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Abstract

Severe falciparum malaria has substantially affected human evolution. Genetic association
studies of patients with clinically defined severe malaria and matched population controls have
helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision
compromises discovered associations. In areas of high malaria transmission the diagnosis of
severe malaria in young children and, in particular, the distinction from bacterial sepsis, is
imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet and
white count data. Under this model we re-analysed clinical and genetic data from 2,220 Kenyan
children with clinically defined severe malaria and 3,940 population controls, adjusting for
phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated that
approximately one third of cases did not have severe malaria. We propose a data-tilting
approach for case-control studies with phenotype mis-labelling and show that this reduces false
discovery rates and improves statistical power in genome-wide association studies.

Introduction

Severe malaria caused by the parasite Plasmodium falciparum kills nearly half a million children
each year, mostly in sub-Saharan Africa (World Health Organization, 2020). By causing death in
children before they reach their reproductive age, P. falciparum has exerted a substantial selec-
tive evolutionary pressure on the human genome (Carter and Mendis, 2002; Kariuki and Williams,
2020). Recent advances in whole genome sequencing and haplotype imputation (Teo et al., 2010),
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combined with data gathered prospectively from large patient cohorts has improved our under-
standing of genetic susceptibility to P. falciparum infection and severe disease (Band et al., 2013;
The Malaria Genomic Epidemiology Network, 2014; Band et al., 2019; Leffler et al., 2017) but many
questions remain unanswered (Kariuki and Williams, 2020). A major limitation of genetic associ-
ation studies in severe malaria is that the diagnosis of severe falciparum malaria in children is
imprecise (White et al., 2013; Taylor et al., 2004; Bejon et al., 2007). This imprecision increases
with transmission intensity because of the low positive predictive value of a ‘positive blood film’
or rapid diagnostic test (RDT) in areas where the background prevalence of microscopy detectable
parasitaemia in apparently healthy young children is high (often around 30%, Rodriguez-Barraquer
et al. (2018), but can exceed 90%, Smith et al. (1994)).

Severe falciparum malaria has been defined by experts convened by the World Health Organi-
zation (WHO) as clinical or laboratory evidence of vital organ dysfunction in the presence of circu-
lating asexual P. falciparum parasitaemia (World Health Organisation, 2014). The WHO definition
of severe malaria is aimed primarily at clinicians and health care workers managing patients with
malaria who appear severely ill. This appropriately prioritises sensitivity over specificity (Anstey
and Price, 2007). An inclusive clinical definition ensures that cases are not missed and patients
receive the best treatment. In contrast genetic association studies require high specificity (Zonder-
van and Cardon, 2007). For a given sample size, their statistical power, false-discovery rates and
the validity of their interpretation are weakened by phenotypic inaccuracy. Specificity in the diag-
nosis of severe malaria depends in part on the prevalence of malaria parasitaemia. This reflects
background transmission intensity. In areas of low or seasonal transmission (e.g. most of endemic
Asia and the Americas), clinical and laboratory signs of severity accompanied by a positive blood
film for P. falciparum are highly specific for severe malaria, which predominantly affects young
adults. In contrast in high transmission areas in sub-Saharan Africa and in lowland areas of the
island of New Guinea, where severe malaria is largely a disease of young children, the diagnostic
criteria for defining severe malaria are less specific because of the high background prevalence
of asymptomatic parasitaemia and the lower specificity of the clinical manifestations. Standard
case definitions of severe malaria will therefore inevitably include both patients with non-malarial
severe illness with concomitant parasitaemia, and with concomitant non-severe malaria.

Our goal was to develop a biomarker-based model that can differentiate probabilistically be-
tween ‘true severe malaria’ and severe illness not caused primarily by malaria, but with concomi-
tant parasitaemia. We define ‘true severe malaria’ conceptually as a febrile illness caused by malaria
parasites, with organ dysfunction, that can result in death whereby mortality is attributable directly
to the malaria parasites. This attributable mortality can be given a formal causal definition by us-
ing a conceptual (albeit unethical) randomised experiment of delayed versus prompt anti-malarial
therapy. In a theoretical patient population with true severe malaria, delay in administration of an
effective antimalarial would result in increased mortality Warrell et al. (1982); Gomes et al. (2009),
whereas in a population with severe iliness not caused by malaria (‘not severe malaria’) there would
not be a corresponding increase in mortality.

We developed a probabilistic diagnostic model of severe malaria based on haematological
biomarkers using data from 1,704 adults and children mainly from low transmission settings whose
diagnosis of severe malaria is considered to be highly specific. We used this model to demonstrate
low phenotypic specificity in a cohort of 2,220 Kenyan children who were diagnosed clinically with
severe malaria. We validated the predictions using a natural experiment, the distribution of sickle
cell trait (HbAS), the genetic polymorphism with the strongest known protective effect against all
forms of clinical malaria (The Malaria Genomic Epidemiology Network, 20714). Building on work
on ‘data-tilting’ (Nie et al., 2013), we suggest a new method for testing genetic associations in the
context of case-control studies in which cases are re-weighted by the probability that the severe
malaria diagnosis is correct under the model. As proof-of-concept, we ran a genome-wide associa-
tion study across 9.6 million imputed bi-allelic variants using the subset of cases with genome-wide
genotype data (n =1,297) and population controls (» =1,614). Adjusting for case mis-classification
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decreased genome-wide false-discovery rates (Storey, 2002), and increased effect sizes in three
of the top regions of the human genome most strongly associated with protection from severe
malaria in East Africa (HBB, ABO, and FREM3, Band et al., 20719). A re-analysis of 120 directly typed
polymorphisms in 70 candidate malaria-protective genes in the 2,220 Kenyan cases and 3,940 pop-
ulation controls, examining differential effects between correctly and incorrectly classified cases,
suggests that the protective effect of glucose-6-phosphate dehydrogenase (G6PD) deficiency has
been obscured in this population by case mis-classification. Our results show that adding full blood
count meta-data - routinely measured in most hospitals in sub-Saharan Africa - to severe malaria
cohorts would lead to more accurate quantitative analyses in case-control studies and increased
statistical power.

Results

Reference model of severe malaria

We used the joint distribution of platelet counts and white blood cell counts (both on a logarithmic
scale) to develop a simple biomarker-based reference model of severe malaria. To fit the refer-
ence model (i.e. P[Data | Severe malaria]), we used platelet and white count data from (i) severe
malaria patient cohorts enrolled in low transmission areas where severe disease accompanied by
a positive blood stage parasitaemia has a high positive predictive value for severe malaria (930
adults from Vietnam (Hien et al., 1996; Phu et al., 2010) and 653 adults and children from Thailand
and Bangladesh); and (ii) severely ill African children with plasma PfHRP2 concentrations > 1,000
ng/ml and > 1,000 parasites per ulL of blood (121 children from Uganda, Maitland et al., 2011). Se-
vere illness accompanied by a high plasma PfHRP2 concentration makes the diagnosis of severe
falciparum malaria highly specific (Hendriksen et al., 2012). The joint distribution of platelet and
white blood cell counts in severe malaria was modelled as a bivariate t-distribution with both blood
count variables on the log,, scale.

