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Abstract

Recent advances in multiplexed single-cell transcriptomics experiments are facilitating the high-
throughput study of drug and genetic perturbations. However, an exhaustive exploration of the
combinatorial perturbation space is experimentally unfeasible, so computational methods are needed
to predict, interpret, and prioritize perturbations. Here, we present the compositional perturbation
autoencoder (CPA), which combines the interpretability of linear models with the flexibility of
deep-learning approaches for single-cell response modeling. CPA encodes and learns transcriptional
drug responses across different cell type, dose, and drug combinations. The model produces easy-to-
interpret embeddings for drugs and cell types, which enables drug similarity analysis and predictions
for unseen dosage and drug combinations. We show that CPA accurately models single-cell pertur-
bations across compounds, doses, species, and time. We further demonstrate that CPA predicts
combinatorial genetic interactions of several types, implying that it captures features that distin-
guish different interaction programs. Finally, we demonstrate that CPA can generate in-silico 5,329
missing genetic combination perturbations (97.6% of all possibilities) with diverse genetic interac-
tions. We envision our model will facilitate efficient experimental design and hypothesis generation
by enabling in-silico response prediction at the single-cell level, and thus accelerate therapeutic
applications using single-cell technologies.

Introduction

Single-cell RNA-sequencing (scRNA-seq) profiles gene expression in millions of cells across tissues|1,
2] and species[3]. Recently, novel technologies have been developed that extend these measure-
ments to high-throughput screens (HTSs), which measure response to thousands of independent

perturbations|4, 5|. These advances show promise for facilitating and thus accelerating drug development|6].

HTSs applied at the single-cell level provide both comprehensive molecular phenotyping and capture
heterogeneous responses, which otherwise could not be identified using traditional HTSs|4].

While the development of high-throughput approaches such as “cellular hashing” [4, 7, 8] facil-
itates scRNA-seq in multi-sample experiments at low cost, these strategies require expensive li-
brary preparation|4|, and do not easily scale to large numbers of perturbations. These shortcom-
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ings become more apparent when exploring the effects of combination therapies[9-11] or genetic
perturbations|5, 12, 13], where experimental screening of all possible combinations becomes infeasi-
ble. While projects such as the Human Cell Atlas[14| aim to comprehensively map cellular states
across tissues in a reproducible fashion, the construction of a similar atlas for the effects of pertur-
bations on gene expression is impossible, due to the vast number of possibilities. Since brute-force
exploration of the combinatorial search space is infeasible, it is necessary to develop computational
tools to guide the exploration of the combinatorial perturbation space to nominate promising candi-
date combination therapies in HT'Ss. A successful computational method for the navigation of the
combinatorial space must be able to predict the behaviour of cells when subject to novel combinations
of perturbations only measured separately in the original experiment. These data are referred to as
Out-Of-Distribution (OOD) data. OOD prediction would enable the study of perturbations in the
presence of different treatment doses [4, 15], combination therapies|8], multiple genetic knockouts|5],
and changes across time[15].

Recently, several computational approaches have been developed for predicting cellular responses
to perturbations|16-20]. The first approach leverages mechanistic modeling [18, 19] to predict cell
viability[19] or the abundance of a few selected proteins|18]. Although they are powerful at interpret-
ing interactions, mechanistic models usually require longitudinal data (which is often unavailable in
practice) and most do not scale to genome wide measurements to predict high-dimensional scRNA-
seq data. Linear models[12, 21| do not suffer from these scalability issues, but have limited predictive
power and are unable to capture nonlinear cell-type specific responses. In contrast, deep learning
(DL) models do not face these limitations. Recently, DL methods have been used to model gene
expression latent spaces from scRNA-seq data [22-25], and describe and predict single-cell responses
[16, 17, 20, 26]. However, current DL-based approaches also have limitations: they model only a
handful of perturbations; can be difficult to interpret; cannot handle combinatorial treatments; and
cannot incorporate continuous covariates such as dose and time, or discrete covariates such as cell
types, species, and patients while preserving interpretability. Therefore, while current DL methods
have modeled individual perturbations, none have been proposed for HTS.

Here, we propose the compositional perturbation autoencoder (CPA), a novel, interpretable method
to analyze and predict scRNA-seq perturbation responses across combinations of conditions such
as dosage, time, drug, and genetic knock-out. The CPA borrows ideas from interpretable linear
models, and applies them in a flexible DL model to learn factorized latent representations of both
perturbations and covariates. Given a scRNA-seq dataset, the perturbations applied, and covariates
describing the experimental setting, CPA decomposes the data into a collection of embeddings
(representations) associated with the cell type, perturbation, and other external covariates. Since
these embeddings encode the transcriptomic effect of a drug or genetic perturbation, they can be used
by CPA users to study drug effects and similarities useful for drug repurposing applications. By virtue
of an adversarial loss, these embeddings are independent from each other, so they can be recombined
at prediction time to predict the effect of novel perturbation and covariate combinations. Therefore,
by exploring novel combinations, CPA can guide experimental design by directing hypotheses towards
expression patterns of interest to experimentalists. We demonstrate the usefulness of CPA on five
public datasets and multiple tasks, including the prediction and analysis of responses to compounds,
doses, time-series information, and genetic perturbations.
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Figure 1: Interpretable single-cell perturbation modeling using a compositional per-
turbation autoencoder (CPA). (a) Given a matrix of gene expression per cell together with
annotated potentially quantitative perturbations d and other covariates such as cell line, patient or
species, CPA learns the combined perturbation response for a single-cell. It encodes gene expression
using a neural network into a lower dimensional latent space that is eventually decoded back to an
approximate gene expression matrix, as close as possible to the original one. To make the latent
space interpretable in terms of perturbation and covariates, the encoded gene expression vector is
first mapped to a “basal state” by feeding the signal to discriminators to remove any signal from
perturbations and covariates. The basal state is then composed with perturbations and covariates,
with potentially reweighted dosages, to reconstruct the gene expression. All encoder, decoder and
discriminator weights as well as the perturbation and covariate dictionaries are learned during train-
ing. (b) Features of CPA are interpreted via plotting of the two learned dictionaries, interpolating
covariate-specific dose response curves and predicting novel unseen drug combinations.

©

Results

Multiple perturbations as compositional processes in gene expression latent space

Prior work has modeled the effects of perturbations on gene expression as separate processes.
While differential expression compares each condition separately with a control, modeling a joint
latent space with a conditional variational autoencoder|[17, 26, 27| is highly uninterpretable and not
amenable to the prediction of the effects of combinations of conditions. Our goal here is to factorize
the latent space of neural networks to turn them into interpretable, compositional models. If the
latent space were linear, we could describe the observed gene expression as a factor model where
each component is a single perturbation.

However, gene expression latent spaces, particularly in complex tissues, are nonlinear and best
described by a graph or nonlinear embedding approximations|28, 29]. In scRNA-seq datasets, gene
expression profiles of cell populations are often observed under multiple perturbations such as drugs,
genetic knockouts, or disease states, in labeled covariates such as cell line, patient, or species. Each
cell is labeled with its experimental condition and perturbation, where experimental covariates are
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captured in categorical labels and perturbations are captured using a continuous value (e.g. a drug
applied with different doses). This assumes a sufficient number of cells per condition to permit the
estimation of the latent space in control and perturbation states using a large neural network.

