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SUMMARY

The gut microbiota enhances systemic immunoglobulin G (IgG) responses to vaccines. However, it is
unknown whether this effect involves IgA, a mucosal antibody that coats intestinal microbes. Here we
found that gut IgA increased peripheral IgG responses to pneumococcal vaccines, as these responses were
profoundly impaired in mice with global or mucosa-restricted IgA deficiency. The positive effect of IgA
on vaccine-induced IgG production implicated gut bacteria. Indeed, IgG responses to pneumococcal
vaccines were also defective in ex-germ free mice recolonized with gut microbes from mouse or human
IgA-deficient donors. IgA exerted this I[gG-enhancing effect by constraining the systemic translocation of
intestinal commensal antigens, which caused chronic immune activation, including T cell overexpression
of programmed death-1. This immune inhibitory receptor hindered vaccine-specific IgG production by
eliciting functional B cell unresponsiveness, which was reverted by anti-programmed death-1 treatment.

Thus, gut IgA is functionally interconnected with systemic IgG via intestinal microbes.
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INTRODUCTION

The intestinal mucosa is inhabited commensal bacteria, fungi, viruses and other microbial and eukaryotic
species collectively referred to as gut microbiota, which modulate gut immunity, host metabolism and
neuronal signaling (Belkaid and Hand, 2014; Sherwin et al., 2019; Sonnenburg and Backhed, 2016). The
gut microbiota also modulates inflammatory, autoimmune and allergic disorders (Kamada et al., 2013;
Renz and Skevaki, 2021; Ruff et al., 2020) as well as the outcome of immune interventions such as
vaccination and cancer therapy (de Jong et al., 2020; Finlay et al., 2020), including treatment with
checkpoint inhibitors of the programmed death-1 (PD-1) receptor (Gopalakrishnan et al., 2018). While
these studies have mostly focused on the microbial component of the gut microbiota, this “prokaryotic
organ” of our body further includes immunoglobulin A (IgA), a microbiota-binding antibody produced by
gut B cells (Chen et al., 2020). Yet, the role of gut IgA in systemic immunity remains unknown.

IgA mostly derives from intestinal B cell responses to commensal bacteria, which function as major
IgA inducers (Chen et al.,, 2020). These responses occur under homeostatic conditions through
complementary T cell-dependent (TD) and T cell-independent (TI) pathways that yield distinct pools of
IgAs (Bunker et al., 2015; Grasset et al., 2020). Conversely, IgA interaction with gut commensals shapes
the topography, composition and immunometabolic properties of the microbiota (Macpherson et al.,
2018). However, the impact of intestinal [gA on systemic IgG responses remains elusive.

Growing evidence indicates that IgA cooperates with IgG to enhance protection against both
commensals and pathogens (Fadlallah et al., 2019; Koch et al., 2016; Rollenske et al., 2018).
Accordingly, some patients with IgA deficiency (IGAD) develop mucosal infections in addition to gut
dysbiosis (Catanzaro et al., 2019; Cunningham-Rundles and Ponda, 2005; Fadlallah et al., 2018). Of note,
infections by common lung pathogens such as Strepfococcus pneumoniae are usually controlled by
specific IgG (Chen et al., 2020), which can be readily elicited by pneumococcal vaccines (Croucher et al.,
2018). Remarkably, some IGAD patients with heterogeneous phenotypic traits show impaired systemic
IgG responses to pneumococcal vaccines (Edwards et al., 2004; Lane and MacLennan, 1986). In addition,
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some IGAD patients exhibit a concomitant IgG subclass deficiency, whereas others develop a global and
profound IgG depletion as they progress to common variable immunodeficiency (Aghamohammadi et al.,
2008). Altogether, these observations suggest that [gA and namely gut IgA may be more functionally
connected to IgG than commonly thought.

In agreement with this possibility, mouse studies have shown that the IgA-targeted motility protein
flagellin from gut microbes enhances IgG responses to an influenza vaccine in addition to promoting IgA
production (Cullender et al., 2013; Oh et al., 2014). Similarly, gut microbial metabolites amplify IgG in
addition to IgA responses (Kim et al., 2016). Furthermore, mucosal immune adaptations to the
microbiota, including IgA production, limit the extensive and potentially harmful host tissue response
caused by unrestrained systemic penetration of and tissue exposure to gut metabolites (Uchimura et al.,
2018). Notwithstanding this evidence, whether commensal-reactive intestinal IgA influences systemic
IgG responses remains unknown.

Here we found that IgA increased IgG responses to both unconjugated and protein-conjugated
pneumococcal vaccines through the gut microbiota. IgG responses were impaired in mice with global or
mucosa-restricted IgA deficiency and in ex-germ free (GF) mice recolonized with gut microbes from IgA-
deficient mice or IGAD patients. Gut IgA enhanced vaccine-specific IgG production by constraining the
systemic translocation of commensal antigens. Indeed, the lack of IgA abnormally increased IgG
responses to gut microbial products along with PD-1 expression, two processes linked to enhanced B and
T cell activation, respectively. By interfering with IgG production in B cells, PD-1 inhibited newly
induced IgG responses to pneumococcal vaccines, but this inhibition was rescued by treatment with anti-
PD-1. IgA also sustained the abundance of gut microbiota-regulated systemic branched chain amino acids
(BCAAs) (Pedersen et al., 2016), which amplified IgG production in B cells stimulated via TD or TI
signaling programs in vitro. By showing that intestinal microbes functionally link gut IgA to systemic
IgG, our findings unveil a novel facet of IgA biology and prompts to include IgA in studies assessing the
impact of the intestinal microbiota on biological processes such as the response to vaccines.
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RESULTS

IgA Enhances Systemic IgG Responses to Tl Inmunizations

The human vaccine Pneumovax23 encompasses unconjugated pneumococcal polysaccharides (PPS),
generically referred to as capsular polysaccharides (CPS), from 23 highly pathogenic serotypes of
Streptococcus pneumonia (Croucher et al., 2018). Similar to other microbial carbohydrates, PPS induce
IgG by activating splenic marginal zone (MZ) B cells in a TI manner, as opposed to microbial proteins
that activate follicular (FO) B cells in a TD manner (Cerutti et al., 2013; Croucher et al., 2018).

/=

First, we determined systemic IgG responses to Pneumovax23 in IgA-deficient C57BL/6 Igha~'- mice.

These mice were generated by deleting 1) the Ioe exon, which initiates the germline transcription of both
switch a region and constant a gene, the intronic switch o region, which guides class switching from IgM

to IgA, and the 5’ half of the constant a gene, which encodes the constant region of IgA (Harriman et al.,

*/~ parents to control for

1999). Wild type (WT) and Igha~'~ breeders were set up from heterozygous Igha
microbiota and genetic background variability between strains. WT used came from these breeders, unless
indicated otherwise. Enzyme-linked immunosorbent assay (ELISA) showed that, compared to WT
controls, Igha~'~ mice were unable to induce serum IgG3 to PPS at 3 and 7 days following intravenous
(i.v.) immunization with Pneumovax23 (Figure 1A). Together with IgG3, IgM is a major component of

humoral immunity to TI antigens in mice (Cerutti et al., 2013). Igha™'"~

mice had increased PPS-specific
IgM both under steady-state conditions and following Pneumovax23 immunization compared to WT
controls (Figure 1A). Similar to Pneumovax23, mitomycin C-inactivated Strepfococcus pneumoniae

induced less bacteria-specific 1gG3 but more bacteria-specific IgM in Igha™'-

mice compared to WT
controls at day 7 following i.v. immunization (Figure S1A).

Next, we ascertained whether IgA deficiency impaired 1gG3 responses to TI antigens different from
unconjugated PPS. Compared to WT controls, Igha~~ mice showed no 2,4,6-trinitrophenyl (TNP)-

specific I[gG3 but increased TNP-specific IgM at steady state and 3 or 5 days following i.v. immunization

with TNP-Ficoll (Figure 1B), a haptenated polysaccharide structurally mimicking native CPS. While
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TNP-Ficoll activates MZ and B-1 B cells by crosslinking the B cell antigen receptor (BCR), TNP-
lipopolysaccharide (LPS) activates MZ and B-1 B cells by co-engaging Toll-like receptor 4 (TLR4) and
BCR (Pone et al., 2012). Compared to WT controls, /gha~'- mice induced less TNP-specific IgG3 but
more TNP-specific IgM 3 and 7 days following i.v. immunization with TNP-LPS (Figure S1B).

We then wondered whether IgA deficiency globally impaired IgG3 production by B cells, including
MZ B cells. At steady state, total serum IgG3 was readily detectable in Igha™'- mice, although its
concentration was reduced compared to WT controls (Figure 1C). This finding ruled out a global
impairment of IgM-to-IgG3 class switching and 1gG3 secretion in B cells from Igha~'- mice. As reported
by an earlier study (Harriman et al., 1999), these mice also showed more total serum IgM at steady state
compared to WT controls (Figure 1C), which implied that IgA deficiency was not associated with a
general impairment of B cell activation and antibody production.

We next wondered whether IgA deficiency caused a depletion of MZ B cells and/or impaired the
capture of TI antigens by MZ B cells and neighboring macrophages (Cerutti et al., 2013). Flow cytometry

showed an increase in splenic MZ B cells in Igha™~

mice compared to WT controls at steady state
(Figure 1D and 1E). In addition, tissue immunofluorescence analysis detected comparable capture of
TNP-Ficoll by MZ-based B cells and metallophilic macrophages from Igha~'- mice and WT controls at 30
minutes following i.v. immunization along with comparable shuttling into follicles at 3 hours following
immunization (Figure S1C). Altogether, these data suggest that the impaired response to TI antigens in
Igha~'"- mice does not stem from gross perturbations of MZ B cells.

Finally, we determined whether IgA deficiency impaired IgG3 class switching and plasma cell (PC)
differentiation in splenic B cells exposed to TI antigens. Compared to WT controls, splenic 1gG3 class-
switched B cells actually increased 5 days following i.v. immunization of Igha~'~ mice with TNP-Ficoll,
whereas 1gG3 class-switched plasmablasts and PCs decreased (Figure 1F and 1G). This decrease was not

e

due to an intrinsic B cell defect, as splenic B cells from WT and /gha~'~ mice cultured with the TI antigen

LPS for 4 days comparably differentiated to plasmablasts (Figure S1D and S1E). Thus, IgA enhances
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systemic IgG responses to TI immunogens and may do so through a B cell-extrinsic mechanism involving

increased PC differentiation and/or survival.