Figure 1A shows the reference data (green triangles: patients with a highly specific diagnosis
of severe malaria, summarised in Table 1) alongside data from a large Kenyan cohort of hospi-
talised children diagnosed with severe malaria, whose diagnosis had unknown specificity (pink
squares). The median platelet count in the reference data was 57,000 per uL and the median to-
tal white blood cell count was 8,400 per uL. In contrast, the median platelet count in the Kenyan
children was 120,000 per uL and the median total white blood cell count was 13,000 per ulL. Di-
rect comparisons of white counts across these two data sets are confounded by geography and
age. Total white blood cell counts are known to be age-dependent and vary across genetic back-
grounds, in particular lower neutrophil counts are associated with mutations in the ACKR7 gene
that results in the Duffy negative phenotype prevalent in African populations (Reich et al., 2009).
However, after adjustment for age (see Methods), the marginal distributions of total white counts
were comparable between Asian adults and children with severe malaria and African children with
high plasma PfHRP2 (Appendix 1). Platelet counts are not age dependent and do not vary substan-
tially across genetic backgrounds. The marginal distributions of platelet counts were compara-
ble between Asian adults and children with severe malaria and African children with high plasma
PfHRP2 (Appendix 1). A low platelet count (thrombocytopenia) is a universal feature of severe
malaria (see evidence collated in Methods). To illustrate this important point, in a cohort of 566
severely ill Ugandan children enrolled in the FEAST trial (Maitland et al., 2011, a trial including all
severe illness not restricted to severe malaria), low platelet counts were highly predictive of blood
stage parasitaemia and elevated PfHRP2 (p=10-'¢ for a spline term on the log,, platelet count in a
generalised additive logistic regression model predicting PfHRP2 > 1,000 ng/mL, Appendix 2). Chil-
dren enrolled in the FEAST trial who had significant thrombocytopenia (<100,000 platelets per ul)
had comparable PfHRP2 concentrations to Asian adults diagnosed with severe falciparum malaria
(Figure 1B).
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Figure 1. Platelet counts and white blood cell counts as diagnostic predictors of severe falciparum
malaria. Panel A shows the bi-variate marginal distribution for the reference data (thought to be highly
specific to severe malaria, green triangles, n =1,704, summarised in Table 1) and for the Kenyan case data
(pink squares, n =2,220; black diamonds: HbAS). The dashed ellipses show the 50 and 95% bivariate normal
probability contours approximating each dataset (dark green: training data; purple: Kenyan data). Panel B
shows the relationship between platelet counts and plasma PfHRP2 in adults with severe malaria from
Bangladesh (green circles, n =172, the dashed green line shows a linear fit) and in children enrolled in the
FEAST trial (n =567, not specific to severe malaria, Maitland et al., 2011). Undetectable plasma PfHRP2
concentrations were set to 1 ng/mL + random jitter. Orange squares: malaria-positive blood slide; black
triangles: malaria-negative blood slide. The brown line shows a spline fit to the FEAST data (smooth.spline
function in R with default parameters) including the data points where PfHRP2 was below the lower limit of
detection.
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Table 1. Summary of severe disease data sets used in our analyses. For age and parasite density we show the

median values as the distributions are highly skewed. *For the FEAST trial, the severe malaria reference data
set only included platelet and white count data from the 121 patients who had PfHRP2 >1,000 ng/mL and
>1,000 parasites per ul.

Bangladesh-
Vietnam FEAST (Uganda Kenya
Thailand (Ug ) 4
. Randomised Randomised .
Observational . ) Observational
o . controlled tri- controlled trial .
Description studies of se- ) ) ) severe malaria
) als in severe in severe febrile
vere malaria ) . cohort
malaria illness
Reference data*
Purpose Reference data Reference data . Testing data
and Fig 1B

Published ref-

Leopold et al.
(2019)

Hien et al
(71996); Phu et al.

Maitland et al.
(2011)

Ndila et al.
(2018)

erences (2010)
n 653 930 567 2,220
Age (years, | 28 (2-80) 30 (15-79) 2.1(0-12) 2.3(0-13)
range)
) 48,984  (8,289- 83,084 (13,047- 72,000 (6,208-
PAaraS|te den- 187.395) 316,512) 400 (0-53,200) 315,250)
sity (per ulL,
IQR)
Mortality (%) 18.2 12.9 11.3 11.6

Estimating the proportion of children mis-diagnosed with severe malaria

We can consider the hospitalised Kenyan children in this series as a mixture of two latent sub-
populations, ‘severe malaria’ and ‘not severe malaria’ (i.e an alternative aetiology for severe iliness).
To estimate the proportion of each we use the distribution of HbAS, the human polymorphism
most protective against all forms of clinical falciparum malaria. HbAS provides at least 90% protec-
tion against severe malaria (Taylor et al., 2012; The Malaria Genomic Epidemiology Network, 2014).
The causal SNP rs334 was genotyped in 2,213 of the Kenyan children, of whom 57 were HbAS. The
causal pathways (a) or (b) in Figure 2 (note all children have been selected into the study on the
basis of clinical symptoms consistent with severe malaria) show how the distribution of HbAS can
be used to infer the marginal probability P(Severe malaria) in the Kenyan cohort as the prevalence
of HbAS is expected to differ in the two latent sub-populations.

We assumed that cases with the highest likelihood values P(Data | Severe malaria) under the
reference model (a bivariate t-distribution fit to the severe malaria reference data) had a diagnosis
of severe malaria that was 100% specific (top 40% of cases, a sensitivity analysis varied this thresh-
old). The cases with lower likelihood values were assumed to be drawn from a mixture of the two
latent populations with an unknown mixing proportion; the prevalence of HbAS in the ‘not-severe
malaria’ subgroup was estimated from a cohort of hospitalised children enrolled in the same hos-
pital and who were malaria blood slide positive but were clinically diagnosed as not having severe
malaria (n =6,748 of whom 364 were HbAS (Uyoga et al., 20719)). We assumed that this diagnosis
of 'not-severe malaria’ was 100% specific. Under these assumptions, we estimated that P(Severe
malaria)=0.64 (95% credible interval (C.I.) 0.46 to 0.8), implying that approximately one third of the
2,200 cases are from the ‘not-severe malaria’ sub-population (they have malaria parasitaemia in
addition to another severe illness - likely to be bacterial sepsis - Figure 2).
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Figure 2. Theoretical causal pathways that lead to the clinical diagnosis of severe malaria under the
current WHO definition (World Health Organisation, 2014). Pathways (a) & (b) represent the two ways
patients can be mis-classified as severe malaria. For both pathways (a) & (b), we expect a higher prevalence of
HbAS relative to the population with true severe malaria as a consequence of the protective bottlenecks. In
this causal model we assume that HbAS does not protect against asymptomatic parasitaemia, although this
assumption is not strictly necessary. Adapted with permission from Small et al. (2017).

Estimating individual probabilities of severe malaria

We then estimated P(Severe malaria | Data) for each Kenyan case by fitting a mixture model to the
training data and to the Kenyan data jointly. The model assumed that the platelet and white count
data for the Kenyan children were drawn from a mixture of P(Data | Severe malaria) and P(Data |
Not severe malaria). The training data (Asian adults and children with severe malaria and African
children with PfHRP2 > 1,000 ng/mL) were assumed to be drawn only from P(Data | Severe malaria).
P(Data | Not severe malaria) was modelled itself as a mixture of bivariate t-distributions. We used
an informative prior on the mixture proportion ('severe malaria’ versus ‘not severe malaria’) in the
Kenyan cases, a beta distribution approximating the posterior estimate from the analysis of HbAS
prevalence.

Figure 3A shows the bi-modal distribution of the posterior individual estimates of P(Severe
malaria | Data). As expected, the individual posterior probabilities of severe malaria were highly
predictive of HbAS (p = 107¢ from a generalised additive logistic regression model fit, Figure 3C).
The individual probabilities were also predictive of in-hospital mortality (p = 10~° from a gener-
alised additive model fit; Figure 3D), and admission peripheral blood parasite density (p = 107
from a generalised additive model fit; Figure 3E). In the top quintile of patients with the highest
estimated P(Severe malaria | Data), the prevalence of HbAS was 0.7% (3 out of 446). In contrast,
for patients in the lowest quintile of estimated P(Severe malaria | Data), the prevalence of HbAS
was 4.8% (21 out of 444). The patients with a low probability of severe malaria had a substantially
higher case fatality ratio (18.8% mortality for patients in the bottom quintile of P[Severe malaria |
Data] versus 6.1 % mortality for the top quintile of P[Severe malaria | Data]). This may be explained
by the higher case-specific mortality of severe bacterial sepsis (the most likely alternative cause of
severe illness). The admission parasite densities in patients with a probability of severe malaria
close to 1 were approximately five-fold higher than in patients with a probability of severe malaria
close to zero. The blood culture positive rate was 2.1% in the top quintile of P(Severe malaria |
Data), and 4.4% in the lowest quintile of P(Severe malaria | Data) and the individual probabilities
were predictive of blood culture results (p = 0.004 under a generalised additive logistic regression
model fit).

