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Abstract

We propose TCRDIVER, a global approach to T-cell repertoire comparison using diversity profiles
sensitive to both clone size and sequence similarity. As immunotherapies improve, the long
standing biological interest in connecting outcome with T cell receptor (TCR) repertoire status has
become more urgent. Here we show that new insights can be extracted from high throughput
repertoire sequencing data. Most current efforts focus on identification of immunisation-specific
sequence motifs or on monitoring changes in frequency of individual clones. Applying TCRDIiVER
to murine spleen samples shows it characterises an additional dimension of repertoire variation,
beyond conventional diversity estimates, allowing distinction between immunised and
non-immunised samples. We further apply TCRDIVER to repertoires from human blood. In both
cases we show characteristic relationships between repertoire features. These reveal biologically
interpretable relationships between sequence similarity and clonal expansions. We thereby
demonstrate a new tool for investigation in clinical and research applications.

Introduction

The T cell compartment of adaptive immunity plays a crucial role in cancer immunity, auto-immune
and infectious diseases. Adaptive immune responses as a whole draw on diverse T-cell receptors.
Due to the phenomenon of epitope spreading, T cells diversify their antigen-specific response by
reacting to non-dominant epitopes present on the antigen, in addition to the main dominant epi-
tope driven response Didona and Di Zenzo (2018); Vanderlugt and Miller (2002). On the other hand,
it has been shown that T cells responding to the same epitope share more sequence similarity Dash
et al. (2017). In addition, TCRs often exhibit cross-reactivity in order to ensure broad epitope recog-
nition responses, despite the limited number of unique TCRs within each repertoire Petrova et al.
(2012); Antunes et al. (2017); Bentzen and Hadrup (2019).

T cells are generated through the imprecise stochastic process of V(D) recombination giving
rise to 10%° or more possible TCR combinations Miles et al. (2011); Mora and Walczak (2018). The
number of possible generated TCRs is much larger than those estimated to be present within any
individual T cell repertoire Laydon et al. (2015); Robins et al. (2009, 2010). The complexity and com-
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position of TCR repertoires makes it difficult to compare and stratify individuals based on immune
status or to even establish a healthy baseline. T cells activate and proliferate upon antigen-specific
contact, creating a complex mix of receptors. Initial experimental approaches, such as spectratyp-
ing Choi et al. (1989); Gorski et al. (1994); Memon et al. (2012); Ochsenreither et al. (2008) and flow
cytometry Ciupe et al. (2013); Muraro et al. (2000) aimed to reveal oligoclonal expansions of T cells
by tracking clonal sizes of CDR3s with the same length. However, they provided no insight into
TCR similarity. Recent advances in high throughput sequencing (HTS) now allows characterisation
of adaptive immune receptors in increasing depth and with improved quantitation. HTS methods
supply information on both clonal sizes and sequence relatedness. However, this development
has given rise to the need for summary measures to interpret the data generated by such exper-
iments. Several methods have emerged to fulfil the demand to stratify repertoires either by the
TCR antigen specificities Glanville et al. (2017); Dash et al. (2017); Sidhom et al. (2018) or by finding
characteristics of TCR sequences Thomas et al. (2014a); Sun et al. (2017); Cinelli et al. (2017). Still,
many of the employed methods aim to uncover epitope similarity without simultaneously exam-
ining T cell clonal expansions, or vice versa. Measures that capture the global repertoire structure
by incorporating both characteristics of the adaptive immune response, could potentially be used
to stratify patients for disease outcome or therapy. Thereby, transcending the notion of "public
TCRs" into "public repertoire structures" responsible for therapeutic outcome.

A popular approach in characterisation of repertoires has been through measures of diversity.
They have been widely used in evaluation of therapy and disease effects Twyman-Saint Victor et al.
(2015); Rudqvist et al. (2018); Sherwood et al. (2013); Robert et al. (2014); Warren et al. (2011) or
attempts at repertoire classification and diagnosis Carey et al. (2016); Chang et al. (2019); Robins
et al. (2009). However, there are a variety of ways in which the intuitive idea of diversity can be
formalised giving rise to ambiguity. In the naive sense, diversity is estimated based on the num-
ber of and clonal expansion of unique TCRs in a repertoire. Commonly used diversity estimates
are richness (hnumber of different TCR clones), clonality (number of expanded clones) and diversity
indices such as Shannon entropy Spellerberg and Fedor (2003), Simpson SIMPSON (1949), Gini-
Simpson Jost (2006) and Berger-Parker Berger and Parker (1970) index. Different diversity indices
will weight expanded clones differently, thereby imposing a threshold on the clonal frequencies
within the repertoire. Thus counting unique clones with species richness will give rare clones the
same weight as expanded clones. Entropy, will give give more weight to expanded clones than to
rare clones. No single index will capture all information about the clone size distribution. Notably,
this ambiguity has led to no clear consensus which diversity index should be applied in practical
cases of interpreting immune diversity Izraelson et al. (2018); Chiffelle et al. (2020). The approach
of using individual diversity indices provides no repertoire characteristics truly independent of sam-
ple size Laydon et al. (2015) and can lead to erroneous conclusions on ordering repertoires (Figure
1 A.). Additionally, measures of diversity should not only rely on clone counts but should also ac-
count for sequence similarity of receptors.

