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Abstract20

Severe falciparum malaria has substantially affected human evolution. Genetic association21

studies of patients with clinically defined severe malaria and matched population controls have22

helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision23

compromises discovered associations. In areas of high malaria transmission the diagnosis of24

severe malaria in young children and, in particular, the distinction from bacterial sepsis, is25

imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet and26

white count data. Under this model we re-analysed clinical and genetic data from 2,220 Kenyan27

children with clinically defined severe malaria and 3,940 population controls, adjusting for28

phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated that29

approximately one third of cases did not have severe malaria. We propose a data-tilting30

approach for case-control studies with phenotype mis-labelling and show that this reduces false31

discovery rates and improves statistical power in genome-wide association studies.32

33

Introduction34

Severe malaria caused by the parasite Plasmodium falciparum kills nearly half a million children35

each year, mostly in sub-Saharan Africa (World Health Organization, 2020). By causing death in36

children before they reach their reproductive age, P. falciparum has exerted a substantial selec-37

tive evolutionary pressure on the human genome (Carter and Mendis, 2002; Kariuki and Williams,38

2020). Recent advances in whole genome sequencing and haplotype imputation (Teo et al., 2010),39

1 of 39

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.04.16.440107doi: bioRxiv preprint 

jwatowatson@gmail.com
https://doi.org/10.1101/2021.04.16.440107
http://creativecommons.org/licenses/by/4.0/


combined with data gathered prospectively from large patient cohorts has improved our under-40

standing of genetic susceptibility to P. falciparum infection and severe disease (Band et al., 2013;41

TheMalaria Genomic Epidemiology Network, 2014; Band et al., 2019; Leffler et al., 2017) but many42

questions remain unanswered (Kariuki and Williams, 2020). A major limitation of genetic associ-43

ation studies in severe malaria is that the diagnosis of severe falciparum malaria in children is44

imprecise (White et al., 2013; Taylor et al., 2004; Bejon et al., 2007). This imprecision increases45

with transmission intensity because of the low positive predictive value of a ‘positive blood film’46

or rapid diagnostic test (RDT) in areas where the background prevalence of microscopy detectable47

parasitaemia in apparently healthy young children is high (often around 30%, Rodriguez-Barraquer48

et al. (2018), but can exceed 90%, Smith et al. (1994)).49

Severe falciparum malaria has been defined by experts convened by the World Health Organi-50

zation (WHO) as clinical or laboratory evidence of vital organ dysfunction in the presence of circu-51

lating asexual P. falciparum parasitaemia (World Health Organisation, 2014). The WHO definition52

of severe malaria is aimed primarily at clinicians and health care workers managing patients with53

malaria who appear severely ill. This appropriately prioritises sensitivity over specificity (Anstey54

and Price, 2007). An inclusive clinical definition ensures that cases are not missed and patients55

receive the best treatment. In contrast genetic association studies require high specificity (Zonder-56

van and Cardon, 2007). For a given sample size, their statistical power, false-discovery rates and57

the validity of their interpretation are weakened by phenotypic inaccuracy. Specificity in the diag-58

nosis of severe malaria depends in part on the prevalence of malaria parasitaemia. This reflects59

background transmission intensity. In areas of low or seasonal transmission (e.g. most of endemic60

Asia and the Americas), clinical and laboratory signs of severity accompanied by a positive blood61

film for P. falciparum are highly specific for severe malaria, which predominantly affects young62

adults. In contrast in high transmission areas in sub-Saharan Africa and in lowland areas of the63

island of New Guinea, where severe malaria is largely a disease of young children, the diagnostic64

criteria for defining severe malaria are less specific because of the high background prevalence65

of asymptomatic parasitaemia and the lower specificity of the clinical manifestations. Standard66

case definitions of severe malaria will therefore inevitably include both patients with non-malarial67

severe illness with concomitant parasitaemia, and with concomitant non-severe malaria.68

Our goal was to develop a biomarker-based model that can differentiate probabilistically be-69

tween ‘true severe malaria’ and severe illness not caused primarily by malaria, but with concomi-70

tant parasitaemia. Wedefine ‘true severemalaria’ conceptually as a febrile illness causedbymalaria71

parasites, with organ dysfunction, that can result in death wherebymortality is attributable directly72

to the malaria parasites. This attributable mortality can be given a formal causal definition by us-73

ing a conceptual (albeit unethical) randomised experiment of delayed versus prompt anti-malarial74

therapy. In a theoretical patient population with true severe malaria, delay in administration of an75

effective antimalarial would result in increased mortalityWarrell et al. (1982); Gomes et al. (2009),76

whereas in a populationwith severe illness not caused bymalaria (‘not severemalaria’) therewould77

not be a corresponding increase in mortality.78

We developed a probabilistic diagnostic model of severe malaria based on haematological79

biomarkers using data from1,704 adults and childrenmainly from low transmission settingswhose80

diagnosis of severe malaria is considered to be highly specific. We used this model to demonstrate81

low phenotypic specificity in a cohort of 2,220 Kenyan children who were diagnosed clinically with82

severe malaria. We validated the predictions using a natural experiment, the distribution of sickle83

cell trait (HbAS), the genetic polymorphism with the strongest known protective effect against all84

forms of clinical malaria (The Malaria Genomic Epidemiology Network, 2014). Building on work85

on ‘data-tilting’ (Nie et al., 2013), we suggest a new method for testing genetic associations in the86

context of case-control studies in which cases are re-weighted by the probability that the severe87

malaria diagnosis is correct under the model. As proof-of-concept, we ran a genome-wide associa-88

tion study across 9.6million imputed bi-allelic variants using the subset of cases with genome-wide89

genotype data (n =1,297) and population controls (n =1,614). Adjusting for case mis-classification90
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decreased genome-wide false-discovery rates (Storey, 2002), and increased effect sizes in three91

of the top regions of the human genome most strongly associated with protection from severe92

malaria in East Africa (HBB, ABO, and FREM3, Band et al., 2019). A re-analysis of 120 directly typed93

polymorphisms in 70 candidatemalaria-protective genes in the 2,220 Kenyan cases and 3,940 pop-94

ulation controls, examining differential effects between correctly and incorrectly classified cases,95

suggests that the protective effect of glucose-6-phosphate dehydrogenase (G6PD) deficiency has96

been obscured in this population by casemis-classification. Our results show that adding full blood97

count meta-data - routinely measured in most hospitals in sub-Saharan Africa - to severe malaria98

cohorts would lead to more accurate quantitative analyses in case-control studies and increased99

statistical power.100

Results101

Reference model of severe malaria102

We used the joint distribution of platelet counts and white blood cell counts (both on a logarithmic103

scale) to develop a simple biomarker-based reference model of severe malaria. To fit the refer-104

ence model (i.e. P[Data | Severe malaria]), we used platelet and white count data from (i) severe105

malaria patient cohorts enrolled in low transmission areas where severe disease accompanied by106

a positive blood stage parasitaemia has a high positive predictive value for severe malaria (930107

adults from Vietnam (Hien et al., 1996; Phu et al., 2010) and 653 adults and children from Thailand108

and Bangladesh); and (ii) severely ill African children with plasma PfHRP2 concentrations > 1,000109

ng/ml and > 1,000 parasites per �L of blood (121 children from Uganda,Maitland et al., 2011). Se-110

vere illness accompanied by a high plasma PfHRP2 concentration makes the diagnosis of severe111

falciparum malaria highly specific (Hendriksen et al., 2012). The joint distribution of platelet and112

white blood cell counts in severemalaria wasmodelled as a bivariate t-distribution with both blood113

count variables on the log10 scale.114

Figure 1A shows the reference data (green triangles: patients with a highly specific diagnosis115

of severe malaria, summarised in Table 1) alongside data from a large Kenyan cohort of hospi-116

talised children diagnosed with severe malaria, whose diagnosis had unknown specificity (pink117

squares). The median platelet count in the reference data was 57,000 per �L and the median to-118

tal white blood cell count was 8,400 per �L. In contrast, the median platelet count in the Kenyan119

children was 120,000 per �L and the median total white blood cell count was 13,000 per �L. Di-120

rect comparisons of white counts across these two data sets are confounded by geography and121

age. Total white blood cell counts are known to be age-dependent and vary across genetic back-122

grounds, in particular lower neutrophil counts are associated with mutations in the ACKR1 gene123

that results in the Duffy negative phenotype prevalent in African populations (Reich et al., 2009).124

