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13 Abstract

14  Most bacterial genomes contain integrated bacteriophages—prophages—in various states of decay.
15  Many are active and able to excise from the genome and replicate, while others are cryptic

16  prophages, remnants of their former selves. Over the last two decades, many computational tools
17 have been developed to identify the prophage components of bacterial genomes, and it is a

18 particularly active area for the application of machine learning approaches. However, progress is

19  hindered and comparisons thwarted because there are no manually curated bacterial genomes that
20  can be used to test new prophage prediction algorithms.

21 Here, we present a library of gold-standard bacterial genome annotations that include manually
22 curated prophage annotations, and a computational framework to compare the predictions from
23 different algorithms. We use this suite to compare all extant stand-alone prophage prediction

24  algorithms to identify their strengths and weaknesses.

25  We provide a FAIR dataset for prophage identification, and demonstrate the accuracy, precision,
26 recall, and f; score from the analysis of seven different algorithms for the prediction of prophages.
27  Wediscuss caveats and concerns in this analysis and how those concerns may be mitigated.
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29 Introduction

30  Bacteriophages (phages), viruses that infect bacteria, can be either temperate or virulent.

31 Temperate phages may integrate into their bacterial host genome and the host-integrated phage

32  genomeis referred to as a prophage. Prophages are ubiquitous and may constitute as much as 20
33  percent of bacterial genomes (Casjens, 2003). Prophages replicate as part of the host bacterial

34  genomes until external conditions trigger a transition into the virulent lytic cycle, resulting in

35 replication and packaging of phages and typically the death of the host bacteria. Prophages generally
36 contain a set of core genes with a conserved gene order that facilitate integration into the host

37  genome, assembly of phage structural components, replication, and lysis of the host cell (Kang et al.,
38 2017, Canchaya et al., 2003). As well as these core genes, phages can contain an array of accessory
39  metabolic genes that can effect significant phenotypic changes in the host bacteria (Breitbart, 2012).
40  Forinstance, many prophages encode virulence factors such as toxins, or they can encode fitness

41  factors such as nutrient uptake systems (Brissow et al., 2004). Lastly, most prophages encode a

42  variety of super-infection exclusion mechanism to prevent concurrent phage infections, including

43 restriction/modification systems, toxin/antitoxin genes, repressors, etc. (Calendar, 1988). The

44  function of most prophage accessory genes remains unknown.

45  Core (pro)phage genes have long been used for identifying prophage regions. However, there are

46  other unique characteristics that can distinguish prophages from their host genomes: bacterial

47  genomes have a GC skew that correlates with direction of replication, and the insertion of prophages
48  will generally disrupt this GC bias (Grigoriev, 1998). Transcript direction (Campbell, 2002) and length
49  of prophage proteins have also proven to be useful metrics in predicting prophages (Akhter et al.,

50 2012, Song et al., 2019), where phage genes are generally smaller and are oriented in the same

51  direction (Dutilh et al., 2014). Likewise, gene density tends to be higher in phage genomes and

52  intergenic space shorter (Amgarten et al., 2018, McNair et al., 2019).

53  Over the last two decades many prophage prediction tools have been developed, and they fall into
54  two broad classes: (1) web-based tools where users upload a bacterial genome and retrieve

55  annotations including PHASTER (Arndt et al., 2016), Prophage Hunter (Song et al., 2019), Prophinder
56  (Lima-Mendez et al., 2008), PhageWeb (Sousa et al., 2018), and RAST (Aziz et al., 2008); and (2)

57  command-line tools where users download a program and database to run the predictions locally
58  (although some of these also provide a web interface for remote execution). In this work we focus
59 on this latter set of tools (Table 1) because web-based tools typically do not handle the large

60  numbers of simultaneous requests required to run comparisons across many genomes.

