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Abstract 1 

 2 

Background: Annotation ambiguities and annotation errors are a general challenge in 3 

genomics. While a reliable protein function assignment can be obtained by 4 

experimental characterization, this is expensive and time-consuming, and the number 5 

of such Gold Standard Proteins (GSP) with experimental support remains very low 6 

compared to proteins annotated by sequence homology, usually through automated 7 

pipelines. Even a GSP may give a misleading assignment when used as a reference: 8 

the homolog may be close enough to support isofunctionality, but the substrate of the 9 

GSP is absent from the species being annotated. In such cases the enzymes cannot be 10 

isofunctional. Here, we examine a variety of such issues in halophilic archaea (class 11 

Halobacteria), with a strong focus on the model haloarchaeon Haloferax volcanii. 12 

Results: Annotated proteins of Hfx. volcanii were identified for which public 13 

databases tend to assign a function that is probably incorrect. In some cases, an 14 

alternative, probably correct, function can be predicted or inferred from the available 15 

evidence but this has not been adopted by public databases because experimental 16 

validation is lacking. In other cases, a probably invalid specific function is predicted 17 

by homology, and while there is evidence that this assigned function is unlikely, the 18 

true function remains elusive. We list 50 of those cases, each with detailed 19 

background information so that a conclusion about the most likely biological function 20 

can be drawn. For reasons of brevity and comprehension, only key aspects are listed 21 

in the main text, with detailed information being provided in a corresponding section 22 

of the Supplementary Material.  23 

Conclusions: Compiling, describing and summarizing these open annotation issues 24 

and functional predictions will benefit the scientific community in the general effort 25 

to improve the evaluation of protein function assignments and more thoroughly detail 26 

them. By highlighting the gaps and likely annotation errors currently in the databases, 27 

we hope this study will provide a framework for experimentalists to systematically 28 

confirm (or disprove) our function predictions or to uncover yet unexpected functions. 29 

 30 

Keywords: haloarchaea, genome annotation, Gold Standard Protein, Haloferax 31 

volcanii, annotation error 32 

33 
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1 INTRODUCTION 34 

Haloferax volcanii is a model organism for halophilic archaea (Hartman et al., 2010, 35 

Schulze et al., 2020, Leigh et al., 2011, Perez-Arnaiz et al., 2020, Soppa, 2011, Haque 36 

et al., 2020), for which an elaborate set of genetic tools has been developed (Allers et 37 

al., 2010, Allers and Mevarech, 2005, Kiljunen et al., 2014). Its genome has been 38 

sequenced and carefully annotated (Hartman et al., 2010, Pfeiffer et al., 2008a, 39 

Pfeiffer and Oesterhelt, 2015). A plethora of biological aspects have been successfully 40 

tackled in this species, with examples including DNA replication (Perez-Arnaiz et al., 41 

2020); cell division and cell shape (Turkowyd et al., 2020, Walsh et al., 2019, de 42 

Silva et al., 2021, Duggin et al., 2015, Liao et al., 2021); metabolism (Brasen and 43 

Schonheit, 2001, Johnsen et al., 2009, Pickl et al., 2012, Sutter et al., 2016, Reinhardt 44 

et al., 2019, Kuprat et al., 2021, Kuprat et al., 2020, Sutter et al., 2020, Tästensen et 45 

al., 2020); protein secretion (Abdul-Halim et al., 2020, Abdul Halim et al., 2018, 46 

Abdul Halim et al., 2013, Storf et al., 2010); motility and biofilms (Schiller et al., 47 

2020, Pohlschroder and Esquivel, 2015, Li et al., 2020, Collins et al., 2020, Quax et 48 

al., 2018, Nussbaum et al., 2020); mating (Shalev et al., 2017); signalling (Braun et 49 

al., 2019); virus defence (Maier et al., 2019); proteolysis (Reuter and Maupin-Furlow, 50 

2004, Reuter et al., 2010, Prunetti et al., 2014, Cerletti et al., 2018, Cerletti et al., 51 

2014, Costa et al., 2018); posttranslational modification (N-glycosylation; 52 

SAMPylation)(Cao et al., 2015, Kaminski and Eichler, 2014, Tripepi et al., 2012, 53 

Schulze et al., 2021, Shalev et al., 2018, Kandiba et al., 2016); gene regulation (Qi et 54 

al., 2016, Rawls et al., 2010, Hattori et al., 2016, Hwang et al., 2017, Johnsen et al., 55 

2015, Tästensen et al., 2020, Reinhardt et al., 2019); microproteins (Zahn et al., 2021, 56 

Nagel et al., 2019, Kubatova et al., 2020) and small noncoding RNAs (sRNAs) 57 

(Straub et al., 2009, Heyer et al., 2012, Babski et al., 2014, Wyss et al., 2018). 58 

 59 

Genome annotations are frequently compromised by annotation errors (Schnoes et al., 60 

2009, Pfeiffer and Oesterhelt, 2015, Promponas et al., 2015, Danchin et al., 2018). 61 

Many of these errors are caused by invalid annotation transfer between presumed 62 

homologs, which, once introduced, are further spread by annotation robots. This 63 

problem can be partially overcome by using a Gold Standard Protein (GSP) based 64 

annotation strategy (Pfeiffer and Oesterhelt, 2015). Because the GSP has itself been 65 

subjected to experimental analysis, its annotation cannot be caused by an invalid 66 
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annotation transfer process. The GSP strategy had already been applied to a detailed 67 

analysis of the metabolism of halophilic archaea (Falb et al., 2008). However, with 68 

decreasing level of sequence identity, the assumption of isofunctionality becomes 69 

increasingly insecure. Although this may be counterbalanced by additional evidence, 70 

e.g. gene clustering, experimental confirmation would be the best option for 71 

validation of the annotation. 72 

 73 

There are additional and much more subtle genome annotation problems. In some 74 

cases, GSPs are true homologs and the annotated function in the database is correct. 75 

Nevertheless, the biological context in the query organism makes it unlikely that the 76 

homologs are isofunctional, e.g. when the substrate of the GSP is lacking in the query 77 

organism. Also, paralogs may have distinct but related functions, which cannot be 78 

assigned by sequence analysis but may be assigned based on phylogenetic 79 

considerations. Here, again, experimental confirmation is the preferred option for 80 

validation of the annotation. Lack of experimental confirmation may keep high-level 81 

databases like KEGG or the SwissProt section of UniProt from adopting assignments 82 

based on well-supported bioinformatic analyses, so that the database entries continue 83 

to provide information that is probably incorrect. We refer to annotation problems in 84 

these databases solely to underscore that the biological issues raised by us are far from 85 

trivial. There is no intention to question the exceedingly high quality of the SwissProt 86 

and KEGG databases (UniProt, 2021, Kanehisa et al., 2019) and their tremendous 87 

value for the scientific community. We have actively supported them by providing 88 

feedback and encourage others to do the same, e.g. with the recently implemented 89 

“Add a publication” functionality in UniProt entries, that allows users to connect a 90 

protein to a publication that describes its experimental characterization 91 

(https://community.uniprot.org/bbsub/bbsubinfo.html). 92 

 93 

In this study, we describe a number of annotation issues for haloarchaea with a strong 94 

emphasis on Hfx. volcanii. We denote such cases as ‘open annotation issues’ with the 95 

hope of attracting members of the Haloferax community and other groups working 96 

with halophilic archaea to apply experimental analyses to elucidate the true 97 

function(s) of these proteins. This will increase the number of Gold Standard Proteins 98 
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which originate from Hfx. volcanii or other haloarchaea, reduce genome annotation 99 

ambiguities, and perhaps uncover novel metabolic processes. 100 

 101 

2 MATERIALS AND METHODS 102 

2.1 Curation of genome annotation and Gold Standard Protein identification 103 

The Gold Standard Protein based curation of haloarchaeal genomes has been 104 

described (Pfeiffer and Oesterhelt, 2015). Since then, a systematic comparison to 105 

KEGG data was performed for a subset of the curated genomes (Pfeiffer et al., 2020). 106 

The Hfx. volcanii genome annotation is continuously scrutinized, especially when a 107 

closely related genome is annotated (Tittes et al., 2021). The 16 haloarchaeal genomes 108 

that are currently under survey are listed in Suppl. Table S11. 109 

 110 

2.2 Additional bioinformatics tools 111 

Key databases were UniProtKB/Swiss-Prot (UniProt, 2021), InterPro (Hunter et al., 112 

2009), KEGG (Kanehisa et al., 2019), and OrthoDB (Kriventseva et al., 2019). The 113 

SyntTax server was used for inspecting conservation of gene neighbourhood analysis 114 

(Oberto, 2013). As general tools the BLAST suite of programs (Johnson et al., 2008, 115 

Altschul et al., 1997) was used for genome comparisons. 116 
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3 RESULTS 117 

Open issues are organised below under the subsections (3.1), the respiratory chain and 118 

oxidative decarboxylation; (3.2), amino acid metabolism; (3.3), heme and cobalamin 119 

biosynthesis; (3.4), coenzyme F420; (3.5), tetrahydrofolate as opposed to 120 

methanopterin; (3.6), NAD and riboflavin; (3.7), lipid metabolism; (3.8), genetic 121 

information processing, and (3.9), stand-alone (miscellaneous) cases. 122 

 123 

3.1 The respiratory chain and oxidative decarboxylation 124 

In the respiratory chain, coenzymes that have been reduced during catabolism (e.g. 125 

glycolysis) are reoxidized, with the energy being saved as an ion gradient. The 126 

textbook example of a respiratory chain are the five mitochondrial complexes (Rich 127 

and Marechal, 2010, Guo et al., 2018): complex I (NADH dehydrogenase), complex 128 

II (succinate dehydrogenase), complex III (cytochrome bc1 complex), complex IV 129 

(cytochrome-c oxidase as prototype for a terminal oxidase) and complex V (F-type 130 

ATP synthase). In mitochondria, a significant part of the NADH which feeds into the 131 

respiratory chain originates from oxidative decarboxylation: conversion of pyruvate to 132 

acetyl-CoA by the pyruvate dehydrogenase complex and conversion of alpha-133 

ketoglutarate to succinyl-CoA by the homologous 2-oxoglutarate dehydrogenase 134 

complex. While complex I and II transfer reducing elements to a lipid-embedded two-135 

electron carrier (ubiquinone), the bc1 complex transfers the electrons to the one-136 

electron carrier cytochrome-c, a heme (and thus iron) protein, which then transfers 137 

electrons to the terminal oxidase. 138 

 139 

Bacteria like Escherichia coli and Paracoccus have related complexes and enzymes: 140 

NADH dehydrogenase (encoded by the nuo operon), succinate dehydrogenase 141 

(encoded by sdhABCD) and the related fumarate reductase (encoded by frdABCD) 142 

(Crofts et al., 2013), several terminal oxidases (e.g. products of cyoABCDE, cydABC), 143 

and an F-type ATP synthase (encoded by atp genes). E. coli lacks a bc1 complex, 144 

which, however, occurs in Paracoccus denitrificans (Kaila and Wikstrom, 2021). E. 145 

coli contains the canonical complexes of oxidative decarboxylation (pyruvate 146 

dehydrogenase complex, encoded by aceEF+lpdA, and 2-oxoglutarate dehydrogenase 147 

complex, encoded by sucAB+lpdA). 148 
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 149 

The respiratory chain of Hfx. volcanii and other haloarchaea deviates considerably 150 

from those of mitochondria and bacteria such as Paracoccus and E. coli (reviewed by 151 

(Schafer et al., 1999)), and a number of questions remain unresolved. We focus on the 152 

equivalents of complex I, III and IV, because these have unresolved issues. We also 153 

cover some aspects relevant for NADH levels (oxidative decarboxylation enzymes 154 

and type II NADH dehydrogenase). We do not cover complexes that have already 155 

been studied in haloarchaea: complex II (succinate dehydrogenase) (Scharf et al., 156 

1997, Sreeramulu et al., 1998, Gradin et al., 1985) and complex V (ATP synthase) 157 

(Steinert et al., 1997, Nanba and Mukohata, 1987).  158 

 159 

(a) In haloarchaea, oxidative decarboxylation is not linked to reduction of NAD to 160 

NADH but to reduction of a ferredoxin (encoded by fdx, e.g. OE_4217R, HVO_2995) 161 

which has a redox potential similar to that of the NAD/NADH pair (Kerscher and 162 

Oesterhelt, 1977). The enzymes for oxidative decarboxylation are pyruvate--163 

ferredoxin oxidoreductase (porAB, e.g. OE_2623R/2622R, HVO_1305/1304) and 2-164 

oxoglutarate--ferredoxin oxidoreductase (korAB, e.g. OE_1711R/1710R, 165 

HVO_0888/0887), and these have been characterized from Halobacterium salinarum 166 

(Plaga et al., 1992, Kerscher and Oesterhelt, 1981b, Kerscher and Oesterhelt, 1981a). 167 

