variants may be detectable. However, the analysis only captures effects 81 

associated with common SNPs present on genotyping chips.  82 

Haplotypes may provide a better strategy to capture genomic relationships amongst 83 

individuals in the presence of causal rare variants. Although rare variants are not in LD with 84 

genotyped variants and thus are difficult to capture in conventional GWAS, these rare 85 

variants, may be in LD with some haplotypes and thus can be captured using haplotype 86 

methods. Compared with genotyped SNPs, capturing haplotype effects may offer an 87 
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advantage because haplotypes can be functional units (13). Therefore, haplotype effects may 88 

reflect the combined effects of closely linked cis-acting causal variants (14) and using 89 

haplotypes could provide real benefit over SNPs in recovering some of the “missing” 90 

heritability and identifying novel trait-associated variants. Therefore, we extended the SNP-91 

based regional heritability analysis further by incorporating haplotypes in addition to SNPs in 92 

the calculation of the regional GRMs used in the analysis (15). This approach includes two 93 

regional GRMs and divides the genome into windows based on local haplotype blocks 94 

delimited by recombination boundaries. 95 

This paper further explores the properties of both the SNP-based and the haplotype-96 

based regional heritability mapping (SNP-RHM and Hap-RHM respectively). We hypothesise 97 

and show by simulation that the Hap-RHM complements existing SNP-RHM analytical 98 

approaches by capturing regional effects in the genome that existing SNP-based methods fail 99 

to capture. This leads us to propose a mapping strategy that jointly utilises SNP and haplotype 100 

GRMs in a single analysis called SNHap-RHM. We then confirm the utility of this approach by 101 

applying it to real data obtained from about 20,000 individuals from the Generation Scotland: 102 

Scottish Family Health Study (GS: SFHS) (16). We analysed two phenotypes: height and major 103 

depressive disorder (MDD). The aim was to uncover novel genetic loci that may affect these 104 

traits and improve the estimates of the genetic components of the variation in these traits.  105 

Results  106 

Overview of methods 107 

We have shown previously that regional GREML analysis (Regional Heritability 108 

Mapping or RHM) using fixed region sizes in the genome is a suitable mapping method for 109 
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finding local genetic effects (11). The conventional RHM model fits two genomic relationship 110 

matrices (GRMs) in the analyses to map genetic loci that affect trait variation: a local GRM 111 

(rGRM) calculated using SNPs located in the region and a genome-wide GRM (gwGRM) 112 

calculated from SNPs outside the region. We have since extended this conventional regional 113 

heritability analysis to incorporate haplotypes in the calculation of the local GRM and have 114 

successfully implemented this in a simulation study (15). This study, like our previous (15), 115 

utilises a regional heritability model that breaks the genome into naturally defined regions by 116 

delimiting them by recombination hotspots. Two types of regional heritability models are 117 

then fitted in turn to the phenotypes. One model (SNP-RHM) uses SNPs to estimate local 118 

genetic relationships between study individuals, and the other model (Hap-RHM) estimates 119 

local genetic relationships amongst individuals using haplotypes.  120 

We first explored the two models in detail using a simulation study in which we 121 

simulated 20 replicates of five phenotypes using data from about 20,000 individuals of the 122 

GS: SFHS cohort. We then performed a regional heritability analysis that jointly fitted the SNP 123 

and the haplotype GRMs in an approach that we termed SNP and Haplotype Regional 124 

Heritability Mapping (SNHap-RHM). An overview of SNHap-RHM is shown in Fig 1. We finally 125 

applied SNHap-RHM to height and major depressive disorder (MDD) phenotypes of the GS: 126 

SFHS. 127 

Further details of the models, phenotype simulations and GS: SFHS dataset are 128 

presented in the materials and methods section of the manuscript.   129 

Simulation study: SNP-RHM, Hap-RHM and SNHap-RHM 130 
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We performed a regional heritability analysis that fits two GRMs (one for the region 131 

and one for the rest of the genome) per region across multiple genomic regions delimited by 132 

recombination hotspots (where the estimated recombination frequency exceeds ten 133 

centiMorgans per Megabase (10cM/Mb)). This recombination threshold resulted in a total of 134 

48,772 regions across the genome. We tested two types of regional heritability models, SNP-135 

RHM and Hap-RHM, on 20 replicates of five simulated phenotypes. In SNP-RHM, the regional 136 

matrix is derived from SNP genotypes whereas in Hap-RHM the regional matrix is derived 137 

from haplotypes. The phenotypes were simulated to be determined by 20 regional QTL effects 138 

and genome-wide polygenic effects. The regional QTL effects of the five phenotypes were 139 

simulated using SNPs as causal variants for two of them and haplotypes for the remaining 140 

three as described in the methods section. 141 

A likelihood ratio test (LRT) was used to test the null hypothesis, H0: that the genetic 142 

variance explained by the region is not significant, against the alternative hypothesis, H1: that 143 

the region accounts for a significant proportion of the phenotypic variance. A large LRT 144 

statistic is evidence against the null hypothesis, and therefore means the region explains a 145 

significant proportion of the phenotypic variance.  146 

The LRTs averaged over the 20 replicates of the five phenotypes are shown in Fig 2. 147 