Accounting for case imprecision in case-control studies

‘False-positive’ cases reduce statistical power and dilute effect size estimates in case-control studies.
We propose a novel approach for case-control studies with phenotypic imprecision based on data
tilting (Nie et al., 2013). The idea is to ‘tilt' the cases towards a pseudo-population with higher

6 of 39


https://doi.org/10.1101/2021.04.16.440107
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.16.440107; this version posted June 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

A
] 100 7
300 7
I
250 == s ] .
— (3
= — Q.
2 30 A
g 200 é |
g <
2150 pot
o) =]
—g g 10
; 100 ; .
= ]
50 C
0 - 3 - . N
I T T T T 1 I T T T T TTTTT T T T T TTTT1
0.0 02 04 0.6 0.8 10 10 100 1000
P(Severe malaria | Data) Platelet count (x1000 per uL)
C D E
8 —
10° 7
3
5
~ g 10
S IS g e —— -
2 : 2 10
o = o
= = p
£10° 7
A
2 |
04 0 - 10
I T T T T 1 I T T T T 1 I T T T T 1
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
P(Severe malaria | Data) P(Severe malaria | Data) P(Severe malaria | Data)

Figure 3. Model estimates of P(Severe malaria | Data) in 2,220 Kenyan children clinically diagnosed
with severe malaria. Panel A: distribution of posterior probabilities of severe malaria being the correct
diagnosis. Panel B shows these same probabilities plotted as a function of the platelet and white counts on
which they are based (dark red: probability close to O; dark blue: probability close to 1). The black diamonds
show the HbAS individuals. Panels C-E show the relationship between the estimated probabilities of severe
malaria and HbAS, in-hospital mortality, and admission parasite density, respectively. The black lines (shaded
areas) show the mean estimated values (95% confidence intervals) from a generalised additive logistic
regression model with a smooth spline term for the likelihood (R package mgcv). The horizontal lines in
panels C-E show the mean values in the data.
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Figure 4. The number of significant hits as a function of the false discovery rate for the genome-wide
association study across 9.6 million bi-allelic variants. This analysis is based on a subset of the Kenyan
children with whole genome data available and passing quality checks n =1,297, and n =1,614 controls.
Dashed line: weighted-model; thick line: non-weighted model.

specificity for severe malaria. We can do this by re-weighting the data by the probabilities P(Severe
malaria | Data), i.e. re-weighting the contribution to the log-likelihood in an association model.

We applied this approach as proof-of-concept to a genome-wide association study using the
subset of Kenyan children who had clinical and genome-wide data available (after quality control
checks n =1,297 cases) and a set of matched population controls (r =1,614), across 9.6 million bi-
allelic variants on the autosomal chromosomes (Band et al., 2019). We compared the data-tilting
method to the standard non-weighted approach by estimating local false discovery rates (FDR,
Storey, 2002). Compared to the standard non-weighted GWAS, data-tilting substantially increased
the number of significant associations for local FDRs in the range of 1-5% (Figure 4). For example,
at an FDR of 2%, the number of significant hits is more than doubled with the additional hits all
around known loci associated with protection from severe malaria. We note that if the data weights
were not predictive of the true latent phenotype, we would expect fewer significant hits for a given
FDR because of the reduction in effective sample size. This is demonstrated by permuting the data
weights (for the cases only), which results in 50-75% reduction in the number of significant hits at
FDRs <5% (Appendix 3).

Examining three major genetic regions strongly associated with protection from severe malaria
in East Africa (HBB: HbAS; ABO: O blood group; FREM3: in close linkage with the GYPA/B/E structural
variants that encode the Dantu blood group; Band et al., 2019), the data-tilting approach estimated
larger effect sizes compared to the non-weighted model in all three regions (effect size increases:
30% around HBB, 9% around ABO, and 5% around FREM3). This resulted in larger -log,, p-values
for HBB and ABO, but slightly smaller for FREM3 (Figure 5). We note that there was no signal of
association at ATP2B4 in this subset, most likely due to limited power (ATP2B4 had the third largest
Bayes factor for association in the largest multi-center GWAS to date, Band et al., 2019)).

Reappraisal of directly typed polymorphisms

We re-analysed case-control associations for 120 polymorphisms on 70 candidate malaria-protective
genes which were typed directly in the 2,220 Kenyan children along with 3,940 population controls.
In this case-control cohort, 14 polymorphisms had previously been identified as associated with
protection or increased risk in severe malaria (Ndila et al., 2018). A re-analysis of these 14 variants
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Figure 5. The three regions in the human genome with the greatest evidence for protection against
severe malaria in East Africa (HBB, ABO and FREM3, Band et al., 2019). The Manhattan plots (left panels)
compare p-values from the weighted model (blue) and the non-weighted model (orange). Each Manhattan
plot is centred around the known causal position shown by the vertical dashed line (0.5 Mb region). The
horizontal dashed line shows p = 107 (threshold often used for defining genome-wide significance). The 10
positions with the greatest -log,, p-values under the non-weighted model are shown as large diamonds. The
scatter plots on the right compare absolute effect size estimates under both models with the same top 10 hits
shown by the larger purple diamonds. Increases of 30%, 9% and 5% are seen for the ten top hits for HBB, ABO,
and FREM3, respectively.
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222 USing the same models of association as previously published and down-weighting the likely mis-
223 Classified cases replicated the majority of associations, with increased effect sizes and increased
222 -log,, p-values (Appendix 4). For the three major genes (HBB, ABO, FREM3), effect sizes were in-
225  creased by 10-30% and associations all had higher significance levels on the -log,, scale (0.25-1.7).
226 The allele frequencies of all three polymorphisms were directly associated with the probability
227 Weights, showing increased protection in individuals more likely to have severe malaria (Appendix
228 5). Two polymorphisms on the genes ARL74 and LOC727982, reported previously as associated with
220 protection in severe malaria (neither of which are related to red cells), showed decreased effect
230 Sizes and -log,, p-values and are thus potentially spurious hits.

231 We explored whether there was evidence of differential effects in the Kenyan cases using P[Severe
232 Mmalaria | Data] to assign probabilistically each case to the ‘severe malaria’ versus ‘not severe
233 malaria’ sub-populations. We fitted a categorical logistic regression model predicting the latent sub-
23a  population label versus control, where the latent case label was estimated from the weights shown
235 in Figure 3A. This resulted in approximately 1,279 cases in the ‘severe malaria’ sub-population and
236 941 cases in the 'not severe malaria’ sub-population. Differential effects were tested by compar-
237 ing the estimated log-odds for the two sub-populations. After accounting for multiple testing, two
238 polymorphisms showed significant differential effects: rs334 (derived allele encodes haemoglobin
230 S, p=107%) and rs1050828 (derived allele encodes G6PD+202T, p = 1073 in the model fit to females
240 ONly), see Figure 6. As expected, rs334 was associated with protection in both sub-populations
2a1 (Scott etal., 2011; Uyoga et al., 2019) but the effect was almost 8 times larger on the log-odds scale
242 iNnthe’‘severe malaria’ sub-population relative to the ‘not severe malaria’ sub-population (odds-ratio
2a3 0f 0.029 [95% C.I. 0.0088-0.094] in the ‘severe malaria’ population versus 0.63 [95% C.I. 0.48-0.83]
242 in the ‘not severe malaria’ population). For rs1050828 (G6PD+202T allele), approximately the same
2as  absolute log-odds were estimated for both sub-populations but they had opposite signs. Under
246 an additive model in females, the rs1050828 T allele was associated with protection in the ‘severe
247 malaria’ sub-population (odds-ratio of 0.71 [95% C.I. 0.57-0.88]) but with increased risk in the ‘not
248 Severe malaria’ sub-population (odds-ratio of 1.30 [95% C.I. 1.00-1.70]). The additive model includ-
240 ing both males and females was consistent with these opposing effects but significant only at a
250 nominal threshold (p = 0.02). Opposing effects across the two sub-populations is consistent with
251 the hypothesis that G6PD deficiency leads to a greater risk of being erroneously classified as se-
252 vere malaria as under the severe anaemia criterion (Watson et al., 2019, shown in more detail
253 iN Appendix 5). Investigation of haemoglobin concentrations as a function of P(Severe malaria |
254 Data) indicates that the mis-classified group is very heterogeneous, but with a larger proportion of
255 Ssevere anaemia (<5 g/dL) relative to the correctly classified sub-population (Appendix 6).

