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1 Abstract

We introduce a framework for end-to-end integrative modeling of 3D single-cell
multi-channel fluorescent image data of diverse subcellular structures. We employ
stacked conditional g-variational autoencoders to first learn a latent representation of
cell morphology, and then learn a latent representation of subcellular structure
localization which is conditioned on the learned cell morphology. Our model is flexible
and can be trained on images of arbitrary subcellular structures and at varying degrees
of sparsity and reconstruction fidelity. We train our full model on 3D cell image data
and explore design trade-offs in the 2D setting. Once trained, our model can be used to
impute structures in cells where they were not imaged and to quantify the variation in
the location of all subcellular structures by generating plausible instantiations of each
structure in arbitrary cell geometries. We apply our trained model to a small drug
perturbation screen to demonstrate its applicability to new data. We show how the
latent representations of drugged cells differ from unperturbed cells as expected by
on-target effects of the drugs.

2 Author summary

It’s impossible to acquire all the information we want about every cell we’re interested
in in a single experiment. Even just limiting ourselves to imaging, we can only image a
small set of subcellular structures in each cell. If we are interested in integrating those
images into a holistic picture of cellular organization directly from data, there are a
number of approaches one might take. Here, we leverage the fact that of the three
channels we image in each cell, two stay the same across the data set; these two
channels assess the cell’s shape and nuclear morphology. Given these two reference
channels, we learn a model of cell and nuclear morphology, and then use this as a
reference frame in which to learn a representation of the localization of each subcellular
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structure as measured by the third channel. We use S-variational autoencoders to learn
representations of both the reference channels and representations of each subcellular
structure (conditioned on the reference channels of the cell in which it was imaged).
Since these models are both probabilistic and generative, we can use them to
understand the variation in the data from which they were trained, to generate
instantiations of new cell morphologies, and to generate imputations of structures in
real cell images to create an integrated model of subcellular organization.

3 Introduction

Decades of biological experimentation, coupled with ever-improving advances in
microscopy, have led to the identification and description of many subcellular structures
in the cell that are key to cellular function. Understanding the unified role of these
component structures in the context of the living cell is indeed a goal of modern-day cell
biology. How do the multitude of heterogeneous subcellular structures localize in the
cell, and how does this change during dynamic processes, such as the cell cycle, cell
differentiation and the response to internal or environmental perturbations [1,2]7 A
comprehensive understanding of global cellular organization remains challenging, and no
unified model currently exists.

Advances in microscopy and live cell fluorescence imaging in particular have led to
enormous insight and rich data sets with which to explore subcellular organization.
However, the experimental state-of-the-art for live cell imaging is currently limited to
the simultaneous visualization of only a limited number (2-6) of tagged molecules.
Additionally, there are substantial, interdependent limitations regarding spatial and
temporal resolution as well as duration of live cell imaging experiments. Computational
approaches offer a powerful opportunity to mitigate these limitations by integrating
data from diverse imaging experiments into a single model, a step toward an integrated
representation of the living cell and additional insight into its function.

It should be noted that generative models of individual cells are particularly useful
in this context, as these can capture how relationships among subcellular structures
captured in experimental imaging data vary across a population of cells and encode
these as distributions. Generative models may be used to understand the spatial
distribution of organelles under different conditions [1,3H5], or used as building blocks
for simulations or other tasks [6,/7], depending on how these models are constructed.
However, generative models also depend on both segmentation of the input microscopy
images and on feature selection; results from these models are thus dependent on the
quality of these segmentations and on the computed features.

Many computational models of subcellular structures are based on descriptors of
texture or segmented objects extracted from microscopy images of the cell. Such image
feature-based methods have previously been employed to describe and model cellular
organization [8-10]. While accurate object segmentations are useful for conveying
detailed information about the size, shape and localization of subcellular structures,
segmentation procedures must be judiciously designed for each type of structure.
Furthermore, computed image features of subcellular structures useful for e.g.
generative models may not be “human-interpretable”, or easily understood from a
biological viewpoint. Significant amounts of effort may be spent designing features to be
useful for a specific task (e.g. to measure “roughness” of a structure). Finally, ground
truth data for evaluation of segmentation and feature selection can be difficult to obtain,
especially for 3D cell images |[11]. These challenges compound when trying to expand
models to describe relationships between multiple subcellular structures and their
organization within a cell.

Recent deep-learning approaches have become increasingly popular in multiple cell
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biology applications and may provide an alternate computational pathway towards
integrated visual representations of the cell. In cell imaging, deep neural networks
(DNNs) are generally applied to perform pixel-level tasks, such as object

segmentation [12], label-free prediction [13]/14], de-noising and image restoration [154[16],
or cell-level analyses such as predicting cell fates [17], classifying cell cycle status [18],
distinguishing motility behaviors of different cell types [19], and subcellular pattern
detection and classification [20].

The work presented here is complementary to these efforts, and provides an
end-to-end framework for learning a data-driven generative model of cellular
organization in a statistically principled manner. Notable in our approach is that we
can build our model without the necessity of laborious hand-crafted features or
subcellular segmentations.

Here we explore the use of a DNN to build a generative model deemed the Statistical
Cell. This model has several applications. First, it learns de novo a non-parametric
representation of cell and nuclear morphology. This representation is condensed into a
small number of disentangled latent dimensions of morphological variation and can be
used for a number of downstream tasks such as classification, interpolation, exploration
of morphological variation, and generation of novel but statistically representative
cellular geometries.

This representation of cell and nuclear morphology also serves as a reference frame
for the model’s primary task: learning representations of the localization of many
independently labeled subcellular structures. This allows us to combine experiments of
individual subcellular structures to predict distributions of fluorescent labels that are
not directly observed together, creating a single model of integrated cell organization.
This approach is distinct from other methods described above, as it can be used to learn
and measure population distributions of cellular geometries and organelle localizations
within cells, and explore their relationships to one another, as compared to prediction of
an expected localization pattern in a given microscopy image.

Finally, our model is useful for practical, nonlinear dimensionality reduction for
extremely high dimensional image data. This enables us to, for example, construct a
statistically meaningful “average” cell from a population, determine whether a particular
cell represents a common or unusual phenotype, and quantitatively measure changes in
cell organization as a function of cell state (mitotic state, drug treatment, etc.).