 168 

(b) In Hfx. volcanii, ferredoxin Fdx (HVO_2995) plays an essential role in nitrate 169 

assimilation (Zafrilla et al., 2011). It may well be involved in additional metabolic 170 

processes and it is yet unresolved how ferredoxin Fdx is reoxidised, but this might be 171 

achieved by the Nuo complex. 172 

 173 

(c) The nuo cluster of haloarchaea resembles that of E. coli, with genes and gene 174 

order highly conserved, and just a few domain fissions and fusions. However, 175 

haloarchaea lack NuoEFG (Falb et al., 2005), which is a subcomplex mediating 176 

interaction with NADH (Leif et al., 1995, Braun et al., 1998). Thus, the haloarchaeal 177 

nuo complex is unlikely to function as NADH dehydrogenase, despite its annotation 178 

as such in KEGG (as of April 2021). 179 
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 180 

(d) Other catabolic enzymes generate NADH, which also must be reoxidized. Based 181 

on inhibitor studies in Hbt. salinarum, NADH is not reoxidized by a type I but rather 182 

by a type II NADH dehydrogenase (Sreeramulu et al., 1998). A gene has been 183 

assigned for Natronomonas pharaonis (Falb et al., 2008). However, for reasons 184 

detailed in Suppl.Text.S1, this assignment is highly questionable, so that this issue 185 

calls for experimental analysis. 186 

 187 

(e) About one-third of the haloarchaea, especially the Natrialbales, do not code for a 188 

complex III equivalent (cytochrome bc1 complex encoded by petABC) according to 189 

OrthoDB analysis. The bc1 complex is required to transfer electrons from the lipid-190 

embedded two-electron carrier (menaquinone in haloarchaea) to the one-electron 191 

carrier associated with terminal oxidases (probably halocyanin). How electrons flow 192 

in the absence of a complex III equivalent is currently unresolved. 193 

 194 

The haloarchaeal petABC genes resemble those of the chloroplast b6-f complex rather 195 

than those of the mitochondrial bc1 complex (see Suppl.Text S1 Section 1 for more 196 

details). 197 

 198 

(f) A bc cytochrome has been purified from Nmn. pharaonis, but with an atypical 1:1 199 

ratio between the b-type and c-type heme (Scharf et al., 1997). The complex is 200 

heterodimeric, with subunits of 18 kDa and 14 kDa. The 18 kDa subunit carries the 201 

covalently attached heme group (Scharf et al., 1997). An attempt was made to identify 202 

the genes coding for these subunits (Mattar, 1996) (for details see Suppl.Text S1 203 

Section 1). Two approaches were used to obtain protein sequence data, one being N-204 

terminal protein sequencing of the two subunits extracted from a SDS-polyacrylamide 205 

gel. In the other attempt, peptides from the purified complex were separated by 206 

HPLC, and a peptide absorbing at 280 nm (protein) as well as 400 nm (heme) was 207 

isolated. Absorption at 400 nm clearly indicates covalent attachment of the heme 208 

group to the peptide. The sequences from the two approaches overlapped and resulted 209 

in a contiguous sequence of 41 aa, with only the penultimate position remaining 210 

undefined (Mattar, 1996). Based on this information, a PCR probe was generated 211 
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(designated “cyt-C Sonde”) that allowed the gene to be identified and sequenced, 212 

including its genomic neighbourhood. It turned out that the genes coding for the four 213 

subunits of succinate dehydrogenase (sdhCDBA) had been isolated. The obtained 214 

protein sequence corresponds to the N-terminal region of sdhD (with the initiator 215 

methionine cleaved off) and only 2 sequence discrepancies in addition to the 216 

unresolved penultimate residue. 217 

 218 

In the PhD thesis (Mattar, 1996), this unambiguous result was rated to be a failure 219 

(and the data were never formally published). The reason is that SdhD is free of 220 

cysteine residues, while textbook knowledge states that a pair of cysteines is required 221 

for covalent heme attachment (Kletzin et al., 2015). The lack of the required cysteine 222 

pair was taken to indicate that the results were incorrect and that the identified genes 223 

did not encode the cytochrome bc that the study had been seeking (Mattar, 1996). In 224 

contrast, we speculate that the results were completely correct, despite being in 225 

conflict with the cysteine pair paradigm. In our view, a paradigm shift is required. The 226 

obtained results call for a yet unanticipated novel mode of covalent heme attachment, 227 

exemplified by the 18 kDa subunit of Natronomonas succinate dehydrogenase subunit 228 

SdhD. It should be noted that the 41 aa protein sequence, which had been obtained, 229 

turned out to contain three histidine residues upon translation of the gene, but none of 230 

these had been detected upon Edman degradation. 231 

 232 

In Halobacterium, a small c-type cytochrome was purified (cytochrome c552, 14.1 233 

kDa) (Sreeramulu, 2003). Heme staining after SDS-PAGE indicated a covalent heme 234 

attachment, but no sequence or composition data were reported, so that it is not 235 

possible to identify the protein based on the available information. We speculate that 236 

the Halobacterium cytochrome c552 also represents SdhD (as detailed in Suppl.Text 237 

S1 Section 1). In that case, the proposed novel type of covalent heme attachment 238 

would not be restricted to Nmn. pharaonis but might be a general property of 239 

haloarchaea. This would also solve the “Halobacterium paradox” (Kletzin et al., 240 

2015). 241 

 242 
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(g) The haloarchaeal one-electron carrier is the copper protein halocyanin rather than 243 

the iron-containing heme protein cytochrome-c. A halocyanin from Nmn. pharaonis 244 

(NP_3954A) has been characterized, including its redox potential (Mattar et al., 1994, 245 

Scharf and Engelhard, 1993, Hildebrandt et al., 1994). A gene fusion supports the 246 

close connection of a halocyanin with a subunit of a terminal oxidase. For further 247 

details see Suppl.Text S1 Section 1. 248 

 249 

(h) Terminal oxidases are highly diverse in haloarchaea and we restrict our analysis to 250 

three species (Nmn. pharaonis, Hfx. volcanii, and Hbt. salinarum) because in each of 251 

these at least one terminal oxidase has been experimentally studied (Table 1). Details 252 

are described in Suppl. Text S1 Section 1. 253 

 254 

(i) NAD-dependent oxidative decarboxylation is a canonical reaction to convert 255 

pyruvate into acetyl-CoA, and alpha-ketoglutarate into succinyl-CoA. In haloarchaea, 256 

the conversion of pyruvate to acetyl-CoA and alpha-ketoglutarate to succinyl-CoA is 257 

dependent on ferredoxin, not on NAD (see above). Nevertheless, most haloarchaeal 258 

genomes also code for homologs of enzymes catalyzing NAD-dependent oxidative 259 

decarboxylation, such as the E. coli pyruvate dehydrogenase complex. In most cases, 260 

the substrates could not be identified, an exception being a paralog involved in 261 

isoleucine catabolism (Sisignano et al., 2010). In several cases the enzymes were 262 

found not to show catalytic activity with pyruvate or alpha-ketoglutarate (see 263 

Suppl.Text S1 Section 1 for details). Also, a conditional lethal porAB mutant was 264 

unable to grow on glucose or pyruvate, thus excluding that alternative enzymes for 265 

conversion of pyruvate to acetyl-CoA exist in Hfx. volcanii (Kuprat et al., 2021). 266 

Nonetheless, despite experimental results to the contrary, pyruvate is assigned as 267 

substrate for some of the homologs of the pyruvate dehydrogenase complex in KEGG 268 

(as of April 2021). 269 
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 270 
   Gold Standard Protein    

Sectio

n 

Code Gene isofunc %seq_id Locus tag UniProt Reference PMID Comment 

1a HVO_1305 

HVO_1304 

porAB yes 67% 

80% 

OE2623R 

OE2622R 

B0R4X6 

B0R4X5 

(Plaga et al., 1992) 

(Kerscher and Oesterhelt, 1981b) 

(Kerscher and Oesterhelt, 1981a) 

1555599 

6266826 

6266827 

 

1a HVO_0888 

HVO_0887 

korAB yes 77% 

77% 

OE1711R 

OE1710R 

B0R3G0 

B0R3F9 

(Kerscher and Oesterhelt, 1981b) 

(Kerscher and Oesterhelt, 1981a) 

6266826 

6266827 

 

1a/1b HVO_2995 fdx yes 88% OE4217R B0R7I9 (Kerscher and Oesterhelt, 1976) 

(Kerscher et al., 1976) 

(Kerscher and Oesterhelt, 1977) 

964365 

188650 

201489 

role in oxidative 

decarboxylation 

1a/1b HVO_2995 

(cont.) 

   self D4GY89 (Zafrilla et al., 2011) 22103537 role in nitrate 

assimilation 

1c HVO_0979 

(complex) 

nuoB possibly 50% tlr0705 Q8DKZ4 (Zhang et al., 2005) 

(Schuller et al., 2019) 

(Pan et al., 2020) 

15910282 

30573545 

32001694 

reoxidizes ferredoxin 

1c HVO_0979 

(cont.) 

 no 48% b2287 P0AFC7 (Leif et al., 1995) 

(Braun et al., 1998) 

7607227 

9485311 

reoxidizes NADH in 

E.coli 

1d NP_3508A 

 

ndh1 special 26% (N-

term 140 

aa) 

- Q7ZAG8   function of Q7ZAG8 

was reassigned (from 

ndh1 to sqr) after 

annotation transfer 

1d NP_3508A 

(cont.) 

 possibly 30% BpOF4_04810 A7LKG4 (Liu et al., 2008) 18359284 type II NADH 

dehydrogenase 

1e HVO_2620 

HVO_0842 

HVO_0841 

petABD yes 39% SYNPCC7002_ 

A0842 

P28056 (Lee et al., 2001) 11245788 HVO_0842 (petB) 

related to cytochrome 

b6 

1f HVO_2810 sdhD yes 66% NP_4268A Q3INS7 (Scharf et al., 1997) 

(Mattar, 1996) 

9109654 

PhD_Matt

ar 

 

1g HVO_0943 cbaD yes 57% NP_2966A A0A1U7EWW4 (Mattar and Engelhard, 1997) 9428682  

 HVO_0943 

(cont.) 

 - 63% OE_4073R 

(C-term) 

B0R7A9  - halocyanin/cbaD 

fusion protein, 

uncharacterized 
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1g HVO_2150 hcpG 

 

- 44% OE_4073R 

(N-term) 

B0R7A9  - halocyanin/cbaD 

fusion protein, 

uncharacterized 

1h HVO_0945 

(complex) 

cbaA yes 64% NP_2966A A0A1U7EWW4 (Mattar and Engelhard, 1997) 9428682  

1h HVO_0907 

(complex) 

coxA1   self  (Tanaka et al., 2002) 11790755  

1h HVO_0907 

(cont.) 

 yes 70% VNG_0657G 

(OE_1979R) 

P33588 (Fujiwara et al., 1989) 

(Denda et al., 1991) 

2542239 

1659810 

 

1h HVO_1645 

(complex) 

coxAC2 yes 43% APE_0793.1 Q9YdX6 (Ishikawa et al., 2002) 12471503  

1h HVO_0462 

HVO_0461 

cydAB yes 32% 

24% 

- 

- 

Q09049 

Q05780 

(Moshiri et al., 1991) 1655703  

1h HVO_0462 

HVO_0461 

(cont.) 

 yes 30% 

27% 

b0733 

b0734 

P0ABJ9 

P0ABK2 

(Miller and Gennis, 1983) 6307994  

1h NP_4296A 

NP_4294A  

coxA3 

coxB3 

yes 28% 

33% 

TTHA1135 

TTHA1134 

Q5SJ79 

Q5SJ80 

(Zimmermann et al., 1988) 

(Keightley et al., 1995) 

2842747 

7657607 

 

1i HVO_2958 

HVO_2959 

oadhAB1   self D4GY15 

D4GY17 

(Sisignano et al., 2010) 19910413 Ile indirectly assigned 

as substrate 

1i HVO_2958 

HVO_2959 

(cont.) 

   self  (Jolley et al., 2000) 

(Al-Mailem et al., 2008) 

(van Ooyen and Soppa, 2007) 

10832633 

17571210 

17906130 

no substrate was 

identified;pyruvate and 

alphaKG excluded 

1i HVO_2595 

HVO_2596 

oadhAB2   self  (Wanner and Soppa, 2002) 

(van Ooyen and Soppa, 2007) 

(Sisignano et al., 2010) 

12003954 

17906130 

19910413 

 

no substrate was 

identified;pyruvate and 

alphaKG excluded 

1i HVO_0669 

HVO_0668 

oadhAB3   self  (van Ooyen and Soppa, 2007) 

(Sisignano et al., 2010) 

17906130 

19910413 

 

no substrate was 

identified;pyruvate and 

alphaKG excluded 

1i HVO_2209 oadhA4   self    not yet analyzed 

experimentally 

1i HVO_2958 

HVO_2959 

(cont.) 

