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Abstract

Leaf fungal microbiomes can be fundamental drivers of host plant success, as they contain
pathogens that devastate crop plants and taxa that enhance nutrient uptake, discourage
herbivory, and antagonize pathogens. We measured leaf fungal diversity with amplicon
sequencing across an entire growing season in a diversity panel of switchgrass (Panicum
virgatum). We also sampled a replicated subset of genotypes across three additional sites to
compare the importance of time, space, ecology, and genetics. We found a strong successional
pattern in the microbiome shaped both by host genetics and environmental factors. Further, we
used genome-wide association mapping and RNA-sequencing to show that three cysteine-rich
receptor-like kinases were linked to a genetic locus associated with microbiome structure. These
genes were more highly expressed in genotypes susceptible to fungal pathogens, which were
central to microbial covariance networks, suggesting that host immune genes are a principal
means of controlling the entire leaf microbiome.
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Main
Microbial communities perform essential functions for their host organisms in all branches of
life. In some systems, hosts can tightly control the microbes with which they form symbioses1,2.
In other systems the composition of the microbiome is more governed by ecological interactions
such as the order of species arrival or abiotic conditions during colonization3,4. A key goal of
microbial evolutionary ecology is to determine how both host and non-host factors influence
microbiome assembly5, particularly in natural settings where host influence is more challenging
to study.

Communities that colonize available niches in the process of succession follow certain
predictable ecological patterns. Early-arriving species are typically those with effective
long-range dispersal, while the climax community is dominated by species that can more
effectively use resources under competition6. While these broad patterns are generalizable, the
composition of any particular successional community depends greatly on both the habitat
colonized and interspecific interactions such as priority effects, where the order of arrival of taxa
governs the success of later arrivals7. While most successional theory is based on studies in
macro-scale organisms, the principles of succession are evident in microbial communities as
well, but on a more rapid time scale8,9-10.

In the case of microbiomes, host factors governing microbial succession must also be
considered. Since the composition of the microbiome can greatly impact host fitness, it can be
evolutionarily beneficial for the host to play a role in the successional process, encouraging
mutualist colonization while dispelling pathogens as the community assembles. Hosts express
genes that influence colonizing microbes through several means, including immunity,
morphological adaptations11, and chemical exudation12. While the immune system is often
effective at preventing detrimental infections, immune receptors may recognize and exclude
beneficial microbes if elicitors are structurally similar to a pathogen, so specific immunity can
have wider impacts on the microbiome13. Hosts require finely calibrated mechanisms for
attracting beneficial microbes without attracting pathogens in a constant coevolutionary push
and pull.

The phyllosphere microbiome, consisting of the microbes on and inside the plant leaf, comprises
diverse taxa that impact plant health and productivity14–17. Leaf fungi in particular are common
plant pathogens18, but non-pathogenic taxa may perform beneficial functions for the host,
including nutrient uptake and pathogen antagonism19–24. Since the phyllosphere microbiome of
perennial plants is reassembled at the start of each growing season in freshly-sprouted
tissues,25,26 it may show similar patterns to macro-scale secondary successional communities.

We hypothesized that the phyllosphere fungal microbiome develops seasonally as a
successional community controlled by environmental factors, host genetics, and interspecific
fungal-fungal associations. We used amplicon sequencing to compare the relative importance of
these factors in the phyllosphere fungi of a replicated diversity panel of switchgrass (Panicum
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virgatum27). We tested whether communities change directionally and whether the trajectory of
succession differed across switchgrass genetic subpopulations and across different growing
sites. Additionally, we sought to uncover whether specific genetic loci underlie host control of
the microbiome through GWAS and RNA-sequencing analyses. Finally, we investigated the
roles of specific fungal taxa in the microbiome through network analysis. Specifically, we aimed
to determine whether known switchgrass leaf pathogens28 covary with nonpathogenic
symbionts, or are peripheral to microbial communities.

Results

Succession varies across host subpopulations and planting sites

Switchgrass is a highly genetically diverse perennial grass native to North America, and both
plant traits and switchgrass-microbe interactions vary across its range27–29. We leveraged this
diversity to assess the difference in microbial communities across the three main switchgrass
subpopulations by randomly selecting 106 genotypes from a diversity panel27 planted at our
focal site, the Kellogg Biological Station (KBS), MI, USA. Of these, 28 genotypes were from the
Midwestern subpopulation, 38 from the Atlantic, 31 from the Gulf, and 9 showed signs of
admixture between groups (Intermediate). These subpopulations differ in morphological and
ecological characteristics, so we expected that fungal succession would differ as well across
subpopulations. We examined succession over time by sampling leaf tissue from each plant at
five time-points, then sequencing the Internal Transcribed Spacer (ITS) region of the
phyllosphere-associated fungi in and on the leaf. After quality filtering, we clustered 47.8
million ITS reads to 6756 fungal Operational Taxonomic Units (OTUs) that varied across
genotypes and over time.

