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Abstract

Recent advances in multiplexed single-cell transcriptomics experiments are facilitating the high-1

throughput study of drug and genetic perturbations. However, an exhaustive exploration of the2

combinatorial perturbation space is experimentally unfeasible, so computational methods are needed3

to predict, interpret, and prioritize perturbations. Here, we present the compositional perturbation4

autoencoder (CPA), which combines the interpretability of linear models with the flexibility of5

deep-learning approaches for single-cell response modeling. CPA encodes and learns transcriptional6

drug responses across different cell type, dose, and drug combinations. The model produces easy-to-7

interpret embeddings for drugs and cell types, which enables drug similarity analysis and predictions8

for unseen dosage and drug combinations. We show that CPA accurately models single-cell pertur-9

bations across compounds, doses, species, and time. We further demonstrate that CPA predicts10

combinatorial genetic interactions of several types, implying that it captures features that distin-11

guish different interaction programs. Finally, we demonstrate that CPA can generate in-silico 5,32912

missing genetic combination perturbations (97.6% of all possibilities) with diverse genetic interac-13

tions. We envision our model will facilitate efficient experimental design and hypothesis generation14

by enabling in-silico response prediction at the single-cell level, and thus accelerate therapeutic15

applications using single-cell technologies.16

Introduction17

Single-cell RNA-sequencing (scRNA-seq) profiles gene expression in millions of cells across tissues[1,18

2] and species[3]. Recently, novel technologies have been developed that extend these measure-19

ments to high-throughput screens (HTSs), which measure response to thousands of independent20

perturbations[4, 5]. These advances show promise for facilitating and thus accelerating drug development[6].21

HTSs applied at the single-cell level provide both comprehensive molecular phenotyping and capture22

heterogeneous responses, which otherwise could not be identified using traditional HTSs[4].23

While the development of high-throughput approaches such as “cellular hashing” [4, 7, 8] facil-24

itates scRNA-seq in multi-sample experiments at low cost, these strategies require expensive li-25

brary preparation[4], and do not easily scale to large numbers of perturbations. These shortcom-26
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ings become more apparent when exploring the effects of combination therapies[9–11] or genetic27

perturbations[5, 12, 13], where experimental screening of all possible combinations becomes infeasi-28

ble. While projects such as the Human Cell Atlas[14] aim to comprehensively map cellular states29

across tissues in a reproducible fashion, the construction of a similar atlas for the effects of pertur-30

bations on gene expression is impossible, due to the vast number of possibilities. Since brute-force31

exploration of the combinatorial search space is infeasible, it is necessary to develop computational32

tools to guide the exploration of the combinatorial perturbation space to nominate promising candi-33

date combination therapies in HTSs. A successful computational method for the navigation of the34

combinatorial space must be able to predict the behaviour of cells when subject to novel combinations35

of perturbations only measured separately in the original experiment. These data are referred to as36

Out-Of-Distribution (OOD) data. OOD prediction would enable the study of perturbations in the37

presence of different treatment doses [4, 15], combination therapies[8], multiple genetic knockouts[5],38

and changes across time[15].39

Recently, several computational approaches have been developed for predicting cellular responses40

to perturbations[16–20]. The first approach leverages mechanistic modeling [18, 19] to predict cell41

viability[19] or the abundance of a few selected proteins[18]. Although they are powerful at interpret-42

ing interactions, mechanistic models usually require longitudinal data (which is often unavailable in43

practice) and most do not scale to genome wide measurements to predict high-dimensional scRNA-44

seq data. Linear models[12, 21] do not suffer from these scalability issues, but have limited predictive45

power and are unable to capture nonlinear cell-type specific responses. In contrast, deep learning46

(DL) models do not face these limitations. Recently, DL methods have been used to model gene47

expression latent spaces from scRNA-seq data [22–25], and describe and predict single-cell responses48

[16, 17, 20, 26]. However, current DL-based approaches also have limitations: they model only a49

handful of perturbations; can be difficult to interpret; cannot handle combinatorial treatments; and50

cannot incorporate continuous covariates such as dose and time, or discrete covariates such as cell51

types, species, and patients while preserving interpretability. Therefore, while current DL methods52

have modeled individual perturbations, none have been proposed for HTS.53

Here, we propose the compositional perturbation autoencoder (CPA), a novel, interpretable method54

to analyze and predict scRNA-seq perturbation responses across combinations of conditions such55

as dosage, time, drug, and genetic knock-out. The CPA borrows ideas from interpretable linear56

models, and applies them in a flexible DL model to learn factorized latent representations of both57

perturbations and covariates. Given a scRNA-seq dataset, the perturbations applied, and covariates58

describing the experimental setting, CPA decomposes the data into a collection of embeddings59

(representations) associated with the cell type, perturbation, and other external covariates. Since60

these embeddings encode the transcriptomic effect of a drug or genetic perturbation, they can be used61

by CPA users to study drug effects and similarities useful for drug repurposing applications. By virtue62

of an adversarial loss, these embeddings are independent from each other, so they can be recombined63

at prediction time to predict the effect of novel perturbation and covariate combinations. Therefore,64

by exploring novel combinations, CPA can guide experimental design by directing hypotheses towards65

expression patterns of interest to experimentalists. We demonstrate the usefulness of CPA on five66

public datasets and multiple tasks, including the prediction and analysis of responses to compounds,67

doses, time-series information, and genetic perturbations.68
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Figure 1: Interpretable single-cell perturbation modeling using a compositional per-
turbation autoencoder (CPA). (a) Given a matrix of gene expression per cell together with
annotated potentially quantitative perturbations d and other covariates such as cell line, patient or
species, CPA learns the combined perturbation response for a single-cell. It encodes gene expression
using a neural network into a lower dimensional latent space that is eventually decoded back to an
approximate gene expression matrix, as close as possible to the original one. To make the latent
space interpretable in terms of perturbation and covariates, the encoded gene expression vector is
first mapped to a “basal state” by feeding the signal to discriminators to remove any signal from
perturbations and covariates. The basal state is then composed with perturbations and covariates,
with potentially reweighted dosages, to reconstruct the gene expression. All encoder, decoder and
discriminator weights as well as the perturbation and covariate dictionaries are learned during train-
ing. (b) Features of CPA are interpreted via plotting of the two learned dictionaries, interpolating
covariate-specific dose response curves and predicting novel unseen drug combinations.

69

Results70

Multiple perturbations as compositional processes in gene expression latent space71

Prior work has modeled the effects of perturbations on gene expression as separate processes.72

While differential expression compares each condition separately with a control, modeling a joint73

latent space with a conditional variational autoencoder[17, 26, 27] is highly uninterpretable and not74

amenable to the prediction of the effects of combinations of conditions. Our goal here is to factorize75

the latent space of neural networks to turn them into interpretable, compositional models. If the76

latent space were linear, we could describe the observed gene expression as a factor model where77

each component is a single perturbation.78

However, gene expression latent spaces, particularly in complex tissues, are nonlinear and best79

described by a graph or nonlinear embedding approximations[28, 29]. In scRNA-seq datasets, gene80

expression profiles of cell populations are often observed under multiple perturbations such as drugs,81

genetic knockouts, or disease states, in labeled covariates such as cell line, patient, or species. Each82

cell is labeled with its experimental condition and perturbation, where experimental covariates are83
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captured in categorical labels and perturbations are captured using a continuous value (e.g. a drug84

applied with different doses). This assumes a sufficient number of cells per condition to permit the85

estimation of the latent space in control and perturbation states using a large neural network.86

Instead of assuming a factor model in gene expression space, we instead model the nonlinear super-87

position of perturbation effects in the nonlinear latent space, in which we constrain the superposition88

to be additive (see Methods). We decouple the effects of perturbations and covariates, and allow89

for continuous effects such as drug dose by encoding this information in a nonlinearly transformed90

scalar weight: a learned drug-response curve. The linear latent space factor model enables interpre-91

tation of this space by disentangling latent space variance driven by covariates from those stemming92

from each perturbation. At evaluation time, we are able to not only interpolate and interpret the93

observed perturbation combinations, but also to predict other combinations, potentially in different94

covariate settings.95

Compositional perturbation autoencoder (CPA)96

We introduce the CPA (see Methods), a method combining ideas from natural language processing97