The figure shows plots of average LRT for the QTL regions and ten adjacent regions (5 to each 148 

side). The results show that both models detected the simulated regional effects at the 149 

genome-wide significance level (LRT = 23.9) (p-value < 1.02	 × 10!#, Bonferroni correction 150 

for testing 48,772 regions) and can capture true causal loci in traits with different genetic 151 

architectures. The LRTs were higher on average for the SNP-based model (SNP-RHM) than the 152 

haplotype-based model (Hap-RHM). This could be because for Hap-RHM, the genome-wide 153 
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GRM which is a SNP-based GRM does not tag any of the background haplotype effects that 154 

are outside any one particular region being analysed, and thus the residual variance may be 155 

inflated by the other haplotype QTLs which downwardly impact the LRTs.  156 

We provide further investigation of the results from the simulation in the supporting 157 

information (S1 Text). For both analysis models, we have presented detailed results of the 158 

relationships between the LRT statistics, region size, variance estimates and allele frequencies 159 

(S3-S10 Figs). We observed that the longer haplotype blocks had many SNPs (and hence many, 160 

many haplotypes, up to 14,000 in some blocks), and this impacted the estimation of the 161 

simulated regional variance (S8 Fig). We, therefore, performed a hybrid-Hap-RHM analysis 162 

that restricted the natural haplotype block sizes to 20 or fewer SNPs per haplotype block. This 163 

hybrid-Hap-RHM was to investigate whether the regional variance is well captured by Hap-164 

RHM when shorter haplotypes are used. The hybrid-Hap-RHM underestimated the regional 165 

variance for larger regions but did not offer any discernible improvement in the LRT statistics 166 

(S9 Fig). The relationship between region size and estimated variance was different between 167 

the Hap-RHM and hybrid-Hap-RHM, while we observed a similar relationship between LRTs 168 

and the region size.  169 

Both SNP-RHM and Hap-RHM fail to capture the simulated regional effects when the 170 

simulated phenotype has a genetic architecture that does not match the analysis model, i.e., 171 

SNP or haplotype (Fig 3 and S1 Fig). These figures show the results for the situation where the 172 

SNP QTL phenotypes were analysed with the haplotype-based model (Hap-RHM) and the 173 

haplotype QTL phenotypes were analysed with the SNP-based model (SNP-RHM). Both 174 

models fail to detect the simulated effects in such situations, therefore, showing that the 175 
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models complement each other since they capture effects due to different types of genetic 176 

variants (i.e., tagged by SNPs or haplotypes).  177 

To confirm that two models are complementary and independent of each other, we 178 

implemented SNHap-RHM that fits the regional SNP and haplotype GRMs jointly, on a 179 

replicate of each of the five simulated phenotypes. The significance of regional effects was 180 

tested with an LRT with two degrees of freedom. The results are shown in Fig 4 and confirm 181 

that the two models are complementary since even when we fitted jointly the two regional 182 

matrices (SNP and Haplotype-based), we can still capture the simulated effects.  183 

SNHap-RHM analysis of height and MDD in GS: SFHS 184 

The heritability estimates for height and MDD in the GS: SFHS dataset, calculated using 185 

the whole-genome GRM, were 81.4% (0.92) and 13.8% (1.35) respectively. There were no 186 

overlaps between regions identified as significant (tested with an LRT with one degree of 187 

freedom) by the haplotype and SNP-based models for either of the two traits (S2 Fig). This 188 

reaffirms our hypothesis tested by simulation that the Hap-RHM is complementary to SNP-189 

RHM in mapping associated genomic loci.  190 

The regional heritability results for height and MDD are presented as plots of minus-191 

Log10 of the LRT p-values (Figs 5 and 6). The plots for the SNHap-RHM, SNP-RHM and Hap-192 

RHM analyses are shown.  193 

The results for height show that nine regions passed the Bonferroni-corrected 194 

genome-wide significance threshold in the analysis using SNP-RHM. No region was genome-195 

wide significant for height when analysed with Hap-RHM. Furthermore, seven of the nine 196 

associated regions still come up as genome-wide significant when SNPs and haplotypes in 197 
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those regions are analysed jointly using SNHap-RHM. There are GWAS reported genes that lie 198 

in or are within 400kb of these regions (S1 Table).  199 

For MDD, no region passed the Bonferroni-corrected genome-wide significance 200 

threshold for the analysis done with the SNP-based and haplotype-based regional heritability 201 

models (Fig 6). Three regions passed the suggestive significance threshold at p-value <202 

1 × 10!" for Hap-RHM analysis of MDD. A further nine regions were significant at p-value <203 

5 × 10!" for the haplotype-based analysis, and one region for the SNP-based analysis (S2 204 

Table). Figure 6 shows that when the two local GRMs are fitted jointly using SNHap-RHM, the 205 

genomic regions associated with MDD can still be mapped. The associated regions mapped 206 

by the haplotype-based model for MDD contain genes reported by GWAS to be associated 207 

with several psychiatry phenotypes (Fig 6 and S2 Table). The most strongly associated region 208 

was within 400kb of the DCC gene. This gene is part of the NETRIN1 pathway, which has been 209 

reported to be associated with major depressive disorder in two GWAS samples (GS: SFHS 210 

and Psychiatric Genomics Consortium) (17). Zeng et al. (17) used a SNP-RHM guided by 211 

pathway analysis (to first uncover pathway association and then localise DCC within the 212 

pathway) to show the DCC association with major depressive disorder. The second most 213 

strongly associated region was on chromosome 8, and this region had no gene mapped to it. 214 

A linear mixed effects model was used to test for association of the SNPs within the 215 

suggestive significant region identified by the haplotype-based model on chromosome 3 for 216 