2ss  Discussion

257 The clinical diagnosis of severe falciparum malaria in African children is imprecise (Taylor et al.,
28 2004; Bejon et al., 2007; White et al., 2013). Even with quantitation of parasite densities, specificity
2s0 IS still imperfect (Bejon et al., 2007). In children with cerebral malaria (unrouseable coma with
260 Malaria parasitaemia), the most specific of the severe malaria clinical syndromes, post-mortem
261 €Xamination revealed another diagnosis in a quarter of cases studied in Blantyre, Malawi (Taylor
262 et al.,, 2004). Diagnostic specificity can be improved by visualisation of the obstructed microcircula-
263 tion in-vivo (e.g. through indirect ophthalmoscopy) or from parasite biomass indicators (quantita-
26a tion and staging of malaria parasites on thin blood films, counting of neutrophil ingested malaria
265 pigment, measurement of plasma concentrations of PfHRP2 or parasite DNA), but these are still
266 largely research procedures and have not been widely adopted or measured at scale for genetic
267 association studies. Our results suggest that imprecision in clinical phenotyping is more substan-
26s  tial than thought previously. In this cohort of 2,220 Kenyan children diagnosed with severe malaria
260 from an area of moderate transmission, a probabilistic assessment suggests that around one third
270 May not have had severe malaria (although malaria may have contributed to their illness, Small
2711 et al., 2017). This supports our previous conclusion that differences in treatment effects between
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Figure 6. Exploring differential effects in 120 directly typed polymorphisms across 70 candidate
malaria-protecting genes. Panel A: case-control effect sizes estimated for the ‘severe malaria’
sub-population versus the ‘not severe malaria’ sub-population (n = 3,940 controls and n =2,220 cases, with
approximately 1,279 in the ‘severe malaria’ sub-population and 941 in the ‘not severe malaria’
sub-population). The vertical and horizontal grey lines show the 95% credible intervals. Panel B shows the
log,, p-values testing the hypothesis that the effects are the same for the two sub-populations relative to
controls. The top dashed line shows the Bonferroni corrected a = 0.05 significance threshold (assuming 70
independent tests). The bottom dashed line shows the nominal a = 0.05 significance threshold. In both
panels, red circles denote p < 0.05 (nominal significance level), and red squares denote p < 0.05/70. Panel C:
Analysis of the rs1050828 SNP (encoding G6PD+202T) under a non-additive model (hemi/homozygotes and
heterozygotes are distinct categories). This shows that heterozygotes are clearly under-represented in the
‘severe malaria’ sub-population and hemi/homozygotes are clearly over-represented in the ‘not severe
malaria’ sub-population. Panel D: evidence of differential effects for the O Blood Group (rs8176719, recessive
model) and FREM3 (additive model).
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Asian adults and African children (i.e the benefits of artesunate over quinine in severe malaria
estimated from randomised trials, Dondorp et al., 2005, 2010) are predominantly driven by differ-
ences in diagnostic specificity (Hendriksen et al., 2012; White et al., 2013). Mortality was higher
in the severe ‘not malaria’ patients, probably because the main illness was bacterial sepsis. This
strongly supports current recommendations to give broad spectrum antibiotics to all children in
endemic areas with suspected severe malaria (World Health Organisation, 2014). Using HbAS as a
natural experiment to validate the biomarker model, we show that the joint distribution of platelet
and white blood cell counts is a diagnostic predictor of severe malaria. Complete blood counts are
inexpensive and increasingly available in low-resource setting hospitals. Application of an upper
threshold of 200,000 platelets per uL would have substantially decreased mis-classification in this
large cohort of Kenyan children diagnosed with severe malaria.

This re-analysis using rich clinical data provides additional evidence for the three major genetic
polymorphisms protective against severe malaria present in East Africa. After probabilistic down-
weighting of the likely mis-classified cases, substantial increases in effect sizes were found. Dilu-
tion of effect sizes resulting from mis-classification could explain the large heterogeneity in effects
noted in the largest severe malaria GWAS to date (Band et al., 2019). For haemoglobin S (rs334)
there was a 4-fold variation in estimated odds-ratios across participating sites. Some of this het-
erogeneity can be attributed to variations in linkage disequilibrium affecting imputation accuracy
(Band et al., 2013), but our analysis shows an additional substantial source of heterogeneity which
results from diagnostic imprecision. This can be adjusted for if detailed clinical data are available.
For example, in the case of rs334 (directly typed), the data-tilting approach results in a 25% increase
in effect size on the log-odds scale, corresponding to 35% decrease in estimated odds-ratios (0.1
versus 0.16).

As for the interpretation of genetic effects, one of the most interesting results concerns the
G6PD gene. G6PD deficiency is the most common enzymopathy of humans. Its potential role in
protecting against falciparum malaria has been controversial (Clarke et al., 2017; Watson et al.,
2019). A very large multi-country genetic association study with over 11,000 severe malaria cases
and 17,000 population controls found no overall protective effect of the G6PD+202T allele (the
most common mutation in sub-Saharan Africa causing G6PD deficiency), under an additive model
(The Malaria Genomic Epidemiology Network, 2074). The same pattern is observed in this Kenyan
cohort (which is a subset of the larger study). In the Kenyan cohort overall, a previous analysis
found no clear evidence of protection for male homozygotes but substantial evidence of protec-
tion for female heterozygotes (Uyoga et al., 2015). This would suggest a heterogyzote advantage
leading to a balancing polymorphism. However, when the Kenyan cases are modelled as two dis-
tinct sub-populations, there is evidence of differential effects between the ‘severe malaria’ and ‘not
severe malaria’ sub-populations. Hemi and homozygous G6PD deficiency was associated with an
increased risk of mis-classification (reflecting an increased risk of severe anaemia), but it is unclear
whether or not hemi’homozygous G6PD deficiency was protective in the ‘true severe malaria’ sub-
population (Figure 6C). On the other hand, heterozygote deficiency was very clearly protective in
the true severe malaria subgroup, consistent with previous findings, and did not appear to lead
to an increased risk of mis-classification (consistent with a lower risk of extensive haemolysis and
thus false classification in heterozygotes who have both normal and G6PD deficient erythrocytes
in their circulation). When examining the ‘severe malaria’ sub-population only, the sample size in
this study is too small to discriminate between the heterozygote and additive models of associa-
tion. In our view, the relationship between G6PD deficiency and severe falciparum malaria remains
unanswered. A biomarker driven approach should be applied to other case-control cohorts for a
definitive understanding of the role of this major human polymorphism.