61  Despite the abundance of prophage prediction algorithms, there has never been either a set of

62  reference genomes against which all tools can be compared, nor a unified framework for comparing
63  those tools to identify their relative strengths and weaknesses or to identify opportunities for

64  improvement. We generated a set of manually annotated bacterial genomes released under the

65 FAIR principles (Findable, Accessible, Interoperable, and Reusable), and developed an openly

66 available and accessible framework to compare prophage prediction tools.

67 Methods
68 Running the tools
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69  To assess the accuracy of the different prophage prediction tools, a set of 49 gold-standard publicly
70  available bacterial genomes with manually curated prophage annotations was generated. The

71  genomes and prophage annotations currently included are available in Tables S1 and S2. The

72  genomes are in GenBank format and file conversion scripts are included in the framework to convert
73 those files to formats used by the different software. The tools that are currently included in the

74  framework are outlined in Table 1. Snakemake (Kdster and Rahmann, 2012) pipelines utilising conda
75  (Anaconda Software Distribution. Conda. v4.10.1, April 2021) package manager environments were
76  created for each tool to handle the installation of the tool and its dependencies, running of the

77  analyses, output file conversion to a standardized format, and benchmarking of the run stage.

78  Where possible, annotations from the GenBank files were used in the analysis to promote

79  consistency between comparisons. Additional pipelines were created for running PhiSpy using the
80 included training sets for the appropriate genera, and for running PhiSpy with pVOG (Grazziotin et
81  al., 2017) HMMs and these are also available in the repository. DBSCAN-SWA was not able to

82  consistently finish when using GenBank files as input, and instead the genome files in fasta format
83  were used. Another pipeline was created to pool the results from each tool and some comparisons
84  areillustrated in the included Jupyter notebook. Testing and development of the pipelines were

85  conducted on Flinders University’s DeepThought HPC infrastructure. The final benchmarking analysis
86  was performed on a stand-alone node consisting of dual Intel® Xeon® Gold 6242R processors

87 (40 cores, 80 threads), 768 GB of RAM, and 58 TB of disk space. Each tool was executed on all

88  genomes in parallel (one thread per job), with no other jobs running.

89 Benchmark metrics
90 There are many potential ways to compare prophage predictions: For instance, is it more important

Box 1. Benchmark Metrics Used in this Analysis

Accuracy was calculated as the ratio of correctly labelled genes to TP+TN

all CDS features from the GenBank file. TP+TN+ FP+FN
Precision was calculated as the ratio of correctly labelled phage TP

CDS features to all predicted prophage CDS features TP + FP

Recall was calculated as the ratio of correctly labelled prophage TP

CDS features to all known prophage CDS features TP+ FN

The f1 Score was calculated as the harmonic mean of Precision y (Recall x Precision)
and Recall (Recall + Precision)

Accuracy provides an overall impression of correctness but is distorted by the vast difference in the
numbers of prophage and non-prophage CDS features present in the genomes. The current gold-standard
set includes 7,729 prophage proteins and 177,649 non-prophage proteins. Therefore, predicting everything
as not coming from a prophage will result in an accuracy of 0.96. Similarly, identifying everything as coming
from a prophage will result in high Recall, since that favours minimising false negatives. In contrast,
Precision favours minimising false-positives and so only predicting very confident regions will result in high
precision. The f1 Score is the most suitable for comparing predictions as it gives equal weighting to both
precision and recall, and thus balances the unevenness inherent in this data.

91  to capture all prophage regions or minimise false positives? Is it more important to identify all the
92  phage-encoded genes, or the exact locations of the attachment site core duplications (attL and
93  gattR)? The runtime and CPU time in seconds, peak memory usage and file write operations were
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94  captured by Snakemake for the steps running the prophage tools only (not for any file conversion
95  steps before or after running each tool). The predictions were then compared to the gold standard
96  annotations and the number of true positive (TP), true negative (TN), false positive (FP) and false
97  negative (FN) gene labels were used to calculate the performance metrics. Each application marks
98  prophages slightly differently, and therefore we used the designation of coding sequence (CDS)

99 features as phage or not to assess prophage predictions.