MDD. The model tested for association of SNPs by fitting their allelic dosages individually in a 217 

regression model and fitting a GRM to account for relatedness of individuals. The region on 218 

chromosome 3 was chosen in this example because there is a psychiatric phenotype 219 

associated gene, MYRIP (18), mapped to it, unlike the DCC region which has the gene outside 220 
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the region. The results are shown in Table 1. Five SNPs within this region are nominally 221 

significant at p-value < 0.05.	 Four out of these five SNPs confer about 2% increased risk of 222 

the disease each. These four SNPs lie within the MYRIP gene sequence. The MYRIP gene is 223 

expressed in the brain (19). A SNP (rs9985399) in this gene is reported to be associated with 224 

brain processing speed in the Lothian birth cohort (18). Brain processing speed is an important 225 

cognitive function that is compromised in psychiatric illness such as schizophrenia and 226 

depression, and old age. Also, a SNP (rs6599077) in the MYRIP gene region is associated with 227 

sleep duration (20). Sleep durations outside the normal range (both short sleep and long 228 

sleep) is significantly associated with increased risk of depression (21–24). The MYRIP gene is 229 

also reported to have a role in insulin secretion (25) and low insulin levels have been linked 230 

to depression (26–28).    231 

Table 1. SNP-based association test of MDD in the MYRIP gene region.  232 

SNP information Major Depressive Disorder association 

SNP ID Chr Pos MAF OR Log (OR) SE (logOR) p 

rs9842160 3 39844703 0.14 0.97 -0.030 0.013 0.02 

rs9858242 3 39847606 0.19 1.02 0.025 0.011 0.03 

rs1599902 3 39954674 0.41 1.02 0.019 0.009 0.04 

rs7618607 3 39947936 0.41 1.02 0.019 0.009 0.04 

rs9860916 3 39944942 0.41 1.02 0.019 0.009 0.04 

 

The columns are the SNP ID, chromosome, genome position of SNP, minor allele frequency, odds ratio, 

log of odds ratio, standard error of log odds ratio and association p-value. 
 233 

Comparison with published GWAS SNPs  234 

For both traits, the SNPs in the regions that were significant at p-value < 5 × 10!" 235 

were compared to SNPs reported in the GWAS catalogue (29) to be significant for the two 236 
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traits. The GWAS catalogue was accessed on the 15th of January 2021. The results are 237 

presented in Table 2. The SNP-based and haplotype-based models identified 1,380 and 45 238 

SNPs respectively for height, and 78 and 495 SNPs respectively for MDD taking all SNPs within 239 

haplotype blocks significant at p-value < 5 × 10!". Out of the 1,380 SNPs identified for height 240 

by the SNP-based model, 57 SNPs spanning 20 haplotype regions were in common with 241 

published GWAS results for height. 242 

Table 2. Comparison of SNPs within significant regions identified by both models and published 243 

GWAS results for height and MDD.   244 

 Number of SNPS  Number of overlapping SNPS 

Trait SNP-RHM Hap-RHM pubGWAS SNP-RHM & 

Hap-RHM 

SNP-RHM & 

pubGWAS 

Hap-RHM & 

pubGWAS 

Height 1380 45 4960 0 57 0 

MDD 78 495 1815 0 0 0 

 
The columns are the name of trait, number of SNPS in regions identified by SNP-RHM and HAP-RHM with 

p-value < "	 × %&!" and SNPS in published GWAS (pubGWAS) for the traits, and the number of SNPS 

overlapping between the three.   
 245 

Discussion 246 

We have proposed and implemented a genome-wide analytical method that analyses 247 

genomic regions using a regional heritability model (11). We have since extended this method 248 

to include haplotypes by fitting a regional haplotype-based GRM (Hap-RHM) and redefined 249 

genomic regions in our analysis to be delimited by recombination hotspots generated using 250 

HapMap Phase II (15,30). In this study, we build on our previous regional heritability methods 251 

by exploring the properties of the SNP and haplotype-based regional heritability mapping 252 

models by simulation and demonstrate that the two variance components fitted are largely 253 

independent of each other (S2 Fig). The novelty in this study is that we show that the two 254 
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regional matrices fitted in SNP-RHM and Hap-RHM capture two different kinds of effects in 255 

terms of genetic architecture, and thus the two variance components can be fitted jointly (by 256 

fitting the SNP and haplotype regional matrices together) in a joint marker regional 257 

heritability mapping procedure that we call SNHap-RHM.  258 

We hypothesised that the Hap-RHM would complement the SNP-RHM. We 259 

investigated this hypothesis in a simulation study in which we simulated 20 replicates each of 260 

two types of SNP QTL phenotypes and three types of haplotype QTL phenotypes. The results 261 

show that the two heritability models can capture the effects of causal variants within 262 

genomic loci associated with the phenotype analysed. The results also show that the two 263 

models are specific about the type of causal effect they can capture, therefore, providing 264 

support for the hypothesis that haplotype-based regional heritability models will complement 265 