Below, we explain how the Statistical Cell is constructed; we discuss its useful, novel
contributions and provide a critical look at its current limitations.

4 Results

4.1 Statistical Cell: a variational autoencoder that models the
3D organization of subcellular structures

In this section we begin with an overview of the model, and then proceed to present its
ability to model cell morphology as well as the localization of subcellular structures.

In order to jointly model the variation of all subcellular structures in our data, we
engineered a stacked conditional S-variational autoencoder and trained it end-to-end on
the entirety of our data. We call this model the Statistical Cell. The Statistical Cell is a
data-driven probabilistic model of the organization of the human cell membrane, nuclear
shape and subcellular structure localization. The diverse array of subcellular structures
used here represent components that serve specific functions that may be useful for
understanding cellular state.

The organizing principle of our model is that the localization of subcellular
structures is meaningful only in relation to the cell geometry in which they are

May 19, 2021

60

61

62

64

65

66

67

68

69

70

71

72

73

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108


https://doi.org/10.1101/2021.06.09.447725
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.09.447725; this version posted June 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a) Single-cell data collection (N = 40,000+ images)

c) Model implementation and training
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Fig 1. The Statistical Cell. a) A visual overview of the single-cell data collection
used in this study. For each of more than 40,000 cells we have high-resolution 3D image
data of the shape and location of the cell membrane (pink), nucleus (blue) and one of 24
endogenously tagged subcellular structures (yellow). The examples show actual image
data of cells in the collection. b) Plate diagram of the Statistical Cell model. Shaded
and un-shaded circles represent observed and learned variables, respectively. We model
reference structures x, as draws from a latent variable z,., and target structures x; as
draws from the latent variable z;, conditioned on @, and target type ¢. ¢) The main
components of the models are two autoencoders: one encoding the variation in the
reference, i.e. the cell and nuclear shape (top), and another which learns the relationship
between the target (the subcellular structures) dependent on the reference encoding
(bottom).

embedded. By leveraging conditional relationships to the cell and nucleus, we allow for
the integration of different subcellular structures into a single model, without these
structures needing to be tagged and imaged simultaneously.

The model is trained on a collection of more than 40,000 high-resolution 3D images
of live human induced pluripotent stem cells (Fig. ) Using 3D spinning disk confocal
microscopy we collected three image channels for each of these cells: 1) Plasma
membrane using CellMask Deep Red dye, 2) Nucleus via labeling DNA with NucBlue
Live dye, and 3) one of 24 subcellular structures. Specifically, these cells are from clonal
lines, each gene-edited to endogenously express a fluorescently tagged protein that
localizes to a specific subcellular structure. To facilitate biological interpretation of our
model, 5 of the 24 structures are synthetic controls, where instead of a normal GFP
structure channel we present to the model either a blank channel as a structure,
duplicated membrane and DNA channels, random Gaussian noise in the membrane and
DNA regions, or copy a random structure channel from a different cell. There are
between 1,000-4,000 cells per structure type (Table|[1)).

Using these images, we model cell membrane, DNA, and subcellular structure given
a known target structure type (i.e. a model of cell shape, nuclear shape, and structure
organization, given that the structure is one of the 24 observed structure types). This
model takes the form p(x,|t) where x is an image, r indicates reference, i.e. the
reference cell membrane and DNA dyes, ¢ indicates the target channel. x,; is therefore
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Table 1. Structures used in this study, with corresponding genes, number of images and labels. Each image
contains the labeled structure in addition to channels of labeled cell and nuclear shape.

Structure Name Gene Name (gene symbol) # Images #InterphijebClS#Mitosis
Actin filaments actin beta (ACTB) 2,848 2,544 304
Actomyosin bundles myosin heavy chain 10 (MYH10) 1,392 1,282 110
Adherens junctions catenin beta 1 (CTNNB1) 2,343 2,202 141
Centrioles centrin 2 (CETNZ2) 1,605 1,405 200
Desmosomes desmoplakin (DSP) 2,320 2,161 159
Endoplasmic reticulum SEC61 translocon beta subunit (SEC61B) 1,120 1,045 75
Endosomes RABS5A, member RAS oncogene family (RAB5A) 1,562 1,455 107
Gap junctions gap junction protein alpha 1 (GJA1) 1,491 1,334 157
Golgi ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) 1,539 1,445 94
Lysosomes lysosomal associated membrane protein 1 (LAMP1) 1,476 1,309 167
Matrix adhesions paxillin (PXN) 1,637 1,531 106
Microtubules tubulin-alpha 1b (TUBA1B) 2,409 2,219 190
Mitochondria translocase of outer mitochondrial membrane 20(TOMM20) 3,826 3,590 236
Nuclear envelope lamin B1 (LMNB1) 3,664 3,455 209
Nucleoli Dense Fibrillar Component (DFC)  fibrillarin (FBL) 1,536 1,407 129
Nucleoli Granular Component (GC) nucleophosmin 1 (NPM1) 3,717 3,480 237
Peroxisomes solute carrier family 25 member 17 (SLC25A17) 1,455 1,369 86
Plasma membrane Safe harbor locus (AAVS1) 2,098 1,867 231
Tight junctions tight junction protein 1 (TJP1) 1,162 1,079 83
Control - Blank N/A 2,028 1,861 167
Control - DNA N/A 2,028 1,861 167
Control - Memb N/A 2,028 1,861 167
Control - Noise N/A 2,028 1,861 167
Control - Random N/A 2,028 1,861 167
Total 49,340 45,484 3,856
an image of a cell containing reference structures (membrane, DNA) and a target
structure (one of the 24 structure types).

Utilizing relationships in our data (Fig. ,b)7 the model is factored into two
subcomponents; a reference model Mg that maximizes the probability of observed cell
and DNA organization p(x, ), and a target model Mt that maximizes the conditional
probability of subcellular structure organization p(x¢|x.,t). The complete probability
model is therefore p(x,|t) = p(x,)p(x¢|,, t).

Each component is modeled with a variational autoencoder (Fig. [Ik) [21], allowing
us to generate integrated examples from the learned data distribution, as well as map
reference x, and target @; to learned low dimensional variables (or embeddings / latent
space / latent dimensions) z, and z;, that capture morphological variation and
relationships between the reference and target structures. It is important to note that
z; is a conditional embedding, i.e. a low dimensional representation of information in
the target image, given the information in the reference and the specific target type.