However, after adjustment for age (see Methods), the marginal distributions of total white counts125

were comparable between Asian adults and children with severe malaria and African children with126

high plasma PfHRP2 (Appendix 1). Platelet counts are not age dependent and do not vary substan-127

tially across genetic backgrounds. The marginal distributions of platelet counts were compara-128

ble between Asian adults and children with severe malaria and African children with high plasma129

PfHRP2 (Appendix 1). A low platelet count (thrombocytopenia) is a universal feature of severe130

malaria (see evidence collated in Methods). To illustrate this important point, in a cohort of 566131

severely ill Ugandan children enrolled in the FEAST trial (Maitland et al., 2011, a trial including all132

severe illness not restricted to severe malaria), low platelet counts were highly predictive of blood133

stage parasitaemia and elevated PfHRP2 (p=10−16 for a spline term on the log10 platelet count in a134

generalised additive logistic regression model predicting PfHRP2 > 1,000 ng/mL, Appendix 2). Chil-135

dren enrolled in the FEAST trial who had significant thrombocytopenia (<100,000 platelets per �L)136

had comparable PfHRP2 concentrations to Asian adults diagnosed with severe falciparummalaria137

(Figure 1B).138
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Figure 1. Platelet counts and white blood cell counts as diagnostic predictors of severe falciparum
malaria. Panel A shows the bi-variate marginal distribution for the reference data (thought to be highlyspecific to severe malaria, green triangles, n =1,704, summarised in Table 1) and for the Kenyan case data(pink squares, n =2,220; black diamonds: HbAS). The dashed ellipses show the 50 and 95% bivariate normalprobability contours approximating each dataset (dark green: training data; purple: Kenyan data). Panel Bshows the relationship between platelet counts and plasma PfHRP2 in adults with severe malaria fromBangladesh (green circles, n =172, the dashed green line shows a linear fit) and in children enrolled in theFEAST trial (n =567, not specific to severe malaria,Maitland et al., 2011). Undetectable plasma PfHRP2concentrations were set to 1 ng/mL ± random jitter. Orange squares: malaria-positive blood slide; blacktriangles: malaria-negative blood slide. The brown line shows a spline fit to the FEAST data (smooth.splinefunction in R with default parameters) including the data points where PfHRP2 was below the lower limit ofdetection.
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Table 1. Summary of severe disease data sets used in our analyses. For age and parasite density we show themedian values as the distributions are highly skewed. ∗For the FEAST trial, the severe malaria reference dataset only included platelet and white count data from the 121 patients who had PfHRP2 >1,000 ng/mL and
>1,000 parasites per �L.

Bangladesh-
Thailand Vietnam FEAST (Uganda) Kenya

Description
Observational
studies of se-
vere malaria

Randomised
controlled tri-
als in severe
malaria

Randomised
controlled trial
in severe febrile
illness

Observational
severe malaria
cohort

Purpose Reference data Reference data Reference data∗
and Fig 1B Testing data

Published ref-
erences

Leopold et al.
(2019)

Hien et al.
(1996); Phu et al.
(2010)

Maitland et al.
(2011)

Ndila et al.
(2018)

n 653 930 567 2,220
Age (years,
range)

28 (2-80) 30 (15-79) 2.1 (0-12) 2.3 (0-13)

Parasite den-
sity (per �L,
IQR)

48,984 (8,289-
187,395)

83,084 (13,047-
316,512) 400 (0-53,200) 72,000 (6,208-

315,250)

Mortality (%) 18.2 12.9 11.3 11.6

Estimating the proportion of children mis-diagnosed with severe malaria139

We can consider the hospitalised Kenyan children in this series as a mixture of two latent sub-140

populations, ‘severemalaria’ and ‘not severemalaria’ (i.e an alternative aetiology for severe illness).141

To estimate the proportion of each we use the distribution of HbAS, the human polymorphism142

most protective against all forms of clinical falciparummalaria. HbAS provides at least 90% protec-143

tion against severemalaria (Taylor et al., 2012; TheMalaria Genomic Epidemiology Network, 2014).144

The causal SNP rs334 was genotyped in 2,213 of the Kenyan children, of whom 57 were HbAS. The145

causal pathways (a) or (b) in Figure 2 (note all children have been selected into the study on the146

basis of clinical symptoms consistent with severe malaria) show how the distribution of HbAS can147

be used to infer the marginal probability P(Severe malaria) in the Kenyan cohort as the prevalence148

of HbAS is expected to differ in the two latent sub-populations.149

We assumed that cases with the highest likelihood values P(Data | Severe malaria) under the150

reference model (a bivariate t-distribution fit to the severe malaria reference data) had a diagnosis151

of severe malaria that was 100% specific (top 40% of cases, a sensitivity analysis varied this thresh-152

old). The cases with lower likelihood values were assumed to be drawn from a mixture of the two153

latent populations with an unknown mixing proportion; the prevalence of HbAS in the ‘not-severe154

malaria’ subgroup was estimated from a cohort of hospitalised children enrolled in the same hos-155

pital and who were malaria blood slide positive but were clinically diagnosed as not having severe156

malaria (n =6,748 of whom 364 were HbAS (Uyoga et al., 2019)). We assumed that this diagnosis157

of ‘not-severe malaria’ was 100% specific. Under these assumptions, we estimated that P(Severe158

malaria)=0.64 (95% credible interval (C.I.) 0.46 to 0.8), implying that approximately one third of the159

2,200 cases are from the ‘not-severe malaria’ sub-population (they have malaria parasitaemia in160

addition to another severe illness - likely to be bacterial sepsis - Figure 2).161
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Other illness

Asymptomatic 
parasitaemia

Severe disease caused
by sequestration

Severe disease not caused 
by sequestration

Uncomplicated
malaria illness

Bottleneck 1: HbAS
(~70% reduction in risk) Bottleneck 2: HbAS

(~70% reduction in risk)

WHO defined 
severe malaria

WHO defined 
severe malaria

Severe Malaria

(a) (b)

Not Severe Malaria

Figure 2. Theoretical causal pathways that lead to the clinical diagnosis of severe malaria under the
current WHO definition (World Health Organisation, 2014). Pathways (a) & (b) represent the two wayspatients can be mis-classified as severe malaria. For both pathways (a) & (b), we expect a higher prevalence ofHbAS relative to the population with true severe malaria as a consequence of the protective bottlenecks. Inthis causal model we assume that HbAS does not protect against asymptomatic parasitaemia, although thisassumption is not strictly necessary. Adapted with permission from Small et al. (2017).

Estimating individual probabilities of severe malaria162

We then estimated P(Severe malaria | Data) for each Kenyan case by fitting a mixture model to the163

training data and to the Kenyan data jointly. The model assumed that the platelet and white count164

data for the Kenyan children were drawn from a mixture of P(Data | Severe malaria) and P(Data |165

Not severe malaria). The training data (Asian adults and children with severe malaria and African166

childrenwith PfHRP2 > 1,000 ng/mL)were assumed to be drawnonly fromP(Data | Severemalaria).167

P(Data | Not severe malaria) was modelled itself as a mixture of bivariate t-distributions. We used168

an informative prior on the mixture proportion (‘severe malaria’ versus ‘not severe malaria’) in the169

Kenyan cases, a beta distribution approximating the posterior estimate from the analysis of HbAS170

prevalence.171

Figure 3A shows the bi-modal distribution of the posterior individual estimates of P(Severe172

malaria | Data). As expected, the individual posterior probabilities of severe malaria were highly173

predictive of HbAS (p = 10−6 from a generalised additive logistic regression model fit, Figure 3C).174