To determine the directionality of successional changes in the microbiome, we visualized
community differences with nonmetric multidimensional scaling (NMDS). NMDS accurately
preserved sample distances in reduced dimensions (Stress = 0.102; Figure S1), and revealed clear
temporal community structure. NMDS1 clustered closely with the date of collection, while
NMDS2 clustered more with host genetic subpopulation (Figure 1a). Notably, the first sampling
date was highly distinct from the later time points, showing greater variation within that time
point, as well as divergence from later time points (Figure 1). To explore the statistical
significance of visual patterns of succession, we used PERMANOVA. In addition to sampling
date (Day Of Year: DOY) and subpopulation, we compared the community differences on leaves
that showed clear pathogen disease symptoms to uninfected leaves from the same plant. All
terms we tested had significant effects on community structure, but differed greatly in their
explanatory power (Table 1). At the focal site, KBS, collection date (DOY) explained the greatest
amount of variation (19.4%), followed by genetic subpopulation (5.7%) and infection (1.2%), and
there was a significant date-by-subpopulation interaction.
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In order to directly test the differences in succession across subpopulations, we modeled
changes in the multidimensional representation of fungal communities as directional
trajectories30. Across the season, fungal communities on individual plants showed parallel
changes over time, with almost no reversals to earlier community states (Figure 1b), strongly
indicating a successional pattern. Switchgrass genetic subpopulations differed in both mean
trajectory length (df = 3, F = 2.786; p = 0.0453) and mean overall direction (df = 3, F = 3.677; p =
0.0151). While little subpopulation difference is evident at the beginning of the season, climax
fungal communities were markedly different in the Midwestern population, which showed the
greatest divergence from others in trajectory direction (Figure 1b, Midwest-Atlantic; Tukey’s
HSD = 0.013, p = 0.050). This provided initial evidence that, while fungal dispersal is similar
across plant subpopulations, host plants influence the climax state of  fungal communities.
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Figure 1: Structural and successional change in the leaf phyllosphere community shown by two methods.
Each point represents an individual plant sampled from the experimental plot at Kellogg Biological
Station, MI. a. NMDS (Non-metric Multidimensional Scaling). Dates are shown as Day of Year (DOY).
Points are colored by DOY, and switchgrass subpopulations as shapes. NMDS does not estimate
variation explained by individual axes, but uses nonparametric relationships to minimize a function of the
difference between the representation and actual multidimensional distances called "stress." b. Trajectory
plots of principal coordinates of community distances. Transparent arrows represent individual
switchgrass genotypes sampled over the five dates shown in a, and colors show genetic subpopulations.
Solid colored arrows show mean subpopulation trajectories.

Fungal microbiomes can be greatly influenced by environmental factors in addition to host
factors. Therefore, we compared succession across environments by selecting a subset of eight
plant genotypes replicated in three additional sites across a latitudinal gradient in the USA.
From north to south, these field sites were Columbia, MO; Austin, TX; and Kingsville, TX
(Figure S2). We sampled at each site at three time points, standardized by phenology to account
for seasonal differences across sites (Figure 6). At most sites, collection date correlated with both
NMDS1 and NMDS2 (Figure 2; stress = 0.103). However, the northern and southern sites were
divided on a diagonal line orthogonal to collection date. The northern sites KBS and Columbia,
MO formed one cluster, while the southern sites, Austin, TX and Kingsville, TX formed another
(Figure 2). Differences across sites accounted for 29.6% of the variation in community
dissimilarity across sites, but sampling date, subpopulation, and leaf infection also structured
the community to a lesser extent (Table 1). While succession may show temporal patterns in
southern sites, the composition of fungal communities on leaves is largely distinct.

Figure 2: Site-specific changes in microbial communities shown by NMDS (Non-Metric Multidimensional
Scaling). Genotypes were sampled at four sites. From north to south: KBS, MI; Columbia, MO; Austin,
TX; and Kingsville, TX. Northern sites are shown by symbols, and southern by open shapes. Color
indicates phenological stage sampled, “Early” samples were taken just after emergence, “Mid” samples
were taken during seed development, and “Late” samples were taken after senescence began.
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Table 1: PERMANOVA of a Bray-Curtis community dissimilarity matrix for genotypes at the focal site
(n=106) and those replicated across sites (n=8). DOY (day of year) is sampling date, Subpopulation
indicates genetic group, Infection indicates whether or not the sampled leaf had fungal disease
symptoms, and Site indicates planting site. Terms are shown with sequential effects. All terms were
significant with alpha < 0.05. At the focal site KBS, the model explained 28.2% of the total variation,
whereas the multi-site test explained 43.2%.

Host genetic subpopulations support divergent fungal communities

Beyond differences at the level of subpopulations, we expected that within-subpopulation
genetic differences would impact fungal diversity. To further examine genetic differences over
time, we compared host genetic distances to fungal community differences between plants at
the focal site, KBS. Genetic distances, calculated as Nei’s distance using 10.8 million
single-nucleotide polymorphisms (SNPs)31, revealed that host population genetic structure
largely matched the  three major switchgrass genetic groups observed previously: ‘Gulf’,
‘Atlantic’, and ‘Midwest’27 (Figure 3a). These three subpopulations are deeply diverged and
serve as discrete gene pools within which we tested for host-driven fungal community
divergence. Fungal community distances, calculated as Bray-Curtis community dissimilarity,
varied across sampling dates, but largely recapitulated the genetic structure of switchgrass
(Figure 3bc). Notably, Mantel tests showed that fungal community structure was most closely
correlated with host genetic structure at DOY 260, when most plants had set seed (r = 0.453), but
declined as senescence progressed (Figure 3d). While we anticipated some degree of genetic
influence, subpopulations were even more highly structured than expected, with almost half of
the variation in fungal community distance explained by genetic distance when plants are
setting seed (DOY 260).
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Figure 3: Genetic and fungal community pairwise distance matrices at Kellogg Biological Station, MI. a.
Pairwise genetic distance (𝜋) for all samples. Samples are ordered by hierarchical clustering. b-c.
Pairwise community distance (Bray-Curtis) for all samples, shown in the same order as genetic distances,
for two sampling times, DOY 158 and DOY 260. Other sampling times shown in Supp. d. Values of
Mantel’s r shown indicate correlation between distance matrices for genetics and fungal communities at
each time point. P < 0.01 for all tests.

