

1 **Self-organization of Tissue Growth by Interfacial Mechanical
2 Interactions in Multi-layered Systems**

3

4 Tailin Chen^{1,4,#}, Yan Zhao^{3,#}, Xinbin Zhao¹, Shukai Li¹, Jialing Cao¹, Jing Du^{1,4,6*},
5 Yanping Cao^{2,*}, and Yubo Fan^{1,4,5*}

6

7 ¹ Key Laboratory for Biomechanics and Mechanobiology of Chinese Education
8 Ministry, School of Biological Science and Medical Engineering, Beihang University,
9 Beijing 100191, China

10 ² Institute of Biomechanics and Medical Engineering, Department of Mechanical
11 Engineering, School of Aerospace, Tsinghua University, Beijing 100084, China

12 ³ State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,
13 College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082,
14 China

15 ⁴ Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University,
16 Beijing 100191, China

17 ⁵ Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the
18 Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids,
19 Beijing 100176, China

20 ⁶ Lead Contact

21 [#] These authors contributed equally

22

23 * Correspondence: dujing@buaa.edu.cn (J.D.), caoyanping@tsinghua.edu.cn (Y.P.C.),
24 yubofan@buaa.edu.cn (Y.B.F.)

25

26 Abstract

27 Morphogenesis is a spatially and temporally regulated process involved in various
28 physiological and pathological transformations. In addition to the associated
29 biochemical factors, the physical regulation of morphogenesis has attracted increasing
30 attention. However, the driving force of morphogenesis initiation remains elusive. Here,
31 we show that during the growth of multi-layered tissues, morphogenetic process can be
32 self-organized by the progression of compression gradient stemmed from the interfacial
33 mechanical interactions between layers. In tissues with low fluidity, the compression
34 gradient is progressively strengthened during growth and induces stratification by
35 triggering symmetric-to-asymmetric cell division reorientation at the critical tissue size.
36 In tissues with high fluidity, compression gradient is dynamic and induces cell junction
37 remodelling regulated cell rearrangement leading to 2D in-plane morphogenesis instead
38 of 3D deformation. Morphogenesis can be tuned by manipulating tissue fluidity, cell
39 adhesion forces and mechanical properties to influence the progression of compression
40 gradient during the development of cultured cell sheets and chicken embryos. Together,
41 the dynamics of compression gradient arised from interfacial mechanical interaction
42 provides a conserved mechanism underlying morphogenesis initiation and size control
43 during tissue growth.

44

45

46

47 Key words: compression gradient, interfacial interaction, morphogenesis,
48 biomechanics, self-organization, tissue fluidity

49

50 **Introduction**

51 Morphogenesis is a common process that occurs widely in embryonic development,
52 tissue regeneration and cancer progression. The orchestration of morphogenetic
53 processes is complex and involves spatial and temporal regulation by biochemical
54 factors (e.g., cell polarity signals and morphogen gradient) and physical factors (Gallet,
55 2011; Heisenberg and Bellaiche, 2013; Nishimura and Takeichi, 2008). Emerging
56 studies have revealed that proper morphogenesis relies on the mechanical force of the
57 cells and their environment. For example, apical constriction of cells caused by the
58 contractility of myosin (Martin et al., 2009), cell junction remodelling (e.g., cell
59 intercalation) (Rauzi et al., 2010) and tissue stiffness-dependent cell migration (Barriga
60 et al., 2018) have been reported as important mechanisms in tissue shaping during
61 embryonic development. These studies indicate the essential functions of cellular and
62 molecular mechanics in the progression of morphogenesis. However, the upstream
63 events, especially the initial driving forces of morphogenesis, remain unknown.

64 Most biological tissues have multi-layered structures. The interactions between
65 layers are essential in tissue homeostasis maintenance and morphogenesis during
66 embryonic development and pathological progression (Bhowmick and Moses, 2005;
67 Carvalho and Heisenberg, 2010; Lilly, 2014). For example, the interaction between
68 cancer cells and their adjacent stroma plays a key role in the progression of the diseases,
69 including tumour invasion (Gupta and Massague, 2006; Mueller and Fusenig, 2004).
70 In addition to biochemical communications, increasing evidence has shown the
71 essential role of physical interactions between adjacent layers in the regulation of
72 morphogenesis (Bailles et al., 2019; Barriga et al., 2018; Carvalho et al., 2009; Munster
73 et al., 2019). For instance, follicle formation in chicken embryos is initiated by

74 mechanical forces transduced from the dermal layer to the epidermal layer (Shyer et al.,
75 2017). The villi of human and chicken guts are formed by the compressive stresses
76 generated by smooth muscle layers on the endoderm and mesenchyme layers (Shyer et
77 al., 2013). These studies reveal that morphogenesis processes are dependent on the
78 mutual collaboration and mechanical compatibility of multiple layers. In this sense, it
79 is necessary and important to address the general mechanism underlying the initiation
80 of morphogenesis during the growth of various multi-layered tissues.

81 Here, by combining *in vitro* and *in vivo* biological experiments, theoretical analysis
82 and numerical simulations, we report a general mechanism underlying the initiation of
83 morphogenesis driven by the progression of compression gradient stemmed from the
84 interfacial mechanical interactions between growing tissue layers.

85

86

87 **Results**

88 **Progressive compression gradient is strengthened in epidermal layer during**
89 **chicken feather follicle morphogenesis**

90 During the development of avian skin, the feather follicles develop by the
91 stratification of single-layered epidermis (Mayerson and Fallon, 1985). In the *in vitro*
92 culture of chicken skins, we found that the feather primordia emerged at Day 2 in
93 cultured epidermis combined with dermis after isolation from HH30 stage embryos
94 (Figure 1a-c). However, when epidermal cell sheet was isolated and cultured alone
95 (without dermal cell layer), it failed to stratify and no primordium was formed (Figure
96 1b and c), indicating that the interaction between epidermal and dermal layers is
97 essential for the morphogenetic process of epidermal cell sheet. Moreover, during the
98 evolution of epidermis from monolayer to multilayer, the shapes of epidermal cells
99 showed significant alteration from flat to columnar and correlated with the stages in
100 embryo development and with the increased epidermal cell layer number (Figure 1d
101 and e). The deformation degree of epidermal cells was gradually declined with the
102 increased distance to the primordium center (Figure 1f and g). These experimental
103 observations indicate that in the beginning of follicle morphogenesis, a local
104 compression gradient was progressively strengthened in the epidermal cell sheet
105 accompanied with the 3D deformation of epidermis. According to our previous studies
106 about the surface wrinkling pattern formation in a non-living chemical film/substrate
107 composite soft material, the progression of compression gradient could be generated by
108 mismatch deformation between adjacent layers through interfacial mechanical
109 interactions, which leads to intriguing morphogenesis (Han et al., 2015; Zhao et al.,
110 2015a) (Figure S1). Indeed, it has been reported that during the development of chicken

111 skins, dermal cells form aggregations and compress the adjacent epidermal cells to form
112 follicle primordium (Ho et al., 2019; Shyer et al., 2017). Thus, we hypothesize that the
113 mismatch deformation between epidermal and dermal layers by dermal cell aggregation
114 generates compression gradient through interfacial mechanical interactions and causes
115 stratification of epidermis. However, whether tissue stratification could be triggered by
116 the mechanical interactions between adjacent layers during tissue growth remains
117 elusive.

118

119 **3D tissue morphogenesis could be self-organized at a critical size in multi-layered**
120 **system**

121 To study the role of interfacial mechanical interactions between layers in the
122 initiation of tissue morphogenesis, we developed a simple film/substrate system
123 composed of a freely growing monoclonal cell sheet and extracellular matrix (ECM)
124 (Figure 2a). To ensure the occurrence of stratification, cells without contact inhibitory
125 properties were studied. During the continuous live imaging, the emergence of a 2D
126 monolayer-to-3D multilayer transition was stably observed at a critical tissue size in a
127 wide variety of cell types including skin-derived cells (B16F10). The critical size was
128 relatively constant for a given cell type, indicating a self-organized mechanism of
129 morphogenesis during cell sheet growth (Figure 2a-e). In addition, similar phenomenon
130 was observed in different types of ECM as well as altered substrate stiffness (Table S1).
131 The behaviours of individual cells during cell sheet growth prior to the 3D
132 morphogenesis transition were examined using a holographic imaging cytometer.
133 Although the cell proliferation rate was negligibly altered during cell sheet expansion
134 (Supplementary Figure S2a), the average area of individual cells significantly
135 decreased, and the average cell thickness concurrently increased during cell sheet

136 growth, indicating significant cell deformation (Figure 2f-h). Moreover, the largest cell
137 deformation was observed at the central region of the cell sheet (Figure 2i-l). Single
138 cell tracing of cell deformation also suggested significant compression of cells in the
139 central region of cell sheet (Supplementary Figure S3). This cell deformation behaviour
140 indicates that during cell sheet growth, a compression gradient within the cell sheet
141 emerges. To further verify the compression gradient, a scratching experiment was
142 performed crossing the center to the edge of the cell sheet. After scratching, cells in the
143 central region showed much faster expansion and migration speed compared with
144 peripheral cells, indicating the release of compressive strain (Figure S4). Similar
145 mechanical gradients have also been obtained by Traction Force Microscope (TFM)
146 and Monolayer Stress Microscopy (MSM) in previous studies (Perez-Gonzalez et al.,
147 2019; Puliafito et al., 2012; Trepaut et al., 2009).

148 To investigate the generation mechanism of compression gradient in the cell sheet
149 during growth, we performed theoretical analysis. As illustrated in Figure 3a, the cell
150 sheet is considered as continuum material. During cell sheet expansion caused by cell
151 proliferation, interfacial shear stress (ISS) would be generated between the cell sheet
152 and substrate layers. Since the direction of ISS is contrary to the relative motion
153 between the adjacent layers, the cell sheet is subjected to ISS directed toward the center,
154 which is consistent with the previous observations by TFM (Trepaut et al., 2009). Thus,
155 cells in the central region of the cell sheet would sustain higher level of compression
156 than those in other regions (Figure 3a and Supplementary Mechanical Modelling),
157 which is confirmed by the experimental observations (Figure 2i-l). The elastic strain
158 energy stored in the cell would increase with the expansion of cell sheet. When the
159 elastic strain energy in the cell is small, interfacial normal adhesion would impose
160 restriction on delamination, making the cell monolayer grow in plane. Thus, higher

161 compressive strain would be generated further. When the compressive strain reaches a
162 critical value, elastic strain energy stored in the cell may be greater than the energy of
163 interfacial normal adhesion and led to the occurrence of interfacial delamination. In this
164 critical condition, stratification may happen, and the elastic strain energy can be
165 released (Supplementary Mechanical Modelling). Indeed, we found that when cell
166 sheet grew beyond the critical size, amounts of cells in the central region were
167 delaminated from the substrate (Figure 3b). Theoretical analysis can also give valid
168 quantitative predictions of experiments. First, theoretical results of the distribution of
169 cell areas agree well with the experimental results during cell sheet expansion (Figure
170 3b). According to the theoretical analysis, the critical size of the cell sheet for 3D
171 morphogenesis depends on the mechanical properties of cell sheet and substrate and
172 interactions between them. This is confirmed by finite element simulations which well
173 resembled the morphogenesis at the cell sheet center and also indicated that, when the
174 compressive strain exceeded the critical value, alterations in the cell-substrate
175 interactions could significantly affect the compression gradient during cell sheet growth
176 (Figure 3d and Supplementary Mechanical Modelling). Moreover, experimentally
177 manipulating cell-substrate interactions using the integrin inhibitor RGD significantly
178 attenuated the compression gradient and morphogenesis (Figure 3e-g). In addition,
179 inhibition of the contractility of the cell sheet using the cytoskeleton inhibitor
180 blebbistatin or myosin shRNA significantly disrupted the compression gradient and
181 morphogenesis (Figure 3e-g and Supplementary Figure S5). Based on the theoretical
182 analysis, adhesion between cells may also affect the compression gradient. Consistently,
183 inhibition of the cell-cell adhesion force by an E-cadherin neutralizing antibody also
184 reduced the maximum compressive strain in the cell monolayer and inhibited the
185 morphogenetic process (Figure 3e-g). These results show that the emergent 3D

186 morphogenesis of a cell sheet/substrate system could be physically triggered by
187 interfacial mechanical interactions between adjacent layers during growth.