For details see Section [6.2]
4.2 Modeling and visualizing subcellular organization via latent
space embeddings
The B variational autoencoder (S-VAE) architecture underlying the model of cell and
nuclear shape (MR) compresses the variation in the 3D cell images into a subspace with
maximal dimensionality of 512. While each cell is described by 512 coefficients in this
latent space, the diagonal covariance matrix of the Gaussian prior of the latent
embeddings, in tandem with the KL-divergence term in the 5-VAE objective function
(Eq. 3) attempts to sparsify the latent space by penalizing spurious embedding
dimensions. Different values of 3 lead to different numbers of effective latent dimensions;
see Fig. for details. (We note there is also a latent space for Mr, but we limit our
analysis and discussion in this section to the latent space of the reference model Mg.)
We investigated the interpretability of the latent space by correlating the cell
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coefficients for each latent dimension with measured cell metrics, such as cell size and
mitotic state. We observed various strong correlations between cell metrics and those
latent dimensions that showed a significant variation; see Fig. [S3] for details. As shown
in Fig. [2| the two top dimensions of the latent space visually stratify the cells based on
mitotic stages as well as cell height. Importantly, cell images that are generated along
these latent space dimensions show the expected phenotype (Fig. 7d). It is worthwhile
to note that the model captures both biologically interpretable features, such as cell
height, as well as features that are properties of the image measurement such as the
overall fluorescent dye intensity.

a) b)
4 4
2 Mitotic state 2 Cell height (um)
2 MO - interphase 2 e 4
< 0 ® M1/M2 - prophase * 0 e 8
M3 - early prometaphase e 12

® M4/M5 - prometaphase / metaphase .
® M6/M7 - anaphase / telophase / cytokinesis

-2z U7 (top feature = DNA integrated intensity) 2z

-2z U419 (top feature = cell height) 2z

Fig 2. The reference latent space learned by the model encodes interpretable features
and stratifies cells by biologically relevant features. a) Cells in the test set undergoing
mitosis are stratified by the top two dimensions of the reference model latent space. b)
The top two dimensions of the reference latent space, as ranked by mean absolute
deviation, for all cells in the test set, colored by cell height. ¢) Maximum intensity
projections of 9 generated 3d cell images along latent space dimension p71. The
integrated intensity of the DNA channel correlates strongly with p7;. d) Similar to ¢)

but not showing latent space dimension p419 which correlated strongly with cell height.

The latent walks in parts ¢) and d) occur in nine steps that span -2 to 2 deviations of
that latent dimension’s variation. See Supp. Figs. and for more visual
associations between latent dimensions and features, and Supp. Fig. for exhaustive
correlations of features with latent dimensions.

4.3 Sparsity /Reconstruction Trade-Off

Since our model is composed of 5-VAEs, the 5 parameter presents an important
trade-off between compact representation and high fidelity image reconstruction.
Tuning S allows the modeler to preferentially weight the two components of the loss
function. A high value of 8 favors a compact representation of the cell in the low
dimensional embedding space (i.e. the number of dimensions needed to describe an
image z, and z;) via a higher emphasis on the K L(q(z|z)|p(z))) loss term. A low value
of 8 emphasizes accurate reconstruction of the original image by placing more weight on
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B=0.01 B=0.5 B=0.99

Fig 3. Evaluation of the sparsity-reconstruction trade-off with 2D
Statistical Cell models. a) shows the average rate and distortion terms of the ELBO
for models at a different trade-off 3. Gray dotted line indicates the trade-off achieved
by the best performing model. b) Images of six observed cells. Nucleus is in blue. Cell
membrane is in magenta. ¢) Images of cells generated with the Statistical Cell for
different values of 8. See Supp. Fig. @] for more data on model sparsity.

the Eq(.|z)[log p(x|2)] loss term. The relative emphasis of one term versus the other has
consequences for the model and for its applications. For example, one might desire a
less-complex data embedding to facilitate the statistical exploration and interpretation
of the latent space, while in other circumstances it might be preferable to obtain a more
complex embedding that enables the comparative analysis of high-fidelity generated
images.

Several methods have been proposed to modulate the trade-off between sparsity and
reconstruction in VAEs [22L|23], and other factors such as data normalization, model
architecture, hyper-parameters (including training schedules [24]) may also impact this
relationship. To demonstrate how our model performs as a function of this relationship,
we adopt a reparameterized variational objective that allows us to tune the relative
weights of these two terms (see Eq. .

Because parameter exploration using the full 3D model is prohibitively expensive, we
explored the effect of the § parameter using a 2D model. This model is the same in all
regards to the 3D model, other than that the inputs and convolutions are two
dimensional instead of three. Our 2D input data was generated from the 3D data by
taking a maximum-intensity projection along the z-axis. While this reduction
obfuscates some details of the cell’s structure and organization, it retains a largely
faithful picture of overall cell shape and reconstruction detail, and allows us to explore
model and parameter choices approximately an order of magnitude more quickly than
using the 3D model.

Using the 2D data, we trained 25 models of cell and nuclear shape (Mg) with S
values evenly spaced between 0 and 1 using 2D maximum-intensity-projected images of
cell and nuclear shape. Using the test data, i.e. data not used in the training phase, we
recorded the average of the two terms of ELBO for each of the 25 models and plot the
two as a function of 8 in Fig. [Bp. Sampling from the cell and nuclear shape
representation, we show generated images across a range of 8 values in Fig. Bc. A few
observed cells are visualized in Fig. [3p for reference. We note that compared to
observed cell and nuclear shapes, generated images close to 8 — 0 retain more detail
and perhaps more diversity than images at 8 — 1, although this comes at a trade-off of
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increased representation dimensionality. 203

4.3.1 Visualization of generated cells and conditionally generated struc- o
tures 205

a) Reference Observed Generated reference ( n = 7 samples) Legend

Nucleus

Generated target
b) Target (n=3) (n=3) (n=3)

Fig 4. Generating cell images from the Statistical Cell model. a) Realistic
images can be generated from the probabilistic model of the cell membrane and the
nucleus. On the left are three examples of actual cells. On the right are seven generated
cells, sampled using independent random draws from the latent space. b) Cell and
nuclear image data of actual cells can be used to generate a simulated image of a given
structure even if that structure was not measured for that cell. On the left are three
actual cells for which three different structures were imaged. From top to bottom:
mitochondria, nuclear envelope and tight junctions. On the right are depictions of the
generated structure channels for each of these cells and structures. Three examples of
each structure in each cell are shown, each generated using independent random draws
from the latent space. See Supp. Fig. and Supp. Fig. [S5| for more examples.

