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1 Abstract

We introduce a framework for end-to-end integrative modeling of 3D single-cell
multi-channel fluorescent image data of diverse subcellular structures. We employ
stacked conditional β-variational autoencoders to first learn a latent representation of
cell morphology, and then learn a latent representation of subcellular structure
localization which is conditioned on the learned cell morphology. Our model is flexible
and can be trained on images of arbitrary subcellular structures and at varying degrees
of sparsity and reconstruction fidelity. We train our full model on 3D cell image data
and explore design trade-offs in the 2D setting. Once trained, our model can be used to
impute structures in cells where they were not imaged and to quantify the variation in
the location of all subcellular structures by generating plausible instantiations of each
structure in arbitrary cell geometries. We apply our trained model to a small drug
perturbation screen to demonstrate its applicability to new data. We show how the
latent representations of drugged cells differ from unperturbed cells as expected by
on-target effects of the drugs.

2 Author summary

It’s impossible to acquire all the information we want about every cell we’re interested 1

in in a single experiment. Even just limiting ourselves to imaging, we can only image a 2

small set of subcellular structures in each cell. If we are interested in integrating those 3

images into a holistic picture of cellular organization directly from data, there are a 4

number of approaches one might take. Here, we leverage the fact that of the three 5

channels we image in each cell, two stay the same across the data set; these two 6

channels assess the cell’s shape and nuclear morphology. Given these two reference 7

channels, we learn a model of cell and nuclear morphology, and then use this as a 8

reference frame in which to learn a representation of the localization of each subcellular 9
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structure as measured by the third channel. We use β-variational autoencoders to learn 10

representations of both the reference channels and representations of each subcellular 11

structure (conditioned on the reference channels of the cell in which it was imaged). 12

Since these models are both probabilistic and generative, we can use them to 13

understand the variation in the data from which they were trained, to generate 14

instantiations of new cell morphologies, and to generate imputations of structures in 15

real cell images to create an integrated model of subcellular organization. 16

3 Introduction 17

Decades of biological experimentation, coupled with ever-improving advances in 18

microscopy, have led to the identification and description of many subcellular structures 19

in the cell that are key to cellular function. Understanding the unified role of these 20

component structures in the context of the living cell is indeed a goal of modern-day cell 21

biology. How do the multitude of heterogeneous subcellular structures localize in the 22

cell, and how does this change during dynamic processes, such as the cell cycle, cell 23

differentiation and the response to internal or environmental perturbations [1, 2]? A 24

comprehensive understanding of global cellular organization remains challenging, and no 25

unified model currently exists. 26

Advances in microscopy and live cell fluorescence imaging in particular have led to 27

enormous insight and rich data sets with which to explore subcellular organization. 28

However, the experimental state-of-the-art for live cell imaging is currently limited to 29

the simultaneous visualization of only a limited number (2–6) of tagged molecules. 30

Additionally, there are substantial, interdependent limitations regarding spatial and 31

temporal resolution as well as duration of live cell imaging experiments. Computational 32

approaches offer a powerful opportunity to mitigate these limitations by integrating 33

data from diverse imaging experiments into a single model, a step toward an integrated 34

representation of the living cell and additional insight into its function. 35

It should be noted that generative models of individual cells are particularly useful 36

in this context, as these can capture how relationships among subcellular structures 37

captured in experimental imaging data vary across a population of cells and encode 38

these as distributions. Generative models may be used to understand the spatial 39

distribution of organelles under different conditions [1, 3–5], or used as building blocks 40

for simulations or other tasks [6, 7], depending on how these models are constructed. 41

However, generative models also depend on both segmentation of the input microscopy 42

images and on feature selection; results from these models are thus dependent on the 43

quality of these segmentations and on the computed features. 44

Many computational models of subcellular structures are based on descriptors of 45

texture or segmented objects extracted from microscopy images of the cell. Such image 46

feature-based methods have previously been employed to describe and model cellular 47

organization [8–10]. While accurate object segmentations are useful for conveying 48

detailed information about the size, shape and localization of subcellular structures, 49

segmentation procedures must be judiciously designed for each type of structure. 50

Furthermore, computed image features of subcellular structures useful for e.g. 51

generative models may not be “human-interpretable”, or easily understood from a 52

biological viewpoint. Significant amounts of effort may be spent designing features to be 53

useful for a specific task (e.g. to measure “roughness” of a structure). Finally, ground 54

truth data for evaluation of segmentation and feature selection can be difficult to obtain, 55

especially for 3D cell images [11]. These challenges compound when trying to expand 56

models to describe relationships between multiple subcellular structures and their 57

organization within a cell. 58

Recent deep-learning approaches have become increasingly popular in multiple cell 59
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biology applications and may provide an alternate computational pathway towards 60

integrated visual representations of the cell. In cell imaging, deep neural networks 61

(DNNs) are generally applied to perform pixel-level tasks, such as object 62

segmentation [12], label-free prediction [13, 14], de-noising and image restoration [15, 16], 63

or cell-level analyses such as predicting cell fates [17], classifying cell cycle status [18], 64

distinguishing motility behaviors of different cell types [19], and subcellular pattern 65

detection and classification [20]. 66

The work presented here is complementary to these efforts, and provides an 67

end-to-end framework for learning a data-driven generative model of cellular 68

organization in a statistically principled manner. Notable in our approach is that we 69

can build our model without the necessity of laborious hand-crafted features or 70

subcellular segmentations. 71

Here we explore the use of a DNN to build a generative model deemed the Statistical 72

Cell. This model has several applications. First, it learns de novo a non-parametric 73

representation of cell and nuclear morphology. This representation is condensed into a 74

small number of disentangled latent dimensions of morphological variation and can be 75

used for a number of downstream tasks such as classification, interpolation, exploration 76

of morphological variation, and generation of novel but statistically representative 77

cellular geometries. 78

This representation of cell and nuclear morphology also serves as a reference frame 79

for the model’s primary task: learning representations of the localization of many 80

independently labeled subcellular structures. This allows us to combine experiments of 81

individual subcellular structures to predict distributions of fluorescent labels that are 82

not directly observed together, creating a single model of integrated cell organization. 83

This approach is distinct from other methods described above, as it can be used to learn 84

and measure population distributions of cellular geometries and organelle localizations 85

within cells, and explore their relationships to one another, as compared to prediction of 86

an expected localization pattern in a given microscopy image. 87

Finally, our model is useful for practical, nonlinear dimensionality reduction for 88

extremely high dimensional image data. This enables us to, for example, construct a 89

statistically meaningful “average” cell from a population, determine whether a particular 90

cell represents a common or unusual phenotype, and quantitatively measure changes in 91

cell organization as a function of cell state (mitotic state, drug treatment, etc.). 92