[30] and computer vision [31, 32] to predict the effects of combinations of perturbations on single-98

cell gene expression. Given a single-cell dataset of multiple perturbations and covariates, the CPA99

first uses an encoder neural network to decompose the cells’ gene expression into three learnable,100

additive embeddings, which correspond to its basal state, the observed perturbation, and the ob-101

served covariates. Crucially, the embedding that the CPA encoder learns about a cell’s basal state102

is disentangled from (does not contain information about) the embeddings corresponding to the103

perturbation and the covariates. This disentangling is achieved by training a discriminator classifier104

[31] in a competition against the encoder network of the CPA. The goal of the encoder network in105

the CPA is to learn an embedding representing a cell’s basal state, from which the discriminator106

network cannot predict the perturbation or covariate values. To perform well, the embedding of the107

cell’s basal state should contain all of the information about the cell’s specifics. To account for con-108

tinuous time or dose effects, the learned embeddings about each perturbation are scaled nonlinearly109

via a neural network which receives the continuous covariate values for each cell, such as the time110

or the dose. After integration of the learned embeddings about the cell’s basal state, perturbations,111

and covariate values into an unified embedding, the CPA uses a neural network decoder to recover112

the cell’s gene expression vector (Figure 1). Similar to many neural network models, the CPA is113

trained using backpropagation [33] on the reconstruction and discriminator errors (see Methods),114

to tune the parameters of the encoder network, the decoder network, the embeddings corresponding115

to each perturbation and covariate value, and the dose/time nonlinear scalers. The learned embed-116

dings allow the measurement of similarities between different perturbations and covariates, in terms117

of their effects on gene expression. The main feature of the CPA is its flexibility of use at evaluation118

time. After obtaining the disentangled embeddings corresponding to some observed gene expression,119

perturbation, and covariate values, we can intervene and swap the perturbation embedding with any120

other perturbation embedding of our choice. This manipulation is effectively a way of estimating121

the answer to the counterfactual question: what would the gene expression of this cell have looked122

like, had it been treated differently? This approach is of particular interest in the prediction of123

unseen perturbation combinations and their effects on gene expression. The CPA can also visualize124

the transcriptional similarity and uncertainty associated with perturbations and covariates, as later125

demonstrated.126
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Figure 2: The CPA learns an interpretable latent space learning across drug dosages,
drug combinations and experimental systems. (a) The sci-Plex 2 dataset from Srivatsan et
al. [34]. Dose-response curves were generated using the CPA as a transfer from Vehicle cells to a
given drug-dose combination. The MDM2 gene, the top gene differentially expressed after treatment
with Nutlin, was selected as an example. Black dots on the dose-response curve denote points seen
at training time, red dots denote examples held out for OOD predictions. The sizes of the dots are
proportional to the number of cells observed in the experiment. Solid lines correspond to the model
predictions, dashed lines correspond to the linear interpolation between measured points. Nutlin
and BMS are selected as examples of uncertainty in predictions for drug combinations. (b) 96-plex-
scRNA-seq experiment from Gehring et al. [8], with UMAP, showing variation of responses in gene
expression space. The dashed circle on the UMAP represents the area on the UMAP where the
majority of the cells from the left-out (OOD) condition lie. The experiment did not contain samples
of individual drugs; therefore we represented the latent space of the drug combinations measured in
the experiment. The dose-response surface was obtained via model predictions for a triplet of drugs:
BMS at a fixed dose of 0.2, and EGF and RA changing on a grid. (c) Cross-species dataset from
Hagai et al. [15], with samples of rat and mouse at time point 6 held out from training, and used
as OOD. The latent space representation of individual species, and the individual average response
of a species across time, demonstrates that the species are fairly different, with a small similarity
between rat and mouse. The time response curves of individual genes demonstrate that the model
is able to capture nonlinear behavior. The OOD splits benchmark demonstrates the way in which
model performance on the distribution case changes when the model is trained on different subsets
of the data. Split2 corresponds to the most difficult case, where all three time points for rat were
held out from training. Red dots denote examples held out for OOD predictions; the size is of the
dots is proportional to the number of cells observed in the experiment.

CPA allows predictive and exploratory analyses of single-cell perturbation experiments.127

We first demonstrated the performance and functionality of the CPA on three small single-cell128

datasets (Figure 2): a Sci-Plex2 dataset of human lung cancer cells perturbed by four drugs [35],129

a 96-plex-scRNA-seq experiment of HEK293T under different drug combinations [8], and a longi-130

toudnal cross-species dataset of lipopolysaccharide (LPS) treated phagocytes [15] (see Methods).131
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All three datasets represent different scenarios of the model application: (i) diverse doses; (ii) drug132

combinations; and (iii) several Species and variation with respect to time instead of dose. We split133

each dataset into three groups: train (used for model training), test (used for tuning of the model134

parameters), and OOD (never seen during training or parameter setting, and intended to measure135

the generalization properties of the model). Supplementary Tables 1–5 shows the R2 metrics (see136

Methods) for the performance of the CPA on these datasets and various splits.137

Sci-plex from Srivatsan et al. [35] contains measurements of a human lung adenocarcinoma cell138

line treated with four drug perturbations at increasing doses. In this scenario, the model learns to139

generalize to the unseen dosages of the drugs. To demonstrate the OOD properties, we withheld140

cells exposed to the second to largest dose among all drugs. This choice was made because the vast141

majority of cells are dead for most of the drugs at the highest dosage, and we would not have enough142

cells to statistically test the generalizability of the CPA model. Since the latent space representation143

learned by the CPA is still high-dimensional, we can use various dimensionality reduction methods144

to visualize it, or simply depict it as a similarity matrix (Figure 2a). In Supplementary Table 2145

we compare the performance of the CPA on the OOD example on two simple baselines: taking the146

maximum dose as a proxy to the previous dose, and a linear interpolation between two measured147

doses. These results demonstrate that the model consistently achieves high scores (a maximum148

score of 1 yields perfect reconstruction) on all of the OOD cases, and on two of them significantly149

outperform the baselines for Nutlin (0.92 vs 0.85) and BMS (0.94 vs 0.89). To demonstrate how well150

the CPA captured the dose-response dynamics of individual genes, we looked at the top differentially151

expressed genes upon Nutlin perturbation (Figure 2a). The dose-response curve agrees well with the152

observed data. We additionally propose a simple heuristic to measure the model’s uncertainty (see153

Methods) with respect to unseen perturbation conditions. The model shows very low uncertainty154

on the OOD split. This observation agrees well with the CPA’s high R2 scores on the OOD example.155

However, when we tested the uncertainty of the model on a combination of two drugs (Figure 2a),156

we saw that it produces much higher uncertainty compared to single drugs. This finding agrees with157

the fact that the model never saw some drug combinations during training, and that such predictions158

are more unreliable.159

As a the second working example, we took the 96-plex-scRNAse dataset from Gehring et al. [8].160