Such tight host-microbiome genetic diversity associations imply a heritable genetic basis of
fungal community dynamics by their plant hosts. To identify the genetic loci that might underlie
this pattern, we calculated genome-wide associations (GWA) for microbiome structure. We used
the second NMDS axis at DOY 260 from the above analysis (Figure 1; Figure S3) to represent
microbiome structure, since it showed the greatest clustering with subpopulation (Figure 1a, 3c)
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and controlled for large-scale host genetic structure by including a single variate decomposition
of pairwise genetic distance as a covariate in the linear models. We found several loci associated
with the phenotype at a 5% false discovery rate (FDR), but the GWA showed an excess of low
p-values (quantile-quantile plot: Figure S4) so we used a more conservative
Bonferroni-corrected threshold to identify significant SNPs (Figure 4a). This threshold revealed
only one SNP on chromosome 2N significantly associated with microbiome structure,
Chr02N_57831909. This SNP is closely linked to several genes in the switchgrass v5.1 genome
annotation (Figure 4bc). The three closest genes are homologous to receptor-like kinases (RLKs)
annotated in the closely related Panicum hallii (two copies of cysteine-rich receptor-like protein
kinase 6; XP_025800480.1 & XP_025800481.1, and one copy of cysteine-rich receptor-like protein
kinase 10; XP_025801715.1). This class of RLKs is diverse in plants, but is known to contain many
immune receptors32, indicating a potential role for these genes in host control of fungi.

We corroborated the importance of these candidate genes by comparing their expression levels
in divergent genotypes at the three of the four sites where phyllosphere experiments were
conducted, KBS, Columbia, and Austin. In each site, we sequenced leaf tissue RNA from
multiple biological replicates (n >= 3) from four genotypes: two that are susceptible to leaf
fungal pathogens (Midwest upland VS16 & DAC) and two which were generally resistant (Gulf
lowland WBC & AP13)28. Consistent with host-gene driven variation in fungal community
assembly, all three candidate genes were much more highly expressed in susceptible than
resistant genotypes (Wald tests; Table 2). These differential genotype-specific patterns of
expression were very similar across planting sites (likelihood ratio test for ecotype ✕ site
interaction, p = 0.354). The pattern of these receptors being more highly expressed in
pathogen-susceptible plants may seem counterintuitive, since many RLKs are immune
receptors. However, this can often occur when pathogens produce effector proteins that target
immune receptors33. Necrotrophic fungi in particular can benefit by over-inducing plant
immune receptors to initiate programmed cell death,34,35 then feeding on dead plant tissue.
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Figure 4: a. Genome-wide associations of microbiome structure (NMDS2 at DOY 260). The lower solid
line shows the 5% False Discovery Rate threshold, and the upper dashed line shows the
Bonferroni-adjusted alpha threshold for SNPs associated with the microbiome. b. Outlier region on
Chromosome 2N with nearby genes shown in red. c. Expression-level differences for genes shown in b.
Leaf tissue for these samples was collected as part of a different study, performed at three of the same
sites we used. Transcript counts are scaled differently in each gene facet.

Table 2: Wald test for expression differences in three candidate genes between susceptible (upland) and
resistant (lowland) ecotypes.

Yeasts, pathogens, and mycoparasites are core phyllosphere microbiome members

Given the large differences in leaf pathogen susceptibility across switchgrass subpopulations,
we sought to determine the influence of pathogenic fungi on other members of the fungal
microbiome. We examined the taxonomic relationships of the 7392 OTUs in our dataset through
a hybrid method that compares matches across fungal databases and BLAST (Basic Local
Alignment Search Tool) hits36. We identified 6756 OTUs as fungi, 633 as plant, and 3 OTUs as
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metazoan. We performed NMDS and PERMANOVA analyses using the full community, but
focused our taxon-specific analyses on OTUs at the focal site that were present at high
occupancy across time and showed relatively high abundance, often referred to as the “core”
microbiome37. This group consisted of 128 OTUs, the majority of which were Dothideomycetes
(43.5%) and Tremellomycetes (28.7%; Table S1). We assigned each of the core OTUs to a
functional guild when possible using published literature (Table S1). Of the core group, 23 OTUs
were grass pathogens and 9 were documented pathogens of other plants. Four were known
mycoparasites, fungi that prey upon other fungi. 3 were generalist decomposers or had an
unclear functional guild, and the remaining 52 were yeasts or yeast-like fungi. Compared to
fungal species in soil, these taxa were especially enriched for grass pathogens and yeasts, and
contained much fewer sabrobes38.

To investigate how these functional guilds associate, we built covariance networks using OTU
relative abundances at each time point (Figure 5a). We summarized network statistics across
functional guilds to show that known grass pathogens are central to covariance networks, with
high betweenness centrality (extent to which a node lies on paths connecting other nodes) and
degree (overall number of connections; Figure 5e). Standard deviation was high within this
group, however, reflecting seasonal and within-group differences. Yeasts, in contrast, showed
higher modularity (compartmentalization; Figure 5e). This indicates that, while yeasts are
overall more speciose in the core microbiome, they covary less with the rest of the microbial
community than pathogens. Since yeasts are thought to be mostly commensal inhabitants of the
outer leaf surface39, this difference may reflect their ecological or spatial niche.
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Figure 5: a. Covariance networks of core OTUs over time. Nodes are colored by each OTU’s relative
abundance in infected leaves with visible symptoms. The shape of the node denotes network position,
defined by Zi-Pi ratio. Edges are colored by the covariance sign. b. Infection indicator taxa, including best
taxonomic match and z-score for indicator analysis. c. Number of OTUs identified as important by several
methods: MTV-LMM analyses that indicate time-dependent OTUs, OTUs that impact the successional
trajectory, and core OTUs with high occupancy-abundance. d. Taxonomic information for the fourteen
OTUs identified in all three analyses in c. Best match denotes the lowest taxonomic level confidently
identified for each OTU using BLAST. Guilds were estimated based on published studies, references are
in Table S1. e. Network statistics for fungal guilds, calculated as mean values across all time points, with
standard deviation (SD).