The individual probabilities were also predictive of in-hospital mortality (p = 10−9 from a gener-175

alised additive model fit; Figure 3D), and admission peripheral blood parasite density (p = 10−25176

from a generalised additive model fit; Figure 3E). In the top quintile of patients with the highest177

estimated P(Severe malaria | Data), the prevalence of HbAS was 0.7% (3 out of 446). In contrast,178

for patients in the lowest quintile of estimated P(Severe malaria | Data), the prevalence of HbAS179

was 4.8% (21 out of 444). The patients with a low probability of severe malaria had a substantially180

higher case fatality ratio (18.8% mortality for patients in the bottom quintile of P[Severe malaria |181

Data] versus 6.1 %mortality for the top quintile of P[Severemalaria | Data]). Thismay be explained182

by the higher case-specific mortality of severe bacterial sepsis (the most likely alternative cause of183

severe illness). The admission parasite densities in patients with a probability of severe malaria184

close to 1 were approximately five-fold higher than in patients with a probability of severe malaria185

close to zero. The blood culture positive rate was 2.1% in the top quintile of P(Severe malaria |186

Data), and 4.4% in the lowest quintile of P(Severe malaria | Data) and the individual probabilities187

were predictive of blood culture results (p = 0.004 under a generalised additive logistic regression188

model fit).189

Accounting for case imprecision in case-control studies190

‘False-positive’ cases reduce statistical power anddilute effect size estimates in case-control studies.191

We propose a novel approach for case-control studies with phenotypic imprecision based on data192

tilting (Nie et al., 2013). The idea is to ‘tilt’ the cases towards a pseudo-population with higher193
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Figure 3. Model estimates of P(Severe malaria | Data) in 2,220 Kenyan children clinically diagnosed
with severe malaria. Panel A: distribution of posterior probabilities of severe malaria being the correctdiagnosis. Panel B shows these same probabilities plotted as a function of the platelet and white counts onwhich they are based (dark red: probability close to 0; dark blue: probability close to 1). The black diamondsshow the HbAS individuals. Panels C-E show the relationship between the estimated probabilities of severemalaria and HbAS, in-hospital mortality, and admission parasite density, respectively. The black lines (shadedareas) show the mean estimated values (95% confidence intervals) from a generalised additive logisticregression model with a smooth spline term for the likelihood (R packagemgcv). The horizontal lines inpanels C-E show the mean values in the data.
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Figure 4. The number of significant hits as a function of the false discovery rate for the genome-wide
association study across 9.6 million bi-allelic variants. This analysis is based on a subset of the Kenyanchildren with whole genome data available and passing quality checks n =1,297, and n =1,614 controls.Dashed line: weighted-model; thick line: non-weighted model.

specificity for severe malaria. We can do this by re-weighting the data by the probabilities P(Severe194

malaria | Data), i.e. re-weighting the contribution to the log-likelihood in an association model.195

We applied this approach as proof-of-concept to a genome-wide association study using the196

subset of Kenyan children who had clinical and genome-wide data available (after quality control197

checks n =1,297 cases) and a set of matched population controls (n =1,614), across 9.6 million bi-198

allelic variants on the autosomal chromosomes (Band et al., 2019). We compared the data-tilting199

method to the standard non-weighted approach by estimating local false discovery rates (FDR,200

Storey, 2002). Compared to the standard non-weighted GWAS, data-tilting substantially increased201

the number of significant associations for local FDRs in the range of 1-5% (Figure 4). For example,202

at an FDR of 2%, the number of significant hits is more than doubled with the additional hits all203

around known loci associatedwith protection from severemalaria. We note that if the dataweights204

were not predictive of the true latent phenotype, we would expect fewer significant hits for a given205

FDR because of the reduction in effective sample size. This is demonstrated by permuting the data206

weights (for the cases only), which results in 50-75% reduction in the number of significant hits at207

FDRs <5% (Appendix 3).208

Examining threemajor genetic regions strongly associated with protection from severemalaria209

in East Africa (HBB: HbAS; ABO: O blood group; FREM3: in close linkage with the GYPA/B/E structural210

variants that encode the Dantu blood group; Band et al., 2019), the data-tilting approach estimated211

larger effect sizes compared to the non-weighted model in all three regions (effect size increases:212

30% around HBB, 9% around ABO, and 5% around FREM3). This resulted in larger -log10 p-values213

for HBB and ABO, but slightly smaller for FREM3 (Figure 5). We note that there was no signal of214

association at ATP2B4 in this subset, most likely due to limited power (ATP2B4 had the third largest215

Bayes factor for association in the largest multi-center GWAS to date, Band et al., 2019)).216

Reappraisal of directly typed polymorphisms217

We re-analysed case-control associations for 120polymorphismson70 candidatemalaria-protective218

genes which were typed directly in the 2,220 Kenyan children along with 3,940 population controls.219

In this case-control cohort, 14 polymorphisms had previously been identified as associated with220

protection or increased risk in severe malaria (Ndila et al., 2018). A re-analysis of these 14 variants221
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Figure 5. The three regions in the human genome with the greatest evidence for protection against
severe malaria in East Africa (HBB, ABO and FREM3, Band et al., 2019). The Manhattan plots (left panels)compare p-values from the weighted model (blue) and the non-weighted model (orange). Each Manhattanplot is centred around the known causal position shown by the vertical dashed line (0.5 Mb region). Thehorizontal dashed line shows p = 10−7 (threshold often used for defining genome-wide significance). The 10positions with the greatest -log10 p-values under the non-weighted model are shown as large diamonds. Thescatter plots on the right compare absolute effect size estimates under both models with the same top 10 hitsshown by the larger purple diamonds. Increases of 30%, 9% and 5% are seen for the ten top hits for HBB, ABO,and FREM3, respectively.
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using the same models of association as previously published and down-weighting the likely mis-222

classified cases replicated the majority of associations, with increased effect sizes and increased223

-log10 p-values (Appendix 4). For the three major genes (HBB, ABO, FREM3), effect sizes were in-224

creased by 10-30% and associations all had higher significance levels on the -log10 scale (0.25-1.7).225

The allele frequencies of all three polymorphisms were directly associated with the probability226

weights, showing increased protection in individuals more likely to have severe malaria (Appendix227

5). Two polymorphisms on the genes ARL14 and LOC727982, reported previously as associatedwith228

protection in severe malaria (neither of which are related to red cells), showed decreased effect229

sizes and -log10 p-values and are thus potentially spurious hits.230

Weexploredwhether therewas evidence of differential effects in the Kenyan cases using P[Severe231

malaria | Data] to assign probabilistically each case to the ‘severe malaria’ versus ‘not severe232

malaria’ sub-populations. Wefitted a categorical logistic regressionmodel predicting the latent sub-233

population label versus control, where the latent case label was estimated from the weights shown234

in Figure 3A. This resulted in approximately 1,279 cases in the ‘severe malaria’ sub-population and235

941 cases in the ‘not severe malaria’ sub-population. Differential effects were tested by compar-236

ing the estimated log-odds for the two sub-populations. After accounting for multiple testing, two237

polymorphisms showed significant differential effects: rs334 (derived allele encodes haemoglobin238

S, p = 10−6) and rs1050828 (derived allele encodes G6PD+202T, p = 10−3 in the model fit to females239

only), see Figure 6. As expected, rs334 was associated with protection in both sub-populations240

(Scott et al., 2011; Uyoga et al., 2019) but the effect was almost 8 times larger on the log-odds scale241

in the ‘severemalaria’ sub-population relative to the ‘not severemalaria’ sub-population (odds-ratio242

of 0.029 [95% C.I. 0.0088-0.094] in the ‘severe malaria’ population versus 0.63 [95% C.I. 0.48-0.83]243

in the ‘not severe malaria’ population). For rs1050828 (G6PD+202T allele), approximately the same244

absolute log-odds were estimated for both sub-populations but they had opposite signs. Under245

an additive model in females, the rs1050828 T allele was associated with protection in the ‘severe246

malaria’ sub-population (odds-ratio of 0.71 [95% C.I. 0.57-0.88]) but with increased risk in the ‘not247

severe malaria’ sub-population (odds-ratio of 1.30 [95% C.I. 1.00-1.70]). The additive model includ-248

ing both males and females was consistent with these opposing effects but significant only at a249

nominal threshold (p = 0.02). Opposing effects across the two sub-populations is consistent with250

the hypothesis that G6PD deficiency leads to a greater risk of being erroneously classified as se-251

vere malaria as under the severe anaemia criterion (Watson et al., 2019, shown in more detail252

in Appendix 5). Investigation of haemoglobin concentrations as a function of P(Severe malaria |253

