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Abstract 
R-loops are three-stranded nucleic acid structures formed from the hybridization of RNA and DNA during nascent 
transcription. In 2012, Ginno et al. introduced the first R-loop mapping method, DNA:RNA immunoprecipitation 
(DRIP) sequencing. Since that time, dozens of studies have implemented R-loop mapping and new high-
resolution techniques have been developed. The resulting datasets have tremendous potential to reveal the 
causes and consequences of R-loops genome-wide. However, poor quality and variability between mapping 
approaches pose serious barriers to the meta-analysis of these data. In our recent work, we reprocessed 693 
R-loop mapping samples, devising new quality methods, defining a set of high-confidence mapping samples, 
and then deriving R-loop regions, consensus sites of R-loop formation. This analysis yielded the largest R-loop 
data resource to date along with novel computational approaches for R-loop mapping analysis. Now, we 
introduce RLBase, an innovative web server which builds upon those data and software by providing users with 
the capability to (1) explore hundreds of public R-loop mapping datasets, (2) explore consensus R-loop regions, 
(3) analyze user-supplied datasets to generate an HTML quality report, and (4) download all the processed data 
for the 693 samples we previously reprocessed and standardized. In addition to RLBase, we also describe the 
other software which, along with RLBase, provides a computational framework for R-loop bioinformatics. 
RLBase, and the rest of these software (termed “RLSuite”), are provided freely under an MIT license and made 
publicly available: https://gccri.bishop-lab.uthscsa.edu/rlsuite/. RLBase is directly accessible via the following 
URL: https://gccri.bishop-lab.uthscsa.edu/rlbase/. 

Introduction 
R-loops are three stranded nucleic acid structures comprising an RNA:DNA hybrid and displaced single-stranded 
DNA (1). They occur as a byproduct of transcription at some genes, and can be promoted by a variety of factors, 
including high G/C skew (2) and negative DNA superhelicity (3). Previous studies have implicated R-loops in a 
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variety of pathological consequences, including their potential to promote replication stress (4), a phenomena  
observed in hypertranscriptional cancers such as Ewing sarcoma (5–7). Recent evidence has indicated that R-
loops may also play important physiological roles in gene expression (1), DNA repair (8), and ribosome 
biogenesis (9). However, the dynamics of R-loops, the mechanisms of their regulation, and the delineation 
between pathological and physiological R-loops remain largely unclear (1, 10).  

R-loop mapping studies apply high-throughput sequencing (HTS) to examine the causes and consequences of 
R-loops under differing biological conditions. However, each study is limited by the narrow definition of the 
biological system which it examines and by the limitations of the techniques used in R-loop mapping (11). The 
mining of public datasets can reveal insights into the fundamental biology of a molecular system, as was 
previously demonstrated in the transcriptomic (12) and epigenomics (13) fields. Our 2020 study of R-loops in the 
context of chromatin architecture was, to our knowledge, the first to employ data mining to assess fundamental 
R-loop biology (14). While our profiling of 108 DRIP-sequencing samples provided insights into the locations and 
dynamics of R-loops, it also revealed inconsistencies in data quality between published studies (14). These 
findings were reinforced recently (15), suggesting that data quality inconsistencies are a barrier in the R-loop 
field, and raising questions regarding the validity of findings derived from R-loop mapping studies.  

To address these issues, we recently undertook the reprocessing and standardization of 693 R-loop mapping 
datasets, the largest R-loop mining project to date (11). From these data, we developed a new R-loop mapping 
quality control methodology which shows excellent accuracy and validity (11). With these approaches, we 
successfully defined a high-confidence set of R-loop mapping samples, and we performed a meta-analysis from 
which we defined consensus “R-loop regions” (RL regions) (11). As a result of this work, we also developed a 
suite of software packages for the analysis of R-loop data, including RLPipes, a CLI tool for upstream data 
analysis (Bioconda), RLHub, an R package for accessing the processed data from (Bioconductor), and RLSeq, 
an R package for downstream analysis of R-loop mapping data (Bioconductor). With these software and data 
resources, we created RLBase, a user-friendly web server which provides the capability to (1) explore hundreds 
of R-loop mapping datasets, (2) explore R-loop regions, (3) analyze R-loop mapping datasets in the browser, 
and (4) download processed and standardized R-loop mapping data.  

Though another R-loop web server was previously developed, R-loopDB, it is designed for the exploration of R-
loop forming sequences (RLFS), so it contains few re-processed datasets and lacks the ability to analyze R-loop 
mapping datasets (16). 

Taken together, RLBase and the other software and data sources described in the present work, termed 
“RLSuite”, represent a dramatic advancement in R-loop bioinformatics and a valuable resource for the R-loop 
field. “RLSuite” and RLBase can be accessed publicly at the following URL: https://gccri.bishop-
lab.uthscsa.edu/rlsuite/. 

Methods 
Preliminary data curation 
Prior to data curation, it was necessary to obtain basic genome information and genomic features. This included: 
(1) UCSC genome information, (2) R-loop forming sequences (RLFS) predictions, and (3) genomic annotations 
tailored for R-loop analysis. The following subsections detail the processing steps involved in obtaining these 
data.  