An important application of the trained Statistical Cell model is to visualize cellular 206

structures by generating images sampled from the probabilistic models. That is, by 207
sampling from the latent space that describes the trained probabilistic model of 208
structures dependent on cell and nuclear shape (M), we can visualize the location and 2
shape of subcellular structures, and how those properties vary in the data. Moreover, 210
the construction of the model enables us to impute and visualize multiple subcellular m
structures in the same cell geometry simultaneously, whereas the data the model is 212
trained on only contains one structure tagged per image. Because the model is 213
probabilistic, it approximates the diversity of structure localization specific to each 214
structure type. Fig. depicts multiple examples of different subcellular localization 215
patterns given an observed cell and nuclear shape. 216

Overall, we find that in distribution the generated structures vary in localization as 217
one would expect, providing strong evidence that the network is successfully learning 218

appropriate rules governing structure-specific localization that are not explicitly 219
encoded in the images themselves or in the ”target type” input. For example, 220
e Mitochondria are distributed throughout the cytoplasm, but are never found 21
inside the nucleus. 2

e The nuclear envelope forms a closed shell around the DNA. 23
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e The tight junctions are at the apical surface of the cell and around the cell
periphery.

e The nucleoli (both the Dense Fibrillar Center and the Granular Component) form
blobs that are always inside of the nucleus, never outside.

e Matrix adhesions are always at the basal surface.

The latter two examples along with other examples of typical organelle localization
are found in Supp. Fig. It is important to note that due to the limitations of the
data and the specific model construction, generated subcellular structures are
independent of each other (e.g. generated tight junctions may overlap with generated
mitochondria).

4.4 Quantification of the coupling of subcellular structure local-
ization to gross cellular morphology

a) Control - Blank Control - DNA Control - Memb b) Control - DNA 1

10 1 10 v, 1 10 L Nuclear envelope |
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Fig 5. Quantification of the coupling of cellular morphology and subcellular structure.
a) shows the relative coupling strength of three structures to the nuclear shape (y-axis)
and cell membrane (x-axis) of the cells in which they reside, according to Eq. |4l Each
point represents a cell; brown points are cells in interphase, blue points are cells
undergoing mitosis. b) shows the relative degree of coupling of each structure to the cell
membrane or nuclear channel, and how this changes during mitosis.
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In the previous sections we aimed to show, both qualitatively and quantitatively,
that the Statistical Cell enables us to model the organization of subcellular structures
by leveraging the reference channels, i.e. the cell membrane and the nuclear shape. An
important next question is to what extent the reference channels by themselves inform
the prediction of subcellular structure organization.

To answer this question, we constructed a measure of coupling sensitivity between a
subcellular structure and the morphology of either the cell membrane or the nucleus.
Specifically, we quantified the sensitivity of our model to the coupling between each
subcellular structure and a reference channel (say, cell membrane) by comparing the
ELBO for that unperturbed image with the ELBO of a perturbed version of that image,
where the reference channel (e.g. membrane) is replaced by a randomly selected
membrane channel from the other cells in the population (see Methods, Eq. .

As controls for this metric, we created artificial “structure” channels that are
duplicates of each of our reference channels (cell membrane and nucleus) to confirm that
this measure of coupling makes sense in the limit of structures that are perfectly
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correlated with one of the reference channels. Fig. [5h shows the coupling metrics across
three subcellular structures as well the controls. We observed that each control is
quantified as being coupled only to itself, and not to the other reference channel; that is,
it appears that the cell membrane and the nucleus are not informative of each other
under our model. We also used a blank structure as a control, and as expected did not
see any coupling between it and either reference channel. Regarding the three
subcellular structures: We observed that the mitochondria have low coupling to both
the nucleus and cell membrane, indicating that under our model, the placement of the
mitochondria is not coupled to a specific cell’s morphology. On the other hand, the tight
junctions, while effectively uncoupled to the nuclear channel, show a strong coupling
with the cell membrane. This is to be expected, since tight junctions co-localize with
the membrane at the apical perimeter of the cell. Lastly, we see that the nuclear
envelope is predominately coupled to the DNA channel, except during mitosis when it
dissolves, which is also as expected. More details on this are given below.

In order to understand how strongly each structure is coupled to the cell or nuclear
reference structure overall, in Fig. we condensed the coupling metrics across many
cells, as displayed in Fig. Bh, to a single summary statistic for each of the 24 subcellular
structures. The statistic that we employed is the normalized difference of the nuclear
coupling to the cell membrane coupling from Eq. [d] averaged over all cells in that
structure/phase of the cell cycle (see Eq. 5| for details).

Fig. shows a spectrum of differential couplings under our model, all of which are
biologically plausible. They range from the nuclear envelope and other nuclear tags
being coupled to the nucleus, to microtubules and other cytoplasmic structures being
strongly coupled to the cell membrane.

Interestingly, we observed there is differential coupling between mitotic cells (plotted
in blue) and interphase cells (plotted in brown) for some subcellular structures. That is,
a certain subcellular structure may be strongly coupled to the nuclear reference channel
during interphase, but that coupling may breakdown during mitosis, or vice versa. For
example, the nuclear channel of the mitotic cells shows a weaker coupling to the nuclear
envelope than the interphase cells (Fig. [fh). Our interpretation is that the break down
of the nuclear envelope during mitosis inhibits the model’s ability to leverage the
nuclear channel for prediction.

Fig. highlights several other subcellular structures whose differential coupling (to

the cell membrane vs. the nucleus) is sensitive to the position of the cell in the cell cycle.

Of particular note is that we detect that the nucleolus granular component is tightly
coupled to the nucleus during interphase, but that relationship is inverted during
mitosis.