Instead of assuming a factor model in gene expression space, we instead model the nonlinear super-
position of perturbation effects in the nonlinear latent space, in which we constrain the superposition
to be additive (see Methods). We decouple the effects of perturbations and covariates, and allow
for continuous effects such as drug dose by encoding this information in a nonlinearly transformed
scalar weight: a learned drug-response curve. The linear latent space factor model enables interpre-
tation of this space by disentangling latent space variance driven by covariates from those stemming
from each perturbation. At evaluation time, we are able to not only interpolate and interpret the
observed perturbation combinations, but also to predict other combinations, potentially in different
covariate settings.

Compositional perturbation autoencoder (CPA)

We introduce the CPA (see Methods), a method combining ideas from natural language processing
[30] and computer vision [31, 32| to predict the effects of combinations of perturbations on single-
cell gene expression. Given a single-cell dataset of multiple perturbations and covariates, the CPA
first uses an encoder neural network to decompose the cells’ gene expression into three learnable,
additive embeddings, which correspond to its basal state, the observed perturbation, and the ob-
served covariates. Crucially, the embedding that the CPA encoder learns about a cell’s basal state
is disentangled from (does not contain information about) the embeddings corresponding to the
perturbation and the covariates. This disentangling is achieved by training a discriminator classifier
[31] in a competition against the encoder network of the CPA. The goal of the encoder network in
the CPA is to learn an embedding representing a cell’s basal state, from which the discriminator
network cannot predict the perturbation or covariate values. To perform well, the embedding of the
cell’s basal state should contain all of the information about the cell’s specifics. To account for con-
tinuous time or dose effects, the learned embeddings about each perturbation are scaled nonlinearly
via a neural network which receives the continuous covariate values for each cell, such as the time
or the dose. After integration of the learned embeddings about the cell’s basal state, perturbations,
and covariate values into an unified embedding, the CPA uses a neural network decoder to recover
the cell’s gene expression vector (Figure 1). Similar to many neural network models, the CPA is
trained using backpropagation [33] on the reconstruction and discriminator errors (see Methods),
to tune the parameters of the encoder network, the decoder network, the embeddings corresponding
to each perturbation and covariate value, and the dose/time nonlinear scalers. The learned embed-
dings allow the measurement of similarities between different perturbations and covariates, in terms
of their effects on gene expression. The main feature of the CPA is its flexibility of use at evaluation
time. After obtaining the disentangled embeddings corresponding to some observed gene expression,
perturbation, and covariate values, we can intervene and swap the perturbation embedding with any
other perturbation embedding of our choice. This manipulation is effectively a way of estimating
the answer to the counterfactual question: what would the gene expression of this cell have looked
like, had it been treated differently? This approach is of particular interest in the prediction of
unseen perturbation combinations and their effects on gene expression. The CPA can also visualize
the transcriptional similarity and uncertainty associated with perturbations and covariates, as later
demonstrated.
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Figure 2: The CPA learns an interpretable latent space learning across drug dosages,
drug combinations and experimental systems. (a) The sci-Plex 2 dataset from Srivatsan et
al. [34]. Dose-response curves were generated using the CPA as a transfer from Vehicle cells to a
given drug-dose combination. The MDM2 gene, the top gene differentially expressed after treatment
with Nutlin, was selected as an example. Black dots on the dose-response curve denote points seen
at training time, red dots denote examples held out for OOD predictions. The sizes of the dots are
proportional to the number of cells observed in the experiment. Solid lines correspond to the model
predictions, dashed lines correspond to the linear interpolation between measured points. Nutlin
and BMS are selected as examples of uncertainty in predictions for drug combinations. (b) 96-plex-
scRNA-seq experiment from Gehring et al. [8], with UMAP, showing variation of responses in gene
expression space. The dashed circle on the UMAP represents the area on the UMAP where the
majority of the cells from the left-out (OOD) condition lie. The experiment did not contain samples
of individual drugs; therefore we represented the latent space of the drug combinations measured in
the experiment. The dose-response surface was obtained via model predictions for a triplet of drugs:
BMS at a fixed dose of 0.2, and EGF and RA changing on a grid. (c) Cross-species dataset from
Hagai et al. [15], with samples of rat and mouse at time point 6 held out from training, and used
as OOD. The latent space representation of individual species, and the individual average response
of a species across time, demonstrates that the species are fairly different, with a small similarity
between rat and mouse. The time response curves of individual genes demonstrate that the model
is able to capture nonlinear behavior. The OOD splits benchmark demonstrates the way in which
model performance on the distribution case changes when the model is trained on different subsets
of the data. Split2 corresponds to the most difficult case, where all three time points for rat were
held out from training. Red dots denote examples held out for OOD predictions; the size is of the
dots is proportional to the number of cells observed in the experiment.

CPA allows predictive and exploratory analyses of single-cell perturbation experiments.

We first demonstrated the performance and functionality of the CPA on three small single-cell
datasets (Figure 2): a Sci-Plex2 dataset of human lung cancer cells perturbed by four drugs [35],
a 96-plex-scRNA-seq experiment of HEK293T under different drug combinations [8], and a longi-
toudnal cross-species dataset of lipopolysaccharide (LPS) treated phagocytes [15] (see Methods).
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All three datasets represent different scenarios of the model application: (i) diverse doses; (ii) drug
combinations; and (iii) several Species and variation with respect to time instead of dose. We split
each dataset into three groups: train (used for model training), test (used for tuning of the model
parameters), and OOD (never seen during training or parameter setting, and intended to measure
the generalization properties of the model). Supplementary Tables 1-5 shows the R? metrics (see
Methods) for the performance of the CPA on these datasets and various splits.

Sci-plex from Srivatsan et al. [35] contains measurements of a human lung adenocarcinoma cell
line treated with four drug perturbations at increasing doses. In this scenario, the model learns to
generalize to the unseen dosages of the drugs. To demonstrate the OOD properties, we withheld
cells exposed to the second to largest dose among all drugs. This choice was made because the vast
majority of cells are dead for most of the drugs at the highest dosage, and we would not have enough
cells to statistically test the generalizability of the CPA model. Since the latent space representation
learned by the CPA is still high-dimensional, we can use various dimensionality reduction methods
to visualize it, or simply depict it as a similarity matrix (Figure 2a). In Supplementary Table 2
we compare the performance of the CPA on the OOD example on two simple baselines: taking the
maximum dose as a proxy to the previous dose, and a linear interpolation between two measured
doses. These results demonstrate that the model consistently achieves high scores (a maximum
score of 1 yields perfect reconstruction) on all of the OOD cases, and on two of them significantly
outperform the baselines for Nutlin (0.92 vs 0.85) and BMS (0.94 vs 0.89). To demonstrate how well
the CPA captured the dose-response dynamics of individual genes, we looked at the top differentially
expressed genes upon Nutlin perturbation (Figure 2a). The dose-response curve agrees well with the
observed data. We additionally propose a simple heuristic to measure the model’s uncertainty (see
Methods) with respect to unseen perturbation conditions. The model shows very low uncertainty
on the OOD split. This observation agrees well with the CPA’s high R? scores on the OOD example.
However, when we tested the uncertainty of the model on a combination of two drugs (Figure 2a),
we saw that it produces much higher uncertainty compared to single drugs. This finding agrees with
the fact that the model never saw some drug combinations during training, and that such predictions
are more unreliable.

As a the second working example, we took the 96-plex-scRNAse dataset from Gehring et al. [8].
This dataset contains 96 unique growth conditions using combinations of various doses of four drugs
applied to HEK293T cells. We hold out several combinations of these conditions as OOD cases, as
detailed in (Supplementary Table 3). We show that the CPA is able to reliably predict expression
patterns of unseen drug combinations (Supplementary Table 3) and produce a meaningful latent
perturbation latent space (Figure 2b). For this dataset, even simple baselines are not applicable
anymore, since the expression of cells exposed to the individual drugs were not measured. We also
confirmed that our heuristic for the measurement of uncertainty agreed with the model’s performance
on OOD examples.