This dataset contains 96 unique growth conditions using combinations of various doses of four drugs161

applied to HEK293T cells. We hold out several combinations of these conditions as OOD cases, as162

detailed in (Supplementary Table 3). We show that the CPA is able to reliably predict expression163

patterns of unseen drug combinations (Supplementary Table 3) and produce a meaningful latent164

perturbation latent space (Figure 2b). For this dataset, even simple baselines are not applicable165

anymore, since the expression of cells exposed to the individual drugs were not measured. We also166

confirmed that our heuristic for the measurement of uncertainty agreed with the model’s performance167

on OOD examples.168

As our third example we studied the cross-species dataset from Hagai et al.[15]. Here we show that169

the CPA can also be applied in the setting of multiple covariates, such as different species or cell170

types, and the dynamics of the covariate can be a non-monotonic function, such as time instead171

of the dose-response. In this example, bone marrow-derived mononuclear phagocytes from mouse,172

rat, rabbit, and pig were challenged with LPS (Figure 2c). The learned CPA latent space agreed173

with expected species similarities, with a relatively higher value found between rat and mouse. We174

compared the generalization abilities of the model by withholding different parts of the data for OOD175

cases: "splitO" (rat at six hours), "split1" (rat at two and six hours), "split2" (rat at two, four,176

and six hours), "split3" (rat at four and six hours), and "split" (rat and mouse at six hours. This177

last split was used for the main analysis) (Supplementary Table 4). The model produced high178

performance values compared to the performance on the test split (see Supplementary Table 5)179

on the majority of the OOD splits, and showed a comparatively lower performance when the model180

was not exposed to any LPS and rat examples with the exception of control cells. On this dataset,181

we observed that the model with the lowest performance was the one with the highest number of182
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held-out examples, yet the model uncertainty also spiked for these OOD cases, suggesting that they183

might be not reliable (Figure 2c). In contrast, for cases with high R2 scores, models were more184

certain about these predictions (Supplementary Table 4).185

CPA finds interpretable latent spaces in large-scale single-cell high-throughput screens186

The recently proposed sci-Plex assay [35] profiles thousands of independent perturbations in a single187

experiment via nuclear hashing. With this high-throughput screen, 188 compounds were tested in 3188

cancer cell lines. The panel was chosen to target a diverse range of targets and molecular pathways,189

covering transcriptional and epigenetic regulators and diverse mechanisms of action. The screened190

cell lines A549 (lung adenocarcinoma), K562 (chronic myelogenous leukemia), and MCF7 (mammary191

adenocarcinoma) were exposed to each of these 188 compounds at four doses (10 nM, 100 nM, 1192

µM, 10 µM), and scRNA-seq profiles were generated for altogether 290 thousand cells (Figure 3a).193

As above, we split the dataset into 3 subsets: train, test, and OOD. For the OOD case, we held out194

the highest dose (10 µM) of the 36 drugs with the strongest effect in all three cell lines. Drug, dose,195

and cell line combinations present in the OOD cases were removed from the train and test sets.196

CPA is able to extrapolate to the unseen OOD conditions with unexpected accuracy, as it captures197

the difference between control and treated conditions also for a compound where it did not see198

examples with the highest dose. As one example, pracinostat has a strong differential response to199

treatment compared to control, as can be seen from the distributions of the top 5 differentially200

expressed genes (Figure 3b). Despite not seeing the effect of Pracinostat at the highest dose in any201

of the three cell lines, CPA correctly infers the mean and distribution of these genes (Figure 3b).202

CPA performs well in modeling unseen perturbations, as the correlation of real and predicted values203

across OOD conditions is overall better than the correlation between real values (Figure 3c). When204

looking at individual conditions (Figure 3d), CPA does well recapitulating genes with low and high205

mean expression in the OOD condition.206

CPA has lower performance when predicting experiments with more unseen covariates. To assess the207

ability of the model to generalize to unseen conditions, we trained CPA on 28 splits with different208

held-out conditions, with one of the doses held out in anywhere between 1-3 cell lines (Figure209

3e). We see here that K562 is the hardest cell line to generalize, when considering training on two210

cell lines to generalize to another. We also see that extrapolating to the highest dose is a harder211

task than interpolating intermediate doses, which is consistent with the difficulty of anticipating the212

experimental effect of a higher dose, versus fitting sigmoidal behavior to model intermediate doses.213

When examining the shape of the sigmoid per compound learned by the model (Figure 3f), we214

see that epigenetic compounds, which caused the greatest differential expression effects, have higher215

latent response curves, indicating that CPA learns a general, cell-line agnostic response strength216

measure for compounds. This learned sigmoid behavior can then be used in conjunction with the217

latent vectors to reconstruct the gene expression of treated cells over interpolated doses (Figure218

3g).219

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.04.14.439903doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439903
http://creativecommons.org/licenses/by-nc-nd/4.0/


i Drug latent space

U
M

A
P

2

UMAP1

Cell line latent space

kernel PC1

ke
rn

el
 P

C
2

Bulk drug RNA profiling of 82 cell lines, 1000 drugs (LINCS)
U

M
A

P
2

UMAP1

Bulk cell line latent space

kernel PC1

ke
rn

el
 P

C
2

lung cell lines 

j

h

a 3 cancer cell lines und  
188 drug perturbations

A549

K562

MCF7

b

re
sp

on
se

dosedose

la
te

nt
 d

os
e 

re
sp

on
se

d

c

e

Pracinostat in MCF7 (OOD)

true

predicted

control

NCOA3
PPM1E

MKI67
NEAT1

MALAT1

gf

pr
ed

ic
te
d

MCF7 Pracinostat

true

K562 Pracinostat

true

A549 Crizotinib

true

A549 Momelotinib

true

UMAP1

U
M
AP

2

Figure 3: Learning drug and cell line latent representations from massive single-cell
screens of 188 drugs across cancer cell lines. (a) UMAP representation of sci-Plex samples of
A549, K562 and MCF7 cell-lines colored by pathway targeted by the compounds to which cells were
exposed. (b) Distribution of top 5 differentially expressed genes in MCF7 cells after treatment with
Pracinostat at the highest dose for real, control and CPA predicted cells. (c) Mean gene expression
of 5,000 genes and top 50 DEGs between CPA predicted and real cells together with the top five
DEGs highlighted in red for four compounds for which the model did not see any examples of the
highest dose. (d) Box plots of R2 scores for predicted and real cells for 36 compounds and 108 unique
held out perturbations across different cell lines. Baseline indicates comparison of real compounds
with each other. (e) R2 scores box plot for all and top 50 DEGs. Each column represents a scenario
where cells exposed with specific dose for all compounds on a cell line or combinations of cell lines
were held from training and later predicted. (f) Latent dose response obtained from dose encoder
for all compounds colored by pathways. (g) Real and predicted dose response curves based on gene
expression data, for a single compound with differential dose response across three cell lines. (h)
Latent representation of 80 cell lines from L1000 dataset. (i) Two dimensional representation of
latent drug embeddings as learned by the CPA. Compounds associated with epigenetic regulation,
tyrosine kinase signaling, and cell cycle regulation pathways are colored by their respective known
pathways. The lower left panel shows latent covariate embedding for three cell lines in the data,
indicating no specific similarity preference. (j) Latent drug embedding of CPA model trained on
the bulk-RNA cell line profiles from the L1000 dataset, with focus on drugs shared with the sci-Plex
experiment from (a).
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After training, CPA learns a compressed representation of the 188 compounds, where each drug220

is represented by a single 256 dimensional vector (Figure 3i). To test whether the learned drug221

embeddings are meaningful, we asked if compounds with similar putative mechanisms of action are222

similar in latent space. This holds for a large set of major mechanisms: we find that epigenetic,223

tyrosine kinase signaling, and cell-cycle regulation compounds are clustered together by the model,224

which suggests the effectiveness of drugs with these mechanisms on these three cancer cell-lines225

which is in line with the findings in the original publication [4].226

We additionally demonstrate that the model learns universal relationships between compounds which227

remain true across datasets and modalities. Using the same set of compounds tested in the sci-Plex228

dataset together with 853 other compounds (for a total of 1000 compounds), we trained CPA on229

L1000 bulk perturbation measurement data across 82 cell lines [36]. We observed that CPA works230

equally well on bulk RNA-seq data, and also that matched epigenetic and tyrosine kinase signaling231

compounds present in sci-Plex were close to each other in the latent representation, suggesting that232

the learned model similarities apply across datasets (Figure 3j). This holds also for the other learned233

embeddings: Applying the same similarity metric to the covariate embedding - here the 82 cell lines234