188

189 **Critical Compression triggers symmetric-to-asymmetric reorientation of cell**
190 **division**

191 We proceeded to investigate the biological mechanism of the cell layer number
192 increase in the central region of the cell sheet induced by cell layer/substrate interfacial
193 interaction. We found that, in contrast to symmetric (parallel) cell division in the
194 peripheral region of large cell colonies, abundant asymmetric (oblique or perpendicular)
195 cell division was observed in the central cells which bore significant compressive
196 strains (Figure 4a-f). The orientation of the division plane was closely correlated with
197 cell thickness (Figure 4f). Moreover, after release of compressive strain by cell
198 scratching, the reorientation of cell division was diminished (Figure S6), indicating the
199 effect of compression gradient on cell division orientation. This asymmetric cell
200 division ultimately led at least one daughter cell to locate at the top layer of the cell
201 sheet (Figure 4g and Supplementary Movies 1 and 2). The cell division reorientation
202 induced by compression gradient was also confirmed by the subcellular localization of
203 the nuclear-mitotic apparatus protein (NuMA), which is involved in the orchestration
204 of mitotic spindle positioning (Pirovano et al., 2019) (Figure 4h). Moreover, spindle-
205 rocking experiments indicate that cells in the central region showed a significantly
206 higher level of metaphase plate oscillations which is always associated with asymmetric
207 cell division (Haydar et al., 2003) (Figure 4i). These results suggest that compression
208 gradient induced by interfacial interaction between layers triggers cell division
209 reorientation from symmetric to asymmetric leading to tissue stratification.

210

211 **Tissue fluidity controls 2D/3D morphogenetic transition by regulating**
212 **compression gradient progression**

213 Our experimental results show large variations in the critical sizes of cell sheets for
214 3D morphogenesis among different cell types with critical diameter ranging from 356
215 mm in HeLa to 1997 mm in U2OS cells (Figure 2e). Notably, some cell types, such as
216 Madin-Darby canine kidney (MDCK) cells, did not display stratification during our
217 observations. To further investigate the intrinsic properties of tissue layers that affect
218 the emergent morphogenesis, we compared cell behaviours during cell sheet growth
219 between HeLa and MDCK cells. First, in order to exclude the influence of contact
220 inhibition on MDCK cell behaviour, we measured cell proliferation rate and cell density
221 alterations during cell sheet growth. As shown in Supplemental Figure S2b and d,
222 MDCK cells did not show contact inhibition during our observation. Moreover,
223 according to the previous report that MDCK cell sheet did not display contact inhibition
224 until a critical size of approximately $2 \times 10^6 \mu\text{m}^2$ (Puliafito et al., 2012). In our
225 experiment, the cell sheet size of MDCK colony was below $1 \times 10^5 \mu\text{m}^2$. Thus, the
226 differential behavior of MDCK cell sheet was not caused by contact inhibition.
227 Interestingly, we found that, instead of 3D morphogenesis, MDCK cell sheet showed
228 dramatic alterations in its in-plane shape during growth, with dynamically organized
229 protrusions at cell sheet edges, indicating an emergent 2D morphogenesis
230 (Supplementary Figure S7). While few differences in the proliferation rate were
231 observed between these two cell types (Supplementary Figure S2a and b), expansion
232 rate was significantly higher in MDCK cell sheet than in HeLa cell sheet during growth
233 (Supplementary Figure S2c and d). Importantly, in contrast with the HeLa cell sheet
234 behaviour, the MDCK cell sheet did not show progressive compression gradient
235 strengthen during growth (Figure 5). Moreover, while the individual cell area in the

236 HeLa cell sheet was relatively steady, MDCK cells exhibited strong area fluctuation
237 during cell sheet growth (Figure 6a and b). Particle imaging velocimetry (PIV) analysis
238 showed that during cell sheet expansion, MDCK cells displayed rapid collective
239 cellular motion with a higher overall cell velocity (root-mean-square, rms velocity, v_{rms}),
240 indicating a fluid-like state (Garcia et al., 2015). In contrast, the collective behaviour of
241 HeLa cells showed slower cell motion, indicating a relatively solid-like state (Figure
242 6c, d and Supplementary Movie 3). The fluidity of these two cell types was further
243 confirmed by the cell shape index p_0 , the median ratio of the perimeter to the square
244 root area of the cells. According to the vertex model, if the cell shape index of the
245 system increases to $p^*_0 \approx 3.81$, a transition from a jammed, solid-like state to an
246 unjammed, fluid-like state occurs (Bi et al., 2015). Over the course of cell sheet growth,
247 the average cell shape index of MDCK cells was constantly above 3.81, whereas HeLa
248 cells approached the jamming threshold p^*_0 (Figure 6e and f). Moreover, the cell shape
249 index was lower in the central region than in the peripheral region of the HeLa cell
250 sheet (Supplementary Figure S8). At the edges of MDCK cell sheet, especially during
251 the formation of protrusions, significant collective cell migration (Figure 5a and
252 Supplementary Movie 4) and abundant cell intercalations such as T1 transitions and
253 rosettes formation were observed (Figure 7a and b). Cell intercalation is reported as a
254 mechanism for driving tissue extension in embryonic development (Guillot and Lecuit,
255 2013) and could be controlled by external constraints acting on the tissue (Aigouy et
256 al., 2010). In our experiment, most of cell intercalation was observed in cells with
257 relatively smaller areas (less than $300 \mu\text{m}^2$), indicating a high level of compressive
258 strain (Figure 7c). Moreover, the cell junction remodelling during intercalation process
259 was closely correlated with the 2D deformation of cell sheet, indicated by the small
260 angles between new junctions and tissue protrusion directions (Figure 7d) and higher

261 tissue elongation rate at the direction of new junctions (Figure 7e). To investigate the
262 effect of the tissue fluidity on the 2D/3D morphogenetic transition, cellular migration
263 ability was inhibited using the small GTPase Rac1 inhibitor NSC23766 (Raftopoulou
264 and Hall, 2004). The results showed that Rac1 inhibitor treatment significantly reduced
265 tissue fluidity (Figure 7f and g and Supplementary Movie 5) and induced higher level
266 of compressive strain in MDCK cell sheet (Figure 7h and i). Importantly, treatment of
267 NSC23766 significantly promoted the emergence of tissue stratification (Figure 7j). In
268 comparison, inhibition of Rho-associated, coiled-coil containing protein kinase (ROCK)
269 by Y27632 slightly enhanced tissue fluidity of MDCK cells (Figure 7f and g and
270 Supplementary Movie 5) and had little effect on morphogenesis (Figure 7h-j). These
271 results suggest that the morphogenesis driven by interfacial mechanical interactions
272 between tissue layers is dependent on tissue fluidity that higher level of tissue fluidity
273 may prevent the storage of the compressive strain energy through in-plane cell motion.
274

275 **Progression of compression gradient contributes to epidermal cell stratification
276 during chicken skin development**

277 Asymmetric cell division is a common mechanism involved in tissue stratification
278 and cell fate differentiation during embryogenesis and cancer progression (Lechler and
279 Fuchs, 2005; Neumuller and Knoblich, 2009). There is evidence that during the
280 development of chicken skins, the deformation of basement membrane between
281 epidermis and dermis by the aggregation of dermal cells plays crucial role for the
282 initiation of follicle primordium formation (Ho et al., 2019; Shyer et al., 2017).
283 According to our results, tissue stratification could be initiated by the mechanical
284 interaction at interface between adjacent layers through compression-induced cell
285 division reorientation. Thus, we proceeded to verify whether this mechanism is applied

286 to the stratification of epidermis during chicken feather follicle morphogenesis. First,
287 we compared the cell division orientation of the epidermis in single-layered stage and
288 multi-layered stage during skin development. We found that when epidermis was
289 stratified, most of the mitotic spindles of epidermal cells were reoriented from
290 symmetric to asymmetric and the spindle-axis angle was closely correlated with cell
291 deformation degree (Figure 8a-c). Moreover, reinforcing the progression of
292 compression gradient by reducing tissue fluidity using Rac1 inhibitor significantly
293 promoted the progression of epidermis stratification and follicle formation, indicated
294 by the epidermal cell layer number and pattern geometry of follicle primordium (Figure
295 8d-i). Reducing tissue fluidity also increased the nuclear localization of β -catenin
296 protein, indicating the promotion of follicle cell fate determination (Figure 8h and i). In
297 addition, disrupting the interfacial mechanical interaction between epidermal and
298 dermal layers by inhibiting epidermal cell/base membrane adhesion using integrin
299 inhibitor largely attenuated the morphogenesis of primordium (Supplementary Figure
300 S9). Thus, our findings suggest a model for the initiation of epidermis stratification
301 during feather follicle formation that dermal cell aggregation induces mismatch
302 deformation between epidermal layer and basement membrane which generates
303 progressive compression gradient in epidermal layer and the latter triggers cell division
304 reorientation leading to epidermis stratification.

305

306 **Discussion**

307

308 In this work, we propose a self-organization mechanism for the initiation of
309 morphogenesis during tissue growth in which a progressive compression gradient
310 caused by macroscopic interfacial mechanics drives the initiation of morphogenesis at
311 certain developing stages in multi-layered tissues. Our experiments and theoretical
312 analysis show that mismatch deformation between adjacent layers during tissue growth
313 induces progression of compression gradient by interfacial interactions which triggers
314 cell delamination and cell division reorientation in solid-like state tissues and ultimately
315 induces 3D deformation and tissue stratification. Meanwhile, in fluid-like state tissues,
316 the interaction between adjacent layers induced dynamic progression gradient leading
317 to 2D tissue deformation instead of 3D deformation (Figure 8j). We also proposed the
318 crucial role of progressive compression gradient in epidermis generated by the
319 interaction between epidermal and dermal layers in the initiation of epidermal cell
320 stratification during chicken skin development. Interestingly, in zebrafish embryos, the
321 friction force between mesoderm and neurectoderm layers during cell moving has been
322 reported to be a key determinant in the positioning of neural anlage (Smutny et al.,
323 2017). Thus, interfacial mechanical interaction between adjacent layers may be a
324 conserved force origin during embryonic development. Resembling to the instability
325 process in film/substrate material system, we regard the cell sheet as a film, which is
326 subjected to the interfacial shear stress during cell sheet expansion. Thus, the growing
327 cell sheet will be compressed and buckled. We found that cell-cell adhesion, cell-
328 substrate adhesion, and cell fluidity all affected the degree of cell sheet compression
329 and tissue stratification. Interestingly, recent studies regard the process of cell
330 aggregation and layering as the wetting problem and also reveal that inhibiting cell
331 contraction, cell-to-cell adhesion, and cell-to-substrate adhesion have significant

332 influences on the dewetting process (Perez-Gonzalez et al., 2019; Ravasio et al., 2015).

333 Morphogenetic processes always occur at certain developmental stages during tissue
334 growth. In *Drosophila* wing disc development, different cell proliferation rates induce
335 mechanical strain to shape tissues and control tissue size by regulating proliferation and
336 division orientation (Legoff et al., 2013; Mao et al., 2013). In our experimental model,
337 2D and 3D morphogenetic process emerges at the critical tissue size, which is
338 determined by the critical value of the compressive strain generated by interfacial
339 interaction during tissue growth. This macroscopic mechanical dissipation provides a
340 possible regulatory mechanism for the spatiotemporal control of morphogenesis and
341 size control of growing tissues. It has been recognized that crowding is a common
342 phenomenon in physiological and pathological processes and regulates tissue
343 homeostasis maintenance (Eisenhoffer et al., 2012; Marinari et al., 2012). A recent
344 study reports that during the development of zebrafish heart, proliferation-induced
345 crowding leads to tension heterogeneity that drives cell stratification (Priya et al., 2020).
346 According to our results, critical compressive strain has profound effects on cell
347 behaviours, including cell delamination, cell division reorientation and in-plane cell
348 rearrangement, which all contribute to tissue shaping, homeostasis maintenance and
349 size control. Moreover, in our model experiment, the compression gradient is
350 autonomously generated by tissue growth and therefore can well simulate the *in vivo*
351 crowding conditions with the controlled crowding levels.

352 As an important characteristic of tissues, fluidity (jamming/unjamming state) is
353 determined by collective cell motion and dynamically altered during tissue growth
354 (Sadati et al., 2013). Recent studies suggest that tissue fluidity plays crucial roles in
355 homeostasis maintenance and tumour invasion (Garcia et al., 2015; Miroshnikova et al.,
356 2018; Park et al., 2016). Saadaoui *et al.* reported that myosin contractility-induced

357 global tissue flow contributed to morphogenesis during avian gastrulation (Saadaoui et
358 al., 2020). In our work, we found that tissue fluidity could affect the local accumulation
359 of compressive strain under interfacial interaction between adjacent layers, which
360 finally regulates tissue deformation patterns (2D or 3D). These findings may provide
361 insights into the regulatory mechanism underlying morphogenesis by tissue fluidity.