Genome metadata 
Prior to running the data generation pipeline, it was necessary to curate a list of all available genomes in the 
UCSC data repository. For each genome in UCSC, the following information was obtained via the 
makeAvailableGenomes.R script in the RLBase-data GitHub repository (See Code Availability): 

1. UCSC organism assembly ID 
2. Taxonomy ID 
3. Scientific Name 
4. Year that the genome assembly was introduced 
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5. Genome length 
6. Gene annotation availability (TRUE/FALSE) 
7. Effective genome size at various read lengths (calculated via the Khmer python package). 

The resulting data was then packaged for use with RLPipes and RLSeq.  

R-loop forming sequences (RLFS) 
R-loop forming sequences were developed via the methods we described previously (11).  

Genomic annotation database 
Finally, we developed a custom genomic annotation database for use with RLSeq that contained annotations 
relevant to R-loop biology. This was accomplished via a custom R script, getGenomicFeatures.R, in the RLBase-
data GitHub repository (see Code Availability). For the full list of data sources and descriptions, see Table S1.  

RLBase data (upstream) 
The processed data stored in RLBase and used by all other RLSuite software was generated using a long-
running computational pipeline available in its entirety in the RLBase-data GitHub repository (see Code 
Availability). The steps for upstream data processing were described in detail in our recent work (11). In addition 
to those details previously described, the present work will also describe the process of analyzing RNA-
Sequencing datasets.  

RNA sequencing datasets 
In cases where R-loop mapping studies also provided matched RNA sequencing (RNA-Seq) datasets, they were 
downloaded and quantified to assess gene expression with RLPipes via the following procedure: raw reads were 
downloaded and pre-processed using the same procedure described in our recent work (11) up until the genomic 
alignment step and then reads were quantified using the salmon pseudo aligner (17) to generate read counts. 

RLBase data (downstream) 
Following generation of processed data files (peaks, coverage, expression quantification, and quality statistics), 
downstream data processing was initiated to generate the final RLBase data. This involved (1) R-loop forming 
sequences (RLFS) analysis, (2) quality model building, (3) sample classification, (4) R-loop consensus analysis, 
(5) peak annotation and enrichment testing, (6) Expression matrix generation, (7) R-loop region annotation, (8) 
sample-level correlation analysis, (9) R-loop region abundance matrix generation, (10) calculating R-
loop/expression correlation, (11) updating RLHub, (12) updating the RLBase genome browser trackhub, (13) 
RLSeq analysis of every sample, (14) upload of all data to the RLBase AWS S3 bucket. 

Notably, many of these steps (1-5, 8) are described in detail in our previous work (11). Therefore, the present 
work will describe only those (6-7, 9-14) which have not been described elsewhere. 

Gene expression compilation 
As part of the RLBase processing pipeline, RNA-Seq data from R-loop mapping studies was also analyzed. 
These data were quantified and saved to the disk (see RLBase data (upstream)). Then, the buildExpression.R 
script from the RLBase-data GitHub repository (see Code Availability) was executed to convert these 
quantification files to a SummarizedExperiment object, from the SummarizedExperiment R package (18). The 
procedure implemented in buildExpression.R followed these steps: (1) all quantification files were imported using 
the tximport function from the tximport R package (19) and summarized to the gene level. (2) The transcripts per 
million (provided in each file) was log2 transformed. (3) The variance-stabilizing transform (VST) of the data was 
calculated via the vst function from the DESeq2 R package (20). The count matrix, log2TPM matrix, and VST 
matrix were then combined using the SummarizedExperiment function (18) and saved to disk. 

R-loop Region annotation 
R-loop regions (RL regions) were annotated via the rlregionsToFeatures.R script in the RLBase-data repository 
(see Code availability). For catalytically dead RNase H1 (dRNH), S9.6, and combined RL regions, the peaks 
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were annotated with the hg38 genomic annotations previously described (see Genomic features) using the 
bed_intersect function from the valr R package (21). 

R-loop region abundance calculation 
R-loop region (RL region) abundance was calculated within each human sample in RLBase using the 
rlregionCountMat.R script from the RLBase-data GitHub repository (see Code availability). RLBase sample 
alignment files (“BAM” format) were processed with featureCounts from the Rsubread R package (22) to quantify 
the read counts from each within RL regions. Then log2 RL regions per million (log2RLRPM) was calculated 
using the same procedure for log2 transcript per million (log2TPM) calculation during gene expression analysis. 
Finally, the variance stabilizing transform (VST) was used to calculate normalized counts via the vst function 
from DESeq2 (20). The three resulting matrices, raw counts, log2RLRPM, and VST, were combined into a 
SummarizedExperiment object using the SummarizedExperiment R package (18) and saved to disk. 

R-loop region abundance correlation with gene expression 
Next, the rlExpCorr.R R script from the RLBase-data GitHub repository (see Code availability) was used to 
calculate the correlation of R-loop region (RL region) abundance. The procedure used is describe below. 