Below, we explain how the Statistical Cell is constructed; we discuss its useful, novel 93

contributions and provide a critical look at its current limitations. 94

4 Results 95

4.1 Statistical Cell: a variational autoencoder that models the 96

3D organization of subcellular structures 97

In this section we begin with an overview of the model, and then proceed to present its 98

ability to model cell morphology as well as the localization of subcellular structures. 99

In order to jointly model the variation of all subcellular structures in our data, we 100

engineered a stacked conditional β-variational autoencoder and trained it end-to-end on 101

the entirety of our data. We call this model the Statistical Cell. The Statistical Cell is a 102

data-driven probabilistic model of the organization of the human cell membrane, nuclear 103

shape and subcellular structure localization. The diverse array of subcellular structures 104

used here represent components that serve specific functions that may be useful for 105

understanding cellular state. 106

The organizing principle of our model is that the localization of subcellular 107

structures is meaningful only in relation to the cell geometry in which they are 108
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Legend:

Fig 1. The Statistical Cell. a) A visual overview of the single-cell data collection
used in this study. For each of more than 40,000 cells we have high-resolution 3D image
data of the shape and location of the cell membrane (pink), nucleus (blue) and one of 24
endogenously tagged subcellular structures (yellow). The examples show actual image
data of cells in the collection. b) Plate diagram of the Statistical Cell model. Shaded
and un-shaded circles represent observed and learned variables, respectively. We model
reference structures xr as draws from a latent variable zr, and target structures xt as
draws from the latent variable zt, conditioned on xr and target type t. c) The main
components of the models are two autoencoders: one encoding the variation in the
reference, i.e. the cell and nuclear shape (top), and another which learns the relationship
between the target (the subcellular structures) dependent on the reference encoding
(bottom).

embedded. By leveraging conditional relationships to the cell and nucleus, we allow for 109

the integration of different subcellular structures into a single model, without these 110

structures needing to be tagged and imaged simultaneously. 111

The model is trained on a collection of more than 40,000 high-resolution 3D images 112

of live human induced pluripotent stem cells (Fig. 1a). Using 3D spinning disk confocal 113

microscopy we collected three image channels for each of these cells: 1) Plasma 114

membrane using CellMask Deep Red dye, 2) Nucleus via labeling DNA with NucBlue 115

Live dye, and 3) one of 24 subcellular structures. Specifically, these cells are from clonal 116

lines, each gene-edited to endogenously express a fluorescently tagged protein that 117

localizes to a specific subcellular structure. To facilitate biological interpretation of our 118

model, 5 of the 24 structures are synthetic controls, where instead of a normal GFP 119

structure channel we present to the model either a blank channel as a structure, 120

duplicated membrane and DNA channels, random Gaussian noise in the membrane and 121

DNA regions, or copy a random structure channel from a different cell. There are 122

between 1,000-4,000 cells per structure type (Table 1). 123

Using these images, we model cell membrane, DNA, and subcellular structure given 124

a known target structure type (i.e. a model of cell shape, nuclear shape, and structure 125

organization, given that the structure is one of the 24 observed structure types). This 126

model takes the form p(xr,t|t) where x is an image, r indicates reference, i.e. the 127

reference cell membrane and DNA dyes, t indicates the target channel. xr,t is therefore 128
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Table 1. Structures used in this study, with corresponding genes, number of images and labels. Each image
contains the labeled structure in addition to channels of labeled cell and nuclear shape.

Structure Name Gene Name (gene symbol) # Images
Labels

#Interphase #Mitosis

Actin filaments actin beta (ACTB) 2,848 2,544 304
Actomyosin bundles myosin heavy chain 10 (MYH10) 1,392 1,282 110
Adherens junctions catenin beta 1 (CTNNB1) 2,343 2,202 141
Centrioles centrin 2 (CETN2) 1,605 1,405 200
Desmosomes desmoplakin (DSP) 2,320 2,161 159
Endoplasmic reticulum SEC61 translocon beta subunit (SEC61B) 1,120 1,045 75
Endosomes RAB5A, member RAS oncogene family (RAB5A) 1,562 1,455 107
Gap junctions gap junction protein alpha 1 (GJA1) 1,491 1,334 157
Golgi ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) 1,539 1,445 94
Lysosomes lysosomal associated membrane protein 1 (LAMP1) 1,476 1,309 167
Matrix adhesions paxillin (PXN) 1,637 1,531 106
Microtubules tubulin-alpha 1b (TUBA1B) 2,409 2,219 190
Mitochondria translocase of outer mitochondrial membrane 20(TOMM20) 3,826 3,590 236
Nuclear envelope lamin B1 (LMNB1) 3,664 3,455 209
Nucleoli Dense Fibrillar Component (DFC) fibrillarin (FBL) 1,536 1,407 129
Nucleoli Granular Component (GC) nucleophosmin 1 (NPM1) 3,717 3,480 237
Peroxisomes solute carrier family 25 member 17 (SLC25A17) 1,455 1,369 86
Plasma membrane Safe harbor locus (AAVS1) 2,098 1,867 231
Tight junctions tight junction protein 1 (TJP1) 1,162 1,079 83
Control - Blank N/A 2,028 1,861 167
Control - DNA N/A 2,028 1,861 167
Control - Memb N/A 2,028 1,861 167
Control - Noise N/A 2,028 1,861 167
Control - Random N/A 2,028 1,861 167

Total 49,340 45,484 3,856

an image of a cell containing reference structures (membrane, DNA) and a target 129

structure (one of the 24 structure types). 130

Utilizing relationships in our data (Fig. 1a,b), the model is factored into two 131

subcomponents; a reference model MR that maximizes the probability of observed cell 132

and DNA organization p(xr), and a target model MT that maximizes the conditional 133

probability of subcellular structure organization p(xt|xr, t). The complete probability 134

model is therefore p(xr,t|t) = p(xr)p(xt|xr, t). 135

Each component is modeled with a variational autoencoder (Fig. 1c) [21], allowing 136

us to generate integrated examples from the learned data distribution, as well as map 137

reference xr and target xt to learned low dimensional variables (or embeddings / latent 138

space / latent dimensions) zr and zt, that capture morphological variation and 139

relationships between the reference and target structures. It is important to note that 140

zt is a conditional embedding, i.e. a low dimensional representation of information in 141

the target image, given the information in the reference and the specific target type. 142