 yes/no 38% 

52% 

TA1438 

TA1437 

Q9HIA3 

Q9HIA4 

(Heath et al., 2007) 17894823 substrates are Ile, Leu, 

Val 
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1i HVO_2595 

HVO_2596 

(cont.) 

 no 41% 

41% 

- 

- 

Q57102 

Q57041 

(Oppermann et al., 1991) 1898934 substrate is acetoin 

1i HVO_2595 

HVO_2596 

(cont.) 

 unknown 40% 

43% 

BSU08060 

BSU08070 

O31404 

O34591 

(Huang et al., 1999) 10368162 substrate is acetoin 

1i HVO_0669 

HVO_0668 

(cont.) 

 unknown 54% 

47% 

BSU08060 

BSU08070 

O31404 

O34591 

(Huang et al., 1999) 10368162 substrate is acetoin 

1i HVO_0669 

HVO_0668 

(cont.) 

 unknown 49% 

43% 

- 

- 

Q57102 

Q57041 

(Oppermann et al., 1991) 1898934 substrate is acetoin 

1i HVO_2209 

(cont.) 

 unknown 38% TA1438 Q9HIA3 (Heath et al., 2007) 17894823 substrates are Ile, Leu, 

Val 

 271 
Table 1: Proteins with open annotation issues and their Gold Standard Protein homologs (Section 1). The column Section refers to the 272 

Table listing the protein and to the section in the Results and in Suppl. Text S1. As an example, 2c covers topic (c) from the decimal-numbered 273 

Results subsection 3.2 Amino Acid Biosynthesis. In Suppl. Text S1, this is covered under Section S2 subsection S2.c. The corresponding 274 

proteins are listed in Table 2. For a few proteins, two sections are indicated (e.g. 1a/1b). The column Code refers to a haloarchaeal protein by its 275 

locus tag, which is mainly from Haloferax volcanii (HVO), but also from Halobacterium salinarum (OE), Natronomonas pharaonis (NP) and 276 

Halohasta litchfieldiae (halTADL). When the reconstruction of a complete pathway is presented, the unassigned genes are indicated as a 277 

“pathway gap”. In one case we indicate the absence of a haloarchaeal ortholog by a dash. In the case of a complex, we either list more than one 278 

code, or we list only one subunit together with the term (complex). All subunits of these complexes are listed groupwise in Table S10. A protein 279 

may be shown in more than one row. From the 2nd row onwards, this is indicated by the term (cont.). The column Gene lists the assigned gene or 280 

a dash if no gene has been assigned. The assigned gene is only indicated in the first row of a protein. A set of four columns is used to relate a 281 

query protein to an experimentally characterized homolog, a GSP (Gold Standard Protein) (isofunc, %seq_id, Locus tag, UniProt). The column 282 
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isofunc indicates if the query protein and its Gold Standard Protein homolog are isofunctional. The meaning of the terms used in this column in 283 

Tables 1-9 (yes, no, yes/no, probably, possibly, unclear, unknown, prediction, special, “-“) is described at the end of this legend. The column 284 

%seq_id indicates the protein sequence identity between the query protein and the homologous GSP. The column Locus tag contains the locus 285 

tag, if assigned. The column UniProt contains the UniProt accession of the GSP. GSPs have been experimentally characterized as described in a 286 

publication. The column Reference links to the reference list of the manuscript. The column PMID lists the PubMed ID of the publication, if 287 

available. Otherwise, this is indicated as “not in PubMed”. Also, one PhD thesis is indicated (PhD_Matter). The column Comment provides 288 

various types of additional information. The terms used in the column isofunc in Tables 1-9 have the following meaning: The term “yes” 289 

indicates that we consider the two proteins as isofunctional and annotate the query protein accordingly. The term “no” is used when we conclude 290 

that the proteins differ in function. Additional terms are used for more difficult cases. The term “yes/no” is used for GSPs which are 291 

multifunctional, and we assign only one a subset of these functions to the query protein. The term “probably” is used when we consider 292 

isofunctionality likely and annotated the query protein accordingly (with the term probable added to the protein name). The term “possibly” is 293 

used when we see a good chance that the proteins are isofunctional, but consider it too speculative to annotate the protein accordingly. The term 294 

“unclear” is used when we consider it likely that the same overall reaction is catalyzed, but when reaction details, e.g. the energy-providing 295 

compound, is unresolved. The term “unknown” is used when it is not possible to predict the substrate of the query protein. The term “prediction” 296 

is used if a function assignment is based on bioinformatic analyses but not yet on an experimentally characterized homologous protein. The term 297 

“special” is used when multiple arguments have to be considered with full details provided in the corresponding section of Suppl. Text S1. 298 

Finally, a dash (“-“) is used when isofunctionality does not apply, e.g. when a homologous Gold Standard Protein could not be identified. 299 
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3.2 Amino acid metabolism 300 

While most amino acid biosynthesis and degradation pathways can be reliably 301 

reconstructed, a few open issues remain, which are discussed below. 302 

 303 

(a) The first and last steps of arginine biosynthesis deal with blocking and unblocking 304 

of the alpha-amino group of the substrate (glutamate) and a product intermediate 305 

(ornithine). As detailed in Suppl. Text S1 Section 2, it is highly likely that glutamate 306 

is attached to the gamma-carboxyl group of a carrier protein, and ornithine is released 307 

from that carrier protein. This is based on characterized proteins from Thermus 308 

thermophilus (Horie et al., 2009), Thermococcus kodakarensis (Yoshida et al., 2016) 309 

and Sulfolobus acidocaldarius (Ouchi et al., 2013). The assignment is strongly 310 

supported by clustering of the arginine biosynthesis genes. Some of the homologs are 311 

bifunctional, being involved in arginine biosynthesis but also in lysine biosynthesis 312 

via the prokaryotic variant of the alpha-aminoadipate pathway. This ambiguity is not 313 

assumed to occur in haloarchaea, which use the diaminopimelate pathway for Lys 314 

biosynthesis (Hochuli et al., 1999) (see Suppl. Text S1 Section 2 for further 315 

discussion of this issue). 316 

 317 

Expanding the above, we provide full details underlying our reconstruction of 318 

arginine and lysine biosynthesis in Hfx, volcanii in Table 2.319 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.03.442417doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442417
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

 320 
   Gold Standard Protein    

Sectio

n 

Code Gene isofunc %seq_id Locus tag UniProt Reference PMID Comment 

2a HVO_0047 argW no 54% TT_C1544 Q72HE5 (Yoshida et al., 2015) 25392000 for Arg, not for Lys 

biosynthesis 

2a HVO_0047 

(cont.) 

 yes/no 39% Saci_0753 Q4JAQ0   only for Arg, not for 

Lys biosynthesis 

2a HVO_0047 

(cont.) 

 yes/no 61% TK0279 Q5JFV9 (Yoshida et al., 2016) 27566549 only for Arg, not for 

Lys biosynthesis 

2a HVO_0046 argX no 44% TT_C1543 Q72HE6 (Horie et al., 2009) 19620981 

 

for Arg, not for Lys 

biosynthesis 

2a HVO_0046 

(cont.) 

 yes 30% Saci_1621 Q4J8E7   only for Arg, not for 

Lys biosynthesis 

2a HVO_0046 

(cont.) 

 yes/no 37% TK0278 Q5JFW0 (Yoshida et al., 2016) 27566549 only for Arg, not for 

Lys biosynthesis 

2a HVO_0044 argB no 41% TT_C1541 O50147 (Horie et al., 2009) 

(Yoshida et al., 2015) 

19620981 

25392000 

for Arg, not for Lys 

biosynthesis 

2a HVO_0044 

(cont.) 

 yes/no 33% Saci_0751 Q4JAQ2 (Ouchi et al., 2013) 23434852 only for Arg, not for 

Lys biosynthesis 

2a HVO_0044 

(cont.) 

 yes/no 32% TK0276 Q5JFW2 (Yoshida et al., 2016) 27566549 only for Arg, not for 

Lys biosynthesis 

2a HVO_0045 argC no 48% TT_C1542 O50146 (Horie et al., 2009) 

(Shimizu et al., 2016) 

19620981 

26966182 

for Arg, not for Lys 

biosynthesis 

2a HVO_0045 

(cont.) 

 yes/no 42% Saci_0750 Q4JAQ3 (Ouchi et al., 2013) 23434852 only for Arg, not for 

Lys biosynthesis 

2a HVO_0045 

(cont.) 

 yes/no 46% TK0277 Q5JFW1 (Yoshida et al., 2016) 27566549 only for Arg, not for 

Lys biosynthesis 

2a HVO_0043 argD no 45% TT_C1393 Q93R93 (Miyazaki et al., 2001) 11489859 

 

for Arg, not for Lys 

biosynthesis 

2a HVO_0043 

(cont.) 

 yes/no 40% Saci_0755 Q4JAP8 (Ouchi et al., 2013) 23434852 only for Arg, not for 

Lys biosynthesis 

2a HVO_0043 

(cont.) 

 yes/no 42% TK0275 Q5JFW3 (Yoshida et al., 2016) 27566549 only for Arg, not for 

Lys biosynthesis 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.03.442417doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442417
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

2a HVO_0042 argE no 36% TT_C1396 Q8VUS5 (Horie et al., 2009) 

(Fujita et al., 2017) 

19620981 

28720495 

for Arg, not for Lys 

biosynthesis 

2a HVO_0042 

(cont.) 

 yes/no 29% Saci_0756 Q4JAP7 (Ouchi et al., 2013) 23434852 only for Arg, not for 

Lys biosynthesis 

2a HVO_0042 

(cont.) 

 yes/no 37% TK0274 Q5JFW4 (Yoshida et al., 2016) 27566549 only for Arg, not for 

Lys biosynthesis 

2a HVO_0041 argF yes 50% P18186 BSU11250 (Issaly and Issaly, 1974) 4216455  

2a HVO_0041 

(cont.) 

 yes 47% OE_5205R B0R9X3 (Ruepp et al., 1995) 7868583  

2a HVO_0049 argG yes 35% - P00966 (Shaheen et al., 1994) 8792870 human 

2a HVO_0049 

(cont.) 

 yes 23% b3172 P0A6E4 (Lemke et al., 1999) 10666579 E. coli 

2a HVO_0048 argH yes 38% MMP0013 O74026 (Cohen-Kupiec et al., 1999) 10220900  

2a HVO_0008 lysC yes 32% BSU28470 P08495 (Kato et al., 2004) 15033471  

2a HVO_2487 asd yes 51% MJ0205 Q57658 (Faehnle et al., 2005) 16225889  

2a/9e HVO_1101 dapA yes 45% PA1010 Q9I4W3 (Kaur et al., 2011) 21396954  

2a HVO_1100 dapB yes 33% b0031 P04036 (Reddy et al., 1995) 7893644  

2a HVO_1099 dapD yes 32% b0166 P0A9D8 (Simms et al., 1984) 6365916  

2a HVO_1096 dapE yes 29% b2472 P0AED7 (Lin et al., 1988) 3276674 function supported by 

gene clustering 

2a HVO_1097 dapF yes 35% b3809 P0A6K1 (Wiseman and Nichols, 1984) 6378903  

2a HVO_1098 lysA yes 38% b2838 P00861 (White and Kelly, 1965) 14343156  

2a HVO_A0634 - unknown 25% b2472 P0AED7 (Lin et al., 1988) 3276674 function assigned to 

HVO_1096 in dap 

cluster 

2b HVO_0790 fba2 special 67% OE_1472F B0R334 (Gulko et al., 2014) 25216252 EC 2.2.1.10 activity of 

OE_1472F not yet 

confirmed in vitro 

2b HVO_0790 

(cont.) 

 special 45% MJ0400 Q57843 (White, 2004) 15182204 substrate uncertain 

2b HVO_0792 aroB yes 69% OE_1475F B0R336 (Gulko et al., 2014) 25216252 OE_1475F only 

partially characterized 

2b HVO_0792 

(cont.) 

 yes 44% MJ1249 Q58646 (White, 2004) 15182204  

2b HVO_0602 aroD1 yes 44% OE_1477R B0R338 (Gulko et al., 2014) 25216252  
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2b HVO_0602 

(cont.) 

 yes 31% MMP1394 Q6LXF7 (Porat et al., 2004) 15262931  

2c HVO_0009 tnaA yes 41% b3708 P0A853 (Phillips and Gollnick, 1989) 

(Newton et al., 1965) 

2659590 

14284727 

 

2d HVO_A0559 hutH yes 42% BSU39350 P10944 (Oda et al., 1988) 

(Hartwell and Magasanik, 1963) 

2454913 

14066617 

 

2d HVO_A0562 hutU yes 62% BSU39360 P25503 (Kaminskas et al., 1970) 4990470  

2d HVO_A0560 hutI yes 42% BSU39370 P42084 (Yu et al., 2006) 16990261  

2d HVO_A0561 hutG yes 33% BSU39380 P42068 (Kaminskas et al., 1970) 4990470  

2e HVO_0431 - -      no GSP available 

2e HVO_0644 leuA1 yes/no 47% MJ1392 Q58787 (Howell et al., 1999) 9864346 HVO_0644 monofunc 

