

1 **CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous
2 bacteriophage**

3

4 Rebecca Conners^{1,2}, Mathew McLaren^{1,2}, Urszula Łapińska^{1,2}, Kelly Sanders^{1,2}, M. Rhia L.
5 Stone³, Mark A. T. Blaskovich³, Stefano Pagliara^{1,2}, Bertram Daum^{1,2}, Jasna Rakonjac⁴ &
6 Vicki A. M. Gold^{1,2*}

7

8 ¹ Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK

9 ² College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker
10 Road, Exeter EX4 4QD, UK

11 ³Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of
12 Queensland, Brisbane, Queensland 4072, Australia

13 ⁴School of Fundamental Sciences, Massey University, Palmerston North, New Zealand

14 *Corresponding author: v.a.m.gold@exeter.ac.uk

15

16 **Abstract**

17 The Ff family of filamentous bacteriophages infect gram-negative bacteria, but do not cause
18 lysis of their host cell. Instead, new virions are extruded via the phage-encoded pIV protein,
19 which has homology with bacterial secretins. Here, we determine the structure of pIV from
20 the f1 filamentous bacteriophage at 2.7 Å resolution by cryo-electron microscopy, the first
21 near-atomic structure of a phage secretin. Fifteen f1 pIV subunits assemble to form a gated
22 channel in the bacterial outer membrane, with associated soluble domains projecting into the
23 periplasm. We model channel opening and propose a mechanism for phage egress. By single-
24 cell microfluidics experiments, we demonstrate the potential for secretins such as pIV to be
25 used as adjuvants to increase the uptake and efficacy of antibiotics in bacteria. Finally, we

26 compare the f1 pIV structure to its homologues to reveal similarities and differences between
27 phage and bacterial secretins.

28

29 **Introduction**

30 The Ff family of filamentous bacteriophages includes f1, fd and M13, and is one of the
31 simplest biological systems known¹. Filamentous phages such as Ff have many uses in
32 biotechnology and nanotechnology²; examples include as a cloning vector, and in phage
33 display for screening protein-ligand and protein-protein interactions. Ff is also increasingly
34 employed in nanotechnology, being engineered to adopt a variety of different forms such as
35 nano-wires, nanorings and branched structures^{3,4}. With the recent, and much publicised,
36 global antimicrobial resistance crisis^{5,6}, there has been a renewed campaign in exploring the
37 use of phages and their proteins to target pathogenic bacteria^{7,8}. Understanding the structural
38 and functional details of phage lifecycles is thus of broad interest for both fundamental and
39 applied biological science research.

40

41 Phages f1, fd and M13 share 98.5% sequence identity and infect the gram-negative bacterium
42 *Escherichia coli*. The primary binding receptor is the F-pilus - a long filamentous appendage
43 assembled on the bacterial cell surface. Phage virions are 1 µm long and 6-7 nm wide, with a
44 circular single-stranded DNA genome encoding for 11 phage proteins. The phage genome is
45 encapsulated within several thousand copies of the major phage coat protein pVIII and is
46 capped by protein complexes consisting of pIII/pVI and pVII/pIX at either end⁹. Phages bind
47 to the F-pilus via the pIII/pVI cap, which is followed by pilus retraction and binding of phage
48 to the TolQRA complex in the host cell cytoplasmic membrane¹⁰. The phage genome is
49 released into the bacterial cytoplasm, DNA is replicated and phage proteins are expressed¹¹.
50 New virions are assembled and released from the cell via a complex of three phage-encoded

51 proteins: pI, pXI and pIV, which form a trans-membrane complex¹². pI (an ATPase) and pXI
52 span the inner membrane with pIV located in the outer membrane¹³.

53

54 pIV is a secretin family protein, with sequence similarity to bacterial secretins at the core of
55 the Type IV pilus assembly machinery and the Type II and Type III secretion systems¹⁴. A
56 number of high-resolution structures of bacterial secretins have been determined which have
57 allowed detailed comparisons to be made^{15,16}. All secretins are multimeric channel proteins,
58 ranging in molecular weight from 670 kDa to >1 MD. Reports of stoichiometry range

59 between twelve and fifteen subunits per complex, divided into a number of different domains.

60 The C-terminal domain integrates into the bacterial outer membrane and forms a double-
61 walled β -barrel with a central gate forming a stricture at the centre¹⁷. Varying numbers of
62 soluble N-domains connect to the β -barrel and project into the periplasm. The N-domains are
63 often poorly ordered in cryo-electron microscopy (cryoEM) structures, presumably due to
64 their flexibility. Type II secretins can also differ at the externally-exposed side of the β -barrel,
65 with *Vibrio*-type complexes possessing a cap gate and *Klebsiella*-type lacking this feature¹⁵.
66 A cryoEM structure of the f1 pIV (f1pIV) protein determined at 22 Å resolution¹⁸ showed a
67 barrel-like complex with a large pore running through the centre containing a pore-gate.

68

69 We present here the cryoEM structure of the closed state of f1pIV to 2.7 Å resolution, the
70 first near-atomic resolution structure of a phage secretin protein. Based on the conserved
71 nature of secretins, we computationally model the open state f1pIV structure and its
72 interaction with f1 phage. By correlating our structures to phenotypic data on f1 and f1pIV,
73 we propose a mechanism for phage egress. We also employ a mutant of f1pIV that produces
74 a leaky *E. coli* phenotype and demonstrate by single-cell microfluidics that the macrolide
75 antibiotic roxithromycin is taken up efficiently by the f1pIV-expressing bacteria. The f1pIV

76 atomic structure is used to interpret our findings, which have important translational
77 implications for the use of secretins as therapeutic adjuvants to increase antibiotic delivery to
78 bacteria. Finally, we reveal the common structural motifs shared by f1pIV and bacterial
79 secretins, and differences in their electrostatic surface charges and modular architecture.

80

81 **Results**

82 **Structure of the f1pIV secretin**

83 The 670 kDa f1pIV secretin channel was expressed recombinantly in *E. coli* and purified in
84 the presence of CHAPS detergent by Ni^{2+} affinity and size exclusion chromatography. Pure
85 protein was identified by SDS-PAGE, Western blot and mass spectrometry analysis
86 (Supplementary Fig. 1). CryoEM data were collected and processed in Relion 3.1¹⁹
87 (Supplementary Table 1). Averaging the protein particles together in 2D showed that f1pIV
88 particles are composed of fifteen identical subunits (Fig. 1a); no variation in symmetry was
89 observed. 3D reconstruction produced a 2.7 Å map with C15 symmetry applied (Fig. 1b and
90 Supplementary Fig. 2).

91

92 The N-terminal part of f1pIV is comprised of two periplasmic N domains: the far N-terminal
93 N0 domain (residues 1-88) and the N3 domain (108-172), which are joined together with a
94 19-residue linker (89-107) (Fig. 2a). The N3 domain links to the C-terminal secretin domain
95 (175-405) via a two amino acid linker (173-174) (Fig. 2a). The quality of our map allowed
96 the N3 and secretin domains to be unambiguously modelled into the density (Fig. 1c, 2b, c),
97 with clear side chain densities visible in most areas (Fig. 2d). The fifteen subunits pack
98 against each other to form the secretin channel, with each subunit contributing a four-
99 stranded β -sheet to the multimer, culminating in a large β -barrel composed of 60 β -strands
100 (Fig. 2b, c). The β -sheets lie at an angle of 41° relative to the central axis of the pore. Within

101 the β -barrel is a smaller inner barrel comprised of four β -strands from each f1pIV subunit
102 (Fig. 2c, e-g). The inner β -barrel is angled parallel to the pore axis and provides a scaffold for
103 two extended loops that reach into the centre of the pore, known as Gate 1 and Gate 2²⁰ (Fig.
104 2c, g). The interface between the outer and inner β -barrels is composed mostly of
105 hydrophobic residues, and strengthened further with a salt bridge between Glu 185 and Arg
106 337 (both residues are highly conserved amongst homologues) (Fig. 2e, Supplementary Fig. 3
107 and 4). Extensive hydrogen bonds are formed in the inner and outer β -barrels; within each
108 individual subunit, and also between each subunit and its immediate neighbours (Fig. 2f). In
109 the outer β -barrel, subunit 1 forms 28 intra-subunit mainchain hydrogen bonds, and 20 inter-
110 subunit mainchain hydrogen bonds (10 with each neighbouring subunit). In the inner β -barrel
111 and gate, subunit 1 forms 34 intra-subunit mainchain hydrogen bonds and 16 inter-subunit
112 ones (8 with each neighbouring subunit). The interface between neighbouring N3 domains is
113 mostly hydrophobic, and no hydrogen bond interactions are observed between them in our
114 structure. For reasons of flexibility (Supplementary Fig. 2), the extracellular part of the β -
115 barrel was missing interpretable density (36 amino acid residues, positions 199-234) as well
116 the very centre of the pore in the Gate 1 loop (15 residues, positions 275-289).

117

118 The f1pIV secretin measures 96 \AA from the extracellular face of the β -barrel to the N-
119 terminus of the N3 domain, and 112 \AA across at its widest point (the extracellular part of the
120 β -barrel. The diameter across the inner β -barrel is 90 \AA . The pore width is constricted further
121 in two areas; at the central gate (40 \AA) and at the N3 domains (74 \AA). There are however
122 disordered loops in both the N3 domain and Gate 1, both pointing into the centre of the pore,
123 so these distances could be smaller.

124

125 The globular N3 domain consists of 65 residues which fold to form a three-stranded β -sheet
126 packed against two α -helices, joined by the short two amino acid linker to the β -barrel (Fig.
127 2a, b, c, g). The far N-terminal N0 domain and its associated 19 residue linker region
128 (residues 1-107, Fig. 2a) could not be observed in our structure. In the 2D classes, a hazy area
129 could be seen in the expected region, suggesting that N0 could be present but extremely
130 flexible (Fig. 1a, red arrow). Tryptic digest mass spectrometry was used to confirm that all of
131 the regions for which we either did not see density, or could not interpret the density, were
132 physically present (Fig. 2a).

133

134 To provide insight into the structure of the N0 domain, we employed four complementary
135 methods. We performed a Blast search of f1pIV N0 plus the associated linker region
136 (residues 1-107) against all structures in the Protein Data Bank. This resulted in a single hit
137 for the PulD secretin from *Klebsiella pneumoniae* (6HCG) with 33% sequence identity over
138 63 residues. We used this structure to produce a homology model of the f1pIV N0 domain in
139 Swiss-Model²¹. The same f1pIV N0-linker domain sequence was also submitted to the I-
140 TASSER²², Robetta²³ and AlphaFold 2²⁴ structural prediction servers. The resulting models
141 from all methods were compared and seen to be in agreement for the folded domain (residues
142 2-71; Supplementary Fig. 5a). The N0 domain is thus most likely formed by two α -helices,
143 flanked by a two-stranded β -sheet on one side and a three-stranded β -sheet on the other. We
144 used the structure from I-TASSER to generate a composite model with our f1pIV structure
145 (Fig. 2g). Three key residues in the N0 domain have been identified as important for
146 mediating the interactions with the periplasmic domains of pI/pXI: Met 5²⁵ and Glu 4
147 combined with Ile 69²⁶. Mapping these residues to the N0 domain shows that they are
148 predicted to lie at the face of N0 which would be directly opposed to pI/pXI in the
149 cytoplasmic membrane (Supplementary Fig. 5b).

150

151 The four N0 models diverge at residues 72-107, which is in agreement with this region being
152 a flexible linker (Figure 2a, Supplementary Fig. 5a). The linker region has been modelled in a
153 fully extended conformation and the position of the N0 domain obtained by overlaying the
154 f1pIV structure with that of the *Klebsiella* PulD secretin (6HCG²⁷, Supplementary Fig. 5c);
155 the distance between N0 and N3 could be closer if the linker takes on a more compact
156 structure. The entire length of f1pIV (from the extracellular face of the β -barrel to the N-
157 terminal periplasmic domain of N0) in our composite model is 220 Å. This agrees well with
158 the distance needed for f1pIV to cross the *E. coli* periplasm (with a width of 210 Å)²⁸ and
159 reach the pI/pXI proteins in the inner membrane.

160

161 **Membrane integration of f1pIV**

162 An additional band of density was observed in our EM map which was unaccounted for,
163 lying in approximately the centre of the surface of the β -barrel (Fig. 3a). This formed a ring
164 around the outside of the secretin domain, reminiscent of detergent belts typically seen in
165 cryoEM structures of membrane proteins²⁹. We modelled the detergent CHAPS, used during
166 purification, into this density. Two molecules of CHAPS were observed to bind to each f1pIV
167 subunit, forming a circle of detergent around the barrel (Fig. 3b). The detergent molecules
168 were bound to a ring of aromatic residues (Phe 184, Tyr 359 and Tyr 394), forming an
169 aromatic girdle. An additional aromatic girdle was observed nearer the extracellular region of
170 the β -barrel formed by Phe 194 and Phe 196. Such clusters of aromatic residues are often
171 observed at the lipid-water interface in membrane-spanning β -barrels of gram-negative
172 bacteria, and allow for protein positioning in the membrane³⁰. Colouring the surface of f1pIV
173 by hydrophobicity confirms that the two aromatic girdles lie within the two main regions of
174 high hydrophobicity on the protein surface (Fig. 3c).

175

176 **The Gate region**

177 The inner β -barrel, Gate 1 and Gate 2 loops form the full gate region that projects into the
178 pore. The Gate 1 loops extend to the centre, presumably sealing the channel (Fig. 2g).
179 Sequence alignments show high sequence conservation for Gate 1 amongst secretin
180 homologues, while Gate 2 is less well conserved (Supplementary Fig. 3). In both cases, the
181 areas of highest sequence conservation are found where the gates join the inner β -barrel, with
182 the more variable regions lying in the loop regions which face the centre of the pore. There
183 are two highly conserved glycine residues (Gly 267 and Gly 297 in f1pIV) found at the
184 boundary of Gate 1, which are believed to form a hinge for gate opening³¹ (Supplementary
185 Fig. 3, Fig. 4a). An extensive hydrogen bonding network was observed within the gate region
186 (Fig. 4a). Hydrogen bonds are formed within each gate (6 mainchain intra-gate bonds in Gate
187 1, and 3 mainchain intra-gate bonds in Gate 2), tethering each loop together tightly. As seen
188 in all other secretin structures to date, the Gate 1 loop has an unusual twisted conformation.
189 Inter-gate hydrogen bonds are formed between neighbouring subunits, with Gate 1 from one
190 chain forming four mainchain hydrogen bonds with Gate 2 (including the hinge residues)
191 from the neighbouring subunit (Fig. 4a). Specific residues add further stability to the gate
192 region. For example, a highly conserved Arg 293 in Gate 1 forms hydrogen bonds with the
193 side chain of a conserved Asn 269 within the same gate (conserved in phage secretins), and
194 with the backbone carbonyl oxygen of an unconserved Val 332 from Gate 2 of the
195 neighbouring subunit (Fig. 4b, Supplementary Fig. 3). As Asn 269 is conserved mostly
196 amongst phage but not bacterial secretins, we also analysed the role of this residue in context
197 of the pIV structure. Asn 269 forms 4 hydrogen bonds – one each with Arg 293 and Asn 295
198 within the Gate 1 loop, and two with Thr 334 from the Gate 2 loop of the neighbouring
199 subunit, demonstrating the role of this residue in promoting a high level of stability.

200

201 **Opening the f1pIV channel**

202 The f1pIV pore must undergo significant structural rearrangements to allow phage to egress.

203 To provide insight into the mechanism of channel opening, we compared our f1pIV structure

204 to existing closed and open gate structures of a homologous protein: the Type III secretin

205 InvG from *Salmonella typhimurium* (6PEE and 6Q15)³². Structural alignment of the two

206 InvG structures highlights the main differences between the open and closed states

207 (Supplementary Fig. 6). The core of the secretin domain and the conformation of the loops

208 remain similar; differences are seen in the position of the gate loops relative to the barrel, the

209 β-slip and an extended loop in the N3 domain. Both gate loops move to pack against the outer

210 β-barrel in the open form. The Gate 1 loop moves with a hinge-like motion, while the Gate 2

211 loop twists. The β-slip at the extracellular edge of the β-barrel also moves away from the

212 centre of the pore in the open structure, and there is movement of an extended loop (not

213 present in f1pIV) in the N3 domain. Our closed f1pIV structure aligns well to the InvG closed

214 state, with a Root Mean Square Deviation (RMSD) of 1.051 Å (Supplementary Fig. 6). The

215 f1pIV closed gate loops were thus modelled into the open form based on their position in

216 InvG (Supplementary Fig. 6 and Fig. 4c).

217

218 This model reveals how the f1pIV Gate 1 would likely pivot upwards and outwards on the

219 highly conserved hinge residues Gly 267 and Gly 297, located at the top of the inner β-barrel

220 (Fig. 4a, c, d, Supplementary Fig. 3). The twisting motion in Gate 2 could occur around the

221 conserved Asp 321 and Asn 335 (Fig. 4d, Supplementary Fig. 3). These movements would

222 move both gate loops closer to the outer β-barrel and thus result in an opening of the pore

223 from the ~40 Å measured in our closed structure to 65 Å (Fig. 4e). To confirm that these

224 dimensions are sufficient for egressing phage, we docked the fibre diffraction structure of an

225 fd phage (2C0W)³³ into the open state of f1pIV (Fig. 4f). Colouring the phage by electrostatic
226 potential shows a clear negative charge on the outer surface (Fig. 4g). In contrast, the
227 electrostatic surface potential within the f1pIV pore is more varied. In closed and open states,
228 there is a band of positive charge in the area closest to the extracellular side, followed by a
229 band of negative charge near the gate region. In the open state, the aperture revealed by gate
230 opening is mostly positively charged (Fig. 4g).

231

232 **Mapping mutations to f1pIV that cause a leaky *E. coli* phenotype**

233 Wild type *E. coli* cells (strain K12) cannot transport the bile salt deoxycholate across their
234 outer membranes, and those which are deficient in the LamB maltoporin cannot transport
235 large maltooligosaccharide sugars. Previous studies^{20,34,35} have revealed a number of
236 mutations in the f1pIV protein that render the pore leaky to these substrates. Atomic-level
237 detail of the f1pIV structure can now be used to understand how these mutations cause their
238 effect. We mapped leaky mutations discovered by random mutagenesis (Supplementary
239 Table 2)²⁰ on to the f1pIV structure (Fig. 5a, b). The overwhelming majority (90%) were
240 found to lie in the gate region (the Gate 1 and Gate 2 loops or inner β -barrel). Three
241 mutations (A121V, D123Y, G147V) conferring leakiness to deoxycholate and maltopentaose
242 were identified in the N3 domain, all at the interface closest to the inner β -barrel; one
243 mutation (I183V) was observed in the outer β -barrel (Fig. 5a). The authors also tested
244 susceptibility of *E. coli* expressing different f1pIV mutants to the antibiotics vancomycin and
245 bacitracin (which are too large to cross the bacterial outer membrane). By mapping these to
246 our f1pIV structure, we can visualise directly that all mutants which conferred antibiotic
247 susceptibility were located in the gate region (4 with sensitivity to vancomycin alone, 12 with
248 sensitivity to both vancomycin and bacitracin) (Fig. 5b).