- we observed that the cell line embedding learned by the model also represents cell line similarity235

in response to perturbation, as cell lines from lung tissue were clustered together (Figure 3h).236

CPA allows modeling combinatorial genetic perturbation patterns237

Combinatorial drug therapies are hypothesized to address the limited effectiveness of mono-therapies[37]238

and prevent drug resistance in cancer therapies[37–39]. However, the combined expression of a small239

number of genes often drives the complexity at the cellular level, leading to the emergence of new240

properties, behaviors, and diverse cell types [5]. To study such genetic interactions (GIs), recent241

perturbation scRNA-seq assays allow us to measure the gene expression response of a cell to the242

perturbation of genes alone or in combination[12, 13]. While experimental approaches are necessary243

to assess the effect of combination therapies, in practice, it becomes infeasible to experimentally244

explore all possible combinations without computational predictions.245

To pursue this aim, we applied our CPA model to scRNA-seq data collected from Perturb-seq (single-246

cell RNA-sequencing pooled CRISPR screens) to assess how overexpression of single or combinatorial247

interactions of 105 genes (i.e., single gene x, single gene y, and pair x+y) affected the growth of248

K562 cells [5]. In total, this dataset contains 284 conditions measured across ≈ 108, 000 single-cells,249

where 131 are unique combination pairs (i.e., x+y) and the rest are single gene perturbations or250

control cells. We observed that the latent genetic interaction manifold placed GIs inducing known251

and similar gene programs close to each other (Figure 4a). For example, consider CBL (orange252

cluster in Figure 4a): the surrounding points, comprising its regulators (e.g., UBASH3A/B) and253

multisubstrate tyrosine phosphatases (e.g., PTPN9/12 ), have all been previously reported to induce254

erythroid markers [5]. Next, we sought to assess our ability to predict specific genetic interactions.255

We examined a synergistic interaction between CBL and CNN1 in driving erythroid differentiation256

which has been previously validated [5]. We trained a CPA model with CBL+CNN1 held out257

from the training data. Overexpression of either gene leads to the progression of cells from control258

to single perturbed and doubly perturbed cells (Supplementary Fig.2a) toward the erythroid259

gene program. Overexpression of both CBL and CNN1 up-regulate known gene markers[5] such as260

hemoglobins (see HBA1/2 and HBG1/2 in Figure 4b). We observed that our model successfully261

predicted this synergistic interaction, recapitulating patterns similar to real data and inline with the262

original findings (Figure 4c). We further evaluated CPA to predict a previously reported[5] genetic263

epistatic interaction between DUSP9 and ETS1, leading to domination of the DUSP9 phenotype in264

doubly perturbed cells (Figure4 c).265
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Figure 4: Learning and predicting combinatorial genetic perturbations. (a) UMAP inferred
latent space using CPA for 281 single- and double-gene perturbations obtained from Perturb-seq[5].
Each dot represents a genetic perturbation. Coloring indicates gene programs associated to per-
turbed genes. (b) Measured and CPA-predicted gene expression for cells linked to a synergistic gene
pair (CBL+CNN1 ). Gene names taken from the original publication. (c) As (b) for an epistatic
(DUSP9+ETS ) gene pair. Top 10 DEGs of DUSP9+ETS co-perturbed cells versus control cells are
shown. (d) R2 values of mean gene-expression of measured and predicted cells for all genes (blue) or
top 100 DEGs for the prediction of all 131 combinations (13 trained models, with ≈ 10 tested combi-
nations each time) (orange). (e) R2 values of predicted and real mean gene-expression versus number
of cells in the real data (h) R2 values for predicted and real cells versus number of combinations
seen during training. (g) UMAP of measured (n=284, red dots) and CPA-predicted (n=5,329, gray
dots) perturbation combinations. (h) As (g), showing measurement uncertainty (cosine similarity).
(i) As (g), showing dominant genes in leiden clusters (25 or more observations).(j) Hierarchical clus-
tering of linear regression associated metrics between KLF1 with co-perturbed genes, in measured
and predicted cells). (k) Scaled gene expression changes (versus control) of RF-selected genes (x-
axis) in measured (purple) and predicted (yellow) perturbations (y-axis). Headers indicate gene-wise
regression coefficients, and interaction mode suggestions[5].

To systemically evaluate the CPA’s generalization behavior, we trained 13 different models while266

leaving out all cells from ≈ 10 unique combinations covering all 131 doubly perturbed conditions in267

the dataset, which were predicted following training. The reported R2 values showed robust predic-268

tion for most of the perturbations: lower scores were seen for perturbations where the evaluation was269

noisy due to sample scarcity (n < 100), or when one of the perturbations was only available as singly270

perturbed cells in the data, leading the model to fail to predict the unseen combination (Figure 4d-e,271

see Supplementary Fig. 2). To further understand when CPA performance deteriorated, we first272

trained it on a subset with no combinations seen during training, and then gradually increased the273

number of combinations seen during training. We found that overall prediction accuracy improved274

when the model was trained with more combinations, and that it could fail to predict DEGs when275

trained with fewer combinations (see n < 71 combinations in Figure 4f).276

Hence, once trained with sufficiently large and diverse training data, CPA could robustly predict277

unseen perturbations. We next asked whether our model could generalize beyond the measured278

combinations and generate in-silico all 5,329 combinations, which were not measured in the real279

dataset, but made up ≈ 98% of all possibilities. To study the quality of these predictions, we280

trained a model where all combinations were seen during training to achieve maximum training281

data and sample diversity. We then predicted 50 single-cells for all missing combinations. We282

found that, while the latent embeddings did not fully capture all the nuances in the similarity of283

perturbations compared to gene space, it provided an abstract and easier to perform high-level284

overview of potential perturbation combinations. Thus, we leveraged our latent space to co-embed285

(Figure 4g) all measured and generated data while proving an uncertainty metric based on the286

distance from the measured phenotypes (Figure 4h). We hypothesized that the closer the generated287

embedding was to the measured data. the more likely it was to explore a similar space of the genetic288

manifold around the measured data. Meanwhile, the distant points can potentially indicate novel289

behaviors, although this would require additional consideration and validation steps. Equipped290

with this information, we annotated the embedding clusters based on gene prevalence, finding that291

single genes (i.e. gene x) paired with other genes (i.e., y) as combinations (i.e., x+y) are a main292

driver of cluster separation (Figure 4i). Genes without measured double perturbations were less293

likely to be separated as independent clusters using the newly predicted transcriptomic expression294

(Supplementary Fig. 3a), suggesting that their interaction-specific effects were less variable than295

cases with at least one double perturbation available in the training data.296

To investigate the type of interaction between the newly predicted conditions, we compared the297

differences between double and single perturbations versus control cells and thus annotated their298

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.04.14.439903doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439903
http://creativecommons.org/licenses/by-nc-nd/4.0/


interaction modes (adapted from [5] for in silico predictions). In each gene-specific cluster, we ob-299

served variability across these values, suggesting that our predictions contained granularity that went300

beyond single gene perturbation effects, and could not be fully dissected by two dimensional embed-301

dings. Upon curation of gene perturbations using these metrics and the levels of experimental data302

available (Supplementary Fig. 3b), we decided to predict and annotate interaction modes based303

on these values when double measurements were available for at least one gene. For example, we ob-304

served clustering of KLF1 and partner gene perturbation pairs solely from these metrics, suggesting305

the existence of several interaction modes (Figure 4j). When we further examine the differen-306

tially expressed genes in each co-perturbation, our metrics validated previously reported epistatic307

interactions (CEBPA), and proposed new ones with KLF1 -dominant behavior (NCL), gene synergy308

(FOXA3 ), and epistasis (PTPN13 ), among others (Figure 4k). Repeating this analysis across all309

measured and predicted double perturbations, we found genes with potential interaction prevalences310