100 Adding new genomes

101  We developed the framework to simplify the addition of new genomes to the benchmarks. Each

102  genome is provided in the standard GenBank format, and the prophages are marked by the inclusion
103  of a non-standard flag for each genomic feature that indicates that it is part of a prophage. We use
104  the qualifier /is_phage="1" to indicate prophage regions.

105 Results and Discussion

106 Software Compared

107  We compared the availability, installation, and results from ten different prophage prediction

108  algorithms (Table 1). Two—ProphET (Reis-Cunha et al., 2019) and LysoPhD (Niu et al., 2019) —could
109 not be successfully installed and were not included in the current framework (see below). The

110  remaining eight PhiSpy (Akhter et al., 2012), Phage Finder (Fouts, 2006), VIBRANT (Kieft et al., 2020),
111  VirSorter (Roux et al., 2015), Virsorter2 (Guo et al., 2021), Phigaro (Starikova et al., 2020),

112  PhageBoost (Sirén et al., 2021), and DBSCAN-SWA (Gan et al., 2020) were each used to predict the
113  prophages in 49 different manually curated microbial genomes.

114  Most of these programs utilize protein sequence similarity and HMM searches of core prophage

115 genesto identify prophage regions. PhageBoost leverages a large range of protein features (such as
116  dipeptide and tripeptide combinations) with a trained prediction model. PhiSpy was originally

117  designed to identify prophage regions based upon seven distinct characteristics: protein length,

118  transcript directionality, AT and GC skew, unique phage words, phage insertion points, optionally
119 phage protein similarity and sequence similarity. DBSCAN-SWA likewise uses a range of gene metrics
120 and trained prediction models to identify prophages.

121  Regardless of whether annotations are available, Virsorter2, Phigaro, and PhageBoost all perform de
122  novo gene prediction with Prodigal (Hyatt et al., 2010) and VirSorter uses MetaGeneAnnotator

123  (Noguchi et al., 2008) for the same purpose. VIBRANT can take proteins if they have ‘Prodigal format
124 definition lines’ but otherwise performs predictions with Prodigal. PhageBoost can take existing

125 annotations but this requires additional coding by the user. DBSCAN-SWA can take annotations or
126  can perform gene predictions with Prokka (Seemann, 2014). PhiSpy takes an annotated genome in
127 GenBank format and uses the annotations provided.

128
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Table 1: Prophage identification tools currently included in benchmarking framework

Tool (year) Version Package Dependencies Database Approach Citation
manager size
Phage Finder | 2.1 Aragorn, blast-legacy, 93 MB Legacy-BLAST, | (Fouts,
(2006) hmmer, infernal, HMMs 2006)
mummer, trnascan-se
PhiSpy 4.2.6 conda, Python3, biopython, 47 MB Gene and (Akhter
(2012) pip numpy, scipy required, nucleotide etal.,
733 MB metrics, 2012)
optional AT/CG skew,
(pVOGs) kmer
comparison,
machine
learning,
HMMs,
annotations
VirSorter 1.0.6 conda mcl, muscle, blast+, 13 GB Alignments, (Roux et
(2015) bioperl, hmmer, HMMs al., 2015)
diamond,
metagene_annotator
Phigaro 2.3.0 conda, Python3, 1.6 GB HMMs (Starikova
(2020) pip beautifulsoup4, etal.,
biopython, bs4, 2020)
hmmer, Ixml, numpy,
pandas, plotly,
prodigal, pyyaml, shsix
DBSCAN- 2e61b95 Numpy, Biopython, 2.2GB Gene metrics, | (Gan et
SWA (2020) sklearn, Prokka alighments al., 2020)
VIBRANT 1.2.1 conda Python3, Prodigal, 11 GB HMMs (KEGG, | (Kieft et
(2020) HMMERS3, BioPython, Pfam, VOG), | al., 2020)
Pandas, Matplotlib, machine
Seaborn, Numpy, Scikit- learning
learn, Pickle
PhageBoost | 0.1.7 pip Python3 13 MB Gene and (Sirén et
(2021) nucleotide al., 2021)
metrics,
machine
learning
VirSorter2 221 conda Python3, snakemake, 12 GB Alignments, (Guo et
(2021) scikit-learn, HMMs al., 2021)
imbalanced-learn,
pandas, seaborn,
hmmer, prodigal,
screed