IgA Increases Systemic IgG Responses to TD Immunizations

Next, we determined whether IgA deficiency impaired systemic IgG responses to the TD conjugated
pneumococcal vaccine Prevnarl3, which encompasses protein-conjugated PPS from 13 highly pathogenic
serotypes of Streptococcus pneumonia (Croucher et al., 2018). Compared to WT controls, Igha~'- mice
induced less IgG1 to PPS from the Prevnarl3 vaccine 7 and 28 days following i.v. immunization (Figure
2A). However, this decrease was not associated with gross quantitative alterations of splenic class-
switched B cell, plasmablasts and PCs (Figure 2B and Figure S2A). We then verified whether IgA
deficiency impaired the magnitude and affinity of systemic IgG1 responses to 4-hydroxy-3-nitrophenyl-
ovalbumin (NP-OVA), a commonly used TD immunogen. Compared to WT controls, Igha~ mice
induced less IgG1 with either high (NP7) or low (NP23) affinity 7, 14, 21, 28 or 62 days following i.p.
immunization with NP-OVA and alum (Figure 2C and Figure S2B). In immunized /gha~ mice, the
reduction of IgG1 affinity maturation was most evident at day 7 and 14 and remained significant up to day
28 (Figure 2D).

We also wondered whether IgA deficiency depleted FO B cell precursors of IgG1-secreting cells and
found that the absolute number but not the frequency of these cells was increased in steady-state Igha '~
mice compared to WT controls (Figure 2E and 2F). We further evaluated whether IgA deficiency caused
B cell-intrinsic alterations of TD-induced IgG1 class switching and IgG1 secretion. However, we found
that splenic B cells from Igha™'~ mice induced surface IgG1, differentiated into PCs, and secreted 1gG1 as
much as splenic B cells from WT controls upon incubation for 6 days with T cell-associated stimuli such
as an agonistic antibody to CD40 mimicking CD40 ligand (CD40L) and interleukin-4 (IL-4) (Figure 2G-
K). Finally, we determined whether IgA deficiency altered splenic T cells and dendritic cells (DCs),

which are essential to initiate TD antibody responses (Crotty, 2019). Compared to WT controls, Igha '~

mice showed overlapping frequencies and absolute numbers of total T cells as well as CD4", CD8" or
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CD4 CD8™ T cell subsets, except that the frequency of CD4 CDS8™ T cells was slightly decreased and the
absolute number of CD4" T cells was slightly increased (Figure S2C). Compared to WT controls, Igha ™'~
mice also showed overlapping frequencies and absolute numbers of total DCs as well as CD4"CD8",
CD4°CD8" or CD4CD8™ DC subsets (Figure S2D). Thus, IgA may enhance systemic IgG responses to

TD immunogens through a B cell-extrinsic mechanism operating upstream of PC differentiation.

IgA Helps Systemic IgG Responses to Vaccines Through Gut Commensals

Next, we asked whether the selective lack of intraluminal secretory IgA (SIgA) from mucosal membranes
was sufficient to phenocopy global IgA deficiency. SIgA, including gut SIgA, is absent in Pigr™/~ mice,
which lack the polymeric Ig receptor (pIgR) that transports dimeric IgA across mucosal epithelial cells to
generate SIgA (Chen et al., 2020; Johansen et al., 1999). Similar to Igha '~ mice, Pigr”’~ mice induced
less serum IgGl to PPS from the Prevnarl3 vaccine 14 and 21 days following i.p. immunization
compared to WT controls (Figure 3A).

Having shown that mucosa-restricted IgA deficiency was sufficient to hamper systemic IgGl
responses to Prevnarl3 and knowing that SIgA targets gut commensals, we determined whether intestinal
microbes from IgA-sufficient or IgA-deficient mice differentially induced systemic IgGl responses to
Prevnarl3. Compared to ex-GF mice obtained by reconstituting GF recipients with fecal bacteria from
WT donor mice, ex-GF mice obtained by reconstituting GF recipients with fecal bacteria from Igha '~
donors induced less IgG1 to PPS 28 days following i.p. immunization with Prevnar13 (Figure 3B).

We then evaluated whether human gut commensals from healthy controls or IGAD patients enhanced
systemic IgG1 responses to Prevnarl3. This experiment was performed by taking advantage of fecal
samples from a New York City (NYC) cohort of adult IGAD patients (Table S1). Compared to control
ex-GF mice colonized with fecal bacteria from healthy human donors, ex-GF mice colonized with fecal
bacteria from IGAD patients showed a clear trend toward decreased serum IgG1 to PPS 21 or 28 days
following i.p. immunization with Prevnarl3, albeit this reduction failed to reach statistical significance

(Figure 3C). Then, we hypothesized that human IgA could enhance gut IgA responses to the local
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microbiota in addition to systemic IgG responses to vaccines. Compared to control ex-GF mice colonized
with fecal bacteria from healthy human donors, ex-GF mice colonized with fecal bacteria from adult
IGAD patients showed decreased SIgA-coated gut commensals (Figure 3D). This finding indicates that,
compared to gut bacteria from controls, gut microbes from IGAD patients induce SIgA less efficiently.
Finally, we tested whether lateral transmission of IgA-coated gut commensals restored IgG1 responses
to pneumococcal vaccines. Compared to control Igha"'" littermates, co-housed Igha '~ mice retained
decreased serum IgGl to PPS from Pneumovax23 or Prevnarl3 vaccines 28 days following i.p.
immunization (Figure S3A and S3B). Thus, IgA may enhance systemic IgG responses to pneumococcal

vaccines and gut IgA responses to commensals through a mechanism involving the gut microbiota.

IgA Restrains Systemic IgG Responses to Translocated Gut Antigens
To further elucidate how IgA augments systemic IgG1 responses to vaccines, we first ascertained the
effect of IgA on global IgG1 production under steady-state conditions. Consistent with an earlier study
(Harriman et al., 1999), we found that total serum IgG1 was increased in Igha™~ mice compared to WT
controls (Figure 4A). Therefore, the impaired IgG1 response to Prevnarl3 or NP-OVA was not due to an
overall decrease of IgG1 production. Given the strong dependence of IgG1 responses on B cell activation
by IL-4 (Shan et al., 2018), this finding raised the possibility that IgA deficiency also enhanced systemic
IL-4 production. Accordingly and similar to an earlier study (Harriman et al., 1999), we found that serum
from steady-state Igha™~ mice had more IL-4 compared to WT controls (Figure 4B).

Knowing that IgA limits the systemic penetration of gut antigens (Chen et al., 2020), we next
ascertained whether IgA deficiency increased the systemic IgGl reactivity to gut microbial products.

Indeed, compared to WT controls, Igha™'~

mice at steady state showed more serum IgG1 to lipoteichoic
acid (LTA) from Staphylococcus aureus, CPS14 from Streptococcus pneumoniae, LPS from Salmonella
typhimurium as well as CPS9 from Streptococcus pneumoniae (Figure 4C and Figure S4A).

Moreover, we determined whether IgA deficiency increased peripheral IgGl responses to gut

microbial antigens. ELISA and flow cytometry showed that, compared to WT controls, Igha™~ mice had
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increased serum IgG1 to gut bacteria, particularly bacteria from colon (Figure 4D and 4E). Then, we
verified whether IgA deficiency perturbs IgG1 responses also in the gut lumen. Similar to an earlier study
(Harriman et al., 1999), Igha~ mice showed increased total IgG1 in addition to increased total IgM in
feces from both small intestine and colon compared to WT controls (Figure S4B and S4C). Given that
increased luminal IgG may originate from gut inflammation (Castro-Dopico et al., 2019), we also verified
whether IgA deficiency caused intestinal inflammation. However, microscopic analysis showed neither
small intestine nor colon inflammation in Igha '~ mice (Figure S4D).

Having shown that IgA deficiency abnormally increased systemic IgG1 production to gut commensal
antigens, we next evaluated whether this immune anomaly stemmed from augmented bacterial breaching
of the intestinal barrier. Similar to mesenteric adipose tissue from patients with Crohn’s disease (Ha et al.,
2020), mesenteric adipose tissue but not mesenteric lymph nodes (MLNs) or spleen tissue from Igha '~
mice yielded more colony-forming units (CFUs) upon incubation on agar plates placed in an anaerobic
chamber compared to WT controls (Figure 4F and Figure S4E). Mass spectrometry showed that,
compared to WT controls, Igha™~ mice displayed an increase of Lactobacillus (L.) species, including L.
murinus, L. reuteri and L. intestinalis in the mesenteric adipose tissue (Figure 4G and Figure S4F).

Aside from confirming Lactobacillus expansion, a subsequent experiment involving 16S ribosomal
RNA (rRNA) gene sequencing showed an increased abundance of the IgA-degrading bacterial genus
Sutterella (Kaakoush, 2020) in the fecal microbiota from Igha’~ mice compared to co-housed Igha**
littermate controls (Figure 4H). Similar to IGAD patients (Fadlallah et al., 2018), Igha™~ mice showed
gut microbiota depletion of Ruminococcacae and Lachnospiraceae, which may be implicated in
homeostatic IgA responses to commensals (Chen et al., 2020; Magri et al., 2017). Thus, IgA regulates the
composition of the gut microbiota and attenuates the systemic translocation of gut microbial antigens,

which otherwise cause unrestrained peripheral induction of commensal-reactive I1gG.

IgA Limits Systemic Expansion of GC B Cells
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Considering the importance of T follicular helper (Trn) cells in B cell activation and IgG1 production
(Crotty, 2019), we explored whether germinal centers (GCs) from gut-associated Peyer’s patches, MLNs
and spleen of Igha™~ mice showed any B and/or T cell anomalies. Compared to WT controls, steady-state
Igha™~ mice showed enlarged Peyer’s patches and MLNs but normally sized spleen upon macroscopic
analysis (Figure 5A and Figure S5A). Accordingly, Peyer’s patches and MLNs from /gha'~ mice had an
increased cellularity, while the spleen did not (Figure 5B). However, flow cytometry detected increased
GC B cells and Trn cells not only in Peyer’s patches and MLNSs, but also in the spleen from Igha™™ mice
(Figure 5C-5F).

Given that gut IgA starts influencing the intestinal microbiota soon after birth and that gut bacteria
stimulate early post-natal immune development (Gomez de Aguero et al., 2016; Planer et al., 2016), we
assessed whether IgA deficiency caused an early onset of mucosal and systemic immune anomalies.
Indeed, we found that both size and cellularity of MLNs as well as total systemic IgG1 were already
increased in 5 week-old Igha”™ mice compared to WT controls and that this increase became more
pronounced in 16 week-old Igha~ mice (Figure S5B-5D). Unlike total IgG1, specific IgG3 to TNP was
virtually absent in 5 week-old Igha™ mice 5 days following i.p. immunization with TNP-Ficoll (Figure
S5E). Thus, IgA may enhance systemic IgG responses to immunogens by constraining the stimulation of

mucosal and systemic B cells by gut microbial antigens since early post-natal life.