The limitations of our diagnostic model can be summarised as follows. First, the validity and
interpretation of the individual probabilities of severe malaria is heavily dependent on the refer-
ence model and thus the reference data. Our reference data were primarily from Asian adults in
whom diagnostic specificity for severe malaria is thought to be very high. Diagnostic checks sug-
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gested that the marginal distributions of platelet counts were similar between adults and children,
and we made age corrections to the white blood cell count, but small deviations could reduce the
discriminatory value (e.g. lower white counts associated with the Duffy negative phenotype, Reich
et al., 2009). Second, it is possible that rare genetic conditions exist in which the probabilities of
severe malaria under this model might be biased. One example is sickle cell disease (HbSS, <0.5%
in the Kenyan cases), which results in chronic inflammation with high white counts and low platelet
counts relative to the normal population (Sadarangani et al., 2009). The 11 children with HbSS in
this cohort were all assigned low probabilities of severe malaria, but this should be interpreted
with caution. Whether HbSS is protective against severe malaria or increases the risk of severe
malaria remains unclear (Williams and Obaro, 2011). For these patients, other biomarkers such
as plasma PfHRP2 may be more appropriate. Third, it is possible that the joint distribution of the
complete blood count variables used to fit the reference model could be dependent on the severe
malaria sub-phenotype. For example, if the reference data were biased towards cerebral malaria,
and the joint distribution of platelet and white cell counts in cerebral malaria differed from those
in the other severe malaria syndromes, then the predicted outliers could represent other forms
of severe malaria instead of 'not-severe’ malaria. However, there are no known biological reasons
why this would be the case. The strong correlation between platelet counts and PfHRP2 (Figure
1B) suggests that low platelet counts are a universal feature of severe malaria.

In summary, under a probabilistic model based on routine blood count data, we have shown
that it is possible to estimate mis-classification rates in diagnosed severe childhood malaria in a
malaria endemic area of East Africa and compute probabilistic weights that can downweight the
contribution of likely mis-classified cases. The well-established protective effect of HbAS provided
an independent validation of the model. Relative to predicted mis-classified cases, patients pre-
dicted to have ‘true severe malaria’ had a substantially lower prevalence of HbAS, higher parasite
densities, lower rates of positive blood cultures, and lower mortality. These data strongly sup-
port the current guideline to give broad spectrum antibiotics to all children with suspected severe
malaria and suggest that normal range platelet counts (>200,000 per uL) could be used as a simple
exclusion criterion in studies of severe malaria. Based on this analysis we recommend that future
studies in severe malaria collect and record complete blood count data. Further studies of platelet
and white blood cell counts from a diverse cohort of children with severe falciparum malaria, con-
firmed using high specificity diagnostic techniques such as visualisation of the microcirculation,
and measurement of plasma PfHRP2, or plasma P. falciparum DNA concentrations should be con-
ducted to validate this approach.

Methods and Materials

Data

Kenyan case-control cohort

The Kenyan case-control cohort has been described in detail previously (Ndila et al., 2018). Severe
malaria cases consisted of all children aged <14 years who were admitted with clinical features
of severe falciparum malaria to the high dependency ward of Kilifi County Hospital between June
11th 1999 and June 12th 2008. Severe malaria was defined as a positive blood-film for P. falciparum
along with: prostration (Blantyre Coma Score of 3 or 4); cerebral malaria (Blantyre Coma Score
of <3); respiratory distress (abnormally deep breathing); severe anaemia (haemoglobin < 5 g/dL).
Controls were infants aged 3-12 months who were born within the same area as the cases and who
were recruited to a cohort study investigating genetic susceptibility to a wide range of childhood
diseases. Cases and controls were genotyped for the rs334 SNP and for a*-thalassaemia along with
120 other SNPs using DNA extracted from fresh or frozen samples of whole blood as described in
detail previously (Ndila et al., 2018, Wambua et al., 2006).
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Fluid Expansion as Supportive Therapy (FEAST)

FEAST was a multicentre randomised controlled trial comparing fluid boluses for severely ill chil-
dren (n =3,161) that was not specific to severe malaria (Maitland et al., 2011). Platelet counts, white
blood cell counts, parasite densities and PfHRP2 were jointly measured for 566 children (patients
enrolled in the sites in Mulago, Lacor and Mbale, in Uganda). In order to select only those with a
very high probability of having severe malaria as the primary cause of illness, we selected the 121
children who had measured PfHRP2 > 1,000 ng/mL and parasitaemia > 1,000 per uL.

AQ Vietnam and AAV randomised controlled trials

The AQ and the AAV studies were two randomised clinical trials in Vietnamese adults diagnosed
clinically with severe falciparum malaria recruited to a specialist ward of the Hospital for Tropical
Diseases, Ho Chi Minh City, Vietnam, between 1991 and 2003 (Hien et al., 1996; Phu et al., 2010). AQ
Vietnam was a double blind comparison of intramuscular artemether versus intramuscular quinine
(n =560); AAV compared intramuscular artesunate and intramuscular artemether (n =370).

Observational studies in Thai and Bangladeshi adults and children

We included data from multiple observational studies in severe falciparum malaria conducted by
the Mahidol Oxford Tropical Medicine Research Unit in Thailand and Bangladesh between 1980
and 2019. These pooled data have been described previously (Leopold et al., 2019). Platelet counts
and white blood cell counts were available in 657 patients. We excluded one 30 year old adult from
Bangladesh whose recorded platelet count was 1,000 per pL, and three other adults with platelet
counts greater than 450,000 per ul as outliers reflecting likely data entry errors. Plasma PfHRP2
concentrations were available in 172 patients from Bangladesh. 55 patients from this series were
younger than 15 years of age.

Multiple imputation

In the Kenyan severe malaria cohort (n =2,220), data on platelet counts were missing in 18%, white
blood counts were missing in 0.2%, and parasite density was missing in 1.6%. In-hospital outcome
(died/survived) was missing for 13 patients. rs334 genotype was missing for 7; a*-thalassaemia
genotype was missing for 101 patients. In the Vietnamese adults, platelet counts were missing in
4%, white counts in 2% and parasitaemia in 0%.

We did multiple imputation using random forests for all available clinical variables using the R
package missForest (targeted genotyping data was not included for imputation). Appendix 7 shows
the missing data pattern in the studies in Vietnamese adults and in the Kenyan severe malaria cases.
Ten datasets were imputed for each dataset independently and were used for the subsequent
analyses. Analyses using directly typed genetic polymorphisms or the within-hospital outcome as
the dependent variables used only the data where these outcomes were recorded, assuming that
they were missing at random.

Reference model of severe malaria

Biological rationale

Thrombocytopenia accompanied by a normal white blood count and a normal neutrophil count
are typical features of severe malaria (Hanson et al., 2015; Leblanc et al., 2020), but they may
also occur in some systemic viral infections and in severe sepsis. Neutrophil leukocytosis may
sometimes occur in very severe malaria, but is more characteristic of pyogenic bacterial infections.
These indices, whilst individually not very specific, could each have useful discriminatory value.
We reasoned therefore that their joint distribution could help discriminate between children with
severe malaria versus those severely ill with coincidental parasitaemia. The Kenyan severe malaria
cohort did not have differential white count data, so we used platelet counts and total white blood
cell counts as the two diagnostic biomarkers in the reference model of severe malaria.
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Choice of training data and confounders

The best data for fitting the biomarker model are either from children or adults from low transmis-
sion areas (where parasitaemia has a high positive predictive value); or in children or adults with
high plasma PfHRP2 measurements indicating a large latent parasite biomass (Hendriksen et al.,
2012).

In the first years of life, white blood cell counts are often much higher than in adults because of
lymphocytosis. We used data from 858 children from the FEAST trial, in whom white counts were
measured, to estimate the relationship between age and mean white count in severe iliness (me-
dian age was 24 months). The estimated relationship is shown in Appendix 8 (using a generalised
additive linear model with the white count on the log,, scale), with mean white counts reaching a
plateau around 5 years of age. We used this to correct all white count data in children less than 5
years of age, both in the training data and the Kenyan cohort.

There is also a systematic difference associated with the Duffy negative phenotype which is
near fixation in Africa but absent in Asia. Duffy negative individuals have lower neutrophil counts
(termed benign ethnic neutropenia) (Reich et al., 2009). The use of Asian adults to estimate the
reference distribution of white counts in severe malaria could thus falsely include individuals with
elevated white counts (relative to the normal ranges). However, a diagnostic quantile-quantile plot
(Appendix 1, on the log-scale) comparing the white blood cell count distribution in Vietnamese
adults and in children in the FEAST trial who had PfHRP2 > 1,000 ng/mL did not suggest any major
differences. In fact the African children had slightly higher white counts on average even after
the correction for age. This may represent imperfect specificity for severe malaria when using a
plasma PfHRP2 cutoff of 1,000 mg/mL.