(Supplementary Fig. 3c). Among genes which repeatedly respond to several perturbations, we311

found common gene expression trends in both direction and magnitude (Supplementary Fig. 3d),312

suggesting that variation is modulated by conserved gene regulatory principles that are potentially313

captured in our learned model.314

Altogether, our analysis indicated that double perturbation measurements can be generated by CPA315

by leveraging genetic perturbation data, which when combined with an uncertainty metric allows us316

to generate and interpret gene regulatory rules in the predicted gene-gene perturbations.317

318

Discussion319

In-silico prediction of cell behavior in response to a perturbation is critical for optimal experiment320

design and the identification of effective drugs and treatments. With CPA, we have introduced a321

versatile and interpretable approach to modeling cell behaviors at single-cell resolution. CPA is322

implemented as a neural network trained using stochastic gradient descent, scaling up to millions of323

cells and thousands of genes.324

We applied CPA to a variety of datasets and tasks, from predicting single-cell responses to learning325

embeddings, as well as reconstructing the expression response of compounds, with variable drug-326

dose combinations. Specifically, we illustrated the modeling of perturbations across dosage levels327

and time series, and have demonstrated applications in drug perturbation studies, as well as genetic328

perturbation assays with multiple gene knockouts, revealing potential gene-gene interaction modes329

inferred by our model predicted values. CPA combines the interpretability of linear decomposition330

models with the flexibility of nonlinear embedding models.331

While CPA performed well in our experiments, it is well known that in machine learning there is332

no free lunch, and as with any other machine learning model, CPA will fail if the test data are very333

different from the training data. To alert CPA users to these cases, it is crucial to quantify model334

uncertainty. To do so, we implemented a distance-based uncertainty score to evaluate our predictions.335

Additionally, scalable Bayesian uncertainty models are promising alternatives for future work[40].336

Although we opted to implement a deterministic autoencoder scheme, extensions towards variational337

models[17, 23], as well as cost functions other than mean squared error[22] are straightforward.338

Aside from CPA, existing methods[17, 26] such as scGen[16] have also been shown capable of predict-339

ing single-cell perturbation responses when the dataset contains no combinatorial treatment or dose-340

dependent perturbations. Therefore, it may be beneficial to benchmark CPA against such methods341

on less complicated scenarios with few perturbations. However, this approach might not be practical,342

considering the current trend towards the generation of massive perturbation studies[4, 5, 12].343

Currently, the model is based on gene expression alone, so it cannot directly capture other levels344

of interactions or effects, such as those due to post-transcriptional modification, signaling, or cell345

communication. However, due to the flexibility of neural network-based approaches, CPA could346
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be extended to include other modalities, for example via multimodal single-cell CRISPR[41, 42]347

combined scRNA- and ATAC-seq[43, 44] and CUT&Tag[45, 46]. In particular, we expect spatial348

transcriptomics[47, 48] to be a valuable source for extensions to CPA due to its high sample number349

and the dominance of DL models in computer vision.350

The CPA model is not limited to single-cell perturbations. While we chose the single-cell setting due351

to the high sample numbers available, the CPA could readily be applied to large-scale bulk cohorts,352

in which covariates might be patient ID or transcription factor perturbation. These and any other353

available attributes could be controlled independently[31] to achieve compositional, interpretable354

predictions. Any bulk compositional model may be combined with a smaller-scale single-cell model355

to compose truly multi-scale models of observed variance. The flexibility of the DL setting will also356

allow addition of constraints on perturbation or covariate latent spaces. These could, for example,357

be the similarity of chemical compounds[49], or clinical-covariate induced differences of patient IDs.358

The key feature of the CPA versus a normal autoencoder is its latent space disentanglement and the359

induced interpretability of the perturbations in the context of cell states and covariates. Eventually,360

any aim in biology is not only blind prediction, but mechanistic understanding. This objective is361

exemplified by the direction that DL models are taking in sequence genomics, where the aim is not362

only the prediction of new interactions, but also the interpretation of the learned gene regulation363

code. We therefore believe that CPA can not only be used as a hypothesis generation tool for364

in-silico screens but also as an overall data approximation model. Deviations from our assumed365

data generation process (see Methods) would then tell us about missing information in the given366

data set and/or missing aspects in the factor model. By including multiple layers of regulation,367

the resulting model can grow in flexibility for prediction and for mechanistic understanding on for368

example synergistic gene regulation or other interactions.369

Finally, we expect CPA to facilitate new opportunities in expression-based perturbation screen-370

ing, not only to learn optimal drug combinations, but also in how to personalize experiments and371

treatments by tailoring them based on individual cell response.372
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406

Methods407

Data generating process408

We consider a dataset D = {(xi, di, ci)}Ni=1, where each xi ∈ RG describes the gene expression of G409

genes from cell i. The perturbation vector di = (di,1, . . . , di,M ) contains elements di,j ≥ 0 describing410

the dose of drug j applied to cell i. If di,j = 0, this means that perturbation j was not applied to411

cell i. Unless stated otherwise, the sequel assumes column vectors. Similarly, the vector of vectors412

ci = (ci,1, . . . ci,K) contains additional discrete covariates such as cell-types or species, where each413

covariate is itself a vector. More specifically, ci,j is a Kj-dimensional one-hot vector.414

We assume that an unknown generative model produced our dataset D. The three initial components415

of this generative process are a latent (unobserved) basal latent state zbasal
i for cell i, together with its416

perturbation vector di and covariate vector ci. We assume that the basal latent state is independent417

from the perturbation vector di and covariate vector ci. Next, we form the latent (also unobserved)418

perturbed latent state zi as:419

zi = zbasal
i + V perturbation · (f1(di,1), . . . , fM (di,M )) +

∑
j=1,...,K

V covj · ci,j (1)

In this equation, each column of the matrix V perturbation ∈ Rd×M represents a d-dimensional embed-420

ding for one of the M possible perturbations represented in di. Similarly, each column of the matrix421

V covj ∈ Rd×Kj represents a d-dimensional embedding for the j-th discrete covariate, represented as422

a Kj-dimensional one-hot vector ci,j . The functions fj : R→ R scale non-linearly each of the di,j in423

the perturbation vector di, therefore implementing M independent dose-response (or time-response)424

curves. Finally, we assume that the generative process returns the observed gene expression xi by425

means of an unknown decoding distribution p(xi|zi). This process builds the observation (xi, di, ci),426

which is then included in our dataset D.427
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Compositional Perturbation Autoencoder (CPA)428

Assuming the generative process described above, our goal is to train a machine learning model429

x′i =M((xi, di, ci), d
′) such that, given a dataset triplet (xi, di, ci) as well as a target perturbation d′,430

estimates the gene expression x′i. The term x′i represents what would the counterfactual distribution431

of the gene expression xi with covariates ci look like, had it been perturbed with d′ instead of di.432

Given a dataset and a learning goal, we are now ready to describe our proposed model, the Com-433

positional Perturbation Autoencoder (CPA). In the following, we describe separately how to train434

and test CPA models.435

Training436

The training of a CPA model consists in auto-encoding dataset triplets (xi, di, ci). That is, during437

training, a CPA model does not attempt to answer counterfactual questions. Instead, the training438

process consists in (1) encoding the gene expression xi into an estimated basal state ẑbasal
i that does439

not contain any information about (di, ci), (2) combining ẑbasal
i with learnable embeddings about440

(di, ci) to form an estimated perturbed state ẑi, and (3) decoding ẑi back into the observed gene441

expression xi.442

More specifically, the CPA model first encodes the observed gene expression xi into an estimated
basal state:

ẑbasal
i = f̂ enc(xi).