In addition to varying among functional groups, OTU covariance also changed over time
(Figure 5a, S6). To identify positive or negative covariance temporal patterns within network
members, we generated a Class-level heatmap showing the proportion of edges linking OTUs
within or between each Class at each time point (Figure S5). Due to the high proportions of
Dothideomycetes (mixed guilds) and Tremellomycetes (yeast) in the core, the majority of edges
at every time point were within (38.3-48.6%) and between (9.9-14.5%) OTUs in these classes.
While the proportion of positive edges maintained more or less stable with time between OTUs
in the Dothideomycetes (from 20.0 to 23.9%) and Tremellomycetes (from 23.0 to 17.4%) or within
the two classes (from 3.6 to 2.8%), negative edges between classes increased from DOY 158
(6.7%) to DOY 233 (9.7%) and DOY 286 (11.7%). This may indicate competition for host
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resources between these two classes of fungi, resulting in more spatially heterogenous
distributions in the late season.

While patterns in this core group reflected major changes in fungal microbiome, we used several
alternate methods to identify important OTUs. In addition to the core, we modified trajectory
analyses (Figure 1b) by computationally removing each OTU from the analysis and calculating
the change in the overall community trajectory30. Nineteen OTUs significantly impacted
trajectories when they were removed, all of which overlapped with the core group (Figure 5c).
To examine priority effects, we used microbial temporal variability mixed linear models
(MTV-LMMs), which identify taxa for which variation in earlier time points explains variation
in later points40. Of the 153 OTUs we found in this analysis, 49 overlapped with the core, and 14
with both the core and trajectory analysis (Figure 5c). The fourteen OTUs that were identified as
important using all three methods (Figure 5cd) included taxa from several putative functional
guilds, including yeasts, pathogens, and mycoparasites. Network connections confirmed
mycoparasitic interactions; we found a negative relationship between putative plant pathogens
Mycosphaerella tassiana and Microdochium seminicola and mycoparasitic Epicoccum dendrobii. In
addition, we used indicator species analysis to identify OTUs that were overrepresented in
leaves with fungal disease symptoms (Figure 5a). Although the major fungal pathogen of
switchgrass, Puccinia novopanici, was not identified as a core taxon, indicator species analysis
showed that putative mycoparasite Sphaerellopsis filum is present in the core, and significantly
associated with fungal infection symptoms (Figure OTU_4; Figure 5a).

Our analyses mostly identified the taxa that were abundant across samples. Rare taxa can be
important in microbial community functioning 41, but their role in overall ecological patterns is
less clear and more challenging to study. Therefore, we only examined rare taxa that we
expected a-priori to play an important ecological role. Claviceps species were present in 119/760
samples, and were more highly abundant in the early season. Claviceps species produce alkaloid
compounds that deter grazing42, so this endophyte may play a role in protecting young grass
shoots. Metarhizium, a related genus, was present at low abundances in 43/760 samples in the
Columbia, MO and KBS, MI sites. Metarhizium species are insect-pathogenic fungi43, so may
provide a similar protective role.

Discussion

Our results show strong support for the importance of time, geographic location, and host
genetics in influencing the switchgrass phyllosphere microbial succession over the growing
season. We found evidence for clear successional dynamics that were consistent in direction
across growing sites, but were distinct in community composition. Fungal communities were
different across host genetic subpopulations, a pattern that may be driven in part by variation at
three linked immune receptors. While there is great taxonomic diversity in leaf fungal
communities, a few highly abundant taxa, many of which are pathogens, play a
disproportionate role in shaping community progression and likely influence plant host traits.
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Succession varies across host subpopulations and planting sites

Viewing the switchgrass leaf microbial community through the lens of succession allowed us to
delineate ecological patterns in these communities. Multidimensional scaling representations of
the leaf communities at the focal site revealed a clear clustering by date of collection on the first
NMDS axis (Figure 1). This indicates that, as we predicted, date of collection is an important
source of variation in the switchgrass leaf fungal community. Further, measuring the trajectories
of these communities showed that succession is both directional and deterministic, since no
samples showed negative trajectories (reversals of succession) by the end of the season, and
most samples followed a similar trajectory (Figure 1b). While the overall shape of trajectories
was similar, the Midwestern population deviated from others, particularly in the late season.
The Midwestern population is notable since we have previously shown that it is more
susceptible to several fungal pathogens such as leaf rust (Puccinia novopanici) and leaf spot
(Bipolaris spp.; 28; also see 44), and has on average an earlier phenology than the other population
groups.29 Leaf microbiome relationships in this population are consistently distinct in this
population, and may be linked to other traits such as cold-tolerance that also differ27,29.

In addition to temporal differences across subpopulations, the composition of fungal leaf
communities differed markedly across geographic locations. This may be partially due to
seasonality differences across the region we examined. The Kingsville, TX site did not
experience freezing temperatures between 1989 and 2020 (NOAA weather service), so perennial
grasses in the region may have living aboveground tissue year-round. Growing season length
has been shown as an important factor in governing the abundance and diversity of endophytic
fungi45, so it is unsurprising that we saw large differences across this latitudinal gradient.
However, many other factors that influence fungal communities also differ across these sites,
including precipitation regime, soil type, and surrounding vegetation, so further work is needed
to determine if the growing season is truly the causal factor. Climate plays an important role in
regulating plant endophyte diversity 46

Host genetics influence community structure

We predicted that fungal communities would be impacted by host genetics as well as location.
We found several lines of evidence for genetic control of the leaf microbiome. In addition to
examining differing successional trajectories across subpopulations, we tested the covariance of
genetic distance and fungal community differences using Mantel correlations. Genetic-fungal
community correlations increased until DOY 260, then declined as host senescence began.
Mantel tests are inappropriate for some ecological tests and often underestimate p-values, but
can be useful for exploratory analysis of distance matrices47. When selecting samples for this
study, we randomly chose equal numbers of samples from the two major switchgrass
morphological ecotypes, upland and lowland switchgrass48 (Figure S2). Lowland switchgrass,
which is more highly represented in Gulf and Atlantic subpopulations, is more resistant to
several leaf fungal pathogens28, so subpopulation differences may be at least partially driven by
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differences in immunity across these genotypes. Since pathogens such as Microdochium and
Alternaria were among the most abundant taxa in our samples, their differences across
subpopulations may have driven overall community differences. In addition to immunity,
however, subpopulations differ in other traits that may contribute to fungal colonization
differences, such as leaf wax content 49, exudate concentration50, and phenology29,48, so
microbiome differences may be responding to multiple host plant traits.