As our third example we studied the cross-species dataset from Hagai et al.[15]. Here we show that
the CPA can also be applied in the setting of multiple covariates, such as different species or cell
types, and the dynamics of the covariate can be a non-monotonic function, such as time instead
of the dose-response. In this example, bone marrow-derived mononuclear phagocytes from mouse,
rat, rabbit, and pig were challenged with LPS (Figure 2c¢). The learned CPA latent space agreed
with expected species similarities, with a relatively higher value found between rat and mouse. We
compared the generalization abilities of the model by withholding different parts of the data for OOD
cases: "splitO" (rat at six hours), "splitl" (rat at two and six hours), "split2" (rat at two, four,
and six hours), "split3" (rat at four and six hours), and "split" (rat and mouse at six hours. This
last split was used for the main analysis) (Supplementary Table 4). The model produced high
performance values compared to the performance on the test split (see Supplementary Table 5)
on the majority of the OOD splits, and showed a comparatively lower performance when the model
was not exposed to any LPS and rat examples with the exception of control cells. On this dataset,
we observed that the model with the lowest performance was the one with the highest number of
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held-out examples, yet the model uncertainty also spiked for these OOD cases, suggesting that they
might be not reliable (Figure 2c). In contrast, for cases with high R? scores, models were more
certain about these predictions (Supplementary Table 4).

CPA finds interpretable latent spaces in large-scale single-cell high-throughput screens

The recently proposed sci-Plex assay [35] profiles thousands of independent perturbations in a single
experiment via nuclear hashing. With this high-throughput screen, 188 compounds were tested in 3
cancer cell lines. The panel was chosen to target a diverse range of targets and molecular pathways,
covering transcriptional and epigenetic regulators and diverse mechanisms of action. The screened
cell lines A549 (lung adenocarcinoma), K562 (chronic myelogenous leukemia), and MCF7 (mammary
adenocarcinoma) were exposed to each of these 188 compounds at four doses (10 nM, 100 nM, 1
uM, 10 uM), and scRNA-seq profiles were generated for altogether 290 thousand cells (Figure 3a).
As above, we split the dataset into 3 subsets: train, test, and OOD. For the OOD case, we held out
the highest dose (10 uM) of the 36 drugs with the strongest effect in all three cell lines. Drug, dose,
and cell line combinations present in the OOD cases were removed from the train and test sets.

CPA is able to extrapolate to the unseen OOD conditions with unexpected accuracy, as it captures
the difference between control and treated conditions also for a compound where it did not see
examples with the highest dose. As one example, pracinostat has a strong differential response to
treatment compared to control, as can be seen from the distributions of the top 5 differentially
expressed genes (Figure 3b). Despite not seeing the effect of Pracinostat at the highest dose in any
of the three cell lines, CPA correctly infers the mean and distribution of these genes (Figure 3b).
CPA performs well in modeling unseen perturbations, as the correlation of real and predicted values
across OOD conditions is overall better than the correlation between real values (Figure 3c). When
looking at individual conditions (Figure 3d), CPA does well recapitulating genes with low and high
mean expression in the OOD condition.

CPA has lower performance when predicting experiments with more unseen covariates. To assess the
ability of the model to generalize to unseen conditions, we trained CPA on 28 splits with different
held-out conditions, with one of the doses held out in anywhere between 1-3 cell lines (Figure
3e). We see here that K562 is the hardest cell line to generalize, when considering training on two
cell lines to generalize to another. We also see that extrapolating to the highest dose is a harder
task than interpolating intermediate doses, which is consistent with the difficulty of anticipating the
experimental effect of a higher dose, versus fitting sigmoidal behavior to model intermediate doses.
When examining the shape of the sigmoid per compound learned by the model (Figure 3f), we
see that epigenetic compounds, which caused the greatest differential expression effects, have higher
latent response curves, indicating that CPA learns a general, cell-line agnostic response strength
measure for compounds. This learned sigmoid behavior can then be used in conjunction with the
latent vectors to reconstruct the gene expression of treated cells over interpolated doses (Figure

3g).
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Figure 3: Learning drug and cell line latent representations from
screens of 188 drugs across cancer cell lines. (a) UMAP representation of sci-Plex samples of
A549, K562 and MCF7 cell-lines colored by pathway targeted by the compounds to which cells were
exposed. (b) Distribution of top 5 differentially expressed genes in MCF7 cells after treatment with
Pracinostat at the highest dose for real, control and CPA predicted cells. (c) Mean gene expression
of 5,000 genes and top 50 DEGs between CPA predicted and real cells together with the top five
DEGs highlighted in red for four compounds for which the model did not see any examples of the
highest dose. (d) Box plots of R? scores for predicted and real cells for 36 compounds and 108 unique
held out perturbations across different cell lines. Baseline indicates comparison of real compounds
with each other. (e) R? scores box plot for all and top 50 DEGs. Each column represents a scenario
where cells exposed with specific dose for all compounds on a cell line or combinations of cell lines
were held from training and later predicted. (f) Latent dose response obtained from dose encoder
for all compounds colored by pathways. (g) Real and predicted dose response curves based on gene
expression data, for a single compound with differential dose response across three cell lines. (h)
Latent representation of 80 cell lines from L1000 dataset. (i) Two dimensional representation of
latent drug embeddings as learned by the CPA. Compounds associated with epigenetic regulation,
tyrosine kinase signaling, and cell cycle regulation pathways are colored by their respective known
pathways. The lower left panel shows latent covariate embedding for three cell lines in the data,
indicating no specific similarity preference. (j) Latent drug embedding of CPA model trained on
the bulk-RNA cell line profiles from the L1000 dataset, with focus on drugs shared with the sci-Plex

experiment from (a).
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After training, CPA learns a compressed representation of the 188 compounds, where each drug
is represented by a single 256 dimensional vector (Figure 3i). To test whether the learned drug
embeddings are meaningful, we asked if compounds with similar putative mechanisms of action are
similar in latent space. This holds for a large set of major mechanisms: we find that epigenetic,
tyrosine kinase signaling, and cell-cycle regulation compounds are clustered together by the model,
which suggests the effectiveness of drugs with these mechanisms on these three cancer cell-lines
which is in line with the findings in the original publication [4].

We additionally demonstrate that the model learns universal relationships between compounds which
remain true across datasets and modalities. Using the same set of compounds tested in the sci-Plex
dataset together with 853 other compounds (for a total of 1000 compounds), we trained CPA on
L1000 bulk perturbation measurement data across 82 cell lines [36]. We observed that CPA works
equally well on bulk RNA-seq data, and also that matched epigenetic and tyrosine kinase signaling
compounds present in sci-Plex were close to each other in the latent representation, suggesting that
the learned model similarities apply across datasets (Figure 3j). This holds also for the other learned
embeddings: Applying the same similarity metric to the covariate embedding - here the 82 cell lines
- we observed that the cell line embedding learned by the model also represents cell line similarity
in response to perturbation, as cell lines from lung tissue were clustered together (Figure 3h).