249

250 We used the map of f1pIV mutants to understand more about the delicate balance of
251 interactions in the gates (Supplementary Table 2). The conserved Gate 1 hinges (Gly 267 and
252 Gly 297) pack closely together within the inner β -barrel (Fig. 4d). Changing Gly 267 or Gly
253 297 to any other sidechain in the model causes steric clashes. Hinge mutations would thus
254 disrupt the packing in the region, interfere with hinge motion and prevent proper gate closure.
255 Asn 269, Arg 293 and Asn 295 in Gate 1 take part in a tight hydrogen bonding network in the
256 closed structure (Fig. 4b) that differs to the other secretins analysed (e.g. in Fig. 6). Mutations
257 in any one of these residues results in leaky f1pIV (Fig 4b; Supplementary Table 2,
258 Supplementary Fig. 7). We can now rationalise how these mutations lead to a more open gate
259 structure - by disrupting the hydrogen bonding network within the Gate 1 loop and between
260 two neighbouring gates.

261

262 **Antibiotic uptake through an f1pIV leaky mutant**

263 The antibiotic vancomycin is hydrophilic and bacitracin is amphipathic; both are sufficiently
264 small to pass through the open f1pIV pore (Supplementary Fig. 8). *E. coli* expressing the
265 previously characterised f1pIV mutant S324G are sensitive to both antibiotics^{20,36}. Ser 324 is
266 located in Gate 2, where mutation to a glycine will destroy the hydrogen bond made between
267 the Ser 324 sidechain and the backbone nitrogen of Ser 326 (Fig. 5c). Mutation to a glycine
268 could also change the position of the peptide backbone, potentially altering the hydrogen
269 bonds that are currently made between the Ser 324 carbonyl oxygen and the sidechain of Gln
270 328 from the neighbouring subunit, and those made between the backbone nitrogen of Ser
271 324 and the carbonyl oxygen of Ile 333 (Fig. 5c). The combined effect of these mutations
272 likely results in increased mobilisation of the gate and improved antibiotic uptake.

273

274 Here we aimed to understand whether the uptake and efficacy of hydrophobic antibiotics
275 could be improved by expressing leaky f1pIV in *E. coli*. Hydrophobic macrolides are often
276 used as first-line antibiotics, however, they are used typically to treat infections caused by
277 gram-positive but not most gram-negative bacteria due to slow uptake across the outer
278 membrane³⁷. The macrolide antibiotic roxithromycin is widely clinically employed³⁸, and our
279 modelled open gate structure reveals that it is sufficiently small to pass through the open
280 f1pIV channel unhindered (Supplementary Fig. 8). Using single-cell analysis with the
281 microfluidic mother machine and time-lapse microscopy^{39,40}, bacteria were injected into
282 channels and the accumulation of fluorescent antibiotics measured⁴¹. Specifically, we
283 employed a recently introduced fluorescent derivative of roxithromycin (roxithromycin
284 linked to nitrobenzoxadiazole -roxithromycin-NBD), which largely maintains the antibiotic
285 potency of the parental drug³⁷. Accumulation of roxithromycin-NBD was significantly
286 higher in *E. coli* cells expressing f1pIV^{S324G} compared to wild type f1pIV (Fig. 5d). We also
287 measured the minimum inhibitory concentration (MIC) for roxithromycin and determined a
288 one-notch shift against the mutant compared to the wild-type (64 and 96 µg/ml, respectively).
289 This indicates that the higher accumulation of roxithromycin-NBD corresponds to a higher
290 efficacy of the antibiotic in cells expressing leaky f1pIV^{S324G}.

291

292 **Structural comparison of f1pIV with other secretins**

293 As our structure is the first of a phage secretin at near-atomic level, we compared f1pIV to
294 different classes of bacterial secretins^{31,32,42} (Fig. 6a, b, c, Supplementary Fig. 9). All
295 secretins share the same overall architecture of the double-walled β-barrel and the first and
296 last periplasmic domains (N0 and N3), but differ in the number of additional N domains
297 (reviewed by Filloux and Voulhoux¹⁵). The Gate 1 and Gate 2 loops are all in similar
298 conformations, pointing into the centre of the pore from the inner β-barrel. The N3 domains

299 are broadly similar, with the one notable difference being an extended loop region in the
300 Type III InvG secretin which extends up towards the central gate area (Fig. 6c;
301 Supplementary Fig. 9). In general, there is increasing disorder within domains closest to the
302 N-terminus, and many structures have no clear density for their N0 domains.

303

304 Differences between secretins are seen on the extracellular face of the β -barrel with the
305 *Vibrio*-type group of Type II secretins possessing a cap gate which forms a much narrower
306 opening when compared to the other open-edged β -barrels. From sequence analysis
307 (Supplementary Fig. 4), we believe f1pIV will not have a cap structure at the extracellular
308 side of the β -barrel, but we could not see this region in our cryoEM map, likely for reasons of
309 flexibility (Supplementary Fig. 2). We are missing density for 36 residues, which is the
310 typical size of the β -lip domain in phage secretins (Supplementary Fig. 4). In contrast, the
311 bacterial Type II secretins typically have 51-60 residues in the β -lip region, while those with
312 a cap gate have around 80 residues here. Phage secretins are therefore expected to have a
313 more compact β -lip structure than their bacterial counterparts.

314

315 At the far C terminus of the protein, the Type II and Type III secretins have a helical domain
316 (the S-domain) that packs against the outside wall of the outer β -barrel (Fig. 6c). The S-
317 domain binds pilin molecules, which are essential for the assembly and/or localisation of
318 secretins to the outer membrane. f1pIV and the Type IV pilus secretins do not have an S-
319 domain, with their respective C-termini being located at the periplasmic side of the outer β -
320 barrel (Fig. 6c). Interestingly, the Type IV pilus secretins bind to their pilin partner via a
321 hydrophobic girdle around the β -barrel, in a similar place to the central hydrophobic girdle
322 that we have observed in f1pIV (Supplementary Fig. 10).

323

324 We used the Consurf server⁴³ to perform a sequence alignment of f1pIV homologues, map
325 them to the f1pIV structure and colour them by the degree of sequence conservation (Fig.
326 6d). The area of greatest conservation lies within the inner β -barrel and the region of outer β -
327 barrel that packs against it, demonstrating the importance of this region for protein stability
328 and/or function. The N3 domain is more variable, likely as a result of evolution to suit the
329 function of the individual system. We also compared the electrostatic surface potential
330 between the different classes of secretins (Fig. 6b and Supplementary Fig. 9). The outside
331 surfaces have a mixture of positively and negatively charged areas, with some very clear
332 bands of hydrophobicity, as expected for outer membrane proteins. The surface charge inside
333 the secretins is quite varied; differences presumably arose to accommodate the particular
334 shapes and electrostatic charges of substrate that each secretin transports.

335

336 **Discussion**

337 f1pIV is the first near-atomic resolution example of a phage secretin. The protein has a
338 similar overall architecture to bacterial secretins, but differs in its electrostatic surface
339 potential inside the pore and in the number of N domains. f1pIV is relatively compact, with
340 no cap gate, no C-terminal S-domain, and one N3 and one N0 domain; an arrangement which
341 could have arisen to save valuable space in the limited capacity of the phage genome.

342

343 The phenotypes of many previously characterised mutants can be rationalised with our
344 structure. f1pIV shows extensive hydrogen bonding within the outer and inner β -barrel
345 domains, as well as hydrophobic interactions and a salt bridge between the inner and outer
346 walls. Mutation of two conserved hydrophobic residues at the interface to glycines (I312G
347 and I314G) prevents multimer formation²⁰. In addition, inclusion of a His-tag on the external
348 loop between the inner and outer β -barrels has a destabilising effect, but this can be rescued

349 by introducing a hydrophobic mutation (S318I)⁴⁴, which lines the interface. The conserved
350 hydrophobic residues between inner and outer β -barrels are clearly important for folding and
351 stability, and highlight the importance of the unusual double-walled architecture.

352

353 In order for the phage to pass through f1pIV, the central gate must open. Our findings,
354 alongside f1pIV phenotypic data and the conserved architecture of the secretin family, can be
355 used to propose a mechanism (Fig. 7). Our data show that the periplasmic N-terminal N0
356 domain is extremely dynamic. This is likely due to the absence of the pI/pXI inner membrane
357 interaction partners, which interact with the N0 domain of f1pIV on phage egress^{12,25,26}. This
358 flexibility may allow f1pIV to sample a wider amount of periplasmic space than a rigid
359 structure, allowing the N0 domains to locate and bind to the inner membrane assembly
360 proteins. Bearing in mind that pI/pXI interaction with f1pIV is required for phage
361 assembly^{12,25}, this suggests that gate opening may be triggered by interaction of the N0
362 domain of f1pIV with the pI/pXI inner membrane components. Both ATP and the proton
363 motive force are required to assemble phage^{12,45}, and phages with mutations in the pI protein
364 Walker A motif are non-functional for assembly¹². It is thus tempting to speculate that
365 interaction of the pIV N0 domain with the periplasmic domain of pI/pXI could result in
366 energy transfer from the pI ATPase to help drive phage egress. The egressing phage will
367 subsequently encounter the N3 domain. Introducing mutations into the N3 domain of f1pIV
368 causes partial gate opening²⁰, highlighting its role in transducing information from the
369 periplasmic N domains into the β -barrel. The involvement of N3 in channel opening has also
370 been predicted for Type II and Type III secretins^{31,32,46,47}.

371

372 Our model of the open state of f1pIV highlights how the central gate loops will likely move
373 to allow phage to egress via conserved hinge residues on the extracellular side of the inner β -

374 barrel. A 10 residue in-frame deletion in Gate 2 results in leaky multimers that are non-
375 functional in phage assembly and egress²⁰, suggesting that passage of phage through f1pIV is
376 not a passive process. It is plausible that interaction of the f1 cap proteins pVII/pIX with the
377 f1pIV gate will be required to fully open the pore, assisted by the force of the assembling f1
378 phage. The hydrogen bonding that we observe within Gate 1 and Gate 2 means that the loops
379 do not alter their conformation significantly, rather both loops are pivoted around their
380 hinges. The hydrogen bonds between neighbouring subunits means that all gates would move
381 synchronously.

382

383 The surface of the phage (comprised of pVIII) is negatively charged, whereas open f1pIV
384 contains a mixture of positive and negative charge, with mostly positively charged residues in
385 the periplasmic chamber. f1pIV can tolerate a degree of variation with respect to the pVIII
386 coat of exported phage. For example, f1 phages with short peptides linked to the surface-
387 exposed N-terminus are produced with similar efficiency as the wild-type phage⁴⁸. There are
388 however key residues that may be important in maintaining specific electrostatic interactions.
389 For example, deletion of a predominantly negatively charged sequence (Gly3 Asp4 Asp5)
390 from pVIII results in f1 phage that is defective in assembly⁴⁸. In addition, the leaky mutant
391 f1pIV^{E292K} exhibits the highest sensitivity to antibiotics and a 10-fold decrease in phage
392 assembly relative to wild-type²⁰. The negatively charged sidechain of Glu 292 points into the
393 lower cavity of the pore (Supplementary Fig. 7). Replacing this with a positively charged
394 lysine residue would alter the electrostatic potential in this area, potentially interfering with
395 phage assembly. It is therefore likely that a mixture of both attractive and repulsive forces are
396 important for phage assembly and egress, similar to the findings reported for the assembly
397 and rotation of the bacterial flagellar rod⁴⁹.

398

399 f1pIV shows most sequence similarity to GspD from *Klebsiella pneumoniae* (Supplementary
400 Fig. 11), and thus it is plausible that the ancestral f1 phage captured a Type II secretin which
401 subsequently evolved to meet the needs of phage assembly and egress. Indeed, a number of
402 filamentous phages do not encode a secretin, but rather hijack one from their bacterial
403 host^{50,51}. We predict that the outermost hydrophobic girdle in f1pIV forms the membrane
404 embedded domain, as has been proposed for other secretin structures^{15,16,42,52}. The other
405 hydrophobic girdle (located half way down the barrel) would then lie within the periplasm, in
406 a similar position to where pilotins are seen to bind to other secretins (Supplementary Fig.
407 10)⁵³. The fact that this hydrophobic girdle has been evolutionarily maintained in f1pIV, even
408 in the absence of a phage pilotin, highlights its functional importance. In support of this, the
409 C-terminus of f1pIV is in close vicinity to the girdle, and C-terminal His-tags result in non-
410 functional f1pIV⁴⁴. In addition, chimeras of f1pIV with C-terminal pilotin-binding S-domains
411 from other secretins (PulD and InvG) are only targeted to the outer membrane and functional
412 for phage assembly in the presence of their respective pilotins (PulS or InvH)^{54,55}. The C-
413 terminus and hydrophobic girdle are thus an important interaction surface, with one
414 possibility being that the phage system is able to hijack bacterial pilotins, or pilotin-like
415 proteins, to aid its targeting and assembly.

416

417 Uptake of hydrophilic and amphipathic antibiotics have been tested with f1pIV previously,
418 whereas hydrophobic drugs have not. We demonstrate that the leaky mutant f1pIV^{S324G}
419 allows *E. coli* to accumulate the hydrophobic macrolide roxithromycin to a greater extent
420 than its wild type counterpart. Ser 324 mutation to Gly likely destroys important hydrogen
421 bonds and alters the position of the peptide backbone, resulting in a more open gate structure
422 that is non-selective to the hydrophobicity of the molecule passing through. These findings,
423 along with our f1pIV atomic model and the conserved nature of secretins, supports targeting

424 the secretin family as an antimicrobial approach^{56,57}. For example, *in silico* and *in vivo*
425 screens could be used to identify molecules that can destabilise the gates, in effect sensitising
426 any secretin-expressing pathogen to a wide range of antibiotics. Phage therapy is also
427 receiving renewed attention, and filamentous phages have been engineered to carry lethal
428 genes to bacteria⁵⁸⁻⁶⁰. Leaky f1pIV could be cloned into the genome of phages of interest, and
429 on protein expression channels would open in the host bacterial outer membrane, allowing
430 antibiotics to enter. Both of these approaches would add much needed artillery to our library
431 of therapeutic tools needed to combat the increasing rise of antimicrobial resistance.

432

433 **Methods**

434 The system of amino acid numbering used throughout is for the mature wild-type f1pIV
435 protein (minus the 21 signal sequence residues). Standard reagents were purchased from
436 Sigma-Aldrich unless otherwise stated.

437

438 **Bacterial strains**

439 All bacterial strains used were *E. coli* K12 derivatives. TG1 electrocompetent cells were
440 purchased from Lucigen and used for expression of f1pIV for cryoEM studies. Strain K2040
441 [MC4100 *ΔlamB106 degP41* (Δ PstI-Km^R)] described in²⁰ was used for the microfluidics
442 experiments.

443

444 **Expression and purification of f1pIV**

445 His-tagged f1pIV was recombinantly expressed in *E. coli* and purified in the presence of
446 CHAPS detergent (Melford) based on previously published methods^{36,61}. The wild type
447 protein was engineered to have a 9 residue His tag (SAHHHHHHH) inserted at position 308
448 and a stabilizing S318I mutation⁴⁴. Protein expression was induced with 1 mM IPTG

449 overnight at 20°C and cells were lysed by sonication. The membrane fraction was solubilized
450 in 5% (w/v) CHAPS, 50 mM Tris pH 7.6, 500 mM NaCl, 30 mM imidazole and incubated
451 with Ni²⁺ Sepharose beads. f1pIV was eluted with a 0.03-1 M imidazole gradient, and then
452 further purified by gel filtration chromatography on a Superose 6 Increase 10/300 GL column
453 (GE Healthcare) in 1% (w/v) CHAPS, 25 mM Na HEPES pH 8.0, 500 mM NaCl, 0.5 mM
454 EDTA. Purified f1pIV was separated on an Any kD mini-protean TGX gel (Biorad),
455 electrophoretically transferred to PVDF membrane and incubated with an anti-pIV antibody
456 at 1:2000 dilution, followed by secondary goat anti-rabbit IgG (H+L)-HRP conjugate
457 (Biorad) at 1:3000 dilution, which was detected by ClarityTM Western ECL substrate
458 (Biorad).

459

460 **Cryo-EM grid preparation and data collection**

461 The f1pIV purified sample (3 µl of ~0.7mg/ml) was applied to graphene oxide-coated lacey
462 carbon grids, 300 mesh (Agar Scientific) without any glow discharge, and frozen on a Mark
463 IV Vitrobot (Thermo Fisher Scientific, 4°C, 100% relative humidity, blot force 0, blot time 4
464 sec). Micrographs were collected on a 300 kV Titan Krios microscope (Thermo Fisher
465 Scientific) with a K3 direct electron detector (Gatan) at the Electron Bio-imaging Centre
466 (eBIC) at Diamond Light Source, UK. Data were collected using EPU software (Thermo
467 Fisher Scientific) with a pixel size of 1.072 Å (0.536 Å super-resolution) and a defocus range
468 from -2.5 µm to -1.3 µm. Further details are shown in Supplementary Table 1. A subset of
469 data was collected in normal mode (dataset 1), and a second subset in super-resolution mode
470 (dataset 2).

471

472 **Cryo-EM image processing**

473 Warp⁶² was used for motion correction, CTF correction and particle picking. 241,591
474 particles were picked from 7,037 micrographs for dataset 1 and 330,389 from 14,336 for
475 dataset 2. Both sets of data were processed separately and combined in the latter stages of
476 data processing. Several rounds of 2D classification and 3D refinement were implemented in
477 Relion¹⁹ followed by CTF refinement and polishing steps. The statistics of data collection and
478 model reconstruction are shown in Supplementary Table 1, and data quality checks^{63,64} are
479 shown in Supplementary Fig. 2.

480

481 **Model building and refinement**

482 A homologous structure of the Type II secretin GspD from Enteropathogenic *Escherichia*
483 *coli* (5W68)⁵² was manually placed in the cryoEM map using Chimera⁶⁵. Subsequent
484 building and model adjustments were performed using Coot⁶⁶. Bulky residues, glycine
485 residues and unique sequence patterns were used to guide sequence assignment during model
486 building. 15-fold symmetry was applied in Chimera, and the multimeric structure was refined
487 using Refmac from the CCP4 suite⁶⁷, with the quality of the model evaluated using the
488 validation tools in Coot and Molprobity⁶⁸. DeepEMhancer⁶⁹ was used for denoising and
489 postprocessing of the maps, which were then analysed to check for additional information
490 that could be modelled from the improved maps. A Fourier Shell Correlation (FSC) curve
491 showing the quality of the model to map fit (calculated with Phenix)⁶⁴ is shown in
492 Supplementary Fig. 2.