Data) indicates that the mis-classified group is very heterogeneous, but with a larger proportion of254

severe anaemia (<5 g/dL) relative to the correctly classified sub-population (Appendix 6).255

Discussion256

The clinical diagnosis of severe falciparum malaria in African children is imprecise (Taylor et al.,257

2004; Bejon et al., 2007;White et al., 2013). Even with quantitation of parasite densities, specificity258

is still imperfect (Bejon et al., 2007). In children with cerebral malaria (unrouseable coma with259

malaria parasitaemia), the most specific of the severe malaria clinical syndromes, post-mortem260

examination revealed another diagnosis in a quarter of cases studied in Blantyre, Malawi (Taylor261

et al., 2004). Diagnostic specificity can be improved by visualisation of the obstructed microcircula-262

tion in-vivo (e.g. through indirect ophthalmoscopy) or from parasite biomass indicators (quantita-263

tion and staging of malaria parasites on thin blood films, counting of neutrophil ingested malaria264

pigment, measurement of plasma concentrations of PfHRP2 or parasite DNA), but these are still265

largely research procedures and have not been widely adopted or measured at scale for genetic266

association studies. Our results suggest that imprecision in clinical phenotyping is more substan-267

tial than thought previously. In this cohort of 2,220 Kenyan children diagnosed with severemalaria268

from an area of moderate transmission, a probabilistic assessment suggests that around one third269

may not have had severe malaria (although malaria may have contributed to their illness, Small270

et al., 2017). This supports our previous conclusion that differences in treatment effects between271
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Figure 6. Exploring differential effects in 120 directly typed polymorphisms across 70 candidate
malaria-protecting genes. Panel A: case-control effect sizes estimated for the ‘severe malaria’sub-population versus the ‘not severe malaria’ sub-population (n = 3, 940 controls and n =2,220 cases, withapproximately 1,279 in the ‘severe malaria’ sub-population and 941 in the ‘not severe malaria’sub-population). The vertical and horizontal grey lines show the 95% credible intervals. Panel B shows the
log10 p-values testing the hypothesis that the effects are the same for the two sub-populations relative tocontrols. The top dashed line shows the Bonferroni corrected � = 0.05 significance threshold (assuming 70independent tests). The bottom dashed line shows the nominal � = 0.05 significance threshold. In bothpanels, red circles denote p < 0.05 (nominal significance level), and red squares denote p < 0.05∕70. Panel C:Analysis of the rs1050828 SNP (encoding G6PD+202T) under a non-additive model (hemi/homozygotes andheterozygotes are distinct categories). This shows that heterozygotes are clearly under-represented in the‘severe malaria’ sub-population and hemi/homozygotes are clearly over-represented in the ‘not severemalaria’ sub-population. Panel D: evidence of differential effects for the O Blood Group (rs8176719, recessivemodel) and FREM3 (additive model).
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Asian adults and African children (i.e the benefits of artesunate over quinine in severe malaria272

estimated from randomised trials, Dondorp et al., 2005, 2010) are predominantly driven by differ-273

ences in diagnostic specificity (Hendriksen et al., 2012; White et al., 2013). Mortality was higher274

in the severe ‘not malaria’ patients, probably because the main illness was bacterial sepsis. This275

strongly supports current recommendations to give broad spectrum antibiotics to all children in276

endemic areas with suspected severe malaria (World Health Organisation, 2014). Using HbAS as a277

natural experiment to validate the biomarker model, we show that the joint distribution of platelet278

and white blood cell counts is a diagnostic predictor of severe malaria. Complete blood counts are279

inexpensive and increasingly available in low-resource setting hospitals. Application of an upper280

threshold of 200,000 platelets per �L would have substantially decreased mis-classification in this281

large cohort of Kenyan children diagnosed with severe malaria.282

This re-analysis using rich clinical data provides additional evidence for the three major genetic283

polymorphisms protective against severe malaria present in East Africa. After probabilistic down-284

weighting of the likely mis-classified cases, substantial increases in effect sizes were found. Dilu-285

tion of effect sizes resulting frommis-classification could explain the large heterogeneity in effects286

noted in the largest severe malaria GWAS to date (Band et al., 2019). For haemoglobin S (rs334)287

there was a 4-fold variation in estimated odds-ratios across participating sites. Some of this het-288

erogeneity can be attributed to variations in linkage disequilibrium affecting imputation accuracy289

(Band et al., 2013), but our analysis shows an additional substantial source of heterogeneity which290

results from diagnostic imprecision. This can be adjusted for if detailed clinical data are available.291

For example, in the case of rs334 (directly typed), the data-tilting approach results in a 25% increase292

in effect size on the log-odds scale, corresponding to 35% decrease in estimated odds-ratios (0.1293

versus 0.16).294

As for the interpretation of genetic effects, one of the most interesting results concerns the295

G6PD gene. G6PD deficiency is the most common enzymopathy of humans. Its potential role in296

protecting against falciparum malaria has been controversial (Clarke et al., 2017; Watson et al.,297

2019). A very large multi-country genetic association study with over 11,000 severe malaria cases298

and 17,000 population controls found no overall protective effect of the G6PD+202T allele (the299

most common mutation in sub-Saharan Africa causing G6PD deficiency), under an additive model300

(The Malaria Genomic Epidemiology Network, 2014). The same pattern is observed in this Kenyan301

cohort (which is a subset of the larger study). In the Kenyan cohort overall, a previous analysis302

found no clear evidence of protection for male homozygotes but substantial evidence of protec-303

tion for female heterozygotes (Uyoga et al., 2015). This would suggest a heterogyzote advantage304

leading to a balancing polymorphism. However, when the Kenyan cases are modelled as two dis-305

tinct sub-populations, there is evidence of differential effects between the ‘severemalaria’ and ‘not306

severe malaria’ sub-populations. Hemi and homozygous G6PD deficiency was associated with an307

increased risk of mis-classification (reflecting an increased risk of severe anaemia), but it is unclear308

whether or not hemi/homozygous G6PD deficiency was protective in the ‘true severe malaria’ sub-309

population (Figure 6C). On the other hand, heterozygote deficiency was very clearly protective in310

the true severe malaria subgroup, consistent with previous findings, and did not appear to lead311

to an increased risk of mis-classification (consistent with a lower risk of extensive haemolysis and312

thus false classification in heterozygotes who have both normal and G6PD deficient erythrocytes313

in their circulation). When examining the ‘severe malaria’ sub-population only, the sample size in314

this study is too small to discriminate between the heterozygote and additive models of associa-315

tion. In our view, the relationship betweenG6PD deficiency and severe falciparummalaria remains316

unanswered. A biomarker driven approach should be applied to other case-control cohorts for a317

definitive understanding of the role of this major human polymorphism.318

The limitations of our diagnostic model can be summarised as follows. First, the validity and319

interpretation of the individual probabilities of severe malaria is heavily dependent on the refer-320

ence model and thus the reference data. Our reference data were primarily from Asian adults in321

whom diagnostic specificity for severe malaria is thought to be very high. Diagnostic checks sug-322
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gested that the marginal distributions of platelet counts were similar between adults and children,323

and we made age corrections to the white blood cell count, but small deviations could reduce the324

discriminatory value (e.g. lower white counts associated with the Duffy negative phenotype, Reich325

et al., 2009). Second, it is possible that rare genetic conditions exist in which the probabilities of326

severe malaria under this model might be biased. One example is sickle cell disease (HbSS, <0.5%327

in the Kenyan cases), which results in chronic inflammation with high white counts and low platelet328

counts relative to the normal population (Sadarangani et al., 2009). The 11 children with HbSS in329

this cohort were all assigned low probabilities of severe malaria, but this should be interpreted330

with caution. Whether HbSS is protective against severe malaria or increases the risk of severe331

malaria remains unclear (Williams and Obaro, 2011). For these patients, other biomarkers such332

as plasma PfHRP2 may be more appropriate. Third, it is possible that the joint distribution of the333

complete blood count variables used to fit the reference model could be dependent on the severe334

malaria sub-phenotype. For example, if the reference data were biased towards cerebral malaria,335

and the joint distribution of platelet and white cell counts in cerebral malaria differed from those336

in the other severe malaria syndromes, then the predicted outliers could represent other forms337

of severe malaria instead of ‘not-severe’ malaria. However, there are no known biological reasons338

why this would be the case. The strong correlation between platelet counts and PfHRP2 (Figure339