SNP-based regional heritability models. We provide further support for this hypothesis by 266 

fitting the two GRMs jointly and showing (using an LRT with two degrees of freedom) that we 267 

can still capture the simulated effects and real effects from real data. 268 

We applied SNHap-RHM to height and MDD phenotypes from the Generation 269 

Scotland: Scottish Family Health Study. Again, we draw comparisons between the effects 270 

captured by the SNP-RHM and the Hap-RHM. The SNP-RHM identified more Bonferroni-271 

corrected genome-wide (GW) significant regions (p-value < 1.02 × 10!#) for height 272 

compared to MDD. Fifty-seven of the SNPs identified for height by the SNP-RHM have been 273 

reported by other studies to be associated with height. These SNPs spanned 20 genomic 274 

regions in the GS: SFHS cohort. Height is a highly polygenic trait with many common genetic 275 

variants accounting for most of the additive genetic variation (31). These common genetic 276 

variants may be in LD with genotyped SNPs on SNP chips (these chips are disproportionately 277 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.08.02.454788doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454788
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

enriched for common SNPs). Therefore, the SNP-based regional heritability model is better 278 

suited for capturing SNP loci in height compared to MDD.  279 

MDD is a very heterogeneous phenotype, and thus every MDD case could have a set 280 

of genetic and non-genetic risk factors exclusive to them (32). These unique genetic risk 281 

factors will mean that a lot of the genetic variants driving the disease will be rare at the 282 

population level. Three genomic regions were identified for MDD by the haplotype-based 283 

regional heritability model at the suggestive level, p-value < 1 × 10!". The Hap-RHM works 284 

well for MDD because MDD is believed to be driven by rare genetic variants, and the model 285 

can capture rare genetic variants. The haplotype model can capture rare variants because of 286 

the LD between rare variants (both typed and untyped) and the flanking variants that 287 

aggregate to form the haplotypes within the genomic regions. There were no overlaps 288 

between regions identified by the Hap-RHM and SNP-RHM for each trait, which again 289 

supports the hypothesis that the two models complement each other in mapping associated 290 

loci.  291 

In both traits, the top significant regions we mapped at p-value < 5 × 10!" had genes 292 

mapped to those regions or within 400kb of those regions. For height, these genes have been 293 

reported to be associated with height in humans (33–39). For MDD, these genes have been 294 

reported to be associated with major depressive disorder and other psychiatry phenotypes 295 

(17,18,40–43). In one of such regions for MDD, five SNPs within the region are individually 296 

significantly associated with MDD at the nominal level (p-value < 0.05). Four of these SNPs 297 

lie within the gene sequence of MYRIP, and they each confer 2% disease risk. A conventional 298 

GWAS analysis would have missed these nominally associated SNPs because they will not 299 

reach the suggestive significance threshold, let alone genome-wide (GW) significance. 300 
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However, analysing these SNPs within the region as haplotypes allowed us to detect the 301 

combined effect of these SNPs in the region at a suggestive-significance level even with our 302 

relatively small sample size compared to recent genome-wide association studies of MDD: 303 

322,580 (44) and 480,359 (43).  304 

The current study's primary strength is that we show the ability of SNHap-RHM to 305 

incorporate SNP and haplotype information jointly to map genomic regions that affect 306 

complex traits. This gives SNHap-RHM a uniquely useful role to play in the future of complex 307 

traits analysis. The plummeting costs of whole-genome resequencing (45) have shifted 308 

research focus in GWA studies towards sequence data analysis (46). Although whole-genome 309 

sequence data analysis allows incorporating all the genetic variants that drive the phenotypic 310 

variation, there may still be some variants whose individual effects may be too small to be 311 

picked up in a conventional GWA analysis. However, regionally analysing sequence 312 

information can help overcome this because multiple small-effect variants in a region can add 313 

up to a substantial regional effect that can be captured by a regional SNP GRM or tagged by 314 

a haplotype GRM. Moreover, by defining haplotype blocks using recombination hotspots, 315 

whole-genome information can be summarised naturally without setting an arbitrary number 316 

of SNPs, and that facilitates integration and comparison across studies. More so, regional 317 

heritability analysis of sequence data would be an efficient way to deal with the burden of 318 

multiple testing, which has long been a problem of conventional GWAS. 319 

One limitation of the current study is the computation burden of the analyses, which 320 

necessitates the pre-correction of the phenotypes with the whole-genome GRM before 321 

performing SNHap-RHM. This was a leave-one-chromosome-out step involving 22 separate 322 

GREML analyses, each fitting a whole-genome GRM that excluded SNPs from one 323 
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chromosome (47). For our sample of about 20,000 individuals, the precorrection step reduced 324 

the computation time needed to perform GREML analysis at each region by approximately 325 

33% (15 minutes) and used about 20% (16 gigabytes) less memory. Although this was done 326 

to speed up the analysis, the precorrection step was used as an approximation to account for 327 

the background polygenic effects of genetic markers outside each region; this would have 328 

been about 48,772 separate GREMLs to account for each region. Also, due to the two degrees 329 

of freedom test applied in SNHap-RHM, we observed a slight drop in the significance of the 330 

associated regions in both height and MDD when SNHap-RHM was applied to those traits. 331 

One option would be to use a less stringent test for SNHap-RHM, effectively testing regions 332 

assuming only one degree of freedom so that if only one of the variance components 333 

significantly contributed to the phenotypic variance the region would be identified for 334 

subsequent formal testing of the individual variance components. 335 

Finally, although this study thoroughly evaluates the robustness of SNP and Haplotype 336 

RHM using simulation and demonstrates the utility of SNHap-RHM in real phenotype analysis, 337 

seeking replication in other cohorts will improve our understanding and, more importantly, 338 

demonstrate that the analysis is portable across studies and genotyping platforms. 339 