IgA Controls Systemic FO B Cell Differentiation into PCs
Having shown that IgA deficiency increased splenic FO B cell numbers but impaired IgG responses to
TD immunogens, we set up to characterize the global transcriptome of splenic FO cells from control WT
and Igha™~ mice with the aim of gaining new insights into how translocated gut antigens may impair IgG
production to vaccines in the absence of IgA. Splenic MZ B cells were also included in this study, as [gA
deficiency impaired IgG responses to TI immunogens as well.

As shown by volcano plot analysis of RNA-sequencing (RNA-seq) data, FO B cells from Igha™'™ mice

showed more differentially expressed genes than MZ B cells did when compared to WT controls (Figure
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5G). In addition, gene set variation analysis (GSVA) showed that, when compared to WT controls, FO B
cells from Igha™~ mice expressed significantly more gene sets linked to processes central to humoral
immunity, including B cell proliferation, GC differentiation and PC differentiation (Figure 5H).

As shown by heat maps of RNA-sequencing (RNA-seq) data (Figure 5I), these increased gene sets
included transcripts listed in the Hallmark G2M_checkpoint gene set or described by a recent study (Shi
et al., 2015) and implicated in B cell proliferation (e.g., Mybl2, Troap, Kif2c, Tpx2, Kifll, Cdc6, Top2a,
Ccna2), GC differentiation (e.g., Tmemli2l, 2510009E07Rik, Troap, Ncapg, Fscnl) and PC
differentiation (e.g., Ncapg, Ccna2, Shcbpl). Thus, IgA may enhance systemic IgG responses to vaccines
by constraining the differentiation of systemic FO B cells into IgG-secreting PCs via the GC reaction. A
corollary conclusion of these results is that IgA deficiency triggers B cell overstimulation by

preferentially activating FO rather than MZ pathways.

IgA Constrains Systemic T Cell Expression of the Immune Inhibitor PD-1 and Anti-PD-1 Rescues
the Vaccine-Specific IgG Production in IgA Deficiency
Having shown that IgA constrains IgG responses to gut microbial antigens through a mechanism that
starts early in life, we hypothesized that, in the absence of IgA, the abnormal systemic translocation of
these endogenous antigens could impair IgG responses to vaccines by chronically activating B cells,
potentially causing anergy. This B cell state refers to functional unresponsiveness caused by early and
persistent exposure to self-antigens (Sabouri et al., 2016). Accordingly, GSVA indicated that, compared
to WT controls, splenic FO but not MZ B cells from Igha '~ mice were enriched in genes linked to B cell
anergy (Figure 6A). As shown by a heat map of RNAseq data, this gene set, selected based on recently
published findings (Sabouri et al., 2016), included Cenpv, Lefl, Nefh, Fabp5 and Tgif1 (Figure 6B).
Considering that the activation-induced receptor PD-1 triggers functional B cell (and T cell)
unresponsiveness by transmitting immune inhibitory signals (Cambier et al., 2007; Okazaki and Honjo,
2007), we also evaluated whether IgA deficiency increased PD-1 and PD-ligand 1 (PD-L1) expression on

systemic T and B cells, respectively. Compared to WT controls, Igha”~ mice showed increased PD-1
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expression by splenic CD4" and CD8" T cells as well as increased PD-L1 expression by splenic MZ and
B-1 but not FO B cells (Figure 6C-E).

The involvement of PD-1 in the inhibition of vaccine-induced IgG1l in Igha”~ mice was further
evaluated with a blocking anti-PD-1 antibody. Consistent with earlier results, we found that /gha '~ mice
i.p. immunized with Prevnarl3 and treated with a control isotype-matched antibody showed reduced
serum IgG1 to PPS at day 21 and 28 compared to WT controls (Figure 6F). In contrast, immunized
Igha~ mice treated with anti-PD-1 had as much serum IgG1 to PPS as WT mice treated with a control
antibody (Figure 6F). Thus, anti-PD-1 treatment rescues the systemic impairment of the vaccine-specific
IgG1 response caused by IgA deficiency.

Next, we determined whether, similar to B cells from Igha”™ mice, B cells from IGAD patients
exhibited phenotypic properties consistent with anergy, including lower IgM and CD21 expression (Duty
et al., 2009; Isnardi et al., 2010). To address this question, the NYC cohort of adult IGAD patients was
further stratified in IGAD responders (IGAD-Rs), who developed protective PPS-specific IgG responses
following vaccination with Pneumovax23, and IGAD non-responders (IGAD-NRs), who did not (Table
S1). Flow cytometry showed that adult IGAD-NRs had increased anergic IgM*"CD21°" naive B cells
compared to healthy controls, while no difference was seen between IGAD-Rs and healthy controls
(Figure 6G). This increase was associated with higher serum soluble CD14 (sCD14) (Figure 6H), a
hallmark of systemic gut antigen translocation and immune activation in humans (Brenchley and Douek,
2012; Fadlallah et al., 2018).

Having shown that anergic B cells are increased in IGAD-NRs, we wondered whether these patients
had additional B cell anomalies. Flow cytometry showed that the frequency of circulating total, naive and
MZ-like B cells was comparable in healthy controls, IGAD-Rs and IGAD-NRs (Figure S6A and S6B).
However, the frequency of switched memory B cells, which typically emerge from the GC reaction
(Cerutti et al., 2013), was decreased in IGAD-NRs compared to healthy controls (Figure S6A and S6B).

This finding was replicated in an additional Barcelona (BCN) cohort of adult IGAD patients, who also
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had a normal frequency of circulating total and MZ-like B cells and a decrease in switched memory B
cells but an increased frequency of naive B cells (Figure S6C and Table S2). Furthermore, IgA™ PCs
were decreased and IgG*™ PCs showed a trend of increased frequency in IGAD compared to healthy
controls. Of note, a second BCN cohort of IGAD children showed normal frequency of circulating total,
naive, MZ-like and switched memory B cells, but decreased frequency of IgA* PCs and increased
frequency of IgG" PCs (Figure S6D and Table S2). Thus, in IGAD patients, B cell anomalies encompass
IgA* PC depletion in addition to IgG" PC expansion, which echoes the increased commensal-specific
IgG1 production observed in Igha'™ mice. In summary, IgA may enhance systemic IgG responses to
vaccines by limiting T and B cell expression of PD-1 and PD-L1, respectively. IgA could do so by

restraining gut antigen translocation and subsequent B cell activation and anergy.

IgA Increases Systemic Branched Chain Amino Acids Capable of Enhancing IgG Production

Given that gut metabolites regulate humoral immunity, exhibit antibody-limited penetration into host
tissues and constrain PD-1 expression by T cells (Kim et al., 2016; Mager et al., 2020; Pedersen et al.,
2016; Uchimura et al., 2018), we hypothesized that gut IgA interaction with commensals could further
enhance systemic IgG responses to vaccines via metabolites. Accordingly, capillary electrophoresis time-
of-flight mass spectrometry (CE-TOFMS) and liquid chromatography time-of-flight mass spectrometry
(LC-TOFMS) showed less abundant branched-chain amino acids (BCAAs) such as valine, leucine and
isoleucine in plasma from IGAD-NRs compared to healthy controls from the NYC cohort of adult IGAD
patients (Figure 7A and 7B). Plasma BCAAs were somewhat decreased also in Igha’~ mice compared to
WT controls, albeit not in a statistically significant manner (Figure S7A and S7B).

Although a few additional metabolites were differentially abundant in IGAD-NRs compared to
healthy controls and IGAD-Rs, we opted to test the IgG-modulating potential of BCAAs due to their
essential role in cell survival and to the key impact of the BCAA transporter CD98 on both TD and TI
antibody responses (Cantor et al., 2009). Human B cell in vitro cultures followed by ELISA showed that,

in the presence of decreasing amounts of BCAAs, TD signals such as those provided by CD40L and IL-
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21 or TI signals such as those provided by CpG-DNA induced progressively less IgG secretion (Figure
7C and 7D).

The possible involvement of metabolites in the enhancement of systemic IgG responses by gut IgA
was further explored by interrogating the impact of IgA deficiency on spermidine, an endogenous
polyamine with known IgG enhancing properties in mice (Zhang et al., 2019). We found that spermidine
was indeed decreased in the plasma from Igha™”~ mice compared to WT controls (Figure S7B and S7C).
Thus, IgA could enhance systemic IgG responses to vaccines not only by limiting gut antigen
translocation and PD-1 expression, but also by sustaining the peripheral abundance of metabolites with

IgG-enhancing function, including BCAAs (Figure S7D).
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DISCUSSION

We have shown that gut IgA enhances peripheral IgG responses to TI or TD pneumococcal vaccines in
both standard and gnotobiotic mouse models. By increasing the translocation of gut commensal antigens,
IgA deficiency enhanced commensal-specific IgG production by B cells as well as expression of the
negative feedback receptor PD-1 by T cells. Increased immune inhibitory signals from PD-1 impaired IgG
production to pneumococcal vaccines by peripheral B cells, which exhibited a gene signature consistent
with anergy. Moreover, in patients unresponsive to pneumococcal vaccines, IgA deficiency depleted
peripheral gut metabolites such as BCAAs. These microbiota-regulated metabolites were found to amplify
IgG production in human B cells exposed to TD or TI signals. Thus, gut IgA is functionally
interconnected to peripheral IgG through multiple mechanisms involving the gut microbiota.

The gut microbiota enhances mucosal IgA and systemic IgG production to a broad spectrum of
bacteria (Ansaldo et al., 2019; Fadlallah et al., 2019; Koch et al., 2016; Zeng et al., 2016). In this manner,
commensals generate a pre-immune layer of humoral protection against pathogens aside from promoting
gut homeostasis (Cullender et al., 2013; Rollenske et al., 2018). This dual function likely stems from the
cross-reactivity of immunodominant antigens co-expressed by some commensals and pathogens
(Cullender et al., 2013; Rollenske et al., 2018). As a result, a subset of patients with combined IgA and
IgG depletion develop pathogen-driven systemic infections in addition to commensal-driven gut
inflammation (Fadlallah et al., 2019; Uzzan et al., 2016).

The gut microbiota also sustains specific systemic IgG responses to vaccines (Hagan et al., 2019; Oh
et al., 2014). This effect could involve IgA, because IgA is a mucosal antibody that extensively coats the
gut microbiota (Magri et al., 2017; Palm et al., 2014). Accordingly, specific systemic IgG responses to
pneumococcal vaccines are impaired in up to 30% of IGAD patients (Edwards et al., 2004; Lane and
MacLennan, 1986). By taking advantage of multiple conventional and gnotobiotic mouse models, we
found that IgA augmented IgG production to pneumococcal vaccines via gut commensal bacteria. Indeed,
plgR-deficient Pigr’~ mice, which selectively lack mucosal secretory IgA, including gut SIgA (Johansen
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et al., 1999), exhibited an impairment of systemic IgG responses to pneumococcal vaccines similar to that
of IgA-deficient Igha™”~ mice, which globally lack both systemic and mucosal IgAs (Harriman et al.,
1999). In addition, we found that ex-GF mice reconstituted with gut bacteria from /gha™ mice or IGAD
patients made less systemic IgG to vaccines compared to control ex-GF mice reconstituted with gut
bacteria from IgA-sufficient mouse or human donors. Altogether, this evidence demonstrates that IgA is
central to the induction of protective IgG responses by pneumococcal vaccines and exerts this effect
through the gut microbiota. In this process, the gut microbiota and IgA likely form intertwined biological
networks with interconnected IgG-enhancing functions.