For platelet counts (which have the greatest diagnostic value for severe malaria in our series)
age is not a confounder and published data support the hypothesis that thrombocytopenia is highly
specific for ‘true’ severe malaria in children as well as adults suspected of having severe malaria
(with a diagnostic and a prognostic value). The French national guidelines specifically mention
thrombocytopenia (<150,000 per L) for the diagnosis of severe malaria in children who have trav-
elled to a malaria endemic area. In a French paediatric severe malaria series in travellers, almost
half had severe thrombocytopenia (<50,000 per ulL) (Lanneaux et al., 2016; Mornand et al., 2017).
In Dakar, Senegal (one of the lowest transmission areas in Africa) thrombocytopenia was an in-
dependent predictor of death and the median platelet count was 100,000 (Gérardin et al., 2007,
2002). Comparison of the distributions of platelet counts (on the log scale) between Asian children
and Asian adults suggested no major differences (Appendix 1), although we had few data for Asian
children. In the seminal Blantyre autopsy study (Taylor et al., 2004), platelet counts were substan-
tially different between fatal cases confirmed post-mortem to be severe malaria (62,000 per uL,
and 56,000 per ul for the children with sequestration only, and for sequestration + microvascular
pathology, respectively) and fatal cases with a mis-diagnosis of severe malaria (no sequestration:
176,000 per ul; the inter-group difference was statistically significant, p = 0.008). A larger cohort
from the same centre in Malawi reported substantially higher platelet counts in retinopathy nega-
tive cerebral malaria (mean platelet count was 161,000 per L, n =288) compared to retinopathy
positive cerebral malaria (mean count was 81,000 per uL, n =438) (Small et al., 2017).

We visually checked approximate normality for each marginal distribution using quantile-quantile
plots (Appendix 9). On the log,, scale, platelet counts and white counts show a good fit to the nor-
mal approximation but with some outliers so a t-distribution was used (robust to outliers). For all
modelling of the joint distribution of platelet counts and white blood cell counts, we chose bivariate
t-distributions with 7 degrees of freedom as the default model. The final reference model used was
a bi-variate t-distribution fit to the joint distribution of platelet counts and white counts both on
the logarithmic scale. On the log,, scale the mean values (standard deviations) were approximately
1.76(0.11)and 0.92 (0.055) for platelets and white counts, respectively. The covariance was approx-
imately 0.0035. These values varied very slightly across the ten imputed datasets. Log-likelihood
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values for each severe malaria case in the Kenyan cohort were calculated for each imputed dataset
independently. The median log-likelihoods per case were then used in downstream analyses.

Limitations of the model

The diagnostic model of severe malaria using platelet counts and white blood cell counts cannot
be applied to all patients. We summarise here the known and possible limitations. When using this
model to estimate the association between a genetic polymorphism and the risk of severe malaria,
if the genetic polymorphism of interest affects the complete blood count independently, there will
be selection bias (see the directed acyclic graph in Appendix 10). One example is HbSS. Children
with HbSS have chronic inflammation with white blood cells counts about 2-3 times higher than
normal and slightly lower platelet counts (Sadarangani et al., 2009). All 11 children in the Kenyan
cohort with HbSS were assigned low probabilities of having severe malaria (Appendix 10), but these
probabilities could reflect a deficiency of the model. Including or excluding these children from the
analysis had no impact on the results as they represent less than 0.5% of the cases.

The second possible limitation concerns the validation using HbAS. Previous studies have sug-
gested negative epistasis between the malaria-protective effects of HbAS and «*-thalassaemia
(Williams et al., 2005; Opi et al., 2014). The 3.7 kb deletion across the HBA1-HBAZ2 genes (known as
a*-thalassaemia) has an allele frequency of ~ 40% in this population, therefore 16% of HbAS individ-
uals are homozygous for a*-thalassaemia (Ndila et al., 2020). Negative epistasis implies that those
with both polymorphisms would have less or no protective effect against severe malaria. Of the
2,113 Kenyan cases with both HbS and a*-thalassaemia genotyped, 13 were HbAS and homozy-
gous at-thalassaemia. Appendix 11 shows that the majority of those with both polymorphisms
had clinical indices pointing away from severe malaria suggesting that the observed number of
patients with both HbAS and homozygous a*-thalassaemia is inflated by 2 to 3 fold.

The third possible problem concerns the use of white blood cell counts in relation to invasive
bacterial infections. Bacteraemia could either be the cause of severe illness (with coincidental
parasitaemia), or it could be concomitant (which may result from extensive parasitised erythrocyte
sequestration in the gut), i.e. a result of severe malaria. The former should be identified as ‘not-
severe malaria’ (as bacteraemia is the main cause of illness), but the latter should be identified as
‘severe malaria’ and might be mis-classified as ‘not-severe malaria’ under our model. However, in
a series of 845 Vietnamese adults (high diagnostic specificity), only one of eight patients who had
concomitant invasive bacterial infections and a white count measured had leukocytosis (median
white count was 8,100; range 3,500 to 14,850 per uL, Phu et al., 2020).

Estimating the diagnostic specificity in the Kenyan cohort

We assume that the Kenyan cases are a latent mixture of two sub-populations: P, is the population
‘severe malaria’ and P, is the population ‘not-severe malaria’ (mis-classified). For a set of diagnostic
biomarkers X, this implies that X ~ G = = f, + (1 — x) f,, where f,, f, are the sampling distributions
(likelihoods) of each sub-population, respectively.

We can infer the value of x (proportion correctly classified as severe malaria) without mak-
ing parametric assumptions about f, by using the distribution of HbAS (motivated by the causal
pathways shown in Figure 2). This is done as follows: we first estimate £, by fitting a bivariate t-
distribution to the training data - this approximates the sampling distribution for P,. We then make
three assumptions:

1. Out of the 2,213 Kenyan cases with rs334 genotyped, we assume that cases in the top 40th
percentile of the likelihood distribution under f, are drawn from P: N, = 887, of which
N;iKle = 9 are HbAS.

2. For the other cases the proportion drawn from P, is unknown and denoted z’: N, = 1,326,
of which N = 48 are HbAS.

3. Finally, additional information is incorporated by using data from a cohort of individuals with
severe disease from the same hospital who had positive malaria blood slides but whose di-
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agnosis was not severe malaria (N, = 6,748, of which N]“'C’"E = 364 were HbAS) (Uyoga et al.,
2019).

Under these assumptions, we can fit a Bayesian binomial mixture model to these data with
three parameters: {z’, p,, p,}. The likelihood is given by:

N;'eKe ~ Binomial(p,, Ny)
NieKe ~ Binomial(z'py + (1 — #')p;, Ng)
N;'eKe ~ Binomial(p,, N,)

The priors used were: p, ~ Beta(5,95) (i.e. 5% prior probability with 100 pseudo observations);
py ~ Beta(1,99) (1% prior probability with 100 pseudo observations). A sensitivity analysis with
flat beta priors (Beta[1,1]) did not qualitatively change the result (by one percentage point for the
final estimate of x). To check the validity of the use of the external population from Uyoga et al.
(2019), we did a sensitivity analysis using the lowest quintile of the likelihood ratio distribution as
a population drawn entirely from P, (instead of the external data from Uyoga et al., 2079).

Estimating P(Severe malaria | Data) in the Kenyan cohort
Denote the platelet and white count data from the FEAST trial as { XT¥4T}2}; the data from the
Vietnamese adults and children as {X/2}!5%5; the data from the Kenyan children as {X:(e”ya 220,

We fit the following joint model to the training biomarker data and the Kenyan biomarker data.