Conclusion 340 

We have implemented a regional heritability analysis and undertaken analyses of 341 

regions in the genome delimited by recombination boundaries and shown by simulation that 342 

haplotype-based GRMs can capture genetic variance that may be missed by conventional 343 

SNP-based GRMs. We then applied this method in the analysis of real phenotype data from 344 

GS: SFHS. Again, we show that the haplotype-based regional heritability model uncovers 345 

associations in regions of the genome that explain genetic variance missed by the SNP-based 346 
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heritability model. In light of this, we further showed that regional effects can still be captured 347 

when the two regional GRMs (SNP and haplotype-based) are fitted jointly: an analytical 348 

procedure we termed SNHap-RHM. This SNHap-RHM presents an exciting new opportunity 349 

to analyse complex traits by allowing the joint mapping of novel genomic regions tagged by 350 

either SNPs or haplotypes, potentially leading to the recovery of some of the “missing” 351 

heritability.  352 

Materials and Methods 353 

Ethics Statement 354 

Ethical approval for the GS: SFHS study was obtained from the Tayside Committee on Medical 355 

Research Ethics (on behalf of the National Health Service). 356 

The general statistical setting of a regional heritability analysis  357 

Consider a vector ) of phenotype values with length *, the linear mixed-effects model 358 

for fitting the effects of genomic region + and background polygenic markers is given as:  359 

, = ./ +1$2$ + 32% + 4 360 

where ) is a vector of phenotypes, 5 is a design matrix of fixed effects, and 6 is a vector of 361 

fixed effects, 7& is a design matrix relating phenotype measures to genetic markers in region 362 

+ and 8& is a vector of random genetic effects due to region + assumed to be multivariate 363 

normal, 9:;<0, >'!
( ?)"@. ?)"  is a relationship matrix calculated using markers (SNPs or 364 

haplotypes) in region +: calculated in the subsequent sections as A for the SNP and	B for the 365 

haplotype-based models. C is a design matrix for background polygenic effects of markers 366 

outside the region + and 8* is a vector of random polygenic effect of genetic markers excluded 367 
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from region +, assumed to be multivariate normal, 9:;<0, >'#
( D)$@. D)$  is a relationship 368 

matrix calculated using the markers outside the region +: calculated in the subsequent section 369 

in the same way as	A	. And E is a vector of residual effects assumed to be multivariate normal, 370 

9:;(0, >+(G).	G is an identity matrix. 371 

Under the model, the vector of phenotypes ) is assumed to be normally distributed, 372 

;(56, I) where the variance is 373 

: = >'!
( ?)" + >'#

( D)$ + >+
(G 374 

SNP-RHM: SNP-based regional heritability model 375 

A SNP-based regional heritability analysis was first reported by Nagamine et al. (11). 376 

The regional heritability analysis approach we employ here differs from the analysis done by 377 

Nagamine et al. (11) in the way the regions are defined. That analysis defined local regions by 378 

breaking the genome into smaller user-defined windows of J SNPs, which overlapped by K 379 

SNPs. Here, however, we define regions based on recombination boundaries in the genome.  380 

The regional heritability model fits two genetic relationship matrices (GRMs): one local 381 

GRM for the region and a whole-genome GRM for the remaining SNPs in the genome that are 382 

outside the region. The GRMs are genomic relatedness matrices calculated as the weighted 383 

proportion of the local or genome-wide autosomal SNPs shared identity by state (IBS) 384 

between pairs of individuals. The SNP IBS matrices are calculated as follows, following the 385 

second scaling factor proposed by VanRaden (48)  386 

L =
99′
N

 387 
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where N is the total number of	O local or	P background autosomal SNPs, and Q is a matrix of 388 

genotype codes for the sampled individuals centred by loci means and normalised by the 389 

standard deviation of each locus. Q is calculated as follows for individual + at locus R 390 

9$, =
(S$, − 2J,)

U2J,(1 − J,)
 391 

where S$,  is the genotype code at locus R for individual + and takes the values 0, 1 and 2 for 392 

AA, Aa and aa genotypes respectively, J, 	is the frequency of allele ‘a’ at locus R. The SNP-393 

based relationship for individuals + and V is therefore calculated as follows 394 

L$- =
1
N
×W

(S$, − 2J,)(S-, − 2J,)
2J,(1 − J,)

.

,/0
 395 

Hap-RHM: Haplotype-based regional heritability model 396 

The haplotype-based regional heritability model follows theoretically from the SNP-397 

based analysis and utilises haplotypes instead of SNPs as the genetic markers for the regional 398 

analysis. The analysis fits two GRMs, a haplotype-based regional GRM and a SNP-based 399 

background genome-wide GRM. The haplotype-based GRM is similar to the SNP-based GRM 400 

defined in the previous section. For a locally defined region (haplotype block) containing ℎ 401 

haplotype variants, the haplotype-based kinship for individuals + and V is calculated as follows 402 

Y$- =
1
ℎ
×W

(Z$, − 2J,)(Z-, − 2J,)
2J,(1 − J,)

1

,/0
 403 

where Z$,  is the diplotype code (coded as the number of copies of haplotype R) for individual 404 

+ and takes the values 0, 1 and 2 for the ℎ2ℎ2 , ℎ2ℎ, , ℎ,ℎ,  diplotypes respectively where 405 

haplotype	[ is any haplotype other than haplotype	R, i.e. [ ≠ R, J, 	is the haplotype frequency 406 

for haplotype R. 407 
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Phenotype simulations 408 