In turn, the estimated basal state is used to compute the estimated perturbed state ẑi:443

ẑi := ẑbasal
i + V̂ perturbation · (f̂1(di,1), . . . f̂M (di,M )) +

∑
j=1,...,K

V̂ covj · ci,j (2)

Contrary to (1), this expression introduces three additional learnable components: the perturba-444

tion embeddings V̂ perturbation, the covariate embeddings V̂ covand the learnable dose-response curves445

(f̂1, . . . , f̂M ), here implemented as small neural networks constrained to satisfy f̂j(0) = 0.446

As a final step, a decoder f̂dec accepts the estimated perturbed state ẑi and returns f̂dec
µ (ẑi) and447

f̂dec
σ2 (ẑi), that is, the estimated mean and variance of the counterfactual gene expression x′i.448

To train CPA models, we use three loss functions. First, the reconstruction loss function is the449

Gaussian negative log-likelihood:450

`i :=
log s(f̂dec

σ2 (ẑi))

2
+

(f̂dec
µ (ẑi)− x′i)2

2 · s(f̂dec
σ2 (ẑi))

, (3)

where s(σ2) = log(exp(σ2 + 10−3) + 1) enforces a positivity constraint on the variance and adds451

numerical stability. This loss function rewards the end-to-end auto-encoding process if producing452

the observed gene expression xi.453

Second, and according to our assumptions about the data generating process, we are interested in
removing the information about (di, ci) from ẑbasal

i . To achieve this information removal, we follow
an adversarial approach [31]. In particular, we set up the following auxiliary loss functions:

`di := CrossEntropy(f̂adv
d (ẑbasal

i ), di),

`ci,j := CrossEntropy(f̂adv
ci,j (ẑ

basal
i ), ci,j), ∀j = 1, . . . ,K.

The functions f̂adv
d , f̂adv

ci,j are a collection of neural network classifiers trying to predict about (di, ci)454

given the estimated basal state ẑbasal
i .455

Given this collection of losses, the training process is an optimization problem that repeats the456

following two steps:457
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1. sample (xi, di, ci) ∼ D, minimize `di +
∑

j `
c
i,j by updating the parameters of f̂adv

d and f̂adv
ci,j , for458

all j = 1, . . . ,K;459

2. sample (xi, di, ci) ∼ D, minimize `i−λ·(`di +
∑

j `
c
i,j) by updating the parameters of the encoder460

f̂ enc, the decoder f̂dec, the perturbation embeddings V̂ perturbation, the covariate embeddings461

V̂ covj for all j = 1, . . . ,K, and the dose-response curve estimators (f̂1, . . . , f̂M ).462

Testing463

Given an observation (xi, di, ci) and a counterfactual treatment d′, we can use a trained CPA model464

to answer what would the counterfactual distribution of the gene expression xi with covariates ci465

look like, had it been perturbed with d′ instead of di. To this end, we follow the following process:466

1. Compute the estimated basal state ẑbasal
i = f̂ enc(xi);467

2. Compute the counterfactual perturbed state ẑ′i

ẑ′i := ẑbasal
i + V̂ perturbation · (f̂1(d′i,1), . . . f̂M (d′i,M )) +

∑
j=1,...,K

V̂ covj · ci,j .

Note that in the previous expression, we are using the counterfactual treatment d′ instead of468

the observed treatment di.469

3. Compute and return the counterfactual gene expression mean x′i,µ:

x′i,µ = f̂dec
µ (ẑ′i),

and variance x′i,σ2 :
x′i,σ2 = f̂dec

σ2 (ẑ′i).

Hyper-parameters and training.470

For each dataset, we perform a random hyper-parameter search of 100 trials. The table below471

outlines the distribution of values for each of the hyper-parameters involved in CPA training.472

Group Hyperparameter Default value Random search distribution

general
embedding dimension 256 RandomChoice([128, 256, 512])
batch size 128 RandomChoice([64, 128, 256, 512])
learning rate decay, in epochs 45 RandomChoice([15, 25, 45])

nonlinear scalers

hidden neurons, nonlinear scalers 64 RandomChoice([32, 64, 128])
hidden layers 2 RandomChoice([1, 2, 3])
learning rate 1e-3 10Uniform(−4,−2)
weight decay 1e-7 10Uniform(−8,−5)

encoder and decoder

hidden neurons, encoder and decoder 512 RandomChoice([256, 512, 1024])
hidden layers 4 RandomChoice([3, 4, 5])
learning rate 1e-3 10Uniform(−4,−2)
weight decay 1e-6 10Uniform(−8,−4)

discriminator

hidden neurons, discriminator 128 RandomChoice([64, 128, 256])
hidden layers 3 RandomChoice([2, 3, 4])
regularization strength 5 10Uniform(−2, 2)
gradient penalty 3 10Uniform(−2, 1)
learning rate 3e-4 10Uniform(−5,−3)
weight decay 1e-4 10Uniform(−6,−3)
number of learning steps 3 RandomChoice([1, 2, 3, 4, 5])

473

Model evaluation.474

We use several metrics to evaluate the performance of our model: (1) quality of reconstruction for in475

and OOD cases and (2) quality of disentanglement of cell information from perturbation information.476
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We split each dataset into 3 subsets: train, test, and OOD. For OOD cases, we choose combinations477

of perturbations that exhibit unseen behavior. This usually corresponds to the most extreme drug478

dosages. We select one perturbation combination as "control". Usually these are Vehicle or DMSO479

if real control samples are present in the dataset, otherwise we choose a drug perturbation at a480

lower dosage as "control". For the evaluation, we use the mean squared error of the reconstruction481

of an individual cell and average it over the cells for the perturbation of interest. As an additional482

metric we use classification accuracy in order to check how well the information about the drugs was483

separated from the information about the cells.484

Uncertainty estimation.485

To estimate the uncertainty of the predictions we use as a proxy the minimum distance between the486

queried perturbation and the set of conditions (covariate + perturbation combinations) seen during487

training (Supplementary Fig.1). Intuitively, we expect predictions on queried conditions that are488

more distant from the set of seen conditions to be more uncertain. To estimate this distance we first489

compute the set of embeddings of the training covariate and perturbation combinations:490

ẑcomb = V̂ perturbation · (f̂1(d′1), . . . f̂M (d′M )) +
∑

j=1,...,K

V̂ covj · cj . (4)

The latent vector for the queried condition is obtained in the same manner. The cosine and euclidean
distances from the training embedding set are computed and the minimum distance is used as a proxy
for uncertainty.

ucosine = min(1− SC(ẑ
query, ẑcomb)) (5)

ueucl = min(d(ẑquery, ẑcomb)) (6)

Where SC(x,y) stands for the cosine similarity and d(x, y) for the euclidean distance between the491

two vectors.492

With this methodology, in the case of a drug screening experiment, if we query a combination of493

cell type, drug, and dosage that was seen during training, we get an uncertainty of zero, since this494

combination was present in the training set. It is important to note that with this method we obtain495

a condition-level uncertainty, in that all cells predicted under the same query will have the same496

uncertainty, thus not taking cell specific information into account.497

R2 score498

We used the r2_score function from scikit-learn which reports R2 (coefficient of determination)499

regression score.500

Datasets501

Gehring et al.502

This dataset[8] comprises of 21, 191 neural stem cells (NSCs) cells perturbed with EGF/bFGF,503

BMP4, decitabine, scriptaid, and retinoic acid. We obtained normalized data from the original504

authors and after QC filtering 19, 637 cells remained. We further selected 5, 000 highly variable505

genes (HVGs) using SCANPY’s[50] highly_variable_genes function for training and evaluation of506

the model.507

Genetic CRISPR screening experiment508

We obtained the raw count matrices from Norman et al.[5] from GEO (accession ID GSE133344).509

According to authors guide, we excluded "NegCtrl1_NegCtrl0__NegCtrl1_NegCtrl0" control cells510
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and merged all unperturbed cells as one "ctrl" condition. We then normalized and log-transformed511

the data using SCANPY and selected 5, 000 HVGs for training. The processed dataset contained512

108, 497 cells.513

Cross-species experiment514

The data was generated by Hagai et al.[15] and downloaded from ArrayExpress (accession: E-MTAB-515