CPA allows modeling combinatorial genetic perturbation patterns

Combinatorial drug therapies are hypothesized to address the limited effectiveness of mono-therapies|37]
and prevent drug resistance in cancer therapies[37-39]. However, the combined expression of a small
number of genes often drives the complexity at the cellular level, leading to the emergence of new
properties, behaviors, and diverse cell types [5]. To study such genetic interactions (GIs), recent
perturbation scRNA-seq assays allow us to measure the gene expression response of a cell to the
perturbation of genes alone or in combination[12, 13]. While experimental approaches are necessary
to assess the effect of combination therapies, in practice, it becomes infeasible to experimentally
explore all possible combinations without computational predictions.

To pursue this aim, we applied our CPA model to scRNA-seq data collected from Perturb-seq (single-
cell RNA-sequencing pooled CRISPR screens) to assess how overexpression of single or combinatorial
interactions of 105 genes (i.e., single gene x, single gene y, and pair x+y) affected the growth of
K562 cells [5]. In total, this dataset contains 284 conditions measured across ~ 108,000 single-cells,
where 131 are unique combination pairs (i.e., x+y) and the rest are single gene perturbations or
control cells. We observed that the latent genetic interaction manifold placed Gls inducing known
and similar gene programs close to each other (Figure 4a). For example, consider CBL (orange
cluster in Figure 4a): the surrounding points, comprising its regulators (e.g., UBASH3A/B) and
multisubstrate tyrosine phosphatases (e.g., PTPN9/12), have all been previously reported to induce
erythroid markers [5]. Next, we sought to assess our ability to predict specific genetic interactions.
We examined a synergistic interaction between CBL and CNNI in driving erythroid differentiation
which has been previously validated [5]. We trained a CPA model with CBL+CNN1 held out
from the training data. Overexpression of either gene leads to the progression of cells from control
to single perturbed and doubly perturbed cells (Supplementary Fig.2a) toward the erythroid
gene program. Overexpression of both CBL and CNN1 up-regulate known gene markers[5] such as
hemoglobins (see HBA1/2 and HBG1/2 in Figure 4b). We observed that our model successfully
predicted this synergistic interaction, recapitulating patterns similar to real data and inline with the
original findings (Figure 4c). We further evaluated CPA to predict a previously reported|5] genetic
epistatic interaction between DUSP9 and ETS1, leading to domination of the DUSP9 phenotype in
doubly perturbed cells (Figure4 c).
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Figure 4: Learning and predicting combinatorial genetic perturbations. (a) UMAP inferred
latent space using CPA for 281 single- and double-gene perturbations obtained from Perturb-seq|5].
Each dot represents a genetic perturbation. Coloring indicates gene programs associated to per-
turbed genes. (b) Measured and CPA-predicted gene expression for cells linked to a synergistic gene
pair (CBL+CNN1). Gene names taken from the original publication. (c) As (b) for an epistatic
(DUSP9+ETS) gene pair. Top 10 DEGs of DUSP9+ETS co-perturbed cells versus control cells are
shown. (d) R2 values of mean gene-expression of measured and predicted cells for all genes (blue) or
top 100 DEGs for the prediction of all 131 combinations (13 trained models, with ~ 10 tested combi-
nations each time) (orange). (e) R2 values of predicted and real mean gene-expression versus number
of cells in the real data (h) R2 values for predicted and real cells versus number of combinations
seen during training. (g) UMAP of measured (n=284, red dots) and CPA-predicted (n=>5,329, gray
dots) perturbation combinations. (h) As (g), showing measurement uncertainty (cosine similarity).
(i) As (g), showing dominant genes in leiden clusters (25 or more observations).(j) Hierarchical clus-
tering of linear regression associated metrics between KLF1 with co-perturbed genes, in measured
and predicted cells). (k) Scaled gene expression changes (versus control) of RF-selected genes (x-
axis) in measured (purple) and predicted (yellow) perturbations (y-axis). Headers indicate gene-wise
regression coefficients, and interaction mode suggestions|5|.

To systemically evaluate the CPA’s generalization behavior, we trained 13 different models while
leaving out all cells from ~ 10 unique combinations covering all 131 doubly perturbed conditions in
the dataset, which were predicted following training. The reported R? values showed robust predic-
tion for most of the perturbations: lower scores were seen for perturbations where the evaluation was
noisy due to sample scarcity (n < 100), or when one of the perturbations was only available as singly
perturbed cells in the data, leading the model to fail to predict the unseen combination (Figure 4d-e,
see Supplementary Fig. 2). To further understand when CPA performance deteriorated, we first
trained it on a subset with no combinations seen during training, and then gradually increased the
number of combinations seen during training. We found that overall prediction accuracy improved
when the model was trained with more combinations, and that it could fail to predict DEGs when
trained with fewer combinations (see n < 71 combinations in Figure 4f).

Hence, once trained with sufficiently large and diverse training data, CPA could robustly predict
unseen perturbations. We next asked whether our model could generalize beyond the measured
combinations and generate in-silico all 5,329 combinations, which were not measured in the real
dataset, but made up & 98% of all possibilities. To study the quality of these predictions, we
trained a model where all combinations were seen during training to achieve maximum training
data and sample diversity. We then predicted 50 single-cells for all missing combinations. We
found that, while the latent embeddings did not fully capture all the nuances in the similarity of
perturbations compared to gene space, it provided an abstract and easier to perform high-level
overview of potential perturbation combinations. Thus, we leveraged our latent space to co-embed
(Figure 4g) all measured and generated data while proving an uncertainty metric based on the
distance from the measured phenotypes (Figure 4h). We hypothesized that the closer the generated
embedding was to the measured data. the more likely it was to explore a similar space of the genetic
manifold around the measured data. Meanwhile, the distant points can potentially indicate novel
behaviors, although this would require additional consideration and validation steps. Equipped
with this information, we annotated the embedding clusters based on gene prevalence, finding that
single genes (i.e. gene x) paired with other genes (i.e., y) as combinations (i.e., x+y) are a main
driver of cluster separation (Figure 4i). Genes without measured double perturbations were less
likely to be separated as independent clusters using the newly predicted transcriptomic expression
(Supplementary Fig. 3a), suggesting that their interaction-specific effects were less variable than
cases with at least one double perturbation available in the training data.

To investigate the type of interaction between the newly predicted conditions, we compared the
differences between double and single perturbations versus control cells and thus annotated their
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interaction modes (adapted from [5] for in silico predictions). In each gene-specific cluster, we ob-
served variability across these values, suggesting that our predictions contained granularity that went
beyond single gene perturbation effects, and could not be fully dissected by two dimensional embed-
dings. Upon curation of gene perturbations using these metrics and the levels of experimental data
available (Supplementary Fig. 3b), we decided to predict and annotate interaction modes based
on these values when double measurements were available for at least one gene. For example, we ob-
served clustering of KLF1 and partner gene perturbation pairs solely from these metrics, suggesting
the existence of several interaction modes (Figure 4j). When we further examine the differen-
tially expressed genes in each co-perturbation, our metrics validated previously reported epistatic
interactions (CEBPA), and proposed new ones with KLF1-dominant behavior (NCL), gene synergy
(FOXAS), and epistasis (PTPN13), among others (Figure 4k). Repeating this analysis across all
measured and predicted double perturbations, we found genes with potential interaction prevalences
(Supplementary Fig. 3c). Among genes which repeatedly respond to several perturbations, we
found common gene expression trends in both direction and magnitude (Supplementary Fig. 3d),
suggesting that variation is modulated by conserved gene regulatory principles that are potentially
captured in our learned model.

Altogether, our analysis indicated that double perturbation measurements can be generated by CPA
by leveraging genetic perturbation data, which when combined with an uncertainty metric allows us
to generate and interpret gene regulatory rules in the predicted gene-gene perturbations.