362 There is no doubt that mechanical forces play essential roles in the regulation of
363 morphogenesis. The role of cell-scale forces generated by cytoskeleton contraction and
364 transmitted by cell adhesions has been intensively studied in regulating tissue
365 morphogenesis (Heisenberg and Bellaïche, 2013). However, the upstream regulation
366 mechanism of these molecular machines, especially at the tissue scale, is rarely
367 investigated. Our results reveal that progression of compression gradient controlled by
368 the tissue-scale interfacial shear stress has propounding effects on local cell
369 delamination, reorientation of division plane and cell intercalation to initiate
370 morphogenesis. Moreover, the interfacial mechanics could be stemmed from mismatch
371 deformation during cell migration, aggregation, proliferation, *etc.* Thus, this scale-
372 spanning mechanical loop from the cell scale to the tissue scale and then returns to the
373 cell scale may be a fundamental self-organized mechanism during morphogenetic
374 process in growing multi-layered tissues. Further study is needed to elucidate the
375 molecular mechanotransduction mechanism underlying the regulation of these cell
376 behaviours by the progression of compression gradient under interfacial mechanical
377 interactions.

378 Taken together, our findings unveil a self-organized mechanism that drives the
379 initiation of morphogenesis in growing multi-layered tissues. These results also open
380 up a new avenue that tissue-scale forces regulate cell behaviours, which could in turn
381 facilitate tissue self-organization.

382

383 Materials and Methods

384 Cell culture and Immunofluorescence

385 HeLa, HepG2, Madin-Darby canine kidney (MDCK), MDA-MB-231, U2OS, B16F10
386 cells were cultured in DMEM medium (containing with 4.5 g/L glucose, L-glutamine,
387 and sodium pyruvate) supplemented with 10% FBS (Life technologies, CA, USA), and
388 100 IU/mg penicillin-streptomycin (Life technologies, CA, USA) and 1 % (v/v) NEAA
389 (Life technologies, CA, USA). For the experimental treatment, we use clones of cells
390 grown for the same amount of time. The pharmacological agents were added including
391 Blebbistatin (sigma, 25 μ M), RGD (Abcam, 50 μ g/ml), E-cadherin neutralizing
392 antibody (Biolegend, 10 μ g/ml), NSC23766 (Abmole, 20 μ M), Y27632 (Abmole, 20
393 μ M) if applicable. Images were taken on the Nikon microscope. Cells were grown at
394 37 °C in an incubator with 5% CO₂. Cells grown on glass bottom dishes were fixed
395 with 4% paraformaldehyde for 10 min at room temperature. Incubate the cells with 5%
396 BSA, in PBST (PBS+0.1% Tween 20) for 2 hours. Cells were incubated with primary
397 antibodies at the optimal concentrations (according to the manufacturer's instructions)
398 at 4 °C overnight. After washing, cells were incubated for 2 hours with secondary
399 antibodies: 488/568/633 IgG (H+L) and/or Alexa Flour 568/647 phalloidin (Invitrogen)
400 for 1 hour. Cell nucleus were stained with DAPI (4',6-diamidino-2-phenylindole,
401 Invitrogen) for 10 min at room temperature. Confocal images were taken on the Leica
402 microscope equipped with a 10x, 40x or 63x objective. Experiments were replicated at
403 least three times.

404

405

406

407 **Live imaging**

408 Live cell imaging was performed in Leica microscope or HoloMonitor M4, enclosed in
409 an incubator to maintain the samples at 37 °C and 5% of CO₂ throughout the
410 experiments. Images were acquired every 10 min with Leica software. Spindle-rocking
411 experiments were acquired every 3 min with Leica microscope. HoloMonitor M4 is a
412 Quantitative phase imaging-based cell analyzer utilizing the principle of digital
413 holographic microscopy. Live cell imaging was performed in HoloMonitor M4,
414 enclosed in an incubator to maintain the samples at 37 °C and 5% of CO₂ throughout
415 the experiments. Images were acquired every 10 min with HStudio 2.7.

416

417 **PIV (Particle Image Velocimetry) measurement**

418 PIV analysis was conducted using a custom algorithm based on the MatPIV software
419 package for MATLAB. We used a series of live cell images of HeLa and MDCK to
420 calculate the velocity of the cells in the cell sheet. The mean velocity was subtracted
421 from calculated velocity fields to avoid any drift-related bias and to get the velocity
422 fields of the cells (the net movement of the cell cluster for its drift is less than 10% and
423 can be ignored). The heat maps of magnitude are also exported subtracting the mean
424 velocity. From the exported text files, we measured the overall cell speed, or root-mean-
425 square (rms) velocity vrms and calculated the average vrms of each type of cell. The
426 correlation algorithm was coded using MATLAB in our lab. Experiments were
427 replicated at least three times.

428

429

430

431 **Image processing, segmentation and quantification**

432 Cell data analysis of HoloMonitor M4: Cell area, cell thickness, cell sheet area and cell
433 sheet thickness were analyzed by the software HStudio 2.7. HStudio 2.7 can
434 automatically segment and extract physical parameters of the cell. For more details,
435 please refer to the official manual.

436 The area of cell clones and individual cells: Cell boundary labeling and areas were
437 determined manually in Fiji.

438 Cell thickness, width and division angle: The collected confocal tomography images
439 were imported into Bitplane imaris for 3D reconstruction. After reconstruction, XZ and
440 YZ profiles were randomly selected to measure thickness, width and cell division angle
441 manually. Data was measured on three samples, using three regions of the image.

442 Thickness, width and division angle in chicken embryo skin: The collected confocal
443 tomography images were imported into Bitplane imaris. Cell thickness, length, and
444 division Angle were measured manually on software.

445 Pattern geometry in Chicken embryo skin: Diameter and spacing was measured
446 manually using Fuji.

447 Shape index: To determine the cell boundary, we used a semi-automatic segmentation
448 pipeline. We manually enhanced the blurry boundaries of the cells. After processing
449 the image by binary Ostu, we produced the finally image by Median filtering. We
450 extracted the parameters by image segmentation to obtain the area and perimeter.

451 Cell trajectory: The cell tracking image is produced by software Bitplane imaris.

452 Cell junction analysis: Cell boundary labeling and areas were determined manually in
453 Fiji(Firmino et al., 2016).

454

455 **Strain field analysis**

456 The area of each cell was calculated by Fuji software, and the compression strain of each
457 cell was calculated according to Eq (3) in Supplementary Materials. Finally, origin
458 software is used to draw the compression strain diagram. The strain field is obtained by
459 analyzing variation of cell area using Eq. (4) in Supplementary Materials.

460

461 **Finite element simulations**

462 Finite element simulations were performed using commercial software ABAQUS
463 (2016). Details of the finite element method were present in the Supplementary
464 Materials. In the finite element model, the growing cell monolayer sheet was placed on
465 a stiff substrate with the interfacial fraction factor being controlled. The cell sheet was
466 under isotropic expansion to simulate cell proliferation and growth. The cell sheet was
467 modeled as the linear elastic material. No other boundary conditions were applied on
468 the cell sheet.

469

470 **Skin culture and immunofluorescence**

471 Fertilized eggs were bought from local farms. The eggs were cultured in a moist
472 environment at 37 °C and staged according to Hamburger and Hamilton. Dorsal skin
473 pieces were dissected from E6 embryos and spread flat on the Polycarbonate membrane
474 (pore size: 0.4 µm, Corning, Cat.No.3413). Culture is DMEM with 2% chick serum and
475 10% FBS along with pharmacological agents NSC23766 (Abmole, 20 µM), RGD
476 (Abcam, 100 µg/ml) if applicable. Skin pieces were cultured for 48 hours at 37 °C
477 before being fixed in 4% paraformaldehyde in PBS. Images were taken on the Nikon

478 stereoscopic microscope. Pattern geometry was calculated using Fiji to measure the
479 spacing and diameter. Skin culture details were performed as previously described. For
480 immunofluorescence staining, Embryos or cultured dissected skin pieces were fixed in
481 4% paraformaldehyde in PBS and embedded in OCT. The tissue blocks were placed in
482 liquid nitrogen for 1 minute and frozen section. The section thickness is about 14 μ m.
483 We incubate the sections with 5% BSA, in PBST (PBS + 0.1% Tween 20) for 2 hours.
484 The sections were incubated with primary antibodies at the optimal concentrations
485 (according to the manufacturer's instructions) at 4 °C overnight. After being washed
486 with PBS, the sections were incubated for 2 hours with secondary antibodies:
487 488/568/633 IgG (H+L) for 1 hour. Nucleus were stained with DAPI (4', 6-diamidino-
488 2-phenylindole, Invitrogen) for 10 min at room temperature. Confocal images were
489 taken on the Leica microscope equipped with a 10 x, 40 x or 63 x objective.
490 Experiments were replicated at least three times.

491

492 **Quantification and Statistical analysis**

493 The number of biological replicates in each experimental result was indicated in the
494 figure legends. Data were presented as means \pm SEM. Significance was determined
495 using Student's t test to compare the differences between two experimental groups.

496

497
498

499 **References**

500 Aigouy, B., Farhadifar, R., Staple, D.B., Sagner, A., Roper, J.C., Julicher, F., and Eaton,
501 S. (2010). Cell flow reorients the axis of planar polarity in the wing epithelium of
502 *Drosophila*. *Cell* *142*, 773-786.

503 Bailles, A., Collinet, C., Philippe, J.M., Lenne, P.F., Munro, E., and Lecuit, T. (2019).
504 Genetic induction and mechanochemical propagation of a morphogenetic wave. *Nature*
505 *572*, 467-473.

506 Barriga, E.H., Franze, K., Charras, G., and Mayor, R. (2018). Tissue stiffening
507 coordinates morphogenesis by triggering collective cell migration *in vivo*. *Nature* *554*,
508 523-527.

509 Bhowmick, N.A., and Moses, H.L. (2005). Tumor-stroma interactions. *Curr Opin
510 Genet Dev* *15*, 97-101.

511 Bi, D., Lopez, J., Schwarz, J.M., and Manning, M.L.J.N.P. (2015). A density-
512 independent rigidity transition in biological tissues. *11*, 1074.

513 Carvalho, L., and Heisenberg, C.P. (2010). The yolk syncytial layer in early zebrafish
514 development. *Trends Cell Biol* *20*, 586-592.

515 Carvalho, L., Stuhmer, J., Bois, J.S., Kalaidzidis, Y., Lecaudey, V., and Heisenberg,
516 C.P. (2009). Control of convergent yolk syncytial layer nuclear movement in zebrafish.
517 *Development* *136*, 1305-1315.

518 Eisenhoffer, G.T., Loftus, P.D., Yoshigi, M., Otsuna, H., Chien, C.B., Morcos, P.A.,
519 and Rosenblatt, J. (2012). Crowding induces live cell extrusion to maintain homeostatic
520 cell numbers in epithelia. *Nature* *484*, 546-549.

521 Firmino, J., Rocancourt, D., Saadaoui, M., Moreau, C., and Gros, J. (2016). Cell
522 Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick.
523 *Developmental cell* *36*, 249-261.

524 Gallet, A. (2011). Hedgehog morphogen: from secretion to reception. *Trends Cell Biol*
525 *21*, 238-246.

526 Garcia, S., Hannezo, E., Elgeti, J., Joanny, J.F., Silberzan, P., and Gov, N.S. (2015).
527 Physics of active jamming during collective cellular motion in a monolayer. *Proc Natl
528 Acad Sci U S A* *112*, 15314-15319.

529 Guillot, C., and Lecuit, T. (2013). Mechanics of epithelial tissue homeostasis and
530 morphogenesis. *Science* *340*, 1185-1189.

531 Gupta, G.P., and Massague, J. (2006). Cancer metastasis: building a framework. *Cell*
532 *127*, 679-695.

533 Han, X., Zhao, Y., Cao, Y., and Lu, C. (2015). Controlling and prevention of surface
534 wrinkling via size-dependent critical wrinkling strain. *Soft Matter* *11*, 4444-4452.

535 Haydar, T.F., Ang, E., Jr., and Rakic, P. (2003). Mitotic spindle rotation and mode of
536 cell division in the developing telencephalon. *Proc Natl Acad Sci U S A* *100*, 2890-
537 2895.

538 Heisenberg, C.P., and Bellaïche, Y. (2013). Forces in tissue morphogenesis and
539 patterning. *Cell* *153*, 948-962.

540 Ho, W.K.W., Freem, L., Zhao, D., Painter, K.J., Woolley, T.E., Gaffney, E.A., McGrew,
541 M.J., Tzika, A., Milinkovitch, M.C., Schneider, P., *et al.* (2019). Feather arrays are
542 patterned by interacting signalling and cell density waves. *PLoS Biol* *17*, e3000132.