6754). The data consists of 119, 819 phagocytes obtained from four different species: mouse, rat, pig516

and rabbit. Phagocytes were treated with lipopolysaccharide (LPS) and the samples were collected517

at different time points: 0 (control), 2, 4, and 6 hours after the beginning of treatment. All genes518

from non-mouse data were mapped to the respective orthologs in the mouse genome using Ensembl519

ID annotations. We filtered out cells with a percentage of counts belonging to mitochondrial genes520

higher than 20%, then proceeded to normalize and log-transform the count data. For training and521

evaluation, we selected 5000 HVG using SCANPY. After filtering, the data consists of 113, 400 cells.522

sci-Plex 2523

The data was generated by Srivatsan et al. [35] and downloaded from GEO (GSM4150377). The524

dataset consists of A549 cells treated with one of the following four compounds: dexamethasone,525

Nutlin-3a, BMS-345541, or vorinostat (SAHA). The treatment lasted 24 hours across seven different526

doses. The count matrix obtained from GEO consists of 24, 262 cells. During QC we filtered527

cells with fewer than 500 counts and 720 detected genes. We discarded cells with a percentage of528

mitochondrial gene counts higher than 10%, thus reducing the dataset to 14, 811 cells. Genes present529

in fewer than 100 cells were discarded. We normalized the data using the size factors provided by530

the authors and log-transformed it. We selected 5000 HVGs for training and further evaluations.531

sci-Plex 3532

The data was generated by Srivatsan et al.[35] and downloaded from GEO (GSM4150378). The533

dataset consists of three cancer cell lines (A549, MCF7, K562), which are treated with 188 different534

compounds with different mechanisms of action. The cells are treated with 4 dosages (10, 100, 1000,535

and 10000 nM) plus vehicle. The count matrix obtained from GEO consists of 581,777 cells. The data536

was subset to half its size, reducing it to 290,888 cells. We then proceeded with log-transformation537

and the the selection of 5000 HVGs using SCANPY.538

Interpretation of combinatorial genetic interactions by perturbation pairs and respon-539

der genes540

In the case of genetic screening, previous work by [5] proposed a set of metrics to annotate and541

classify gene-gene interactions based on responder genes. Based on this, here we used measured or542

predicted gene expression differences with respect to control cells (δ), for gene perturbations a (δa),543

b (δb) and double perturbations ab (δab), to calculate interaction types by similarity between these544

three expression vectors.545

More specifically, to calculate association coefficients, we use the linear regression coefficients c1 and546

c2 obtained from the model547

δab = δac1 + δbc2 (7)

To describe interaction modes, we used the following metrics.548

1. similarity between predicted and observed values: dcor(δac1 + δbc2, δab).549

2. linear regression coefficients: c1 and c2.550

3. magnitude: (c21 + c22)
1/2.551

4. dominance: |log10(c1/c2)|.552
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5. similarity of single transcriptomes: dcor(a, b)553

6. similarity of single to double transcriptomes: dcor([a, b], ab).554

7. equal contributions: min(dcor(a,b),dcor(b,ab)
max(dcor(a,b),dcor(a,ab) .555

Following clustering and comparison of these metrics across measured and predicted cells, we decided556

the following rules of thumb to define and annotate interaction modes:557

1. epistatic: min(abs(c1), abs(c2)) > 0.2 and either (i) (abs(c1) > 2abs(c2)) or (ii) (abs(c2) >558

2abs(c1))559

2. potentiation: magnitude > 1 and abs(dcor(a, b)) - 1 > 0.2.560

3. strong sinergy (similar phenotypes): magnitude > 1 and abs(dcor([a, b], ab)) - 1 > 0.2561

4. strong sinergy (different phenotypes): magnitude > 1 and abs(dcor(a, b)) - 1 > 0.5.562

5. additive: abs(magnitude) - 1 < 0.1.563

6. redundant: abs(dcor([a, b], ab)) - 1 < 0.2 and abs(dcor(a, b)) - 1 < 0.2564

More than one genetic interaction can be suggested from these rules. In those cases, we did not565

assign any plausible interaction. For visualization purposes, we consider perturbed genes with 50 or566

more interaction modes reported with other co-perturbed genes (Supplementary Fig.3c).567

To visualize differentially expressed genes with similar response across perturbations (Supplementary568

Fig.3d), we trained a random forest classifier using as prediction labels control, a, b and ab cells,569

and gene expression as features. We retrieved the top 200 genes from this approach. Then, we570

annotated the direction (positive or negative) and the magnitude of those changes versus control571

cells, generating a code for clustering and visualization. To label genes with potential interaction572

effects, we labeled them if the double perturbation predicted magnitude is 1.5x times or higher than573

the best value observed in single perturbations.574
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a

b c d

Supplementary Figure 1: CPA uncertainty estimation. (a) Schematic representation of the
steps involved in uncertainty estimation in the case of a dataset with two cell types and two drugs
(single dosage per drug). The covariate and perturbation latent vectors are summed in order to
generate the set of combinations in the training set. The distances from the query vector and all
the vectors in the set are then computed. The closest distance is used as a proxy for uncertainty
in the prediction of the model. (b) Example of uncertainty across dosages of Dexamethasone in
the sci-Plex 2 dataset. The ticks on the x-axis (log-scaled) indicate dosages seen at training time
for which the uncertainty is 0. The dosages were min-max normalized. (c) 2D plot of uncertainty
across dosages (min-max normalized) of two different drugs and combinations thereof in the sci-Plex
2 dataset. (d) Example histogram of cosine distances between the SAHA (dose=0.5) and the vectors
in the set of training perturbations. The distribution shows that training vectors belonging to the
same perturbation but with different dosages have the lowest uncertainties, with other drugs being
increasingly more distant.
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Supplementary Figure 2: Performance evaluation for CPA combinatorial predictions.
(a) UMAP representation of control (ctrl), singly perturbed (CBL+ctrl, ctrl+CNN1) and dou-
bly (CBL+CNN1) perturbed cells. (b) R2 scores for all genes (blue) or top 100 DEGs (orange)
for the prediction of all 131 combinations in the data by training 13 different models and leaving
out ≈ 10 combinations each time. (c) Scatter plots of number of samples in the real data for each
combination (x-axis) versus R2 values for the variance of predicted and real for that combination
(d) Box-plots of R2 values for variance for predicted and real cells while increasing the number of
combinations seen during training.
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Supplementary Figure 3: Gene-gene interaction insights revealed from genetic perturba-
tion predictions using CPA. (a) Number of single gene observations in leiden clusters for gen-
erated measurements (from Figure 4i). Most leiden clusters contain a prevalence for one perturbed
gene. The majority of genes without measured double perturbations share a limited number of clus-
ters. (b) Quality control and interaction metrics to compare gene expression differences between
single and double perturbations. Metrics vary based on number of genes with a measured double
perturbation (See Methods for definitions). (c) Interaction mode counts predicted for all genes
based on interaction metrics (based on [5]). (d) (left) Gene expression changes for double perturba-
tions (ab) versus single perturbations (a, b), are compared by direction and magnitude. Positive (+)
and negative (-) labels indicate increase/decrease versus control cells, and double positive/negative
(++/- -) indicate values higher than 1.5 times the highest comparable value in single perturbations.
(right) 500 genes with highest prevalence in differentially expressed genes across datasets, clustered
by prevalent response types from single and double perturbations.
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condition dose_val R2_mean R2_mean_DE R2_var split num_cells