(CimA) or bifunc 

(CimA+LeuA); 

MJ1392 CimA  

2e HVO_0644 

(cont.) 

 unclear 44% MJ1195 Q58595 (Howell et al., 1998) 9665716 HVO_0644 monofunc 

(CimA) or bifunc 

(CimA+LeuA); 

MJ1195 LeuA 

2e/2f HVO_1510 leuA2 yes 47% MJ1195 Q58595 (Howell et al., 1998) 9665716 HVO_1510 LeuA; 

MJ1195 LeuA 

2e/2f HVO_1510 

(cont.) 

 no 41% MJ1392 Q58787 (Howell et al., 1999) 9864346 HVO_1510 LeuA 

MJ1392 CimA 

2e HVO_A0489 - no 31% MJ1392 Q58787 (Howell et al., 1999) 9864346 HVO_A0489 general 

function only; 

MJ1392 CimA 

2e HVO_A0489 

(cont.) 

 no 30% MJ1195 Q58595 (Howell et al., 1998) 9665716 HVO_A0489 general 

function only; 

MJ1195 LeuA 

2e HVO_1153 - -      function unassigned; 

no GSP 

 321 

Table 2: Proteins with open annotation issues and their Gold Standard Protein homologs (Section 2). For a description of this table see the 322 

legend to Table 1. 323 
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(b) Archaea use a different precursor for aromatic amino acid biosynthesis than the 324 

classical pathway. This has been resolved for Methanocaldococcus jannaschii and for 325 

Methanococcus maripaludis (White, 2004, Porat et al., 2006). However, the initial 326 

steps may differ from those reported for Methanocaldococcus in that fructose-1,6-327 

disphosphate rather than 6-deoxy-5-ketofructose might be a substrate (Gulko et al., 328 

2014). Up to now, a clean deletion of the corresponding enzymes and confirmation 329 

with in vitro assays has not yet been achieved (for details see Suppl. Text S1 Section 330 

2). 331 

 332 

(c) The gene for tryptophanase (tpa) is stringently regulated in Haloferax, which is the 333 

basis for using its promoter in the toolbox for regulated gene expression (Large et al., 334 

2007). The shutdown of this gene avoids tryptophan degradation when supplies are 335 

scarce. Tryptophanase cleaves tryptophan into indole, pyruvate and ammonia. The 336 

fate of indole is, however, yet unresolved. 337 

 338 

(d) A probable histidine utilization cluster exists, based on characterized homologs 339 

from Bacillus subtilis, but has not yet been experimentally verified. 340 

 341 

(e) Among 16 auxotrophic mutants observed in a Hfx. volcanii transposon insertion 342 

library (Kiljunen et al., 2014), some could grow only in the presence of one (or 343 

several) supplied amino acids. In many cases, the affected genes were known to be 344 

involved in the corresponding pathway, but the others may lead to novel function 345 

assignments. One affected gene resulted in histidine auxotrophy and the product of 346 

this gene (HVO_0431) is an interesting candidate. The InterPro domain assignment 347 

(HAD family hydrolase) fits to the only remaining pathway gap in histidine 348 

biosynthesis (histidinol-phosphatase). In this context it should be noted that the 349 

enzyme which catalyzes the preceding reaction (encoded by hisC) is part of a highly 350 

conserved three-gene operon involved in polar lipid biosynthesis (see below). For 351 

details see Suppl. Text S1 Section 2. One affected gene resulted in isoleucine 352 

auxotrophy. The product of this gene (HVO_0644) is currently annotated to catalyze 353 

two reactions, one being an early step in isoleucine biosynthesis (EC 2.3.1.182), the 354 
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other being the first step after leucine biosynthesis branches off from valine 355 

biosynthesis (EC 2.3.3.13) (see below, f) (for details see Suppl. Text S1 Section 2). 356 

 357 

(f) Hfx. volcanii codes for two paralogs with an attributed function as 2-358 

isopropylmalate synthase (EC 2.3.3.13). This is the first reaction specific to leucine 359 

biosynthesis, when the pathway branches off valine biosynthesis. One paralog, 360 

HVO_0644, is annotated as bifunctional, also catalyzing a chemically similar reaction 361 

which is an early step in isoleucine biosynthesis (EC 2.3.1.182). When the gene 362 

encoding HVO_0644 is disrupted by transposon integration, cells cannot grow in the 363 

absence of isoleucine. It is unclear if the protein is really bifunctional and is really 364 

involved in leucine biosynthesis, catalyzing the reaction of EC 2.3.3.13. The other 365 

paralog, HVO_1510, belongs to an ortholog set with major problems concerning start 366 

codon assignment. The ortholog set from the 16 genomes listed in Suppl. Table S11 367 

were analyzed. When only canonical start codons are considered (ATG, GTG, TTG), 368 

then the orthologs from Haloferax mediterranei, Nmn. pharaonis, Natronomonas 369 

moolapensis and Halohasta litchfieldiae either lack a long highly conserved N-370 

terminal region, or they are disrupted (pseudogenes), being devoid of a potential start 371 

codon. The gene from Hfx. volcanii has a start codon (GTG) which is consistent to 372 

that of Haloferax gibbonsii strain LR2-5 (but a GTA in Hfx. gibbonsii strain ARA6). 373 

In this region, the gene from Hfx. mediterranei is closely related but has in-frame stop 374 

codons. HVO_1510 is considerably longer than the orthologs from Haloquadratum 375 

walsbyi, Haloarcula hispanica, and Natrialba magadii. The first alternative start 376 

codon for HVO_1510 codes for Met-93. This protein was proteomically identified in 377 

three ArcPP datasets (Schulze et al., 2020), and peptides upstream of Met-93 were 378 

identified. This gene might be translated from an atypical start codon, either an in-379 

frame CTG, or an out-of-frame ATG, which would require ribosomal slippage (for 380 

details see Suppl. Text S1 Section 2). It is tempting to speculate that translation occurs 381 

only when leucine is not available. 382 

 383 

3.3 Coenzymes I: cobalamin and heme 384 

The classical heme biosynthesis pathway branches off cobalamin biosynthesis at the 385 

level of uroporphyrinogen III. The alternative heme biosynthesis pathway (Bali et al., 386 

2011), which is used by haloarchaea, has an additional common step, the conversion 387 
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of uroporphyrinogen III to precorrin-2. For heme biosynthesis, precorrin-2 is 388 

converted to siroheme. This pathway has been reconstructed (Siddaramappa et al., 389 

2012), except for the iron insertion step. For de novo cobalamin biosynthesis, 390 

haloarchaea use the cobalt-early pathway with a cobalt-dependent key reaction being 391 

catalyzed by CbiG (Moore et al., 2013). Several aspects of heme and cobalamin 392 

biosynthesis in haloarchaea are yet unresolved. This is illustrated in Figure 1. 393 

 394 

 395 

Figure 1. Illustration of the haloarchaeal cobalamin and heme biosynthesis pathways 396 

and of the major cobalamin biosynthesis gene cluster. (A) Biosynthesis pathways. This 397 

illustration is based on the corresponding KEGG map 00860. Small circles represent pathway 398 

intermediates and have their names assigned. Pathway intermediates upstream of Precorrin 2 399 

are not displayed. The circle for sirohydrochlorin is highlighted in red as this is the 400 

branchpoint for heme and cobalamin biosynthesis in haloarchaea. Enzymatic reactions are 401 

shown by arrows, EC numbers being provided in rectangular boxes. Rectangles are colored 402 

when the enzyme has been reconstructed for haloarchaea (blue: heme biosynthesis; dark 403 
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yellow: de novo cobalamin biosynthesis; light yellow: late cobaltochelatase which may be a 404 

salvage reaction). Gene names in green are adopted from KEGG and represent those from 405 

bacterial model pathways. Consecutive arrowheads indicate reaction series which are not 406 

shown in detail for space reasons. For enzymatic reactions which are considered to be open 407 

issues, the Hfx. volcanii locus tags are provided. For two pathway gaps (white boxes in the 408 

cobalt-early pathway), the type of reaction is indicated (oxidoreductase and ~CH3, indicating 409 

a methylation reaction). The question mark after HVO_B0058 indicates that this protein, 410 

currently co-attributed to EC 2.1.1.272, is a candidate for the yet unassigned EC 2.1.1.195 411 

reaction. We note that haloarchaea might use a deviating biosynthesis pathway, e.g. by 412 

swapping the methylation and oxidoreductase reactions (not illustrated). (B) The major 413 

cobalamin cluster, encoded on megaplasmid pHV3. Arrows are used to indicate the coding 414 

strand and are roughly drawn to scale. If assigned, the gene name is provided in addition to 415 

the Hfx. volcanii locus tag. Locus tags in red indicate genes that are part of the cobalamin 416 

cluster. 417 

 418 

(a) Hfx. volcanii contains two annotated cbiX genes. For reasons detailed in 419 

Suppl.Text S1 Section 3, we predict that one is a cobaltochelatase, involved in 420 

cobalamin biosynthesis, while the other is a ferrochelatase, responsible for conversion 421 

of precorrin-2 to siroheme in the alternative heme biosynthesis pathway.  422 

 423 

(b) De novo cobalamin biosynthesis has been extensively reconstructed upon curation 424 

of the genome annotation (Pfeiffer and Oesterhelt, 2015). All enzymes of the pathway 425 

and their associated GSPs are listed in Table 3. Only two pathway gaps remained, and 426 

because these are consecutive, it may be possible that the haloarchaeal pathway is 427 

non-canonical and proceeds via a novel biosynthetic intermediate. There are only four 428 

genes with yet unassigned function in the Hfx. volcanii cobalamin gene cluster, and 429 

their synteny is well conserved in the majority of haloarchaeal genomes. Thus, these 430 

genes are obvious candidates for filling the pathway gaps (for details see Suppl.Text 431 

S1 Section 3).  432 

 433 

(c) The cobalamin biosynthesis and salvage reactions (those beyond ligand cobyrinate 434 

a,c diamide) involve “adenosylation of the corrin ring, attachment of the 435 

aminopropanol arm, and assembly of the nucleotide loop that bridges the lower ligand 436 
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dimethylbenzimidazole and the corrin ring” (Rodionov et al., 2003). The enzymes of 437 

these branches of cobalamin biosynthesis and their associated GSPs are listed in Table 438 

3. Only two pathway gaps remain open. For one of these, a candidate was proposed 439 

upon detailed bioinformatic analysis (Rodionov et al., 2003) (for further details see 440 

Suppl.Text S1 Section 3). 441 

 442 

(d) Haloarchaea may code for a late cobaltochelatase of the heterotrimeric type. 443 

Distantly related GSPs are either cobalt or magnesium chelatases. A late 444 

cobaltochelatase is not required for de novo cobalamin biosynthesis via the cobalt-445 

early pathway. We speculate that it may be involved in cobalamin salvage. The 446 

chelatase has a mosaic subunit structure as also reported previously (Rodionov et al., 447 

2003) (see Suppl.Text S1 Section 3 for details). 448 

 449 

(e) In the alternative heme biosynthesis pathway, siroheme is decarboxylated to 450 

12,18-didecarboxysiroheme, which is attributed to the proteins encoded by ahbA and 451 

ahbB. These are homologous to each other and are organized as two two-domain 452 

proteins. It is unclear if AhbA and AhbB function independently or if they form a 453 

complex. 454 
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 455 
   Gold Standard Protein    

Sectio

n 

Code Gene isofunc %seq_id Locus tag UniProt Reference PMID Comment 

3a HVO_B0054 cbiX1 yes 30% - O87690 (Raux et al., 2003) 12408752 cobaltochelatase 

3a HVO_B0054 

(cont.) 

 yes 27% MTH_1397 O27448 (Brindley et al., 2003) 12686546 cobaltochelatase 

3a HVO_1128 cbiX2 no 29% AF0721 O29537 (Yin et al., 2006) 16835730 cobaltochelatase 

3a HVO_1128 

(cont.) 

 no 28% MTH_1397 O27448 (Brindley et al., 2003) 12686546 cobaltochelatase 

3a HVO_1128 

(cont.) 

 no 29% AF0721 O29537 (Yin et al., 2006) 16835730 cobaltochelatase 

3a NP_0734A cbiX3 -      function unassigned; 

no GSP; distantly 

related to paralogs 

3a HVO_2312 sirC yes/no 31% Mbar_A1461 Q46CH4 (Storbeck et al., 2010) 21197080 precorrin-2 DH; no 

analysis for Fe-

chelatase 

3a HVO_2312 

(cont.) 

 yes/no 29% STM3477 P25924 (Stroupe et al., 2003) 

(Pennington et al., 2020) 

14595395 

32054833 

matches to the N-term 

domain which is 

bifunctional as 

precorrin-2 DH and Fe-

chelatase 

3a HVO_2312 

(cont.) 