For details see Section 6.2. 143

4.2 Modeling and visualizing subcellular organization via latent 144

space embeddings 145

The β variational autoencoder (β-VAE) architecture underlying the model of cell and 146

nuclear shape (MR) compresses the variation in the 3D cell images into a subspace with 147

maximal dimensionality of 512. While each cell is described by 512 coefficients in this 148

latent space, the diagonal covariance matrix of the Gaussian prior of the latent 149

embeddings, in tandem with the KL-divergence term in the β-VAE objective function 150

(Eq. 3) attempts to sparsify the latent space by penalizing spurious embedding 151

dimensions. Different values of β lead to different numbers of effective latent dimensions; 152

see Fig. S6 for details. (We note there is also a latent space for MT, but we limit our 153

analysis and discussion in this section to the latent space of the reference model MR.) 154

We investigated the interpretability of the latent space by correlating the cell 155
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coefficients for each latent dimension with measured cell metrics, such as cell size and 156

mitotic state. We observed various strong correlations between cell metrics and those 157

latent dimensions that showed a significant variation; see Fig. S3 for details. As shown 158

in Fig. 2, the two top dimensions of the latent space visually stratify the cells based on 159

mitotic stages as well as cell height. Importantly, cell images that are generated along 160

these latent space dimensions show the expected phenotype (Fig. 2c,d). It is worthwhile 161

to note that the model captures both biologically interpretable features, such as cell 162

height, as well as features that are properties of the image measurement such as the 163

overall fluorescent dye intensity. 164

μ71 (top feature = DNA integrated intensity)

μ419 (top feature = cell height)

a) b)

c)

d)

–2z

–2z

2z

2z

xyx
z

yz

Legend

Fig 2. The reference latent space learned by the model encodes interpretable features
and stratifies cells by biologically relevant features. a) Cells in the test set undergoing
mitosis are stratified by the top two dimensions of the reference model latent space. b)
The top two dimensions of the reference latent space, as ranked by mean absolute
deviation, for all cells in the test set, colored by cell height. c) Maximum intensity
projections of 9 generated 3d cell images along latent space dimension µ71. The
integrated intensity of the DNA channel correlates strongly with µ71. d) Similar to c)
but not showing latent space dimension µ419 which correlated strongly with cell height.
The latent walks in parts c) and d) occur in nine steps that span -2 to 2 deviations of
that latent dimension’s variation. See Supp. Figs. S1 and S2 for more visual
associations between latent dimensions and features, and Supp. Fig. S3 for exhaustive
correlations of features with latent dimensions.

4.3 Sparsity/Reconstruction Trade-Off 165

Since our model is composed of β-VAEs, the β parameter presents an important 166

trade-off between compact representation and high fidelity image reconstruction. 167

Tuning β allows the modeler to preferentially weight the two components of the loss 168

function. A high value of β favors a compact representation of the cell in the low 169

dimensional embedding space (i.e. the number of dimensions needed to describe an 170

image zr and zt) via a higher emphasis on the KL(q(z|x)|p(z))) loss term. A low value 171

of β emphasizes accurate reconstruction of the original image by placing more weight on 172

May 19, 2021 6/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447725doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447725
http://creativecommons.org/licenses/by/4.0/


a)

b) Five observed cells obtained with live cell microscopy

Complex 
representation, 
good reconstruction

Ideal 
model

Sparse representation, 
poor reconstruction

c) Three randomly generated cells at each of seven values of β

β = 0.01 β = 0.5 β = 0.99

β

Fig 3. Evaluation of the sparsity-reconstruction trade-off with 2D
Statistical Cell models. a) shows the average rate and distortion terms of the ELBO
for models at a different trade-off β. Gray dotted line indicates the trade-off achieved
by the best performing model. b) Images of six observed cells. Nucleus is in blue. Cell
membrane is in magenta. c) Images of cells generated with the Statistical Cell for
different values of β. See Supp. Fig. S6 for more data on model sparsity.

the Eq(z|x)[log p(x|z)] loss term. The relative emphasis of one term versus the other has 173

consequences for the model and for its applications. For example, one might desire a 174

less-complex data embedding to facilitate the statistical exploration and interpretation 175

of the latent space, while in other circumstances it might be preferable to obtain a more 176

complex embedding that enables the comparative analysis of high-fidelity generated 177

images. 178

Several methods have been proposed to modulate the trade-off between sparsity and 179

reconstruction in VAEs [22,23], and other factors such as data normalization, model 180

architecture, hyper-parameters (including training schedules [24]) may also impact this 181

relationship. To demonstrate how our model performs as a function of this relationship, 182

we adopt a reparameterized variational objective that allows us to tune the relative 183

weights of these two terms (see Eq. 3). 184

Because parameter exploration using the full 3D model is prohibitively expensive, we 185

explored the effect of the β parameter using a 2D model. This model is the same in all 186

regards to the 3D model, other than that the inputs and convolutions are two 187

dimensional instead of three. Our 2D input data was generated from the 3D data by 188

taking a maximum-intensity projection along the z-axis. While this reduction 189

obfuscates some details of the cell’s structure and organization, it retains a largely 190

faithful picture of overall cell shape and reconstruction detail, and allows us to explore 191

model and parameter choices approximately an order of magnitude more quickly than 192

using the 3D model. 193

Using the 2D data, we trained 25 models of cell and nuclear shape (MR) with β 194

values evenly spaced between 0 and 1 using 2D maximum-intensity-projected images of 195

cell and nuclear shape. Using the test data, i.e. data not used in the training phase, we 196

recorded the average of the two terms of ELBO for each of the 25 models and plot the 197

two as a function of β in Fig. 3a. Sampling from the cell and nuclear shape 198

representation, we show generated images across a range of β values in Fig. 3c. A few 199

observed cells are visualized in Fig. 3b for reference. We note that compared to 200

observed cell and nuclear shapes, generated images close to β → 0 retain more detail 201

and perhaps more diversity than images at β → 1, although this comes at a trade-off of 202
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increased representation dimensionality. 203

4.3.1 Visualization of generated cells and conditionally generated struc- 204

tures 205
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Fig 4. Generating cell images from the Statistical Cell model. a) Realistic
images can be generated from the probabilistic model of the cell membrane and the
nucleus. On the left are three examples of actual cells. On the right are seven generated
cells, sampled using independent random draws from the latent space. b) Cell and
nuclear image data of actual cells can be used to generate a simulated image of a given
structure even if that structure was not measured for that cell. On the left are three
actual cells for which three different structures were imaged. From top to bottom:
mitochondria, nuclear envelope and tight junctions. On the right are depictions of the
generated structure channels for each of these cells and structures. Three examples of
each structure in each cell are shown, each generated using independent random draws
from the latent space. See Supp. Fig. S4 and Supp. Fig. S5 for more examples.