493

494 **Mass spectrometry analysis**

495 A sample of f1pIV was run on an SDS-PAGE gel (Any kD mini-protean TGX, Biorad),
496 stained with Coomassie, and the band of interest excised with a sterile scalpel blade. The gel
497 band was subjected to in-gel tryptic digestion using a DigestPro automated digestion unit

498 (Intavis Ltd.) and the resulting peptides were fractionated using an Ultimate 3000 nano-LC
499 system in line with an Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific). In
500 brief, peptides in 1% (vol/vol) formic acid were injected onto an Acclaim PepMap C18 nano-
501 trap column (Thermo Scientific). After washing with 0.5% (vol/vol) acetonitrile 0.1%
502 (vol/vol) formic acid peptides were resolved on a 250 mm × 75 µm Acclaim PepMap C18
503 reverse phase analytical column (Thermo Scientific) over a 150 min organic gradient, using 7
504 gradient segments (1-6% solvent B over 1 min., 6-15% B over 58 min., 15-32% B over 58
505 min., 32-40% B over 5 min., 40-90% B over 1 min., held at 90% B for 6min and then reduced
506 to 1% B over 1min.) with a flow rate of 300 nl min⁻¹. Solvent A was 0.1% formic acid and
507 Solvent B was aqueous 80% acetonitrile in 0.1% formic acid. Peptides were ionized by nano-
508 electrospray ionization at 2.2 kV using a stainless-steel emitter with an internal diameter of
509 30 µm (Thermo Scientific) and a capillary temperature of 250°C.

510 All spectra were acquired using an Orbitrap Fusion Tribrid mass spectrometer controlled by
511 Xcalibur 2.1 software (Thermo Scientific) and operated in data-dependent acquisition mode.
512 FTMS1 spectra were collected at a resolution of 120 000 over a scan range (m/z) of 350-
513 1550, with an automatic gain control (AGC) target of 400 000 and a max injection time of
514 100ms. Precursors were filtered according to charge state (to include charge states 2-7), with
515 monoisotopic peak determination set to peptide and using an intensity range from 5E3 to
516 1E20. Previously interrogated precursors were excluded using a dynamic window (40 s +/-10
517 ppm). The MS2 precursors were isolated with a quadrupole mass filter set to a width of 1.6
518 m/z. ITMS2 spectra were collected with an AGC target of 5000, max injection time of 50 ms
519 and HCD collision energy of 35%.

520 The raw data files were processed and quantified using Proteome Discoverer software v1.4
521 (Thermo Scientific) and searched against the UniProt *Escherichia coli* database (4349

522 sequences) plus the supplied amino acid sequence using the SEQUEST algorithm. Peptide
523 precursor mass tolerance was set at 10 ppm, and MS/MS tolerance was set at 0.8 Da. Search
524 criteria included carbamidomethylation of cysteine (+57.0214) as a fixed modification and
525 oxidation of methionine (+15.9949) as a variable modification. Searches were performed
526 with full tryptic digestion and a maximum of 1 missed cleavage was allowed. The reverse
527 database search option was enabled and all peptide data was filtered to satisfy false discovery
528 rate (FDR) of 5%.

529 **Sequence alignments and homology modelling**

530 The sequence of the N terminal region of the model that was not accounted for in our
531 structure (residues 1-107) was subjected to a Blast search⁷⁰ against all sequences in the
532 Protein Data Bank. A sequence alignment of the top hit was performed on f1pIV with
533 Praline⁷¹ and Swiss-Model²¹ used to create a homology model of the f1pIV N0 domain. In
534 addition, the sequence of the f1pIV N0 domain was submitted to the I-TASSER structural
535 prediction server²², to the Robetta structural prediction server²³, and to the AlphaFold 2
536 structural prediction server²⁴. The top predicted models for all methods were in agreement for
537 residues 2-71 where they started to diverge. Open and closed gate structures of InvG from
538 *Salmonella typhimurium* were superimposed with the closed structure of f1pIV, and Gate 1
539 and 2 loops were modelled into an open position using Coot. 15-fold symmetry was applied
540 to produce a model of the f1pIV open state.

541

542 The Consurf server⁴³ was used to perform a sequence alignment of f1pIV homologues (101
543 unique sequences with 35-100% sequence similarity from the UniProt database were used for
544 this analysis), map them to the f1pIV structure and colour them by the degree of sequence
545 conservation.

546

547 **Determination of minimum inhibitory concentration**

548 *E. coli* cells were freshly transformed with plasmid pPMR132^{WT} or pPMR132^{S324G} and single
549 colonies of *E. coli* f1pIV^{WT} or *E. coli* f1pIV^{S324G} were picked and cultured at 37 °C in FB
550 media (2.5% (w/v) tryptone, 0.75% (w/v) yeast extract, 0.6% (w/v) NaCl, 0.1% (w/v)
551 glucose, 50 mM TrisHCl (pH 7.5)). Plasmid DNA was miniprepped and sequenced for each
552 experiment to ensure there had been no additional mutations. Protein expression was induced
553 overnight (in FB media plus 0.5 mg/ml bovine serum albumin) with 1mM IPTG at 20 °C,
554 then diluted 40-fold and grown to OD₆₀₀ = 0.5. 60 µl of roxithromycin stock (640 µg/ml in
555 DMSO) were added to the first column of a 96-well plate. 40 µl of the induction media (FB
556 media, 1mM IPTG, 0.5 mg/ml BSA) was added to the first column, and 30 µl to all other
557 wells. 70 µl solution was then withdrawn from the first column and serially transferred to the
558 next column until 70 µl solution withdrawn from the last column was discharged. The mid-
559 log phase cultures (i.e. OD₆₀₀ = 0.5) were diluted to 10⁶ colony forming units (c.f.u.)/ml and
560 30 µl was added to each well, to give a final concentration of 5×10⁵ c.f.u/ml. Each plate
561 contained two rows of 12 positive control experiments (i.e. bacteria growing in induction
562 media without roxithromycin) and two rows of 12 negative control experiments (i.e.
563 induction media only). Plates were incubated at 37 °C overnight. The minimum inhibitory
564 concentrations (MICs) of roxithromycin against *E. coli* f1pIV^{WT} and *E. coli* f1pIV^{S324G} were
565 determined visually, with the MIC being the lowest concentration well with no visible growth
566 (compared to the positive control experiments).

567

568 **Single-cell microfluidics**

569 Single-cell microfluidics experiments to measure the intracellular accumulation of
570 roxithromycin-NBD were carried out as previously reported^{37,39,41}. Briefly, overnight cultures
571 were prepared as described above and a 50 ml aliquot was centrifuged for 5 min at 2,600 xg

572 at 37 °C and resuspended at an OD₅₉₅ of 75. A 2 µl aliquot of this suspension was injected in
573 the microfluidic mother machine device and incubated at 37 °C. The microfluidic device was
574 completed by the integration of fluorinated ethylene propylene tubing (1/32" × 0.008"). The
575 inlet tubing was connected to the inlet reservoir which was connected to a computerised
576 pressure-based flow control system (MFCS-4C, Fluigent). The microfluidic device was
577 mounted on an inverted microscope (IX73 Olympus, Tokyo, Japan) and the main
578 microchamber of the mother machine was washed into the waste reservoir by flowing media
579 at 100 µl/h for 2 h. Images were collected via a 60×, 1.2 N.A. objective (UPLSAPO60XW,
580 Olympus) and a sCMOS camera (Zyla 4.2, Andor, Belfast, UK). After this initial 2 h growth
581 period in growth media, the microfluidic environment was changed by flowing media
582 containing roxithromycin-NBD at a concentration of 46 µg/ml. Upon acquiring a bright-field
583 image the microscope was switched to fluorescent mode and FITC filter using custom built
584 Labview software. A fluorescence image was acquired by exposing the bacteria to the blue
585 excitation band of a broad-spectrum LED (CoolLED pE300white, Andover, UK) at 20% of
586 its intensity. Bright-field and fluorescence imaging was carried out every 10 min. The entire
587 assay was carried out at 37 °C in an environmental chamber (Solent Scientific, Portsmouth,
588 UK) surrounding the microscope and microfluidics equipment. Images were processed as
589 previously described^{37,39,41}.

590

591 **Data availability**

592 The 3D cryoEM density maps generated in this study have been deposited in the Electron
593 Microscopy Data Bank (EMDB) under accession code EMD-12874
594 [<https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-12874>]. The atomic coordinates have been
595 deposited in the Protein Data Bank (PDB) under accession number 7OFH
596 [<http://doi.org/10.2210/pdb/7OFH/pdb>]. The source image data used in this study have been

597 deposited to the Electron Microscopy Public Image Archive (EMPIAR) under accession
598 number EMPIAR-10807 [<https://dx.doi.org/10.6019/EMPIAR-10807>]. Source data for Fig. 5d
599 are provided with this paper.

600

601

602 References

- 603 1 Marvin, D. A., Symmons, M. F. & Straus, S. K. Structure and assembly of
604 filamentous bacteriophages. *Prog Biophys Mol Biol* **114**, 80-122,
605 doi:10.1016/j.pbiomolbio.2014.02.003 (2014).
- 606 2 Rakonjac, J. Filamentous Bacteriophages: Biology and Applications. *eLS*, 1-13,
607 doi:10.1002/9780470015902.a0000777 (2012).
- 608 3 Szot-Karpińska, K. *et al.* Modified Filamentous Bacteriophage as a Scaffold for
609 Carbon Nanofiber. *Bioconjugate Chemistry* **27**, 2900-2910,
610 doi:10.1021/acs.bioconjchem.6b00555 (2016).
- 611 4 Mao, C. *et al.* Virus-Based Toolkit for the Directed Synthesis of Magnetic and
612 Semiconducting Nanowires. *Science* **303**, 213-217, doi:10.1126/science.1092740
613 (2004).
- 614 5 Nathan, C. Resisting antimicrobial resistance. *Nature Reviews Microbiology* **18**, 259-
615 260, doi:10.1038/s41579-020-0348-5 (2020).
- 616 6 McKenna, M. The antibiotic paradox: why companies can't afford to create life-
617 saving drugs. *Nature* **584**, 338-341, doi:10.1038/d41586-020-02418-x (2020).
- 618 7 Brives, C. & Pourraz, J. Phage therapy as a potential solution in the fight against
619 AMR: obstacles and possible futures. *Palgrave Communications* **6**, 1-11,
620 doi:10.1057/s41599-020-0478-4 (2020).
- 621 8 Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria
622 and their phage foes. *Nature* **577**, 327-336, doi:10.1038/s41586-019-1894-8 (2020).
- 623 9 Rakonjac, J., Bennett, N. J., Spagnuolo, J., Gagic, D. & Russel, M. Filamentous
624 bacteriophage: biology, phage display and nanotechnology applications. *Current
625 issues in molecular biology* **13**, 51-76, doi:10.21775/cimb.013.051 (2011).
- 626 10 Riechmann, L. & Holliger, P. The C-terminal domain of TolA is the coreceptor for
627 filamentous phage infection of *E. coli*. *Cell* **90**, 351-360, doi:10.1016/S0092-
628 8674(00)80342-6 (1997).
- 629 11 Hay, I. D. & Lithgow, T. Filamentous phages: masters of a microbial sharing
630 economy. *EMBO reports* **20**, doi:10.15252/embr.201847427 (2019).
- 631 12 Feng, J. n., Model, P. & Russel, M. A trans-envelope protein complex needed for
632 filamentous phage assembly and export. *Molecular Microbiology* **34**, 745-755,
633 doi:10.1046/j.1365-2958.1999.01636.x (1999).
- 634 13 Russel, M. & Kazmierczak, B. Analysis of the structure and subcellular location of
635 filamentous phage pIV. *Journal of Bacteriology* **175**, 3998-4007,
636 doi:10.1128/jb.175.13.3998-4007.1993 (1993).
- 637 14 Green, E. R. & Mecsas, J. Bacterial Secretion Systems: An Overview. *Microbiology
638 Spectrum* **4**, 1-32, doi:10.1128/microbiolspec.vmbf-0012-2015 (2016).
- 639 15 Filloux, A. & Voulhoux, R. Multiple structures disclose the secretins' secrets. *Journal
640 of Bacteriology* **200**, 1-5, doi:10.1128/JB.00702-17 (2018).

641 16 Majewski, D. D., Worrall, L. J. & Strynadka, N. C. J. Secretins revealed: structural
642 insights into the giant gated outer membrane portals of bacteria. *Current Opinion in*
643 *Structural Biology* **51**, 61-72, doi:10.1016/j.sbi.2018.02.008 (2018).

644 17 Naskar, S., Hohl, M., Tassinari, M. & Low, H. H. The structure and mechanism of the
645 bacterial type II secretion system. *Molecular Microbiology* **115**, 412-424,
646 doi:10.1111/mmi.14664 (2021).

647 18 Opalka, N. *et al.* Structure of the filamentous phage pIV multimer by cryo-electron
648 microscopy. *Journal of Molecular Biology* **325**, 461-470, doi:10.1016/S0022-
649 2836(02)01246-9 (2003).

650 19 Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure
651 determination in RELION-3. *eLife* **7**, 1-22, doi:10.7554/eLife.42166 (2018).

652 20 Spagnuolo, J. *et al.* Identification of the gate regions in the primary structure of the
653 secretin pIV. *Molecular Microbiology* **76**, 133-150, doi:10.1111/j.1365-
654 2958.2010.07085.x (2010).

655 21 Waterhouse, A. *et al.* SWISS-MODEL: Homology modelling of protein structures
656 and complexes. *Nucleic Acids Research* **46**, W296-W303, doi:10.1093/nar/gky427
657 (2018).

658 22 Yang, J. *et al.* The I-TASSER suite: Protein structure and function prediction. *Nature*
659 *Methods* **12**, 7-8, doi:10.1038/nmeth.3213 (2014).

660 23 Baek, M. *et al.* Accurate prediction of protein structures and interactions using a 3-
661 track network. *bioRxiv*, 1-17, doi: <https://doi.org/10.1101/2021.06.14.448402> (2021).

662 24 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature*
663 **596**, 583-589, doi:10.1038/s41586-021-03819-2 (2021).

664 25 Russel, M. Protein-protein interactions during filamentous phage assembly. *Journal of*
665 *Molecular Biology* **231**, 689-697, doi:10.1006/jmbi.1993.1320 (1993).

666 26 Daefler, S., Russel, M. & Model, P. Module swaps between related translocator
667 proteins pIV(f1), pIV(IKe) and PulD: identification of a specificity domain. *J Mol*
668 *Biol* **266**, 978-992, doi:10.1006/jmbi.1996.0866 (1997).

669 27 Chernyatina, A. A. & Low, H. H. Core architecture of a bacterial type II secretion
670 system. *Nature Communications* **10**, 1-10, doi:10.1038/s41467-019-13301-3 (2019).

671 28 Vollmer, W. & Seligman, S. J. Architecture of peptidoglycan: more data and more
672 models. *Trends in Microbiology* **18**, 59-66, doi:10.1016/j.tim.2009.12.004 (2010).

673 29 Chaptal, V. *et al.* Quantification of Detergents Complexed with Membrane Proteins.
674 *Scientific Reports* **7**, 1-12, doi:10.1038/srep41751 (2017).

675 30 Schulz, G. E. β -barrel membrane proteins. *Current Opinion in Structural Biology* **10**,
676 443-447, doi:10.1016/S0959-440X(00)00120-2 (2000).

677 31 Yan, Z., Yin, M., Xu, D., Zhu, Y. & Li, X. Structural insights into the secretin
678 translocation channel in the type II secretion system. *Nature Structural and Molecular*
679 *Biology* **24**, 177-183, doi:10.1038/nsmb.3350 (2017).

680 32 Hu, J. *et al.* T3S injectisome needle complex structures in four distinct states reveal
681 the basis of membrane coupling and assembly. *Nature Microbiology* **4**, 2010-2019,
682 doi:10.1038/s41564-019-0545-z (2019).

683 33 Marvin, D. A., Welsh, L. C., Symmons, M. F., Scott, W. R. P. & Straus, S. K.
684 Molecular structure of fd (f1, M13) filamentous bacteriophage refined with respect to
685 X-ray fibre diffraction and solid-state NMR data supports specific models of phage
686 assembly at the bacterial membrane. *Journal of Molecular Biology* **355**, 294-309,
687 doi:10.1016/j.jmb.2005.10.048 (2006).

688 34 Russel, M. Mutants at conserved positions in gene IV, a gene required for assembly
689 and secretion of filamentous phages. *Molecular Microbiology* **14**, 357-369,
690 doi:10.1111/j.1365-2958.1994.tb01296.x (1994).