1B) suggests that low platelet counts are a universal feature of severe malaria.340

In summary, under a probabilistic model based on routine blood count data, we have shown341

that it is possible to estimate mis-classification rates in diagnosed severe childhood malaria in a342

malaria endemic area of East Africa and compute probabilistic weights that can downweight the343

contribution of likely mis-classified cases. The well-established protective effect of HbAS provided344

an independent validation of the model. Relative to predicted mis-classified cases, patients pre-345

dicted to have ‘true severe malaria’ had a substantially lower prevalence of HbAS, higher parasite346

densities, lower rates of positive blood cultures, and lower mortality. These data strongly sup-347

port the current guideline to give broad spectrum antibiotics to all children with suspected severe348

malaria and suggest that normal range platelet counts (>200,000 per �L) could be used as a simple349

exclusion criterion in studies of severe malaria. Based on this analysis we recommend that future350

studies in severe malaria collect and record complete blood count data. Further studies of platelet351

and white blood cell counts from a diverse cohort of children with severe falciparum malaria, con-352

firmed using high specificity diagnostic techniques such as visualisation of the microcirculation,353

and measurement of plasma PfHRP2, or plasma P. falciparum DNA concentrations should be con-354

ducted to validate this approach.355

Methods and Materials356

Data357

Kenyan case-control cohort358

The Kenyan case-control cohort has been described in detail previously (Ndila et al., 2018). Severe359

malaria cases consisted of all children aged <14 years who were admitted with clinical features360

of severe falciparum malaria to the high dependency ward of Kilifi County Hospital between June361

11th 1999 and June 12th 2008. Severemalaria was defined as a positive blood-film for P. falciparum362

along with: prostration (Blantyre Coma Score of 3 or 4); cerebral malaria (Blantyre Coma Score363

of <3); respiratory distress (abnormally deep breathing); severe anaemia (haemoglobin < 5 g/dL).364

Controls were infants aged 3-12months whowere bornwithin the same area as the cases andwho365

were recruited to a cohort study investigating genetic susceptibility to a wide range of childhood366

diseases. Cases and controls were genotyped for the rs334 SNP and for �+-thalassaemia alongwith367

120 other SNPs using DNA extracted from fresh or frozen samples of whole blood as described in368

detail previously (Ndila et al., 2018;Wambua et al., 2006).369
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Fluid Expansion as Supportive Therapy (FEAST)370

FEAST was a multicentre randomised controlled trial comparing fluid boluses for severely ill chil-371

dren (n =3,161) that was not specific to severemalaria (Maitland et al., 2011). Platelet counts, white372

blood cell counts, parasite densities and PfHRP2 were jointly measured for 566 children (patients373

enrolled in the sites in Mulago, Lacor and Mbale, in Uganda). In order to select only those with a374

very high probability of having severe malaria as the primary cause of illness, we selected the 121375

children who had measured PfHRP2 > 1,000 ng/mL and parasitaemia > 1,000 per �L.376

AQ Vietnam and AAV randomised controlled trials377

The AQ and the AAV studies were two randomised clinical trials in Vietnamese adults diagnosed378

clinically with severe falciparum malaria recruited to a specialist ward of the Hospital for Tropical379

Diseases, HoChiMinhCity, Vietnam, between 1991 and 2003 (Hien et al., 1996; Phu et al., 2010). AQ380

Vietnamwas a double blind comparison of intramuscular artemether versus intramuscular quinine381

(n =560); AAV compared intramuscular artesunate and intramuscular artemether (n =370).382

Observational studies in Thai and Bangladeshi adults and children383

We included data from multiple observational studies in severe falciparum malaria conducted by384

the Mahidol Oxford Tropical Medicine Research Unit in Thailand and Bangladesh between 1980385

and 2019. These pooled data have been described previously (Leopold et al., 2019). Platelet counts386

and white blood cell counts were available in 657 patients. We excluded one 30 year old adult from387

Bangladesh whose recorded platelet count was 1,000 per �L, and three other adults with platelet388

counts greater than 450,000 per �L as outliers reflecting likely data entry errors. Plasma PfHRP2389

concentrations were available in 172 patients from Bangladesh. 55 patients from this series were390

younger than 15 years of age.391

Multiple imputation392

In the Kenyan severe malaria cohort (n =2,220), data on platelet counts were missing in 18%, white393

blood counts were missing in 0.2%, and parasite density was missing in 1.6%. In-hospital outcome394

(died/survived) was missing for 13 patients. rs334 genotype was missing for 7; �+-thalassaemia395

genotype was missing for 101 patients. In the Vietnamese adults, platelet counts were missing in396

4%, white counts in 2% and parasitaemia in 0%.397

We did multiple imputation using random forests for all available clinical variables using the R398

packagemissForest (targeted genotyping data was not included for imputation). Appendix 7 shows399

themissing data pattern in the studies in Vietnamese adults and in the Kenyan severemalaria cases.400

Ten datasets were imputed for each dataset independently and were used for the subsequent401

analyses. Analyses using directly typed genetic polymorphisms or the within-hospital outcome as402

the dependent variables used only the data where these outcomes were recorded, assuming that403

they were missing at random.404

Reference model of severe malaria405

Biological rationale406

Thrombocytopenia accompanied by a normal white blood count and a normal neutrophil count407

are typical features of severe malaria (Hanson et al., 2015; Leblanc et al., 2020), but they may408

also occur in some systemic viral infections and in severe sepsis. Neutrophil leukocytosis may409

sometimes occur in very severe malaria, but is more characteristic of pyogenic bacterial infections.410

These indices, whilst individually not very specific, could each have useful discriminatory value.411

We reasoned therefore that their joint distribution could help discriminate between children with412

severemalaria versus those severely ill with coincidental parasitaemia. The Kenyan severemalaria413

cohort did not have differential white count data, so we used platelet counts and total white blood414

cell counts as the two diagnostic biomarkers in the reference model of severe malaria.415
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Choice of training data and confounders416

The best data for fitting the biomarker model are either from children or adults from low transmis-417

sion areas (where parasitaemia has a high positive predictive value); or in children or adults with418

high plasma PfHRP2 measurements indicating a large latent parasite biomass (Hendriksen et al.,419

2012).420

In the first years of life, white blood cell counts are often much higher than in adults because of421

lymphocytosis. We used data from 858 children from the FEAST trial, in whom white counts were422

measured, to estimate the relationship between age and mean white count in severe illness (me-423

dian age was 24 months). The estimated relationship is shown in Appendix 8 (using a generalised424

additive linear model with the white count on the log10 scale), with mean white counts reaching a425

plateau around 5 years of age. We used this to correct all white count data in children less than 5426

years of age, both in the training data and the Kenyan cohort.427

There is also a systematic difference associated with the Duffy negative phenotype which is428

near fixation in Africa but absent in Asia. Duffy negative individuals have lower neutrophil counts429

(termed benign ethnic neutropenia) (Reich et al., 2009). The use of Asian adults to estimate the430

reference distribution of white counts in severe malaria could thus falsely include individuals with431

elevated white counts (relative to the normal ranges). However, a diagnostic quantile-quantile plot432

(Appendix 1, on the log-scale) comparing the white blood cell count distribution in Vietnamese433

adults and in children in the FEAST trial who had PfHRP2 > 1,000 ng/mL did not suggest any major434

differences. In fact the African children had slightly higher white counts on average even after435

the correction for age. This may represent imperfect specificity for severe malaria when using a436

plasma PfHRP2 cutoff of 1,000 mg/mL.437

For platelet counts (which have the greatest diagnostic value for severe malaria in our series)438

age is not a confounder andpublisheddata support the hypothesis that thrombocytopenia is highly439

specific for ‘true’ severe malaria in children as well as adults suspected of having severe malaria440