Earlier seminal works explored the impact of the gut microbiota on IgG responses to vaccines such as
the influenza vaccine (Hagan et al., 2019; Oh et al., 2014), but did not evaluate the contribution of IgA
bound to intestinal microbes. Yet, this binding shapes both composition and function of gut commensal
bacteria, including their metabolic properties (Fadlallah et al., 2018; Kawamoto et al., 2012; Macpherson
et al., 2018; Nakajima et al., 2018). Furthermore, IgA binding to gut bacteria maximizes gut microbiota
diversity, which is critical for optimal IgG responses to vaccines (Hagan et al., 2019; Kawamoto et al.,
2012; Macpherson et al., 2018). Moreover, IgA constraints gut microbes to the intestinal lumen, which
limits their interaction with the immune system (Chen et al., 2020; Macpherson et al., 2018).

Consistent with the key role of IgA in the control of intestinal bacteria, we found that IgA deficiency
enriched the gut microbiota in Lactobacillaceae and caused abnormal translocation of Lactobacillus (L.)
murinus, L. reuteri and L. intestinalis to the mesenteric adipose tissue. This last finding raises the
possibility that intraluminal gut antigens undergo more translocation in mice lacking IgA. Such
translocation could reflect impaired immune exclusion of Lactobacilli by gut IgA, which heavily coats
Lactobacilli in the mouse intestine (Palm et al., 2014).

Our data indicate that the enhanced translocation of gut commensal antigens caused overstimulation
of intestinal as well as systemic B, T and possibly myeloid cells in both /gha '~ mice and IGAD patients.
Indeed, in the absence of IgA, systemic B cells secreted abnormally larger amounts of IgGl to
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translocated bacterial antigens in Igha™~ mice. This increased IgGl secretion likely involved a TD
pathway that led to overstimulation of splenic FO B cells, a major B cell subset poised to undergo GC
differentiation in response to antigenic stimulation. Consequently, GC B cells were remarkably increased
in Igha™™ mice along with GC-based Tru cells. In Igha™”™ mice, the lack of IgA also increased T cell
expression of PD-1, a powerful immune inhibitory receptor that caused hyporesponsiveness of FO B cells
to vaccine antigens. Accordingly, anti-PD-1 treatment rescued IgG1 responses to a pneumococcal vaccine
in Igha™~ mice. Similar to these mice, IGAD patients unresponsive to a pneumococcal vaccine showed
increased B cells with anergic IgM™YCD21"" phenotype. This finding was associated with that of
augmented circulating sCD14, a soluble antigen released by myeloid cells as a result of hyperactivation
by translocated gut bacteria antigens (Brenchley and Douek, 2012; Fadlallah et al., 2018). Thus, gut IgA
may enhance vaccine-specific systemic IgG responses by restraining hyperactivation-induced and PD-1-
mediated B cell hyporesponsiveness to pneumococcal vaccines.

In addition to constraining T cell expression of PD-1, intestinal IgA limited B cell expression of PD-
L1, as this ligand increased in mice lacking IgA. Thus, gut IgA could attenuate IgG responses to
pneumococcal vaccines by limiting PD-1 expression on T cells as well as PD-L1 expression on B cells,
including MZ B cells. Unlike FO B cells, MZ B cells did not show transcriptional signatures reflecting

abnormal activation in Igha”~ mice. Yet, their increased PD-L1 expression may be central to PD-1
engagement on T cells and the ensuing initiation of immune inhibitory signals.

Interestingly, the gut microbiota has been recently shown to restrain PD-1 signaling via inosine, a
metabolite that modulates T cells through the adenosine Axa receptor (Mager et al., 2020). This evidence
implies that gut IgA might constrain PD-1 expression by supporting specific communities of inosine-
releasing commensals. Should this be the case, gut IgA could enhance systemic IgG responses to

pneumococcal vaccines by sustaining inosine production by intestinal commensal microbes in addition to

constraining commensal antigen translocation.
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Co-housing experiments showed that lateral transmission of a healthy gut microbiota into Igha™~
mice could not rescue vaccine-specific IgG production. This finding suggests that [gA deficiency exerts a
negative impact on systemic IgG responses through an early mechanism that may involve the vertical
transmission of dysbiotic gut microbiota from the mother to the offspring. Consistent with this
interpretation, Igha~ mice showed early hyperactivation of both mucosal and systemic immune
responses, including steady-state overproduction of IgG1, together with impaired production of IgG3 to a
CPS-mimicking TI immunogen. This evidence echoes recently published studies that demonstrate how
gut IgA drives early post-natal changes of the gut microbiota and how gut microbes drive early post-natal
immune development (Gomez de Aguero et al., 2016; Planer et al., 2016).

Our data imply that systemic IgG responses to vaccines may be irreversibly impaired soon after birth
as a result of the early lack of gut IgA and the early perturbation of the gut microbiota. Such perturbation
likely involves vertically transmitted microbial changes that exert dominant negative effects over healthy
commensals newly acquired through lateral transmission and might entail the expansion of Sutfterella, an
IgA-degrading gut microbe (Kaakoush, 2020) that was more abundant in /gha”~ mice compared to co-
housed littermate controls. Hence, IgA deficiency may encompass phenotypic traits, such as impaired IgG
responses to pneumococcal vaccines, through a mechanism involving the gut microbiota.

In agreement with this notion, gnotobiotic experiments indicated that ex-GF mice reconstituted with
gut bacteria from IGAD patients made less intestinal IgA to commensals compared to control ex-GF mice
reconstituted with gut bacteria from IgA-sufficient humans. Thus, gut IgA may amplify mucosal IgA
responses to commensals in addition to systemic IgG responses to vaccines. This effect may not merely
result from the intraluminal containment of commensal antigens and the restriction of IgA-degrading
bacteria such as Sutterella (Kaakoush, 2020), but could further involve the intestinal retention of
microbial consortia with IgA-inducing properties. Consistent with this possibility and similar to recently
published data (Fadlallah et al., 2018), we found that IgA deficiency depleted Ruminococcaceae and
Lachnospiraceae from the mouse intestinal microbiota. Of note, members of these large microbial
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families may amplify IgA responses to highly diverse and potentially beneficial mucus-embedded bacteria
in the healthy gut from humans (Chen et al., 2020; Magri et al., 2017).

In addition to facilitating gut epithelial cell adherence of specific beneficial bacteria capable of
excluding potentially harmful microbial competitors (Donaldson et al., 2018), gut IgA instigates
competitive mucosal colonization by modulating the metabolic profile of certain commensals (Nakajima
et al., 2018). Accordingly, we found that IgA deficiency caused systemic depletion of BCAAs in humans,
a group of serum metabolites regulated by the gut microbiota (Pedersen et al., 2016). A trend towards
BCAA depletion was also observed in mice, but did not reach statistical significance. Remarkably,
BCAAs augment antibody responses to TD or TI immunogens by signaling through a multi-component
transmembrane transporter called CD98, which is expressed by activated B cells (Cantor et al., 2009).
Consistent with these published mouse data, in vitro cultures showed that BCAAs enhanced IgG
production by human B cells exposed to TD or TI signals. Thus, IgA could sustain IgG responses to TD
or TI pneumococcal vaccines through an additional mechanism involving BCAAs.

In the absence of IgA, mice showed depletion of the endogenous polyamine spermidine, which has
been recently shown to increase systemic IgG responses to a TD immunogen such as chicken
gammaglobulins (Zhang et al., 2019). This positive effect on post-immune IgG responses relies on the
ability of spermidine to improve B cell function while constraining B cell senescence (Zhang et al., 2019).
In summary, we show that gut IgA amplifies systemic IgG responses to pneumococcal vaccines through
multiple mechanisms involving the gut microbiota. Aside from revealing an unexpected functional link
between gut IgA and systemic IgG, our data indicate that gut IgA is a central component of
interconnected intestinal IgG-inducing biological networks encompassing the microbiota. This implies
that the potential contribution of gut IgA should be always considered in studies that evaluate the impact
of intestinal microbes on local or systemic biological processes. Our findings also support the potential
clinical benefit of oral IgA therapy in IGAD and common variable immunodeficiency patients with
hyporesponsiveness to systemic vaccines, including pneumococcal vaccines.
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STARXMETHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by

Andrea Cerutti (andrea.cerutti@mssm.edu).

EXPERIMENTAL MODEL AND SUBJECTS DETAILS

Human Blood and Stool Specimens

Human blood samples from the NYC cohort were collected from 42 age-and sex-matched HCs and IGAD
patients at Icahn School of Medicine at Mount Sinai (Table S1). The age range was from 22 to 61 years
(median 34 years) and 66.67% were females. Exclusion criteria for IGAD patients in the NYC cohort
included serum IgA > 7 mg/dl, progression to common variable immunodeficiency, recent
immunomodulatory treatments such as steroids or biologics targeting cytokines, antibiotics use within six
weeks, or surgical procedures likely to affect humoral immunity such as splenectomy or intestinal
resection. Responders (IGAD-Rs) and non-responders (IGAD-NRs) to pneumococcal vaccination were
defined as IGAD individuals with a presence or absence, respectively, of protective serum IgG against
more than 4 serotypes of 14 total after administration of Pneumovax23. Two IGAD patients determined to
have an inadequate antibody response after receiving Pneumovax23 were immunized with Prevnarl3 at a
later date. However, neither of these two patients showed an increase in the number of protective IgG
titers against pneumococcal serotypes in subsequent blood work. Compared to IGAD-Rs, a higher
percentage of IGAD-NRs had a concomitant IgG2 or IgG4 subclasses deficiency (Table S1). Of note,
IgG2 is the human equivalent of mouse IgG3 and mediates humoral immunity against PPS in humans
(Briles et al., 1981; Siber et al., 1980).