Ease of installation

The prophage prediction packages Phigaro, PhiSpy, VIBRANT, VirSorter, and VirSorter2 are all able to
be installed with conda from the Bioconda channel (Griining et al., 2018), while Phispy, Phigaro, and
PhageBoost can be installed with pip—the Python package installer. Phigaro, VIBRANT, VirSorter,
and VirSorter2 require a manual one-time setup to download their respective databases. Phigaro
uses hard-coded file paths for its database installation, either to the user’s home directory or to a
system directory requiring root permissions. Neither option is ideal as it is impossible to have
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138  isolated versions or installations of the program, and it prevents updating the installation paths of its
139  dependencies. For PhageBoost to be able to take existing annotations, a custom script was created
140  to skip the gene prediction stage and run the program. Basic PhiSpy functionality is provided without
141  requiring third-party databases. However, if the HMM search option is invoked, a database of phage-
142 like proteins— e.g. pVOG (Grazziotin et al., 2017), VOGdb (https://vogdb.org), or PHROGS (Terzian P
143  etal., 2021)—must be manually downloaded before it can be included in PhiSpy predictions.

144  DBSCAN-SWA is not currently available on any package manager and must be pulled from GitHub,
145  however all its dependencies are available via conda and it could easily be added in the future. All
146  the above “manual” installation and setup steps are uncomplicated and are automatically executed
147 by the Snakemake pipelines provided in the framework.

148  Phage Finder was last updated in 2006 and is not available on any package manager that we are

149  aware of. The installation process is dated with the package scripts liberally utilising hard-coded file
150 paths. The Snakemake pipeline for this package resolves this with soft links between the

151  framework’s directory to the user’s home directory (where the package expects to be installed). The
152 dependencies are available via conda allowing the complete installation and setup to be handled
153  automatically by Snakemake.

154  LysoPhD does not appear to be available to download anywhere and was dropped from the

155 comparison. ProphET requires the unsupported BLAST legacy and EMBOSS packages. It is not

156  available on any package manager and instructions for a clean installation are incomplete and not
157  compatible with conda. The codebase was last updated in 2019. Numerous issues were encountered
158 installing dependencies and despite significant effort we were not able to create a working

159  installation. ProphET’s installation script reported many errors during setup, but alarmingly finished
160  with an exit code zero to indicate a successful installation. Preparing the necessary GFF filesin a

161  format that the program could use was non-trivial. The program reported errors during runtime that
162  we believe are related to the errors encountered during installation; ProphET terminated with

163  incomplete output but again returned an exit code zero to indicate a successful run. ProphET was
164  dropped from the comparison.

165 Prophage prediction performance

166  There was minimal difference in the performance metrics for the different methods of running

167  PhiSpy, and we have recently shown (Roach et al in preparation) that including HMM searches with
168  PhiSpy results in less than one additional prophage being identified. Therefore, only PhiSpy using
169  default settings will be discussed in comparison to the other tools. PhiSpy, VIBRANT, and Phigaro
170  performed best for mean accuracy (Figure 1a; Table S3) while DBSCAN-SWA performed the worst.
171  PhiSpy, Phigaro, and Phage Finder performed best for mean precision (Figure 1b; Table S3). DBSCAN-
172 SWA, PhageBoost, VirSorter, and VirSorter2 all performed poorly for mean precision. This was

173  mostly driven by a high false-positive rate compared to the other tools (Figure S1). PhiSpy, VirSorter,
174  VirSorter2, VIBRANT, DBSCAN-SWA and PhageBoost all had high mean recall scores.