A replicated receptor-like kinase is associated with fungal differences

We found one outlier SNP associated with microbiome structure. While there were several
peaks in the Manhattan plot (Figure 5a), our analysis showed a strongly skewed distribution of
observed versus expected p-values (Figure S4), indicating a risk of Type I errors. This is
probably attributable to the low sample size in this GWAS. The influence of the identified locus
is fairly strong, contributing to a clear decrease on NMDS axis 2 when the minor allele is present
(MAF = 0.083; Figure S6). This SNP is not in Hardy-Weinberg equilibrium in switchgrass; we
found only one minor-allele homozygote among our samples. This abnormal pattern may be
attributable to structural variation at this locus. Switchgrass subpopulations vary widely in
genome structure, which may result in alignment mismatches that resemble SNPs, particularly
in regions with multiple gene copies51. Indeed, this region shows an elevated number of
insertions and deletions compared to nearby sections of the 2N chromosome (Figure S7, data
from 27). Given the strong association for this locus as well as the RNA-sequencing results,
however, we expect that there is a true phenotypic association with the locus, but that it may be
with a structural variant rather than a true SNP.

The three nearby genes we identified were replicated variants of a cysteine-rich RLK whose
function has not been experimentally verified in Panicum. RLKs are one of the largest plant gene
families, including over 600 members in Arabidopsis32. The best-studied of these is FLS2, which
detects the bacterial flagellin protein and initiates an immune response cascade52. The three
RLKs we identified show high sequence similarity to immune-related cysteine-rich RLKs in
Arabidopsis and Oryza, and contain the “stress-antifungal domain” PF01657, which has been
linked to salt stress as well as fungal responses when present in several proteins53,54. Arabidopsis
CRK5 , for instance, alters defense responses either through resistance to infection or
programmed cell death, depending on how the gene is expressed 55. Similarly, the Oryza gene
LIL1 (Os07g0488400) improves fungal rice blast resistance when overexpressed 56.

Pathogens & hyperparasites are important in succession

We used several methods to identify important taxa in the phyllosphere community. We used
“core” microbiome analysis to identify OTUs that show high occupancy (presence across
multiple samples within a time point15). We found that core taxa overlapped well with
important taxa identified by MTV-LMMs and trajectory analysis. We can therefore be confident
that this group of taxa is influential in the switchgrass phyllosphere (Fig. 5). Within this group,
we identified several as pathogens, including Alternaria, Mycosphaerella, Microdochium, and
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Taphrina. It is challenging to assign functional guilds to symbiotic fungi, since their benefit or
detriment to the host may depend strongly on phenology, abiotic conditions, and ecological
interactions57. For instance, many endophytic fungi are commensal for most of the season, then
shift to breaking down plant tissue as the host begins senescence58. Others may be weakly
pathogenic, but may improve overall host fitness by enhancing nutrient uptake or preventing
infection by more effective pathogens22,59.

Yeasts and yeast-like fungi were also well-represented in phyllosphere samples. Yeasts were
historically thought to be dominant in the phyllosphere60, but this may have been an artifact of
methods used. Yeasts are more easily culturable than filamentous fungi, and are therefore
overrepresented in studies using cultures to measure fungal diversity. The exact relationship
between yeasts and plant hosts is not totally clear, but they are typically thought to be mostly
commensal symbionts, feeding on small amounts of sugars on the leaf surface61.

At the focal site, Tremellomycete yeasts and Dothideomycetes dominated the core microbiome
and covaried negatively through time. This may be explained by different spatial distributions
across samples; Tremellomyctes dominate some samples and Dothideomycetes other samples,
but they rarely coexist. Priority effects, wherein early-arriving taxa gain advantage over
late-arriving taxa, may therefore play a role in governing colonization in these taxa. Certain
Tremellomycete yeasts have been shown to be potential biocontrol agents against pathogens,
e.g. Papiliotrema spp.62, and others have been shown to be “hub” taxa or negatively connected
with leaf pathogens, e.g. Dioszegia spp.63, both genera with high abundance in our focal site
dataset.

One unexpected finding of our taxon-specific analysis was that two mycoparasites were
identified as important taxa, Epicoccum and Sphaerellopsis. Epicoccum is an ascomycete genus
comprising several species with noted antifungal properties64,65. The species we identified in this
study, Epicoccum dendrobii, is being investigated as a biocontrol agent of the pathogenic
anthracnose fungus Colletotrichum gloeosporoides66. Similarly, Sphaerellopsis filum has been
observed infecting multiple species of Puccinia rusts67,68, and has been shown specifically to
reduce switchgrass rust infection69. Another surprising finding was that switchgrass rust was
not a core species, despite the fact that its disease symptoms are nearly omnipresent each year in
the sites we studied28. Fungi in the Pucciniaceae family have an ITS sequence that differs
substantially from general fungal primers used in this study, which we suspect resulted in
reduced amplification of Puccinia rusts. However, the ubiquity of the Sphaerellopsis
hyperparasite is an indication that Puccinia may be more prevalent than our sequencing data
show, a speculation that is supported by the fact that Sphaerellopsis was identified by indicator
species analysis as clearly overrepresented in leaves with rust infection.