An important application of the trained Statistical Cell model is to visualize cellular 206

structures by generating images sampled from the probabilistic models. That is, by 207

sampling from the latent space that describes the trained probabilistic model of 208

structures dependent on cell and nuclear shape (MT), we can visualize the location and 209

shape of subcellular structures, and how those properties vary in the data. Moreover, 210

the construction of the model enables us to impute and visualize multiple subcellular 211

structures in the same cell geometry simultaneously, whereas the data the model is 212

trained on only contains one structure tagged per image. Because the model is 213

probabilistic, it approximates the diversity of structure localization specific to each 214

structure type. Fig. 4b depicts multiple examples of different subcellular localization 215

patterns given an observed cell and nuclear shape. 216

Overall, we find that in distribution the generated structures vary in localization as 217

one would expect, providing strong evidence that the network is successfully learning 218

appropriate rules governing structure-specific localization that are not explicitly 219

encoded in the images themselves or in the ”target type” input. For example, 220

• Mitochondria are distributed throughout the cytoplasm, but are never found 221

inside the nucleus. 222

• The nuclear envelope forms a closed shell around the DNA. 223
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• The tight junctions are at the apical surface of the cell and around the cell 224

periphery. 225

• The nucleoli (both the Dense Fibrillar Center and the Granular Component) form 226

blobs that are always inside of the nucleus, never outside. 227

• Matrix adhesions are always at the basal surface. 228

The latter two examples along with other examples of typical organelle localization 229

are found in Supp. Fig. S5. It is important to note that due to the limitations of the 230

data and the specific model construction, generated subcellular structures are 231

independent of each other (e.g. generated tight junctions may overlap with generated 232

mitochondria). 233

4.4 Quantification of the coupling of subcellular structure local- 234

ization to gross cellular morphology 235

a) b)

Fig 5. Quantification of the coupling of cellular morphology and subcellular structure.
a) shows the relative coupling strength of three structures to the nuclear shape (y-axis)
and cell membrane (x-axis) of the cells in which they reside, according to Eq. 4. Each
point represents a cell; brown points are cells in interphase, blue points are cells
undergoing mitosis. b) shows the relative degree of coupling of each structure to the cell
membrane or nuclear channel, and how this changes during mitosis.

In the previous sections we aimed to show, both qualitatively and quantitatively, 236

that the Statistical Cell enables us to model the organization of subcellular structures 237

by leveraging the reference channels, i.e. the cell membrane and the nuclear shape. An 238

important next question is to what extent the reference channels by themselves inform 239

the prediction of subcellular structure organization. 240

To answer this question, we constructed a measure of coupling sensitivity between a 241

subcellular structure and the morphology of either the cell membrane or the nucleus. 242

Specifically, we quantified the sensitivity of our model to the coupling between each 243

subcellular structure and a reference channel (say, cell membrane) by comparing the 244

ELBO for that unperturbed image with the ELBO of a perturbed version of that image, 245

where the reference channel (e.g. membrane) is replaced by a randomly selected 246

membrane channel from the other cells in the population (see Methods, Eq. 4). 247

As controls for this metric, we created artificial “structure” channels that are 248

duplicates of each of our reference channels (cell membrane and nucleus) to confirm that 249

this measure of coupling makes sense in the limit of structures that are perfectly 250
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correlated with one of the reference channels. Fig. 5a shows the coupling metrics across 251

three subcellular structures as well the controls. We observed that each control is 252

quantified as being coupled only to itself, and not to the other reference channel; that is, 253

it appears that the cell membrane and the nucleus are not informative of each other 254

under our model. We also used a blank structure as a control, and as expected did not 255

see any coupling between it and either reference channel. Regarding the three 256

subcellular structures: We observed that the mitochondria have low coupling to both 257

the nucleus and cell membrane, indicating that under our model, the placement of the 258

mitochondria is not coupled to a specific cell’s morphology. On the other hand, the tight 259

junctions, while effectively uncoupled to the nuclear channel, show a strong coupling 260

with the cell membrane. This is to be expected, since tight junctions co-localize with 261

the membrane at the apical perimeter of the cell. Lastly, we see that the nuclear 262

envelope is predominately coupled to the DNA channel, except during mitosis when it 263

dissolves, which is also as expected. More details on this are given below. 264

In order to understand how strongly each structure is coupled to the cell or nuclear 265

reference structure overall, in Fig. 5b we condensed the coupling metrics across many 266

cells, as displayed in Fig. 5a, to a single summary statistic for each of the 24 subcellular 267

structures. The statistic that we employed is the normalized difference of the nuclear 268

coupling to the cell membrane coupling from Eq. 4, averaged over all cells in that 269

structure/phase of the cell cycle (see Eq. 5 for details). 270

Fig. 5b shows a spectrum of differential couplings under our model, all of which are 271

biologically plausible. They range from the nuclear envelope and other nuclear tags 272

being coupled to the nucleus, to microtubules and other cytoplasmic structures being 273

strongly coupled to the cell membrane. 274

Interestingly, we observed there is differential coupling between mitotic cells (plotted 275

in blue) and interphase cells (plotted in brown) for some subcellular structures. That is, 276

a certain subcellular structure may be strongly coupled to the nuclear reference channel 277

during interphase, but that coupling may breakdown during mitosis, or vice versa. For 278

example, the nuclear channel of the mitotic cells shows a weaker coupling to the nuclear 279

envelope than the interphase cells (Fig. 5a). Our interpretation is that the break down 280

of the nuclear envelope during mitosis inhibits the model’s ability to leverage the 281

nuclear channel for prediction. 282

Fig. 5b highlights several other subcellular structures whose differential coupling (to 283

the cell membrane vs. the nucleus) is sensitive to the position of the cell in the cell cycle. 284

Of particular note is that we detect that the nucleolus granular component is tightly 285

coupled to the nucleus during interphase, but that relationship is inverted during 286

mitosis. 287

4.5 Out of sample data using drug perturbations of subcellular 288

structures 289

To determine the model’s utility on out-of-sample data, we explore the model’s ability 290

to detect perturbations of cell morphology and subcellular localization patterns using a 291

small drug perturbation experiment. The drug data set consists of images of cells that 292

were fluorescently tagged with one of three subcellular structures: microtubules, Golgi, 293

or tight junctions, and exposed to one of two drugs: Brefeldin (5.0 µM) or Paclitaxel 294