XTST ~ Student(uy,,. =5, 7)

XiAsia N Student(ﬂfw’ ZZSM’ 7

XY L nfo+(1-n)f,

fo = pStudent(uy,,. =\ ,,.7) + (1 — p) Student(y?,, . =}

s D

K

fl = 2 a/ StUdent(‘uiorSM’ZitotSM’7)

Jj=1

with the following prior distributions and hyperparameters, where a = {a, .., ax } such that Zle a; =
1:

7 ~ Beta(40.3,24.7)
p ~ Beta(2,2)
st~ Normal({1.8,0.95},0.1%)

u-K  ~ Normal({2.5,1.5},0.25%)

a ~ Dirichlet(1/K,...,1/K)

The covariance matrices Z;L and Xi;5, were parameterised as their Cholesky LK] decomposition,
where the L correlation matrices had a uniform prior (i.e. hyperparameter v=1). The model was
implemented in rstan.

This models the biomarker data in ‘not severe malaria’ as a mixture of K t-distributions. We
chose K = 6 as the default choice (sensitivity analysis increasing this has no impact). The Dirichlet
prior with hyperparameter 1/K forces sparsity in this mixture model (most of the prior weight is
on the vertices of the K-dimensional simplex), see for example Friihwirth-Schnatter and Malsiner-
Walli (2019). This is a very general and flexible way of modelling the ‘not severe malaria’ distribution:
we are not trying to make inferences about this distribution, we just want the mixture model to
be flexible enough to describe it. The model also allows for differences in the joint distribution of
platelet counts and white counts between the training datasets (FEAST trial and the Asian studies).
The Kenyan cases drawn from the ‘severe malaria’ sub-population are then modelled as a mix of
these two training models.
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Reweighted likelihood for case-control analyses

For each {X[“"*}2% we estimate the posterior probability of being drawn from the sampling dis-
tribution f,. The mean posterior probability then defines a precision weight w; which can be used
in a standard generalised linear model (glm) with the same interpretation as inverse probability
weights. The weighted glm is equivalent to computing the maximum likelihood estimate where
the log-likelihood is weighted by w,. In our case-control analyses all the controls are given weight
1. Nie et al. (2013) give a proof of correctness for this re-weighted log-likelihood (equivalent to
tilting’ the dataset towards the desired distribution f,(X)). The log odds ratio computed from the
weighted logistic regression can be interpreted as the causal effect of the polymorphism on ‘true
severe malaria’ relative to the controls, where ‘true severe malaria’ is defined by the sampling dis-
tribution f,. Appendix 12 shows the results of a simulation study demonstrating how the effect
estimates and standard error estimates vary as a function of the proportion of mis-classified cases
(as given by the probability weights).

Genome-wide association study

Anonymised whole genome data from the Illumina Omni 2.5M platform for 1,944 severe malaria
cases and 1,738 population controls were downloaded from the European Genome-Phenome
Archive (dataset accession ID: EGAD00010001742, release date March 2019 (Band et al., 2019)).
This contained sequencing data on 2,383,648 variants. We used the quality control meta-data pro-
vided with the 2019 data release to select SNPs and individuals with high quality data. We first
excluded 386 individuals (due to relatedness: 155; missing data or low intensity: 226; gender: 5).
We then removed 616,426 SNPs that did not pass quality control, leaving a total of 1,767,222 SNPs.
We used plink2 to prune the SNPs (options: -maf 0.01 -indep-pairwise 50 2 0.2) down to a set of
462,120 SNPs in approximate linkage equilibrium. These SNPs were then used to calculated the
first 5 principal components (Appendix 13), which we subsequently used to control for population
structure in the genome-wide association study. We used the Michigan imputation server with the
1000 Genomes Phase 3 (Version 5) as the reference panel to impute 28.6 million polymorphisms
across the 22 autosomal chromosomes. This is a web-based service that runs imputation pipelines
(phasingis done with Eagle2, imputation with Minimac4). Encrypted results are returned with a one-
time password. Of the remaining 3,682 individuals (1,681 cases and 1,615 controls), we had clinical
data available for 1,297 cases. We only used the subset of individuals with clinical data available
in order for a fair comparison between the weighted and non-weighted genome-wide association
studies. We ran subsequent genome wide association studies on all bi-allelic sites with a minor al-
lele frequency > 5% (9,615,446 sites in total) assuming an additive model of association. We used
the R function gim with a binomial link for all tests of association (genetic data are encoded as the
number of reference alleles). The supplementary appendix gives the R code for weighted logistic
regression. The point estimates from the weighted model estimated by gim are correct but it is
necessary to transform the standard errors in order to take into account the reduction in effective
sample size (see code).

Case-control study in directly typed polymorphisms

We fit a categorical (multinomial) logistic regression model to the case-control status as a function
of the directly typed polymorphisms (120 after discarding those that are monomorphic in this pop-
ulation, see (Ndila et al., 2018) for additional details). We modelled the severe malaria cases as
two separate sub-populations with a latent variable: ‘severe malaria’ versus ‘not severe malaria’,
resulting in 3 possible labels (controls, ‘severe malaria’, ‘not severe malaria’). The models adjusted
for self-reported ethnicity and sex. The model was coded in stan (Stan Development Team, 2020)
using the log-sum-exp trick to marginalise out the likelihood over the latent variables (see code).
Normal(0,5) priors were set on all parameters and parameter estimates and standard errors were
estimated from the maximum a posteriori value (function optimizing in rstan).
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sss Code availability
sss Code along with a minimal clinical dataset for reproducibility of the diagnostic phenotyping model
ss7 IS available via a github repository: https://github.com/jwatowatson/Kenyan phenotypic accuracy.

sss Data availability

sso A curated minimal clinical datasetis currently available alongisde the code on the github repository.
seo  This will also be made available at publication via the KEMRI-Wellcome Harvard Dataverse (https:
so1 //dataverse.harvard.edu/dataverse/kwtrp).

502 This paper used genome-wide genotyping data generated by Band et al. (2019), available on
so3 request from the European Genome-Phenome Archive (dataset accession ID: EGAD00010001742).
504 Requests for access to appropriately anonymized clinical data and directly typed genetic vari-

sos ants (The Malaria Genomic Epidemiology Network, 2014) for the Kenyan severe malaria cohort
ses Can be made by application to the data access committee at the KEMRI-Wellcome Trust Research
sez Programme by e-mail to mmunene@kemri-wellcome.org.

508 The FEAST trial datasets are available from the principal investigator on reasonable request
soo  (k.maitland@imperial.ac.uk). Requests for access to appropriately anonymized clinical data from
s00 the AQ and AAV Vietnam study and the Asian paediatric cohort can be made via the Mahidol Oxford
s01 Tropical Medicine Research Unit data access committee by emailing the corresponding author JAW
s02 (jwatowatson@gmail.com) or Rita Chanviriyavuth (rita@tropmedres.ac).
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Appendix 1 Figure 1. Comparison of the marginal distributions of white blood cell counts
between Asian adults and children with severe malaria and African children with severe
malaria. FEAST: 121 severely ill Ugandan children with PfHRP2 > 1,000 ng/mL (Maitland et al., 2011).
Vietnamese adults: 930 adults from two large randomised trials in severe malaria (Phu et al., 2010;
Hien et al., 1996). Bangladesh/Thailand: 653 adults and children from observational studies of severe
malaria (Leopold et al., 2019).
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Appendix 1 Figure 2. Comparison of the marginal distributions of platelet counts between
Asian adults and children with severe malaria and African children with severe malaria. FEAST:
121 severely ill Ugandan children with PfHRP2 > 1,000 ng/mL (Maitland et al., 2011). Vietnamese
adults: 930 adults from two large randomised trials in severe malaria (Phu et al., 2010; Hien et al.,
1996). Bangladesh/Thailand: 653 adults and children from observational studies of severe malaria
(Leopold et al., 2019). The bottom left ggplot compares the white counts from the children in te FEAST
study with the combined dataset from Vietnam and Bangladesh/Thailand.
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702 Appendix 2 Figure 1. The relationship between platelet counts and plasma PfHRP2 in severely
703 ill African children. The black line (shaded area) shows the estimated probability (95% confidence
794 interval) that the plasma PfHRP2 > 1,000 ng/mL as a function of log;, platelet count. This fit is derived
705 from a generalised additive logistic regression model (p < 10~'¢ for the spline term), fit using the R
796 package mgcv. The generalised additive model was fit to data from 566 African children enrolled in
797 the FEAST trial (Maitland et al., 2011) (all the children who had both platelet counts and PfHRP2 data
798 available). Plasma PfHRP2 > 1,000 ng/mL is highly discriminatory for severe malaria (Hendriksen
800 et al., 2012).
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803 Appendix 3 Figure 1. Effect of permuting the weights in the re-weighted (data-tilting) GWAS.
804 Here we show the results of 20 random permutations of the weights, applied to the Kenyan