Five phenotypes were simulated using available genotypic information of 20,032 409 

individuals from the Generation Scotland: Scottish Family Health Study (16). A total of 593,932 410 

genotyped SNPs were used, and missing genotypes were filled in by imputation. A total of 411 

555,091 SNPs remained after a QC that removed SNPs of MAF < 0.01 and SNPs that were out 412 

of Hardy-Weinberg equilibrium at p-value < 0.000001.  413 

The five phenotypes were simulated to have a total variance of 1. This total is 414 

composed of 0.6 environmental (residual) variance and genetic variance of 0.4. The genetic 415 

variance was partitioned into two components, a polygenic variance of 0.3 and a total QTL 416 

variance of 0.1 (20 QTLs, each explaining a variance of 0.005). A common polygenic variance 417 

was simulated for all five phenotypes from 20,000 markers randomly selected across the 418 

genome. The polygenic variance was simulated to be normally distributed with zero mean 419 

and variance of 0.3.  420 

For each phenotype, 20 regions (haplotype blocks) were randomly selected, one on 421 

each autosome (except chromosomes 6 and 8 because of the unusually high LD in the MHC 422 

regions on chromosome 6 and a large inversion on chromosome 8 (49)), to simulate 423 

quantitative trait loci (QTL). This gave a total of 20 QTLs for each phenotype. The regions were 424 

delimited by natural boundaries: recombination hotspots where the estimated 425 

recombination frequency exceeds ten centiMorgans per Megabase (10cM/Mb) with the 426 

estimated recombination frequency between boundaries being less than ten centiMorgans 427 

per Megabase (10cM/Mb) based on the Genome Reference Consortium Human Build 37 (50). 428 

This recombination threshold resulted in a total of 48,772 regions across the genome. The 429 

number and type of marker used to simulate the QTL are what defined the five phenotypes. 430 
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The five phenotypes are, a 1-SNP QTL within the haplotype block, a multiple-SNP (5 SNPs) QTL 431 

within the haplotype block, two types of 1-haplotype QTL within the haplotype block (taking 432 

either a common or a rare haplotype as causal) and multiple (5) haplotype QTL within the 433 

haplotype block. Details of these phenotypes are described below. 434 

For the haplotype QTL phenotypes, a haplotype block is treated as a single genetic 435 

locus having multiple alleles. Each haplotype variant within a block is considered as an allele 436 

of that locus. Each study individual will carry two alleles, or have a diplotype, for each locus 437 

or haplotype block. The genotype data used to simulate the phenotypes were phased using 438 

SHAPEIT2 (51) to produce the haplotypes for study individuals. The multiple haplotype QTL 439 

phenotypes were simulated by randomly sampling two rare haplotypes and three common 440 

haplotypes within each haplotype block to give five haplotypes per block. The two types of 1-441 

haplotype QTL phenotypes were simulated by randomly sampling a rare haplotype per 442 

haplotype block for one type and for the other type a common haplotype was randomly 443 

sampled within each haplotype block. S10 Fig gives an indication of the frequencies for the 444 

rare (0.00002 to 0.036) and common haplotype (0.008 to 0.906) randomly sampled to 445 

simulate the phenotypes. There is a slight overlap between the frequencies for rare and 446 

common haplotypes because the regions had already been randomly selected before 447 

proceeding to randomly select rare and common haplotypes in those regions. Which means 448 

what is rare in one region may be common in another. 449 

The individual marker contribution to the polygenic effect and the QTL effects were 450 

calculated as follows 451 

>,
( = 2J,(1 − J,)],

( 452 
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], = ^
>,
(

2J,(1 − J,)
 453 

where >,
( is the contribution of a marker to the QTL or polygenic variance, ],  is the effect of 454 

a SNP R or haplotype R randomly sampled to have polygenic or QTL effect, J,  is the frequency 455 

of haplotype R or the effect allele of the SNP	R. For the single marker QTL phenotypes, each 456 

QTL explained a variance of 0.005. For the multiple marker QTL phenotypes, each causal 457 

variant explained the same variance, with the effects scaled to account for LD in the region 458 

so each QTL locus explained a variance of 0.005. For the multiple haplotype QTL effects, the 459 

haplotype effects were scaled relative to the inverse of their frequency to give a total variance 460 

explained by the region of 0.005. 461 

Common environmental effects were randomly sampled for the five phenotypes from 462 

a normal distribution ;(0, >+() where >+( is 0.6. This, together with a genetic variance of 0.4, 463 

gave a total variance of 1 for each phenotype. The final simulated phenotype for an 464 

individual	+ was then calculated as follows  465 

,(_+*]`4	NaOV4O_	J4O	bcd	O4]+e*)$ = W S$,],

(3333

,/0
+WS$,], + 4$ ,

(3

,/0
 466 

,(N2`[+J`4	NaOV4O_	J4O	bcd	O4]+e*)$ = W S$,],

(3333

,/0
+WWS$,],

"

,/0
+ 4$ ,

(3

4/0
 467 

where S$,  is the number of copies of the effect allele of SNP	R for individual + (for haplotypes, 468 

this is defined as Z$,; the number of copies of haplotype R for individual +) and ],  is the effect 469 

of haplotype	R or SNP	R. Twenty replicates were analysed for each of the five phenotypes with 470 

a different set of QTL markers sampled for each replicate.   471 
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Analysis of simulated data 472 