Matching R-loop samples and expression samples 
Some R-loop mapping studies also had matched RNA-Seq data. For each R-loop mapping sample, the “study”, 
“tissue”, “genotype”, and “other” columns from the curated metadata were compared to the same column in the 
list of expression samples. If the values in all four columns were a match with at least one expression sample, 
then those four columns would be assigned as the “exp_matchCond” (expression match condition). If only three 
were available, then they would become the “exp_matchCond”. To see the order in which columns were checked 
for possible matches, view the buildExpression.R script in the RLBase-data GitHub repo (see Code availability).  

Summarizing results within match conditions 
Once match conditions were found, the R-loop abundance and gene expression data were summarized within 
them. Briefly, the R-loop abundance (log2RLRPM) was averaged within any R-loop mapping samples sharing 
the same “exp_matchCond” to create one summarized log2RLRPM value within each exp_matchCond – RL 
Region pairing. For the expression samples, genes were mapped to RL regions and the log2TPM was summed 
within them to create an RL region expression matrix. Then, the log2TPM within RL regions was averaged within 
any expression samples sharing an “exp_matchCond” to yield one summarized log2TPM value within each 
exp_matchCond – RL Region pairing. Then, the Spearman correlation was calculated between log2RLRPM and 
log2TPM across exp_matchCond within each RL region to yield a correlation estimate (Rho) and p value within 
each RL region. P value adjustment was performed using the Benjamini Hochberg procedure. 

Finalizing RLHub data 
RLHub is the ExperimentHub (23) package used to conveniently access the process data generated as part of 
the RLBase-data workflow (see RLHub). In this step of the workflow, processed data were packaged for RLHub 
using the prepRLHub.R script in the RLBase-data GitHub repository (see Code availability). The script was run, 
and the resulting data was uploaded to the RLHub directory within the RLBase AWS S3 bucket. 

Building the RLBase genome browser session 
The UCSC genome browser (24) provides a user-friendly way for exploring genomic data in a web browser 
interface. A TrackHub is a collection of genomic data that can be visualized and easily shared (25). To develop 
the RLBase TrackHub, the buildGenomeBrowserHub.R script from the RLBase-data GitHub repository was 
executed (see Code availability). Briefly, this script is used to build all the HTML descriptions for each human 
coverage track in RLBase along with a “oneFile” that ensures they will be accessed correctly in the Genome 
Browser session. The oneFile was also augmented to include the RL regions, along with regions of high G or C 
skew (see Genome annotations), and R-loop forming sequences (see R-loop forming sequences). 

Running RLSeq and data upload 
Finally, for each sample in RLBase which yielded called peaks, the RLSeq function was executed (see RLSeq) 
and HTML reports were generated. These steps were executed as part of running the runRLSeq.R script from 
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the RLBase-data GitHub repository (see Code availability). The resulting RLRanges objects and RLSeq HTML 
reports were uploaded to the RLBase AWS S3 bucket along with all other processed data sets. 

RLPipes 
RLPipes is a command-line interface (CLI) tool written in python and hosted on Bioconda (26) which is used for 
upstream processing of R-loop mapping data (see Code availability). It can accept FASTQ or BAM files and it 
can also be used with Sequence Read Archive (SRA) or Gene Expression Omnibus (GEO) accessions. The 
typical workflow for using RLPipes follows the build, check, run pattern. 

Build 
RLPipes build is a command which processes a “sample sheet” into a configuration file which can be used 
directly with the underlying workflow. When used with local files (FASTQ or BAM), the build command simply 
verifies that the files all exist, that all the supplied arguments and options are valid, and it finds the library type 
(single-end or paired-end) and read length for each sample (using the pysam package (27) for BAM files and 
the pyfastx package for FASTQ files (28)).  

If the samples supplied are SRA or GEO accessions, then the pysradb python package (29) is implemented to 
query the SRA database and return the following: 

1. The SRA experiment accession 
2. The SRA study accession 
3. The experiment title (author-submitted) 
4. The organism taxonomy ID 
5. The SRA run accession(s) 
6. The library layout (i.e., paired-end or single-end sequencing) 
7. The total number of bases in the run 
8. The total number of spots in the run 

The organism taxonomy ID is then used to query the available genomes list (see Preliminary data preparation) 
and return the most recent genome assembly for the organism to be added to the standardized catalog. Finally, 
the read length is calculated via floor division: 

𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �
𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� 

Where 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the read length, 𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the number of bases, and 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the number of spots in the sequencing 
run. Finally, the configuration is saved for use with downstream functions. 

Check 
The check operation in RLPipes is a useful tool for verifying the configuration with the underlying snakemake 
workflow manager (30) (equivalent of using the dry-run and dag flags in snakemake). It also provides a 
visualization depicting all the jobs which will be run as part of the workflow. 

Run 
All steps in the processing pipeline are run automatically via the snakemake workflow manager (30) using pre-
packaged conda environments. A typical analysis workflow will involve the following procedure: First, raw reads 
in SRA format are downloaded for each SRA run via the prefetch software from NCBI sra-tools (31). Then, reads 
are converted to “FASTQ” format using fastq-dump from sra-tools (31). Next, technical replicates are merged 
and interleaved (in the case of paired-end data) using reformat.sh from bbtools (32). Then, reads are trimmed 
and filtered with fastp (33), generating a quality report.  