 yes/no 29% - P61818 (Raux et al., 2003) 

(Schubert et al., 2008) 

12408752 

18588505 

precorrin-2 DH; devoid 

of Fe-chelatase activity 

3b HVO_B0061 cbiL no 32% STM2024 Q05593 (Roessner et al., 1992) 1451790 equivalent reaction on 

cobalt-free substrate 

3b HVO_B0057 cbiH2 yes 45% - O87689 (Moore et al., 2013) 23922391 corresponds to N-term 

of O87689 which has a 

C-term extension 

3b HVO_B0057 

(cont.) 

 no 40% STM2027 Q05590 (Santander et al., 1997) 

(Santander et al., 2006) 

9331403 

16198574 

equivalent reaction on 

cobalt-free substrate 

3b HVO_B0058 cbiH1 special 32% - O87689 (Moore et al., 2013) 23922391 corresponds to N-term 

of O87689 which has a 

C-term extension; 
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more distant to O87689 

than CbiH2 

3b HVO_B0058 

(cont.) 

 no 30% STM2027 Q05590 (Santander et al., 1997) 

(Santander et al., 2006) 

9331403 

16198574 

equivalent reaction on 

cobalt-free substrate 

3b HVO_B0060 cbiF no 40% STM2029 P0A2G9 (Roessner et al., 1992) 

(Kajiwara et al., 2006) 

1451790 

16866557 

equivalent reaction on 

cobalt-free substrate 

3b HVO_B0060 

(cont.) 

 yes 38% - O87686 (Moore et al., 2013) 23922391  

3b HVO_B0059 cbiG yes 24% - O87687 (Moore et al., 2013) 23922391  

3b pathway gap        EC 2.1.1.195 

3b pathway gap        EC 1.3.1.106 

3b HVO_B0062 cbiT yes 36% - O87694 (Moore et al., 2013) 23922391 corresponds to the C-

term of bifunctional 

O87694 

3b HVO_B0048 cbiE yes 28% - O87694 (Moore et al., 2013) 23922391 corresponds to the N-

term of bifunctional 

O87694 

3b HVO_B0049 cbiC yes 33% - O87692 (Moore et al., 2013) 23922391  

3b HVO_A0487 cbiA no 37% STM2035 P29946 (Fresquet et al., 2004) 15311923 equivalent reaction on 

cobalt-free substrate 

3b HVO_B0052 - -      function unassigned; 

no GSP 

3b HVO_B0053 - -      function unassigned; 

no GSP 

3b HVO_B0055 - -      function unassigned; 

no GSP 

3b HVO_B0056 - -      function unassigned; 

no GSP 

3c HVO_A0488 cobA yes 31% MM_3138 Q8PSE1 (Buan et al., 2006) 16672609  

3c HVO_A0488 

(cont.) 

 yes 30% STM1718 P31570 (Fonseca et al., 2002) 12080060  

3c HVO_2395 pduO yes 37% - Q9XDN2 

 

(Johnson et al., 2001) 11160088 PduO and CobA are 

isofunctional; 

In Q9XDN2, the PduO 

domain (N-term) is 
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fused to a DUF336 

domain 

3c HVO_A0553 cbiP yes 63% VNG_1576G 

OE_3246F 

Q9HPL5 

B0R5X2 

(Woodson et al., 2003b) 14645280  

3c HVO_0587 cbiB yes 58% VNG_1578H 

OE_3253F 

Q9HPL3 

B0R5X4 

(Woodson et al., 2003b) 14645280  

3c HVO_0592 cbiZ yes 57% VNG_1583C 

OE_3261F 

Q9HPL3 

B0R5X8 

(Woodson and Escalante-

Semerena, 2004) 

14990804  

3c HVO_0589 cobY yes 47% VNG_1581C 

OE_3257F 

Q9HPL1 

B0R5X6 

(Woodson et al., 2003a) 12486068  

3c HVO_0588 cobS yes 30% STM2017 Q05602 (Zayas and Escalante-Semerena, 

2007) 

17209023  

3c -    STM0643 P39701 (O'Toole et al., 1994) 7929373 EC 3.1.3.73; CobC; no 

homolog in 

haloarchaea 

3c HVO_0586 - prediction - - - (Rodionov et al., 2003) 12869542 EC 3.1.3.73; prediction 

for HSL01294 

(VNG_1577C) 

3c pathway gap        EC 2.7.1.177 

3c HVO_0591 cobD1 yes 31% STM0644 P97084 (Brushaber et al., 1998) 9446573  

3c HVO_0593 cobD2 yes      no GSP; 51% seq_id to 

HVO_0591 (cobD1) 

3c HVO_0590 cobT prediction    (Rodionov et al., 2003) 12869542 prediction for 

VNG_1572C 

3c  halTADL_3045 cobT yes 39% STM0644 Q05603 (Trzebiatowski et al., 1994) 8206834  

3d HVO_B0051 cobN yes 34% - P29929 (Debussche et al., 1992) 1429466  

3d HVO_B0051 

(cont.) 

 no 29% - Q55284 (Jensen et al., 1996) 

(Jensen et al., 1998) 

8663186 

9716491 

Mg chelatase 

3d HVO_B0050 chlID no 46% slr1030 P51634 (Jensen et al., 1996) 

(Jensen et al., 1998) 

8663186 

9716491 

match to N-term; 

Mg chelatase 

3d HVO_B0050 

(cont.) 

 no 33% slr1777 P52772 (Jensen et al., 1996) 

(Jensen et al., 1998) 

8663186 

9716491 

match to complete 

sequence, incl distant 

match to N-term; 

Mg chelatase 

3e HVO_1121 ahbC yes 47% Mbar_A1793 Q46BK8 (Bali et al., 2011) 21969545  
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(Kuhner et al., 2014) 24669201 

3e HVO_2144 ahbD yes 42% Mbar_A1458 Q46CH7 (Kuhner et al., 2014) 24669201  

3e HVO_2227 ahbA yes 35% - I6UH61 (Bali et al., 2011) 21969545  

3e HVO_2313 ahbB yes 32% - I6UH61 (Bali et al., 2011) 21969545  

 456 

Table 3: Proteins with open annotation issues and their Gold Standard Protein homologs (Section 3). For a description of this table see the 457 

legend to Table 1. 458 
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3.4 Coenzymes II: coenzyme F420 459 

Even though coenzyme F420 is predominantly associated with methanogenic archaea 460 

(Eirich et al., 1979, Jaenchen et al., 1984), it occurs also in bacteria and a small 461 

amount of this coenzyme has been detected in non-methanogenic archaea, including 462 

halophiles (Lin and White, 1986). The genes required for the biosynthesis of this 463 

coenzyme are encoded in haloarchaeal genomes, but the origin and attachment of the 464 

phospholactate moiety are not completely resolved (see below). To the best of our 465 

knowledge, only a single coenzyme F420 dependent enzymatic reaction has yet been 466 

reported for halophilic archaea (de Wit and Eker, 1987). Thus, the importance of this 467 

coenzyme in haloarchaeal biology is currently enigmatic and awaits experimental 468 

analysis. 469 

 470 

(a) The pathway that creates the carbon backbone of this coenzyme has been 471 

reconstructed. We list the enzymes with their associated GSPs in Table 4. Coenzyme 472 

F420 contains a phospholactate moiety, which was reported to originate from 2-473 

phospho-lactate (Grochowski et al., 2008), but this compound is not well connected to 474 

the remainder of metabolism. As summarized in Suppl.Text S1 Section 4, there are 475 

various new insights regarding this pathway from recent studies in other prokaryotes 476 

(Bashiri et al., 2019, Braga et al., 2019). To the best of our knowledge, the 477 

haloarchaeal coenzyme F420 biosynthesis pathway has never been experimentally 478 

analyzed. 479 

 480 

(b) The prediction of coenzyme F420-specific oxidoreductases in Mycobacterium and 481 

actinobacteria has been reported (Selengut and Haft, 2010), leading to patterns and 482 

domains that are also found in haloarchaea. Several such enzymes are described in 483 

Suppl.Text S1 Section 4. 484 

 485 

(c) HVO_1937 might be a coenzyme F420-dependent 5,10-methylenetetrahydrofolate 486 

reductase (see also below, C1 metabolism, and Suppl.Text S1 Section 4). 487 

 488 
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(d) The precursor for coenzyme F420 may be used by a photo-lyase involved in DNA 489 

repair. 490 
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 491 
   Gold Standard Protein    

Sectio

n 

Code Gene isofunc %seq_id Locus tag UniProt Reference PMID Comment 

4a HVO_2198 cofH yes 35% MJ1431 Q58826 (Graham et al., 2003) 

(Philmus et al., 2015) 

14593448 

25781338 

 

4a HVO_2201 cofG yes 43% MJ0446 Q57888 (Graham et al., 2003) 

(Decamps et al., 2012) 

(Philmus et al., 2015) 

14593448 

23072415 

25781338 

 

4a HVO_2202 cofC yes 25% MJ0887 Q58297 (Grochowski et al., 2008) 

(Bashiri et al., 2019) 

(Braga et al., 2019) 

18260642 

30952857 

31469543 

 

4a HVO_2479 cofD yes 39% MM_1874 Q8PVT6 (Forouhar et al., 2008) 

(Braga et al., 2019) 

18252724 

31469543 

 

4a HVO_2479 

(cont.) 

 yes 32% MJ1256 Q58653 (Graupner et al., 2002a) 11888293  

4a HVO_1936 cofE yes 47% AF_2256 O28028 (Nocek et al., 2007) 17669425  

4a HVO_1936 

(cont.) 

 yes 38% MJ0768 Q58178 (Li et al., 2003) 12911320  

4b HVO_0433 npdG yes 38% AF_0892 O29370 (Kunow et al., 1993) not in 

PubMed 

 

4b HVO_B0113 - no 27% Rv0132c P96809 (Purwantini and Mukhopadhyay, 

2013) 

24349169 too distant to assume 

isofunctionality 

4b HVO_B0342 - unknown 29% - O93734 (Klein et al., 1996) 

(Aufhammer et al., 2004) 

8706724 

15016352 

too distant to assume 

isofunctionality 

4b NP_1902A - no 28% - Q9UXP0 (Haase et al., 1992) 

(Westenberg et al., 1999) 

1735436 

9933933 

too distant to assume 

isofunctionality 

4b NP_4006A - no 27% MJ0870 Q58280 (Johnson and Mukhopadhyay, 

2005) 

16048999 too distant to assume 

isofunctionality 

4c/5c HVO_1937 mer no 38% MTH_1752 O27784 (te Brömmelstroet et al., 1990) 

(Vaupel and Thauer, 1995) 

(Shima et al., 2000) 

2298726 

7649177 

10891279 

 

4d HVO_2911 phr2 yes 62% VNG_1335G 

OE_2907R 

Q9HQ46 

B0R5D6 

(Takao et al., 1989) 

(McCready and Marcello, 2003) 

2681164 

12773185 
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4d HVO_2843 phr1 no 45% sll1629 P77967 (Brudler et al., 2003) 12535521 sll1629 implicated in 

transcription regulation 

4d HVO_2843 

(cont.) 

 possibly 45% At5g24850 Q84KJ5 (Kleine et al., 2003) 

(Selby and Sancar, 2006) 

12834405 

17062752 

mediates photorepair 

of ssDNA 

4d HVO_1234 phr3 possibly 40% Atu4765 A9CH39 (Zhang et al., 2013) 23589886  

 492 

Table 4: Proteins with open annotation issues and their Gold Standard Protein homologs (Section 4). For a description of this table see the 493 

legend to Table 1. 494 
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3.5 Coenzymes III: coenzymes of C1 metabolism: tetrahydrofolate in 495 

haloarchaea, methanopterin in methanogens 496 

Halophilic and methanogenic archaea use distinct coenzymes as one-carbon carrier 497 

(C1 metabolism): tetrahydrofolate in haloarchaea and methanopterin in methanogens 498 

(White, 1988, Maden, 2000). Several characterized methanogenic proteins that act on 499 

or with methanopterin have comparably close homologs in haloarchaea (Table 5), 500 

which results in misannotation of haloarchaeal proteins (e.g. in SwissProt) as being 501 

involved in methanopterin biology. We assume that the haloarchaeal proteins function 502 

with the haloarchaeal one-carbon carrier tetrahydrofolate and that this shift in 503 

coenzyme specificity is possible due to the structural similarity between 504 

methanopterin and tetrahydrofolate (a near-identical core structure consists of a pterin 505 

heterocyclic ring linked via a methylene bridge to a phenyl ring; both also have a 506 

polyglutamate tail). A detailed review on the many variants of the tetrahydrofolate 507 

biosynthetic pathway is available (de Crecy-Lagard, 2014). 508 

 509 

(a) Folate biosynthesis requires aminobenzoate. We had proposed candidates for a 510 

pathway from chorismate to para-aminobenzoate (Falb et al., 2008, Pfeiffer et al., 511 