Discussion

In-silico prediction of cell behavior in response to a perturbation is critical for optimal experiment
design and the identification of effective drugs and treatments. With CPA, we have introduced a
versatile and interpretable approach to modeling cell behaviors at single-cell resolution. CPA is
implemented as a neural network trained using stochastic gradient descent, scaling up to millions of
cells and thousands of genes.

We applied CPA to a variety of datasets and tasks, from predicting single-cell responses to learning
embeddings, as well as reconstructing the expression response of compounds, with variable drug-
dose combinations. Specifically, we illustrated the modeling of perturbations across dosage levels
and time series, and have demonstrated applications in drug perturbation studies, as well as genetic
perturbation assays with multiple gene knockouts, revealing potential gene-gene interaction modes
inferred by our model predicted values. CPA combines the interpretability of linear decomposition
models with the flexibility of nonlinear embedding models.

While CPA performed well in our experiments, it is well known that in machine learning there is
no free lunch, and as with any other machine learning model, CPA will fail if the test data are very
different from the training data. To alert CPA users to these cases, it is crucial to quantify model
uncertainty. To do so, we implemented a distance-based uncertainty score to evaluate our predictions.
Additionally, scalable Bayesian uncertainty models are promising alternatives for future work[40)].
Although we opted to implement a deterministic autoencoder scheme, extensions towards variational
models|17, 23], as well as cost functions other than mean squared error|22| are straightforward.

Aside from CPA, existing methods[17, 26| such as scGen|16] have also been shown capable of predict-
ing single-cell perturbation responses when the dataset contains no combinatorial treatment or dose-
dependent perturbations. Therefore, it may be beneficial to benchmark CPA against such methods
on less complicated scenarios with few perturbations. However, this approach might not be practical,
considering the current trend towards the generation of massive perturbation studies[4, 5, 12].

Currently, the model is based on gene expression alone, so it cannot directly capture other levels
of interactions or effects, such as those due to post-transcriptional modification, signaling, or cell
communication. However, due to the flexibility of neural network-based approaches, CPA could
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be extended to include other modalities, for example via multimodal single-cell CRISPR[41, 42]
combined scRNA- and ATAC-seq[43, 44] and CUT&Tag|45, 46]. In particular, we expect spatial
transcriptomics|47, 48| to be a valuable source for extensions to CPA due to its high sample number
and the dominance of DL models in computer vision.

The CPA model is not limited to single-cell perturbations. While we chose the single-cell setting due
to the high sample numbers available, the CPA could readily be applied to large-scale bulk cohorts,
in which covariates might be patient ID or transcription factor perturbation. These and any other
available attributes could be controlled independently[31] to achieve compositional, interpretable
predictions. Any bulk compositional model may be combined with a smaller-scale single-cell model
to compose truly multi-scale models of observed variance. The flexibility of the DL setting will also
allow addition of constraints on perturbation or covariate latent spaces. These could, for example,
be the similarity of chemical compounds[49], or clinical-covariate induced differences of patient IDs.
The key feature of the CPA versus a normal autoencoder is its latent space disentanglement and the
induced interpretability of the perturbations in the context of cell states and covariates. Eventually,
any aim in biology is not only blind prediction, but mechanistic understanding. This objective is
exemplified by the direction that DL models are taking in sequence genomics, where the aim is not
only the prediction of new interactions, but also the interpretation of the learned gene regulation
code. We therefore believe that CPA can not only be used as a hypothesis generation tool for
in-silico screens but also as an overall data approximation model. Deviations from our assumed
data generation process (see Methods) would then tell us about missing information in the given
data set and/or missing aspects in the factor model. By including multiple layers of regulation,
the resulting model can grow in flexibility for prediction and for mechanistic understanding on for
example synergistic gene regulation or other interactions.

Finally, we expect CPA to facilitate new opportunities in expression-based perturbation screen-
ing, not only to learn optimal drug combinations, but also in how to personalize experiments and
treatments by tailoring them based on individual cell response.

Code availability

Code to reproduce all of our results is available at http://github.com/facebookresearch/CPA.

Data availability

All datasets analyzed in this manuscript are public and have published in other papers. We have
referenced them in the manuscript and made available at http://github.com/facebookresearch/
CPA.
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Methods

Data generating process

We consider a dataset D = {(x;,d;,¢;)} |, where each x; € RY describes the gene expression of G
genes from cell i. The perturbation vector d; = (d; 1, ..., d; pr) contains elements d; ; > 0 describing
the dose of drug j applied to cell 7. If d; ; = 0, this means that perturbation j was not applied to
cell 4. Unless stated otherwise, the sequel assumes column vectors. Similarly, the vector of vectors
¢; = (¢ij,...ci k) contains additional discrete covariates such as cell-types or species, where each
covariate is itself a vector. More specifically, ¢; ; is a Kj-dimensional one-hot vector.

We assume that an unknown generative model produced our dataset D. The three initial components
of this generative process are a latent (unobserved) basal latent state zP253! for cell i, together with its
perturbation vector d; and covariate vector ¢;. We assume that the basal latent state is independent
from the perturbation vector d; and covariate vector ¢;. Next, we form the latent (also unobserved)
perturbed latent state z; as:

2= Z;oasal + }/perturbation (fl (dz‘,l), e fM(dz‘,M)) + Z Vi . Cij (1)
j=1,....K

In this equation, each column of the matrix VPerturbation ¢ RdXM ropresents a d-dimensional embed-
ding for one of the M possible perturbations represented in d;. Similarly, each column of the matrix
Veovi € R9“K; represents a d-dimensional embedding for the j-th discrete covariate, represented as
a Kj-dimensional one-hot vector ¢; ;. The functions f; : R — R scale non-linearly each of the d; ; in
the perturbation vector d;, therefore implementing M independent dose-response (or time-response)
curves. Finally, we assume that the generative process returns the observed gene expression x; by
means of an unknown decoding distribution p(z;|z;). This process builds the observation (x;, d;, ¢;),
which is then included in our dataset D.
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Compositional Perturbation Autoencoder (CPA)

Assuming the generative process described above, our goal is to train a machine learning model
z, = M((z;,d;, ¢;),d) such that, given a dataset triplet (x;, d;, ¢;) as well as a target perturbation d’,
estimates the gene expression x;. The term z/ represents what would the counterfactual distribution
of the gene expression x; with covariates ¢; look like, had it been perturbed with d’ instead of d;.

Given a dataset and a learning goal, we are now ready to describe our proposed model, the Com-
positional Perturbation Autoencoder (CPA). In the following, we describe separately how to train
and test CPA models.

Training

The training of a CPA model consists in auto-encoding dataset triplets (z;,d;,¢;). That is, during
training, a CPA model does not attempt to answer counterfactual questions. Instead, the training
process consists in (1) encoding the gene expression x; into an estimated basal state 223! that does
not contain any information about (d;,¢;), (2) combining 222! with learnable embeddings about

(di,ci) to form an estimated perturbed state Z;, and (3) decoding 2; back into the observed gene
expression ;.

More specifically, the CPA model first encodes the observed gene expression x; into an estimated

basal state:
Abasal fenC( )

In turn, the estimated basal state is used to compute the estimated perturbed state Z;:

g = gpesal g ypertwebation () (d; ), fu(dian)) + D VO ey (2)
j=1,..K

Contrary to (1), this expression introduces three additional learnable components: the perturba-
tion embeddings VPerturbation ‘the covariate embeddings V°°Vand the learnable dose-response curves
(fi,---, far), here implemented as small neural networks constrained to satisfy f;(0) = 0.