A few years after the beginning of our study, the European Society for Immunodeficiencies revised

the diagnostic criteria for selective IgA deficiency (https://esid.org/Working-Parties/Clinical-Working-
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Party/Resources/Diagnostic-criteria-for-PID2#Q7). According to these new criteria, a patient with
selective IgA deficiency must have normal serum IgG and normal IgG responses to vaccination. While
acknowledging these new diagnostic criteria, it may be worth considering that IgA deficient patients with
impaired IgG responses to polysaccharides, including pneumococcal vaccines, remain poorly
characterized. These patients, defined in our study as IGAD-NRs, may be part of a large spectrum of
biological conditions in which IgA deficiency induces a progressive alteration of the IgG response.
Selective IgA deficiency as defined by the new diagnostic criteria could stand at one extreme of this
spectrum of IgA disorders, whereas common variable immunodeficiency progressing from selective IgA
deficiency would stand at the opposite extreme (Aghamohammadi et al., 2008). IgA deficiency with
impaired IgG responses to pneumococcal vaccines and/or combined IgG subclass deficiency would stand
in between these two extremes of such heterogeneous spectrum of IgA disorders (Aghamohammadi et al.,
2008; Edwards et al., 2004; Lane and MacLennan, 1986).

For the phenotypic study of B cells by flow cytometry, blood was collected in sodium-heparin blood
collection tubes. For metabolomics analysis, blood from fasted patients was collected in BD Vacutainer
K2EDTA blood collection tubes (Becton Dickinson). Human stool samples from the NYC cohort were
collected from HCs and IGAD patients, shipped overnight on ice packs to the laboratory, and immediately
stored at -80°C degrees. The Institutional Review Board of Icahn School of Medicine at Mount Sinai
approved the use of blood and stool specimens. Human blood samples from the BCN cohort were
collected from age- and sex-matched HCs and IGAD patients at Vall d’Hebréon Hospital (Table S2). The
Ethical Committee of Clinical Research of Vall d’Hebron Hospital approved the use of blood samples.
Mice
C57BL/6J (The Jackson Laboratory), Igha~'- (Harriman et al., 1999), and Pigr-'- mice (Johansen et al.,
1999) were bred in the animal facility of Icahn School of Medicine at Mount Sinai under specific
pathogen free (SPF) conditions. Igha~~ mice were obtained from Sergio Lira (Icahn School of Medicine

at Mount Sinai), whereas Pigr~'"- mice were provided by Beth Garvy (University of Kentucky). WT and
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Igha - breeders were set up from heterozygous Igha™~ parents to control for microbiota and genetic
background variability between strains. WT controls used in experiments came from these breeders

-/~ breeders were set up from heterozygous Pigr*~

except where pointed out. Similarly, WT and Pigr
parents. Both sexes were used and mice were 4-16 weeks old for steady state experiments and 5-12 weeks
old for immunization experiments. Since all mouse strains used in this manuscript mounted a specific
IgM response upon immunizations, mice lacking induction of specific IgM were excluded from analysis
due to presumed poor immunization. All animal experiments described in this study were approved by
Institutional Animal Care and Use Committee (IACUC) of the Icahn School of Medicine at Mount Sinai
and were performed in accordance with the approved guidelines for animal experimentation at the Icahn
School of Medicine at Mount Sinai. GF C57BL/6] mice were bred in-house at the Mount Sinai
Immunology Institute Gnotobiotic Facility in flexible vinyl isolators. To facilitate high-throughput studies
in gnotobiotic mice, ‘‘out-of-the-isolator’” gnotobiotic techniques were utilized (Faith et al., 2014).
Shortly after weaning and under strict aseptic conditions, 28-42-days old GF mice were transferred to

autoclaved filter-top cages outside of the breeding isolator and colonized with human or murine

microbiota.

METHOD DETAILS
Processing of Human and Mouse Specimens

Human Blood and Stool Samples

Fresh peripheral blood mononuclear cells (PBMCs) were obtained from sodium heparinized blood
samples by separation on Ficoll Histopaque-1077 gradient (Sigma-Aldrich). Frozen human stool samples
were pulverized under liquid nitrogen in a sterile hood. Approximately 500 mg from each donor was
blended into a slurry (40-50 mg/mL) in pre-reduced bacterial LYBHIv4 culture medium (Sokol et al.,
2008) containing 37 g/l Brain Heart Infusion (BHI) Broth (BD Biosciences), 5 g/l yeast extract (BD

Biosciences), 1 g/l D-xylose, 1 g/l D-fructose, 1 g/l D-galactose, 1 g/l cellobiose, 1 g/l maltose, 1 g/l
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sucrose, 0.5 g/l N-acetylglucosamine, 0.5 g/l L-arabinose, 0.5 g/l L-cysteine, 1g/l malic acid, 2 g/l sodium
sulfate, 0.05% Tween 80, 20 mg/mL menadione, 5 mg/l hemin, and 0.1 M MOPS (3-(N-
morpholino)propanesulfonic acid) at pH 7.2. The slurries were passed through sterile 100-pum strainers to
remove large debris. To store for later gavage of gnotobiotic mice, slurries were diluted 1:20 in LYBHIv4

media with 15% glycerol and stored at -80°C.

Mouse Blood and Tissue Samples

Blood was collected from mice in ethylenediamine tetraacetic acid (EDTA) tubes pre-immunization (PI)
and post-immunization at days 3, 7, 14, and 21 by submandibular vein puncture. Additional blood was
collected in EDTA tubes from an orbital socket after sacrificing the animal. Plasma was isolated by
incubating blood in EDTA tubes at room temperature for 20 minutes and spinning for 20 minutes at
15,000 G and collected into sterile microtubes for freezing at -80°C until further use. Murine tissue was
collected after isoflurane-induced euthanasia followed by exsanguination and placed in Iscove’s Modified
Dulbecco’s Medium (IMDM) supplemented with 2% heat-inactivated FBS (Life Techologies). Single cell
suspensions were created from spleen and MLNs through tissue homogenization between frosted glass
slides. PPs were incubated in dissociation buffer (10% FBS HBSS-/- with 5 mM EDTA and 15 mM
HEPES) 20 minutes at 37°C before meshing with a 70-um cell-strainer (Fisher) and a syringe plunger.
Splenic cell suspensions were treated with red blood cell lysis buffer (KD Medical) before staining for
flow cytometry.

Colonization of GF Mice

Cecal contents from WT or Igha~'"~

mice were dissolved in 5 ml sterile phosphate buffer solution (PBS) by
vortexing. 200 uL of this murine fecal slurry or 200 pL of human fecal glycerol stock solution (see
above) from HCs or IGAD patients was orally gavaged once into GF mice. Colonized mice were handled

under aseptic conditions thereafter. In experiments involving human fecal bacteria, each human stool

sample was transferred into several mice to control for transplantation variability. The involvement of
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multiple human donors allowed the control of biological variability. 12 or 18 GF recipient mice were
reconstituted with fecal material from 4 HCs or 4 IGAD patients, respectively. All immunization

experiments in reconstituted GF mice were performed at least 14 days after bacterial colonization.

Isolation and Identification of Translocated Bacteria

Spleen, MLNs, mesenteric adipose tissue and a small piece of small intestine (as a positive control) were
aseptically dissected, weighed and collected into sterile PBS containing 0.5 g/ml reduced cysteine.
Tissues were homogenized in 1 ml reduced PBS with sterile 3.5-mm beads using a bead beater (Bio-Spec)
before clearing by centrifugation (600 x g, 3 minutes). Under strict anaerobic conditions, tissue
homogenates were passed through 100 pm filters and 100 pl was inoculated onto reduced BBL™
Chocolate IT Agar (Becton Dickinson) and incubated under anaerobic conditions at 37°C for 72 hours.
Colonies were counted and representative colonies were picked, expanded in liquid LYBHIv4 media (see
above) and identified using MALDI-TOF mass spectrometry against a custom database following

acetonitrile extraction (Bruker Biotyper) (Chudnovskiy et al., 2016).

Streptococcus pneumoniae culture

Streptococcus pneumoniae was streaked out on blood agar plates and incubated overnight at 37°C, after
which 1 colony was picked with a sterile tip and inoculated in 5 ml pre-warmed BBL™ Brain Heart

Infusion Broth media (BD) and incubated at 37°C overnight. The overnight culture was then subcultured

by transferring 500 ul to 50 ml pre-warmed media (as above) and incubated 2-4 hours at 37°C until
optical density (OD) 600 nm was approximately 0.3. Streptococcus pneumoniae was then made
replication-deficient through incubation with 50 pg/ml mitomycin-C (Sigma Aldrich) at 37°C for 1 h, and

washed twice with PBS before immunization as described below.
Immunizations
Each mouse was i.v. or i.p. immunized with 2.87 ug Pneumovax23 (Merck), 1.625 ug Prevnarl3 (Pfizer),

50 pg TNP-aminoethilcarboxymethyl (AECM)-Ficoll (Biosearch Technologies), 50 pug TNP-LPS
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(Biosearch Technologies). Each of these immunogens was diluted into 100-200 uL sterile PBS before
injection. 50 pg NP-OVA-16 supplemented with 100 pl Imject Alum Adjuvant according to
manufacturer’s instructions (Thermo Scientific) was injected i.p. Replication-deficient Streptococcus
pneumoniae prepared as above was i.v. injected at 2 x 107 cells/mouse. For anti-PD-1 experiments, mice
were treated with rat [lgG2a mAb RMP1-14 to mouse PD-1 (Bio X Cell) or rat [gG2a mAb 2A3 as control
(Bio X Cell). Mice received 200 ug i.p. of either anti-PD-1 or control mAb in 200 pl sterile dilution
buffer (Bio X Cell) one day prior to Prevnarl3 immunization and on days 1, 4, 7, 10, 13, 16, and 19 post-

immunization.
Bacteria Isolation from Mouse Feces

Fecal pellets collected directly from mice or from the small intestine were homogenized in PBS (1 ml/0.1
g) by vortexing for 10 minutes at room temperature. Suspension was centrifuged twice at 2,000 rpm for 5
minutes at 4°C and supernatants collected. For bacterial flow cytometry assays, an aliquot was removed
from this supernatant. After centrifugation at 8000 g for 10 minutes at 4°C, supernatant was collected to
measure free fecal [gM and IgG1. Resulting bacterial pellets were used to determine microbiota-specific

IgG1 (see ELISA).