The five simulated phenotypes were analysed using the two models, the SNP-based 473 

regional heritability model (SNP-RHM for the SNP QTL phenotypes) and the haplotype-based 474 

regional heritability model (Hap-RHM for the haplotype QTL phenotypes). To test the 475 

analytical models' specificity, we applied Hap-RHM to SNP QTL phenotypes and SNP-RHM to 476 

the haplotype QTL phenotypes. We also performed a Hap-RHM analysis in which the units of 477 

analysis in the haplotype blocks were restricted to regions of 20 or fewer SNPs per haplotype 478 

block. This was because we observed that longer haplotype blocks had many SNPs (and hence 479 

many, many haplotypes, up to 14,000 in some blocks), and this impacted the estimation of 480 

the simulated regional effect. The hybrid Hap-RHM, therefore, investigates whether the 481 

regional effect is well captured by the haplotype-based model when shorter haplotypes are 482 

used.  483 

We estimated the regional genetic variance and polygenic variance using restricted 484 

maximum likelihood (REML). For each simulated phenotype, we analysed 220 regions in total 485 

to map the 20 simulated QTLs. This involved analysing the region containing the QTL and ten 486 

adjacent regions (five in either direction). In this way, we limit the analysis to the regions in 487 

the genome with simulated effects, thereby reducing computation time considerably. Also, 488 

by analysing neighbouring regions, we are able to explore the precision of estimates of the 489 

location of regional effects. We assessed the significance of a region using the Likelihood Ratio 490 

Test (LRT). The genome-wide significance threshold was calculated to be LRT = 23.9 (p-value 491 

< 1.02	 × 10!#) using a Bonferroni correction for testing 48,772 regions. 492 
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Also, we selected one replicate for each simulated phenotype and performed a 493 

regional heritability analysis that jointly fitted the SNP and the haplotype GRM in an approach 494 

that we termed SNP and Haplotype Regional Heritability Mapping (SNHap-RHM).  495 

GS: SFHS Data 496 

Genotyping, quality control and phasing of Generation Scotland: Scottish 497 

Family Health Study dataset 498 

The data from the Generation Scotland: Scottish Family Health Study (GS: SFHS) 499 

comprised 23,960 participants recruited from Scotland (16,52). The DNA from about 20,032 500 

of the participants had been genotyped using the Illumina HumanOmniExpressExome8v1-2_A 501 

chip (~700K genome-wide SNP chip) (16). GRCh37 was used throughout. 502 

Quality control excluded SNPs and individuals with a call rate less than 98%, SNPs with 503 

minor allele frequency (MAF) less than 1% and SNPs that were out of Hardy-Weinberg 504 

equilibrium (p-value < 0.000001). A total of 555,091 autosomal SNPs passed quality control 505 

for downstream analysis. Phasing of the GS: SFHS data was done using SHAPEIT2 (51). Best 506 

guess haplotypes were used. Haplotype blocks were defined using recombination hotspots 507 

with a recombination rate of 10cM/Mb inferred from the Reference Consortium Human Build 508 

37 (50). Haplotypes variants within blocks were determined using the phased data. 509 

Phenotype definition 510 

MDD status for GS: SFHS participants was assigned following an initial mental health 511 

screening questionnaire with the questions: "Have you ever seen anybody for emotional or 512 

psychiatric problems?" or "Was there ever a time when you, or someone else, thought you 513 
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should see someone because of the way you were feeling or acting?" Participants who 514 

answered yes to one or both of the screening questions were further interviewed by the 515 

Structured Clinical Interview for DSM-IV (SCID) (53). A total of 18,725 participants (2,603 MDD 516 

cases and 16,122 controls) were retained for analysis for MDD. A total of 19,944 participants 517 

from the GS: SFHS were analysed for height. 518 

SNHap-RHM of MDD and Height 519 

SNHap-RHM fits jointly, the two types of regional GRMs, SNP-based and haplotype-520 

based, in the analysis of phenotypes (Fig 1). We pre-corrected the phenotypes with the whole-521 

genome GRM before performing SNHap-RHM to speed up the GREML analysis of each block. 522 

This pre-correction has previously been shown to speed the regional heritability analysis by 523 

Shirali et al. (15). This is a leave-one-chromosome-out step (47), which involved 22 separate 524 

GREML analyses each fitting a whole-genome GRM that excluded SNPs from one 525 

chromosome. The residuals from the pre-correction step were then used in the SNHap-RHM 526 

analysis. The models adjusted for sex, age, age2, and the first 20 principal components 527 

calculated from the study participants' genomic relationship matrix (calculated using 555,091 528 

autosomal SNPs). 529 

The significance of a region was tested with a likelihood ratio test (LRT) with two 530 

degrees of freedom which compared a model with three variance components fitted (the two 531 

regional variances together with the residual variance) against a model with only the residual 532 

variance component fitted. The individual regional variance components in all regions were 533 

subsequently tested with an LRT with one degree of freedom which compared a model with 534 

three variance components fitted against a model with two variance components fitted (one 535 

regional variance component dropped from the model).  536 
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The p-values obtained from the LRTs were used to generate genome-wide association 537 

plots for each phenotype (equivalent to GWAS Manhattan plots). The genome-wide 538 

significance threshold was calculated to be LRT = 23.9 (p-value < 1.02	 × 10!#) using a 539 