(with a diagnostic and a prognostic value). The French national guidelines specifically mention441

thrombocytopenia (<150,000 per �L) for the diagnosis of severe malaria in children who have trav-442

elled to a malaria endemic area. In a French paediatric severe malaria series in travellers, almost443

half had severe thrombocytopenia (<50,000 per �L) (Lanneaux et al., 2016; Mornand et al., 2017).444

In Dakar, Senegal (one of the lowest transmission areas in Africa) thrombocytopenia was an in-445

dependent predictor of death and the median platelet count was 100,000 (Gérardin et al., 2007,446

2002). Comparison of the distributions of platelet counts (on the log scale) between Asian children447

and Asian adults suggested nomajor differences (Appendix 1), although we had few data for Asian448

children. In the seminal Blantyre autopsy study (Taylor et al., 2004), platelet counts were substan-449

tially different between fatal cases confirmed post-mortem to be severe malaria (62,000 per �L,450

and 56,000 per �L for the children with sequestration only, and for sequestration + microvascular451

pathology, respectively) and fatal cases with a mis-diagnosis of severe malaria (no sequestration:452

176,000 per �L; the inter-group difference was statistically significant, p = 0.008). A larger cohort453

from the same centre in Malawi reported substantially higher platelet counts in retinopathy nega-454

tive cerebral malaria (mean platelet count was 161,000 per �L, n =288) compared to retinopathy455

positive cerebral malaria (mean count was 81,000 per �L, n =438) (Small et al., 2017).456

Wevisually checked approximate normality for eachmarginal distributionusing quantile-quantile457

plots (Appendix 9). On the log10 scale, platelet counts and white counts show a good fit to the nor-458

mal approximation but with some outliers so a t-distribution was used (robust to outliers). For all459

modelling of the joint distribution of platelet counts andwhite blood cell counts, we chose bivariate460

t-distributions with 7 degrees of freedomas the defaultmodel. The final referencemodel usedwas461

a bi-variate t-distribution fit to the joint distribution of platelet counts and white counts both on462

the logarithmic scale. On the log10 scale themean values (standard deviations) were approximately463

1.76 (0.11) and 0.92 (0.055) for platelets andwhite counts, respectively. The covariance was approx-464

imately 0.0035. These values varied very slightly across the ten imputed datasets. Log-likelihood465
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values for each severemalaria case in the Kenyan cohort were calculated for each imputed dataset466

independently. The median log-likelihoods per case were then used in downstream analyses.467

Limitations of the model468

The diagnostic model of severe malaria using platelet counts and white blood cell counts cannot469

be applied to all patients. We summarise here the known and possible limitations. When using this470

model to estimate the association between a genetic polymorphism and the risk of severe malaria,471

if the genetic polymorphism of interest affects the complete blood count independently, there will472

be selection bias (see the directed acyclic graph in Appendix 10). One example is HbSS. Children473

with HbSS have chronic inflammation with white blood cells counts about 2-3 times higher than474

normal and slightly lower platelet counts (Sadarangani et al., 2009). All 11 children in the Kenyan475

cohort with HbSSwere assigned low probabilities of having severemalaria (Appendix 10), but these476

probabilities could reflect a deficiency of themodel. Including or excluding these children from the477

analysis had no impact on the results as they represent less than 0.5% of the cases.478

The second possible limitation concerns the validation using HbAS. Previous studies have sug-479

gested negative epistasis between the malaria-protective effects of HbAS and �+-thalassaemia480

(Williams et al., 2005; Opi et al., 2014). The 3.7 kb deletion across the HBA1-HBA2 genes (known as481

�+-thalassaemia) has an allele frequency of∼ 40% in this population, therefore 16%of HbAS individ-482

uals are homozygous for �+-thalassaemia (Ndila et al., 2020). Negative epistasis implies that those483

with both polymorphisms would have less or no protective effect against severe malaria. Of the484

2,113 Kenyan cases with both HbS and �+-thalassaemia genotyped, 13 were HbAS and homozy-485

gous �+-thalassaemia. Appendix 11 shows that the majority of those with both polymorphisms486

had clinical indices pointing away from severe malaria suggesting that the observed number of487

patients with both HbAS and homozygous �+-thalassaemia is inflated by 2 to 3 fold.488

The third possible problem concerns the use of white blood cell counts in relation to invasive489

bacterial infections. Bacteraemia could either be the cause of severe illness (with coincidental490

parasitaemia), or it could be concomitant (whichmay result from extensive parasitised erythrocyte491

sequestration in the gut), i.e. a result of severe malaria. The former should be identified as ‘not-492

severe malaria’ (as bacteraemia is the main cause of illness), but the latter should be identified as493

‘severe malaria’ and might be mis-classified as ‘not-severe malaria’ under our model. However, in494

a series of 845 Vietnamese adults (high diagnostic specificity), only one of eight patients who had495

concomitant invasive bacterial infections and a white count measured had leukocytosis (median496

white count was 8,100; range 3,500 to 14,850 per �L, Phu et al., 2020).497

Estimating the diagnostic specificity in the Kenyan cohort498

We assume that the Kenyan cases are a latent mixture of two sub-populations: P0 is the population499

‘severe malaria’ and P1 is the population ‘not-severe malaria’ (mis-classified). For a set of diagnostic500

biomarkers X, this implies that X ∼ G = �f0 + (1 − �)f1, where f0, f1 are the sampling distributions501

(likelihoods) of each sub-population, respectively.502

We can infer the value of � (proportion correctly classified as severe malaria) without mak-503

ing parametric assumptions about f1 by using the distribution of HbAS (motivated by the causal504

pathways shown in Figure 2). This is done as follows: we first estimate f̂0 by fitting a bivariate t-505

distribution to the training data - this approximates the sampling distribution for P0. We thenmake506

three assumptions:507

1. Out of the 2,213 Kenyan cases with rs334 genotyped, we assume that cases in the top 40th508

percentile of the likelihood distribution under f̂0 are drawn from P0: N0 = 887, of which509

N sickle
0 = 9 are HbAS.510

2. For the other cases the proportion drawn from P0 is unknown and denoted �′: NG = 1, 326,511

of which N sickle
G = 48 are HbAS.512

3. Finally, additional information is incorporated by using data from a cohort of individuals with513

severe disease from the same hospital who had positive malaria blood slides but whose di-514
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agnosis was not severe malaria (N1 = 6, 748, of which N sickle
1 = 364 were HbAS) (Uyoga et al.,515

2019).516

Under these assumptions, we can fit a Bayesian binomial mixture model to these data with
three parameters: {�′, p0, p1}. The likelihood is given by:

N sickle
0 ∼ Binomial(p0, N0)

N sickle
G ∼ Binomial(�′p0 + (1 − �′)p1, NG)

N sickle
1 ∼ Binomial(p1, N1)

The priors used were: p1 ∼ Beta(5, 95) (i.e. 5% prior probability with 100 pseudo observations);517

p0 ∼ Beta(1, 99) (1% prior probability with 100 pseudo observations). A sensitivity analysis with518

flat beta priors (Beta[1,1]) did not qualitatively change the result (by one percentage point for the519

final estimate of �). To check the validity of the use of the external population from Uyoga et al.520

(2019), we did a sensitivity analysis using the lowest quintile of the likelihood ratio distribution as521

a population drawn entirely from P1 (instead of the external data from Uyoga et al., 2019).522

Estimating P(Severe malaria | Data) in the Kenyan cohort523

Denote the platelet and white count data from the FEAST trial as {XFEAST
i }121i=1; the data from the

Vietnamese adults and children as {XAsia
i }1583i=1 ; the data from the Kenyan children as {XKenya

i }2220i=1 .We fit the following joint model to the training biomarker data and the Kenyan biomarker data.
XFEAST
i ∼ Student(�1SM ,Σ1SM , 7)
XAsia
i ∼ Student(�2SM ,Σ2SM , 7)