691 35 Russel, M., Linderoth, N. A. & Šali, A. Filamentous phage assembly: Variation on a
692 protein export theme. *Gene* **192**, 23-32, doi:10.1016/S0378-1119(96)00801-3 (1997).
693 36 Marciano, D. K., Russel, M. & Simon, S. M. An aqueous channel for filamentous
694 phage export. *Science* **284**, 1516-1519, doi:10.1126/science.284.5419.1516 (1999).
695 37 Stone, M. R. L. *et al.* Fluorescent macrolide probes – synthesis and use in evaluation
696 of bacterial resistance. *RSC Chemical Biology* **1**, 395-404, doi:10.1039/d0cb00118j
697 (2020).
698 38 Bryskier, A. Roxithromycin: Review of its antimicrobial activity. *Journal of*
699 *Antimicrobial Chemotherapy* **41**, 1-21, doi:10.1093/jac/41.suppl_2.1 (1998).
700 39 Łapińska, U., Glover, G., Capilla-Lasheras, P., Young, A. J. & Pagliara, S. Bacterial
701 ageing in the absence of external stressors. *Philosophical Transactions of the Royal*
702 *Society B: Biological Sciences* **374**, 1-13, doi:10.1098/rstb.2018.0442 (2019).
703 40 Bamford, R. A. *et al.* Investigating the physiology of viable but non-culturable
704 bacteria by microfluidics and time-lapse microscopy. *BMC Biology* **15**, 1-12,
705 doi:10.1186/s12915-017-0465-4 (2017).
706 41 Cama, J. *et al.* Single-cell microfluidics facilitates the rapid quantification of
707 antibiotic accumulation in Gram-negative bacteria. *Lab on a Chip* **20**, 2765-2775,
708 doi:10.1039/d0lc00242a (2020).
709 42 Weaver, S. J. *et al.* CryoEM structure of the type IVa pilus secretin required for
710 natural competence in *Vibrio cholerae*. *Nature Communications* **11**, 1-13,
711 doi:10.1038/s41467-020-18866-y (2020).
712 43 Ashkenazy, H. *et al.* ConSurf 2016: an improved methodology to estimate and
713 visualize evolutionary conservation in macromolecules. *Nucleic acids research* **44**,
714 W344-W350, doi:10.1093/nar/gkw408 (2016).
715 44 Linderoth, N. A., Model, P. & Russel, M. Essential role of a sodium dodecyl sulfate-
716 resistant protein IV multimer in assembly-export of filamentous phage. *Journal of*
717 *Bacteriology* **178**, 1962-1970, doi:10.1128/jb.178.7.1962-1970.1996 (1996).
718 45 Feng, J. N., Russel, M. & Model, P. A permeabilized cell system that assembles
719 filamentous bacteriophage. *Proc Natl Acad Sci U S A* **94**, 4068-4073,
720 doi:10.1073/pnas.94.8.4068 (1997).
721 46 Hu, J. *et al.* Cryo-EM analysis of the T3S injectisome reveals the structure of the
722 needle and open secretin. *Nature Communications* **9**, 1-11, doi:10.1038/s41467-018-
723 06298-8 (2018).
724 47 Worrall, L. J. *et al.* Near-atomic-resolution cryo-EM analysis of the *Salmonella* T3S
725 injectisome basal body. *Nature* **540**, 597-601, doi:10.1038/nature20576 (2016).
726 48 Iannolo, G., Minenkova, O., Petruzzelli, R. & Cesareni, G. Modifying filamentous
727 phage capsid: limits in the size of the major capsid protein. *J Mol Biol* **248**, 835-844,
728 doi:10.1006/jmbi.1995.0264 (1995).
729 49 Yamaguchi, T. *et al.* Structure of the molecular bushing of the bacterial flagellar
730 motor. *Nat Commun* **12**, 4469, doi:10.1038/s41467-021-24715-3 (2021).
731 50 Davis, B. M. *et al.* Convergence of the secretory pathways for cholera toxin and the
732 filamentous phage, CTXφ. *Science* **288**, 333-335, doi:10.1126/science.288.5464.333
733 (2000).
734 51 Bille, E. *et al.* A chromosomally integrated bacteriophage in invasive meningococci.
735 *Journal of Experimental Medicine* **201**, 1905-1913, doi:10.1084/jem.20050112
736 (2005).
737 52 Hay, I. D., Belousoff, M. J., Dunstan, R. A., Bamert, R. S. & Lithgow, T. Structure
738 and membrane topography of the vibrio-type secretin complex from the type 2
739 secretion system of enteropathogenic *Escherichia coli*. *Journal of Bacteriology* **200**,
740 1-15, doi:10.1128/JB.00521-17 (2018).

741 53 McCallum, M., Tammam, S., Rubinstein, J. L., Burrows, L. L. & Howell, P. L.
742 CryoEM map of *Pseudomonas aeruginosa* PilQ enables structural characterization of
743 Tsap. *Structure* **29**, 457-466, doi:10.1016/j.str.2020.11.019 (2021).

744 54 Daefler, S., Guilvout, I., Hardie, K. R., Pugsley, A. P. & Russel, M. The C-terminal
745 domain of the secretin PulD contains the binding site for its cognate chaperone, PulS,
746 and confers PulS dependence on pIV(f1) function. *Molecular Microbiology* **24**, 465-
747 475, doi:10.1046/j.1365-2958.1997.3531727.x (1997).

748 55 Daefler, S. & Russel, M. The *Salmonella typhimurium* InvH protein is an outer
749 membrane lipoprotein required for the proper localization of InvG. *Molecular*
750 *Microbiology* **28**, 1367-1380, doi:10.1046/j.1365-2958.1998.00908.x (1998).

751 56 Baron, C. & Coombes, B. Targeting Bacterial Secretion Systems: Benefits of
752 Disarmament in the Microcosm. *Infectious Disorders - Drug Targets* **7**, 19-27,
753 doi:10.2174/187152607780090685 (2008).

754 57 McShan, A. C. & De Guzman, R. N. The Bacterial Type III Secretion System as a
755 Target for Developing New Antibiotics. *Chemical Biology and Drug Design* **85**, 30-
756 42, doi:10.1111/cbdd.12422 (2015).

757 58 Hagens, S. & Bläsi, U. Genetically modified filamentous phage as bactericidal agents:
758 A pilot study. *Letters in Applied Microbiology* **37**, 318-323, doi:10.1046/j.1472-
759 765X.2003.01400.x (2003).

760 59 Moradpour, Z. *et al.* Genetically engineered phage harbouring the lethal catabolite
761 gene activator protein gene with an inducer-independent promoter for biocontrol of
762 *Escherichia coli*. *FEMS Microbiology Letters* **296**, 67-71, doi:10.1111/j.1574-
763 6968.2009.01620.x (2009).

764 60 Westwater, C. *et al.* Use of Genetically Engineered Phage To Deliver Antimicrobial
765 Agents to Bacteria: an Alternative Therapy for Treatment of Bacterial Infections.
766 *Antimicrobial Agents and Chemotherapy* **47**, 1301-1307,
767 doi:10.1128/AAC.47.4.1301-1307.2003 (2003).

768 61 Linderoth, N. A., Simon, M. N. & Russel, M. The filamentous phage pIV multimer
769 visualized by scanning transmission electron microscopy. *Science* **278**, 1635-1638,
770 doi:10.1126/science.278.5343.1635 (1997).

771 62 Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing
772 with Warp. *Nature Methods* **16**, 1146-1152, doi:10.1038/s41592-019-0580-y (2019).

773 63 Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of
774 cryo-EM density maps. *Nature Methods* **11**, 63-65, doi:10.1038/nmeth.2727 (2014).

775 64 Liebschner, D. *et al.* Macromolecular structure determination using X-rays, neutrons
776 and electrons: Recent developments in Phenix. *Acta Crystallographica Section D:
777 Structural Biology* **75**, 861-877, doi:10.1107/S2059798319011471 (2019).

778 65 Pettersen, E. F. *et al.* UCSF Chimera - A visualization system for exploratory research
779 and analysis. *Journal of Computational Chemistry* **25**, 1605-1612,
780 doi:10.1002/jcc.20084 (2004).

781 66 Emsley, P. & Cowtan, K. Coot: Model-building tools for molecular graphics. *Acta
782 Crystallographica Section D: Biological Crystallography* **60**, 2126-2132,
783 doi:10.1107/S0907444904019158 (2004).

784 67 Wood, C. *et al.* Collaborative computational project for electron cryo-microscopy.
785 *Acta Crystallographica Section D: Biological Crystallography* **71**, 123-126,
786 doi:10.1107/S1399004714018070 (2015).

787 68 Williams, C. J. *et al.* MolProbity: More and better reference data for improved all-
788 atom structure validation. *Protein Science* **27**, 293-315, doi:10.1002/pro.3330 (2018).

789 69 Sanchez-Garcia, R. *et al.* DeepEMhancer: a deep learning solution for cryo-EM
790 volume post-processing. *bioRxiv*, doi:<https://doi.org/10.1101/2020.06.12.148296>
791 (2020).

792 70 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local
793 alignment search tool. *Journal of Molecular Biology* **215**, 403-410,
794 doi:10.1016/S0022-2836(05)80360-2 (1990).

795 71 Simossis, V. A. & Heringa, J. PRALINE: A multiple sequence alignment toolbox that
796 integrates homology-extended and secondary structure information. *Nucleic Acids
797 Research* **33**, W289-W294, doi:10.1093/nar/gki390 (2005).

798 72 Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-
799 dimensional image data using IMOD. *J Struct Biol* **116**, 71-76,
800 doi:10.1006/jsb.1996.0013 (1996).

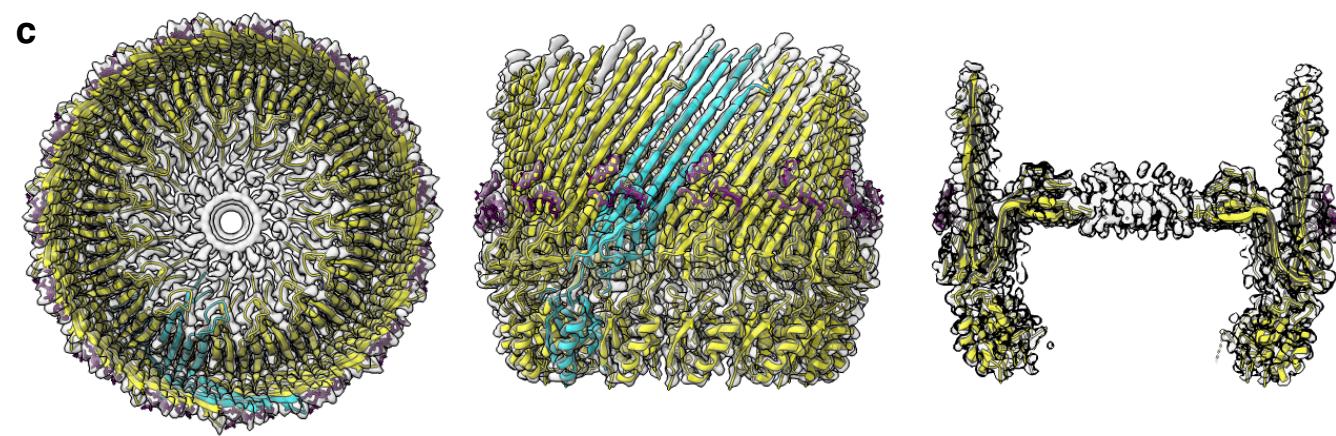
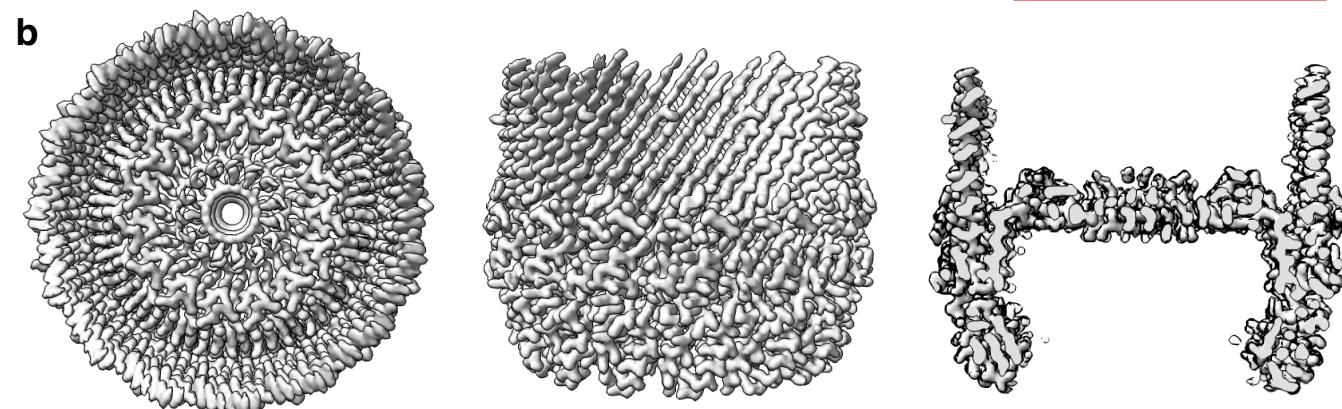
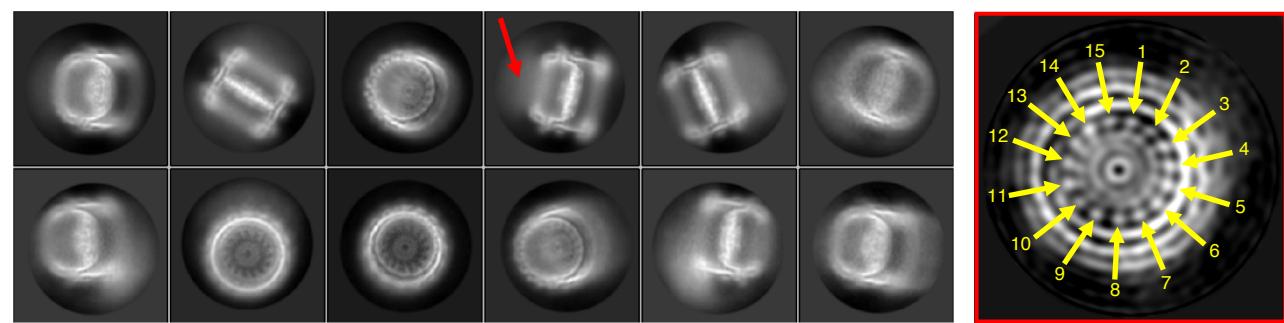
801

802 **Acknowledgements**

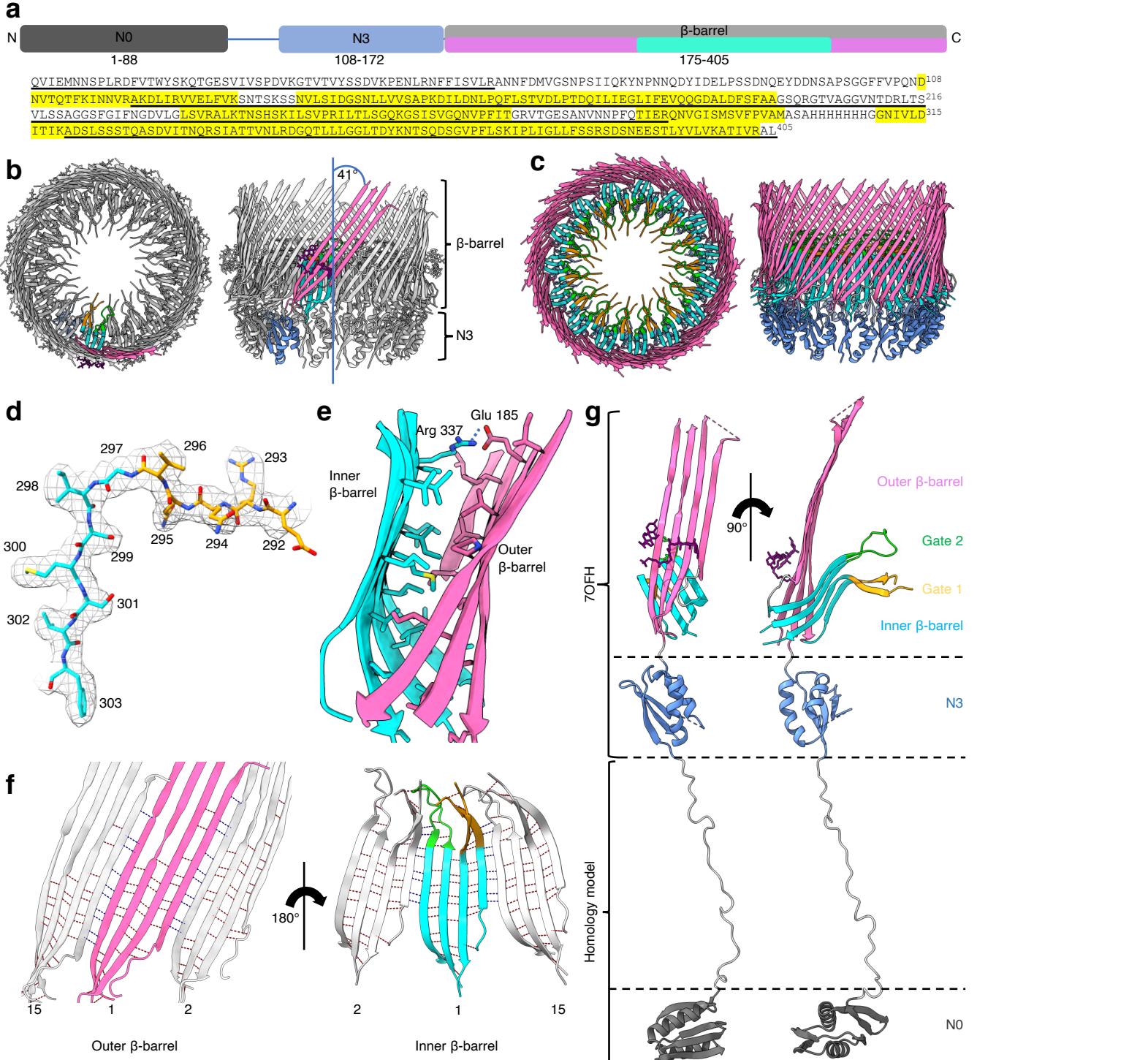
803 This work was funded by a Wellcome Trust Seed Award in Science awarded to V.G.
804 (210363/Z/18/Z), which along with the University of Exeter, supported R.C. M.M. and K.S.
805 were supported by a BBSRC responsive mode grant awarded to V.G. (BB/R008639/1). U.L.
806 was supported through a BBSRC responsive mode grant (BB/V008021/1), an MRC
807 Proximity to Discovery EXCITEME2 grant (MCPC17189) and an award from the Gordon
808 and Betty Moore Foundation Marine Microbiology Initiative (GBMF5514) awarded to S.P.
809 M.R.L.S. was supported by an Australian Postgraduate Award (APA), PhD scholarship and
810 an IMB Research Advancement Award. B.D. received funding from the European Research
811 Council (ERC) under the European Union's Horizon 2020 research and innovation
812 programme (grant agreement No 803894). We acknowledge Diamond Light Source for
813 access and support of the cryo-EM facilities at the UK's national Electron Bio-imaging
814 Centre (eBIC) at Diamond Light Source [under proposal BI25452], funded by the Wellcome
815 Trust, MRC and BBRSC. We acknowledge access and support of the GW4 Facility for High-
816 Resolution Electron Cryo-Microscopy, funded by the Wellcome Trust (202904/Z/16/Z and
817 206181/Z/17/Z) and BBSRC (BB/R000484/1). The deposited dataset was collected at eBIC,
818 and the GW4 facility was used for sample screening. We are grateful to Ufuk Borucu of the
819 GW4 Regional Facility for High-Resolution Electron Cryo-Microscopy for help with

820 screening, Kate Heesom of University of Bristol Proteomics Facility for the mass
821 spectrometry analysis, and to Marjorie Russel for valuable comments on the manuscript,
822 advice, and her generous gifts of the f1pIV expression vectors (pPMR132 and
823 pPMR132S324G) and anti-f1pIV antibody.