543 Lechler, T., and Fuchs, E. (2005). Asymmetric cell divisions promote stratification and
544 differentiation of mammalian skin. *Nature* *437*, 275-280.

545 Legoff, L., Rouault, H., and Lecuit, T. (2013). A global pattern of mechanical stress
546 polarizes cell divisions and cell shape in the growing *Drosophila* wing disc.
547 *Development* *140*, 4051-4059.

548 Lilly, B. (2014). We have contact: endothelial cell-smooth muscle cell interactions.
549 *Physiology (Bethesda)* *29*, 234-241.

550 Mao, Y., Tournier, A.L., Hoppe, A., Kester, L., Thompson, B.J., and Tapon, N. (2013).
551 Differential proliferation rates generate patterns of mechanical tension that orient tissue
552 growth. *EMBO J* *32*, 2790-2803.

553 Marinari, E., Mehonic, A., Curran, S., Gale, J., Duke, T., and Baum, B. (2012). Live-
554 cell delamination counterbalances epithelial growth to limit tissue overcrowding.
555 *Nature* *484*, 542-545.

556 Martin, A.C., Kaschube, M., and Wieschaus, E.F. (2009). Pulsed contractions of an
557 actin-myosin network drive apical constriction. *Nature* *457*, 495-499.

558 Mayerson, P.L., and Fallon, J.F. (1985). The spatial pattern and temporal sequence in
559 which feather germs arise in the white Leghorn chick embryo. *Dev Biol* *109*, 259-267.

560 Miroshnikova, Y.A., Le, H.Q., Schneider, D., Thalheim, T., Rubsam, M., Bremicker,
561 N., Polleux, J., Kamprad, N., Tarantola, M., Wang, I., *et al.* (2018). Adhesion forces
562 and cortical tension couple cell proliferation and differentiation to drive epidermal
563 stratification. *Nat Cell Biol* *20*, 69-80.

564 Mueller, M.M., and Fusenig, N.E. (2004). Friends or foes - bipolar effects of the tumour
565 stroma in cancer. *Nat Rev Cancer* *4*, 839-849.

566 Munster, S., Jain, A., Mietke, A., Pavlopoulos, A., Grill, S.W., and Tomancak, P.
567 (2019). Attachment of the blastoderm to the vitelline envelope affects gastrulation of
568 insects. *Nature* *568*, 395-399.

569 Neumuller, R.A., and Knoblich, J.A. (2009). Dividing cellular asymmetry: asymmetric
570 cell division and its implications for stem cells and cancer. *Genes Dev* *23*, 2675-2699.

571 Nishimura, T., and Takeichi, M. (2008). Shroom3-mediated recruitment of Rho kinases
572 to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling.
573 *Development* *135*, 1493-1502.

574 Park, J.A., Atia, L., Mitchel, J.A., Fredberg, J.J., and Butler, J.P. (2016). Collective
575 migration and cell jamming in asthma, cancer and development. *J Cell Sci* *129*, 3375-
576 3383.

577 Perez-Gonzalez, C., Alert, R., Blanch-Mercader, C., Gomez-Gonzalez, M., Kolodziej,
578 T., Bazellieres, E., Casademunt, J., and Trepot, X. (2019). Active wetting of epithelial
579 tissues. *Nat Phys* *15*, 79-88.

580 Pirovano, L., Culurgioni, S., Carminati, M., Alfieri, A., Monzani, S., Cecatiello, V.,
581 Gaddoni, C., Rizzelli, F., Foadi, J., Pasqualato, S., *et al.* (2019). Hexameric
582 NuMA:LGN structures promote multivalent interactions required for planar epithelial
583 divisions. *Nat Commun* *10*, 2208.

584 Priya, R., Allanki, S., Gentile, A., Mansingh, S., Uribe, V., Maischein, H.M., and
585 Stainier, D.Y.R. (2020). Tension heterogeneity directs form and fate to pattern the
586 myocardial wall. *Nature* *588*, 130-134.

587 Puliafito, A., Hufnagel, L., Neveu, P., Streichan, S., Sigal, A., Fygenson, D.K., and
588 Shraiman, B.I. (2012). Collective and single cell behavior in epithelial contact
589 inhibition. *Proceedings of the National Academy of Sciences of the United States of
590 America* *109*, 739-744.

591 Raftopoulou, M., and Hall, A. (2004). Cell migration: Rho GTPases lead the way. *Dev
592 Biol* *265*, 23-32.

593 Rauzi, M., Lenne, P.F., and Lecuit, T. (2010). Planar polarized actomyosin contractile
594 flows control epithelial junction remodelling. *Nature* *468*, 1110-1114.

595 Ravasio, A., Le, A.P., Saw, T.B., Tarle, V., Ong, H.T., Bertocchi, C., Mege, R.M., Lim,
596 C.T., Gov, N.S., and Ladoux, B. (2015). Regulation of epithelial cell organization by
597 tuning cell-substrate adhesion. *Integr Biol (Camb)* 7, 1228-1241.

598 Saadaoui, M., Rocancourt, D., Roussel, J., Corson, F., and Gros, J. (2020). A tensile
599 ring drives tissue flows to shape the gastrulating amniote embryo. *Science* 367, 453-
600 458.

601 Sadati, M., Taheri Qazvini, N., Krishnan, R., Park, C.Y., and Fredberg, J.J. (2013).
602 Collective migration and cell jamming. *Differentiation* 86, 121-125.

603 Shyer, A.E., Rodrigues, A.R., Schroeder, G.G., Kassianidou, E., Kumar, S., and
604 Harland, R.M. (2017). Emergent cellular self-organization and mechanosensation
605 initiate follicle pattern in the avian skin. *Science* 357, 811-815.

606 Shyer, A.E., Tallinen, T., Nerurkar, N.L., Wei, Z., Gil, E.S., Kaplan, D.L., Tabin, C.J.,
607 and Mahadevan, L. (2013). Villification: how the gut gets its villi. *Science* 342, 212-
608 218.

609 Smutny, M., Akos, Z., Grigolon, S., Shampour, S., Ruprecht, V., Copek, D., Behrndt,
610 Papusheva, E., Tada, M., Hof, B., *et al.* (2017). Friction forces position the neural
611 anlage. *Nat Cell Biol* 19, 306-317.

612 Trepas, X., Wasserman, M.R., Angelini, T.E., Millet, E., Weitz, D.A., Butler, J.P., and
613 Fredberg, J.J. (2009). Physical forces during collective cell migration. *Nat Phys* 5, 426-
614 430.

615 Zhao, Y., Han, X., Li, G., Lu, C., Cao, Y., Feng, X.-Q., Gao, H.J.J.o.t.M., and Solids,
616 P.o. (2015a). Effect of lateral dimension on the surface wrinkling of a thin film on
617 compliant substrate induced by differential growth/swelling. *J Mech Phys Solids* 83, 129-145.

618 Zhao, Y., Han, X., Li, G.Y., Lu, C.H., Cao, Y.P., Feng, X.Q., and Gao, H.J. (2015b).
619 Effect of lateral dimension on the surface wrinkling of a thin film on compliant
620 substrate induced by differential growth/swelling. *J Mech Phys Solids* 83, 129-145.

621

622

623 **Acknowledgments**

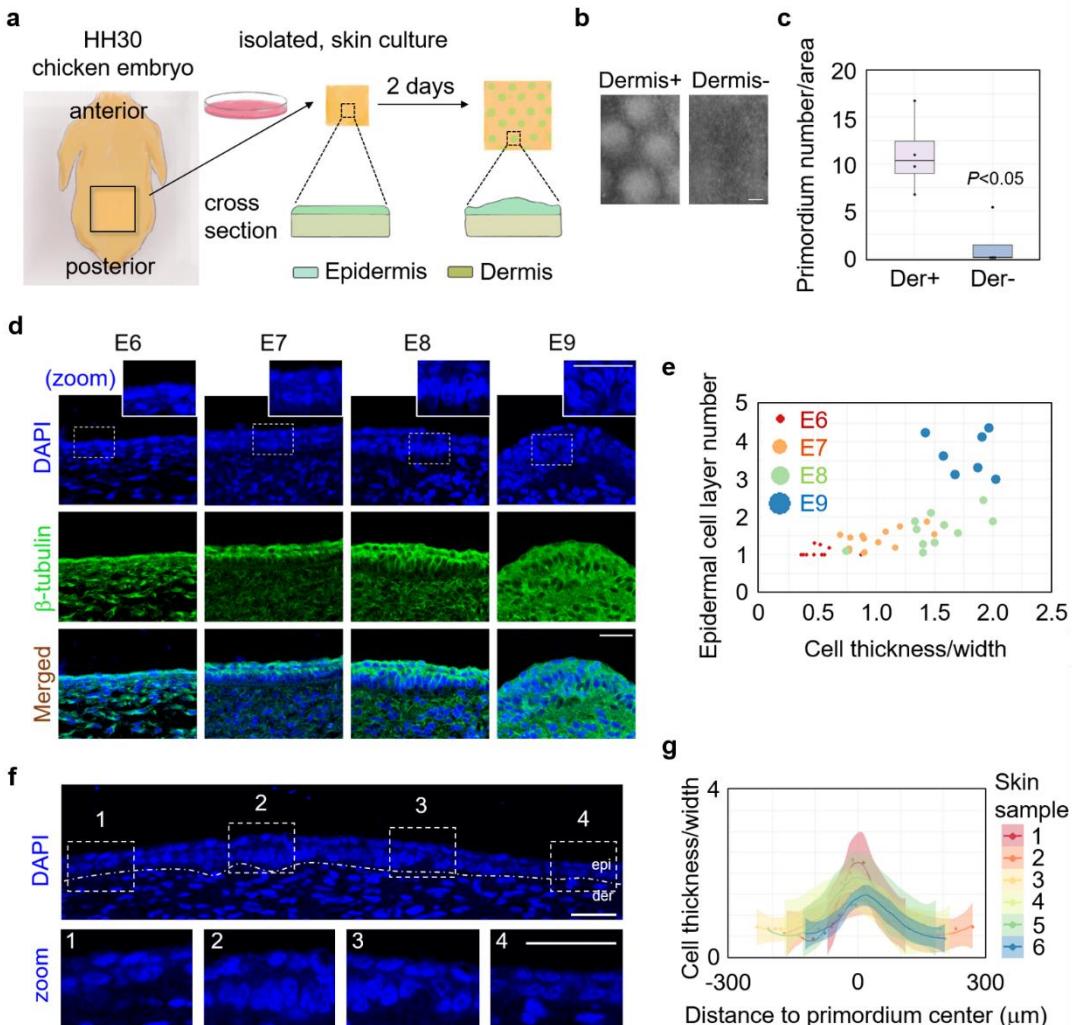
624 **General:** We thank J. Y. Fu (China Agricultural University) for providing GFP-H2B+
625 U2OS cells and C. Dong (The Pennsylvania State University), Y. Liang (EV-bio) and
626 C. Y. Xiong (Peking University) for discussions during the preparation of this paper.
627 We also thank S. Wu (China Agricultural University) and X. Liu (Beihang University)
628 for technical support of chicken embryonic experiments and PIV analysis, respectively.

629

630 **Funding:** This work was supported by the National Key R&D Program of China
631 (2017YFA0506500, 2016YFC1102203, and 2016YFC1101100), the National Natural
632 Science Foundation of China (31370018, 11972206, 11902114, 11421202, 11827803,
633 and 11902020), and Fundamental Research Funds for the Central Universities
634 (ZG140S1971).

635

636 **Author contributions:** T.L.C, Y.Z., J.D., Y.P.C, and Y.B.F. designed the study,
637 performed and interpreted experiments. X.B.Z. and S.K.L. helped with cell experiments
638 and statistical analysis. J.L.C helped with PIV analysis. Y.Z. and Y.P.C. did mechanical
639 analysis. J.D., Y.P.C., and Y.B.F. conceived and supervised this project and prepared the
640 paper.