175  Each tool balances between recall and precision. For example, the more conservative Phage Finder
176  performed relatively well in terms of precision, making very confident predictions, but had one of
177  the lower mean recall ratios and was not predicting prophages based on limited information. In
178  contrast, the more speculative DBSCAN-SWA and PhageBoost both exhibited the opposite trend.

179  The f; Score is a more nuanced metric, as it requires high performance in both precision and recall.
180 PhiSpy, VIBRANT, Phigaro, VirSorter, and VirSorter2 all averaged above 0.5, while the remaining
181  tools suffered from too many false predictions (FP or FN) (Figure 1d).
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184  Figure 1: Prediction performance metrics for prophage callers. Violin plots for each tool are
185  shown with individual points for each genome indicated. The graphs show: ‘Accuracy’ (a) as
186 the ratio of correctly labelled genes to all genes, ‘Precision’ (b) as the ratio of correctly

187 labelled phage genes to all predicted phage genes, ‘Recall’ (c) as the ratio of correctly

188 labelled phage genes to all known phage genes, and ‘f1 Score’ (d) as defined in the

189 methods. For all graphs, more is generally better.

190
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192  Figure 2: Runtime and peak memory usage comparison. Violin plots for each tool are shown
193  with individual points for each genome indicated. The graphs show total runtime in seconds
194 (@), peak memory usage in MB (b), total file writes in MB (c) and the final total disk usage (all
195 genomes) in MB (d). For all graphs, less is better.

196 Runtime performance

197 Many users will not be too concerned about runtime performance, for instance if they are

198 performing a one-off analysis on a genome of interest all the tools will finish in a reasonable time.
199 However, efficient resource utilization is an important consideration for large-scale analyses.

200 Provisioning computing resources costs money and a well optimised tool that runs fast translates to
201 real-world savings. The runtime distributions across the genomes are shown for each tool in Figure
202 2a. The slowest prophage predictors were generally VirSorter and VirSorter2 with mean runtimes of
203 1,316 and 2,118 seconds respectively, except for a single DBSCAN-SWA run taking 4,697 seconds.
204 PhiSpy using the trained datasets was by far the fastest performing tool (8.4 seconds mean runtime),
205 although if an appropriate training set is not available for the genus of interest it would first need to
206  be generated to benefit from these reduced runtimes. PhageBoost was the next fastest (37.8

207 seconds mean runtime) and Phage Finder, Phigaro, and PhiSpy with default parameters all

208 performed similarly well in terms of runtime.

209 Memory requirements also remain an important consideration for provisioning resources for large-
210  scale analyses. For instance, inefficiency is encountered where the memory required by single-

211  threaded processes exceeds the available memory per CPU. Peak memory usage for each tool is
212 shown in Figure 2b. Memory requirements were lowest for VirSorter and trained PhiSpy with 210
213 and 450 MB mean peak memory respectively. There was a single notable exception for trained


https://doi.org/10.1101/2021.06.03.446868
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446868; this version posted June 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

214 PhiSpy (predicting prophages in E. coli 0157:57 EDL933) with a peak memory usage of 6.13 GB.

215 DBSCAN-SWA had the highest mean peak memory of 6.0 GB with one run requiring 35 GB at its

216  peak. Apart from the DBSCAN-SWA outlier, there were no situations where the peak memory usage
217  would prevent the analysis from completing on a modest personal computer, but at larger-scales,
218  Phigaro, PhiSpy, VirSorter, and VirSorter2 have an advantage in terms of peak memory usage.