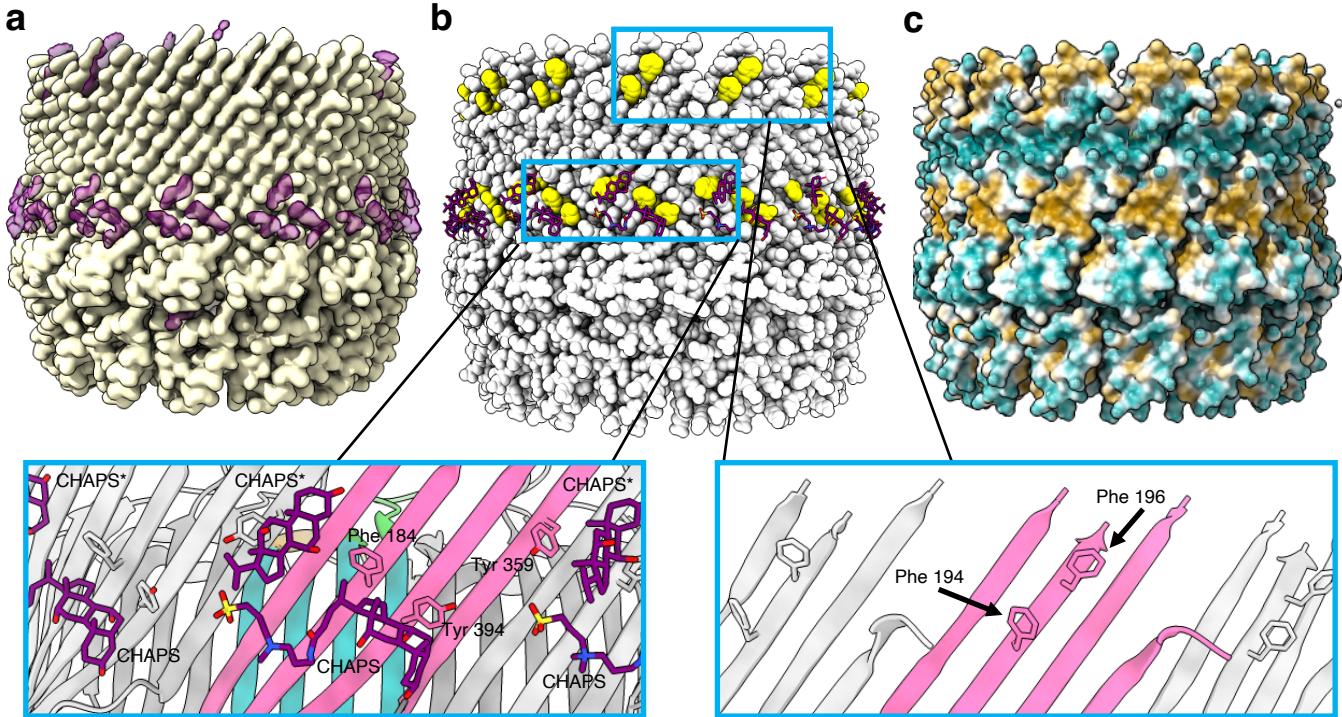
824

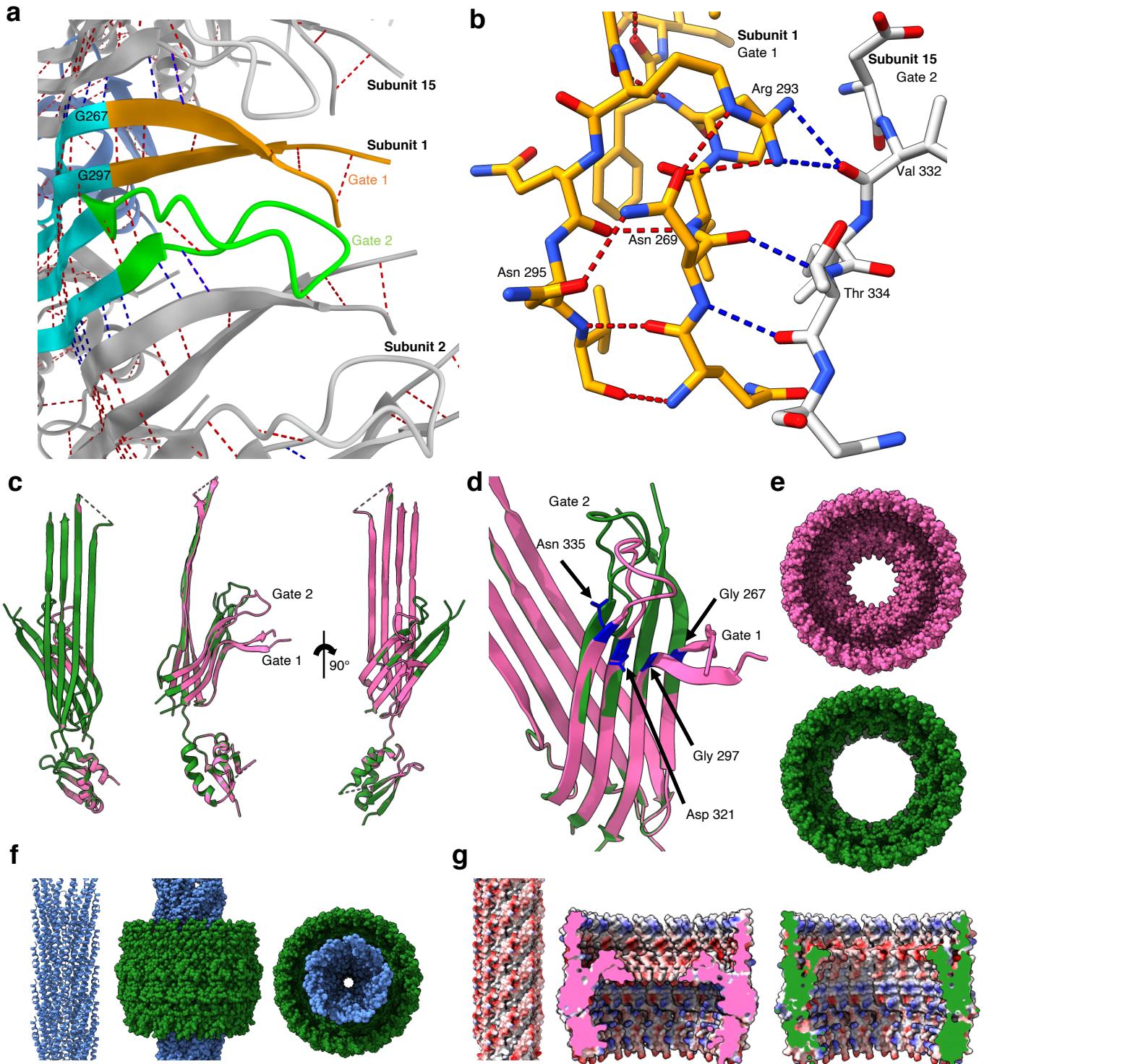



825 **Author contributions**

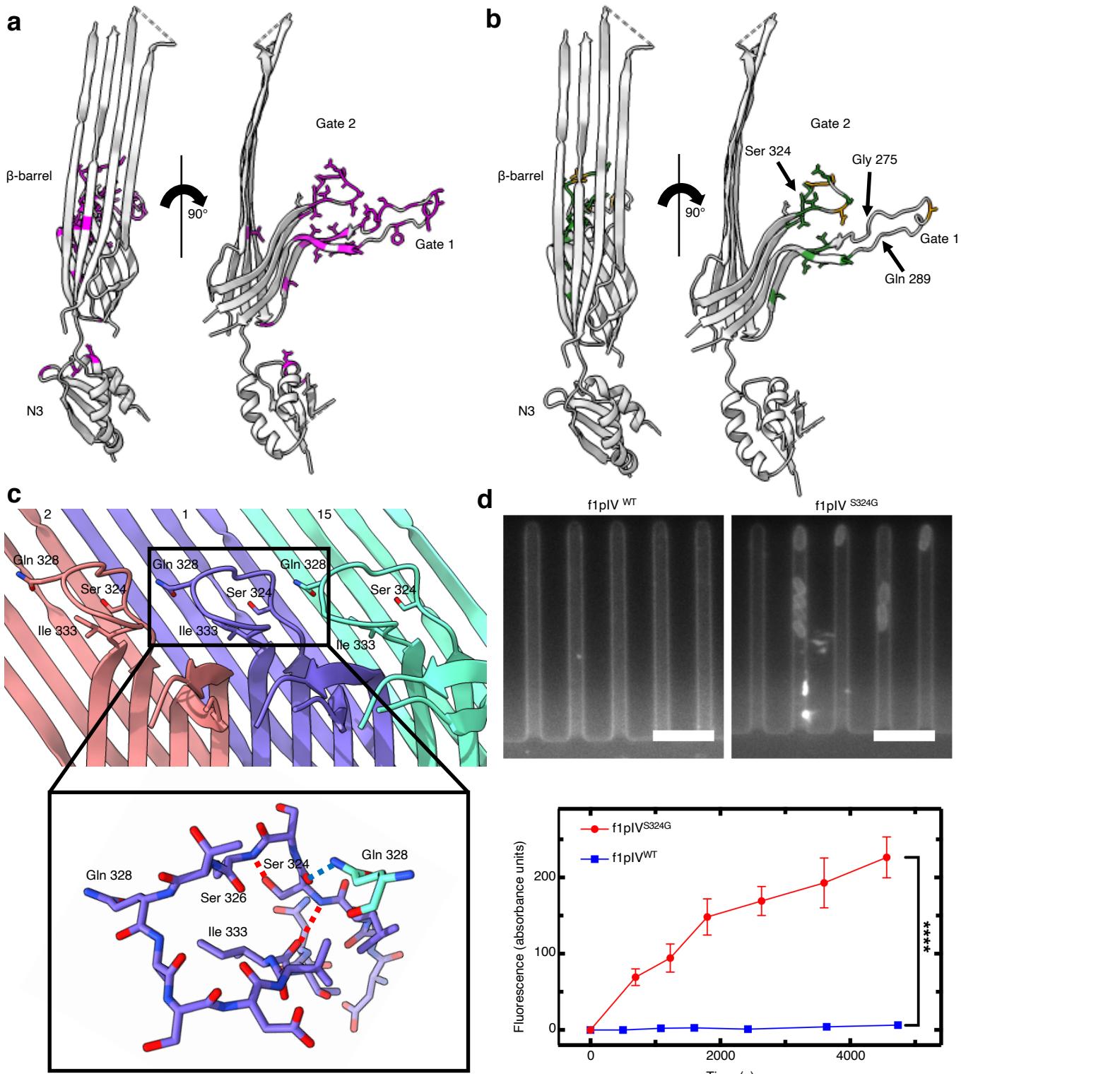
826 R.C. expressed and purified the protein, prepared samples for cryoEM, processed cryoEM
827 data, built the atomic model, interpreted results and prepared figures. M.M. collected and
828 processed cryoEM data. U.L. performed microfluidics experiments and analysed single-cell
829 data. K.S. prepared samples for single-cell microfluidic experiments and supported R.C. S.P.
830 designed single-cell microfluidics experiments. M.R.L.S and M.A.T.B designed and
831 synthesised the macrolide fluorescent probes used in the microfluidics experiments. B.D.
832 interpreted data. J.R. and V.A.M.G. conceptualised the project; V.A.M.G. designed the
833 research, obtained funding for the project and wrote the manuscript with R.C. All authors
834 commented on the manuscript.

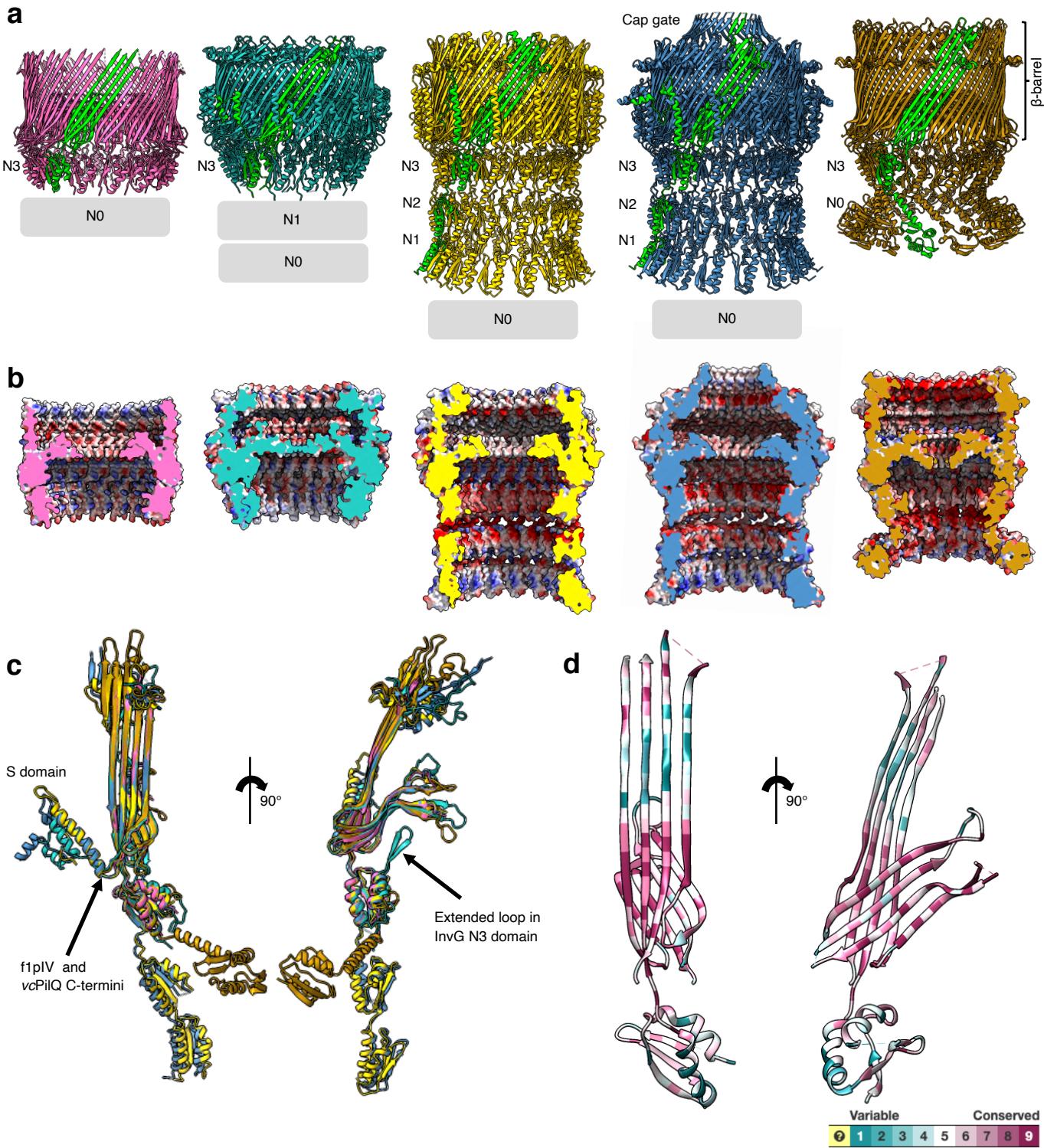

835

836 **Competing interests statement**


837 The authors declare no competing interests.


Figure 1. f1pIV cryoEM data and atomic model. a) Left, 2D class averages from Relion. A red arrow highlights a hazy area, likely resulting from protein flexibility. Right, a cross-section through the initial 3D model from Relion (generated without symmetry applied), highlighting the observed c15 symmetry (yellow arrows), displayed using IMOD⁷². **b)** Final 3D reconstruction shown from left to right as top view, side view and side view sliced through the centre. **c)** f1pIV protein structure modelled into the experimental density map shown as a top view, side view and side view sliced through the centre. A single f1pIV subunit is shown as a cyan cartoon with the remaining 14 subunits in yellow; the EM map is shown in light grey. A band of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulphonate (CHAPS) detergent molecules are shown as purple sticks.


Figure 2. Structural details of f1pIV. **a)** Domain structure and amino acid sequence of f1pIV, showing the N0 domain (dark grey), the N3 domain (blue), and the β-barrel secretin domain (light grey). The regions forming the outer β-barrel are shown in pink, and those forming the inner β-barrel in cyan. Residues highlighted in yellow in the amino acid sequence were observed in the cryoEM map. Underlined residues were confirmed to be present in the cryoEM sample by mass spectrometry analysis. **b)** Cartoon representation of the f1pIV multimer (top and side views) with a single molecule coloured as follows: N3 domain in blue, outer β-barrel in pink, inner β-barrel in cyan, Gate 1 in orange, Gate 2 in green, and CHAPS molecules as purple sticks. **c)** Cartoon representation of the f1pIV multimer with all chains coloured as in b). CHAPS molecules have been removed for clarity. **d)** Residues 292-303 (incorporating part of the Gate 1 loop and the inner β-barrel) showing representative density. **e)** The interface between the inner and outer β-barrels is lined mostly with hydrophobic residues which are shown as sticks, and coloured by atom (N in blue, O in red, S in yellow). A salt bridge is formed at the edge of this interface between conserved residues Glu 185 and Arg 337 (dashed blue line). **f)** Inter- (blue dashed lines) and intra- (red dashed lines) subunit hydrogen bonds are formed connecting the inner and outer β-barrels. One subunit (position 1) is coloured as in b), and the neighbouring subunits (in positions 2 and 15) are shown in grey. Only mainchain hydrogen bonds are shown; images have been clipped for clarity. **g)** Composite model of a single f1pIV subunit shown as front and side views. The structure built into the EM map is coloured as in b), with a homology model of the N0 domain in dark grey.


Figure 3. Positioning of the f1pIV multimer in the *E. coli* outer membrane. a) The f1pIV cryoEM map in side view (yellow) shows density that was unaccounted for after the atomic model had been built (purple). **b)** The f1pIV atomic model is shown as space-filled atoms in light grey with the CHAPS shown as purple sticks. There are two bands of aromatic residues shown in yellow (aromatic girdles). The enlarged panels (blue boxes) show the two girdles in greater detail with the aromatic residues labelled. One full molecule of CHAPS, and one consisting only of the aromatic rings (CHAPS*) were modelled into the ring of density. CHAPS is shown as purple sticks, and the f1pIV subunits are coloured as in Fig. 2b. **c)** f1pIV atomic model shown as surface representation is coloured by hydrophobicity, ranging from the most hydrophilic areas (dark cyan), through white, to the most hydrophobic areas (orange).