Bonferroni correction for testing 48,772 regions. The suggestive significance threshold of a 540 

region was set at an LRT = 19.5 (p-value < 1	 × 10!"). 541 

Supporting information 542 

S1 Text. Investigating the SNP-RHM and Hap-RHM with simulated phenotypes. 543 

S1 Fig. Plots of average LRT statistics over replicates of QTL loci across the chromosomes for 544 

the 20 simulations of each of the three haplotype QTL phenotypes. 545 

S2 Fig. The two analysis models (SNP-RHM and Hap-RHM) are independent of each other in 546 

the analysis of height, and Major depressive disorder 547 

S3 Fig. Plots of LRT statistics against QTL region size for the 20 simulations (not averaged) of 548 

each of the two SNP QTL phenotypes 549 

S4 Fig. Plots of LRT statistic against QTL region size for the 20 simulations of each of the three 550 

haplotype QTL phenotypes. 551 

S5 Fig. Plots of LRT statistic against estimated regional variance for the 20 simulations of the 552 

single SNP QTL phenotype. 553 

S6 Fig. Plots of LRT statistic against estimated regional variance for the 20 simulations of each 554 

of the three haplotype QTL phenotypes. 555 

S7 Fig. Plots of region size against estimated regional variance for the 20 simulations of the 556 

two SNP QTL phenotype. 557 
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S8 Fig. Plots of region size against estimated regional variance for the 20 simulations of the 558 

three haplotype QTL phenotype. 559 

S9 Fig. Plots for the 1-rare haplotype QTL phenotype analysed using Hap-RHM (red points) 560 

and a hybrid variant of the Hap-RHM (blue points). 561 

S10 Fig. Plots of LRT statistic against QTL marker frequencies. 562 

S1 Table. Top genomic regions identified by SNP/ haplotype-based model for Height. 563 

S2 Table. Top genomic regions identified by SNP/ haplotype-based model for MDD. 564 
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Fig 1. A Schema outlying SNHap-RHM 

Estimate relationship coefficients using haplotypes shared

• Relationship values between individuals are based on 
haplotypes shared and haplotype frequencies

• Although 1 and 16 may share SNP alleles they are 
unrelated at the haplotype level.

Genomic relationship coefficients based on expected proportion of SNP 

alleles shared

• Average proportion of marker alleles in common over all 
SNPs
• Only identical by state – not descent 
• Scale to give greater weight to rare alleles

Daly et al., (2001); Patil et al., (2001)

• Genome is broken into haplotype blocks delimited by 
recombination hotspots

• Haplotype – a set of linked SNP alleles in a haplotype block 
on same chromosome

• SNPs and haplotypes are used to construct regional 
relationship matrices.

SNP Haplotype Regional Heritability Mapping (SNHap-RHM)

genotypes

,…,

Phenotype = Fixed effects +++
Regional haplotype GRMRegional SNP GRM Genome-wide SNP GRM

SNHap-RHM Summary
• Use regions bounded by recombination hotspots
• Uses two regional GRMs and a genome-wide GRM
• Localizes regions with effect on phenotype
• Combined effect of rare or small effect variants may be detectable

12 2
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Fig 2. Plots of Likelihood ratio test (LRT) statistics at each QTL locus and 5 regions either side averaged for the 20 
simulations of each of the five QTL phenotypes. Plot (i) is SNP QTL phenotypes analysed using the SNP-RHM and plot (ii) is 
the haplotype QTL phenotypes analysed using the Hap-RHM. Both models can capture the simulated QTL effects for their 
respective SNP and haplotype phenotypes.

i. ii. 
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Fig 3. Plots of average LRT statistics over replicates of QTL loci across the chromosomes for the 20 simulations of each of the two SNP 
QTL phenotypes. The red dashed lines are genome-wide significance threshold (for 48,772 regions) and the black dashed lines are 
Bonferroni significance threshold (for 220 regions). The upper plot (i) is the 1-SNP QTL phenotype, and the lower plot (ii) is the multiple 
SNP QTL phenotype. The two phenotypes are analysed using both the SNP based model (SNP-RHM) (blue points) and the Haplotype based 
model (Hap-RHM) (red points). The Hap-RHM fails to capture the simulated effects for the SNP QTLs.

i.

ii.
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Fig 4. Joint analysis of the SNP and haplotype phenotypes using SNHap-RHM. The plot is an analysis of one replicate of each of the
simulated phenotypes. The LRT statistics are plotted over QTL loci across the chromosomes. The red dashed lines are genome-wide
significance threshold (for 48,772 regions) and the black dashed lines are Bonferroni significance threshold (for 220 regions).
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Fig 5. The genome-wide evidence of haplotype block association for height. Analysis done with SNHap-RHM, SNP-RHM and Hap-RHM. 
The points are plots of -log10 of the p-values of regions tested with the LRT for the regional GREML analyses. The green lines are the 
Bonferroni-corrected genome-wide significance threshold and the red lines are the suggestive significance threshold calculated to be p-
value < 1 ×10!". The top association hits at p-value < 5 ×10!" with genes located within the region are highlighted in blue for SNP-RHM 
and red for the Hap-RHM. 
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Fig 6. The genome-wide evidence of haplotype block association for Major Depressive Disorder. Analysis done with SNHap-RHM, SNP-
RHM and Hap-RHM. The points are plots of -log10 of the p-values of regions tested with the LRT for the regional GREML analyses. The 
green lines are the Bonferroni-corrected genome-wide significance threshold and the red lines are the suggestive significance threshold 
calculated to be p-value < 1 ×10!". The top association hits at p-value < 5 ×10!" with genes located within the region are highlighted 
in blue for SNP-RHM and red for the Hap-RHM. 
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