For R-loop mapping data, reads are aligned to the appropriate genome using bwa mem (34) or bwa-mem2 (35), 
a faster implementation that users can enable with the bwamem2 flag. Then, alignments are filtered (minimum 
quality score of 10 enforced), sorted, and indexed using samtools (36) and duplicates are marked using 
samblaster (37). Then, peaks are called using macs3 (38) and coverage is calculated using deepTools (39). For 
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RNA-Seq data, reads are aligned to the appropriate transcriptome using salmon quant (17), generating read 
count tables.  

RLHub 
RLHub is an ExperimentHub (23) R/Bioconductor package which provides convenient access to the processed 
datasets available in RLBase. It is available in Bioconductor v3.14 and has built-in accessor functions for quickly 
downloading and caching data. To generate these datasets, the prepRLHub.R script from the RLBase-data 
GitHub repository was executed (see Code availability). Full documentation of all objects and accessor functions 
provided through RLHub is provided by the RLHub reference manual (see Code Availability).  

RLSeq 
RLSeq is an R/Bioconductor package for downstream analysis of R-loop mapping samples. It is available via 
Bioconductor 3.14 and it depends upon the RLHub package. RLSeq contains three primary functions: (1) 
RLRanges, (2) RLSeq, (3) report. The following sections detail the functions in the RLSeq package.  

RLRanges 
The primary class structure used in RLSeq is the RLRanges object, initialized with the RLRanges function. This 
object is an extension of the GRanges class from the GenomicRanges R package (40) to provide additional 
validation and storage for the following slots: 

1. Peaks (the GRanges containing R-loop mapping peaks) 
2. Coverage (a URL or file path to a bigWig file) 
3. Mode (the type of R-loop mapping) 
4. Label (“POS” or “NEG”, the author-assigned label) 
5. Genome (the UCSC genome ID) 
6. Sample name (A sample name used for visualization and reporting) 
7. RLResults (a list-like class for storing the results of RLSeq analysis) 

Analyze R-loop forming sequences (analyzeRLFS) 
R-loop forming sequences are regions of the genome with sequences that are favorable for R-loop formation 
(41). They are computationally predicted with the QmRLFS-finder.py software program (42) and serve as a test 
of whether a sample has mapped R-loops (11). The analyzeRLFS function provides a simple permutation testing 
method for analyzing the enrichment of RLFS within a provided peakset. The full analysis procedure is described 
in detail in our recent work (11). 

Predicting sample condition (predictCondition) 
Following R-loop forming sequences (RLFS) analysis, the quality model is implemented for predicting the sample 
condition (i.e., “POS” if the sample robustly mapped R-loops and “NEG” if the sample resembles a negative 
control). This is accomplished with the predictCondition function which performs all the steps described in detail 
our recent work (11) to render a prediction for each sample.  

The results of this prediction, along with associated features and metadata, are stored in the RLResults-
predictRes slot within the RLRanges object and returned to the user. For more detail, see the RLSeq reference 
manual (see Code availability).  

Feature enrichment testing (featEnrich) 
A custom list of R-loop relevant genomic annotations was curated for the human (hg38) and mouse (mm10) 
genomes (see Genomic annotations) and made available via the RLHub R/Bioconductor package (see RLHub 
annotations). In RLSeq, each annotation type is tested for enrichment within supplied RLRanges, yielding 
enrichment statistics. The procedure for this testing is described in detail our recent work (11). 

Correlation analysis (corrAnalyze) 
The corrAnalyze function performs a sample-level correlation test that can be used to assess sample-sample 
similarity by calculating coverage signal (from genomic alignments) around high-confidence R-loop sites (15). 
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The corrAnalyze function ingests an RLRanges object (with a valid coverage slot) and performs the following 
procedure: (1) the coverage is quantified within the high-confidence sites and added as a column to the signal 
matrix (see gs_signal reference in the RLHub documentation to learn more about this matrix), and (2) then the 
cor function in R is used to calculate the Pearson correlation to yield a correlation matrix. The correlation matrix 
is saved in the RLResults-correlationMat slot of the RLRanges object and returned to the user. 

Gene annotation (geneAnnotation) 
The geneAnnotation function provides a simple procedure for annotating RLRanges peaks with gene IDs by 
overlap. Briefly, gene annotations are automatically downloaded using the AnnotationHub R package (43) and 
then overlapped with the ranges in the RLRanges object using bed_intersect from valr (21). The mapping 
between peak IDs and gene IDs is saved in the RLResults-geneAnnoRes slot of the RLRanges object. 

R-loop regions overlap test (rlRegionTest) 
R-loop regions (RL regions) are R-loop consensus sites generated during the RLBase-data workflow (see R-
loop Regions). The rlRegionTest function uses a simple procedure for finding RL regions which overlap with 
peaks in the supplied RLRanges object. It also calculates the significance and odds ratio of the overlap using 
Fisher’s exact test implemented via the bed_fisher function from the valr R package (21). The results of this test 
are saved in the RLResults-rlRegionRes slot of the RLRanges object. 