SAHA 0.01 0.99 0.99 0.95 test 160
SAHA 0.005 0.98 0.98 0.93 test 143
SAHA 0.05 0.98 0.95 0.93 test 118
SAHA 1.0 0.98 0.95 0.91 test 137
SAHA 0.001 0.97 0.97 0.92 test 169
SAHA 0.1 0.96 0.86 0.94 test 129
SAHA 0.5 0.96 0.86 0.89 ood 604
Nutlin 0.001 0.98 0.98 0.94 test 135
Nutlin 0.05 0.98 0.98 0.94 test 136
Nutlin 0.005 0.98 0.97 0.94 test 107
Nutlin 0.1 0.98 0.97 0.94 test 200
Nutlin 0.01 0.98 0.97 0.93 test 180
Nutlin 0.5 0.92 0.86 0.84 ood 265
Nutlin 1.0 0.26 0.61 0.00 test 1
Dex 0.5 0.99 0.99 0.98 ood 864
Dex 1.0 0.99 0.98 0.95 test 222
Dex 0.1 0.99 0.94 0.96 test 218
Dex 0.05 0.98 0.90 0.93 test 210
Dex 0.001 0.95 0.87 0.89 test 123
Dex 0.01 0.95 0.61 0.89 test 238
Dex 0.005 0.94 0.53 0.88 test 108
BMS 0.001 0.98 0.97 0.92 test 212
BMS 0.005 0.97 0.99 0.92 test 151
BMS 0.5 0.95 0.89 0.78 ood 34
BMS 0.01 0.95 0.80 0.86 test 82
BMS 0.05 0.93 0.87 0.75 test 59
BMS 0.1 0.92 0.89 0.74 test 50
BMS 1.0 0.55 -0.87 0.21 test 6

Supplementary Table 1 | Performance scores for the sci-Plex 2 dataset. To improve readability the
columns are sorted by: condition (first priority) and scores (second priority).

condition R2_mean R2_mean_DE method

SAHA 0.98 0.94 linear
SAHA 0.96 0.86 CPA
Nutlin 0.92 0.86 CPA
Nutlin 0.85 0.80 linear
Dex 1.00 1.00 linear
Dex 0.99 0.99 CPA
BMS 0.95 0.89 CPA
BMS 0.89 0.85 linear

Supplementary Table 2 | A simple benchmark on OOD split for the sci-Plex 2 dataset.
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condition dose_val R2_mean R2_mean_DE R2_var split num_cells

EGF+RA 0.2+1.0 0.98 0.95 0.84 test 553
EGF+RA 1.0+1.0 0.97 0.94 0.67 test 199
EGF+RA 0.2+0.2 0.96 0.98 0.89 test 87
EGF+RA 0.04+1.0 0.96 0.90 0.60 test 54
EGF+RA 1.0+0.2 0.95 0.91 0.75 test 30
EGF 0.2 0.98 0.96 0.86 test 90
EGF 1.0 0.94 0.71 0.60 test 73
BMP+RA 0.2+1.0 0.91 0.84 0.60 test 22
BMP+EGF+ScripDec 0.2+0.2+1.0 0.97 0.97 0.82 ood 166
BMP+EGF+ScripDec 0.04+0.04+1.0 0.97 0.96 0.61 test 28
BMP+EGF+ScripDec 0.04+0.2+1.0 0.97 0.94 0.50 test 39
BMP+EGF+ScripDec 0.2+0.2+0.2 0.97 0.92 0.65 ood 304
BMP+EGF+ScripDec 0.04+0.2+0.2 0.97 0.91 0.74 test 33
BMP+EGF+ScripDec 0.2+0.04+1.0 0.96 0.96 0.26 test 32
BMP+EGF+ScripDec 0.2+0.04+0.2 0.96 0.94 0.34 test 20
BMP+EGF+ScripDec 1.0+0.2+0.2 0.96 0.91 0.74 ood 113
BMP+EGF+ScripDec 0.2+1.0+1.0 0.95 0.89 0.51 ood 112
BMP+EGF+ScripDec 0.04+0.04+0.2 0.95 0.87 0.52 test 19
BMP+EGF+ScripDec 0.2+1.0+0.2 0.95 0.83 0.58 ood 105
BMP+EGF+ScripDec 0.04+1.0+1.0 0.94 0.96 0.57 test 17
BMP+EGF+ScripDec 1.0+0.04+0.2 0.91 0.86 0.51 test 15
BMP+EGF+RA 0.04+1.0+0.2 0.98 0.99 0.85 test 50
BMP+EGF+RA 0.2+0.04+0.2 0.98 0.98 0.74 test 63
BMP+EGF+RA 0.04+1.0+1.0 0.98 0.97 0.86 test 198
BMP+EGF+RA 0.04+0.2+1.0 0.97 0.96 0.88 test 552
BMP+EGF+RA 0.2+0.04+1.0 0.97 0.96 0.70 test 48
BMP+EGF+RA 0.04+0.2+0.2 0.97 0.92 0.80 test 73
BMP+EGF+RA 0.2+0.2+0.2 0.97 0.88 0.52 ood 206
BMP+EGF+RA 0.04+0.04+0.2 0.96 0.96 0.73 test 24
BMP+EGF+RA 0.2+1.0+0.2 0.96 0.89 0.66 ood 216
BMP+EGF+RA 0.2+1.0+1.0 0.96 0.87 0.66 ood 147
BMP+EGF+RA 0.2+0.2+1.0 0.95 0.77 0.59 ood 132
BMP+EGF 0.04+0.2 0.97 0.98 0.78 test 96
BMP+EGF 0.04+1.0 0.97 0.92 0.81 test 209
BMP+EGF 0.04+0.04 0.97 0.92 0.75 test 39
BMP+EGF 1.0+0.04 0.95 0.86 0.33 test 19
BMP+EGF 1.0+1.0 0.94 0.75 0.06 ood 113

Supplementary Table 3 | Performance scores for the 96-plex-scRNAseq dataset. For the readability the
columns are sorted by: condition (first priority) and scores (second priority).
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split species time R2_mean R2_mean_DE R2_var num_cells

split4 rat 6.0 0.97 0.91 0.85 7827
split4 rat 6.0 0.96 0.86 0.89 7827
split4 mouse 6.0 0.97 0.90 0.81 5280
split4 mouse 6.0 0.96 0.85 0.93 5280
split3 rat 6.0 0.89 0.70 0.72 7827
split3 rat 6.0 0.86 0.55 0.40 7827
split3 rat 4.0 0.95 0.80 0.80 5755
split3 rat 4.0 0.94 0.77 0.63 5755
split2 rat 6.0 0.55 -0.65 -2.18 7827
split2 rat 6.0 0.54 0.02 0.02 7827
split2 rat 4.0 0.74 -0.47 0.26 5755
split2 rat 4.0 0.39 -0.85 -0.47 5755
split2 rat 2.0 0.81 -0.41 0.49 7025
split2 rat 2.0 0.41 -0.96 -0.64 7025
split1 rat 6.0 0.97 0.91 0.92 7827
split1 rat 6.0 0.97 0.91 0.92 7827
split1 rat 2.0 0.96 0.90 0.90 7025
split1 rat 2.0 0.96 0.90 0.90 7025
split0 rat 6.0 0.97 0.89 0.90 7827
split0 rat 6.0 0.96 0.90 0.81 7827

Supplementary Table 4 | Performance scores for the cross-species dataset across different splits.

species time R2_mean R2_mean_DE R2_var split num_cells

rat 2.0 1.00 1.00 0.99 test 2138
rat 4.0 1.00 1.00 0.99 test 1715
rat 6.0 0.96 0.86 0.89 ood 7827
rabbit 6.0 0.99 0.99 0.99 test 2088
rabbit 2.0 0.99 0.99 0.98 test 2662
rabbit 4.0 0.99 0.96 0.98 test 1732
pig 6.0 0.99 0.99 0.99 test 1535
pig 4.0 0.99 0.98 0.99 test 1954
pig 2.0 0.99 0.98 0.98 test 1662
mouse 2.0 1.00 0.99 0.99 test 2904
mouse 4.0 1.00 0.99 0.99 test 2793
mouse 6.0 0.96 0.85 0.93 ood 5280

Supplementary Table 5 | Performance scores for the cross-species dataset.
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