2008b) (for details see Suppl.Text S1 Section 5). However, these predictions have not 512 

been adopted by KEGG (accessed April 2021) and without experimental confirmation 513 

this is unlikely to ever happen. 514 

 515 

(b) GTP cyclohydrolase MptA (HVO_2348) catalyzes a reaction in the common part 516 

of tetrahydrofolate and methanopterin biosynthesis. The enzymes specific for 517 

methanopterin biosynthesis are absent from haloarchaea and thus the assignment of 518 

HVO_2348 to the methanopterin biosynthesis pathway in UniProt is invalid (accessed 519 

March 2021).  520 

 521 

The next common pathway step (EC 3.1.4.56) has been resolved in M. jannaschii 522 

(MJ0837) but still is a pathway gap in halophilic archaea. MJ0837 is very distantly 523 

related to HVO_A0533, which thus is a promising candidate for experimental 524 

analysis. 525 
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 526 

HVO_2628 shows 30% protein sequence identity to the enzyme catalyzing the first 527 

committed step to methanopterin biosynthesis. As detailed in Suppl.Text S1 Section 528 

5, we consider it likely that it does not catalyze that reaction. 529 

 530 

(c) Two enzymes that alter the oxidation level of the coenzyme-attached one-carbon 531 

compound probably function with tetrahydrofolate, even though their methanogenic 532 

homologs function with methanopterin. In contrast to their assignments in KEGG and 533 

UniProt (as of March 2021), their probable functions are thus 534 

methenyltetrahydrofolate cyclohydrolase (HVO_2573) and 5,10-535 

methylenetetrahydrofolate reductase (HVO_1937) (see Suppl.Text S1 Section 5) 536 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.03.442417doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442417
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 

 

 537 

   Gold Standard Protein    

Sectio

n 

Code Gene isofunc %seq_id Locus tag UniProt Reference PMID Comment 

5a HVO_0709 pabA no 47% TTHA1843 P05379 (Sato et al., 1988) 2844259 Trp biosynthesis 

5a HVO_0709 

(cont.) 

 yes/no 39% BSU00750 P28819 (Slock et al., 1990) 2123867 TrpG works with TrpE 

and with PabB 

5a HVO_0710 pabB no 46% TTHA1844 P05378 (Sato et al., 1988) 2844259 Trp biosynthesis 

5a HVO_0710 

(cont.) 

 yes 44% BSU00740 P28820 (Schadt et al., 2009) 19275258 PabB; para-

aminobenzoate 

biosynthesis 

5a HVO_0708 pabC no 36% AF_0933 O29329 (Isupov et al., 2019) 30733943 branched-chain amino 

acids 

5b HVO_2348 mptA   self  (El Yacoubi et al., 2009) 19478918 gene deletion 

phenotypes 

5b HVO_2348 

(cont.) 

 yes 41% MJ0775 Q58185 (Grochowski et al., 2007) 17497938 common part of 

methanopterin and 

tetrahydrofolate 

biosynthesis 

5b HVO_A0533 - unknown 27% MJ0837 Q58247 (Mashhadi et al., 2009) 19746965 if isofunctional would 

resolve a pathway gap 

5b HVO_2628 - no 31% AF_2089 O28190 (Scott and Rasche, 2002) 12142414 first committed step to 

methanopterin 

biosynthesis 

5b HVO_2628 

(cont.) 

 no 26% MJ1427 Q58822 (Dumitru and Ragsdale, 2004) 15262968 first committed step to 

methanopterin 

biosynthesis 

5c HVO_2573 mch no 45% MK0625 P94954 (Vaupel et al., 1998) 9676239 acts on a one-carbon 

attached to 

methanopterin 

4c/5c HVO_1937 mer no 38% MTH_1752 O27784 (te Brömmelstroet et al., 1990) 

(Vaupel and Thauer, 1995) 

(Shima et al., 2000) 

2298726 

7649177 

10891279 

acts on a one-carbon 

compound attached to 

methanopterin 

 538 
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Table 5: Proteins with open annotation issues and their Gold Standard Protein homologs (Section 5). For a description of this table see the 539 

legend to Table 1. 540 
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3.6 Coenzymes IV: NAD and FAD (riboflavin) 541 

(a) The energy source for NAD kinase may be ATP or polyphosphate. This is 542 

unresolved for the two paralogs of probable NAD kinase (HVO_2363, nadK1, 543 

HVO_0837, nadK2). These show only 25% protein sequence identity to each other 544 

(see Suppl. Text S1 Section 6). Polyphosphate was not found in exponentially 545 

growing Hfx. volcanii cells (Zerulla et al., 2014), so that ATP is the more likely 546 

energy source. 547 

 548 

(b) HVO_0782 is an enzyme involved in NAD biosynthesis, which is encoded in most 549 

haloarchaeal and archaeal genomes. The adjacent gene, HVO_0781, is encoded in 550 

nearly all haloarchaeal genomes according to OrthoDB, and with very strong syntenic 551 

coupling revealed by SyntTax analysis. Thus, HVO_0781 is a candidate to also be 552 

involved in NAD biosynthesis. Characterized homologs to HVO_0781 decompose S-553 

adenosyl-methionine into methionine and adenosine, a reaction that seems wasteful 554 

and might not be expected to be highly conserved with respect to existence and gene 555 

clustering (see Suppl. Text S1 Section 6).  556 

 557 

(c) We describe the reconstruction of riboflavin biosynthesis based on a detailed 558 

bioinformatic reconstruction (Rodionova et al., 2017). The enzymes and their 559 

associated GSPs are listed in Table 6.Three pathway gaps remain, with candidate 560 

genes predicted for two of these (Rodionova et al., 2017) (for details see Suppl. Text 561 

S1 Section 6). 562 
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 563 
   Gold Standard Protein    

Sectio

n 

Code Gene isofunc %seq_id Locus tag UniProt Reference PMID Comment 

6a HVO_2363 nadK1 unclear 37% Rv1695 P9WHV7 (Kawai et al., 2000) 11006082 can use ATP and PP 

6a HVO_2363 

(cont.) 

 unclear 31% AF_2373 O30297   ATP or PP usage 

unresolved 

6a HVO_0837 nadK2 unclear 28% Rv1695 P9WHV7   can use ATP and PP 

6a HVO_0837 

(cont.) 

 unclear partial AF_2373 O30297   ATP or PP usage 

unresolved 

6b HVO_0782 nadM yes 53% MJ0541 Q57961 (Raffaelli et al., 1997) 

(Raffaelli et al., 1999) 

9401030 

10331644 

 

6b HVO_0781 - unknown 42% Sare_1364 A8M783 (Eustaquio et al., 2008) 18720493  

6b HVO_0781 

(cont.) 

 unknown 35% PH0463 O58212 (Deng et al., 2008) 18551689  

6b HVO_0327 ribB yes 43% MJ0055 Q60364 (Fischer et al., 2002) 12200440  

6b HVO_0974 ribH yes 45% MJ0303 Q57751 (Haase et al., 2003) 12603336  

6b HVO_1284 arfA  self   (Phillips et al., 2012) 21999246 gene deletion leads to 

riboflavin auxotrophy 

6b HVO_1284 

(cont.) 

 yes 44% MJ0145 Q57609 (Graham et al., 2002) 12475257  

6b HVO_1235 - prediction    (Rodionova et al., 2017) 28073944 arfB candidate 

6b HVO_1341 arfC yes 36% MJ0671 Q58085 (Graupner et al., 2002b) 

(Romisch-Margl et al., 2008) 

11889103 

18671734 

 

6b HVO_2483 - prediction 34% MJ0699 Q58110 (Rodionova et al., 2017) 28073944 predicted also for 

MJ0699 

6b pathway gap        EC 3.1.3.104 

6b HVO_0326 rbkR yes 37% TA1064 Q9HJA6 (Rodionova et al., 2017) 28073944 bifunctional as gene 

regulator and enzyme 

6b HVO_0326 

(cont.) 

 yes/no 32% MJ0056 Q60365 (Ammelburg et al., 2007) 18073108 enzyme only; lacks an 

N-terminal HTH 

domain 

6b HVO_1015 ribL yes 50% MJ1179 Q58579 (Mashhadi et al., 2010) 20822113  

 564 
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Table 6: Proteins with open annotation issues and their Gold Standard Protein homologs (Section 6). For a description of this table see the 565 

legend to Table 1. 566 
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3.7 Biosynthesis of membrane lipids, bacterioruberin and menaquinone 567 

Archaeal membrane lipids contain ether-linked isoprenoid side chains (see (Caforio 568 

and Driessen, 2017) and references cited therein). The isoprenoid precursor 569 

isopentenyl diphosphate is synthesized in haloarchaea by a modified version of the 570 

mevalonate pathway (Vannice et al., 2014). Isoprenoid units are then linearly 571 

condensed to the C20 compound geranylgeranyl diphosphate. The haloarchaeal core 572 

lipid, archaeol, consists of 2,3-sn-glycerol with two C20 isoprenoid side chains 573 

attached by ether linkages. In some archaea, especially alkaliphiles, C25 isoprenoids 574 

are also found (see e.g. (De and Gambacorta, 1988, Dawson et al., 2012)). Also, a 575 

number of distinct headgroups are found in polar lipids (phospholipids) (reviewed in 576 

(Caforio and Driessen, 2017)). Even though polar lipids are used as important 577 

taxonomic markers (Oren et al., 1997) their biosynthetic pathways are not completely 578 

resolved. 579 

 580 

Haloarchaea typically have a red color, which is due to carotenoids, mainly the C50 581 

carotenoid bacterioruberin (Oren, 2002, Kushwaha et al., 1975, Yang et al., 2015). 582 

For carotenoid biosynthesis, two molecules of geranylgeranyl diphosphate, a C20 583 

compound, are linked head to head to generate phytoene, which is desaturated to 584 

lycopene (Falb et al., 2008, Giani et al., 2020). The pathway from lycopene to the C50 585 

compound bacterioruberin has been experimentally characterized (Dummer et al., 586 

2011, Yang et al., 2015). 587 

 588 

(a) We assigned HVO_2725 (idsA1, paralog of NP_3696A) and HVO_0303 (idsA2, 589 

paralog of NP_0604A) for the linear isoprenoid condensation reactions resulting in a 590 

C20 isoprenoid (EC 2.5.1.10, 2.5.29, short chain isoprenyl diphosphate synthase) (see 591 

also Suppl.Text S1 Section 7). Some archaea, mainly haloalkaliphiles, also contain 592 

C25 isoprenoid side chains. Geranylfarnesyl diphosphate synthase, the enzyme which 593 

generates the C25 isoprenoids, has been purified and enzymatically characterized 594 

from Nmn. pharaonis (Tachibana, 1994), but data that allow the assignment to a 595 

specific gene have not been collected. Three paralogous genes from Nmn. pharaonis 596 

are candidates for this function (NP_0604A, NP_3696A, and NP_4556A). Because 597 

NP_0604A and NP_3696A have orthologs in Hfx. volcanii, a species devoid of C25 598 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.03.442417doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442417
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 

 

lipids, we assign the synthesis of C25 isoprenoids (geranylfarnesyl diphosphate 599 

synthase activity) to the third paralog, NP_4556A. UniProt assigns C25 biosynthesis 600 

activity to NP_3696A for undescribed reasons (as of April 2021) and KEGG does not 601 

make this assignment for any of the three paralogs (as of April 2021). Our 602 

assignments are supported by analysis of key residues which determine the length of 603 

the isoprenoid chain (Bale et al., 2019). These authors label the cluster containing 604 

NP_3696A (WP011323557.1) as “C15/C20” and the cluster containing NP_4556A 605 

(WP011323984.1) as “C20->C25->C30?”. 606 

 607 

(b) Typical polar lipids in haloarchaea are phosphatidylglycerophosphate methyl ester 608 

(PGP-Me) and phosphatidylglycerol (PG), but also phosphatidylglycerosulfate (PGS) 609 

(Kates, 1993, Kates et al., 1993, Bale et al., 2019). Other polar lipids are 610 

archaetidylserine and its decarboxylation product archaetidylethanolamine, both of 611 

which are found in rather low quantities in Haloferax (Kellermann et al., 2016). A 612 

third group of polar lipids has a headgroup derived from myo-inositol. The 613 

biosynthetic pathway of the head groups is only partially resolved. One CDP-archaeol 614 

1-archaetidyltransferase that belongs to a highly conserved three-gene operon may 615 

attach either glycerol phosphate or myo-inositol phosphate. In Suppl. Text S1 Section 616 

7 we summarize arguments in favor of each of these candidates, but the true function 617 

can only be decided by experimental analysis. 618 

 619 

(c) Carotenoid biosynthesis involves the head-to-head condensation of the C20 620 

isoprenoid geranylgeranyl diphosphate to phytoene, which is desaturated to lycopene 621 