XKenya
i ∼ �f0 + (1 − �)f1
f0 = p Student(�1SM ,Σ1SM , 7) + (1 − p) Student(�2SM ,Σ2SM , 7)
f1 =

K
∑

j=1
�j Student(�jnotSM ,ΣjnotSM , 7)

with the following prior distributions andhyperparameters, where � = {�1, .., �K} such that∑K
j=1 �j =

1 :
� ∼ Beta(40.3, 24.7)
p ∼ Beta(2, 2)

�1,2SM ∼ Normal({1.8, 0.95}, 0.12)
�1..KnotSM ∼ Normal({2.5, 1.5}, 0.252)

� ∼ Dirichlet(1∕K, ..., 1∕K)
The covariancematrices Σ1,2SM and Σ1..6SM were parameterised as their Cholesky LKJ decomposition,524

where the L correlation matrices had a uniform prior (i.e. hyperparameter �=1). The model was525

implemented in rstan.526

This models the biomarker data in ‘not severe malaria’ as a mixture of K t-distributions. We527

chose K = 6 as the default choice (sensitivity analysis increasing this has no impact). The Dirichlet528

prior with hyperparameter 1∕K forces sparsity in this mixture model (most of the prior weight is529

on the vertices of the K-dimensional simplex), see for example Frühwirth-Schnatter and Malsiner-530

Walli (2019). This is a very general and flexibleway ofmodelling the ‘not severemalaria’ distribution:531

we are not trying to make inferences about this distribution, we just want the mixture model to532

be flexible enough to describe it. The model also allows for differences in the joint distribution of533

platelet counts and white counts between the training datasets (FEAST trial and the Asian studies).534

The Kenyan cases drawn from the ‘severe malaria’ sub-population are then modelled as a mix of535

these two training models.536
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Reweighted likelihood for case-control analyses537

For each {XKenya
i }2220i=1 we estimate the posterior probability of being drawn from the sampling dis-538

tribution f0. The mean posterior probability then defines a precision weight wi which can be used539

in a standard generalised linear model (glm) with the same interpretation as inverse probability540

weights. The weighted glm is equivalent to computing the maximum likelihood estimate where541

the log-likelihood is weighted by wi. In our case-control analyses all the controls are given weight542

1. Nie et al. (2013) give a proof of correctness for this re-weighted log-likelihood (equivalent to543

‘tilting’ the dataset towards the desired distribution f̂0(X)). The log odds ratio computed from the544

weighted logistic regression can be interpreted as the causal effect of the polymorphism on ‘true545

severe malaria’ relative to the controls, where ‘true severe malaria’ is defined by the sampling dis-546

tribution f0. Appendix 12 shows the results of a simulation study demonstrating how the effect547

estimates and standard error estimates vary as a function of the proportion of mis-classified cases548

(as given by the probability weights).549

Genome-wide association study550

Anonymised whole genome data from the Illumina Omni 2.5M platform for 1,944 severe malaria551

cases and 1,738 population controls were downloaded from the European Genome-Phenome552

Archive (dataset accession ID: EGAD00010001742, release date March 2019 (Band et al., 2019)).553

This contained sequencing data on 2,383,648 variants. We used the quality control meta-data pro-554

vided with the 2019 data release to select SNPs and individuals with high quality data. We first555

excluded 386 individuals (due to relatedness: 155; missing data or low intensity: 226; gender: 5).556

We then removed 616,426 SNPs that did not pass quality control, leaving a total of 1,767,222 SNPs.557

We used plink2 to prune the SNPs (options: –maf 0.01 –indep-pairwise 50 2 0.2) down to a set of558

462,120 SNPs in approximate linkage equilibrium. These SNPs were then used to calculated the559

first 5 principal components (Appendix 13), which we subsequently used to control for population560

structure in the genome-wide association study. We used the Michigan imputation server with the561

1000 Genomes Phase 3 (Version 5) as the reference panel to impute 28.6 million polymorphisms562

across the 22 autosomal chromosomes. This is a web-based service that runs imputation pipelines563

(phasing is donewith Eagle2, imputationwithMinimac4). Encrypted results are returnedwith a one-564

time password. Of the remaining 3,682 individuals (1,681 cases and 1,615 controls), we had clinical565

data available for 1,297 cases. We only used the subset of individuals with clinical data available566

in order for a fair comparison between the weighted and non-weighted genome-wide association567

studies. We ran subsequent genome wide association studies on all bi-allelic sites with a minor al-568

lele frequency ≥ 5% (9,615,446 sites in total) assuming an additive model of association. We used569

the R function glm with a binomial link for all tests of association (genetic data are encoded as the570

number of reference alleles). The supplementary appendix gives the R code for weighted logistic571

regression. The point estimates from the weighted model estimated by glm are correct but it is572

necessary to transform the standard errors in order to take into account the reduction in effective573

sample size (see code).574

Case-control study in directly typed polymorphisms575

We fit a categorical (multinomial) logistic regression model to the case-control status as a function576

of the directly typed polymorphisms (120 after discarding those that are monomorphic in this pop-577

ulation, see (Ndila et al., 2018) for additional details). We modelled the severe malaria cases as578

two separate sub-populations with a latent variable: ‘severe malaria’ versus ‘not severe malaria’,579

resulting in 3 possible labels (controls, ‘severe malaria’, ‘not severe malaria’). The models adjusted580

for self-reported ethnicity and sex. The model was coded in stan (Stan Development Team, 2020)581

using the log-sum-exp trick to marginalise out the likelihood over the latent variables (see code).582

Normal(0,5) priors were set on all parameters and parameter estimates and standard errors were583

estimated from the maximum a posteriori value (function optimizing in rstan).584
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Code availability585

Code along with a minimal clinical dataset for reproducibility of the diagnostic phenotyping model586

is available via a github repository: https://github.com/jwatowatson/Kenyan_phenotypic_accuracy.587

Data availability588

A curatedminimal clinical dataset is currently available alongisde the code on the github repository.589

This will also be made available at publication via the KEMRI-Wellcome Harvard Dataverse (https:590

//dataverse.harvard.edu/dataverse/kwtrp).591

This paper used genome-wide genotyping data generated by Band et al. (2019), available on592

request from the European Genome-Phenome Archive (dataset accession ID: EGAD00010001742).593

Requests for access to appropriately anonymized clinical data and directly typed genetic vari-594

ants (The Malaria Genomic Epidemiology Network, 2014) for the Kenyan severe malaria cohort595

can be made by application to the data access committee at the KEMRI–Wellcome Trust Research596

Programme by e-mail to mmunene@kemri-wellcome.org.597

The FEAST trial datasets are available from the principal investigator on reasonable request598

(k.maitland@imperial.ac.uk). Requests for access to appropriately anonymized clinical data from599

the AQ and AAV Vietnam study and the Asian paediatric cohort can bemade via theMahidol Oxford600

Tropical Medicine Research Unit data access committee by emailing the corresponding author JAW601