As a final step, a decoder fdec accepts the estimated perturbed state Z; and returns fﬁec(éi) and
f;i;ec(é’i), that is, the estimated mean and variance of the counterfactual gene expression .

To train CPA models, we use three loss functions. First, the reconstruction loss function is the
Gaussian negative log-likelihood:
log s(f3°(%)) | (fi=(&) — «})*
Ei = 9 + rdec 5 (3)
2-5(fg5°(%1)

where s(0?) = log(exp(c? + 1073) + 1) enforces a positivity constraint on the variance and adds
numerical stability. This loss function rewards the end-to-end auto-encoding process if producing
the observed gene expression x;.

Second, and according to our assumptions about the data generating process, we are interested in

removing the information about (d;, ¢;) from £P38l. To achieve this information removal, we follow

an adversarial approach [31]. In particular, we set up the following auxiliary loss functions:

¢4 := CrossEntropy (f39v(zP>2) 4y,
Ea = CrossEntropy( aG‘"(Al’asal) cij), Vi=1,...,K.

The functions fjd" fad" are a collection of neural network classifiers trying to predict about (d;, ¢;)

given the estimated basal state zbasal

Given this collection of losses, the training process is an optimization problem that repeats the
following two steps:
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1. sample (z;,d;, ¢;) ~ D, minimize ¢4 + 3"
all j=1,...,

K.

J

Y

£7 ; by updating the parameters of fgd" and ffidjv, for

2. sample (z;,d;, ¢;) ~ D, minimize £; — \- (6%—2 j Ei j) by updating the parameters of the encoder
fere the decoder f9¢¢, the perturbation embeddings VPerturbation the covariate embeddings
Veovi for all j =1,..., K, and the dose-response curve estimators (fi,..., far).

Testing

Given an observation (x;, d;, ¢;) and a counterfactual treatment d’, we can use a trained CPA model
to answer what would the counterfactual distribution of the gene expression x; with covariates c;
look like, had it been perturbed with d’ instead of d;. To this end, we follow the following process:

1. Compute the estimated basal state

ézbasal —

(e

2. Compute the counterfactual perturbed state Z;

Al
2

— 2Zbasal + ‘A/perturbation . (fl( ;71)7 . fM( ;,M)) + Z
j=1

rCov L
14 Cij-

7"’K

Note that in the previous expression, we are using the counterfactual treatment d’ instead of
the observed treatment d;.

3. Compute and return the counterfactual gene expression mean
b

2 = fi (),

and variance z’ ,:
i,0

/

L2 =

Hyper-parameters and training.

For each dataset, we perform a random hyper-parameter search of 100 trials.

Fe(2)).

I

The table below

outlines the distribution of values for each of the hyper-parameters involved in CPA training.

Group Hyperparameter Default value Random search distribution
embedding dimension 256 RandomChoice([128, 256, 512])
general batch size 128 RandomChoice([64, 128, 256, 512])
learning rate decay, in epochs 45 RandomChoice([15, 25, 45])
hidden neurons, nonlinear scalers 64 RandomChoice([32, 64, 128])
I calers hidden layers 2 RandomChoice([1, 2, 3])
HomHear scalers learning rate le-3 LoUniferm(_4 . 9)
weight decay le-7 1QUniform(_g _5)
hidden neurons, encoder and decoder 512 RandomChoice([256, 512, 1024])
hidden layers 4 RandomChoice([3, 4, 5])
encoder and decoder Jearning rate le3 JQUniform(_y )
weight decay le-6 1QUniform(_g ' 4)
hidden neurons, discriminator 128 RandomChoice([64, 128, 256])
hidden layers 3 RandomChoice([2, 3, 4])
regularization strength 5 1Uniferm(_9 9)
discriminator gradient penalty 3 1oUniform(_9 1)
learning rate 3e-4 1QUniform(_5 " _3)
weight decay le-4 1oUniform(_g _3)
number of learning steps 3 RandomChoice([1, 2, 3, 4, 5])

Model evaluation.

a7s We use several metrics to evaluate the performance of our model: (1) quality of reconstruction for in
aze and OOD cases and (2) quality of disentanglement of cell information from perturbation information.
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We split each dataset into 3 subsets: train, test, and OOD. For OOD cases, we choose combinations
of perturbations that exhibit unseen behavior. This usually corresponds to the most extreme drug
dosages. We select one perturbation combination as "control". Usually these are Vehicle or DMSO
if real control samples are present in the dataset, otherwise we choose a drug perturbation at a
lower dosage as "control". For the evaluation, we use the mean squared error of the reconstruction
of an individual cell and average it over the cells for the perturbation of interest. As an additional
metric we use classification accuracy in order to check how well the information about the drugs was
separated from the information about the cells.

Uncertainty estimation.

To estimate the uncertainty of the predictions we use as a proxy the minimum distance between the
queried perturbation and the set of conditions (covariate + perturbation combinations) seen during
training (Supplementary Fig.1). Intuitively, we expect predictions on queried conditions that are
more distant from the set of seen conditions to be more uncertain. To estimate this distance we first
compute the set of embeddings of the training covariate and perturbation combinations:

geomb — perbation (fy (i) fy(dy)) + S Ve (®)
j=1,..,.K
The latent vector for the queried condition is obtained in the same manner. The cosine and euclidean

distances from the training embedding set are computed and the minimum distance is used as a proxy
for uncertainty.

Ucosine = min(l — Sc(équery’ écomb)) (5)

Ugyer = min(d(299eTY, z60mPY) (6)

Where Sc(x,y) stands for the cosine similarity and d(z,y) for the euclidean distance between the
two vectors.

With this methodology, in the case of a drug screening experiment, if we query a combination of
cell type, drug, and dosage that was seen during training, we get an uncertainty of zero, since this
combination was present in the training set. It is important to note that with this method we obtain
a condition-level uncertainty, in that all cells predicted under the same query will have the same
uncertainty, thus not taking cell specific information into account.

R2 score

We used the 72 score function from scikit-learn which reports R2 (coefficient of determination)
regression score.

Datasets

Gehring et al.

This dataset[8] comprises of 21,191 neural stem cells (NSCs) cells perturbed with EGF/bFGF,
BMP4, decitabine, scriptaid, and retinoic acid. We obtained normalized data from the original
authors and after QC filtering 19,637 cells remained. We further selected 5,000 highly variable
genes (HVGs) using SCANPY’s|50] highly wvariable genes function for training and evaluation of
the model.

Genetic CRISPR screening experiment

We obtained the raw count matrices from Norman et al.[5] from GEO (accession ID GSE133344).
According to authors guide, we excluded "NegCtrll NegCtrl0  NegCtrll NegCtrl0" control cells
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and merged all unperturbed cells as one "ctrl" condition. We then normalized and log-transformed
the data using SCANPY and selected 5,000 HVGs for training. The processed dataset contained
108, 497 cells.