Conclusion

Switchgrass leaf fungal communities are highly diverse, and are influenced by both host and
environmental factors. Succession occurs each season as communities are assembled through
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stochastic, environmental, and host-determined processes. Pathogenic fungi play a critical role
in the switchgrass leaf phyllosphere community, determining both the trajectory of microbial
community development and acting as central nodes in community networks. Host immune
genes such as receptor-like kinases control pathogens directly, and the prevalent mycoparasites
that prey on them indirectly. The plant genes that control pathogens may therefore provide a
principal means by which plants influence changes in their fungal microbiome.

Material and Methods

Plant material

We collected switchgrass leaves from a diversity panel established for a separate study27. In
brief, researchers planted arrays of 732 genotypes of switchgrass clonally replicated at over
fifteen sites in the US and Mexico. These genotypes were collected from across the United States,
grown in controlled conditions, then clonally split before replanting at all sites. Since 2018, they
have been growing in 1.3 m spaced grids with minimal interference for weed control27.
Researchers used Illumina HiSeq X10 and Illumina NovoSeq6000 paired-end sequencing
(2x150bp) at HudsonAlpha Institute for Biotechnology (Huntsville, AL) and the Joint Genome
Institute (Walnut Creek, CA) to sequence the genome of each individual. Sequence information
for these samples is available on the NCBI SRA: Bioproject PRJNA622568. Lovell et al.27 called
33.8 million SNPs with minor allele frequency greater than 0.5%, 10.8 million of which we used
in this study for genetic mapping.

We used two sampling strategies to assess temporal and geographic variation (Figure 6; Table
S2). For temporal variation, we sampled leaf tissue from 104 genotypes from a diversity panel of
switchgrass grown at the Kellogg Biological Station, MI field site at five time points during the
2019 growing season. To assess geographic variation, we collected eight randomly chosen
genotypes representative of switchgrass genetic populations that were replicated in four sites
that span the geographic range of temperate switchgrass populations: Kellogg Biological
Station, MI; Columbia, MO; Austin, TX; and Kingsville, TX. At each site, we sampled the same
eight genotypes at three time points (n = 96; Figure 1). Given that climate varies greatly over this
latitudinal range, we standardized collection by phenology rather than date, focusing on
switchgrass emergence, flowering, and senescence. Switchgrass genetic variation segregates into
three main subpopulations that differ greatly in morphology and phenology27, so we compared
fungal community responses over these populations.

We used two sampling strategies to assess temporal and geographic variation. For temporal
variation, we sampled 104 genotypes from the Kellogg Biological Station, MI field site at five
time points, corresponding to the phenological stages of emergence, tillering, flowering,
seed-set, and senescence (n = 530; Figure 6). To assess geographic variation, we selected a
latitudinal transect of four of the fifteen sites to sample: Kellogg Biological Station, MI (42.419,
-85.371); Columbia, MO (38.896, -92.217); Austin, TX (30.383, -97.729); and Kingsville, TX

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.03.26.437207doi: bioRxiv preprint 

https://paperpile.com/c/kyeyCQ/Cpiv5
https://paperpile.com/c/kyeyCQ/Cpiv5
https://paperpile.com/c/kyeyCQ/Cpiv5
https://paperpile.com/c/kyeyCQ/Cpiv5
https://doi.org/10.1101/2021.03.26.437207
http://creativecommons.org/licenses/by-nd/4.0/


(27.549, -97.881). At each site, we sampled the same eight genotypes at three time points (n = 96;
Figure 6; Figure S4). Since climate varies greatly over this latitudinal range, we standardized
collection by phenology rather than date, focusing on switchgrass emergence, flowering, and
senescence. At all sites we collected roughly equal numbers of genetic subpopulations.

Figure 6: Sampling scheme. Each icon represents one sample taken. We sampled 106 genotypes at five
time points at the focal site in Hickory Corners, MI, and 8 genotypes at the three other sites. We sampled
roughly equal numbers of each subpopulation throughout. Sites are shown from northern (Kellogg
Biological Station, MI) to southern (Kingsville, TX).

For each plant at each time point, we collected 3 leaves. We haphazardly sampled leaves from
the middle of the canopy; that is, leaves that were neither close to the base nor the flag leaf. To
minimize external contamination, we sterilized gloves between plants, and collected directly
into sterile 50mL tubes (UHP tubes, Fisher Scientific, Waltham, MA). Since we expected that the
fungal community would be impacted by the dominant fungal pathogen, leaf rust, we collected
3 leaves with visible rust symptoms as well as 3 uninfected from the same plant when possible
(n = 106), all of which were used in downstream analyses. We stored tubes on dry ice in the field
and while being shipped, then at -80oC until extraction. For each day of sampling, we also
collected a negative control, one tube opened to the ambient air for at least 10s. Samples were
shipped overnight on dry ice to Michigan State University (MSU) for processing.

ITS sequencing

We targeted the endophytic (inside the leaf) and epiphytic (on the leaf surface) fungi. To prepare
leaves for DNA extraction, we used 4mm biopsy punches (Integra, Princeton, NJ) to produce
~21 leaf discs pooled across the three collected leaves. We sterilized biopsy punches between
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samples by soaking overnight in DNAaway (Thermo Fisher Scientific, Waltham, MA), then
washed in DI water. We punched across the leaf blade to fully represent the spatial diversity in
leaves. We homogenized leaf tissue by grinding with two sterile 3.175 mm stainless steel ball
bearings. We placed sealed sterile 1.5 ml tubes with bearings and leaf discs into liquid nitrogen
for 10s, then homogenized in a Mini-G bead beater (SPEX sample prep, Metuchen, NJ) for 60 s
at 1500 rpm.