(5.0 µM). See Fig. 6a and Section 6.1.4. This data set also contained cell images for 295

untreated cells. The primary focus of this follow-up study was to determine whether the 296

trained model can sensibly be applied to these drug data and provide biological insights 297

by evaluating on low-dimensional representations of reference and target structures. 298

Latent embeddings (reference zr and target zt) were computed for each image of 299

untreated and drug-treated cells. Fig. 6b shows the first two dimensions (as ranked by 300
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Cell + Nucleus Microtubules Golgi Tight junctions 

Untreated N = 242 N = 144 N = 105

Brefeldin 5.0 μM N/A N = 105 N = 94

Paclitaxel 5.0 μM N = 132 N = 23 N = 138

a)

b)

c)

Microtubules – Paclitaxel 5.0 μM

Fig 6. a) Experimental overview of drug-treated cells (rows) and measured subcellular
structures (columns) where N indicates the number of obtained cells. Drugs are color
coded (Brefeldin is blue, Paclitaxel is pink). b) Scatter plots of cells embedded in first
two dimensions of the latent space of the Statistical Cell model. From left to right:
Reference structures (cell + nucleus) in the reference latent space, microtubules, Golgi,
and tight junctions in the conditional latent space. The red arrow in the microtubules
subplot indicates the direction of the change of the centroid of the untreated (black)
and treated (pink) populations. c) Visualization of the microtubules of 24 cells. For
each cell we have visualized the maximum intensity projection along z, i.e. looking at
the xy plane (top), and the maximum intensity projection along x, i.e. looking at the yz
plane (bottom). The cells from both populations are sampled at fixed intervals from the
untreated(left)-to-treated(right) direction after projecting onto the red line in b2.

mean absolute deviation) of this embedding for the reference channels (cell membrane 301

and nucleus) and the three structures. We observe that the treated and untreated cells 302

occupy the same space for the reference model MR, that is, the embeddings of the cell 303

membrane and nuclear morphology are largely unperturbed by drug treatment in these 304

two leading latent dimensions. Specifically, the treated (pink and blue) and untreated 305

(black) cells do not form different clusters but are highly overlapping. Note that the 306

structure model is conditional on the reference (cell membrane and nucleus), and if the 307

treated cells were substantially different from the untreated cells with regards to their 308

cell and nuclear morphology, we could not sensibly apply the conditional model. 309

We focus on the most visually striking and largest perturbative effect that the model 310

detected, and here visualize the effect of Paclitaxel on microtubules by plotting the 311

direction-of-effect on the first two dimensions of the latent representation Fig. 6b 312

(microtubules). By sampling images uniformly across this vector (Fig. 6c), moving from 313

left to right we see that this direction corresponds with change from uniform to 314

condensed localization. 315
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5 Discussion 316

The Statistical Cell is a model of the organization of subcellular structures in human 317

induced pluripotent stem cells. We have described the model and its capabilities, and 318

explored how it may be a useful tool for studying the organization of cells from 319

fluorescent 3D spinning disk confocal images. In this section, we discuss important 320

considerations and future work of the Statistical Cell. 321

Previous incarnations of our Statistical Cell model [25,26] featured an adversarial 322

loss function. Along with non-generative direct image transformation methods, 323

e.g. [13, 15], generative adversarial networks (GANs) have been proposed to produce 324

high-fidelity generated cell images [27,28]. Although these adversarial-loss based 325

methods may produce crisp images when appropriately tuned, they remain notorious in 326

their difficulty to efficiently optimize [29, 30], suffer from several poorly understood and 327

difficult to diagnose pathologies such as “mode collapse” [31] and difficulty to initialize 328

models that produce large images [29,30]. 329

It should be noted that both the VAE loss function used here and adversarial 330

autoencoders [32] allow for the construction of a low dimensional representations of 331

specified distribution (e.g. Gaussian-distributed latent spaces). We ultimately chose a 332

VAE-based model version for a number of reasons, both practical and theoretical. 333

Compared to GANs, β-VAEs are more stable and easier to train, possess stronger 334

theoretical bounds [21], and are able to easily trade off latent-space dimensionality for 335

reconstruction fidelity [22] while also disentangling latent dimensions. 336

In this work we employ a standard conditional β-VAE architecture, composed of 337

convolutional/residual blocks. We present no drastic architectural innovations, but 338

rather leverage the proven reliability of β-VAEs in other domains to build a solid 339

framework for integrating and modeling 3D spinning disk confocal fluorescent 340

microscopy data. Our focus is the cell biological application, and the way that the 341

β-VAE enables hands-off quantification of image data that are difficult to describe in 342

anything other than qualitative terms. 343

There are a number of ways in which our model could be extended in the future. 344

Recent work in non-biological domains has suggested that using image features and 345

auxiliary loss functions for VAEs can improve model performance and 346

generalizability [33]. Directly optimizing our model to retain specific morphological 347

properties, e.g. using feature-based losses such as cell volume, cell height, etc., may 348

improve image generation while retaining specific statistical properties relevant to the 349

application of these models. 350

As in many bioimage informatics applications, image pre-processing and 351

normalization are important issues and can have important consequences to 352

downstream workflows. In the Statistical Cell model, image normalization and the loss 353

function (ELBO) are coupled to each other. Changing the way in which the cell images 354

are pre-processed directly impacts how the loss function affects the training of the 355

model. For instance, noise and bright spots in the cell and nuclear dyes are penalized 356

disproportionately to their biological significance. We have not thoroughly studied 357

different normalization schemes and their effects on the inferred model, and as with 358

many image analysis methods, it is likely that results may vary as a function of image 359

pre-processing. 360

One avenue of approach to normalization could be to use image segmentations as 361

inputs to the model, rather than the fluorescent dye intensities. Segmentation itself 362

presents its own problems, but as 3D segmentation techniques for densely packed 363

spinning disk confocal fluorescent microscopy images improve [11], this approach should 364

become more feasible and deserving of serious consideration. Our framework is 365

amenable to incorporating both segmentation-based inputs and hand-crafted features, a 366
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future direction that holds promise for incorporating the most desirable facets of each of 367

these approaches. 368

An important aspect of the Statistical Cell model is the application of the trained 369

model to external data. For any model, it is important to understand to what extent it 370

may be applied in new contexts. The results presented here were trained on a data set 371

of relatively few conditions, and we do not expect our model to generate realistic images 372

or produce accurate representations of cellular structures on images that were collected 373

in a substantially different way, e.g. different cell types, different microscopes, etc., 374

although future models may be able to account for these types of biological and 375

technical variation [34]. 376

It will be important to understand whether the Statistical Cell can, at least, be used 377

as a pre-trained model to enable faster training on smaller data sets of cell images that 378

were obtained under different conditions. The computational complexity of training 379