Flow Cytometry and Cell Sorting

1-2 x 10° cells per sample were resuspended in PBS with CD16/32 Fc Block (BD Biosciences) and
Live/Dead staining (Invitrogen) for 10 minutes on ice. Cells were then washed with FACS buffer (PBS
supplemented with 2% heat-inactivated FBS and 2 mM EDTA (Fisher)), and subsequently stained with
appropriately diluted antibodies for 30 minutes on ice. For extracellular/intracellular IgG3 and IgGl1, cells
were blocked with 25% normal rat serum, stained for surface markers, including anti-IgG3-biotin
followed by streptavidin-APC staining. After fixation and permeabilization (BD Cytofix/Cytoperm), cells
were blocked again with 25% normal rat serum before addition of intracellular antibodies, including

FITC-conjugated IgG3 diluted in BD Perm/Wash (BD Biosciences). For IgA-coated bacterial staining,

Page - 27 -


https://doi.org/10.1101/2021.04.29.439534
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.29.439534; this version posted May 13, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

bacteria isolated from fecal pellets were washed in staining buffer (1% BSA PBS w/v) and blocked for 20
minutes on ice with staining buffer supplemented with 20% normal rat serum (Invitrogen) prior to
staining with anti-IgA antibody 1:100 (final 1:200) for 30 minutes (Palm et al., 2014). To quantify serum
IgGl1 specific to commensals, bacteria were optionally incubated with matched mouse serum diluted 1:50
in staining buffer and incubated on ice for 30 minutes. After washing with staining buffer, samples were
stained with a biotinylated anti-IgG1 antibody (1:25) for 30 minutes on ice before another wash and
staining with streptavidin-APC. After washing, bacteria were resuspended in a saline buffer including
0.9% NaCl and 10 mM HEPES and supplemented with 1.25 nM SYTO Green Fluorescent Nucleic Acid
Stain (Life Technologies). Cells were acquired with LSR Fortessa or LSR II (BD Biosciences) and data
were further analyzed by FlowJo V10 software (TreeStar).

For cell sorting, B cells were purified using a Miltenyi Pan B cell isolation Kit II (Cat. 130-104-443),
followed by FACS staining for sorting. Cells were resuspended in PBS with CD16/32 Fc Block and
Live/Dead staining (Invitrogen) before staining with antibodies to surface markers. Live

CD11c¢Ly6G CD3™ B220'AA4.1- CD21Me"CD23 MZ B cells and CD21°CD23" FO B cells were

FACS-sorted (Influx BD) with Influx (BD Biosciences). The purity of sorted cells was consistently

>95%.

ELISA

For total Ig subclass quantification, Immulon 4 HBX 96-well plates (ThermoFisher Scientific) were

coated with a primary antibody diluted in UltraCoat ELISA Coating Buffer (Leinco Technologies) at 50
ul per well overnight at 4°C. Antigen-specific Ig subclass quantification was determined by coating
Immulon 4HBX 96-well plates overnight at 4°C with 50 pl/well of the following antigens diluted in PBS

at 5 pg/mL: TNP-bovine serum antigen (BSA), CPS9 or CPS14 from Streptococcus pneumoniae,

Staphylococcus aureus-derived lipoteichoic acid, Salmonella typhimurium-derived LPS, or mitomycin-C-

inactivated whole Streptococcus pneumonia (4 x10° bacteria/mL). For detection of high- and low-affinity
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NP-specific antibodies, plates were coated with NP-BSA ratio 7 (NP7) or NP-BSA ratio 23 (NP23),
respectively, (Biosearch Technologies) at 10 pg/mL. Coated plates were then washed with 0.1%
polysorbate 20 (Fisher) in PBS and blocked with milk powder or 1% BSA in PBS for 2 hours at room
temperature. After washing, serum or fecal supernatant serially diluted in ELISA dilution buffer (1% BSA

0.1% polysorbate 20 PBS) was added to each well and incubated overnight at 4°C. After additional

washing, plates were incubated for 2 hours at room temperature with a horseradish peroxidase (HRP)-
conjugated secondary antibody (Southern Biotech) diluted in ELISA dilution buffer. After further
washing, plates were developed with two-component tetramethylbenzidine HRP substrate (Seracare Life
Sciences) and stopped with an equal volume of 1M H2SO4. OD values were determined at 450-nm
wavelength on Epoch microplate spectrophotometer (BioTek). Mouse IL-4 was measured using an IL-4
mouse uncoated ELISA Kit (Invitrogen). Human sCD14 was measured through Human CD14 DuoSet
ELISA kit following manufacturer’s instructions (R&D Systems). For microbiota-specific IgGl
quantification, bacteria pellets from colonic fecal content was resuspended in 500 ul PBS and the
resulting suspension was frozen in dry-ice and then thawed in a 37°C water bath for five cycles
(Hepworth et al., 2013). The resulting lysates were centrifuged at 8000 g for 10 min and supernatants
were collected as commensal antigen lysates. Lysate protein concentration was measured with Nanodrop.
Immulon 4 HBX 96-well plates (Thermo Scientific) were coated with 5 pg/mL lysate protein in PBS and
incubated overnight at 4°C. In each mouse, commensal-specific titers were determined as the difference
in OD values between samples with or without paired serum. When not expressed in units of optical
density (OD), the relative concentration of antigen-specific antibodies in serum from immunized mice
was expressed in arbitrary units (AU) calculated from a standard curve obtained with serum from
previously-immunized mice with high titers of specific antibodies run contemporaneously. An appropriate
control serum was used as standard to quantify total antibody concentrations in mice (Bethyl

Laboratories, Inc.).

RNA-Seq Analysis
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RNA was extracted from sorted splenic murine MZ and FO B cells using QIAshredder and RNeasy Plus
Micro Kit (Qiagen). Library preparation and sequencing were performed by a specialized company

(GENEWIZ).

Standard Quality Control and Mapping of Sequence Reads

The fastq files generated from Illumina RNA-Seq were preprocessed and quality controlled using the
CLC Genomics Workbench Version 9.0.1. The raw reads were trimmed and filtered to remove possible
adapter sequences and low-quality nucleotides at the ends. After trimming, sequence reads shorter than 50
nucleotides were discarded according to the following parameters: phred score > Q30, base error
probability score > 0.05, and base ambiguities < 2, read-length < 50 bp. Trimmed reads were aligned to

the Mus musculus genome, and count data was generated using CLC Genomics Workbench Version

9.0.1.

Differential Expression Analysis

Statistical analysis was carried out using R-language (R-project.org) and packages available through the
Bioconductor project (www.bioconductor.org). Normalization factors to scale RNA-seq library size were
calculated using TMM method (Robinson and Oshlack, 2010; Wanigasuriya et al., 2020) and converted to
counts per million (CPM) reads using the cpm function (edgeR package). Gene transcripts with a CPM >1
in at least one sample were kept for further analysis. The remaining data was then transformed using voom
(Law et al., 2014). Gene/transcript-expression profiles of non-Igh genes were compared between B cells

from Igha™'-

and WT mice using linear mixed-effect models with cell-type (MZ vs FO B cells) and mouse
strain (WT vs Igha™~ mice) as fixed factors. A random intercept was used for each parent mouse the B
cells were derived from. Models were fitted using the /imma package framework and hypothesis of
interest were tested via contrasts using the moderated t-test (Smith, 2004). P-values were corrected for
multiple hypothesis testing and are presented with false discovery rate (FDR) values. Gene and transcripts

annotation was carried out with Biomart (Durinck et al., 2005; Durinck et al., 2009) using the

mmusculus_gene ensembl dataset from 01/07/2019.
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Gene Set and Gene Pathway Analysis

Over-representation analysis (ORA) and gene-set enrichment analysis (GSEA) were performed with the

HALLMARK and Cc2Cp collections from the MolSigDB database

(http://software.broadinstitute.org/gsea/msigdb/index.jsp) as well as custom gene sets. Custom gene sets
representing GC B cell differentiation and PC differentiation were defined using publicly available
GSE60927 data (Shi et al., 2015) as genes up-regulated (fold change (FCH) >2, FDR <0.05) when
comparing GC B cells vs FO B cells (GC B cell differentiation), and the top-50 down-regulated (FCH
>1.5, FDR <0.05) genes when comparing bone marrow PCs vs splenic plasmablasts (this differentially
expressed gene set was defined as PC differentiation). A gene-set representing B cell anergy was defined
as up-regulated genes (FCH >2, FDR <0.05) when comparing anergic MD4MLS5 cells vs naive non-
anergic MD4 cells (control) using data previously published (Sabouri et al., 2016). Gene-set variation
analysis (GSVA) (Hénzelmann et al., 2013) was used to calculate gene-sets activity per sample for
proliferation (Hallmark G2M_checkpoint) and custom gene-sets. Statistical analysis of GSVA scores was
performed using the same methods as gene-expression (limma package framework). Sequence data files

(fastq) are stored in the public Sequence Read Archive (SRA) under project number GSE173361.

16S rRNA Gene Sequencing and Analysis

DNA extraction, library preparation, and 16S rDNA gene amplicon sequencing of colonic fecal bacteria
from co-housed littermate WT and Igha™ mice were outsourced (GENEWIZ). Barcoded amplicons were
subjected to multiplexed sequencing (paired-end 250 nucleotide reads) on a MiSeq instrument (Illumina)
with the 500 cycle v2 kit (2 x 250 bp). Paired-end reads were filtered (Phred > 19) and merged using the
fastg-join algorithm. Data analysis was performed using QIIME with default parameters unless otherwise
noted, and performed as previously described (Shapiro et al., 2021). Briefly, raw sequencing data were
demultiplexed using unique barcodes assigned to each sample, and low quality reads discarded from
downstream analyses. Remaining reads were then clustered into Operational Taxonomic Units (OTUs)

with a 97% similarity threshold, and using the gg 13 5 release from Greengenes v13-8 as a reference set
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to assign taxonomy to each OTU (DeSantis et al., 2006; McDonald et al., 2012). The default open
reference Qiime pipeline for [lumina reads was also used (Caporaso et al., 2010). Taxonomy was assigned
using default uclust algorithm parameters (Edgar, 2010). Chimeras were identified and removed using
ChimeraSlayer software (Haas et al., 2011). There were no significant differences in sequencing depth per
group. Processed spleen and MLN samples from GF mice were used to identify putative contaminant
OTUs, which were then removed from all the samples. Next, an ‘abundance-filtered data set’ was
generated by selecting OTUs with >0.1% relative abundance in each sample. This OTU table was then
rarefied to the minimum sample's depth (1570 reads). Scaled abundance heatmap was generated after
selecting the 20 most important bacterial species highlighting the competing phenotypes as defined by the
RandomForest algorithm (Liaw & Wiener 2002) from Qiime (ntree=50000,e=loo). Sequence data files

(fastq) are stored in the public Sequence Read Archive (SRA) under project number PRINA722766.

Metabolomics

Sera were collected from HCs, IGAD patients, SPF WT mice or SPF Igha~~ mice as described above.