To extract DNA, we used Qiagen Plant Maxi kits, following the manufacturer’s instructions
(Qiagen, Hilden, Germany). This method yields large amounts of plant DNA in addition to
fungal, so we used primers for the fungal ITS (Internal Transcribed Spacer) rDNA region. We
performed library preparation for ITS using the ITS1f (5’-CTTGGTCATTTAGAGGAAGTAA-3’)
and ITS4 (5’-TCCTCCGCTTATTGATATGC-3’) primers. We used a three-step amplification
process to amplify the target region, add adaptors, and add barcodes for multiplexing as
previously reported by Benucci et al.70,71 PCR amplification steps and reagents are included in
the supplement (Table S3). We normalized DNA concentrations using SequalPrep normalization
kits (Thermo Fisher Scientific, Waltham, MA), concentrated libraries using Amicon Ultra 0.5 mL
50K centrifugal filters (EMD Millipore, Burlington, MA), and removed primer-dimers with
Ampure magnetic beads (Beckman Coulter, Brea, CA). We randomized samples across plates,
then pooled them into 3 libraries for sequencing. We used four levels of negative controls to
check for contamination at different steps: field controls that were exposed to air at each
sampling point, DNA extraction controls, library preparation controls, and a synthetic mock
community72, resulting in a total of 672 samples that included 59 controls.

We sequenced DNA using Illumina MiSeq 300bp paired-end v3 600 cycles kit in the MSU
genomics core facility. Sequencing yielded 84.7 M total reads, and high quality data across
samples. Across three multiplexed libraries, 74.9% of reads had quality scores above 30 (Phred),
with an average of 110 K reads per sample (ranging from 110 reads in negative controls to 199 K
reads in samples). After quality filtering, 47.8 M reads remained. We used a 97% clustering
threshold for identifying OTUs (Operational Taxonomic Units), resulting in 7963 OTUs across
761 samples.

RNA Sequencing

Vegetatively propagated plants from four genotypes were grown in three sites (KBS, MI; Austin,
TX; and Columbia, MO). Two genotypes, AP13 and WBC, fit in the Gulf population group, and
are generally resistant to leaf fungal pathogens28,44. The other two are more closely related to the
Midwest population, and are more susceptible to leaf pathogens28,44. Leaf tissue was harvested
and immediately flash frozen in liquid nitrogen and stored at -80°C until further processing was
done. Each harvest involved at least three independent biological replicates. High quality RNA
was extracted using standard Trizol-reagent based extraction73. RNA-Seq libraries were
prepared using Illumina's TruSeq Stranded mRNA HT sample prep kit utilizing poly-A
selection of mRNA. Sequencing was performed on the Illumina HiSeq 2500 sequencer using
HiSeq TruSeq SBS sequencing kit. Paired-end RNA-Seq 150-bp reads were quality trimmed (Q ≥
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25) and reads shorter than 50 bp after trimming were discarded. High-quality sequences (404.4
M reads) were aligned to P. virgatum v5.1 reference genome using GSNAP v.2019-06-1074 and
counts of reads uniquely mapped to annotated genes (371.8 M reads) were obtained using
HTSeq v.0.11.275.

Bioinformatics

We analyzed ITS sequences on the MSU HPCC (High-Performance Computing Center) with
qiime v1.9.176, fastqc v0.11.777, cutadapt v2.978, CONSTAX279and usearch v11.0.667 80. We
demultiplexed sequencing reads using split_libraries_fastq.py in qiime1, then checked for
sequencing errors with fastqc. We removed barcodes with cutadapt, and filtered fastqs with
USEARCH using the -fastq_filter option with arguments: 1 expected error (-fastq_maxee 1.0),
truncation length of 200 (-fastq_trunclen 200), and no unidentified bases (-fastq_maxns 0)81. We
clustered 97% OTUs with the UPARSE algorithm82 through the -cluster_otus option, with
singletons discarded (-minsize 2). We assigned taxonomy to OTUs using CONSTAX236, which
improves OTU identifications using a consensus algorithm between RDP83, SINTAX84, and
BLAST classifications36.

Statistical Analyses

We performed downstream analyses in R v4.0.3 85 using the packages decontam86, vegan87,
phyloseq88, vegclust89, and metagenomeseq90. We used decontam to remove contaminants by pruning
OTUs that were overrepresented in negative controls, then normalized read depth with
functions in the metagenomeseq package.  Of 7963 OTUs we clustered, 162 were identified as
contaminants and removed from analyses (identifiable contaminants removed are shown in
table S4). All contaminants showed low abundance and were evenly spread across negative
controls, indicating that fungal contamination was minimal in this study.

Successional dynamics

We visualized community structure using nonmetric multidimensional scaling (NMDS), which
represents the multivariate structure of a community in reduced dimensions (Shepard plot in
Supplemental Figure 1). We first used a Hellinger transformation to standardize across samples
using the decostand function, then performed NMDS with metaMDS, both in the vegan package.
We also used permutational analysis of variance to assay the relative importance of various
factors in structuring the fungal community implemented through the adonis2 function in vegan.

To test the importance of historical contingency in temporal community changes, we used a
Microbial Temporal Variability Linear Mixed Model (MTV-LMM40). The MTV-LMM assumes
that temporal changes are a time-homogenous high-order Markov process, and fits a sequential
linear mixed model to predict the abundance of taxa at particular time points 40. For each taxon,
we calculated “time explainability”, a metric of the degree to which variation in later time
points is explained by variation in earlier points40. We fit linear mixed models for each OTU
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present across multiple time points, and used a Bonferroni-corrected alpha to identify taxa that
exhibit significant temporal contingency.