Cross-species experiment

The data was generated by Hagai et al.|15] and downloaded from ArrayExpress (accession: E-MTAB-
6754). The data consists of 119, 819 phagocytes obtained from four different species: mouse, rat, pig
and rabbit. Phagocytes were treated with lipopolysaccharide (LPS) and the samples were collected
at different time points: 0 (control), 2, 4, and 6 hours after the beginning of treatment. All genes
from non-mouse data were mapped to the respective orthologs in the mouse genome using Ensembl
ID annotations. We filtered out cells with a percentage of counts belonging to mitochondrial genes
higher than 20%, then proceeded to normalize and log-transform the count data. For training and
evaluation, we selected 5000 HVG using SCANPY. After filtering, the data consists of 113,400 cells.

sci-Plex 2

The data was generated by Srivatsan et al. [35] and downloaded from GEO (GSM4150377). The
dataset consists of A549 cells treated with one of the following four compounds: dexamethasone,
Nutlin-3a, BMS-345541, or vorinostat (SAHA). The treatment lasted 24 hours across seven different
doses. The count matrix obtained from GEO consists of 24,262 cells. During QC we filtered
cells with fewer than 500 counts and 720 detected genes. We discarded cells with a percentage of
mitochondrial gene counts higher than 10%, thus reducing the dataset to 14,811 cells. Genes present
in fewer than 100 cells were discarded. We normalized the data using the size factors provided by
the authors and log-transformed it. We selected 5000 HVGs for training and further evaluations.

sci-Plex 3

The data was generated by Srivatsan et al.[35] and downloaded from GEO (GSM4150378). The
dataset consists of three cancer cell lines (A549, MCF7, K562), which are treated with 188 different
compounds with different mechanisms of action. The cells are treated with 4 dosages (10, 100, 1000,
and 10000 nM) plus vehicle. The count matrix obtained from GEO consists of 581,777 cells. The data
was subset to half its size, reducing it to 290,888 cells. We then proceeded with log-transformation
and the the selection of 5000 HVGs using SCANPY.

Interpretation of combinatorial genetic interactions by perturbation pairs and respon-
der genes

In the case of genetic screening, previous work by [5] proposed a set of metrics to annotate and
classify gene-gene interactions based on responder genes. Based on this, here we used measured or
predicted gene expression differences with respect to control cells (J), for gene perturbations a (da),
b (6b) and double perturbations ab (dab), to calculate interaction types by similarity between these
three expression vectors.

More specifically, to calculate association coeflicients, we use the linear regression coeflicients ¢; and
¢o obtained from the model

dab = dacy + bey (7)

To describe interaction modes, we used the following metrics.

1. similarity between predicted and observed values: dcor(dacy + dbcz, dab).
2. linear regression coefficients: c¢; and co.
3. magnitude: (¢} + 3)'/2.

4. dominance: |logig(c1/c2)|.
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553 5. similarity of single transcriptomes: dcor(a,b)
554 6. similarity of single to double transcriptomes: dcor([a,b], ab).
555 7. equal contributions: Xinldcor(a.b).deor(b.ab)

max(dcor(a,b),dcor(a,ab)

sss  Following clustering and comparison of these metrics across measured and predicted cells, we decided
ss7  the following rules of thumb to define and annotate interaction modes:

558 1. epistatic: min(abs(c1),abs(c2)) > 0.2 and either (i) (abs(c1) > 2abs(c2)) or (ii) (abs(cz2) >
550 2abs(c1))

560 . potentiation: magnitude > 1 and abs(dcor(a,b)) - 1 > 0.2.

. strong sinergy (similar phenotypes): magnitude > 1 and abs(dcor([a,b],ab)) - 1 > 0.2

561

. additive: abs(magnitude) - 1 < 0.1.

563

2
3
562 4. strong sinergy (different phenotypes): magnitude > 1 and abs(dcor(a,b)) - 1 > 0.5.
)
6

564

. redundant: abs(dcor([a,b],ab)) - 1 < 0.2 and abs(dcor(a,b)) - 1 < 0.2

ses More than one genetic interaction can be suggested from these rules. In those cases, we did not
ses  assign any plausible interaction. For visualization purposes, we consider perturbed genes with 50 or
sz more interaction modes reported with other co-perturbed genes (Supplementary Fig.3c).

ses Lo visualize differentially expressed genes with similar response across perturbations (Supplementary
seo  Fig.3d), we trained a random forest classifier using as prediction labels control, a, b and ab cells,
s7o and gene expression as features. We retrieved the top 200 genes from this approach. Then, we
sn1 - annotated the direction (positive or negative) and the magnitude of those changes versus control
s72  cells, generating a code for clustering and visualization. To label genes with potential interaction
s73  effects, we labeled them if the double perturbation predicted magnitude is 1.5x times or higher than
s74 the best value observed in single perturbations.
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Supplementary Figure 1: CPA uncertainty estimation. (a) Schematic representation of the
steps involved in uncertainty estimation in the case of a dataset with two cell types and two drugs
(single dosage per drug). The covariate and perturbation latent vectors are summed in order to
generate the set of combinations in the training set. The distances from the query vector and all
the vectors in the set are then computed. The closest distance is used as a proxy for uncertainty
in the prediction of the model. (b) Example of uncertainty across dosages of Dexamethasone in
the sci-Plex 2 dataset. The ticks on the x-axis (log-scaled) indicate dosages seen at training time
for which the uncertainty is 0. The dosages were min-max normalized. (c) 2D plot of uncertainty
across dosages (min-max normalized) of two different drugs and combinations thereof in the sci-Plex
2 dataset. (d) Example histogram of cosine distances between the SAHA (dose=0.5) and the vectors
in the set of training perturbations. The distribution shows that training vectors belonging to the
same perturbation but with different dosages have the lowest uncertainties, with other drugs being
increasingly more distant.
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Supplementary Figure 2: Performance evaluation for CPA combinatorial predictions.
(a) UMAP representation of control (ctrl), singly perturbed (CBL+ctrl, ctrl+CNNI1) and dou-
bly (CBL+CNNT1) perturbed cells. (b) R? scores for all genes (blue) or top 100 DEGs (orange)
for the prediction of all 131 combinations in the data by training 13 different models and leaving
out &~ 10 combinations each time. (c) Scatter plots of number of samples in the real data for each
combination (x-axis) versus R? values for the variance of predicted and real for that combination
(d) Box-plots of R? values for variance for predicted and real cells while increasing the number of
combinations seen during training.
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Supplementary Figure 3: Gene-gene interaction insights revealed from genetic perturba-
tion predictions using CPA. (a) Number of single gene observations in leiden clusters for gen-
erated measurements (from Figure 4i). Most leiden clusters contain a prevalence for one perturbed
gene. The majority of genes without measured double perturbations share a limited number of clus-
ters. (b) Quality control and interaction metrics to compare gene expression differences between
single and double perturbations. Metrics vary based on number of genes with a measured double
perturbation (See Methods for definitions). (c) Interaction mode counts predicted for all genes
based on interaction metrics (based on [5]). (d) (left) Gene expression changes for double perturba-
tions (ab) versus single perturbations (a, b), are compared by direction and magnitude. Positive (+)
and negative (-) labels indicate increase/decrease versus control cells, and double positive/negative
(++/- -) indicate values higher than 1.5 times the highest comparable value in single perturbations.
(right) 500 genes with highest prevalence in differentially expressed genes across datasets, clustered
by prevalent response types from single and double perturbations.
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condition dose val R2 mean R2 mean DE R2 wvar split num cells