(Falb et al., 2008, Giani et al., 2020). The crtB gene product (e.g. HVO_2524) 622 

catalyzes the head-to-head condensation. It is yet uncertain which gene product is 623 

responsible for the desaturation of phytoene to lycopene. The further pathway from 624 

lycopene to bacterioruberin has been experimentally characterized in Haloarcula 625 

japonica (Yang et al., 2015). A three gene cluster (crtD-lyeJ-cruF) codes for the three 626 

enzymes of this pathway. The synteny of this three gene cluster is strongly conserved 627 

according to SyntTax analysis. Several genes which are certainly or possibly involved 628 

in carotenoid biosynthesis are encoded in the vicinity of this cluster (for details see 629 

Suppl. Text S1 Section 7). 630 

 631 
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(d) Halophilic archaea contain menaquinone as a lipid based two electron carrier of 632 

the respiratory chain (Elling et al., 2016, Kellermann et al., 2016). We describe the 633 

reconstruction of the menaquinone biosynthesis pathway (Table 7), with two pathway 634 

gaps remaining open (see Suppl.Text S1 Section 7 for details). 635 
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 636 
   Gold Standard Protein    

Sectio

n 

Code Gene isofunc %seq_id Locus tag UniProt Reference PMID Comment 

7a NP_0604A idsA2 yes 32% GACE_1337 A0A0A7GEY4 (Petrova et al., 2018) 30062607 ortholog of HVO_0303 

(66%); produces a C20 

isoprenoid (same 

assignment for 

NP_0604A) 

7a NP_0604A 

(cont.) 

idsA2 no 30% APE_1764 Q9YB31 

Q9UWR6 

(Tachibana et al., 2000) 10632701 produces a C25 

isoprenoid (C20 

assigned to 

NP_0604A) 

7a NP_3996A idsA3 yes 44% GACE_1337 A0A0A7GEY4 (Petrova et al., 2018) 30062607 ortholog of HVO_2725 

(67%); produces a C20 

isoprenoid (same 

assignment for 

NP_3996A) 

7a NP_3996A 

(cont.) 

idsA2 no 36% APE_1764 Q9YB31 

Q9UWR6 

(Tachibana et al., 2000) 10632701 produces a C25 

isoprenoid (C20 

assigned to 

NP_3996A) 

7a NP_4556A idsA1 no 34% GACE_1337 A0A0A7GEY4 (Petrova et al., 2018) 30062607 no ortholog in Hfx. 

volcanii; produces a 

C20 isoprenoid (C25 

assigned to 

NP_4556A) 

7a NP_4556A 

(cont.) 

idsA1 yes 29% APE_1764 Q9YB31 

Q9UWR6 

(Tachibana et al., 2000) 10632701 produces a C25 

isoprenoid (same 

assignment for 

NP_4556A) 

7b HVO_0332 carS yes 45% AF_1740 O28537 (Jain et al., 2014) 25219966  

7b HVO_1143 assA yes 32% MTH_1027 O27106 (Morii and Koga, 2003) 12562787 gene synonym: pgsA3 

7b HVO_1297 aisA yes 25% MTH_1691 O27726 (Morii et al., 2009) 19740749 gene synonym: pgsA2 
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7b HVO_1136 pgsA1 -      only distant partial 

matches to GSPs 

7b HVO_1971 pgsA4 unclear 26% MTH_1027 O27106 (Morii and Koga, 2003) 12562787 MTH_1027 is less 

distant to HVO_1143 

7b HVO_0146 asd no 39% SMc00551 Q9FDI9 (Vences-Guzman et al., 2008) 18708506 equivalent function for 

the bacterial lipid 

7b HVO_1295 hisC  self   (Conover and Doolittle, 1990) 2345144 complements a His 

auxotrophy mutant 

7b HVO_1295 

(cont.) 

 yes 31% b2021 P06986 (Grisolia et al., 1985) 2999081 weak support, see text 

7b HVO_1296 adk2 unclear 34% PAB0757 Q9UZK4 (Loc'h et al., 2014) 24823650 Pyrococcus: involved 

in ribosome biogenesis 

7b HVO_1296 

(cont.) 

 unclear 32% - Q9Y3D8 (Ren et al., 2005) 15630091 human: adenylate 

kinase; HVO_1296 

may be inositol kinase 

7b HVO_2496 adk1 yes 45% BSU01370 P16304 (Moon et al., 2019) 31111079 Bacillus: adenylate 

kinase 

7b HVO_B0213 - yes 43% AF_1794 O28480 (Chen et al., 2000) 

(Neelon et al., 2011) 

11015222 

22261071 

Archaeoglobus: 

adenylate kinase 

7b HVO_1135 - -      a SAM-dependent 

methyltransferase 

7c HVO_2524 crtB  self   (Kiljunen et al., 2014) 

(Maurer et al., 2018) 

25488358 

29038254 

crtB mutants are 

colorless 

7c HVO_2524 

(cont.) 

 yes 32% Synpcc7942 

_1984 

P37269 (Chamovitz et al., 1992) 1537409  

7c HVO_2527 lyeJ  self   (Dummer et al., 2011) 21840984  

7c HVO_2527 

(cont.) 

 yes 65% VNG_1682C 

OE_3380R 

Q9HPD9 

B0R651 

(Dummer et al., 2011) 21840984  

7c HVO_2527 

(cont.) 

 yes 61% C444_12922 M0L7V9 (Yang et al., 2015) 25712483  

7c HVO_2528 crtD  self   (Maurer et al., 2018) 29038254 a HVO_2528 mutant 

was white 

7c HVO_2528 

(cont.) 

 yes 71% C444_12917 A0A0A1GKA2 (Yang et al., 2015) 25712483  

7c HVO_2526 cruF yes 59% C444_12927 A0A0A1GNF2 (Yang et al., 2015) 25712483  
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7d HVO_1470 menF yes 38% PA4231 Q51508 (Serino et al., 1995) 7500944  

7d HVO_1469 menD yes 37% BSU30820 P23970 (Dawson et al., 2010) 20600129  

7d pathway gap        EC 4.2.99.20 

7d HVO_1461 menC no 29% BSU12980 O34508 (Schmidt et al., 2001) 11747447 Ala/Glu epimerase 

7d HVO_1461 

(cont.) 

 yes 24% BSU30780 O34514 (Palmer et al., 1999) 10194342 o-succinylbenzoate 

synthase 

7d HVO_1375 menE yes 36% BSU30790 P23971 (Chen et al., 2016) 27933791  

7d HVO_1465 menB yes 66% Rv0548c P9WNP5 (Jiang et al., 2010) 20643650  

7d pathway gap        EC 3.1.2.28 

7d HVO_1462 menA yes 37% b3930 P32166 (Suvarna et al., 1998) 9573170  

7d HVO_0309 menG yes/no 44% At3g63410 Q9LY74 (Cheng et al., 2003) 14508009 A.thaliana enzyme also 

involved in tocopherol 

biosynthesis 

7d HVO_0309 

(cont.) 

 yes 27% - O86169 (Koike-Takeshita et al., 1997) 9139683  

 637 

Table 7: Proteins with open annotation issues and their Gold Standard Protein homologs (Section 7). For a description of this table see the 638 

legend to Table 1.639 
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3.8 Issues concerning RNA polymerase, protein translation components and 640 

signal peptide degradation 641 

(a) Haloarchaeal RNA polymerase consists of a set of canonical subunits (encoded by 642 

rpoA1A2B1B2DEFHKLNP). Hbt. salinarum and a subset of other haloarchaea 643 

contain an additional subunit called epsilon (Leffers et al., 1989, Madon and Zillig, 644 

1983). Purified RNA polymerase containing the epsilon subunit transcribes native 645 

templates efficiently, in contrast to RNA polymerase devoid of this subunit (Madon 646 

and Zillig, 1983). The biological relevance of this subunit is enigmatic (see 647 

Suppl.Text S1 Section 8). 648 

 649 

(b) Two distant paralogs are found for haloarchaeal ribosomal protein S10 (uS10) in 650 

nearly all haloarchaeal genomes. It is uncertain if both occur in the ribosome, whether 651 

they occur together or are mutually exclusive. The latter distribution would result in 652 

heterogeneity of the ribosomes. Alternatively, one of the paralogs may exclusively 653 

have a non-ribosomal function.  654 

 655 

In a subset of archaea, two distant paralogs are found for haloarchaeal ribosomal 656 

protein S14 (uS14) (ca 20% of the genomes, e.g. in Nmn. pharaonis). For more details 657 

see Suppl.Text S1 Section 8. 658 

 659 

(c) The ribosomal protein L43e (eL43) shows heterogeneity with respect to the 660 

present of C2-C2 type zinc finger motif. This zinc finger is found in L43e from all 661 

Halobacteriales and all euryarchaeal proteins outside the order Halobacteria, but is 662 

not found in Haloferacales and very rare in Natrialbales, . Eukaryotic orthologs (e.g. 663 

from rat and yeast) contain this zinc finger and its biological importance has been 664 

experimentally shown for the yeast protein (Rivlin et al., 1999) (for details see 665 

Suppl.Text S1 Section 8). 666 

 667 

(d) Diphthamide is a complex covalent modification of a histidine residue of 668 

translation elongation factor a-EF2. The pathway has been reconstructed (Table 8), 669 

based on distant homologs (enzymes encoded by dph2, dph5) and by detailed 670 
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bioinformatic analysis (enzyme encoded by dph6) (de Crecy-Lagard et al., 2012) (for 671 

details see Suppl.Text S1 Section 8). These uncertain function assignments await 672 

experimental confirmation. 673 

 674 

(e) N-terminal signal sequences target proteins to the secretion machinery. 675 

Subsequent to membrane insertion or transmembrane transfer, the signal sequence is 676 

cleaved off by signal peptidase. After cleavage, the signal peptide must be degraded 677 

to avoid clogging of the membrane. Degradation is catalyzed by signal peptide 678 

peptidase. Candidates for this activity have been predicted from two protein families 679 

(Ng et al., 2007, Raut et al., 2021) (for details see Suppl.Text S1 Section 8). 680 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.03.442417doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442417
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 

 

 681 

   Gold Standard Protein    

Sectio

n 

Code Gene isofunc %seq_id Locus tag UniProt Reference PMID Comment 

8a OE_1279R rpoeps  self   (Leffers et al., 1989) 

(Madon and Zillig, 1983) 

2495365 

6852054 

 

8b HVO_0360 rps10a yes 94% rrnAC2405 P23357 (Arndt et al., 1991) 1764513  

8b HVO_1392 rps10b -      no GSP; 24% seq_id to 

HVO_0360 (rps10a) 

8b NP_4882A rps14a yes 72% rrnAC1597.1 P26816 (Scholzen and Arndt, 1991) 1832208 full-length similarity; 

Haloarcula 

protein was not 

isolated or 

characterized 

8b NP_4882A 

(cont.) 

 yes 57% YDL061C P41058 (Otaka et al., 1984) 18782943 yeast YS29B; 

N-term 20 aa divergent 

8b NP_1768A rps14b unclear 80% rrnAC1597.1 P26816 (Scholzen and Arndt, 1991) 1832208 N-term 20 aa divergent 

8c OE_1373R rpl43e yes 69% rrnAC1669 P60619 (Ban et al., 2000) 10937989  

8c OE_1373R 

(cont.) 

 yes 39% YPR043W P0CX25 (Rivlin et al., 1999) 

(Dresios et al., 2002) 

10588896 

11866512 

 

8c HVO_0654 rpl43e yes 54% rrnAC1669 P60619 (Ban et al., 2000) 10937989 Haloarcula: has zinc 

finger; 

Haloferax; lacks zinc 

finger 

8d HVO_1631 dph2 yes 35% PH1105 O58832 (Zhu et al., 2011) 20931132  

8d HVO_0916 dph5 yes 39% PH0725 O58456 (Zhu et al., 2010) 20873788  

8d HVO_1077 dph6 yes 31% YLR143W Q12429 (Su et al., 2012) 

(Uthman et al., 2013) 

23169644 

23468660 

 

8e HVO_0881 sppA1 yes 33% BSU19530 O34525 (Bolhuis et al., 1999) 

(Nam et al., 2012) 

10455123 

22472423 

 

8e HVO_1987 sppA2 probably 23% BSU19530 O34525 (Bolhuis et al., 1999) 

(Nam et al., 2012) 

10455123 

22472423 

 

8e HVO_1107 - prediction      no GSP 

 682 
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Table 8: Proteins with open annotation issues and their Gold Standard Protein homologs (Section 8). For a description of this table see the 683 

legend to Table 1.684 
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3.9 Miscellaneous metabolic enzymes and proteins with other functions 685 

Here, we list a few other enzymatic or non-enzymatic functions for which candidate 686 

genes have been assigned, but without experimental validation. 687 

 688 

(a) Ketohexokinase from Haloarcula vallismortis has been experimentally 689 

characterized (Rangaswamy and Altekar, 1994). However, the activity was not 690 

assigned to a gene. Detailed bioinformatic analyses have been made (Anderson et al., 691 

2011, Williams et al., 2019) and point to a small set of orthologs represented by 692 

Hmuk_2662, the ortholog of HVO_1812 (for further details see Suppl. Text S1 693 

Section 9). 694 

 695 

(b) The assignment of fructokinase activity to the Hht. litchfieldiae candidate gene 696 

halTADL_1913 (UniProt:A0A1H6QYL4) is based on differential proteomic analysis 697 

(Williams et al., 2019) (see Suppl. Text S1 Section 9 for details). Very close 698 

homologs are rare in haloarchaea. For this protein family (carbohydrate kinase) it is 699 

unclear if more distant homologs (with about 50% protein sequence identity) are 700 

isofunctional. 701 

 702 

 (c) A candidate gene for glucoamylase is HVO_1711 for reasons described in Suppl. 703 

Text S1 Section 9. The enyzme from Halorubrum sodomense has been characterized 704 

(Chaga et al., 1993) but the activity was not yet assigned to a gene. 705 

 706 

(d) A strong candidate for having glucose-6-phosphate isomerase activity is Hfx. 707 

volcanii (HVO_1967, pgi), based on 36% protein sequence identity to the 708 

characterized enzyme from M. jannaschii (MJ1605) (Rudolph et al., 2004) (Table 9). 709 
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 710 
   Gold Standard Protein    

Sectio

n 

Code Gene isofunc %seq_id Locus tag UniProt Reference PMID Comment 

9a HVO_1812 - prediction      no GSP 

9b halTADL_1913 - yes 37% - P26984 (Aulkemeyer et al., 1991) 1809835  

9b halTADL_1913 

(cont.) 