641

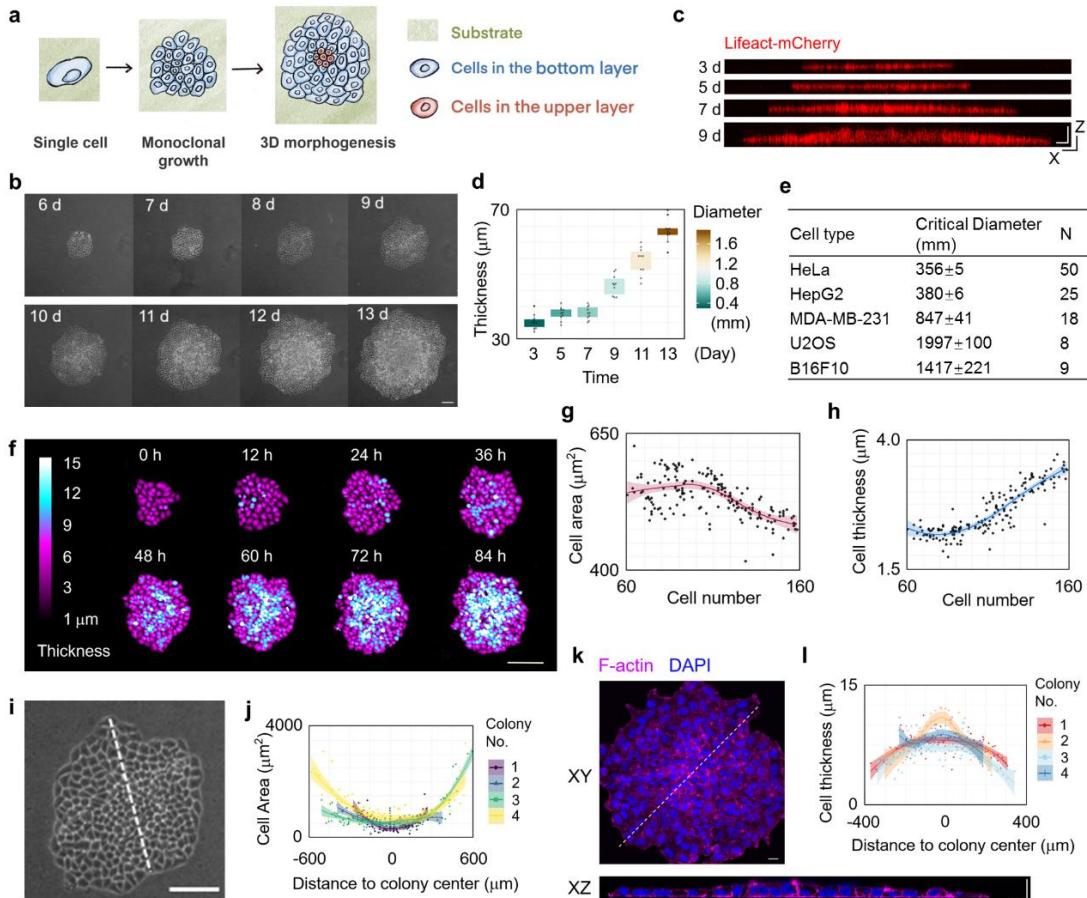
642 **Competing interests:** There are no competing interests.

643

644 **Figures and Tables**

645 **Figure 1**

646

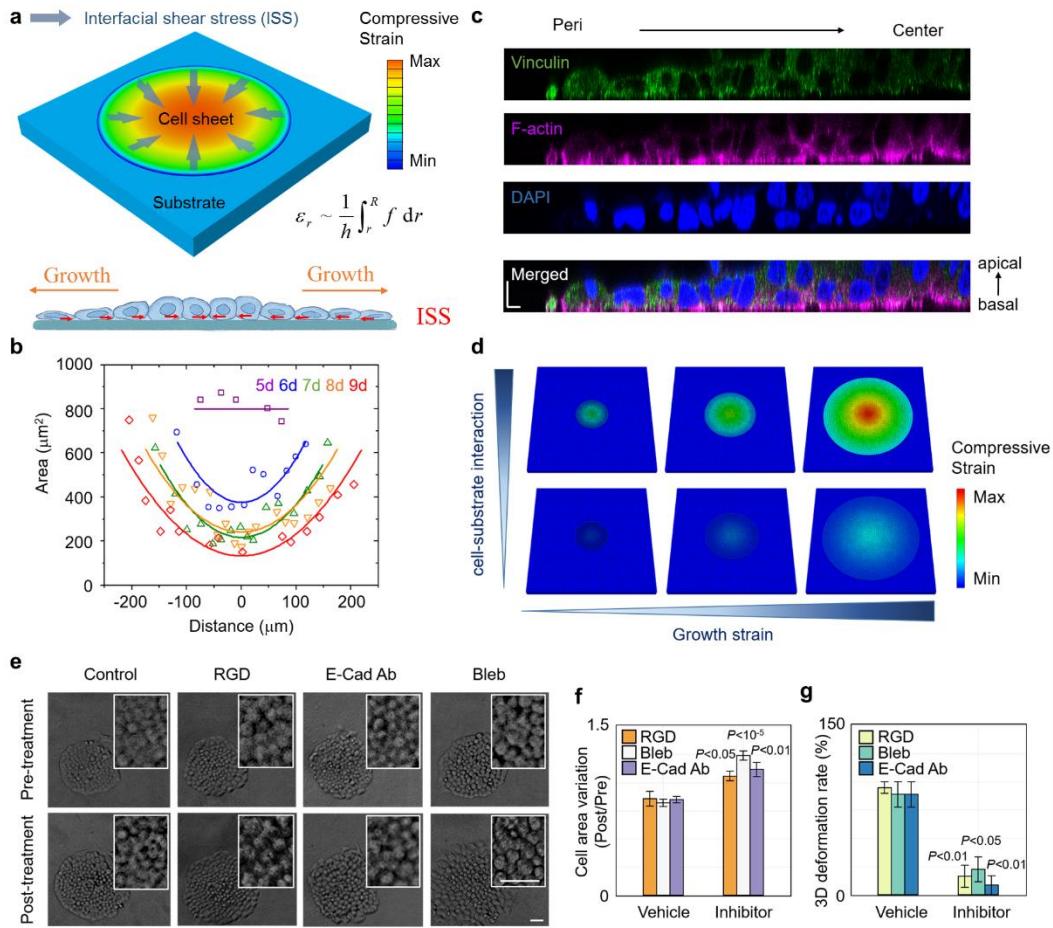

647

648 **Figure 1. Progressive compression gradient is strengthened in epidermal layer**
649 **during chicken feather follicle morphogenesis.** (a) The illustration of experimental
650 workflow for studying the epidermal morphogenesis in cultured chicken skins. (b) *In*
651 *vitro* culture of embryonic chicken skin with (Der+) or without (Der-) dermal cell layer.
652 Scale bar: 500 μ m. (c) The statistical analysis of primordium number per area (mm^2) in

653 (b). (d) Images of skin tissues from different stages of chicken embryos showing the
654 deformation of epidermal cell shape. Scale bar: 25 μm . (e) The statistical analysis of
655 cell deformation (thickness/width) and cell layer number of epidermis in skin tissues
656 from different stages of chicken embryos. Each dot represents the average value of an
657 embryo. (f) Images of epidermal cell shape deformation at different location around the
658 center of primordium. Scale bar: 25 μm . (g) The statistical analysis of cell deformation
659 (thickness/width) with different distance to the center of primordium.

660

661 **Figure 2**


662

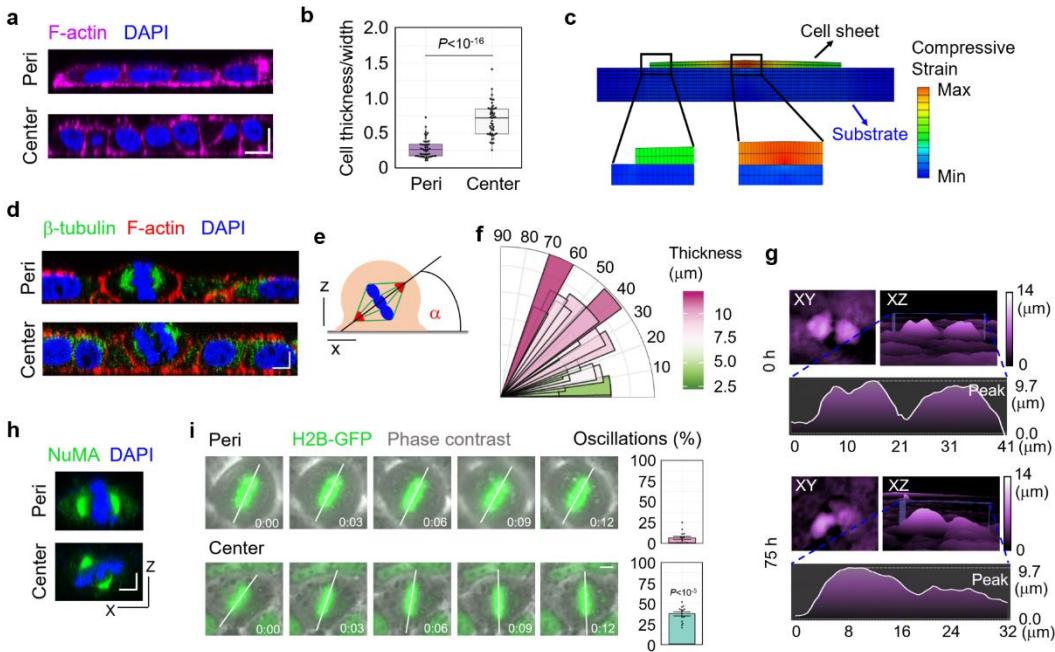
663

664 **Figure 2. Emergent 3D morphogenesis in a growing monoclonal cell sheet at**
 665 **critical size.** (a) The illustration of experimental workflow for studying the emergent
 666 3D morphogenesis in a freely growing monolayer HeLa cell sheet. (b) Representative
 667 phase contrast images of a growing monoclonal HeLa cell sheet captured at the
 668 indicated time (d: day) after seeding. Scale bar: 100 μm. (c-d) XZ slice images of F-
 669 actin indicated by Lifeact-mCherry in a growing monoclonal Lifeact-mCherry⁺ HeLa
 670 cell sheet captured at the indicated time after seeding. Scale bar: 50 μm. The statistical
 671 analysis of cell sheet thickness and diameter of a growing HeLa cell sheet. (n = 10). (e)
 672 The critical size for 3D morphogenesis of growing cell sheet in different cell types. (f)

673 The representative live images of a growing HeLa cell sheet using HoloMonitor M4
674 time-lapse cytometer. Scale bar: 150 μm . (g) The statistical analysis of the area of
675 individual cell during HeLa cell sheet growth. (h) The statistical analysis of the
676 thickness of individual cell during HeLa cell sheet growth. (i) The magnified view of
677 HeLa cell sheet at 8 d in (b). Scale bar: 100 μm . (j) The statistical analysis of the
678 individual cell area along the lines in (i). (k) Representative XY and XZ slice images
679 of F-actin and nucleus stained by Phalloidin and DAPI respectively in HeLa cell sheet.
680 Scale bar: 20 μm . (l) The statistical analysis of the individual cell thickness along the
681 lines in (i).
682

683 **Figure 3**

684

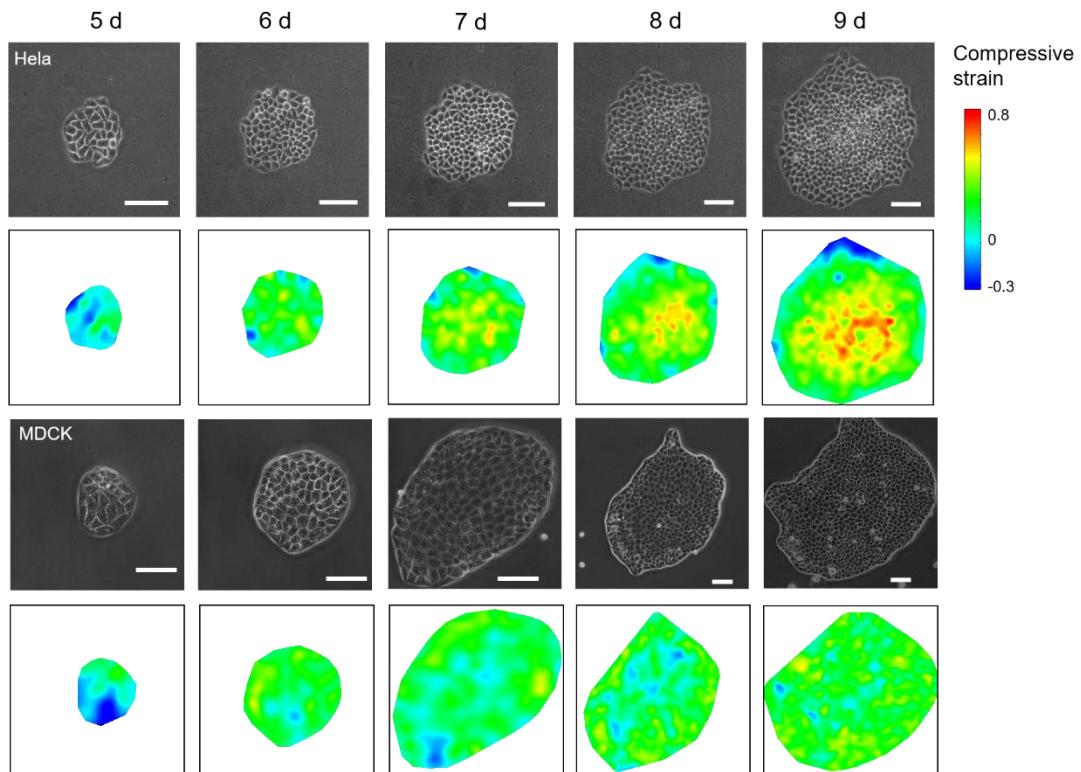

685

686 **Figure 3. Size-dependent 3D morphogenesis is induced by interfacial shear stress**