SAHA 0.01 0.99 0.99 0.95 test 160
SAHA 0.005 0.98 0.98 0.93 test 143
SAHA 0.05 0.98 0.95 0.93 test 118
SAHA 1.0 0.98 0.95 0.91 test 137
SAHA 0.001 0.97 0.97 0.92 test 169
SAHA 0.1 0.96 0.86 0.94 test 129
SAHA 0.5 0.96 0.86 0.89 ood 604
Nutlin 0.001 0.98 0.98 0.94 test 135
Nutlin 0.05 0.98 0.98 0.94 test 136
Nutlin 0.005 0.98 0.97 0.94 test 107
Nutlin 0.1 0.98 0.97 0.94 test 200
Nutlin 0.01 0.98 0.97 0.93 test 180
Nutlin 0.5 0.92 0.86 0.84 ood 265
Nutlin 1.0 0.26 0.61 0.00 test 1
Dex 0.5 0.99 0.99 0.98 ood 864
Dex 1.0 0.99 0.98 0.95 test 222
Dex 0.1 0.99 0.94 0.96 test 218
Dex 0.05 0.98 0.90 0.93 test 210
Dex 0.001 0.95 0.87 0.89 test 123
Dex 0.01 0.95 0.61 0.89 test 238
Dex 0.005 0.94 0.53 0.88 test 108
BMS 0.001 0.98 0.97 0.92 test 212
BMS 0.005 0.97 0.99 0.92 test 151
BMS 0.5 0.95 0.89 0.78 ood 34
BMS 0.01 0.95 0.80 0.86 test 82
BMS 0.05 0.93 0.87 0.75  test 59
BMS 0.1 0.92 0.89 0.74  test 50
BMS 1.0 0.55 -0.87 0.21 test 6

Supplementary Table 1 | Performance scores for the sci-Plex 2 dataset. To improve readability the
columns are sorted by: condition (first priority) and scores (second priority).

condition R2 mean R2 mean DE method

SAHA 0.98 0.94 linear
SAHA 0.96 0.86 CPA
Nutlin 0.92 0.86 CPA
Nutlin 0.85 0.80 linear
Dex 1.00 1.00 linear
Dex 0.99 0.99 CPA
BMS 0.95 0.89 CPA
BMS 0.89 0.85 linear

Supplementary Table 2 | A simple benchmark on OOD split for the sci-Plex 2 dataset.
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condition dose_val R2 mean R2 mean DE R2 var split num_cells
EGF+RA 0.2+1.0 0.98 0.95 0.84 test 553
EGF+RA 1.041.0 0.97 0.94 0.67 test 199
EGF+RA 0.2+0.2 0.96 0.98 0.89 test 87
EGF+RA 0.04+1.0 0.96 0.90 0.60 test 54
EGF+RA 1.040.2 0.95 0.91 0.75  test 30
EGF 0.2 0.98 0.96 0.86 test 90
EGF 1.0 0.94 0.71 0.60 test 73
BMP-+RA 0.2+1.0 0.91 0.84 0.60 test 22
BMP+EGF+ScripDec  0.24+0.2+1.0 0.97 0.97 0.82 ood 166
BMP+EGF+ScripDec  0.044-0.04+1.0 0.97 0.96 0.61 test 28
BMP+EGF+ScripDec  0.04+0.241.0 0.97 0.94 0.50 test 39
BMP+EGF+ScripDec  0.24-0.24+0.2 0.97 0.92 0.65 ood 304
BMP+EGF+ScripDec  0.0440.2+0.2 0.97 0.91 0.74 test 33
BMP+EGF+ScripDec  0.2+0.04+1.0 0.96 0.96 0.26 test 32
BMP+EGF+ScripDec  0.24-0.04+4-0.2 0.96 0.94 0.34 test 20
BMP+EGF+ScripDec  1.04-0.2+0.2 0.96 0.91 0.74 ood 113
BMP+EGF+ScripDec  0.2+1.0+1.0 0.95 0.89 0.51 ood 112
BMP+EGF+ScripDec  0.044-0.04+0.2 0.95 0.87 0.52  test 19
BMP+EGF+ScripDec  0.241.0+0.2 0.95 0.83 0.58 ood 105
BMP+EGF+ScripDec  0.04+1.041.0 0.94 0.96 0.57  test 17
BMP+EGF+ScripDec  1.040.044-0.2 0.91 0.86 0.51 test 15
BMP+EGF+RA 0.04+1.0+0.2 0.98 0.99 0.85 test 50
BMP+EGF+RA 0.2+0.04+0.2 0.98 0.98 0.74  test 63
BMP+EGF+RA 0.04+1.0+1.0 0.98 0.97 0.86 test 198
BMP+EGF+RA 0.04+0.2+1.0 0.97 0.96 0.88 test 552
BMP+EGF+RA 0.2+0.04+1.0 0.97 0.96 0.70  test 48
BMP+EGF+RA 0.04+0.2+0.2 0.97 0.92 0.80 test 73
BMP+EGF+RA 0.2+0.24+0.2 0.97 0.88 0.52 ood 206
BMP+EGF+RA 0.04+0.04+0.2 0.96 0.96 0.73  test 24
BMP+EGF+RA 0.241.0+0.2 0.96 0.89 0.66 ood 216
BMP+EGF+RA 0.241.0+1.0 0.96 0.87 0.66 ood 147
BMP+EGF+RA 0.2+0.2+1.0 0.95 0.77 0.59 ood 132
BMP+EGF 0.04+0.2 0.97 0.98 0.78  test 96
BMP+EGF 0.04+1.0 0.97 0.92 0.81 test 209
BMP+EGF 0.04+0.04 0.97 0.92 0.75 test 39
BMP+EGF 1.04-0.04 0.95 0.86 0.33  test 19
BMP+EGF 1.041.0 0.94 0.75 0.06 ood 113

Supplementary Table 3 | Performance scores for the 96-plex-scRNAseq dataset. For the readability the
columns are sorted by: condition (first priority) and scores (second priority).
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split  species time R2 mean R2 mean DE R2 var num cells

splitd  rat 6.0 0.97 0.91 0.85 7827
splitd  rat 6.0 0.96 0.86 0.89 7827
split4 mouse 6.0 0.97 0.90 0.81 5280
split4  mouse 6.0 0.96 0.85 0.93 5280
split3  rat 6.0 0.89 0.70 0.72 7827
split3  rat 6.0 0.86 0.55 0.40 7827
split3  rat 4.0 0.95 0.80 0.80 5755
split3  rat 4.0 0.94 0.77 0.63 5755
split2  rat 6.0 0.55 -0.65 -2.18 7827
split2  rat 6.0 0.54 0.02 0.02 7827
split2  rat 4.0 0.74 -0.47 0.26 5755
split2  rat 4.0 0.39 -0.85 -0.47 5755
split2  rat 2.0 0.81 -0.41 0.49 7025
split2  rat 2.0 0.41 -0.96 -0.64 7025
splitl  rat 6.0 0.97 0.91 0.92 7827
splitl  rat 6.0 0.97 0.91 0.92 7827
splitl rat 2.0 0.96 0.90 0.90 7025
splitl  rat 2.0 0.96 0.90 0.90 7025
split0  rat 6.0 0.97 0.89 0.90 7827
split0  rat 6.0 0.96 0.90 0.81 7827

Supplementary Table 4 | Performance scores for the cross-species dataset across different splits.

species time R2 mean R2 mean DE R2 var split num_cells

rat 2.0 1.00 1.00 0.99 test 2138
rat 4.0 1.00 1.00 0.99 test 1715
rat 6.0 0.96 0.86 0.89 ood 7827
rabbit 6.0 0.99 0.99 0.99 test 2088
rabbit 2.0 0.99 0.99 0.98 test 2662
rabbit 4.0 0.99 0.96 0.98 test 1732
pig 6.0 0.99 0.99 0.99 test 1535
pig 4.0 0.99 0.98 0.99 test 1954
pig 2.0 0.99 0.98 0.98 test 1662
mouse 2.0 1.00 0.99 0.99 test 2904
mouse 4.0 1.00 0.99 0.99 test 2793
mouse 6.0 0.96 0.85 0.93 ood 5280

Supplementary Table 5 | Performance scores for the cross-species dataset.
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