- yes 31% OCC_03567 Q7LYW8 

H3ZP68 

(Qu et al., 2004) 15138858  

9c HVO_1711 - probably 33% - P29761 (Ohnishi et al., 1992) 1633799 P29761 matches to C-

term half of 

HVO_1711 

9c HVO_1711 

(cont.) 

- probably 51% SAMN 

04487937_ 

2677 

A0A1I6HD35 (Chaga et al., 1993) 8305855 correlation between 

PMID:8305855 and 

A0A1I6HD35 likely 

(see text) 

9d HVO_1967 pgi yes 36% MJ1605 Q59000 (Rudolph et al., 2004) 14655001  

9e OE_1665R kdgA no 31% PA1010 Q9I4W3 (Kaur et al., 2011) 21396954 GSP for dapA (see 

under 2a) 

9e OE_1665R 

(cont.) 

 probably 30% TTX_1156.1 

TTX_1156a 

G4RJQ2 (Ahmed et al., 2005) 15869466  

9e OE_1665R 

(cont.) 

 probably 25% SSO3197 Q97U28 (Ahmed et al., 2005) 15869466  

9f HVO_1692 ludB  self   (Reinhardt et al., 2019) 30707467  

9f HVO_1692 

(cont.) 

 probably 35% BSU34040 O07021 (Chai et al., 2009) 19201793 matches up to 

HVO_1692 pos 490 of 

733 

9f HVO_1692 

(cont.) 

 probably 35% PST_3338 O4VPR6 (Gao et al., 2015) 25917905 matches up to 

HVO_1692 pos 400 of 

733 

9f HVO_1693 ludC  self   (Reinhardt et al., 2019) 30707467  

9f HVO_1693 

(cont.) 

 probably 30% BSU34030 O32259 (Chai et al., 2009) 19201793  

9f HVO_1693 

(cont.) 

 probably 33% PST_3339 O4VPR7 (Gao et al., 2015) 25917905 partial match 

9f HVO_1697 - unclear 24% PST_3340 O4VPR8 (Gao et al., 2015) 25917905  
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9f HVO_1696 lctP probably 44% PST_3336 O4VPR4 (Gao et al., 2015) 25917905  

9g HVO_B0300 pucL1 yes 49% BSU32450 O32141 (Pfrimer et al., 2010) 20168977 Bacillus: bifunctional, 

matches to C-term 

9g HVO_B0299 pucM yes 43% BSU32460 O32142 (Lee et al., 2005) 16098976  

9g HVO_B0301 pucL2 yes 43% BSU32450 O32141 (Kim et al., 2007) 17567580 Bacillus: bifunctional, 

matches to N-term 

9g HVO_B0302 pucH1 no 33% - Q8VTT5 (Xu et al., 2002) 12148274 paper in Chinese, 

abstract in English; 

pyrimidine degradation 

9g HVO_B0302 

(cont.) 

 yes 30% STM0523 Q7CR08 (Ho et al., 2013) 23287969 purine degradation 

9g HVO_B0302 

(cont.) 

 yes 29% BSU32410 O32137 (Schultz et al., 2001) 11344136 purine degradation 

9g HVO_B0306 amaB4 no 39% - Q53389 (Martinez-Rodriguez et al., 2012) 22904279 carbamoyl-AA 

hydrolysis 

9g HVO_B0306 

(cont.) 

 yes 34% At5g43600 Q8VXY9 (Werner et al., 2010) 

(Werner et al., 2013) 

19935661 

23940254 

purine degradation 

9g HVO_B0308 coxS no 46% Saci_2270 Q4J6M5 (Kardinahl et al., 1999) 10095793 GAPDH 

9g HVO_B0308 

(cont.) 

 no 41% - P19915 (Kang and Kim, 1999) 10482497 CO-DH 

9g HVO_B0308 

(cont.) 

 yes 39% b2868 Q46801 (Xi et al., 2000) 10986234 xanthine DH 

9g HVO_B0309 coxL yes 33% b2866 Q46799 (Xi et al., 2000) 10986234 xanthine DH 

9g HVO_B0309 

(cont.) 

 no 28% - P19913 (Kang and Kim, 1999) 10482497 CO-DH 

9g HVO_B0309 

(cont.) 

 no 26% Saci_2271 Q4J6M3 (Kardinahl et al., 1999) 10095793 GAPDH 

9g HVO_B0310 coxM no 31% Saci_2269 Q4J6M6 (Kardinahl et al., 1999) 10095793 GAPDH 

9g HVO_B0310 

(cont.) 

 no 31% - P19914 (Kang and Kim, 1999) 10482497 CO-DH 

9g HVO_B0310 

(cont.) 

 yes 25% b2867 Q46800 (Xi et al., 2000) 10986234 xanthine DH 

9g HVO_B0303 uraA4 yes 38% b3654 P0AGM9 (Karatza and Frillingos, 2005) 16096267  

9h HVO_0197 - possibly 39% lp_0105 F9UST0 (Desguin et al., 2016) 27114550 LarB family protein 

9h HVO_2381 - possibly 31% lp_0106 / F9UST1 (Desguin et al., 2016) 27114550 LarC family protein 
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lp_0107 

9h HVO_0190 - possibly 34% lp_0109 F9UST4 (Desguin et al., 2016) 27114550 LarE family protein 

9i HVO_1660 dacZ  self   (Braun et al., 2019) 30884174  

9i HVO_0756 - prediction    (He et al., 2020) 32095817  

9i HVO_0990 - prediction    (He et al., 2020) 32095817  

9i HVO_1690 - prediction    (He et al., 2020) 32095817  

9j HVO_2763 -  self    22350204 no function could be 

assigned 

9j HVO_2763 

(cont.) 

 no 27% HVO_0144 D4GZ88 (Spath et al., 2008) 18437358 Rnase Z 

9k HVO_2410 dabA yes 33% Hneap_0211 D0KWS7 (Desmarais et al., 2019) 31406332  

9k HVO_2411 dabB yes 31% Hneap_0212 D0KWS8 (Desmarais et al., 2019) 31406332  

 711 

Table 9: Proteins with open annotation issues and their Gold Standard Protein homologs (Section 9). For a description of this table see the 712 

legend to Table 1. 713 
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(e) A candidate gene for specifying an enzyme with 2-dehydro-3-deoxy-714 

(phospho)gluconate aldolase activity is Hbt. salinarum kdgA (OE_1665R). It is rather 715 

closely related (36% protein sequence) to Hfx, volcanii HVO_1101 (encoded by 716 

dapA), which is involved in lysine biosynthesis, a biosynthetic pathway that is absent 717 

from Hbt. salinarum. The function assignment is based on distant homologs from 718 

Saccharolobus (Sulfolobus) solfataricus and Thermoproteus tenax which have been 719 

characterized (Ahmed et al., 2005) (for details see Suppl. Text S1 Section 9). 720 

 721 

(f) Haloarchaea may contain an NAD-independent L-lactate dehydrogenase, LudBC 722 

(HVO_1692 and HVO_1693). Deletion of this gene pair impairs growth on rhamnose, 723 

which is catabolized to pyruvate and lactate (Reinhardt et al., 2019). There is a very 724 

distant relationship (for details see Suppl.Text S1 Section 9) to the LldABC subunits 725 

of the characterized L-lactate dehydrogenase from Pseudomonas stutzeri A1501 (Gao 726 

et al., 2015) and to the LutABC proteins from B. subtilis, which have been shown to 727 

be involved in lactose utilization (Chai et al., 2009). 728 

 729 

(g) Hfx. volcanii may be able to convert urate to allantoin, using the gene cluster 730 

HVO_B0299-HVO_B0302. This could be part of a complete degradation pathway for 731 

purines, which, however, has to be considered highly speculative (see Suppl.Text S1 732 

Section 9). 733 

 734 

(h) Hfx. volcanii may contain an enzyme having a "nickel-pincer cofactor". The 735 

biogenesis of this cofactor may be catalyzed by larBCE (as detailed in Suppl. Text S1 736 

Section 9).  737 

 738 

(i) cyclic diguanylate hydrolysis 739 

Cyclic di-AMP (c-di-AMP) is an important nucleotide signalling molecule in bacteria 740 

and archaea. It is generated from two molecules of ATP by diadenylate cyclase 741 

(encoded by dacZ) and is degraded to pApA by phosphodiesterases (Corrigan and 742 

Grundling, 2013). The level of this signalling molecule is strictly controlled 743 

(Gundlach et al., 2015, Commichau et al., 2019), thus requiring a sophisticated 744 

interplay of cyclase and phosphodiesterase. DacZ from Hfx. volcanii has been 745 
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characterized and it was shown that c-di-AMP levels must be tightly regulated (Braun 746 

et al., 2019). The degrading enzyme, however, has not yet been identified in 747 

Haloferax but candidates have been proposed (Corrigan and Grundling, 2013, He et 748 

al., 2020, Yin et al., 2020) (see Suppl. Text S1 Section 9).  749 

 750 

 (j) homolog to RNaseZ 751 

HVO_2763 is distantly related to RNase Z (HVO_0144, rnz). The experimental 752 

characterization of HVO_2763 (Fischer et al., 2012) excluded activity as exonuclease 753 

but did not reveal its physiological function. Upon transcriptome analysis, the 754 

downregulation of several genes was detected. Several of these were uncharacterized 755 

at the time of the experiment but have since been shown to be involved in the minor 756 

N-glycosylation pathway that was initially detected under low salt conditions (see 757 

Suppl. Text S1 Section 9 for further details) . 758 

 759 

(k) A pair of genes (dabAB) is predicted to function as CO2 transporter. 760 

HVO_2410 and HVO_2411 probably function as carbon dioxide transporter, based on 761 

the identification of such transporters in Halothiobacillus neapolitanus (Desmarais et 762 

al., 2019). Being a member of the proton-conducting membrane transporter family, 763 

this protein may be misannotated as a subunit of the nuo or mrp complex (see Suppl. 764 

Text S1 Section 9 for further details). 765 

 766 

4. Conclusion 767 

We describe a large number of cases where protein function cannot be correctly 768 

predicted when restricting considerations to computational analyses without taking 769 

the biological context into account. An example is the switch from methanopterin to 770 

tetrahydrofolate as C1 carrier in haloarchaea. Homologous enzymes, inherited from 771 

the common ancestor, have adapted to the new C1 carrier, rather being replaced by 772 

non-homologous proteins. Function prediction tools may misannotate haloarchaeal 773 

proteins to work with methanopterin. Another example is the nuo complex and its 774 

misannotation as a type I NADH dehydrogenase. In other cases, even distant sequence 775 

similarity may allow a valid function prediction if additional evidence (e.g. from gene 776 
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neighbourhood analysis or from detailed evaluation of metabolic pathway gaps) is 777 

taken into account. Examples include cobalamin cluster proteins, which probably 778 

close the two residual pathway gaps, and the predicted degradation pathway for 779 

purines. In all these cases, we have presented reasonable hypotheses based on current 780 

knowledge, and in many cases these are so well supported as to be compelling, but to 781 

be certain, experimental data are required. With this overview, we attempt to arouse 782 

the curiosity of colleagues, hoping that they will confirm or disprove our speculations 783 

and thus advance the knowledge about haloarchaeal biology. Hfx. volcanii is a model 784 

species for halophilic archaea, and the more complete and correctly its genome is 785 

annotated, the higher will be its value for systems biology analyses (modelling) and 786 

for synthetic biology (metabolic engineering) and biotechnology.  787 
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