RLSeq 
The primary workflow in the RLSeq package can be conveniently run in one step with the RLSeq function. This 
command will run, in order, (1) analyzeRLFS, (2) predictCondition, (3) featureEnrich, (4) corrAnalyze, (5) 
geneAnnotation, (6) rlRegionTest. The results are saved in the corresponding RLResults slots of the RLRanges 
object and returned to the user. 

RLSeq plotting functions 
RLSeq provides a variety of useful plotting functions which summarize and present analysis results: 

1. corrHeatmap – generates a heatmap of the correlation matrix and annotations produced by corrAnalyze 
using either the pheatmap (44) or ComplexHeatmap (45) R packages.  

2. plotEnrichment – generates hybrid violin-box plots showing the Fisher’s exact test odds ratio for each 
annotation calculated in featureEnrich. Importantly, it displays these results for the user-supplied sample 
alongside the distribution of results for the public samples within the RLBase database.  

3. plotRLRegionOverlap – generates a Venn diagram showing the overlap between the user-supplied 
sample peaks and the R-loop regions, along with overlap statistics as calculated by the rlRegionTest 
function. 

4. plotRLFSRes – plots the Z-score distribution or Fourier transform of the Z-score distribution in a metaplot, 
based on the analysis results from analyzeRLFS.  

Report 
The RLSeq report function ingests an RLRanges object which has already been processed by the analysis 
functions in RLSeq. It then uses RMarkdown templates to automatically build a user-friendly HTML report 
showcasing all results with summary tables and plots (see the RLSeq reference for an example HTML report).  

RLBase 
RLBase is written in R shiny (46) and uses the RLBase Amazon Web Services (AWS) S3 bucket as a back-end 
storage solution. Notably, RLBase also includes extensive documentation which provide screenshots of all 
features with verbose descriptions, along with terminology explained, and FAQs. The following sections describe 
the features of RLBase and their methods.  

RLBase datasets 
RLBase contains standardized and reprocessed R-loop mapping data from 693 public samples (RLBase v1.0). 
The data were found via manual curation and reprocessed from raw sequencing reads using the RLPipes 
command-line tool (see Code availability). The data processing workflow is fully documented in our previous 
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work (11). The resulting data was then uploaded to AWS S3 and made available publicly. The data and access 
methods are fully described in the “Downloads” section of the RLBase web server.  

Following sample reprocessing, the data were quality-controlled using the quality control approach developed in 
our previous work (11) which classifies samples as “POS” (expected to map R-loops) or “NEG” (not expected to 
map R-loops). These classifications are also provided in the RLBase datastore and the models are accessible 
via the RLBase “Downloads” page and through the RLHub R package (see Code availability).  

After quality control, high-confidence samples were analyzed to derive R-loop regions (RL regions), consensus 
sites of R-loop formation across the human genome. For details on the procedure used to produce these regions, 
see the description in our previous work (11). The RL regions can be downloaded via the RLBase “Downloads” 
page or through the RLHub R package (see Code availability).  

Samples 
The “Samples” page provides an interactive interface for exploring the 693 samples (RLBase v1.0) contained 
within RLBase. The interface for this tab is divided into three sections: (1) RLBase Samples Table, (2) Table 
Controls, (3) Outputs. The “RLBase Samples Table” is an interactive, searchable, sortable, paginated table built 
with the datatables JavaScript library (via the DT R package) (47). It contains metadata for every sample in 
RLBase. Selecting a row in the table will update the “Outputs” automatically. The “Table Controls” are interactive 
user-interface (UI) elements which control the data displayed in the table and in the outputs.  

The coordination between UI elements, table row selection, and changes in the “Outputs” is due to the built-in 
reactivity of R shiny (46). Caching is also employed to improve the performance of this interface. Finally, the 
“Outputs” display a wealth of information, data, and plots that describe the samples (see Results, RLBase). The 
plots are produced with the built-in plotting functions in RLSeq (see RLSeq plotting functions) and with the plotly 
R package (48).  

R-Loop Regions 
The “R-Loop Regions” page provides an interactive interface for exploring the 64,418 R-loop regions (RL 
regions) uncovered in RLBase v1.0 (see R-loop regions). Like the “Samples” page, it includes three sections 
which interact via the reactivity within shiny (46): (1) RL Regions Table, (2) Table Controls, (3) Outputs. The “RL 
Regions Table” displays the RL regions and their metadata (see R-loop Regions). User-interface (UI) elements 
in the “Table Controls” filter the RL Regions Table based on criteria such as “Repetitive” (overlaps with repetitive 
elements). The “Outputs” show both an interactive summary of the RL region selected in the table, and a plot 
showing the relationship between RL region abundance (log2RLRPM) and RL region expression (log2TPM) (see 
R-loop regions). Finally, this page includes links to an interactive UCSC genome browser session which contains 
an interface for accessing all available coverage tracks and RL region signal tracks.  