4.5 Out of sample data using drug perturbations of subcellular
structures

To determine the model’s utility on out-of-sample data, we explore the model’s ability
to detect perturbations of cell morphology and subcellular localization patterns using a
small drug perturbation experiment. The drug data set consists of images of cells that
were fluorescently tagged with one of three subcellular structures: microtubules, Golgi,
or tight junctions, and exposed to one of two drugs: Brefeldin (5.0 pM) or Paclitaxel
(5.0 uM). See Fig. @1 and Section This data set also contained cell images for
untreated cells. The primary focus of this follow-up study was to determine whether the
trained model can sensibly be applied to these drug data and provide biological insights
by evaluating on low-dimensional representations of reference and target structures.
Latent embeddings (reference z, and target z;) were computed for each image of
untreated and drug-treated cells. Fig. |§|b shows the first two dimensions (as ranked by
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8 & & &

% 0 g; 0 g; 0 g; 0
i i i, §,
-4 -4 -4 -4
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7 (reference) M6 (target) g6 (target) 196 (target)

Microtubules — —

Fig 6. a) Experimental overview of drug-treated cells (rows) and measured subcellular
structures (columns) where N indicates the number of obtained cells. Drugs are color
coded (Brefeldin is blue, Paclitaxel is pink). b) Scatter plots of cells embedded in first
two dimensions of the latent space of the Statistical Cell model. From left to right:
Reference structures (cell + nucleus) in the reference latent space, microtubules, Golgi,
and tight junctions in the conditional latent space. The red arrow in the microtubules
subplot indicates the direction of the change of the centroid of the untreated (black)
and treated (pink) populations. ¢) Visualization of the microtubules of 24 cells. For
each cell we have visualized the maximum intensity projection along z, i.e. looking at
the xy plane (top), and the maximum intensity projection along x, i.e. looking at the yz
plane (bottom). The cells from both populations are sampled at fixed intervals from the
untreated (left)-to-treated(right) direction after projecting onto the red line in b2.

mean absolute deviation) of this embedding for the reference channels (cell membrane
and nucleus) and the three structures. We observe that the treated and untreated cells
occupy the same space for the reference model Mg, that is, the embeddings of the cell
membrane and nuclear morphology are largely unperturbed by drug treatment in these
two leading latent dimensions. Specifically, the treated (pink and blue) and untreated
(black) cells do not form different clusters but are highly overlapping. Note that the
structure model is conditional on the reference (cell membrane and nucleus), and if the
treated cells were substantially different from the untreated cells with regards to their
cell and nuclear morphology, we could not sensibly apply the conditional model.

We focus on the most visually striking and largest perturbative effect that the model
detected, and here visualize the effect of Paclitaxel on microtubules by plotting the
direction-of-effect on the first two dimensions of the latent representation Fig. [6b
(microtubules). By sampling images uniformly across this vector (Fig. [6k), moving from
left to right we see that this direction corresponds with change from uniform to
condensed localization.
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5 Discussion

The Statistical Cell is a model of the organization of subcellular structures in human
induced pluripotent stem cells. We have described the model and its capabilities, and
explored how it may be a useful tool for studying the organization of cells from
fluorescent 3D spinning disk confocal images. In this section, we discuss important
considerations and future work of the Statistical Cell.

Previous incarnations of our Statistical Cell model [25]26] featured an adversarial
loss function. Along with non-generative direct image transformation methods,

e.g. |13l[15], generative adversarial networks (GANs) have been proposed to produce
high-fidelity generated cell images [27,[28]. Although these adversarial-loss based
methods may produce crisp images when appropriately tuned, they remain notorious in
their difficulty to efficiently optimize [29L[30], suffer from several poorly understood and
difficult to diagnose pathologies such as “mode collapse” |31] and difficulty to initialize
models that produce large images [29,30].

It should be noted that both the VAE loss function used here and adversarial
autoencoders [32] allow for the construction of a low dimensional representations of
specified distribution (e.g. Gaussian-distributed latent spaces). We ultimately chose a
VAE-based model version for a number of reasons, both practical and theoretical.
Compared to GANs, S-VAEs are more stable and easier to train, possess stronger
theoretical bounds [21], and are able to easily trade off latent-space dimensionality for
reconstruction fidelity [22] while also disentangling latent dimensions.

In this work we employ a standard conditional S-VAE architecture, composed of
convolutional /residual blocks. We present no drastic architectural innovations, but
rather leverage the proven reliability of 5-VAEs in other domains to build a solid
framework for integrating and modeling 3D spinning disk confocal fluorescent
microscopy data. Our focus is the cell biological application, and the way that the
B-VAE enables hands-off quantification of image data that are difficult to describe in
anything other than qualitative terms.

There are a number of ways in which our model could be extended in the future.
Recent work in non-biological domains has suggested that using image features and
auxiliary loss functions for VAEs can improve model performance and
generalizability [33]. Directly optimizing our model to retain specific morphological
properties, e.g. using feature-based losses such as cell volume, cell height, etc., may
improve image generation while retaining specific statistical properties relevant to the
application of these models.

As in many bioimage informatics applications, image pre-processing and
normalization are important issues and can have important consequences to
downstream workflows. In the Statistical Cell model, image normalization and the loss
function (ELBO) are coupled to each other. Changing the way in which the cell images
are pre-processed directly impacts how the loss function affects the training of the
model. For instance, noise and bright spots in the cell and nuclear dyes are penalized
disproportionately to their biological significance. We have not thoroughly studied
different normalization schemes and their effects on the inferred model, and as with
many image analysis methods, it is likely that results may vary as a function of image
pre-processing.

One avenue of approach to normalization could be to use image segmentations as
inputs to the model, rather than the fluorescent dye intensities. Segmentation itself
presents its own problems, but as 3D segmentation techniques for densely packed
spinning disk confocal fluorescent microscopy images improve [11], this approach should
become more feasible and deserving of serious consideration. Our framework is
amenable to incorporating both segmentation-based inputs and hand-crafted features, a
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future direction that holds promise for incorporating the most desirable facets of each of
these approaches.

An important aspect of the Statistical Cell model is the application of the trained
model to external data. For any model, it is important to understand to what extent it
may be applied in new contexts. The results presented here were trained on a data set
of relatively few conditions, and we do not expect our model to generate realistic images
or produce accurate representations of cellular structures on images that were collected
in a substantially different way, e.g. different cell types, different microscopes, etc.,
although future models may be able to account for these types of biological and
technical variation [34].