(from scratch) a 3D Statistical Cell model can be prohibitive without access to 380

expensive GPU resources. Specifically, training the 3D Statistical Cell model on a 381

sizable corpus of relatively large 3D images as explained in this work required 2 weeks of 382

training time using two high-memory (32GB) GPUs. 383

The Statistical Cell can visualize multiple subcellular structures simultaneously at a 384

single-cell level. Yet, some complex interrelationships between structures may not be 385

accurately represented by the model. This is because the Statistical Cell model captures 386

the partial correlation between a target subcellular structure and the cell and nucleus, 387

but not directly between different subcellular structures. Cell lines that have been 388

gene-edited to express multiple tagged subcellular structures could be leveraged to 389

model a richer covariation structure. Beyond jointly modeling more simultaneously 390

acquired image channels, additional data types (e.g. RNA FISH) could be incorporated 391

into a generative single-cell model. Conditional modeling and visualization of multiple 392

jointly acquired data modalities is necessary to move towards a truly integrated picture 393

of cell state. 394

6 Materials and methods 395

6.1 Data 396

Our model was trained on publicly available cell image data generated at the Allen 397

Institute for Cell Science. 398

6.1.1 Allen Cell Collection 399

The input data for training can be obtained at allencell.org or directly at 400

https://open.quiltdata.com/b/allencell/packages/aics/pipeline_ 401

integrated_single_cell. Imaging and culture conditions are described in [13]. Each 402

source image consists of channels corresponding to the reference nuclear signal and cell 403

membrane signal, and a fluorescently labeled target sub-cellular structure. Extensive 404

information can be found on allencell.org. 405

6.1.2 Preprocessing of images 406

All cell regions were segmented from the field of view using a segmentation workflow. 407

See https://www.allencell.org/extracting-information.html for more details. 408

Each channel was processed by subtracting the most populous pixel intensity, 409

zeroing-out negative-valued pixels, and re-scaling image intensity to a value between 0 410

and 1. The cells were aligned by the major axis of the cell shape, centered according to 411

the center of mass of the segmented nuclear region, and flipped according to image skew. 412
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Table 2. Drug treatments.

Perturbation agent Vendor Catalog Well-known action Concentration Incubation time

Brefeldin A Selleckchem.com No.S7046 Vesicle trafficking inhibitor 5 µM 0.5 hr
Paclitaxel Selleckchem.com No.S1150 Microtubule polymer stabilizer 5 µM 2 hr
DMSO Sigma Aldrich N/A Vehicle control 0.01% 0.5 to 2 hr

Each of the 49,340 cell images were linearly rescaled to cubic voxels of 0.317 µm/px, and 413

padded to 128× 96× 64 cubic voxels. 2D images for Section 4.3 were created by 414

maximum-intensity projection along the z-axis, independently for all three image 415

channels, and are available in the data package. 416

6.1.3 Mitotic annotations 417

Cells were annotated as being in interphase or mitosis via manual inspection of images 418

by a resident expert cell biologist and released as part of the Allen Institute - Integrated 419

Mitotic Stem Cell. Mitotic cells were further annotated by which phase of mitosis they 420

were in: prophase (M1+M2), early prometaphase (M3), prometaphase / metaphase 421

(M4+M5), and anaphase / telophase / cytokinesis (M6+M7). Further details are 422

available at https://www.allencell.org/hips-cells-during-mitosis.html# 423

sectionMethods-for-mitotic-cells 424

6.1.4 Drug perturbations 425

The data for the drug perturbation experiments were acquired independently of the 426

main training and testing data for the model, and here we describe its acquisition and 427

processing. 428

A subset of mEGFP-tagged human induced pluripotent stem cells (hiPSCs) from the 429

Allen Cell Collection were selected in this study, including TUBA1B line:AICS-12, 430

ST6GAL1 line:AICS-25, TJP1 line:AICS-23, to show the location of a particular cell 431

organelle or structure and represent cellular organization. mEGFP-tagged hiPSCs were 432

seeded onto Matrigel-coated 96-well plates at a density of 2,500 to 3,500 cells per well 433

and maintained in culture in phenol-red free mTeSR1 media with 1% penicillin 434

streptomycin for 4 days before imaging (media changed every day). On day 4, cells on 435

the 96-well plate were treated with one of the pre-selected, well-characterized drugs with 436

concentration and incubation time described in Table 2. 437

At the end of the incubation time, hiPSCs were then incubated in imaging media of 438

phenol red-free mTeSR1 media (Stem Cell Technologies) with 1% penicillin 439

streptomycin (Thermo Fisher) with X1 Nuc Blue Live (Hoechst 33342, Thermo Fisher) 440

for 20 min and 3X CellMask (Thermo Fisher) for 10 min. The cells were washed with 441

fresh imaging media prior to being imaged live at high magnification in 3D. 442

3D Live-cell imaging of mEGFP-tagged hiPSCs was performed on a Zeiss 443

spinning-disk microscope with a 100x/1.2 NA W C-Apochromat Korr UV-vis IR 444

objective (Zeiss) and a 1.2x tube lens adapter for a final magnification of 120x, a 445

CSU-x1 spinning-disk head (Yokogawa) and Orca Flash 4.0 camera (Hamamatsu) (pixel 446

size 0.271 µm in x-y after 2x2 binning and 0.29 µm in Z). Standard laser lines (405, 488, 447

561, 640 nm), primary dichroic (RQFT 405, 488, 568, 647 nm) and the following Band 448

Pass (BP) filter sets (Chroma) were used for fluorescent imaging: 450/50 nm for 449

detection of Nuc Blue Live, 525/50 nm for detection of mEGFP, and 690/50 nm for 450

detection of CMDR dye (Thermo # C10046). Cells were imaged in phenol red-free 451

mTeSR1 media, within an incubation chamber maintaining 37°C and 5% CO2. Bright 452

field images were acquired using a white light LED with broadband peak emission using 453
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the mEGFP BP filter 525/50 nm for bright field light collection. 454

To obtain single-cell measurements, fluorescent images of cells treated with CellMask 455