687 **in multi-layered system.** (a) Theoretical model of a cell monolayer sheet growing on
 688 a substrate. f is the interfacial shear stress between the cell sheet and substrate generated
 689 by relative motion. h is the thickness of cell sheet. σ_r is the compressive stress in the
 690 cell sheet induced by the interfacial shear stress. R is the outer radius of the cell sheet
 691 and r is the distance between cell and center of the monolayer sheet. Diagrams of
 692 interfacial shear stress between cell and substrate. Direction of interfacial shear stress
 693 is contrary to the cell sheet expansion, as the yellow arrow points out. (b) Area of the
 694 individual cell along a random line across the center of the cell sheet. Data points refer

695 to the experimental results and corresponding lines are theoretical predictions obtained
696 by fitting the experimental data using Eq. 6 in Supplementary Materials. (c)
697 Representative XZ slice image of Vinculin, F-actin and nucleus stained by Vinculin
698 antibody, Phalloidin and DAPI respectively in half of a HeLa cell sheet. Scale bar: 10
699 μm . (d) Finite element simulation of the stress field in the growing cell monolayer with
700 different cell-substrate interactions ($f_{\text{top}} / f_{\text{bottom}} = 5$). Growth strains from left to right
701 are 10%, 60% and 120%, respectively. Color bar shows the distribution of the
702 compressive stress in the cell monolayer. (e) Representative phase contrast images of
703 HeLa cell sheet in the presence of inhibitors or vehicle. Scale bar: 50 μm . (f) The
704 statistical analysis of the individual cell area of HeLa cell sheet in the presence of
705 inhibitors or vehicle. ($n = 10$). (g) The morphogenesis percentage of HeLa cell sheet in
706 the presence of inhibitors or vehicle. ($n = 3$).
707

708 **Figure 4**

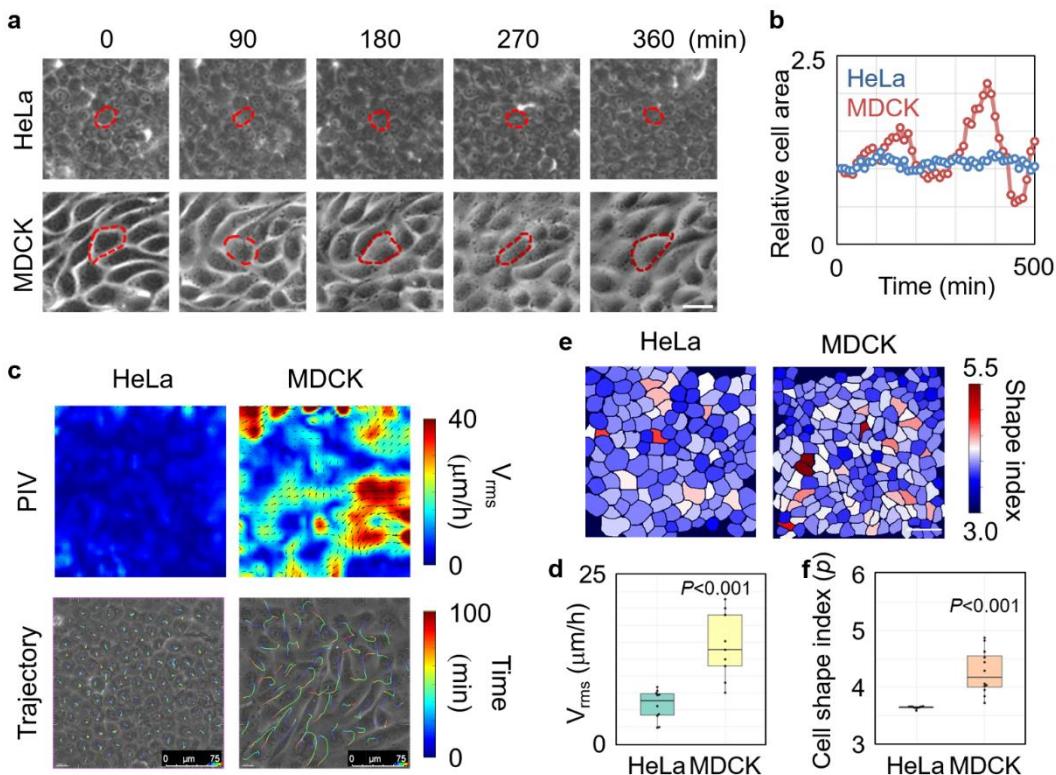

711 **Figure 4. Critical Compression triggers cell division reorientation to induce tissue**
712 **stratification.** (a) Representative XZ slice image of F-actin and nucleus stained by
713 Phalloidin and DAPI respectively in the central region and peripheral region of HeLa
714 cell sheet. Scale bar: 10 μm . (b) The statistical analysis of cell deformation
715 (thickness/width) in the center region and peripheral region of Hela cell sheet. ($n = 50$).
716 (c) Cell shape variation induced by interfacial shear stress. (d) Representative XZ slice
717 image of β -tubulin, F-actin and nucleus stained by β -tubulin antibody, Phalloidin and
718 DAPI respectively in the central region and peripheral region of HeLa cell sheet. Scale
719 bar: 5 μm . (e) The schematic experimental setting of the mitotic spindle orientation. (f)
720 Distribution of the spindle-axis angles of cells with different thickness in HeLa cell
721 sheet. (g) The representative images of dividing cells before (0 h) and after (75 h)
722 critical compression during HeLa cell sheet growth using HoloMonitor M4 time-lapse
723 cytometer. (h) Representative XZ slice image of NuMA and nucleus stained by NuMA

724 antibody and DAPI respectively in the central region and peripheral region of HeLa
725 cell sheet. Scale bar: 5 μ m. (i) Analysis of spindle oscillation in in the central region
726 and peripheral region of GFP-H2B⁺ U2OS cell sheet. The extent of oscillation was
727 calculated and plotted in bar graphs on the right. Scale bar: 5 μ m. (n = 14).

728

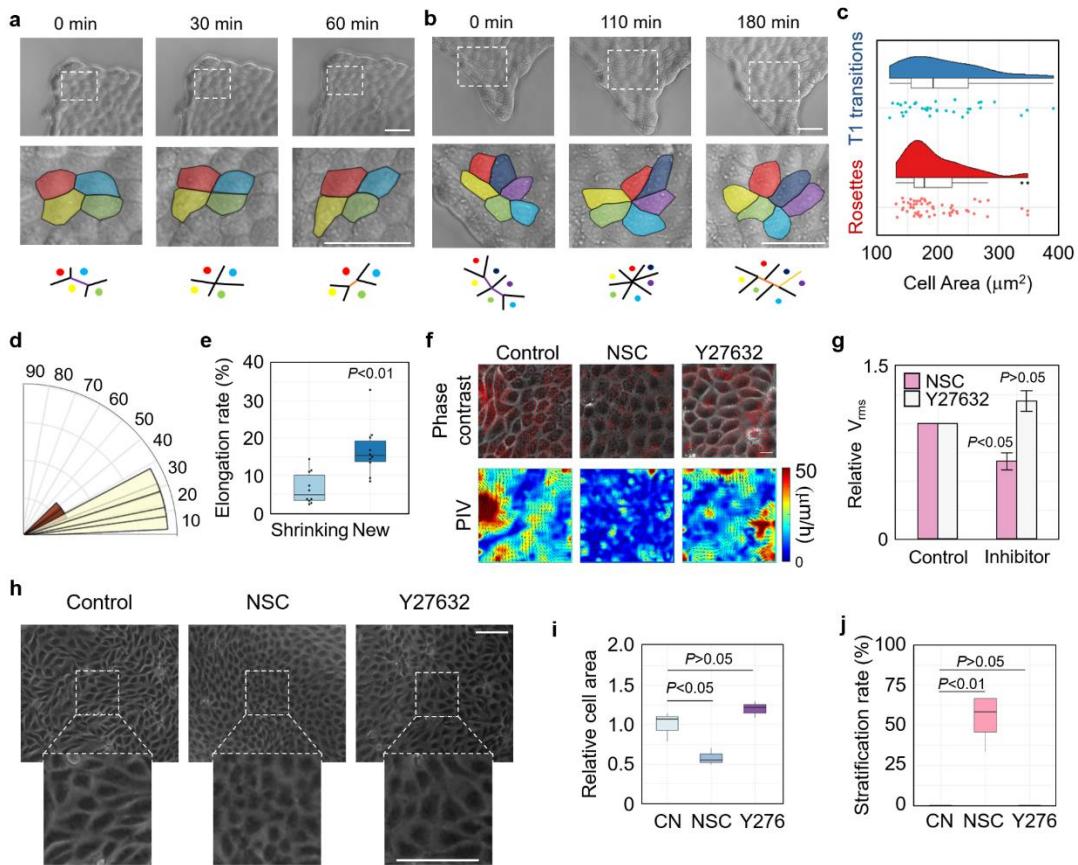
729 **Figure 5**

730



731

732 **Figure 5. Strain field evolution of HeLa and MDCK cell sheets.** The calculated strain
733 field evolution during the growth of HeLa and MDCK cell sheets at the indicated time
734 (d: day) after seeding. Compressive strain field was calculated using Eq. (4) in the
735 Supplementary materials by measuring the areas of each cell. The normal area of a full-
736 grown cell without sustaining compression was set as the average area of the cell sheet
737 in 1 d since the compressive gradient is small in the initial stage. Scale bar: 100 μm .


738

739 **Figure 6**

751 **Figure 7**

752

753

754

755 **Figure 7. Tissue fluidity controls 2D/3D morphogenetic transition by regulating**
756 **compression gradient progression.** (a) Representative image of T1 transition at

757 MDCK cell sheet edges during growth. Cell rearrangements are illustrated at the bottom

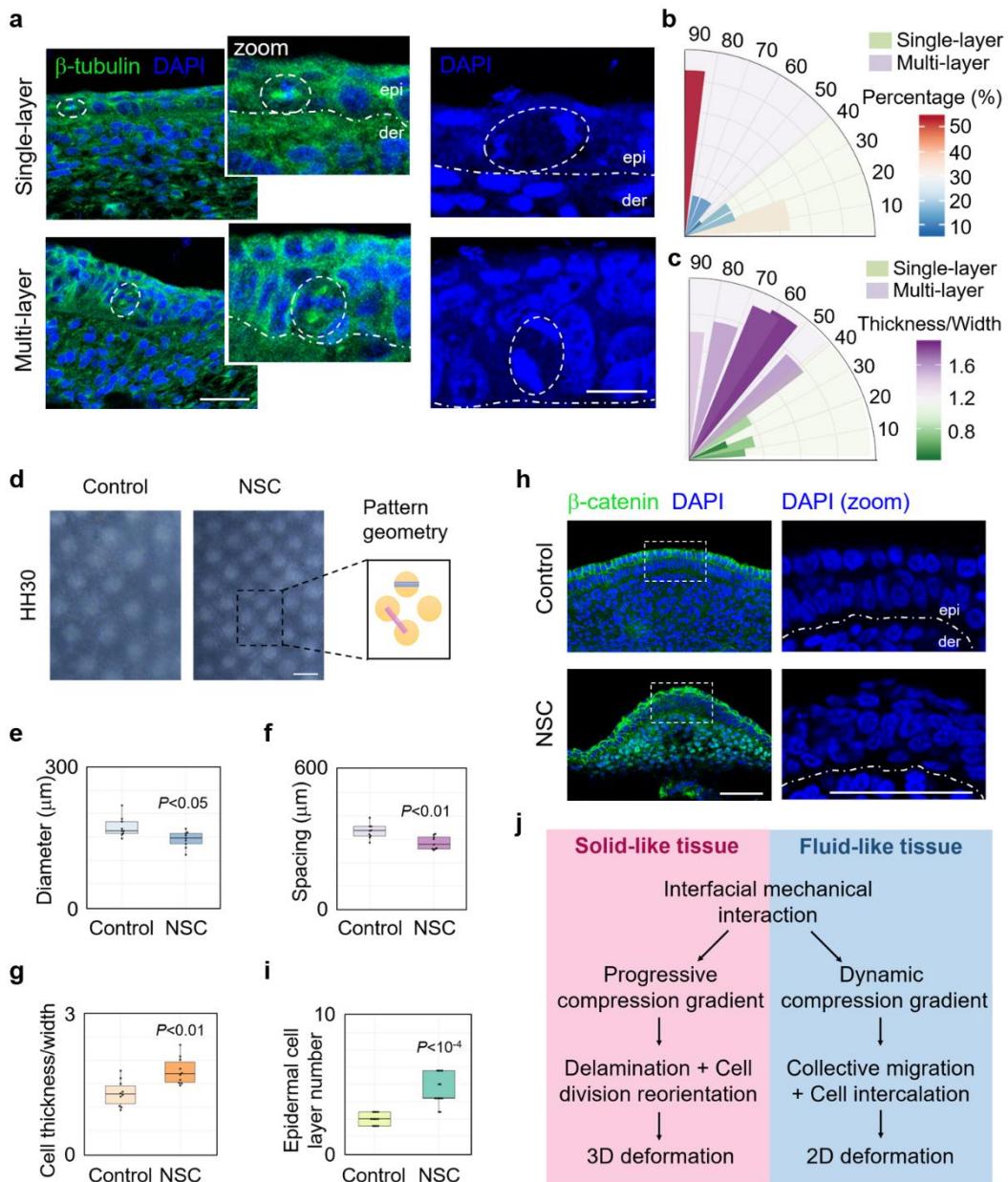
758 layer (purple line: shrinking junction, orange line: new junction). (min: minute). Scale