It will be important to understand whether the Statistical Cell can, at least, be used
as a pre-trained model to enable faster training on smaller data sets of cell images that
were obtained under different conditions. The computational complexity of training
(from scratch) a 3D Statistical Cell model can be prohibitive without access to
expensive GPU resources. Specifically, training the 3D Statistical Cell model on a
sizable corpus of relatively large 3D images as explained in this work required 2 weeks of
training time using two high-memory (32GB) GPUs.

The Statistical Cell can visualize multiple subcellular structures simultaneously at a
single-cell level. Yet, some complex interrelationships between structures may not be
accurately represented by the model. This is because the Statistical Cell model captures
the partial correlation between a target subcellular structure and the cell and nucleus,
but not directly between different subcellular structures. Cell lines that have been
gene-edited to express multiple tagged subcellular structures could be leveraged to
model a richer covariation structure. Beyond jointly modeling more simultaneously
acquired image channels, additional data types (e.g. RNA FISH) could be incorporated
into a generative single-cell model. Conditional modeling and visualization of multiple
jointly acquired data modalities is necessary to move towards a truly integrated picture
of cell state.

6 Materials and methods

6.1 Data

Our model was trained on publicly available cell image data generated at the Allen
Institute for Cell Science.

6.1.1 Allen Cell Collection

The input data for training can be obtained at allencell.org or directly at
https://open.quiltdata.com/b/allencell/packages/aics/pipeline_
integrated_single_cell. Imaging and culture conditions are described in [13]. Each
source image consists of channels corresponding to the reference nuclear signal and cell
membrane signal, and a fluorescently labeled target sub-cellular structure. Extensive
information can be found on allencell.org.

6.1.2 Preprocessing of images

All cell regions were segmented from the field of view using a segmentation workflow.
See https://www.allencell.org/extracting-information.html| for more details.
Each channel was processed by subtracting the most populous pixel intensity,
zeroing-out negative-valued pixels, and re-scaling image intensity to a value between 0
and 1. The cells were aligned by the major axis of the cell shape, centered according to

the center of mass of the segmented nuclear region, and flipped according to image skew.

May 19, 2021

13/127

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412


allencell.org
https://open.quiltdata.com/b/allencell/packages/aics/pipeline_integrated_single_cell
https://open.quiltdata.com/b/allencell/packages/aics/pipeline_integrated_single_cell
https://open.quiltdata.com/b/allencell/packages/aics/pipeline_integrated_single_cell
allencell.org
https://www.allencell.org/extracting-information.html
https://doi.org/10.1101/2021.06.09.447725
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.09.447725; this version posted June 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 2. Drug treatments.

Perturbation agent Vendor Catalog Well-known action Concentration  Incubatior
Brefeldin A Selleckchem.com No.S7046 Vesicle trafficking inhibitor 5 nM 0.5 hr
Paclitaxel Selleckchem.com No.S1150 Microtubule polymer stabilizer 5 pM 2 hr
DMSO Sigma Aldrich N/A Vehicle control 0.01% 0.5 to 2 hi

Each of the 49,340 cell images were linearly rescaled to cubic voxels of 0.317 pm/px, and a3

padded to 128 x 96 x 64 cubic voxels. 2D images for Section [I.3] were created by a4
maximum-intensity projection along the z-axis, independently for all three image a15
channels, and are available in the data package. 416
6.1.3 Mitotic annotations a7

Cells were annotated as being in interphase or mitosis via manual inspection of images s
by a resident expert cell biologist and released as part of the Allen Institute - Integrated a1
Mitotic Stem Cell. Mitotic cells were further annotated by which phase of mitosis they
were in: prophase (M1+M2), early prometaphase (M3), prometaphase / metaphase 21

(M4+M5), and anaphase / telophase / cytokinesis (M6+MT7). Further details are a2
available at https://www.allencell.org/hips-cells-during-mitosis.html# 423
sectionMethods-for-mitotic-cells a24
6.1.4 Drug perturbations 25
The data for the drug perturbation experiments were acquired independently of the 26
main training and testing data for the model, and here we describe its acquisition and s
processing. 428

A subset of mEGFP-tagged human induced pluripotent stem cells (hiPSCs) from the
Allen Cell Collection were selected in this study, including TUBA1B line:AICS-12, 430

ST6GAL1 line:AICS-25, TJP1 line:AICS-23, to show the location of a particular cell 431
organelle or structure and represent cellular organization. mEGFP-tagged hiPSCs were
seeded onto Matrigel-coated 96-well plates at a density of 2,500 to 3,500 cells per well 43
and maintained in culture in phenol-red free mTeSR1 media with 1% penicillin 434
streptomycin for 4 days before imaging (media changed every day). On day 4, cells on
the 96-well plate were treated with one of the pre-selected, well-characterized drugs with 4

concentration and incubation time described in Table 2 437
At the end of the incubation time, hiPSCs were then incubated in imaging media of 43
phenol red-free mTeSR1 media (Stem Cell Technologies) with 1% penicillin 439

streptomycin (Thermo Fisher) with X1 Nuc Blue Live (Hoechst 33342, Thermo Fisher) o
for 20 min and 3X CellMask (Thermo Fisher) for 10 min. The cells were washed with

fresh imaging media prior to being imaged live at high magnification in 3D. a2

3D Live-cell imaging of mEGFP-tagged hiPSCs was performed on a Zeiss a3
spinning-disk microscope with a 100x/1.2 NA W C-Apochromat Korr UV-vis IR aaa
objective (Zeiss) and a 1.2x tube lens adapter for a final magnification of 120x, a 445

CSU-x1 spinning-disk head (Yokogawa) and Orca Flash 4.0 camera (Hamamatsu) (pixel 4
size 0.271 pm in x-y after 2x2 binning and 0.29 ym in Z). Standard laser lines (405, 488, 4
561, 640 nm), primary dichroic (RQFT 405, 488, 568, 647 nm) and the following Band s

Pass (BP) filter sets (Chroma) were used for fluorescent imaging: 450/50 nm for 449
detection of Nuc Blue Live, 525/50 nm for detection of mEGFP, and 690/50 nm for 450
detection of CMDR dye (Thermo # C10046). Cells were imaged in phenol red-free 451

mTeSR1 media, within an incubation chamber maintaining 37°C and 5% COs,. Bright s
field images were acquired using a white light LED with broadband peak emission using ss3
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the mEGFP BP filter 525/50 nm for bright field light collection.