In addition, we examined individual and population-level succession using trajectory analysis30.
Trajectory analysis transforms multivariate community changes to two-dimensional trajectories,
for which parameters of individual community changes can be compared. We calculated mean
trajectories for communities in each subpopulation, then used ANOVA to test for trajectory
differences across subpopulations. We then used a permutational method to discover OTUs that
substantially impact succession. We computationally removed each OTU from our dataset,
recalculated mean population trajectories, then compared to the original trajectories. We then
used the trajectoryDistances function in the vegclust package to calculate the degree to which
removing each OTU altered the overall community trajectory89.

Conceptualization of ecological communities as trajectories has a long history in ecology91, but
explicit modelling of trajectory parameters has been challenging until relatively recently30,92,93.
This approach utilizes statistical methods that are typically applied to movement in geometric
space94 to compare movement by a community in multidimensional space30. While trajectory
analysis has not been applied to changes in microbial communities to our knowledge, other
researchers have used the method to understand succession in Amazon forest communities
after land-use change95, and Iberian forests after fires96.

Genetic associations

To specifically measure the overall microbiome variation explained by genetic structure, we
examined the covariation of genetic distance and fungal community distance using Mantel tests.
We calculated genetic distance as the number of pairwise SNP differences between each sample
(Nei’s distance, π). We used the switchgrass GWAS SNP dataset31, which features 10.8 million
high-confidence SNPs with minor allele frequency (MAF) > 0.05, and calculated distance with
the dist.genpop function in adegenet97. For microbiome community differences, we used
Hellinger-transformed Bray-Curtis distances calculated with the decostand function in vegan. We
performed Mantel tests with 999 permutations using the mantel function in vegan for each
sampling time-point at the focal site (KBS).

To identify specific genetic loci associated with microbiome community structure, we examined
genome-wide associations (GWA) between SNPs and community structure, represented as the
second axis from our NMDS analysis (described above). We did not use the first axis, since that
clearly clustered with sampling date (Figure 1). We performed GWA using the
switchgrassGWAS27 package and the same SNPs as we used in Mantel tests. To correct for
population structure, we included a single variate decomposition (SVD) of pairwise genetic
distance as a covariate in the linear models. The switchgrassGWAS package implements linear
regression tests for each SNP using the big_univLinReg function in bigstatsR, which rapidly
applies statistical tests across filebacked big matrices using memory mapping98. We calculated

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.03.26.437207doi: bioRxiv preprint 

https://paperpile.com/c/kyeyCQ/xOeh
https://paperpile.com/c/kyeyCQ/1DeRG
https://paperpile.com/c/kyeyCQ/PPoel
https://paperpile.com/c/kyeyCQ/ILVb7+xOeh+SaLQK
https://paperpile.com/c/kyeyCQ/G2eaS
https://paperpile.com/c/kyeyCQ/xOeh
https://paperpile.com/c/kyeyCQ/77e4k
https://paperpile.com/c/kyeyCQ/jZ2FC
https://paperpile.com/c/kyeyCQ/Jdt7G
https://paperpile.com/c/kyeyCQ/mm4KZ
https://paperpile.com/c/kyeyCQ/Cpiv5
https://paperpile.com/c/kyeyCQ/K8Ils
https://doi.org/10.1101/2021.03.26.437207
http://creativecommons.org/licenses/by-nd/4.0/


both a 5% false discovery rate threshold, as well as a Bonferroni-corrected p-value threshold to
distinguish outlier SNPs.

To verify outlier SNPs, we examined expression-level differences of adjacent genes across
divergent genotypes with RNA sequencing data from a separate study (pre-publication access
through the Department of Energy Joint Genome Institute). We tested for expression differences
across switchgrass genotypes using likelihood ratio tests in DESeq299. We tested for expression
differences across genotypes separately, and additionally examined the influence of site using a
combined test for genotype✕ site interaction.

Important taxa

To identify OTUs that are important in structuring the fungal community, we used several
complementary methods. In addition to identifying taxa important in temporal dynamics as
described above, we also identified “core” taxa15. We examined core community taxa using
custom scripts15,100. Core taxa are defined as those with relatively high occupancy and
abundance across all samples, and represent those taxa most likely to have a close symbiosis
with the host101. To calculate the core, we ranked OTUs by frequency, then selected all the OTUs
up to the last OTU that adds a 2% increase in beta diversity (Bray-Curtis similarity) between
groups 101. For the overall core group, we used the intersection between the core across
subpopulations and the core across time. Within this core group, we used network analysis
implemented in SpiecEasi 102 and igraph103 to build covariance networks over time. Nodes in
covariance networks can be assigned to four possible groups based on the ratio of their
within-module (Zi) and between-module connectivity (Pi)104. Those with high Zi and Pi are
widely connected “network hubs”, those with low Zi and Pi are disconnected “peripherals.”
Nodes with high Pi and low Zi are “connectors”, whereas those with high Zi and low Pi are
“module hubs”104.

We used indicator species analysis to identify taxa associated with fungal rust disease. Indicator
species analysis identifies particular taxa that are overrepresented based on a factor, and thus
represent a useful indicator for that factor105. By comparing species present on infected versus
uninfected leaves, we could isolate both OTUs associated with disease symptoms and those
overrepresented in healthy leaves.

We further identified an a priori list of taxa that we expected to play important ecological roles in
the phyllosphere. These included pathogens that we have previously identified in these plots,
including Puccinia spp.28, Bipolaris spp., Tilletia maclaganii106, and Colletotrichum spp., and taxa
with roles in herbivore prevention, including Claviceps spp.42, Beauvaria spp., and Metarhizium
spp.107

Data availability
Raw sequence biosamples for microbiome data have been submitted to the Sequence Read Archive108 as
BioProject PRJNA717293. Switchgrass genetic data is available at PRJNA622568. Data analysis scripts are
available on github: github.com/avanwallendael/phyllos_analysis.
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