759 bar: 50 μ m. (b) Representative image of rosettes at MDCK cell sheet edges during

760 growth. Cell rearrangements are illustrated at the bottom layer (purple line: shrinking

761 junction, orange line: new junction). Scale bar: 50 μ m. (c) Cell area distributions of

762 cells experiencing T1 transitions and rosettes. (d) Distribution of the angles between


763 new junctions and tissue protrusion directions. (e) Cell sheet elongation rate at the

764 direction of shrinking junctions or new junctions. (n = 10). (f) The velocity field
765 superimposed on the corresponding phase contrast (upper panel) and velocity map
766 (lower panel) images measured by PIV of MDCK cell sheet in the presence of inhibitors
767 or vehicle. Scale bar: 20 μm . (g) The statistical analysis of cell speed (rms velocity)
768 measured by PIV of HeLa and MDCK cell sheets in the presence of inhibitors or vehicle.
769 (n = 4). (h) Representative phase contrast images of MDCK cell sheet in the presence
770 of inhibitors or vehicle. Scale bar: 100 μm . (i) The statistical analysis of the individual
771 cell area of MDCK cell sheet in the presence of inhibitors or vehicle. (n = 3). (j) The
772 stratification percentage of MDCK cell sheet in the presence of inhibitors or vehicle. (n
773 = 4).

774

775 **Figure 8**

776

777

778

779 **Figure 8. Progression of compression gradient contributes to epidermal cell**
 780 **stratification during chicken skin development.** (a) Images of embryonic chicken

781 skin showing the orientation of mitoses relative to the basement membrane (white

782 dotted line) in the magnified images (zoom), separating epidermis (epi) from dermis

783 (der). White dotted circles indicate the mitotic cells in metaphase (left) and anaphase

784 (right). DAPI marks the DNA and β -tubulin antibody immunofluorescence staining
785 marks the spindle. Scale bar: 10 μ m. (b) Distribution of the spindle-axis angles of cells
786 in single-layered or multi-layered epithelia of embryonic chicken skin. (c) Distribution
787 of the spindle-axis angles of cells with different cell deformation (thickness/width) in
788 single-layered or multi-layered epithelia of embryonic chicken skin. (d) Reconstitution
789 culture of embryonic chicken skin with or without NSC23766 (NSC). Scale bar: 500
790 μ m. Quantification of (e) spacing and (f) diameter as pattern geometry parameters as
791 illustrated in the right panel of (d). (n = 10). (g) Quantification of cell deformation of
792 epidermis in the presence of NSC or vehicle. (n = 10). (h) Representative cross
793 section image of β -catenin and nucleus stained by β -catenin antibody and DAPI
794 respectively in reconstitution cultured embryonic chicken skin with or without
795 NSC23766 (NSC). Scale bar: 50 μ m. (i) Quantification of layer number of epidermis
796 in (h). (n = 14). (j) Model of 2D and 3D morphogenesis controlled by the interfacial
797 mechanical interactions in multi-layered systems with different tissue fluidity.

798

799

800 **Supplementary Materials**

801 Theory model

802

803 The theoretical model is shown in Fig. 3a. The cell monolayer is modeled as a thin
 804 film, which is attached on the surface of a rigid substrate. Direction of the tangential
 805 adhesion force between the cell and substrate is contrary to the relative motion. Thus,
 806 compression would be induced when the cell monolayer is growing on the substrate.
 807 The tangential adhesion force is assumed as $f = f(r)$, where r is the distance
 808 between the cell and the center of the monolayer. f is concerned with the tangential
 809 adhesion between the cell and substrate, which is related to the cell type, stiffness of
 810 substrate and the rate of cell division or growth. By analyzing the stress state of the
 811 monolayer and solving the equilibrium equation, one can obtain the distribution of the
 812 equi-biaxial compressive stress in the monolayer

$$\sigma_r = \frac{1}{h} \int_r^R f \, dr \quad (1)$$

814 Here R is the outer radius of the cell monolayer, and h is the thickness of cell sheet.

815 The compressive strain can be obtained by the constitutive relation as

$$\varepsilon_r = \frac{1-\nu}{Eh} \sigma_r \quad (2)$$

817 where E, ν are the modulus and Poisson's ratio, respectively. The central region of
818 the monolayer would sustain higher level of compression than the cells in other regions.
819 Thus, cell extrusion is most likely to occur in the central region, which is consistent
820 with the experimental observations. The maximum compressive strain in the cells can
821 be obtained as

822

$$\varepsilon_{\max} = \frac{1-\nu}{Eh} \int_0^R f \, dr \quad (3)$$

823 which depends on the cell-substrate interactions and area of the cell monolayer. Based
824 on Eq. (2), one can also obtain the cell area

825

$$A/A_0 = (1 - \varepsilon)^2 \quad (4)$$

826 where A_0 is the normal area of a full-grown cell without sustaining compression. Eq.
827 (4) demonstrates that distribution of cell area can reflect the strain state in the cell
828 monolayer. With cell proliferation, radius of the cell monolayer increases, and area of
829 cells in the central region is reduced, indicating that the cell monolayer has a high level
830 of compression in the central region.

831 Given the distribution of the interfacial adhesion force, one can obtain the
832 distribution of the compressive strain and cell area of the cell monolayer. In this work,
833 the tangential adhesion force is assumed to be uniform over the cell monolayer. Thus,
834 the maximum compressive strain in the cell and the distribution of the cell area can be
835 given by

836

$$\varepsilon_{\max} = \frac{1-\nu}{Eh} fR \quad (5)$$

837

$$A/A_0 = \left[1 - \frac{1-\nu}{Eh} f(r - R) \right]^2 \quad (6)$$

838 Based on Eq. (4), distribution of the compressive strains in the HeLa cells in
839 experiments can be obtained by analyzing the distribution of cell area, which is shown
840 in Fig. 2b. The sequence in Fig. 2b shows the morphologies of growing HeLa cells with
841 the distribution of the compressive strains given in Fig. 5. The size of the cell monolayer
842 sheet grows bigger along with the cell proliferation, generating higher level of
843 compressive stress in the monolayer. Areas of individual cells in the central region are
844 reduced due to the increased compressive strains. The experimental observations and

845 calculations are consistent with the theoretical predictions.

846 To validate the theoretical model, finite element simulations are performed to explore
847 the relation between the cell-substrate interactions and stress field in growing cells.
848 Results of finite element simulations are shown in Fig. 3d. In the finite element model,
849 the growing cell monolayer sheet was placed on a stiff substrate with the interfacial
850 fraction factor being controlled. The cell sheet was under isotropic expansion to
851 simulate the growth. More than 12,000 linear hexahedral elements were adopted to in
852 the simulations. The cell sheet was modeled as the linear elastic material. With the
853 increase of the growth strain, compressive stresses in the cell monolayer are generated
854 due to the cell-substrate interactions, and the central region has a higher level of
855 compressive stress. The stress level can be reduced by regulating the cell-substrate
856 interactions (Fig. 3d). Finite element simulations are consistent with experimental
857 observation and theoretical analysis.

858 The elastic strain energy stored in the cell would also increase with the cell
859 proliferation. When the elastic strain energy in the cell is small, interfacial normal
860 adhesion would impose restriction on cell extrusion, making the cell monolayer grow
861 in plane. Thus, higher compressive stress would be generated further. When the
862 compressive stress reaches a critical value, elastic strain energy stored in the cell may
863 be greater than the energy needed for the occurrence of the interfacial delamination. In
864 this critical condition, cell extrusion may happen, and the elastic strain energy can be
865 released. The critical condition for the cell extrusion can be written as

$$866 \quad \gamma A = \frac{E}{1-\nu} \varepsilon_{\max}^2 V \quad (7)$$

867 The left hand and right hand of the equation refer to the energy for the interfacial
868 delamination and elastic strain energy in the cell, respectively. γ is the energy per area
869 for the interfacial delamination, which is related to the interfacial normal adhesion

870 between the cell and substrate. ε_{\max} is the maximum strain in the cell, and V is the
871 cell volume. Eq. (6) demonstrates that there exists a critical area or size of the cell
872 monolayer at the critical condition of cell extrusion. The critical size of the cell
873 monolayer sheet depends on the mechanical properties of cell and cell-substrate
874 interactions. The cell extrusion can be controlled by regulating the modulus of the cell
875 and cell-substrate interactions.

876 When the normal adhesion between the cell monolayer and the substrate is enhanced,
877 cell extrusion would be more difficult to happen, and the cell would bear larger
878 compression before extrusion. When the tangential adhesion is larger, higher level of
879 compression would be induced, and the cell extrusion is more likely to happen. The
880 adhesion between the cells may have effect on the cell sheet stress. Maximum
881 compressive stress in the cell monolayer may be reduced when lowering down the
882 adhesion between the cells. Thus, cell extrusion would be more difficult to happen.
883 Cytoskeleton is the main components that determine the cell mechanics. The
884 cytoskeleton can bear compressive stress and store elastic strain energy. If the
885 cytoskeleton in the cell is suppressed, cell extrusion is hard to happen. These predictions
886 were confirmed by experiments (Fig. 3e-g).

887 Shape of the cell can be changed due to the compression induced by the interfacial
888 shear stress. Thus, the orientation of the cell division may be altered. During the
889 evolution of the cell monolayer sheet, cell shape in the central region was changed from
890 flat to columnar due to the high level of compression stress. While in the periphery of
891 the monolayer, cell shape maintained flat. Stretch ratio of the cell in the direction of
892 thickness can be written as

$$893 \quad \lambda = 1 + \frac{2\nu}{1-\nu} \varepsilon_r \quad (8)$$

894 Base on the stretch ratio in Eq. (8), cell thickness/width characterizing cell shape can

895 be obtained as

896
$$\frac{h}{b} = \frac{\lambda}{1 - \varepsilon_r} \frac{h_0}{b_0} \quad (9)$$

897 Here h and b refer to the cell thickness and width. h_0 and b_0 refer to the initial

898 thickness and width of the cell without sustaining compression. In the periphery of the

899 monolayer, cell thickness/width is small since the compressive strain in the cell is small.