805 case-control GWAS using only chromosomes 4, 9 and 11 (where the top hits are - we limit it to these 3
806 chromosomes for computational reasons). The random permutations (grey) decrease the number of
807 significant hits compared to the non-weighted (thick black) and the non-permuted re-weighted model
808 (dashed purple).
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Appendix 4 Figure 1. Comparison of the non-weighted and weighted models of association for
directly typed polymorphisms previously reported as associated with severe malaria (Ndila

et al., 2018). Panel A: estimated effect sizes under the non-weighted model versus the difference in
effect sizes between the weighted and non-weighted models (absolute effects on the log-odds scale).
Differences > 0 imply that the absolute effect size is estimated to be larger under the weighted model.
Panel B: -log;, p-values under the non-weighted model versus the differences in -log;, p-values under
the weighted and non-weighted models, again differences >0 represent larger -log,, p-values for the
weighted model. Each point is represented by the gene name. In each case we use the model that
best fit the data in the original analysis (Ndila et al., 2018). For the X-linked polymorphisms (G6PD,
CD40LG), multiple models were reported and so the association model is also shown: H
(heterozygote); A (additive); M (males only); F (females only); M/F (all).
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826 Appendix 5 Figure 1. Case-only analysis of five key polymorphisms effecting red cells, reported
827 in Ndila et al. (2018) under additive, recessive or heterozygote models. The horizontal dashed
828 lines show the estimated frequency in the controls (for additive models this is the frequency of the
820 derived allele, for the heterozygote or recessive models this is the frequency of the genotype thought
830 to confer protection). The line (shaded area) show logistic regression fits with P(Severe malaria | Data)
831 as the predictor (95% confidence interval of the fit). The p-value corresponds to the test that the
832 predictor P(Severe malaria | Data) is not associated with the genotype in the cases only. OBG: O
832 Blood Group
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837 Appendix 6 Figure 1. Distribution of admission haemoglobin concentrations as a function of
838 P(Severe malaria | Data). Severe anaemia is generally defined as a haemoglobin less than 5 g/dL in
839 African children diagnosed with severe malaria, shown by the horizontal dashed red line in the top
840 panel and the vertical dashed red lines in the bottom panels. The vertical dashed red lines in the top
841 panel show the top and bottom quintiles of the probability distribution (0.9 and 0.2, respectively).
842 Patients in the bottom quintile of the probability distribution had a markedly bi-modal distribution in
843 haemoglobin concentrations with a substantial proportion meeting the severe anaemia criterion and
8aa a substantial proportion with relatively high haemoglobin concentrations (> 10 g/dL), suggesting two
845 patients subgroups. Patients in the top quintile had a uni-modal distribution of haemoglobin.
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Appendix 7 Figure 1. Pattern of missing clinical data in the 930 Vietnamese adults. These data
pool the AQ Vietnam severe malaria study (Hien et al., 1996) and the AAV severe malaria study (Phu

et al., 2010) (red: missing; yellow: recorded).
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854 Appendix 7 Figure 2. Missing clinical data in the 2,220 Kenyan children diagnosed with severe
856 malaria . (red: missing; yellow: recorded).
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859 Appendix 8 Figure 1. Relationship between age and mean white count (modelled on the log,
860 scale). This is estimated from 858 children in the FEAST trial who had white counts available using a
861 additive linear model (p = 10~8 for the smooth spline term). We used this model to adjust observed
862 log;o White counts in all children less than 5 years of age in the training and testing datasets.
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Appendix 9 Figure 1. Normal-quantile plots for platelet counts and white blood cell counts in
the training data. Both were standardised to have mean 0 and standard deviation of 1 on the log,,

scale. The diagonal lines shows the identity line.
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872 Appendix 10 Figure 1. Collider bias in the diagnostic model of severe malaria based on
873 complete blood count data. HBB in its homozygous S form (HbSS, <1% prevalence in this Kenyan
874 population) is a rare example of how this can occur. Children with HbSS have white counts above 2-3
875 times higher than the normal population and slightly lower platelet counts (Sadarangani et al., 2009).
876 Under the probabilistic model, all 11 children with HbSS were classified as having a low probability of
877 severe malaria, based on their high white counts (mean 40,000 per ulL). These probabilities cannot be
878 taken at face value and it remains an unanswered question whether children with HbSS are more or
880 less susceptible than their wild-type counterparts (Williams and Obaro, 2011)
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882 Appendix 10 Figure 2. The relationship between HbSS and the estimated probabilities of severe
883 malaria under the diagnostic model. There were 11 children with HbSS and they all had low
884 probabilities of severe malaria but this is biased as these children have chronic inflammation with
885 white counts 2-3 higher than the general population (Sadarangani et al., 2009) (see above Figure for
8sv the causal diagram showing collider bias).
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890 Appendix 11 Figure 1. Scatter plots of platelet counts versus white blood cell counts for the Kenyan
891 cohort, showing the 13 individuals with the double mutation HbAS & homozygous a*-thalassaemia as
892 large black diamonds (HZ-alpha-thal)). The red-yellow-blue colour scheme is proportional to the
898 P(Severe malaria | Data) as given by the legend in the top left corner.
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Appendix 12

Simulation study
To demonstrate how the re-weighted likelihood works on simulated data where the true
latent classes are known, we constructed the following simulation assuming:

+ A biallelic marker with a derived allele frequency of 10% in the control population
(diplotypes encoded as 0, 1, 2).
+ An additive protective effect for the true cases resulting in a derived allele frequency
of 7% in the true cases; no effect in the false cases.
+ The latent class probability weights for the true cases are drawn from a Beta(0.2, 1)
distribution, and the probability weights for the false cases are drawn from a Beta(1,
0.2) distribution.
+ A proportion of true versus false cases varying between 50 and 100%.

The R code for the simulation is given in the file Simulation_study_weightedLikelihood.R
inthe github repository https://github.com/jwatowatson/Kenyan _phenotypic_accuracy. Figures
1 and 2 show how the estimates effect sizes, the standard errors and the power (1-type 2

error) vary as a function of the proportion of the true cases.
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Appendix 12 Figure 1. Simulation study demonstrating how likelihood re-weighting can improve
estimation accuracy in case-control studies. Panels A and B show histograms of the case probability
weights used in the simulations for the scenarios when 50% of cases are true cases, and when 100%
of cases are true cases, respectively. Panel C: estimated effect sizes as a function of the proportion of

mis-classified cases. Panel D: standard errors of effect estimates as a proportion of mis-classified
cases.
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Appendix 12 Figure 2. Effect of case re-weighting on power (1-type 2 error). The thick red line shows

the estimated power for the re-weighted approach; the dashed black line shows the estimated power
for the non-weighted approach.
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Appendix 13 Figure 1. Principal components analysis of 1,666 Kenyan cases and 1,606 population
controls. The colours show the main self-reported ethnicities (black: Chonyi; red: Giriama; green:
Kauma; blue: other). The first 5 principal components were used to stratify for population structure in

the GWAS analyses.
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