Analyze 
The “Analyze” page provides an in-browser interface for analyzing R-loop mapping data. The API is simply the 
RLSeq R package but the interface in RLBase is designed to make these functions accessible to non-
programmers. The sample entry form is used to describe the sample metadata and upload peaks in the manner 
necessary to construct an RLRanges base object (see RLRanges). Notably, no capability to upload coverage 
tracks is provided due to the size limitations of the server. Upon clicking the “Start” button, a background R 
process is launched using the r_bg function from the callr R package (49). Then, the following steps are 
performed: (1) A UUID (universally unique identifier, via the uuid R package (50)) is assigned. (2) The knitr R 
package (51) is used to render a template Rhtml which produces an HTML progress page that is uploaded to 
the AWS S3 location for the user’s sample and which the user is prompted to open. The progress indicator polls 
for updates using a custom JavaScript function and then it updates progressively as the analysis proceeds. (3) 
A sweetalert (via the shinyWidgets R package (52)) is displayed to alert the user that their sample is processing 
and to show them the link for viewing the progress page. (4) The RLRanges function from the RLSeq package 
(see RLRanges) is used to build the RLRanges object. (5) The RLSeq function is run to process all results for 
the sample (see RLSeq). (6) The report function is implemented to knit an HTML report (see report). (7) The 
finished RLRanges, RLSeq HTML report, and log files are all uploaded to the user’s directory (identified only by 
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UUID) in the AWS S3 bucket. (8) The user is alerted via sweetalert that their sample is ready. If there was an 
error, knitr is used to knit the Rhtml error template and this is uploaded instead of the results page along with all 
log files to aid in debugging. For more information on the usage and results of this analysis, see the Results-
RLBase section. 

Download 
The RLBase “Download” page provides convenient access to all processed data generated as part of the 
RLBase-data workflow (see Code availability). Instructions for bulk access via the AWS CLI are provided along 
with fine-grained access options for “Processed data files”, “RLHub downloads”, and “Raw and misc data”. The 
“Processed data files” tab provides an interactive, searchable table constructed with the DT R package (47) that 
provides download links for processed data files, such as peaks and coverage. The “RLHub downloads” panel 
provides a table constructed with the kableExtra R package (53) which includes direct links for downloading the 
data objects in RLHub as well as the functions which can be used to access them via the RLHub R package. 
The “Raw and misc data” panel provides an HTML-based guide to accessing raw and miscellaneous datasets.  

Documentation 
The documentation for RLBase was written in RMarkdown and knitted to an HTML file. The HTML is included in 
the RLBase web application via an iframe.  

Results 
As described in our recent work (Miller et al., 2021), we processed and standardized 693 R-loop mapping 
samples via a purpose-built computational pipeline, RLPipes (Fig. 1A) (11). These data were further analyzed 
using RLHub and RLSeq, R/Bioconductor packages for downstream R-loop data analysis (Fig. 1A) (11). From 
meta-analysis of high-confidence R-loop samples, we derived R-loop regions (RL regions), sites of consensus 
R-loop formation (11). We now present RLBase, a user-friendly webserver which facilitates the exploration of 
public R-loop mapping samples and RL regions, access to standardized and reprocessed datasets, and the 
ability to analyze user-supplied R-loop mapping data in the browser (Fig. 1B). The following describes the 
primary features of RLBase, their usage, and the outputs which they generate. 
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Figure 1. RLBase overview. (A) Graphical illustration showing the processing steps for RLBase. 693 R-loop datasets were downloaded and reprocessed 
using the RLPipes, RLHub, and RLSeq software as described in our recent work (11). RLBase is a shiny web server which was developed based on 
these software and data. (B) Graphical illustration depicting the core functionality of RLBase. RLBase provides the capability to (1) explore R-loop 
mapping samples and generate summary visualizations, (2) explore R-loop regions and view them in the genome browser, (3) analyze user-supplied 
R-loop mapping data in the browser, and (4) download standardized and reprocessed R-loop mapping data.  

Samples 
The “Samples” page (Figure S1) provides the capability to explore the 693 publicly available R-loop mapping 
datasets provided by RLBase (v1.0.0). As described in our recent work, these public R-loop mapping samples 
were reprocessed, standardized, quality controlled, analyzed with genomic feature enrichment analysis, and 
then used to derive R-loop regions (RL regions), sites of consensus R-loop formation (11). These analyses 
yielded a wealth of data which RLBase provides for exploration via the “Samples” page (Figure S1). Notably, 
this exploration is interactive as it contains user controls (Fig. S1A), an interactive data table (Fig. S1B), and 
responsive outputs (Fig. S1C) which provide the user with the capability to select samples and browse the 
visualizations and data relevant to them (Figure 2). 

The sample page output panel (Fig. S1C) contains: (1) The “Summary” panel (Figure S2), (2) The “Sample-
sample comparison” panel (Figure S3), (3) The “Annotation” panel (Figure S4), (4) The “RLFS” panel (Figure 
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S5), (5) the “RL Regions” panel (Figure S6), and (6) the sample “Downloads” panel. The following will describe 
these outputs.  