900 While in the central region with high level of compressive strain, cell thickness/width

901 can be very large. This phenomenon of cell shape variation induced by the interfacial

902 mechanical interaction is also confirmed by the finite element simulations, as shown in

903 Fig. 4c.

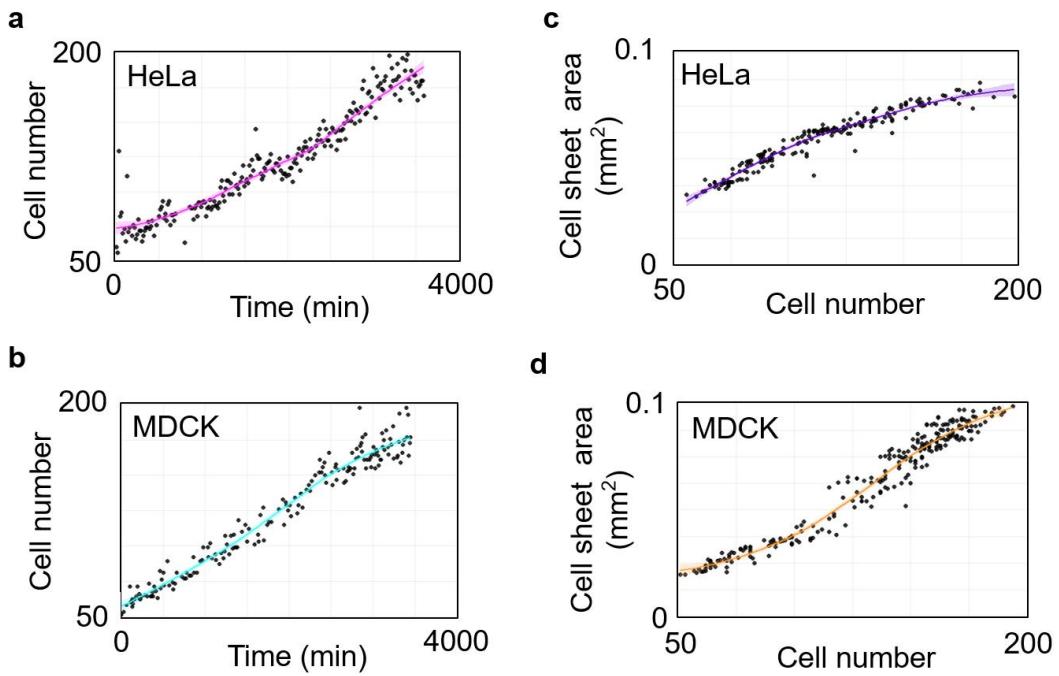
904

905 **Supplementary Figures**

906

907 **Supplementary Figure S1**

908

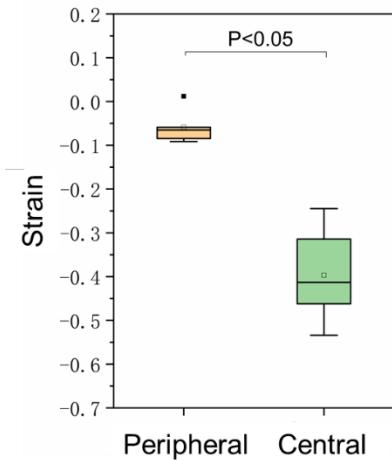

909

910

911 **Figure S1. Surface wrinkling induced by differential expansion in a film-substrate**
912 **system (Zhao et al., 2015b).** Polydimethylsiloxane (PDMS) was exposed to UV/Ozone
913 (UVO) for 10 – 55 minutes to form a stiff solvent-responsive oxide layer (highlighted
914 in blue) on the surface. Then dropping an ethanol/glycerol mixture solution containing
915 60% – 100% ethanol by volume to induce surface wrinkling.

916 **Supplementary Figure S2**

917


918

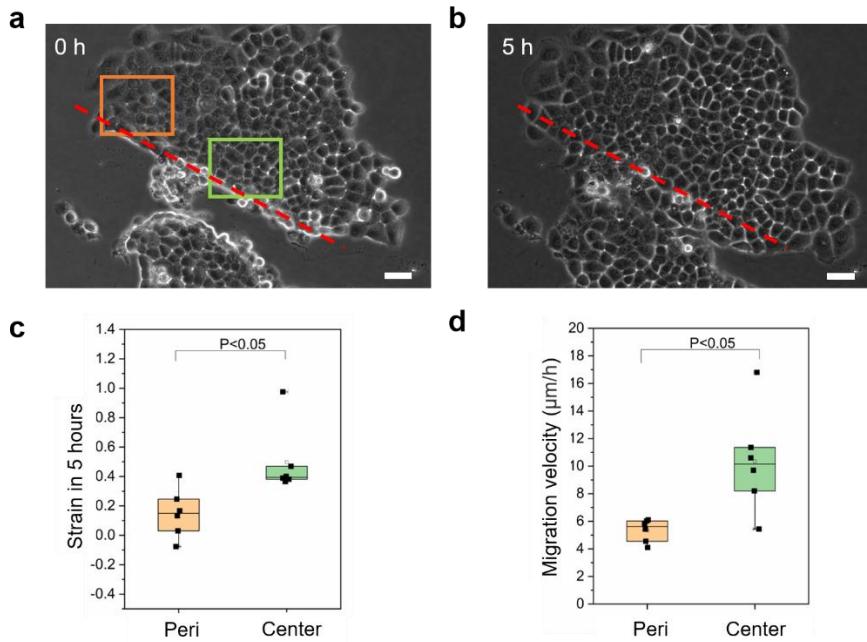
919 **Figure S2. Proliferation and expansion of cell sheets during growth.** The statistical
920 analysis of the cell number during HeLa cell sheet (a) and MDCK cell sheet (b) growth.
921 The statistical analysis of the cell sheet area during HeLa cell sheet (c) and MDCK cell
922 sheet (d) growth.

923

924 **Supplementary Figure S3**

925

926

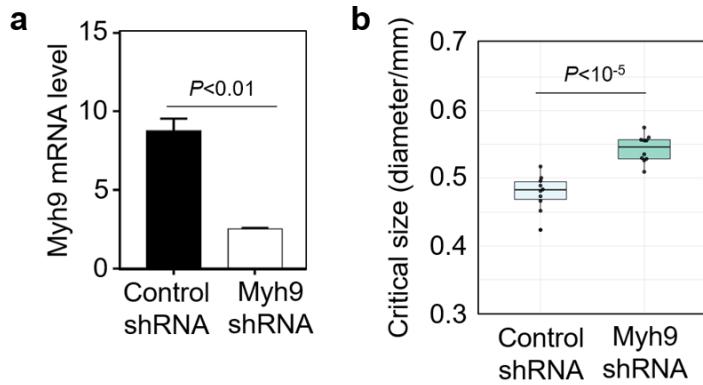

927

928 **Figure S3. Single cell tracing of compressive strain.** The plane strain of single cells
929 in central and peripheral regions of cell sheets during 24 hours analyzed by holographic
930 imaging cytometer ($n = 6$).

931

932 **Supplementary Figure S4**

933

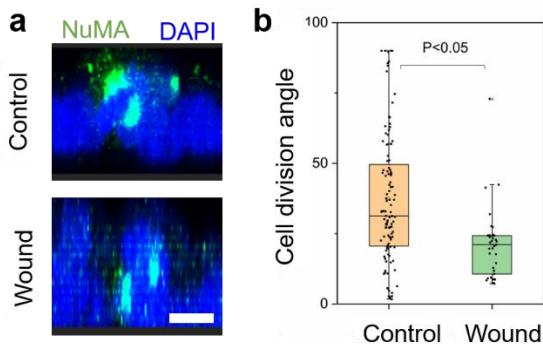


934

935 **Figure S4. Cell sheet scratch assay.** The representative image of cell sheet upon (a)
936 and 5 hours after (b) scratch passing through the center (green box) and edge (orange
937 box) of the cell sheet. The expansion (c) and migration speed (d) were compared
938 between cells in the central region and peripheral region of the cell sheet. Scale bar: 50
939 μm , (n = 6).

940 **Supplementary Figure S5**

941


942

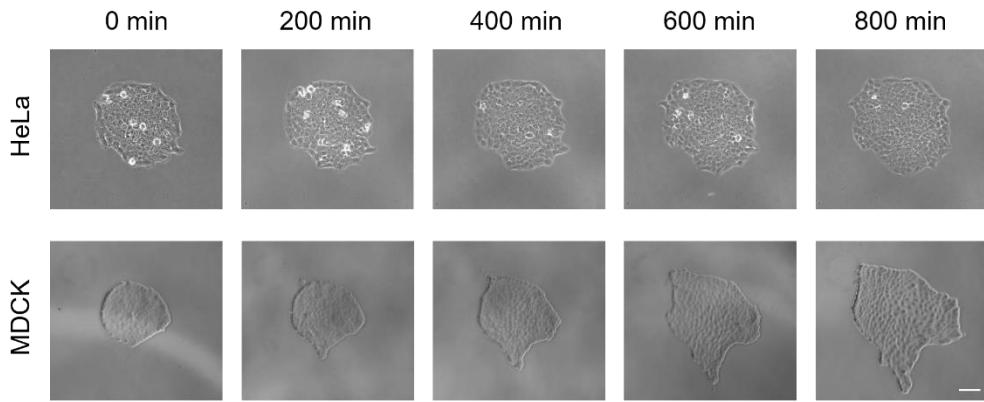
943 **Figure S5. Inhibition of Myosin effects the emergence of 3D morphogenesis. (a)**
944 The mRNA level of myosin heavy chain 9 gene (myh9) in HeLa cells transfected with
945 myh9 shRNA and control shRNA. (n = 3). (b) The critical sizes for morphogenesis in
946 myh9 shRNA cells and control cells. (n = 10).

947

948 **Supplementary Figure S6**

949

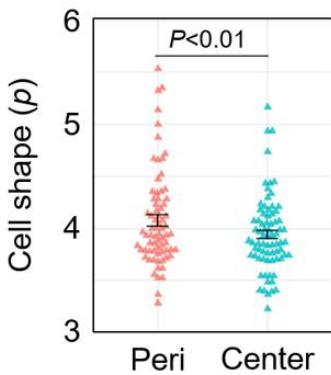
950


951

952 **Figure S6. Cell division angle after scratch.** (a) Representative XZ slice image of
953 NuMA and nucleus stained by NuMA antibody and DAPI respectively in the control
954 and wound of HeLa cell sheet. (b) The cell division angle in the center of cell sheet
955 without (Control) or with (Wound) scratch. Scale bar: 10 μ m.

956

957 **Supplementary Figure S7**

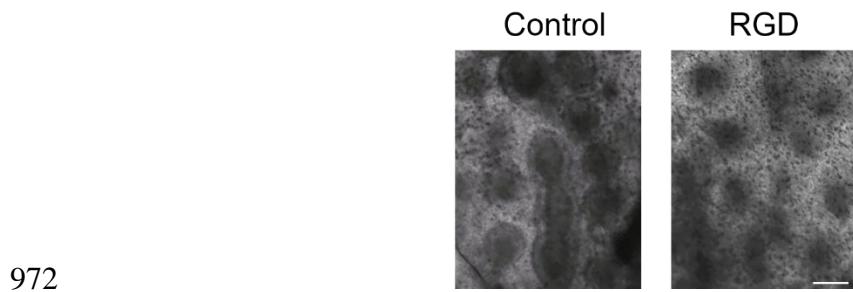

958

959
960

961 **Figure S7. Different deformation pattern between HeLa and MDCK cell sheets**
962 **during growth.** Representative phase contrast images of a growing monoclonal HeLa
963 and MDCK cell sheet captured at the indicated time (min: minute). Scale bar: 100 μ m.

964 **Supplementary Figure S8**

965


966

967 **Figure S8. Cell shape index in the peripheral and central regions of HeLa cell sheet.**

968 The statistical analysis of cell shape index of cells in the peripheral region and central
969 region of HeLa cell sheet. (n = 75).

970

971 **Supplementary Figure S9**

978 **Supplementary Table**

979

ECM type	Critical diameter(μm)	N
No pre-coating ECM	463.8±18.9	10
Fibronectin	493.8±23.9	10
Gelatin	489.1±19.8	10
Collagen	520.3±21.8	10
Collagen (40 kPa PA gel)	413.8±9.6	5
Collagen (1 kPa PA gel)	342.6±26.0	4

980

981

982 **Table S1.** The critical size for 3D morphogenesis of growing cell sheet on different
983 types of ECM and stiffness (polyacrylamide gel).

984

985

986

987 **Supplementary Movies**

988

989 **Supplementary Movie 1.** Symmetric cell division before critical compression during
990 HeLa cell sheet growth visualized by HoloMonitor M4 time-lapse cytometer.

991

992

993 **Supplementary Movie 2.** Asymmetric cell division after critical compression during
994 HeLa cell sheet growth visualized by HoloMonitor M4 time-lapse cytometer.

995

996

997 **Supplementary Movie 3.** PIV analysis during HeLa and MDCK cell sheets growth.

998

999

1000 **Supplementary Movie 4.** Time-lapse imaging of MDCK cell sheet during growth.

1001

1002

1003 **Supplementary Movie 5.** PIV analysis during MDCK cell sheet growth in the presence
1004 of inhibitors or vehicle (control).

1005

1006