To obtain single-cell measurements, fluorescent images of cells treated with CellMask
Deep Red dye and NucBlue Live dye were segmented with the aforementioned
segmentation workflow. The fluorescent images are normalized with a median filter and
adaptive local normalization. Nuclei are segmented with active contouring. Segmented
nuclei are used to create seeds for segmentation of individual cells based on the signal
from the plasma membrane. The plasma membrane signal is boosted at the top of the
cell and fluorescent endocytic vesicles are removed from normalized cell membrane

image and are then segmented with 3D watershed with seeds from nucleus segmentation.

Further details are available at
https://www.allencell.org/drug-perturbation-pilot.html. The data are
available at
https://www.allencell.org/data-downloading.html#sectionDrugSignatureData

6.2 Model Architecture

At its core, the Statistical Cell is a probabilistic model of cell and nuclear shape
conjoined to a probability distribution for the localization of a given subcellular
structure conditional on cell and nuclear shape. An observed image, ,+, is modeled as
p(x,|t) = p(@,)p(ze|2,, ), where r indicates reference image channels that contain the
same cellular structure across all images (in this case the plasma membrane using
CellMask Deep Red dye, and the nucleus via labeling DNA with NucBlue Live dye),
and t indicates structure channels. The model maps «, and x; to learn low dimensional
variables (or “embeddings”), z, and z; that capture morphological variation and
relationships between the reference and target structures, allows for sampling of missing
data and realistic exemplars, and characterizes statistical relationships between the
reference and target structures.

The Statistical Cell model consists of two sub-models that are trained (conditionally)
independently, the model of cell and nuclear shape, Mg, and the conditional model of
structure localization, M.

Table 3. Architecture of model used in this study. Arrows indicate spatial
downsampling or upsampling.

Reference Model, Mg Target Model, Mt
Iy T
Residual layer, |, 32 Residual layer + (x,,t), |, 32

Residual layer, |, 64 Residual layer +
Residual layer, |, 128 Residual layer + (x,,t), |, 128
Residual layer, |, 256 Residual layer + (z,,t), |, 256
Residual layer, |, 512 Residual layer + (x,,t), |, 512

x,, 1), |, 64

Py

[FC 512], [FC 512] [FC 512], [FC 512]
zr = N(z,,0z,) 2y = N(pz,,02,)
FC 512 FC 512

Residual layer, 1, 512 Residual layer + (z,,t), T, 512
Residual layer, 1, 256 Residual layer + (x,,t), T, 256
Residual layer, 1, 128 Residual layer + (x,,t), T, 128
Residual layer, 1, 64 Residual layer + (x,,t), T, 64
Residual layer, 1, 32 Residual layer + (x,, 1), T, 32
Residual layer, 1, 2 Residual layer + (z,,t), 1

i7" it

A diagram of the model is shown in Fig. [Ib,c. The reference component Mg
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X
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’4}( conv 1/J, out dim‘

1x1 conv, out dim
2x avg-pool/upsample

bn, relu

Fig 7. Residual block used in this model. Each layer of our model is a modified
residual layer. In the encoder, the layer input, x, is passed through a 4x convolution
kernel with a stride of 2, then a 3x convolution kernel with a stride of 1 or a 1x
convolution kernel with a subsequent avg-pooling step. These results are summed along
the channel dimensions, added, and passed to the next layer. With the decoder, 4x
convolution is replaced with transposed convolution, and pooling replaced with linear
upsampling. In the case of the conditional model (components with dotted lines) M,
the reference input @, is linearly interpolated to be the same size as the output, and
passed through a 1x kernel. The target label is passed through a 1x kernel, and added
to each pixel of the output. Spectral weight normalization [35] is utilized at every
convolutional or fully-connected operation. In the case of the 3D model the convolutions
are three-dimensional, and the 2D model uses two-dimensional convolutions.

consists of an encoder that computes the variational posterior, ¢(z,|x,) constructed by
serial residual blocks (see Fig.[7)) that perform convolutional operations, spatially
downsampling the image by half and increasing channel dimension at each layer. The
output is then reshaped to a vector and passed independently through two fully
connected layers to result in z, = N(pi,,02,). 2, is sampled from that normal
distribution and passed through a fully connected layer, and passed through residual
blocks that spatially upsample, and decrease channel dimension, progressively decoding
the latent representation. The same architecture is used for the target model, M, but
instead the target label and a linearly downsampled copy of «, is passed in as well.

The primary layer component of this model is a modified residual layer [36], and a
detailed description can be found in Fig. {7l Table [3| shows the high-level model
architecture.

The 2D model was implemented the same as above but with 2D convolution
operations.

The model is trained to maximize the Evidence Lower Bound (ELBO) given an
input image &, ;:

1ng(.’13,«,t|t) > ELBO(mr,t|t) = Eq(zr,th:r,t)[logp(mr,t|zr,ta t)] - KL(Q(zr,t|mr,t7 t)|p(z))

(1)
An interpretation of this procedure is that we seek to find a model such that the
observed data is the most probable under the model distribution, with the ELBO is as
(tractable) approximation of this quantity. Under the generative model described in
Fig. [Ib, we factor out structure and reference components and train two separate
components:

log p(x,+|t) = log p(xt|@,, t) + log p(x,) > ELBO(x¢|x,, t) + ELBO(x,) (2)
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The embeddings produced by the encoder ¢(z|z) are encouraged to be compact in
the sense that they are penalized for differing in distribution from a standard normal
distribution (as measured by KL(g(z|x)|q(z))). An embedding, however compact, is
only useful insofar as it is able to faithfully recapitulate the data. The decoder p(x|z) is
optimized to produce faithful reconstructions via the reconstruction error term
Eq(z, |2, 108 P(27 |27t )], which encourages the model to balance compactness against
transmitting enough information to accurately reconstruct the data.

For section we adopt the following reparameterized ELBO definition:

ELBO(z) = (1 — 8)Eq(.|0) [log p(x]2)] — BK L(q(z|z)|p(2)). (3)

where (3 is between 0 and 1.