(jwatowatson@gmail.com) or Rita Chanviriyavuth (rita@tropmedres.ac).602
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Appendix 1772
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Appendix 1 Figure 1. Comparison of the marginal distributions of white blood cell counts
between Asian adults and children with severe malaria and African children with severe
malaria. FEAST: 121 severely ill Ugandan children with PfHRP2 > 1,000 ng/mL (Maitland et al., 2011).Vietnamese adults: 930 adults from two large randomised trials in severe malaria (Phu et al., 2010;
Hien et al., 1996). Bangladesh/Thailand: 653 adults and children from observational studies of severemalaria (Leopold et al., 2019).
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Appendix 1 Figure 2. Comparison of the marginal distributions of platelet counts between
Asian adults and children with severe malaria and African children with severe malaria. FEAST:121 severely ill Ugandan children with PfHRP2 > 1,000 ng/mL (Maitland et al., 2011). Vietnameseadults: 930 adults from two large randomised trials in severe malaria (Phu et al., 2010; Hien et al.,
1996). Bangladesh/Thailand: 653 adults and children from observational studies of severe malaria(Leopold et al., 2019). The bottom left qqplot compares the white counts from the children in te FEASTstudy with the combined dataset from Vietnam and Bangladesh/Thailand.
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Appendix 2 Figure 1. The relationship between platelet counts and plasma PfHRP2 in severely
ill African children. The black line (shaded area) shows the estimated probability (95% confidenceinterval) that the plasma PfHRP2 > 1,000 ng/mL as a function of log10 platelet count. This fit is derivedfrom a generalised additive logistic regression model (p < 10−16 for the spline term), fit using the Rpackagemgcv. The generalised additive model was fit to data from 566 African children enrolled inthe FEAST trial (Maitland et al., 2011) (all the children who had both platelet counts and PfHRP2 dataavailable). Plasma PfHRP2 > 1,000 ng/mL is highly discriminatory for severe malaria (Hendriksen
et al., 2012).
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Appendix 3 Figure 1. Effect of permuting the weights in the re-weighted (data-tilting) GWAS.Here we show the results of 20 random permutations of the weights, applied to the Kenyancase-control GWAS using only chromosomes 4, 9 and 11 (where the top hits are - we limit it to these 3chromosomes for computational reasons). The random permutations (grey) decrease the number ofsignificant hits compared to the non-weighted (thick black) and the non-permuted re-weighted model(dashed purple).
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Appendix 4 Figure 1. Comparison of the non-weighted and weighted models of association for
directly typed polymorphisms previously reported as associated with severe malaria (Ndila
et al., 2018). Panel A: estimated effect sizes under the non-weighted model versus the difference ineffect sizes between the weighted and non-weighted models (absolute effects on the log-odds scale).Differences > 0 imply that the absolute effect size is estimated to be larger under the weighted model.Panel B: -log10 p-values under the non-weighted model versus the differences in -log10 p-values underthe weighted and non-weighted models, again differences >0 represent larger -log10 p-values for theweighted model. Each point is represented by the gene name. In each case we use the model thatbest fit the data in the original analysis (Ndila et al., 2018). For the X-linked polymorphisms (G6PD,
CD40LG), multiple models were reported and so the association model is also shown: H(heterozygote); A (additive); M (males only); F (females only); M/F (all).

812

813

814

815

816

817

818

819

820

821

822823

27 of 39

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.04.16.440107doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440107
http://creativecommons.org/licenses/by/4.0/


Appendix 5824

825

Appendix 5 Figure 1. Case-only analysis of five key polymorphisms effecting red cells, reported
in Ndila et al. (2018) under additive, recessive or heterozygote models. The horizontal dashedlines show the estimated frequency in the controls (for additive models this is the frequency of thederived allele, for the heterozygote or recessive models this is the frequency of the genotype thoughtto confer protection). The line (shaded area) show logistic regression fits with P(Severe malaria | Data)as the predictor (95% confidence interval of the fit). The p-value corresponds to the test that thepredictor P(Severe malaria | Data) is not associated with the genotype in the cases only. OBG: OBlood Group
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Appendix 6 Figure 1. Distribution of admission haemoglobin concentrations as a function of
P(Severe malaria | Data). Severe anaemia is generally defined as a haemoglobin less than 5 g/dL inAfrican children diagnosed with severe malaria, shown by the horizontal dashed red line in the toppanel and the vertical dashed red lines in the bottom panels. The vertical dashed red lines in the toppanel show the top and bottom quintiles of the probability distribution (0.9 and 0.2, respectively).Patients in the bottom quintile of the probability distribution had a markedly bi-modal distribution inhaemoglobin concentrations with a substantial proportion meeting the severe anaemia criterion anda substantial proportion with relatively high haemoglobin concentrations (> 10 g/dL), suggesting twopatients subgroups. Patients in the top quintile had a uni-modal distribution of haemoglobin.

837

838

839

840

841

842

843

844

845846

29 of 39

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.04.16.440107doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440107
http://creativecommons.org/licenses/by/4.0/


Appendix 7847

848

Appendix 7 Figure 1. Pattern of missing clinical data in the 930 Vietnamese adults. These datapool the AQ Vietnam severe malaria study (Hien et al., 1996) and the AAV severe malaria study (Phu
et al., 2010) (red: missing; yellow: recorded).
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Appendix 7 Figure 2. Missing clinical data in the 2,220 Kenyan children diagnosed with severe
malaria . (red: missing; yellow: recorded).854
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Appendix 8 Figure 1. Relationship between age and mean white count (modelled on the log10
scale). This is estimated from 858 children in the FEAST trial who had white counts available using aadditive linear model (p = 10−8 for the smooth spline term). We used this model to adjust observed
log10 white counts in all children less than 5 years of age in the training and testing datasets.
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Appendix 9 Figure 1. Normal-quantile plots for platelet counts and white blood cell counts in
the training data. Both were standardised to have mean 0 and standard deviation of 1 on the log10scale. The diagonal lines shows the identity line.
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Appendix 10 Figure 1. Collider bias in the diagnostic model of severe malaria based on
complete blood count data. HBB in its homozygous S form (HbSS, <1% prevalence in this Kenyanpopulation) is a rare example of how this can occur. Children with HbSS have white counts above 2-3times higher than the normal population and slightly lower platelet counts (Sadarangani et al., 2009).Under the probabilistic model, all 11 children with HbSS were classified as having a low probability ofsevere malaria, based on their high white counts (mean 40,000 per �L). These probabilities cannot betaken at face value and it remains an unanswered question whether children with HbSS are more orless susceptible than their wild-type counterparts (Williams and Obaro, 2011)
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Appendix 10 Figure 2. The relationship between HbSS and the estimated probabilities of severe
malaria under the diagnostic model. There were 11 children with HbSS and they all had lowprobabilities of severe malaria but this is biased as these children have chronic inflammation withwhite counts 2-3 higher than the general population (Sadarangani et al., 2009) (see above Figure forthe causal diagram showing collider bias).

882

883

884

885

886887

35 of 39

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.04.16.440107doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440107
http://creativecommons.org/licenses/by/4.0/


Appendix 11888

889

Appendix 11 Figure 1. Scatter plots of platelet counts versus white blood cell counts for the Kenyancohort, showing the 13 individuals with the double mutation HbAS & homozygous �+-thalassaemia aslarge black diamonds (HZ-alpha-thal)). The red-yellow-blue colour scheme is proportional to theP(Severe malaria | Data) as given by the legend in the top left corner.
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Appendix 12895

Simulation study896

To demonstrate how the re-weighted likelihood works on simulated data where the true
latent classes are known, we constructed the following simulation assuming:

897

898

• A biallelic marker with a derived allele frequency of 10% in the control population
(diplotypes encoded as 0, 1, 2).

899

900

• An additive protective effect for the true cases resulting in a derived allele frequency
of 7% in the true cases; no effect in the false cases.

901

902

• The latent class probability weights for the true cases are drawn from a Beta(0.2, 1)
distribution, and the probability weights for the false cases are drawn from a Beta(1,
0.2) distribution.

903

904

905

• A proportion of true versus false cases varying between 50 and 100%.906

The R code for the simulation is given in the file Simulation_study_weightedLikelihood.R
in the github repository https://github.com/jwatowatson/Kenyan_phenotypic_accuracy. Figures
1 and 2 show how the estimates effect sizes, the standard errors and the power (1-type 2
error) vary as a function of the proportion of the true cases.
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Appendix 12 Figure 1. Simulation study demonstrating how likelihood re-weighting can improveestimation accuracy in case-control studies. Panels A and B show histograms of the case probabilityweights used in the simulations for the scenarios when 50% of cases are true cases, and when 100%of cases are true cases, respectively. Panel C: estimated effect sizes as a function of the proportion ofmis-classified cases. Panel D: standard errors of effect estimates as a proportion of mis-classifiedcases.
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Appendix 12 Figure 2. Effect of case re-weighting on power (1-type 2 error). The thick red line showsthe estimated power for the re-weighted approach; the dashed black line shows the estimated powerfor the non-weighted approach.
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Appendix 13 Figure 1. Principal components analysis of 1,666 Kenyan cases and 1,606 populationcontrols. The colours show the main self-reported ethnicities (black: Chonyi; red: Giriama; green:Kauma; blue: other). The first 5 principal components were used to stratify for population structure inthe GWAS analyses.
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