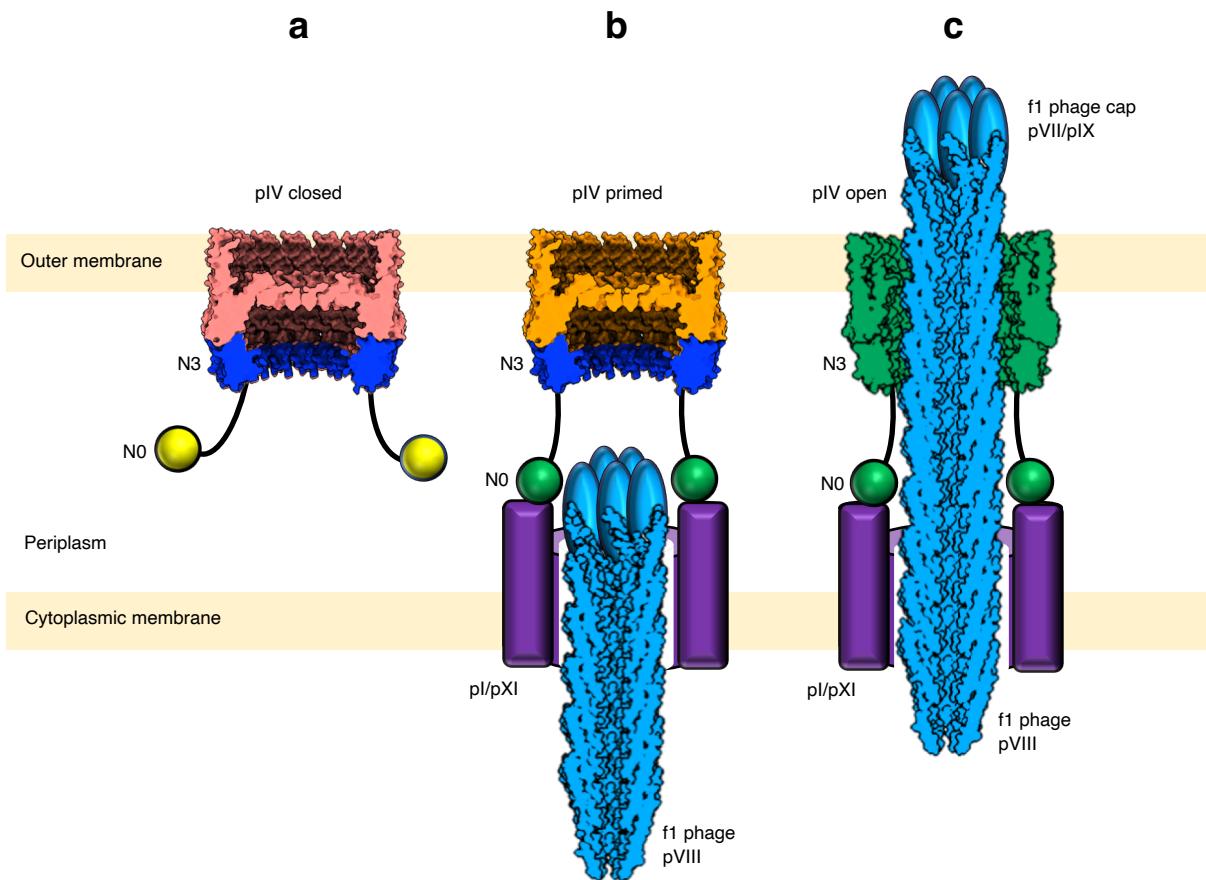

Figure 4. The Gate region, channel opening, and interaction with phage. **a)** Extensive inter- (blue dashed lines) and intra- (red dashed lines) gate hydrogen bonds are formed between neighbouring subunits and within Gate 1 and Gate 2, colouring as in Fig. 2b. Only main chain hydrogen bonds are shown. **b)** Close up to show the hydrogen bonding interactions of Arg 293 and Asn 269 in Gate 1. Arg 293 forms intra-gate hydrogen bonds with Asn 269, and inter-gate hydrogen bonds with Val 332 in Gate 2 of the neighbouring subunit. Asn 269 forms intra-gate hydrogen bonds with Arg 293 and Asn 295 in Gate 1, and two inter-gate bonds with Thr 334 from the Gate 2 loop of the neighbouring subunit. Gate 1 from subunit 1 is shown in orange and Gate 2 from subunit 15 in grey, and coloured by atom (N in blue, O in red). **c)** Structural superimposition of a single f1pIV subunit closed state structure (pink) with f1pIV modelled in the open gate position (green), shown in front, side and back views. **d)** Close up showing the Gate 1 (Gly 267, Gly 297) and Gate 2 (Asp 321, Asn 335) hinge residues in blue. **e)** The closed (pink) and open (green) multimers shown as space-fill representation in top view. **f)** Left, structure of an fd virion (2C0W) in cartoon form. Centre and right, manual docking of the fd virion (blue space-filled representation) into the open f1pIV secretin pore (green surface representation) in side and top views respectively. **g)** Left, electrostatic surface potential of the fd virion coloured red for negative and blue for positive. Centre and right, electrostatic surface potential of the closed (pink) and open (green) states of the f1pIV pore, coloured as per the fd virion.

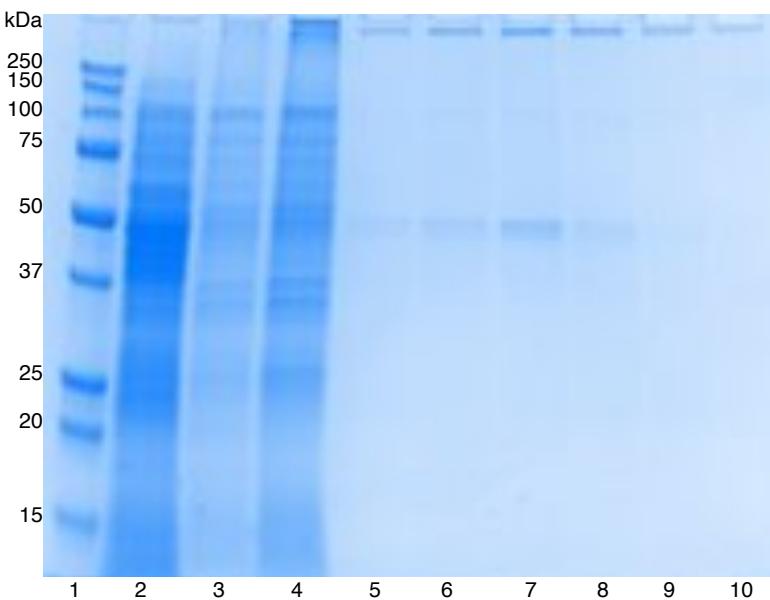
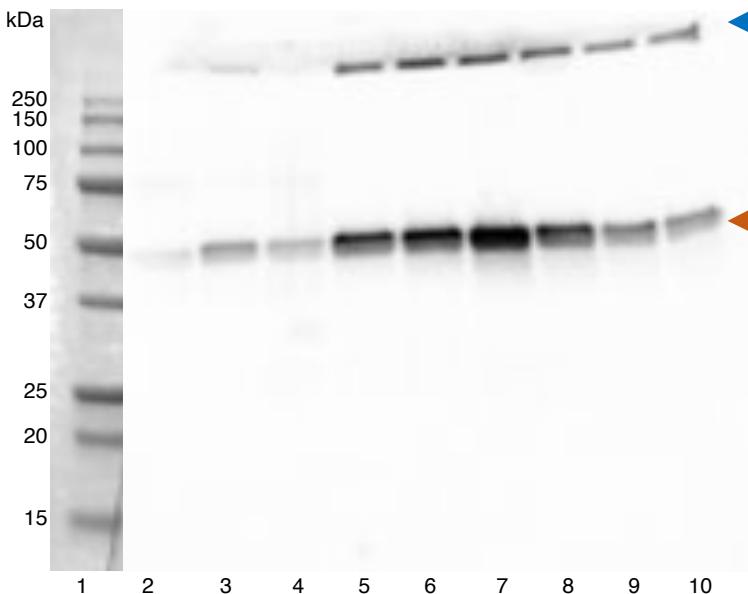
Figure 5. Antibiotic susceptibility in *E. coli* expressing leaky mutants of f1pIV. **a)** Front and side views showing all mutants²⁴ that were leaky to both maltopentaose and deoxycholate as magenta sticks. **b)** Front and side views showing the mutations which caused sensitivity to the antibiotics vancomycin and bacitracin as green sticks. Mutations which caused sensitivity to vancomycin only are shown as orange sticks. In parts a) and b) the 15-residue loop from residues G275-Q289 (labelled), which is disordered in our structure, has been modelled in for representation purposes. The position of the Ser 324 mutation to Gly (S324G), analysed in part d), is also shown. **c)** Gate 2 loop showing the key hydrogen bonds made by Ser 324. Subunit 1 is shown in purple, with neighbouring subunits 2 and 15 in red and green respectively. The close up shows that Ser 324 forms intra-gate hydrogen bonds with Ile 333 and Ser 326 (red dashed lines), and an inter-gate hydrogen bond with Gln 328 from a neighbouring subunit (blue dashed lines) (N in blue, O in red). **d)** Top, individual *E. coli* cells expressing f1pIV^{S324G} take up fluorescently labelled roxithromycin. No fluorescence change was observed for the cells expressing wild type f1pIV (f1pIV^{WT}). Scale bar, 5 μ m. Bottom, scatter graph depicting the fluorescence change for f1pIV^{WT} and f1pIV^{S324G} samples, confirming roxithromycin uptake in the S324G mutant. Data were analysed using an unpaired t-test with Welch's correction. *** = $p \leq 0.0001$. $n = 241$ biologically independent cells for f1pIV^{WT} and $n = 260$ for f1pIV^{S324G}; error bars represent standard error of the mean.

Figure 6. Structural comparison of f1pIV with a selection of different classes of bacterial secretins. Secretins are aligned at the β-barrel domain. f1pIV is shown in pink (this study:7OFH), the Type III secretin InvG from *Salmonella typhimurium* in sea green (6PEE), the Type II secretin GspD from *E. coli* K12 in gold (*Klebsiella*-type, 5WQ7), the Type II secretin GspD from *Vibrio cholerae* in blue (*Vibrio*-type, 5WQ8) and the Type IV pilus secretin PilQ from *Vibrio cholerae* in orange (6W6M). The secretins are shown in **a**) as multimers (with one subunit coloured lime green). Periplasmic N domains not observed in the maps are shown as grey boxes. **b**) Electrostatic surface potential comparison of multimers cut-through to show the inner surface inside the pore. **c**) Structural superimposition of the selected secretin subunits (shown individually in Supplementary Fig. 8) in front (left) and side (right) views. **d**) Sequence conservation amongst the secretin family plotted on to the f1pIV structure, calculated using Consurf and based on 100 unique homologues from the UniProt database sharing 35-100% identity.

Figure 7. Model for filamentous phage egress. a) f1pIV with the gate in the closed state (salmon pink). The N3 (blue) and N0 (yellow) domains project into the periplasm. N0 is attached to N3 via a long linker and is flexible. **b)** N0 (now green, activated) is bound to the inner membrane complex of pI/pXI (purple) with pIV (orange) primed to open. **c)** Egressing phage (blue) interacts with the N3 domain (now green, activated), triggering opening of pIV (now green, open) by rearrangement of the gate. The pVIII phage capsid was drawn using the 2C0W structure, and the pVII/pXI cap added as a cartoon.

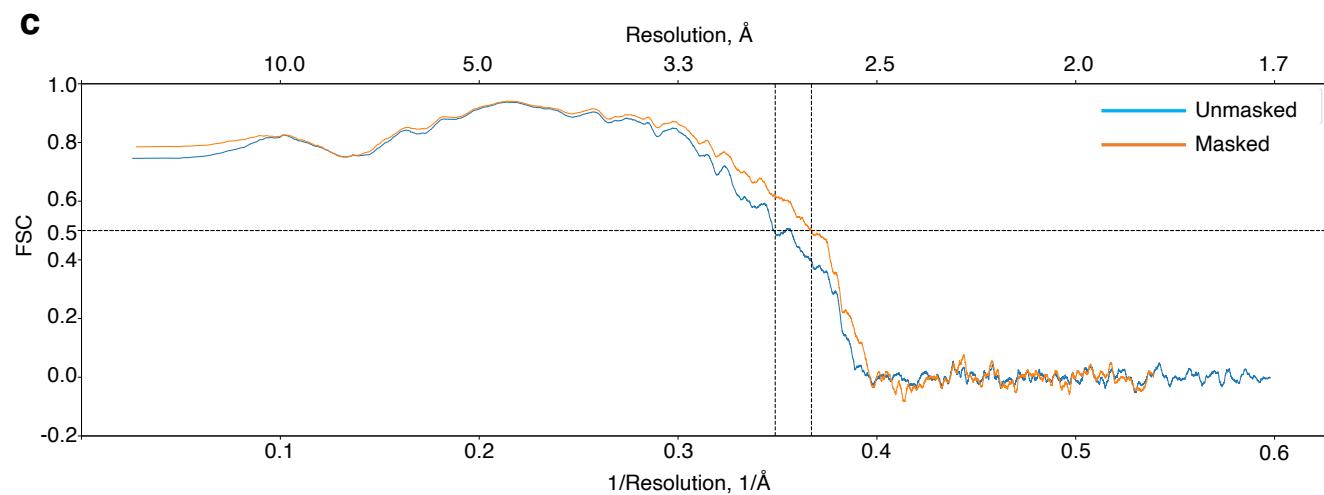
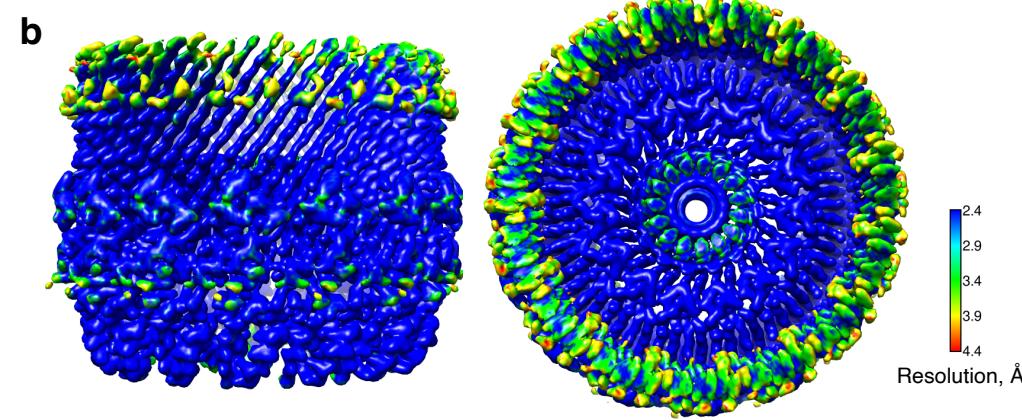
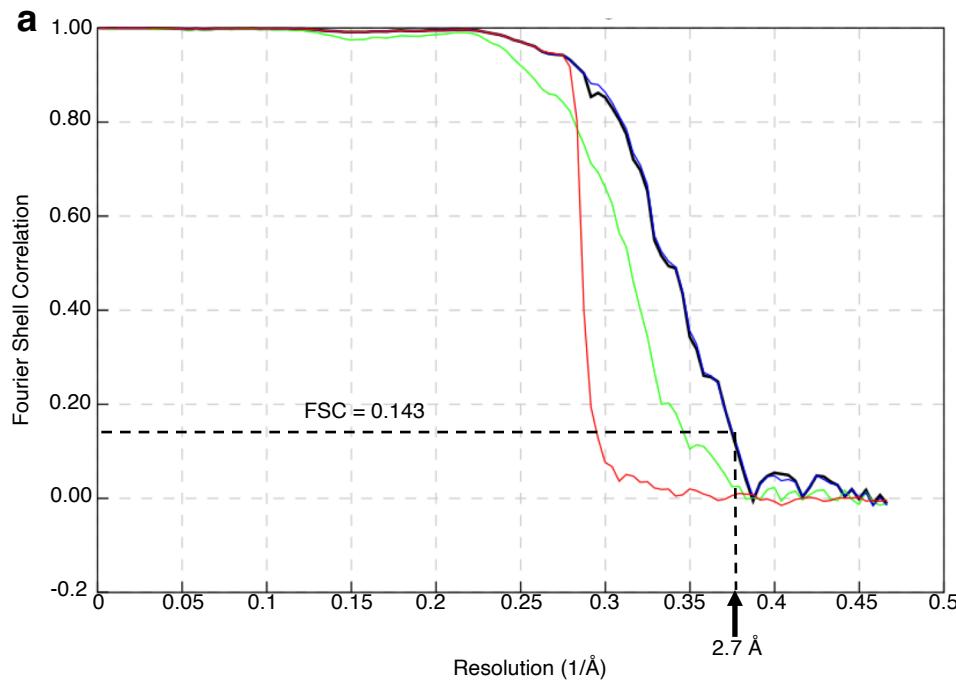
CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage

Rebecca Conners^{1,2}, Mathew McLaren^{1,2}, Urszula Łapińska^{1,2}, Kelly Sanders^{1,2}, M. Rhia L. Stone³, Mark A. T. Blaskovich³, Stefano Pagliara^{1,2}, Bertram Daum^{1,2}, Jasna Rakonjac⁴ & Vicki A. M. Gold^{1,2*}



¹ Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK

² College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter EX4 4QD, UK

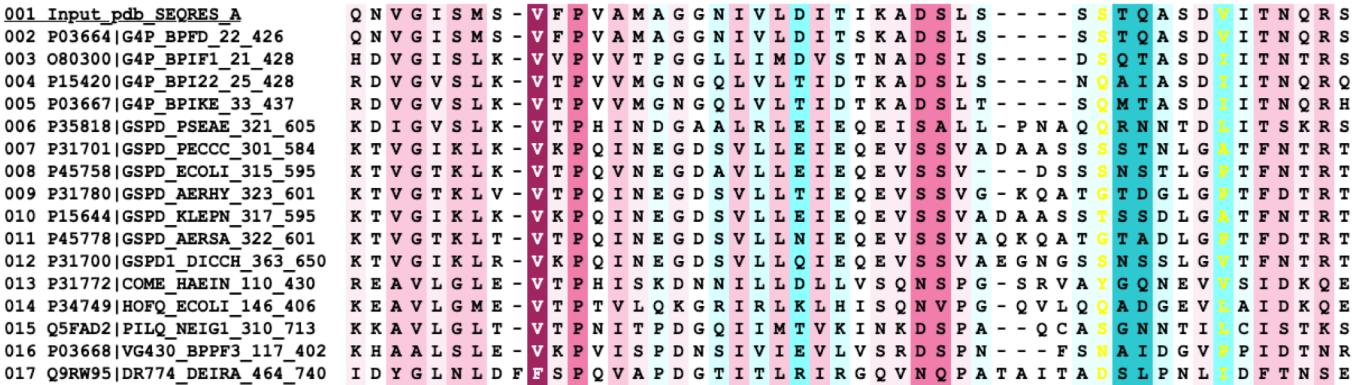
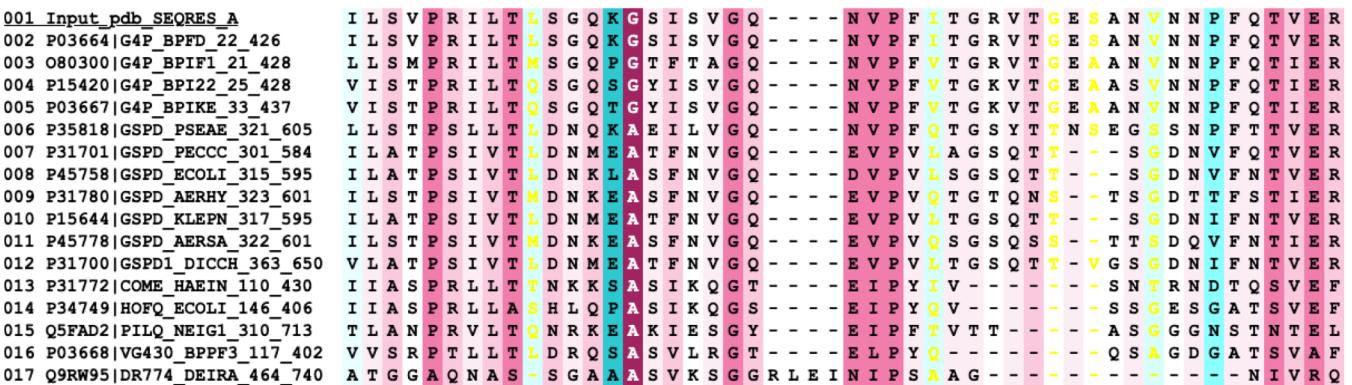
³Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia

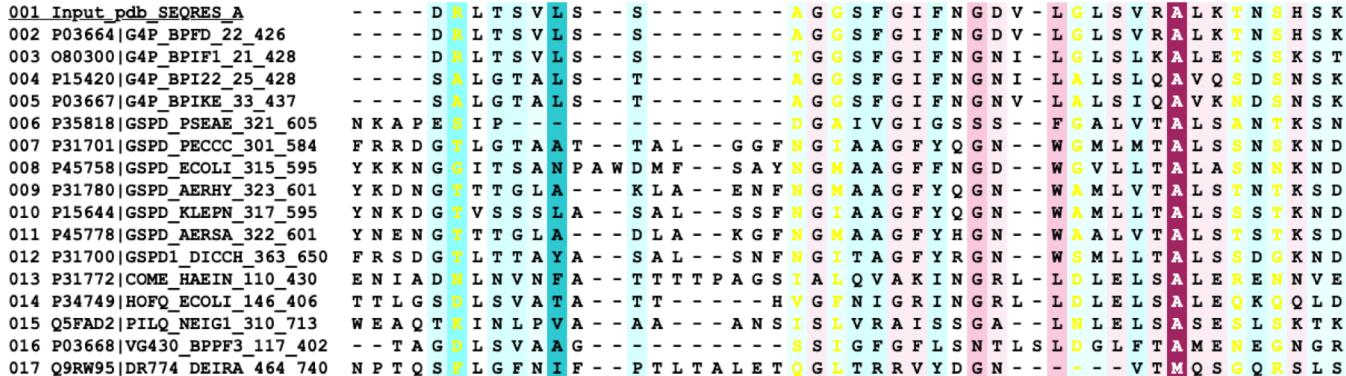
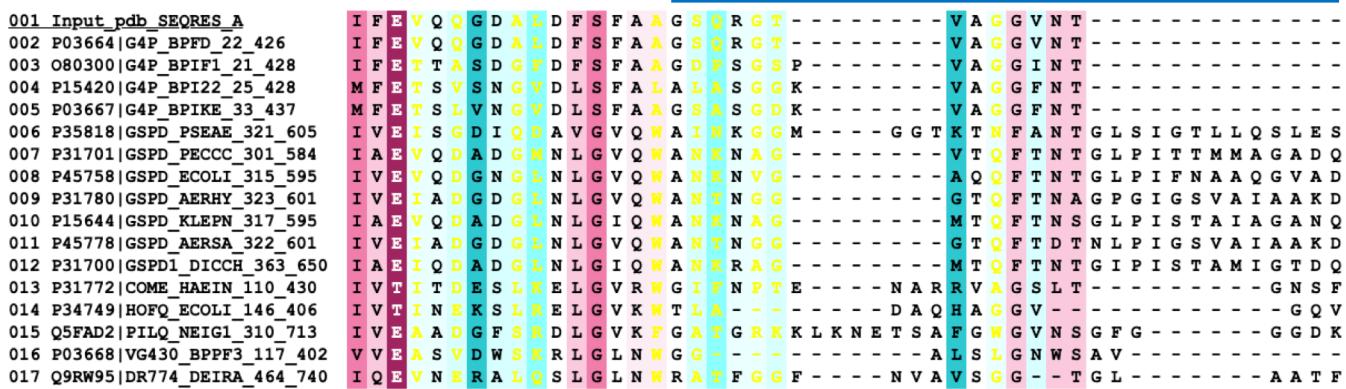
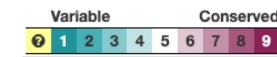



⁴School of Fundamental Sciences, Massey University, Palmerston North, New Zealand

*Corresponding author: v.a.m.gold@exeter.ac.uk

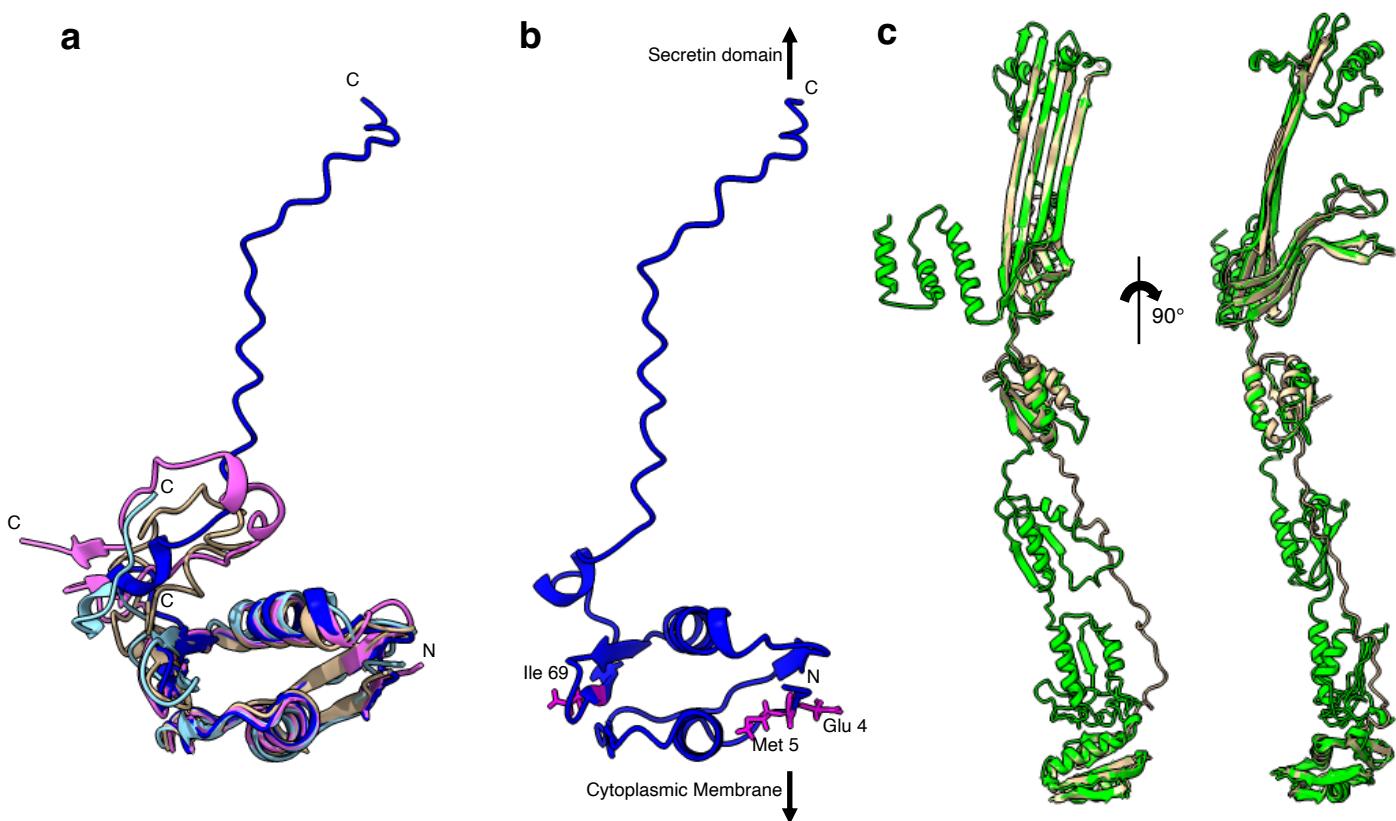
a**b****c**

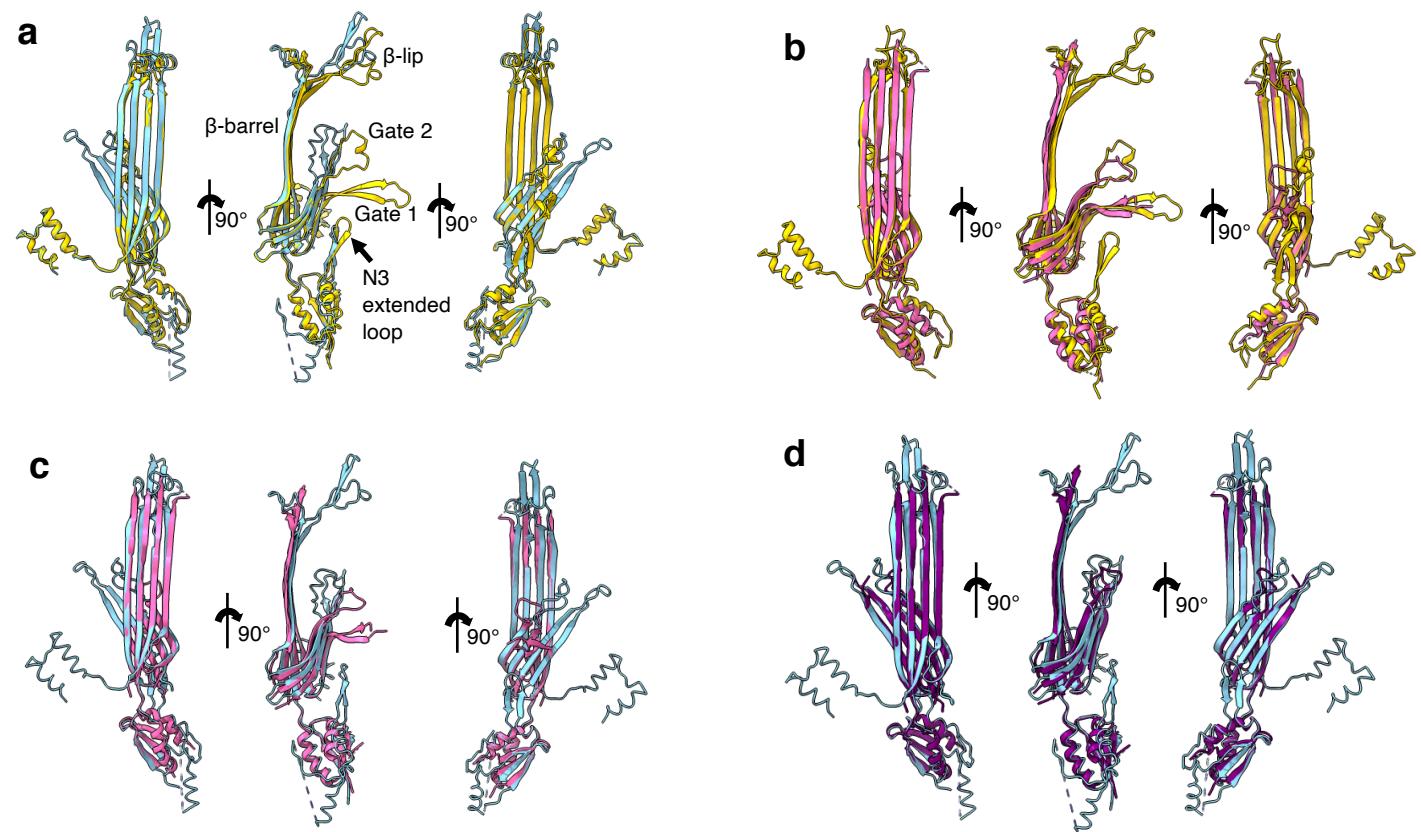
Accession	Description	Score	Coverage	# proteins	# unique peptides	# peptides	# PSMs	Area	# AAs	MW (kDa)	Calc. pi
f1pIV	f1pIV sequence	2641.11	77.78	1	40	40	973	3.630E11	405	43.4	5.06
POA853	Tryptophanase OS=Escherichia coli (strain K12)	248.61	79.83	1	39	39	91	4.152E9	471	52.7	6.23
POABB4	ATP synthase subunit beta OS=Escherichia coli (strain K12)	180.28	77.61	1	28	28	56	7.750E8	460	50.3	5.01
POABBO	ATP synthase subunit alpha OS=Escherichia coli (strain K12)	120.71	49.32	1	21	22	36	2.840E8	513	55.2	6.13
POA6U8	Glycogen synthase OS=Escherichia coli (strain K12)	118.33	41.93	1	19	19	38	9.668E8	477	52.8	6.62
P13035	Aerobic glycerol-3-phosphate dehydrogenase OS=Escherichia coli (strain K12)	94.42	56.09	1	23	23	32	1.994E8	501	56.7	7.44
POA6F3	Glycerol kinase OS=Escherichia coli (strain K12)	93.32	54.78	1	25	25	32	3.567E8	502	56.2	5.50
P77804	Protein YdgA OS=Escherichia coli (strain K12)	91.30	58.17	1	23	23	29	9.258E7	502	54.7	5.17
POCE47	Elongation factor Tu 1 OS=Escherichia coli (strain K12)	71.19	73.60	2	21	21	27	1.377E8	394	43.3	5.45
POAFG6	Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex OS=E. coli (strain K12)	63.11	34.57	1	15	15	20	1.909E8	405	44.0	5.81

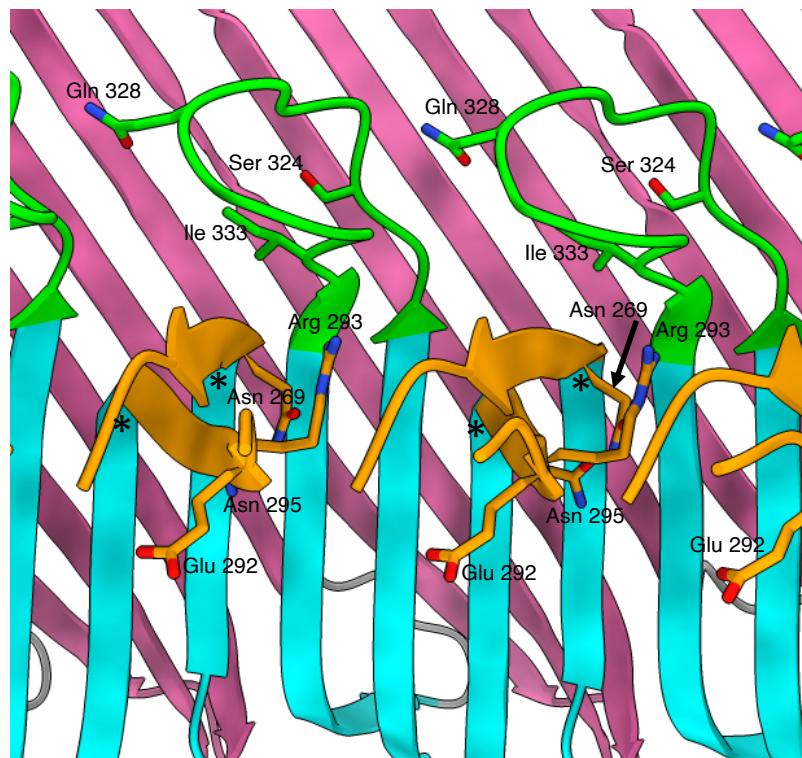


Supplementary Figure 1. Purification of f1pIV verified by **a**) SDS-PAGE and **b**) Western blot. Lane 1, Biorad Precision Plus All Blue Marker; lane 2, total soluble protein; lane 3, total membrane protein; lane 4, solubilized membrane protein; lanes 5-10, fractions from size exclusion chromatography. The f1pIV subunit is indicated with an orange arrowhead and the multimer by a blue arrowhead. Lane 1 (protein markers) was cut away and visualized with white light, hence the difference in colouring compared to the rest of the blot. **c**) Mass spectrometry analysis. The top ten proteins identified in the mass spectrometry analysis are shown, with f1pIV clearly being the most abundant protein present. Protein preparations, SDS-PAGE and Western blotting were repeated multiple times during sample optimisation (n>3). Mass spectrometry was performed once from the same sample that was used for cryoEM imaging.

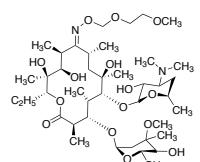
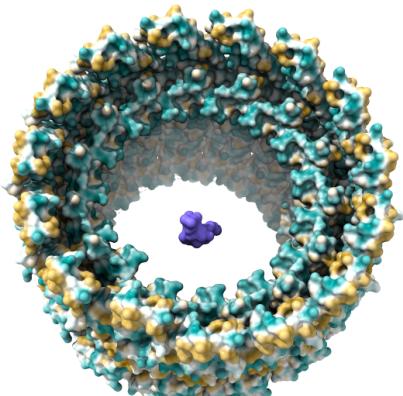
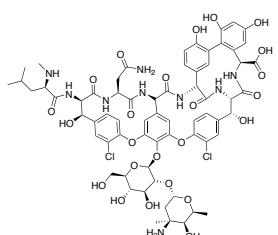
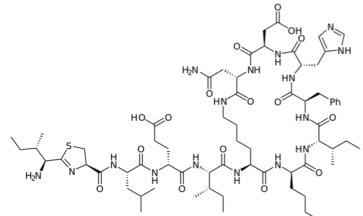
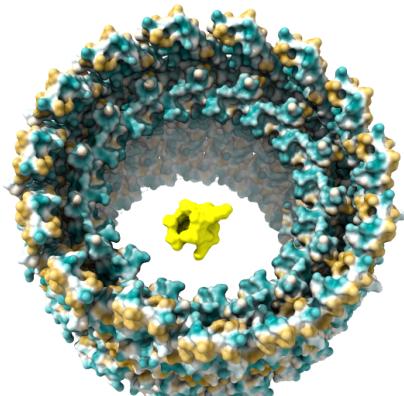



Supplementary Figure 2. f1pIV data quality. **a)** FSC curve obtained from Relion. The calculated final map was determined at 2.7 \AA resolution using Fourier shell correlation at the 0.143 cut-off.
 Red curve = `rlnCorrectedFourierShellCorrelationPhaseRandomizedMaskedMaps`.
 Green curve = `rlnFourierShellCorrelationUnmaskedMaps`.
 Blue curve = `rlnFourierShellCorrelationMaskedMaps`.
 Black curve = `rlnFourierShellCorrelationCorrected`.
b) f1pIV cryoEM map coloured by local resolution (calculated with Resmap).
c) FSC curve showing the quality of the model to map fit (calculated with Phenix).