This slight modification to the objective function allowed us to trade-off the relative
importance between the reconstruction and sparsity terms of our loss function while
keeping the order of magnitude of the total objective function constant. This is greatly
beneficial in training multiple models at different values of 3, without needing to modify
any other hyper parameters to compensate for an objective function that grows with 3,
as in the traditional parameterization of the SV AE objective function.

6.3 Calculation of Evidence Lower Bound

To calculate the ELBO we use the low-variance estimator in [21]. We use pixel-wise
mean squared error to approximate the reconstruction likelihood and average over ten
samples from z, or z;.

6.4 Training Procedure

Each model is trained with a batch size of 32 at a learning rate of 0.0002 for 300 epochs
via gradient-descent with the Adam optimizer [37]. The optimizer § hyper-parameter
values are set to (0.9, 0.999) (not to be confused with /3 in the model’s objective
function). The maximum latent space dimensionality for the reference structures, Z",
and target structures, Z°, were each set to 512 dimensions. We adopt the stochastic
training procedure outlined in [21].

We split the data set into 80% training, 10% validation and 10% test, and trained
both the reference and conditional model for 300 epochs, and for each training session
use the model with the highest ELBO on the validation set.

The model was implemented in PyTorch version 1.2.0, and each component (P(x,.)
and P(xt|z,,t)) was trained on an NVIDIA V100 graphics card. 3D models took

approximately two weeks to train while 2D models took approximately 1.5 days to train.

To address overfitting, we evaluate the ELBO on images assigned to the validation
set at every epoch. For all results in this manuscript, the model with the highest
validation-set ELBO is used. For sparsity/reconstruction models in Fig. [3| we use the
unweighted ELBO.

6.5 Statistic of Subcellular Structure Coupling

The per-channel statistic we display in Fig. is computed for each cell x; by
considering the likelihood of that cell under the model, compared to the likelihood of
that cell with one of its channels swapped out for that same channel from a different cell:

ELBO(x; = [, ,]])
G = 1 N, oA s (4)
N ijl ELBO(z;; = [a:j,a:- xf])

K2 3
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Here r is the reference channel (either the membrane or the nucleus) that we are
evaluating, s is the structure type, denoting which set of cells we aggregate over.

x; =[x, z] ,x}

7 ,x]] is the three channel image decomposed into the reference channel of
interest r, the other reference channel ', and the structure channel s. The numerator is
the likelihood of the original data, and the denominator is the average permuted
likelihood of the cell with the reference channel of interest r» permuted across all other
cells with the same structure tagged (i.e. N cells).

To aggregate this per-channel coupling strength into a relative coupling value, we
take the ratio of the difference over the sum of the membrane-structure coupling and
the nucleus-structure coupling. That is, the differential coupling of a structure to the
membrane vs the nucleus ds is computed as

NP
s .ms ns
ms __ o

1 c
dp - 7 7 5
s NPY il e o 5)
where NP is the number of cells where structure s is tagged and are also in cell cycle
phase p (interphase or mitosis), ¢/** is the coupling of structure s in cell i to the

K3
membrane, and similarly ¢}*®
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is the coupling of the structure in that cell to the nucleus.
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Fig S1. Pairwise plots of the top four latent space dimensions, as ranked by mean
absolute deviation from 0 on the test set. The marginal distribution of each latent
dimension is plotted on the diagonal. a) Here we color by the cell volume, and see a
visually apparent pattern in the data — most notably a strong correlation with p1gg. b)
Here we color by the cell height, and again observe structure in the scatter plots —

most notably a strong correlation with i419.

May 19, 2021

19/127


https://doi.org/10.1101/2021.06.09.447725
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.09.447725; this version posted June 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

-2z U107 (top feature = cell integrated intensity) 2z

Fig S2. Latent space walks along the 3rd through 6th highest ranked dimensions, as
ranked by mean absolute deviation from 0 on the test set. Walks are performed along
the specified dimension in nine steps, starting at negative two standard deviations and
ending at two standard deviations. All other latent dimensions are set to 0. We include
the name of the most highly correlated cell feature, but the cell features are highly
correlated (see Supp. Fig. and a single latent space dimension may correlate with
many cell features. a) Latent dimension fi465, which is most strongly correlated with
nuclear surface area. b) Latent dimension p;8s, which is most strongly correlated with
cell volume. c¢) Latent dimension pio3g, which is most strongly correlated with tilt/shear
along the z-z-axes. d) Latent dimension 197, which is most strongly correlated with
the total integrated intensity in the plasma membrane dye channel.
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Fig S3. a) Heatmap of Spearman correlations of reference latent space dimensions with
single-cell features on all cells in the test set. Cell features are hierarchically clustered.
Latent space dimensions are sorted in descending rank by mean absolute deviation from
0, and for clarity only the top 32 dimensions are shown. Dimensions below 32 displayed
significantly more noise and less correlation with cell features. b) Mean absolute
deviation from 0 of all reference latent space dimensions, sorted by value. Values are
computed by averaging over all cells in the test set. ¢) Explained variance of principal
components of the z-scored cell features on all cells in the test set. d) Pearson
correlation of the top 32 dimensions of the latent space, computed on all cells in the test
set as ranked by mean absolute deviation from 0. We note that these dimensions display
little to no correlation structure, empirically verifying the ability of the 8-VAE to
produce a disentangled latent space.
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Fig S4. Three examples of each mEGFP-tagged structure are shown, sampled
randomly from our test data set. Each cell only has one mEGFP-tagged structure, so

examples are all from different cells.
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Fig S5. Structures generated by our model. Three examples of each mEGFP-tagged

structure are shown. Structures are generated using random draws from the conditional
latent space, while keeping the reference geometry fixed to a single (randomly chosen)
cell geometry from the test set. The same cell geometry is used across all structures

shown here.
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Fig S6. a) Mean KLD per dimension for the reference latent space of the test set in the
2D model, as a function of 3, averaged over all dimensions in the latent space. b) Mean
KLD per dimension for the reference latent space of the test set in the 2D model, as a
function of dimension rank, for each model fit using a different 5. c) Left: Mean KLD
per dimension for the reference latent space of the test set in the 3D model, as a function
of dimension rank. Right: Mean KLD per dimension for the conditional latent space of
the test set in the 3D model, as a function of dimension rank and structure type.
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