HCs and IGAD patients were asked to fast overnight, whereas food was withheld from mice overnight
prior to collection. Collected serum was frozen at -80°C and shipped to Human Metabolome

Technologies for further analysis. Metabolome analysis was performed using both capillary
electrophoresis time-of-flight mass spectrometry (CE-TOFMS) and liquid chromatography time-of-flight
mass spectrometry (LC-TOFMS) in two modes for cationic and anionic metabolites. For CE-TOFMS,
each 50 pL sample was mixed with 450 puL of 10 pM methanol-containing internal standards and mixed.
Then, 500 pl chloroform and 200 pl Milli-Q water were added, mixed thoroughly and centrifuged at 2,300
x g, 4°C for 5 minutes. The water layer (400 puL x 1) was filtrated through a 5-kDa cut-off ULTRAFREE-
MC-PLHCC filter (Human Metabolome Technologies) to remove macromolecules. The filtrate was
centrifugally concentrated and resuspended in 50 pL of ultrapure water immediately before the
measurement. For LC-TOFMS, each 500 pl (human) or 300 pl (mouse) sample was mixed with either

1,500 pl (human) or 900 pl (mouse) of 1% formic acid in acetonitrile (v/v) containing 6 uM internal
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standards and centrifuged at 2,300 x g, 4°C for 5 minutes. Then, the supernatant was filtrated by using a
Hybrid SPE phospholipid 55261-U column (Supelco) to remove phospholipids. The filtrate was
desiccated and resuspended in either 200 pl (human) or 120 pl (mouse) of 50% isopropanol in Milli-Q
water (v/v) immediately before the measurement.

Peaks detected in CE-TOFMS or LC-TOFMS analysis were extracted using an automatic
MasterHands ver. 2.17.1.11 integration software (Keio University) in order to obtain peak information,
including m/z, migration time (MT) in CE, retention time (RT) in LC, and peak area. The peak area was
then converted to relative peak area by dividing the Metabolite Peak Area by the Internal Standard Peak
Area. The peak detection limit was determined based on signal-noise ratio; S/N = 3. Putative metabolites
were then assigned from HMT’s standard library and Known-Unknown peak 14 library on the basis of
m/z and MT or RT. The tolerance was £+ 0.5 minutes in MT/RT and +10 ppm. If several peaks were
assigned the same candidate, the candidate was given the branch number. Absolute quantification was
performed in 110 metabolites, including glycolytic and tricarboxylic-acid-cycle-intermediates, amino
acids, and nucleic acids. All the metabolite concentrations were calculated by normalizing the peak area
of each metabolite with respect to the area of the internal standard and by using standard curves, which
were obtained by single-point (100 pM) calibrations. Standardized relative peak area data were used to
identify metabolites showing statistically significant differences between defined group phenotypes
(Kruskal Wallis with Dunn’s correction for human data and Mann-Whitney for mouse data, p value
<0.05). Data represent standardized values of relative area in detected peaks where values below the limit
of detection were assigned a value of epsilon(2*-52). Heat maps show standardized relative peak areas of
significantly differentially abundant metabolites and have been row mean-centered and row-normalized.

Heat maps were generated using the gplots R-package.

Mouse B Cell Cultures
A single cell suspension of splenocytes was prepared as above and purified for B cells using either MACs

Mouse B cell Isolation Kit (Miltenyi Biotech) or EasySep Mouse B cell Isolation Kit (Stemcell
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Technologies). Cells were plated at 0.2 x 10° cells/ml in 96-well round bottom plates in 200 ul RPMI
medium containing 10% FBS, 1% penicillin-streptomycin (Life Sciences) and 55 pM 2-mercaptoethanol
and stimulated with 1 pg/ml anti-CD40 (Biolegend) and 100 ng/ml IL-4 (R&D Systems), or 10 pg/ml
LPS (Invivogen) for 6 days. Supernatant was collected on day 6 for ELISA and cells were harvested for

flow cytometry.

Human B Cell Cultures

3 x 10° PBMCs (200 ul/well) were cultured in 96-well round bottom plates and stimulated with 500
ng/ml trimeric CD40L (Enzo Life Sciences) and 100 ng/ml IL-21 (Peprotech), or 500 ng/ml CpG-DNA
(Invivogen) for 7 days. RPMI culture medium containing 10% FBS and 1% penicillin-streptomycin (Life
Sciences) was prepared without BCAAs, with BCAAs at optimal concentrations in complete BCAA-
sufficient media, (120 mg/L BCAAs at a 2:5:5 ratio of L-valine (0.17 nmol/L), L-leucine (0.38 nmol/L),
and L-isoleucine (0.38 nmol/L), BCAA-depleted media with one tenth as much BCAAs (12 mg/L
BCAAs s at the same ratio as above). Supernatant was collected at day 7 and analyzed for immunoglobulin

titers via ELISA.

Histology and Immunofluorescence

Colon and small intestine from WT or Igha~~ mice were incubated for 4h in Methanol-Carnoy’s fixative
at room temperature, then immersed in 100% ethanol at 4°C for 1h prior incubation with xylene solution
at room temperature. Tissue was then embedded in paraffin solution and 4-pum sections were cut before
staining with hematoxylin and eosin at Mount Sinai’s Biorepository and Pathology CoRE service. Slides
were analyzed with an Aperio AT2 (Leica) and scored by a pathologist from Mount Sinai Hospital. For

-/~ mice 30 minutes or 3 h

immunofluorescence assays, whole spleens were excised from WT or Igha
following i.v. immunization with TNP-Ficoll, embedded in Optimal Cutting Temperature Compound
(TissueTek), and frozen at —80°C. Sections were prepared with Leica CM 1950 Cryostat and fixed with

4% paraformaldehyde for 15 minutes on ice after washing with PBS and permeabilized with Triton X-100

for an additional 15 minutes before blocking. Tissue was then incubated with unconjugated TNP-specific
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rat antibody (clone 2A3), followed by a488-conjugated anti-rat antibody, biotinylated anti-MOMA-1,
APC-conjugated streptavidin and PE-eFluor610-conjugated anti-B220 antibody. Slides imaged using a
DM600 Leica microscope and analyzed at Mount Sinai Microscopy Core and Advanced Bioimaging

Center.

Quantification and Statistical Analysis

Statistical analysis was performed using Prism version 9.0 (GraphPad). Comparisons between two groups
were determined using either Student’s t test when data followed a normal distribution or Mann-Whitney
U test when data were not normally distributed. Normal/Gaussian distribution was determined by a
D’Agostino and Pearson normality test. For multiple comparisons, a Kruskal-Wallis test with Dunn’s
correction was used. Significant outliers were determined using Grubb’s test with an alpha of 0.05 and
excluded from analysis. A p value < 0.05 was considered significant. P values are indicated on plots and

in figure legends. (* p <0.05, ** p <0.01, *** p <0.001).

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and two tables.
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FIGURE LEGENDS
Figure 1. IgA Enhances Systemic IgG Responses to Tl Inmunizations

(A) ELISA of serum IgG3 (top) and IgM (bottom) to PPS from Pneumovax23 in 7 WT (solid circles) or
Igha™'~ (open circles) mice prior to immunization (PI) and 3 or 7 days following i.v. immunization with

Pneumovax23.

(B) ELISA of serum 1gG3 (top) and IgM (bottom) to TNP from 5 WT or Igha~'~ mice before and 3 or 5
days following i.v. immunization with TNP-Ficoll. This experiment involved WT mice purchased from

Jackson Laboratories.
(C) ELISA of total serum IgG3 and IgM in 15-27 WT or 28-41 Igha™'~ mice at steady state.

(D) Flow cytometry of CD21 and CD23 on splenic MZ B cells from representative WT or Igha~~ mice.

Numbers indicate MZ B cell frequency (%) within the CD19" population.

(E) Frequency (% of CD19" cells; left) and absolute number (right) of splenic CD21"g"CD23°Y MZ B

cells from 10 WT mice or 11 Igha~~ mice (E).

(F, G) Flow cytometry of intracellular (ic) IgG3 and extracellular (ec) IgG3 from splenic eclgG3*icIgG3-
switched B cells (SBCs), eclgG3*icIgG3™ plasmablasts (PBs) and eclgG3°iclgG3* PCs of representative
WT or Igha™'~ mice (F) as well as absolute number (G) of SBCs, PBs and PCs from 5 WT or 5 Igha™'~
mice 5 days following i.v. immunization with TNP-Ficoll. Numbers in (F) indicate frequency within total

cells. These experiments involved WT mice purchased from Jackson Laboratories.

Data show representative flow plots (D, F) or summarize results from one (A, B, E, G) or 5-6 experiments
(C). Results are shown with mean; a two-tailed unpaired Student’s t-test was performed when data
followed a Gaussian distribution, otherwise a Mann-Whitney test was used to determine significance. *p

<0.05, **p <0.01, ***p <0.001. See also Figure S1.
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Figure 2. IgA Increases Systemic IgG Responses to TD immunizations

(A) ELISA of serum IgG1 to PPS from 5 WT or 7 Igha~~ mice prior to immunization (PI) and 7 or 28
days following i.v. immunization with Prevnar13.

(B) Flow cytometry of intracellular (ic) IgG1 and extracellular (ec) IgG1 from splenic eclgGl™icIgGl-
switched B cells (SBCs), eclgG1TiclgG1™ plasmablasts (PBs) and eclgG1°icIgG1* PCs of representative
WT or Igha~'- mice 28 days following i.v. immunization with Prevnar13. Numbers indicate frequency (%

of B220" cells) of SBCs, PBs and PCs.

(C) ELISA of serum high-affinity (NP7-BSA) IgG1 and low-affinity (NP23-BSA) IgG1 from 13 WT or
11 Igha'- mice before immunization (PI) and 7, 14, 21, 28 or 62 days following i.p. immunization with

NP15-OVA and alum.

(D) Affinity maturation of IgG1 calculated as a ratio of IgG1 specific to NP7-BSA versus IgG1 specific to
NP23-BSA in 13 WT or 11 Igha” mice 7, 14, 21, 28 or 62 days following i.p. immunization with NP15-

OVA and alum.

(E, F) Flow cytometry of CD21 and CD23 on splenic FO B cells from representative WT or Igha~'~ mice
at steady state (E) as well as frequency (% of CD19+ cells) and absolute number of CD21'°*CD23"igh FO

B cells from 10 WT or 11 Igha~'- mice (F).

(G, H) Flow cytometry of B220 and IgG1 on purified splenic B cells from representative WT or Igha™'-
mice incubated with medium alone (ctrl) or anti-CD40 and IL-4 for 6 days (G) as well as frequency (% of

live cells) of splenic IgG1"B220" B cells from 6 WT or Igha~'- mice cultured as above (H).

(1, J) Flow cytometry of B220 and CD138 on purified splenic B cells from representative WT or Igha'-

mice incubated with medium alone (ctrl) or anti-CD40 and IL-4 for 6 days (I) as well as frequency (% of

live cells) of splenic B220*CD138" PBs from 6 WT or Igha~'- mice cultured as above (J).
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(K) ELISA of IgG1 secreted by purified splenic B cells from representative 4 WT or Igha™~ mice

incubated with medium alone (ctrl) or anti-CD40 and IL-4 for 6 days.