219  Another important consideration for large-scale analyses are the file sizes that are generated by the
220  different tools. Large output file sizes can place considerable strain on storage capacities, and large
221  numbers of read and write operations can severely impact the performance of a system or HPC

222 cluster for all users. Total file writes for the default files (in MB, including temporary files) are shown
223 in Figure 2¢ and the final disk usage for all genomes for each tool is shown in Figure 2d. VirSorter,
224 DBSCAN-SWA, and VirSorter2 performed the most write operations with mean file writes of 2.063,
225  0.262, and 0.034 GB respectively. The other tools performed similarly well and have a clear

226 advantage at scale as they perform far fewer disk writes. VirSorter and DBSCAN-SWA removed most
227 of their generated files, however, the final disk usage for these tools were still the highest at 5.36
228 and 2.96 GB respectively. Disk usage for PhageBoost and PhiSpy was by far the lowest at 0.14 and 15
229  MBrespectively.

230 Caveats

231  Every bioinformatics comparison involves many biases. In this comparison, PhiSpy performs well, but
232  we developed PhiSpy and many of the gold-standard genomes were extensively used during its
233 development to optimize the algorithm. VirSorter and VirSorter2 were primarily developed to

234 identify viral regions in metagenomes rather than prophages in bacterial genomes—although they
235 have been used for that e.g. in Glickman et al. (2020)—and filtering VirSorter and VirSorter2 hits
236 with CheckV (Nayfach et al., 2021) is recommended. By openly providing the Prophage Prediction
237  Comparison framework, creating a framework to install and test different software, and defining a
238  straightforward approach to labelling prophages in GenBank files, we hope to expand our gold-
239  standard set of genomes and mitigate many of our biases. We welcome the addition of other

240  genomes (especially from beyond the Proteobacteria/Bacteroidetes/Firmicutes that are

241  overrepresented in our gold-standard database).

242 Recent developments in alternative approaches to predict prophages, including mining phage-like
243  genes from metagenomes and then mapping them to complete genomes (Nayfach et al., 2021) and
244  using short-read mapping to predict prophage regions from complete bacterial genomes (Kieft and
245  Anantharaman, 2021) have the potential to generate many more ground-truth prophage

246  observations. However, both approaches are limited as they will identify prophages that are active,
247  but are unable to identify quiescent prophage regions, and thus for prophage prediction algorithms
248  they will provide useful true positive datasets but may not provide accurate true negative datasets.

249 Conclusions

250 In this comparison, PhiSpy, VIBRANT, and Phigaro were the best performing prophage prediction
251  tools for f; score. PhiSpy and Phigaro were also among the best in terms of runtime performance
252 metrics. Phage Finder performs well in terms of precision at the expense of false-negatives, whereas
253  VirSorter, VirSorter2, DBSCAN-SWA and PhageBoost perform well for recall at the expense of false-
254  positives. Currently, DBSCAN-SWA, VirSorter, and VirSorter2 are not as well suited for large-scale
255  identification of prophages from complete bacterial genomes when compared to the other tools.
256  More genomes with manually curated prophage annotations are needed, and we anticipate that
257  these benchmarks will change with the addition of new genomes, the addition of new tools, and as
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258  thetools are updated over time. Developers are strongly encouraged to contribute by adding or
259  updating their tool and adding their manually curated genomes to be included in the benchmarking.
260  Users are strongly encouraged to check the GitHub repository for the latest results before making
261  any decisions on which prophage prediction tool would best suit their needs.

262 Author contributions

263 RAE conceived of the study; KM and PD generated the initial gold-standard set and SKG, LI, and EP
264 contributed to the gold-standard set; RAE and MJR created the framework; RAE, MJR, and SR
265  performed the analysis. All authors contributed to the manuscript writing.

266 Acknowledgments

267  This work supported by the National Institute Of Diabetes And Digestive And Kidney Diseases of the
268  National Institutes of Health under Award Number RC2DK116713 to RAE. The support provided by
269 Flinders University for HPC research resources is acknowledged.