Summary 
The summary panel provides a high-level overview of all samples in the “RLBase Samples Table” (Fig. S2B-D) 
and of the specific sample selected in that table (Fig. S2A). It is used for examining the representation of various 
R-loop mapping modes, labels, and predictions (Fig. 2A) among the samples selected via the “Table Controls” 
(Fig. S1A). From this interface, the user can also see the summary results for the sample which they select in 
the “RLBase samples table” (Fig. S1A, S2A). From these results, the user can easily explore the data at a high 
level and perform univariate analyses.  

 
Figure 2. Select visualizations generated from RLBase. (A-E) Visualizations produced by RLBase with all modes, “Show labeled 
controls” and “Show predicted control”, and “hg38” genome options selected in the “Table controls”. Additionally, the DRIPc sample 
SRX1070676 was selected in the “RLBase Samples Table”. (A) Donut charts showing the proportions of samples by Mode, Label, and 
Prediction. (B) The sample-sample correlation heatmap from the “Sample-sample comparison” panel. (C) Genomic feature plots showing 
the distribution of ENCODE cis-regulatory element (CRE) feature enrichment within “POS” (predicted to map R-loops) and “NEG” (not 
predicted to map R-loops) samples. The user-selected sample (SRX1070676) is highlighted in each feature. Abbreviations: CTCF – 
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CTCF binding site; enhD – distal enhancer; enhP – enhancer-promoter; K4m3 – H3K4me3 histone modification site; prom – promoter 
site. (D) R-loop forming sequences (RLFS) analysis plot with p value from permutation testing. (E) Venn diagram showing the overlap 
between selected sample ranges (SRX1070676 peaks) and RL regions. P value and odds ratio from Fisher’s exact test.  

Sample-sample comparison 
The next panel, “Sample-sample comparison” (Figure S3), provides the user with visualizations which reflect 
the similarities and differences between the samples selected in the “Table Controls” (Fig. S1A) and reveals the 
relationship between these samples and the single sample which is selected in the “RLBase Samples Table” 
(Fig. S1B). The primary visualizations are a sample-level heatmap (Fig. 2B, S3A) and a PCA plot (Fig. S3B). 
These plots use the Pearson correlation between R-loop mapping samples around high-confidence R-loop sites 
to reveal which samples are most similar with each other and which are most different. These visualizations can 
be used to examine how certain modalities differ from one another and showcase the “false positive” samples 
included in public R-loop mapping data (samples which are expected to map R-loops, but likely do not). 
Moreover, they allow users to explore how an individual sample of interest relates to all other samples within the 
selected data. This can be useful for evaluating how a particular sample relates to those it should be most alike.  

Annotation 
The “Annotation” panel (Figure S4) showcases the results obtained from running the RLSeq featureEnrich 
function for each sample in the dataset. The tabs in the output interface (Fig. S4B) control which annotations 
are displayed at any given time, the “Table Controls” (Fig. S1A) control the background data present in the plot, 
and the selected row in the “RLBase Samples Table” (Fig. S1B) controls which sample is highlighted in the plots 
(Fig. S4C, 2C). Finally, the “Split” selector controls whether the data is split by sample prediction, sample label, 
or whether there is no split (Fig. S4A). The plots display the distribution of feature enrichment results across all 
samples selected, expressed in terms of the log2 odds ratio from Fisher’s exact test (Fig. 2C). These plots allow 
the user to assess both the differences found within the dataset across annotations and a specific sample of 
interest which they want to observe annotations for. These results reveal novel relationships between R-loops 
and genomic features and provide a useful quality metric as we demonstrated in our recent work (11).  

RLFS 
R-loop forming sequences (RLFS) are genomic regions favorable to the formation of R-loops (16, 42). Moreover, 
they can be used to assess R-loop mapping sample quality, as we recently demonstrated in describing our RLFS 
analysis method and R-loop quality model (11). RLFS analysis was performed for each sample in RLBase via 
the RLSeq analyzeRLFS function. The resulting analysis plot, generated via the RLSeq plotRLFSRes function 
are provided for each sample in RLBase (Fig. 2D, S5C). The “RLFS” panel provides this plot along with other 
outputs which can be used to assess sample quality (Figure S5): (1) a permutation testing plot (Fig. S5B) as 
obtained from the plot method within the regioneR package, (2) an RLFS plot with Fourier transform applied 
(Fig. S5D), which pertains to the features used by the quality model to render a quality prediction, and (3) a 
summary of the results from quality analysis (Fig. S5A). These results together give the user the ability to assess 
the quality of each sample.  

RL Regions 
R-loop regions (RL regions) are consensus sites of R-loop formation discovered from the meta-analysis of high-
confidence R-loop mapping samples, as we described in our recent work (11). The overlap of each sample in 
RLBase with these RL regions was calculated via the RLSeq rlRegionTest function. The visualization and full 
data table associated with these results is provided in the “RL Regions” panel (Figure S6). The visualization is 
a Venn diagram showing the overlap of the peaks in the user-selected sample with the RL regions (Fig. 2E, 
S6A). The p value and odds ratio are derived from the Fisher’s exact test. The RL region table is also provided 
(Fig. S6B), which lists all the RL regions uncovered by the peaks in the user-selected sample. These results 
provide the user with the capability to explore the degree of overlap between RL regions with the sample they 
select. It also allows the user to view the specific RL regions which were uncovered in the selected sample.  