Data show one representative result (B, E, G, |) or summarize results from either a single (F), two (A, C,
D, K), or three experiments (H, J) Results are shown with mean (A, F) or mean + s.e.m. (C, D, H, J, K); a
two-tailed unpaired Student’s t-test was performed when data followed a Gaussian distribution, otherwise

a Mann-Whitney test was used to determine significance. *p < 0.05, **p < 0.01, ***p <0.001. See also

Figure S2.

Figure 3. IgA Helps Systemic IgG Responses to Vaccines through Gut Commensals

(A) ELISA of serum IgG1 to PPS from 8 WT mice or Pigr~'~ mice prior to immunization (PI) and 7, 14,

21 or 28 days following i.p. immunization with Prevnarl3.

(B) ELISA of serum IgG1 to PPS PI or 7, 14, 21 or 28 days following i.p. immunization with Prevnarl3
of ex-GF mice obtained by reconstituting 6-7 GF recipient mice with cecal content from either an SPF

WT or an SPF Igha™'~ donor mouse. Recipient mice were vaccinated two weeks following reconstitution.

(C) ELISA of serum IgGl to PPS prior to immunization or 7, 14, 21 or 28 days following i.p.
immunization with Prevnarl3 of ex-GF mice obtained by reconstituting 12 or 18 GF recipient mice with
fecal material from 4 human HCs or 4 IGAD patients, respectively. Immunization was performed four

weeks following reconstitution of the gut microbiota.

(D) Flow cytometry of IgA* gut bacteria from 16 or 20 ex-GF mice reconstituted with fecal material from
4 healthy controls (HC) and 4 IGAD donors, respectively. Measurements were performed four weeks

following reconstitution of the gut microbiota.
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Results are from 1 (B) or 2 (A, C, D) independent experiments. Data are shown with mean (D) or mean +
s.e.m (A, B, C); a two-tailed unpaired Student’s t-test was performed when data followed a Gaussian

distribution, otherwise a Mann-Whitney test was used. *p < 0.05, **p < 0.01. See also Figure S3.

Figure 4. IgA Restrains Systemic IgG Responses to Translocated Gut Antigens

(A) ELISA of total serum IgG1 from 20 WT or 27 Igha '~ mice at steady state.
(B) ELISA of serum IL-4 from 10 WT or 10 Igha™ mice at steady state.

(C) ELISA of serum IgGl to lipoteichoic acid (LTA) from Staphylococcus aureus, CPS14 from

7/7

Streptococcus pneumoniae or LPS from Salmonella typhimurium in 8 WT or 6 Igha™' littermate mice at

steady state.

(D) ELISA of serum IgG1 reactive to paired colonic microbial antigens from 15 WT or 16 Igha ' mice at

steady state (fecal and serum samples from same mouse).

(E) Flow cytometry of IgG1-coated small intestinal (SI) (left) or colonic (right) bacteria from 6 WT or 5-6

Igha™~ mice with or without (ctrl) incubation with paired serum.

(F) Quantification of CFUs of anaerobic bacteria from homogenates of spleen, MLNs, mesenteric adipose

tissue (MAT) and SI from 8-13 WT or 10-13 Igha'~ mice at steady state.

(G) Taxonomic classification of anaerobic bacterial colonies isolated in the MAT from 2 WT or 7 Igha™~

mice, as determined by mass spectrometry.

(H) 16S rRNA gene sequencing analysis of microbiota (MB) from colon feces of 6 WT or 7 Igha™'~ co-
housed littermate mice at steady state. Bacterial families detected in (G) or potentially relevant to gut

homeostasis, including persistence of intraluminal SIgA, are underlined in red.

Results summarize 2-3 (A, E) or 5 (F, G) independent experiments and one experiment (B, C, D, H). Data

are presented as mean =+ s.e.m.; a two-tailed unpaired Student’s t-test was performed when data followed
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a Gaussian distribution, otherwise a Mann-Whitney test was used. *p < 0.05, **p < 0.01, ***p <0.001.

See also Figure S4.

Figure 5. IgA Limits Systemic Expansion of GC B Cells Along with PC Differentiation

/

(A) Images of Peyer’s patches and MLNs from representative WT or /gha™' mice at steady state.

(B) Number of total cells in spleen, MLNs and Peyer’s patches from 11-19 WT or 12-20 Igha™ mice at

steady state.

(C, D) Flow cytometry analysis of splenic CD95"GL7" GC B cells from representative WT or Igha '~
mice at steady state (C) and absolute number of these cells in spleen, MLNs and Peyer’s patches from 7-8

WT or 8 Igha™'~ mice at steady state. GC B cells were analyzed from an initial CD45"B220" gate.

(E, F) Flow cytometry analysis of PD-1"CXCR5" Tru cells from MLNs of representative WT or Igha ™'~
mice at steady state (E) and absolute number of these Tru cells in spleen, MLNs and Peyer’s patches from

10-11 WT or 11 Igha™ mice (F). Tru cells were analyzed from an initial CD45"CD19 TCRB"CD4" gate.

(G) Volcano plot analysis of differentially expressed genes (DEGs) identified by RNA-seq in splenic MZ

and FO B cell from 4-5 WT or 5 Igha™~ mice at steady state.

(H) Gene set variation analysis (GSVA) of proliferation (G2-M checkpoint), GC differentiation and PC
differentiation gene signatures identified by RNA-seq and differentially expressed by splenic FO but not

MZ B cells from 4 WT or 5 Igha' mice at steady state.

(I) Heat maps show z-score of gene-expression for top 30 differentially expressed genes from proliferation
(left), GC differentiation (mid) and PC differentiation (right) gene sets identified by RNA-seq to be
significantly differentially expressed (as in H) by splenic FO but not MZ B cells from 4-5 WT or 5 Igha™~
mice at steady state. Asterisks indicate highly differentially expressed genes discussed in the text. The

scale bar shows color coding (blue, white, red) for z-score.
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Data show representative images or flow plots (A, C, E), summarize 3 (D, F) or 6 (B) independent
experiments, or one experiment (G, H, I). Data are presented with mean (D, F) or mean GSVA score and
95% confidence interval (H); a two-tailed unpaired Student’s t-test was performed when data were
determined to follow a Gaussian distribution (B), otherwise a Mann-Whitney test was used (D, F), or

limma modeling (H). *p < 0.05, **p <0.01, ***p <0.001. See also Figure S5.

Figure 6. IgA Constrains Systemic T Cell Expression of the immune inhibitor PD-1 and Anti-PD-1

Rescues Vaccine-Specific IgG Production in IgA Deficiency

(A) Gene set variation analysis (GSVA) of anergy gene signatures identified by RNA-seq and

differentially expressed by splenic MZ and FO B cells from 4-5 WT or 5 Igha'~ mice at steady state.

(B) Heat map shows z-score of gene-expression for top 30 differentially expressed anergy genes identified
by RNA-seq from gene set differentially expressed (in A) by splenic FO but not MZ B cells from 4-5 WT
or 5 Igha™ mice at steady state. Asterisks indicate highly differentially expressed genes discussed in the

text. The scale bar shows color coding (blue, white, red) for z-score.

(C) Flow cytometry of PD-1 and CD4 (top) or CD8 (bottom) on splenic CD3* T cells from representative

WT or Igha '~ mice at steady state. Numbers indicate frequency (%) of PD-1-expresing cells.

(D) Frequency (%) of splenic CD4" or CD8* T cells expressing PD-1 from 5 WT or 6 Igha”’™ mice

determined by flow cytometry at steady state.

(E) PD-L1-expression (MFI, mean fluorescence intensity) on splenic MZ B cells, FO B cells, total B-1
cells, B-1a cells, and B-1b cells from 5 WT or 6 Igha’ mice determined by flow cytometry at steady

state.

(F) ELISA of serum IgG1 to PPS 14, 21, or 28 days following i.p. immunization with Prevnarl3 of 13

WT or Igha™~ mice treated with anti-PD-1 mAb and of 11 WT or 12 Igha-/- mice treated with control
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isotype-matched mAb. Mice received 200 ug i.p. of either anti-PD-1 or control mAb one day prior to
immunization and one day after immunization, followed by injections every third day through day 19

post-immunization.

(G) Frequency (%) of circulating anergic IgM' CD21'" B cells within IgD*CD27 naive B cells from 17

healthy controls (HCs), 6 IGAD-R patients and 6 IGAD-NR patients.
(H) ELISA of serum sCD14 from 18 HCs, 9 IGAD-R patients, and 6 IGAD-NR patients.

Results summarize one (A, B, D, E, H), two (F), or 15 independent experiments (G), or show
representative flow dot plots (C). Data are presented with mean GSV A score and 95% confidence interval
(A) or mean and significance (D-H). Significance was determined using limma modeling (A), Mann-
Whitney test (D, E, F) or Kruskal-Wallis test with Dunn’s correction for multiple comparisons (G, H). *p

<0.05, **p < 0.01. See also Figure S6.

Figure 7. IgA Increases Systemic BCAAs Capable of Enhancing IgG Production

(A) Heat map of significantly differentially abundant plasma metabolites from 9 HCs, 4 IGAD-R patients
and 3 IGAD-NR patients. Data represent standardized peak areas and have been row mean-centered and
row-normalized. Metabolites highlighted in bold are discussed in the text. SPA, standardized peak area.
The positioning of the methyl group on methyl-2-oxvaleric acid was unable to be differentiated between

attachment to either the third or fourth carbon of the molecule.

(B) Plasma concentration of leucine, isoleucine and valine in donors described in A. Standardized peak
area compared to internal standard and quantitative estimation (uM) was performed by normalizing

relative peak areas and comparing to standard curve.

(C) ELISA of IgG secreted by B cells from 7-10 HCs upon exposure of peripheral blood mononuclear
cells to medium alone (ctrl) or T cell-associated stimuli CD40L and IL-21 for 6 days in the presence of
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decreasing amounts of BCAAs. From left to right: complete BCAA-sufficient media, (120 mg/L BCAAs
at a 2:5:5 ratio of L-valine, L-leucine, and L-isoleucine), BCAA-depleted media with one tenth as much

BCAAs (12 mg/L BCAAs at the same ratio as above), and BCAA-deficient media with no BCAAs.

(D) ELISA of IgM secreted by B cells from 10 HCs upon exposure of peripheral blood mononuclear cells
for 6 days to medium alone (ctrl) or the TI ligand CpG-DNA in the presence of decreasing amounts of

BCAAs as in (C).

Metabolomics (A, B) were from one experiment. /n vitro BCAA experiments (C, D) summarize two
independent experiments involving peripheral blood mononuclear cells from 5 HCs each. Data are
presented with mean and significance was determined through Kruskal-Wallis test with Dunn’s correction

for multiple comparisons. *p < 0.05, **p <0.01, ***p <0.001. See also Figure S7.
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