Deep Red dye and NucBlue Live dye were segmented with the aforementioned 456

segmentation workflow. The fluorescent images are normalized with a median filter and 457

adaptive local normalization. Nuclei are segmented with active contouring. Segmented 458

nuclei are used to create seeds for segmentation of individual cells based on the signal 459

from the plasma membrane. The plasma membrane signal is boosted at the top of the 460

cell and fluorescent endocytic vesicles are removed from normalized cell membrane 461

image and are then segmented with 3D watershed with seeds from nucleus segmentation. 462

Further details are available at 463

https://www.allencell.org/drug-perturbation-pilot.html. The data are 464

available at 465

https://www.allencell.org/data-downloading.html#sectionDrugSignatureData 466

6.2 Model Architecture 467

At its core, the Statistical Cell is a probabilistic model of cell and nuclear shape 468

conjoined to a probability distribution for the localization of a given subcellular 469

structure conditional on cell and nuclear shape. An observed image, xr,t, is modeled as 470

p(xr,t|t) = p(xr)p(xt|xr, t), where r indicates reference image channels that contain the 471

same cellular structure across all images (in this case the plasma membrane using 472

CellMask Deep Red dye, and the nucleus via labeling DNA with NucBlue Live dye), 473

and t indicates structure channels. The model maps xr and xt to learn low dimensional 474

variables (or “embeddings”), zr and zt that capture morphological variation and 475

relationships between the reference and target structures, allows for sampling of missing 476

data and realistic exemplars, and characterizes statistical relationships between the 477

reference and target structures. 478

The Statistical Cell model consists of two sub-models that are trained (conditionally) 479

independently, the model of cell and nuclear shape, MR, and the conditional model of 480

structure localization, MT. 481

Table 3. Architecture of model used in this study. Arrows indicate spatial
downsampling or upsampling.

Reference Model, MR

xr

Residual layer, ↓, 32
Residual layer, ↓, 64
Residual layer, ↓, 128
Residual layer, ↓, 256
Residual layer, ↓, 512

[FC 512], [FC 512]
zr = N(µzr

, σzr
)

FC 512
Residual layer, ↑, 512
Residual layer, ↑, 256
Residual layer, ↑, 128
Residual layer, ↑, 64
Residual layer, ↑, 32
Residual layer, ↑, 2

x̂r

Target Model, MT

xt

Residual layer + (xr, t), ↓, 32
Residual layer + (xr, t), ↓, 64
Residual layer + (xr, t), ↓, 128
Residual layer + (xr, t), ↓, 256
Residual layer + (xr, t), ↓, 512

[FC 512], [FC 512]
zt = N(µzt

, σzt
)

FC 512
Residual layer + (xr, t), ↑, 512
Residual layer + (xr, t), ↑, 256
Residual layer + (xr, t), ↑, 128
Residual layer + (xr, t), ↑, 64
Residual layer + (xr, t), ↑, 32
Residual layer + (xr, t), ↑, 1

x̂t

A diagram of the model is shown in Fig. 1b,c. The reference component MR 482
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x

4x conv ↑/↓, out dim

3x conv

+

relu

bn, relu

bn

1x1 conv, out dim
2x avg-pool/upsample

xr

t

1x conv, out dim

1x conv, out dim

bn, relu

bn, relu

Fig 7. Residual block used in this model. Each layer of our model is a modified
residual layer. In the encoder, the layer input, x, is passed through a 4x convolution
kernel with a stride of 2, then a 3x convolution kernel with a stride of 1 or a 1x
convolution kernel with a subsequent avg-pooling step. These results are summed along
the channel dimensions, added, and passed to the next layer. With the decoder, 4x
convolution is replaced with transposed convolution, and pooling replaced with linear
upsampling. In the case of the conditional model (components with dotted lines) MT,
the reference input xr is linearly interpolated to be the same size as the output, and
passed through a 1x kernel. The target label is passed through a 1x kernel, and added
to each pixel of the output. Spectral weight normalization [35] is utilized at every
convolutional or fully-connected operation. In the case of the 3D model the convolutions
are three-dimensional, and the 2D model uses two-dimensional convolutions.

consists of an encoder that computes the variational posterior, q(zr|xr) constructed by 483

serial residual blocks (see Fig. 7) that perform convolutional operations, spatially 484

downsampling the image by half and increasing channel dimension at each layer. The 485

output is then reshaped to a vector and passed independently through two fully 486

connected layers to result in zr = N(µzr , σzr ). zr is sampled from that normal 487

distribution and passed through a fully connected layer, and passed through residual 488

blocks that spatially upsample, and decrease channel dimension, progressively decoding 489

the latent representation. The same architecture is used for the target model, MT, but 490

instead the target label and a linearly downsampled copy of xr is passed in as well. 491

The primary layer component of this model is a modified residual layer [36], and a 492

detailed description can be found in Fig. 7. Table 3 shows the high-level model 493

architecture. 494

The 2D model was implemented the same as above but with 2D convolution 495

operations. 496

The model is trained to maximize the Evidence Lower Bound (ELBO) given an 497

input image xr,t: 498

log p(xr,t|t) ≥ ELBO(xr,t|t) = Eq(zr,t|xr,t)[log p(xr,t|zr,t, t)]−KL(q(zr,t|xr,t, t)|p(z))
(1)

An interpretation of this procedure is that we seek to find a model such that the 499

observed data is the most probable under the model distribution, with the ELBO is as 500

(tractable) approximation of this quantity. Under the generative model described in 501

Fig. 1b, we factor out structure and reference components and train two separate 502

components: 503

log p(xr,t|t) = log p(xt|xr, t) + log p(xr) ≥ ELBO(xt|xr, t) + ELBO(xr) (2)
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The embeddings produced by the encoder q(z|x) are encouraged to be compact in 504

the sense that they are penalized for differing in distribution from a standard normal 505

distribution (as measured by KL(q(z|x)|q(z))). An embedding, however compact, is 506

only useful insofar as it is able to faithfully recapitulate the data. The decoder p(x|z) is 507

optimized to produce faithful reconstructions via the reconstruction error term 508