R-Loop Regions 
The “R-Loop Regions” tab (Figure S7) provides the tools necessary to explore consensus sites of R-loop 
formation (RL regions) derived from high-confidence RLBase samples, as described in our recent work (11). 
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These regions contain a wealth of metadata, including their ID, genomic location, associated genes, and 
confidence level (Fig S7B). The user is provided with “Table Controls” (Fig. S7A) that allow them to control 
which RL regions are displayed and how gene names are shown. The “All genes” checkbox allows the user to 
control whether all genes overlapping an RL region are displayed, or whether only well-annotated genes are 
shown (those which appear in pathway databases). The “Repetitive regions” checkbox controls whether to show 
RL regions which overlap with repetitive genomic sequences, such as pericentromeric regions. Finally, the 
“Correlated with expression” checkbox will, if selected, only show the RL regions for which a significant 
correlation between R-loop abundance and gene expression was observed. The output panel (Fig. S7D) 
displays a summary of the RL region currently selected in the “RL Regions Table” (Fig. S7B) and displays a 
correlation plot showing the relationship between R-loop abundance and gene expression levels.  

 
Figure 3. RLBase genome browser session. The browser session includes representative RLBase sample coverage tracks alongside 
S9.6 and dRNH consensus signal, RL regions, CpG islands, R-loop forming sequences (RLFS), and ENCODE cis regulatory elements 
(CREs). The screen capture shown here was taken in the area surrounding the CALM2 gene.  

Finally, the RLBase UCSC genome browser session is provided (Figure 3, S7C). This browser session provides 
access to all the human R-loop mapping samples in RLBase along with consensus signal, peaks, RL regions, 
RLFS, and other relevant annotations. Taken together, these features provide the user with the capability to 
explore RL regions, observe their association with expression, and view them alongside all other datasets in 
RLBase in the UCSC genome browser.  

Analyze 
The “Analyze” page (Figure S8) provides users with the ability to analyze their own R-loop mapping data in the 
browser without the need for bioinformatics skill. To analyze their data, a user provides metadata about the 
sample to be analyzed (Fig. S8A), the peaks (in BED format) for the sample (Fig. S8B), and agrees to the 
privacy policy (Fig. S8C). Having performed these steps, the user selects “Start” and launches the analysis job. 
The user is presented with the results link which will show the progress of the analysis and, when completed, 
will update to show the analysis results (Figure S9). The results page contains a verbose description of the 
analysis (Fig. S9A), the progress indicator (Fig. S9B), and a table with sample metadata and the results (once 
available) (Fig. S9C). These results contain the RLSeq report which details the analysis results, the RLRanges 
R data object which the user can load in an R session for further analysis, and the logs generated by the analysis, 
which are useful for debugging should an error be encountered. Taken together, the “Analyze” page provides 
users with an easy and convenient in-browser interface to the RLSeq functions used for analysis, yielding quality 
reports which have a permalink suitable for sharing.  
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Download and Documentation 
The “Download” page provides direct links to download all processed files associated with RLBase, including 
verbose descriptions of each item and of programmatic methods for accessing these data. It also includes 
instructions for how to download the alignment (BAM) files for each sample and how to access processed 
datasets via the RLHub R/Bioconductor package. Finally, the “Documentation” page provides verbose 
descriptions of features and addresses terminology and technical concepts which may need additional 
explanation.  

Conclusion 
RLBase is a user-friendly web server for the exploration and analysis of R-loop data. It extends accessibility to 
the novel methods and data resources we developed as part of our recent work (11) by providing the capability 
to (1) explore 693 reprocessed and standardized R-loop mapping datasets, (2) explore R-loop regions 
(consensus sites of R-loop formation), (3) analyze user-supplied R-loop datasets, and (4) download all the 
processed and standardized data generated as part of our previous work (11). Moreover, the RLSuite software 
collection (RLPipes, RLHub, RLSeq, and RLBase) provides a robust infrastructure for R-loop bioinformatics. 

Code Availability 
All software developed as part of this project are available publicly under MIT license. Purpose-built software 
packages used include (1) RLSeq (available via Bioconductor) - 
https://bioconductor.org/packages/devel/bioc/html/RLSeq.html, (2) RLHub (available via Bioconductor) - 
https://bioconductor.org/packages/devel/data/experiment/html/RLHub.html, (3) RLPipes (available via 
Bioconda) - https://anaconda.org/bioconda/rlpipes, (4) RLBase (available via GitHub) - 
https://github.com/Bishop-Laboratory/RLBase.  

Additionally, the scripts used for preprocessing of all data provided in RLBase are available from the RLBase-
data GitHub repository: https://github.com/Bishop-Laboratory/RLBase-data. 

Data Availability 
All data are made available through the RLHub R/Bioconductor package and the RLBase web interface. RLBase 
URL: https://gccri.bishop-lab.uthscsa.edu/rlbase/. RLHub URL: 
https://bioconductor.org/packages/devel/data/experiment/html/RLHub.html. 
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