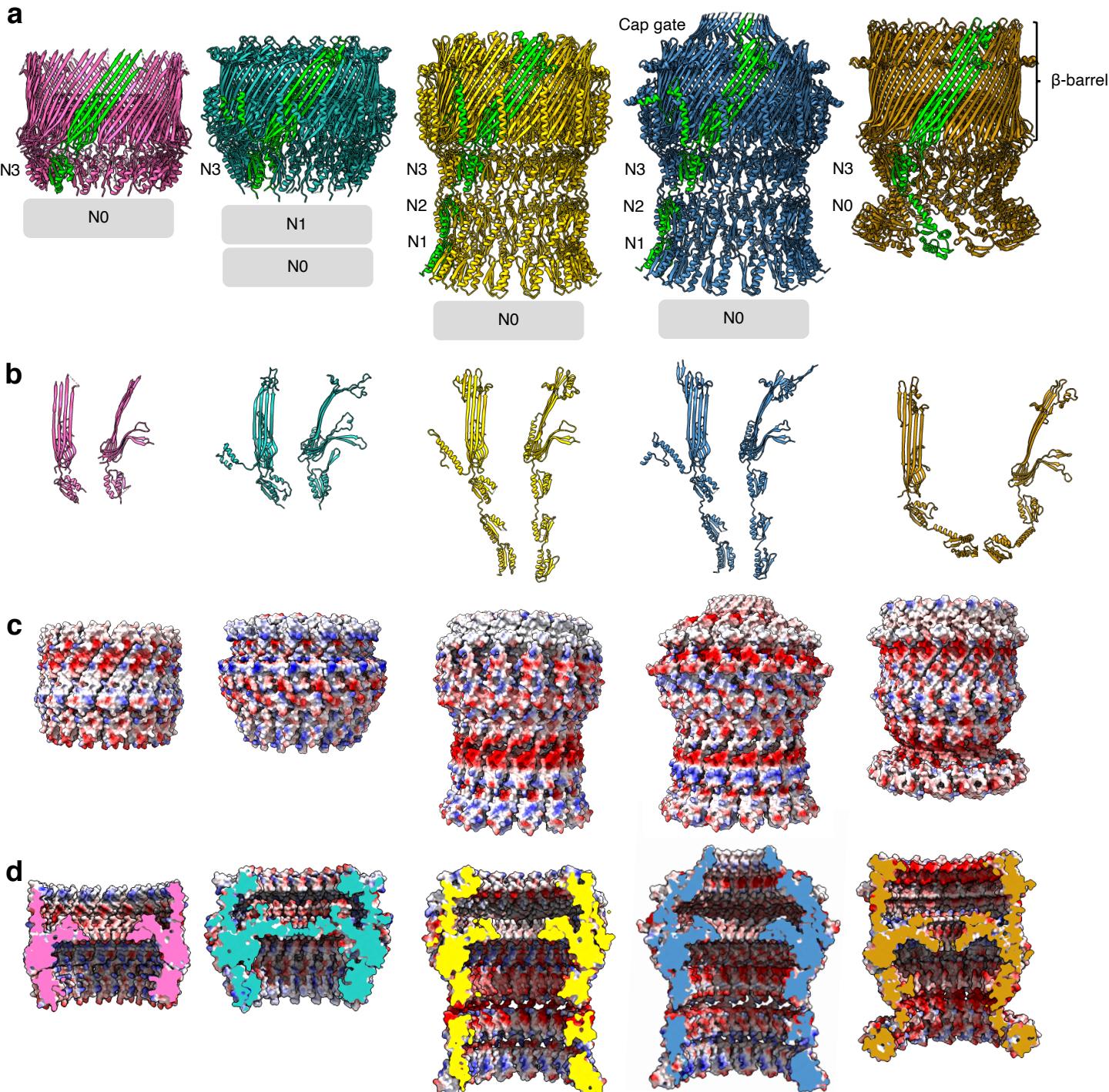
Variable Conserved

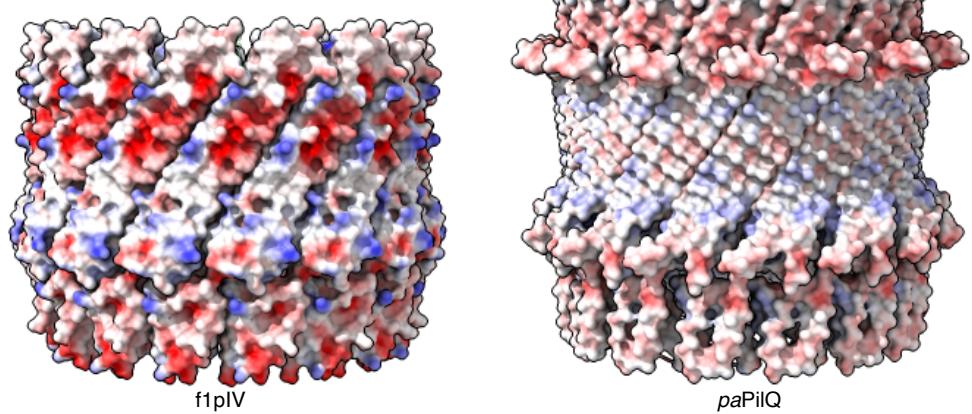

0 1 2 3 4 5 6 7 8 9


Supplementary Figure 3. Sequence alignment of the Gate region of 16 homologues from UniProtKB/Swiss-Prot coloured by conservation. Sequence 001 is f1pIV; 002-005 and 016 are other phage secretins. Gate 1 is indicated with an orange line and Gate 2 with a green line. Hinge residues Gly 267 and Gly 297 in the Gate 1 loop are denoted by circles and hinge residues Asp 321 and Asn 335 in the Gate 2 loop by squares. Residues involved in hydrogen bonding (Asn 269, Arg 293, Asn 295, Val 332, Thr 334; discussed in text and shown in Fig. 4b) are highlighted with arrow heads. A highly conserved Arg 337 found in a salt bridge in the interface between the inner and outer β -barrels is shown with an asterisk (*).

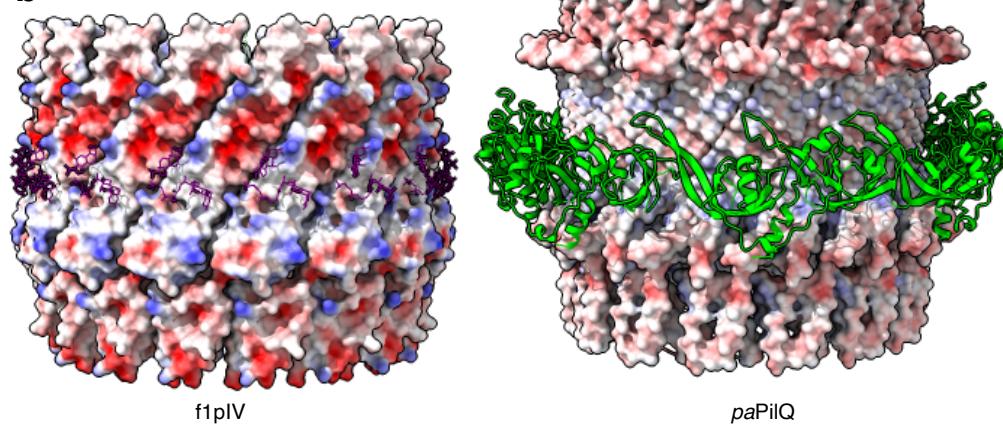

Supplementary Figure 4. Sequence alignment of the β -barrel lip region of 16 homologues from UniProtKB/Swiss-Prot coloured by conservation. Sequence 001 is f1pIV; 002-005 and 016 are other phage secretins. The cap region is indicated with a blue line. Phage sequences have 36-37 residues in the β -lip region. The remaining sequences are from bacterial Type II secretion systems and have 51-59 residues in this region. A highly conserved Glu 185 found at top of the interface between the inner and outer β -barrels is denoted by an asterisk.






Supplementary Figure 5. Modelling the N0 domain. **a)** Structural superimposition of N0 homology models produced by Swiss-Model (light blue), I-TASSER (brown), Robetta (RoseTTAFold algorithm, magenta) and AlphaFold 2 (dark blue). The models are in agreement for residues 2-71 (the folded domain) and differ from residues 72-107 (the flexible linker). The amino termini are labelled N and the individual carboxyl termini are labelled C. **b)** The N0 domain model obtained from AlphaFold with residues Glu 4, Met 5 and Ile 69 shown as magenta sticks and labelled. Arrows are included to show the relative positioning of the N0 domain within the periplasm. **c)** Structural superimposition of the PulD secretin from *Klebsiella pneumoniae* (6HCG, green) with f1pIV composite model (brown).


Supplementary Figure 6. Modelling f1pIV in the open state. **a)** Structural alignment of open (blue; 6Q15) and closed (yellow; 6PEE) states of InvG from *Salmonella typhimurium* in front, side and back views from left to right. **b)** Structural alignment of the closed state of InvG (yellow; 6PEE) and f1pIV (this study: 7OFH; pink) in front, side and back views from left to right. The average distance between the atoms of the two superimposed proteins was measured using the Root Mean Square Deviation (RMSD), giving a value of 1.051 Å between 94 pruned atom pairs. **c)** Structural alignment of the open state of InvG (blue; 6Q15) and f1pIV (this study: 7OFH; pink) in front, side and back views from left to right. **d)** Structural alignment of the open state of InvG (blue, 6Q15) and f1pIV modelled in an open form (purple) in front, side and back views from left to right.


Supplementary Figure 7. f1pIV leaky mutants. An f1pIV 15-mer is shown as a cut-through, viewed from the centre of the pore. Residues Asn 269, Glu 292, Arg 293 and Asn 295 are shown in stick form in the Gate 1 loop (orange), residues Ser 324, Ile 333 and Gln 328 are shown in stick form in the Gate 2 loop (green). Hinge residues Gly 267 and Gly 297 are shown with asterisks. Colouring as per Fig. 2b.

Supplementary Figure 8. Antibiotic uptake through open f1pIV. The open f1pIV model (coloured by hydrophobicity with the most hydrophobic areas coloured orange, through white, to the most hydrophilic in dark cyan) with bacitracin (yellow, amphipathic), vancomycin (lime green, hydrophilic) and roxithromycin (purple, hydrophobic) shown as surfaces. The chemical structures of each antibiotic are shown below.



Supplementary Figure 9. Structural comparison of f1pIV with a selection of different classes of bacterial secretins. Secretins are aligned at the β -barrel domain. f1pIV is shown in pink (this study: 7OFH), the Type III secretin InvG from *Salmonella typhimurium* in sea green (6PEE), the Type II secretin GspD from *E. coli* K12 in gold (*Klebsiella*-type, 5WQ7), the Type II secretin GspD from *Vibrio cholerae* in blue (*Vibrio*-type 5WQ8) and the Type IV pilus secretin PilQ from *Vibrio cholerae* in orange (6W6M). The secretins are shown in **a**) as multimers (with one subunit coloured lime green). Periplasmic N domains not observed in the map are shown as grey boxes. The corresponding individual subunits are shown in **b**) in front and side view. **c**) Electrostatic surface potential comparison of multimers and in **d**) cut-through to show the inner surface inside the pore.

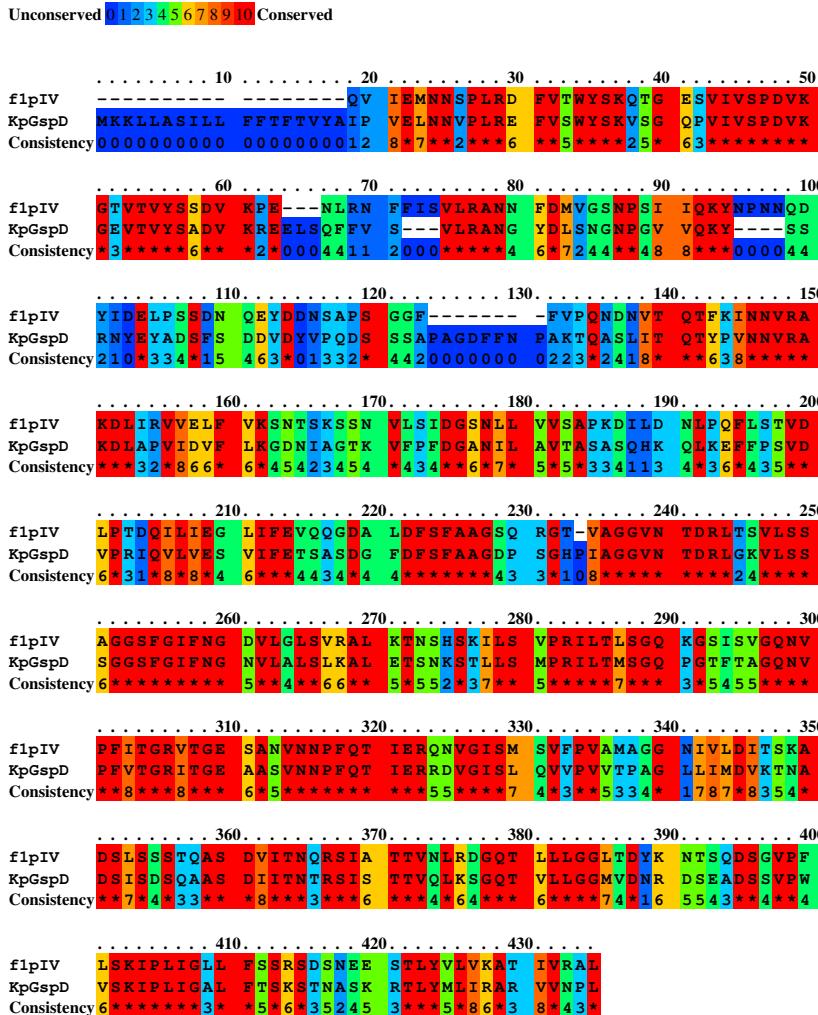
a

f1pIV

paPilQ

b

f1pIV


paPilQ

Supplementary Figure 10. Comparison of electrostatic surfaces and pilotin binding. Secretins are aligned at their β -barrel domains. **a)** Electrostatic surface charge representation of f1pIV (this study: 7OFH) and PilQ from *Pseudomonas aeruginosa* (paPilQ) with pilotin removed (6VE2). **b)** Electrostatic surface charge representation of f1pIV showing CHAPS molecules bound (purple sticks) and paPilQ showing the pilotin TsaP bound (cartoon representation in green).

Results colour-coded for amino acid conservation

The current colourscheme of the alignment is for **amino acid conservation**.

The conservation scoring is performed by PRALINE. The scoring scheme works from 0 for the least conserved alignment position, up to 10 for the most conserved alignment position. The colour assignments are:

Supplementary Figure 11. Sequence alignment performed with Praline. The closest homologue of f1pIV based on sequence identity is GspD from *Klebsiella pneumoniae*.

Data collection and processing	Dataset 1	Dataset 2
Acceleration voltage (kV)	300	300
Nominal magnification (x)	81k	81k
Pixel size (Å)	1.072	0.536 (super-res)
Frame rate (s ⁻¹)	11.93	11.93
Exposure time (s)	3.52	3.52
Total exposure (e ⁻ /Å)	42.059	42.059
Particles		
Micrographs used for selection	7,037	14,336
Defocus range (μm)	-2.5 to -1.3 (0.2 μm steps)	-2.5 to -1.3 (0.2 μm steps)
Total number of particles	241,591	330,389
In final 3D reconstruction	16,104	95,575
	Dataset 1 and Dataset 2 combined	
Resolution		
“Gold-standard” at FSC 0.143 (Å)		2.7
Map-sharpening B factor (Å ²)		0
Model refinement		
Model composition	15 identical subunits	
Non-hydrogen atoms, per chain	1,742	
Protein residues, per chain	231	
Ligands, per chain	2	
R.M.S. Z scores		
Bond lengths (Å)	0.48	
Bond angles (°)	0.72	
R.M.S.D		
Bond lengths (Å)	0.031	
Bond angles (°)	1.903	
Validation		
Ramachandran angles (%)		
favoured	88	
allowed	12	
outliers	0	
Clashscore	14	
Rotamer outliers (%)	2	
Resolution estimates (Å)		
Model resolution (0/0.143/0.5) - masked	2.5/2.6/2.7	
Model resolution (0/0.143/0.5) - unmasked	2.4/2.5/2.9	

Supplementary Table 1. The statistics of data collection, model reconstruction, refinement and validation.

f1pIV leaky mutation	Location in structure	Leaky to maltopentaose sugars /deoxycholate	Leaky (sensitive) to vancomycin	Leaky (sensitive) to bacitracin
A121V	N3 domain	✓	✗	✗
D123Y	N3 domain	✓	✗	✗
G147V	N3 domain	✓	✗	✗
I183V	Secretin domain	✓	✗	✗
G259S/D	Gate region	✓	✗	✗
S263F	Gate region	✓	✓	✓
G267D	Gate region	✓	✗	✗
N269D	Gate region	✓	✓	✓
V270I	Gate region	✓	✓	✓
P271S	Gate region	✓	✗	✗
I273V	Gate region	✓	✗	✗
G275D	Gate region	✓	✗	✗
R276C	Gate region	✓	✗	✗
V277A	Gate region	✓	✗	✗
G279D	Gate region	✓	✗	✗
S281P	Gate region	✓	✗	✗
A282G	Gate region	✓	✓	✗
N283K	Gate region	✓	✗	✗
V284A	Gate region	✓	✗	✗
F288L	Gate region	✓	✗	✗
E292K	Gate region	✓	✓	✓
R293C	Gate region	✓	✗	✗
N295S	Gate region	✓	✓	✓
V296I	Gate region	✓	✗	✗
G297V	Gate region	✓	✗	✗
S322N	Gate region	✓	✓	✓
S324G	Gate region	✓	✓	✓
S325P	Gate region	✓	✓	✓
S326F	Gate region	✓	✓	✗
T327A	Gate region	✓	✓	✗
Q328G	Gate region	✓	✓	✓
A329T/V	Gate region	✓	✗	✗
S330N	Gate region	✓	✗	✗
D331N	Gate region	✓	✓	✓
I333V	Gate region	✓	✓	✗
T334A	Gate region	✓	✓	✓

Supplementary Table 2. Leaky f1pIV mutants. The leaky mutants from Spagnuolo *et al*²⁰ were plotted onto the f1pIV structure shown in Fig. 5a and b. Residues discussed at various points in the main text are shown in bold.