Eq(zr,t|xr,t)[log p(xr,t|zr,t)], which encourages the model to balance compactness against 509

transmitting enough information to accurately reconstruct the data. 510

For section 4.3 we adopt the following reparameterized ELBO definition: 511

ELBO(x) = (1− β)Eq(z|x)[log p(x|z)]− βKL(q(z|x)|p(z)). (3)

where β is between 0 and 1. 512

This slight modification to the objective function allowed us to trade-off the relative 513

importance between the reconstruction and sparsity terms of our loss function while 514

keeping the order of magnitude of the total objective function constant. This is greatly 515

beneficial in training multiple models at different values of β, without needing to modify 516

any other hyper parameters to compensate for an objective function that grows with β, 517

as in the traditional parameterization of the βV AE objective function. 518

6.3 Calculation of Evidence Lower Bound 519

To calculate the ELBO we use the low-variance estimator in [21]. We use pixel-wise 520

mean squared error to approximate the reconstruction likelihood and average over ten 521

samples from zr or zt. 522

6.4 Training Procedure 523

Each model is trained with a batch size of 32 at a learning rate of 0.0002 for 300 epochs 524

via gradient-descent with the Adam optimizer [37]. The optimizer β hyper-parameter 525

values are set to (0.9, 0.999) (not to be confused with β in the model’s objective 526

function). The maximum latent space dimensionality for the reference structures, Zr, 527

and target structures, Zs, were each set to 512 dimensions. We adopt the stochastic 528

training procedure outlined in [21]. 529

We split the data set into 80% training, 10% validation and 10% test, and trained 530

both the reference and conditional model for 300 epochs, and for each training session 531

use the model with the highest ELBO on the validation set. 532

The model was implemented in PyTorch version 1.2.0, and each component (P (xr) 533

and P (xt|xr, t)) was trained on an NVIDIA V100 graphics card. 3D models took 534

approximately two weeks to train while 2D models took approximately 1.5 days to train. 535

To address overfitting, we evaluate the ELBO on images assigned to the validation 536

set at every epoch. For all results in this manuscript, the model with the highest 537

validation-set ELBO is used. For sparsity/reconstruction models in Fig. 3, we use the 538

unweighted ELBO. 539

6.5 Statistic of Subcellular Structure Coupling 540

The per-channel statistic we display in Fig. 5b is computed for each cell xi by 541

considering the likelihood of that cell under the model, compared to the likelihood of 542

that cell with one of its channels swapped out for that same channel from a different cell: 543

crsi =
ELBO(xi = [xr

i ,x
r
′

i ,x
s
i ])

1
Ns

∑Ns

j=1 ELBO(xij = [xr
j ,x

r′

i ,x
s
i ])

(4)
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Here r is the reference channel (either the membrane or the nucleus) that we are 544

evaluating, s is the structure type, denoting which set of cells we aggregate over. 545

xi = [xr
i ,x

r
′

i ,x
s
i ] is the three channel image decomposed into the reference channel of 546

interest r, the other reference channel r
′
, and the structure channel s. The numerator is 547

the likelihood of the original data, and the denominator is the average permuted 548

likelihood of the cell with the reference channel of interest r permuted across all other 549

cells with the same structure tagged (i.e. Ns cells). 550

To aggregate this per-channel coupling strength into a relative coupling value, we 551

take the ratio of the difference over the sum of the membrane-structure coupling and 552

the nucleus-structure coupling. That is, the differential coupling of a structure to the 553

membrane vs the nucleus ds is computed as 554

dps =
1

Np
s

Np
s∑

i=1

cms
i − cnsi
cms
i + cnsi

(5)

where Np
s is the number of cells where structure s is tagged and are also in cell cycle 555

phase p (interphase or mitosis), cms
i is the coupling of structure s in cell i to the 556

membrane, and similarly cnsi is the coupling of the structure in that cell to the nucleus. 557
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a)

b)

Fig S1. Pairwise plots of the top four latent space dimensions, as ranked by mean
absolute deviation from 0 on the test set. The marginal distribution of each latent
dimension is plotted on the diagonal. a) Here we color by the cell volume, and see a
visually apparent pattern in the data — most notably a strong correlation with µ188. b)
Here we color by the cell height, and again observe structure in the scatter plots —
most notably a strong correlation with µ419.
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μ465 (top feature = DNA surface area)–2z 2z

μ188 (top feature = cell volume)–2z 2z

μ238 (top feature = cell shape 2nd eigenvalue)–2z 2z

μ107 (top feature = cell integrated intensity)–2z 2z

a)

b)

c)

d)

Fig S2. Latent space walks along the 3rd through 6th highest ranked dimensions, as
ranked by mean absolute deviation from 0 on the test set. Walks are performed along
the specified dimension in nine steps, starting at negative two standard deviations and
ending at two standard deviations. All other latent dimensions are set to 0. We include
the name of the most highly correlated cell feature, but the cell features are highly
correlated (see Supp. Fig. S3) and a single latent space dimension may correlate with
many cell features. a) Latent dimension µ465, which is most strongly correlated with
nuclear surface area. b) Latent dimension µ188, which is most strongly correlated with
cell volume. c) Latent dimension µ238, which is most strongly correlated with tilt/shear
along the x-z-axes. d) Latent dimension µ107, which is most strongly correlated with
the total integrated intensity in the plasma membrane dye channel.
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a)

b)

c)

d)

Fig S3. a) Heatmap of Spearman correlations of reference latent space dimensions with
single-cell features on all cells in the test set. Cell features are hierarchically clustered.
Latent space dimensions are sorted in descending rank by mean absolute deviation from
0, and for clarity only the top 32 dimensions are shown. Dimensions below 32 displayed
significantly more noise and less correlation with cell features. b) Mean absolute
deviation from 0 of all reference latent space dimensions, sorted by value. Values are
computed by averaging over all cells in the test set. c) Explained variance of principal
components of the z-scored cell features on all cells in the test set. d) Pearson
correlation of the top 32 dimensions of the latent space, computed on all cells in the test
set as ranked by mean absolute deviation from 0. We note that these dimensions display
little to no correlation structure, empirically verifying the ability of the β-VAE to
produce a disentangled latent space.

May 19, 2021 21/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447725doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447725
http://creativecommons.org/licenses/by/4.0/


Fig S4. Three examples of each mEGFP-tagged structure are shown, sampled
randomly from our test data set. Each cell only has one mEGFP-tagged structure, so
examples are all from different cells.
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Fig S5. Structures generated by our model. Three examples of each mEGFP-tagged
structure are shown. Structures are generated using random draws from the conditional
latent space, while keeping the reference geometry fixed to a single (randomly chosen)
cell geometry from the test set. The same cell geometry is used across all structures
shown here.
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Fig S6. a) Mean KLD per dimension for the reference latent space of the test set in the
2D model, as a function of β, averaged over all dimensions in the latent space. b) Mean
KLD per dimension for the reference latent space of the test set in the 2D model, as a
function of dimension rank, for each model fit using a different β. c) Left: Mean KLD
per dimension for the reference latent space of the test set in the 3D model, as a function
of dimension rank. Right: Mean KLD per dimension for the conditional latent space of
the test set in the 3D model, as a function of dimension rank and structure type.
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