270 Data availability
271  Allthe datais available at DOI: 10.5281/zen0d0.4739878 and from
272 https://github.com/linsalrob/ProphagePredictionComparisons/tree/v0.1-beta

273 Figure captions

274 Figure 1: Prediction performance metrics for prophage callers. Violin plots for each tool are shown
275  with individual points for each genome indicated. The graphs show: ‘Accuracy’ (a) as the ratio of
276  correctly labelled genes to all genes, ‘Precision’ (b) as the ratio of correctly labelled phage genes to
277  all predicted phage genes, ‘Recall’ (c) as the ratio of correctly labelled phage genes to all known
278  phage genes, and ‘f; Score’ (d) as defined in the methods. For all graphs, more is generally better.

279  Figure 2: Runtime and peak memory usage comparison. Violin plots for each tool are shown with
280 individual points for each genome indicated. The graphs show total runtime in seconds (a), peak
281  memory usage in MB (b), total file writes in MB (c) and the final total disk usage (all genomes) in MB
282  (d). Forall graphs, less is better.
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284  Table S1. Genomes provided in the gold-standard library with manually curated prophages
285  Table S2. Prophages identified in the genomes

286  Table S3. Mean metrics for each tool as measured from our gold-standard set of genomes

287  Figure S1. False positive comparison. Violin plots for each tool show ‘False Positives” as the number
288  of genesincorrectly labelled prophage genes in each genome. Less is better.
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387 Table S3. Mean metrics for each tool as measured from our gold-standard set of genomes.

Tool Accuracy | Precision | Recall | f, score
DBSCAN-SWA | 0.72 0.30 0.72 0.33
Phage Finder | 0.95 0.76 0.35 0.43
PhageBoost 0.94 0.45 0.70 | 0.45
Phigaro 0.98 0.82 0.61 0.65
PhiSpy 0.99 0.88 0.87 | 0.85
VIBRANT 0.99 0.70 0.75 0.72
VirSorter 0.96 0.49 0.83 0.58
VirSorter2 0.93 0.42 0.82 0.54
388
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390 Figure S1. False positive comparison. Violin plots for each tool show ‘False Positives’ as the
391 number of genes incorrectly labelled prophage genes in each genome. Less is better.

392

13


https://doi.org/10.1101/2021.06.03.446868
http://creativecommons.org/licenses/by-nc-nd/4.0/

1.00+ V@?V??T?Y b 1.00+
0.75+ 0.75+
> c |
@ o
S wv)
g 0507 g 030 I
< & |
0.251 0,251 I
0.001 4 ‘
\s S B S\ IR & & ol S © S\ DS NS & '
N FFTFFF S & N & F & & F & &
e Qf< 2 N S & ® Ry~ & e<< & X Q & & &P
c)(,?’ & Q\\Ib% \\\X 3 O © c’(y“ ‘(@oo Q‘@% \\\X 3 AR MR NN
€ K ® P < PEO
Q N L N N O

d 1.004

1.004 .

0.75+ 0.75+
§ 0.50+ 0.50+
o

0.25+ 0.25+

0.00+ 0.00+

F1 Score

X
S & Q,O \°3’ NS \° & & € ¢
SR xé & ¢ & & W
& & A &
Q Q J (;{-,Q Q\‘\(') Q



https://doi.org/10.1101/2021.06.03.446868
http://creativecommons.org/licenses/by-nc-nd/4.0/

0 -%A‘L-.—f*i*ff

g B8 g
o o o
o o o
™0 N -
(gI) Adowsw [enIA Xep
0
©
o o o o ° &
s 8 8 8 8
O < [sp) N -~
(spuooas) swpuny
(0]

5000 A

d

4000 A
3000

2000
1000

0

(g) ebesn ysip jeuly

—_— L ——

Q

2000
1000

(a) ssumxsiq


https://doi.org/10.1101/2021.06.03.446868
http://creativecommons.org/licenses/by-nc-nd/4.0/