The first problem of debatable usage of individual indices, can be surmounted by estimating
them simultaneously in a single expression of diversity: the diversity of order ¢, D(¢q), which sub-
sumes most of the commonly used indices Jost (2006, 2010). Accounting for the distribution of
clone sizes, diversity can be estimated in the form of "diversity profiles" Greiff et al. (2015); Mora
and Walczak (2016); Chiffelle et al. (2020). Such profiles define "effective numbers" of receptors
when viewed at different resolutions, making use of a single parameter (g) to systematically shift
focus from counting each unique clone to giving weight only to the largest clone in a repertoire
(Figure 1 A, C). The use of diversity profiles gives insight into T cell clonal expansions, as the re-
lationship between diversities calculated at different clonality weights ¢ can be correlated to the
ratio of common to rare clones Leinster and Cobbold (2012). This approach has been previously
implemented for one B- and three T-cell repertoires in the work of Greiff et al. (2015). Keeping in
mind that the study focused solely on clonal frequency, the authors report remarkable separation
based on immunological status, in 3 out of 4 immune repertoire datasets. However, as naive diver-
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sity estimates only take clone frequencies into account they are not sensitive to minor polyclonal
expansions of TCRs reacting to the same antigen which are mounting a unified front of reacting
similar T cells.

The second problem, incorporating sequence similarity in diversity estimates, has been less
thoroughly explored. One approach is to count clusters of similar receptors Sidhom et al. (2018).
Another approach is to use an effective number with sensitivity to sequence similarity Arora et al.
(2018). These approaches suffer from a similar limitation as use of a single diversity index in that
they adopt either a single arbitrary cutoff or a single sequence similarity distance in their defini-
tion of effective number e.g. a single similarity corrected diversity index. Here we make use of
approach used by Leinster and Cobbold (2012) in ecology to explore 2 dimensional profiles of ef-
fective numbers. Our approach of using similarity scaled diversity D(g, 1) allows for simultaneous
characterisation of the clonal distributions and similarity of receptor repertoires (Figure 1 B). In-
stead of depending on a single parameter, g, our profiles depend on two parameters, g and 4. As
in conventional diversity profiles, the ¢ parameter probes the structure of the clone size distribu-
tion. The 4 parameter plays an analogous role for sequence similarity (Figure 1 D.). As A varies
from infinity down to zero the effective diversity gradually merges together more and more simi-
lar sequences. Incorporating this additional aspect to the diversity estimation allows us not only to
probe the clone size distribution, but also TCR similarity which may provide information on reper-
toire convergence through expansion of similar clones.

In this study, we showcase a new tool for estimating TCR repertoire diversity using similarity
sensitive diversity estimates: TCRDIvER. We apply TCRDIVER to previously published murine TCRp
sequence data from CD4* T cells following immunization Sun et al. (2017). We show that TCRDIVER,
by simultaneously probing clonal expansion and sequence similarities reveals novel TCR repertoire
traits. Using features of the similarity scaled diversity profile we detect differences in response to
immunisation protocols at all sampling times, indicating unique features arise within repertoires
can be detected as early as 5 days and persist for several months.

Notably we find strong nonlinear correlations between features of the similarity scaled diver-
sity profiles, including feature which characterise the average distance between sequences or the
balance between large and small clones. The strength of the correlation indicates biological con-
straints on repertoire development which couple together clone size with sequence similarity. The
nonlinear shape of the correlations reveal that these features can exist in multiple discrete equi-
libria.

We validate our finding that TCR repertoires reside in a non-linear space on an independent
dataset of human bulk TCR sequences extracted from non-small-cell lung cancer (NSCLC) patients
following CTLA-4 blockade treatment Formenti et al. (2018). We show that by estimating repertoire
diversity with TCRDIVER we can unearth information which might allow us to understand more
subtle differences between repertoires, stratify them and ultimately guide therapy regimes.
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Figure 1. A. Naive diversity indices (richness, Simpson analogue and Inverse Berger-Parker) for three model repertoires. The repertoires contain
the same total number of T cells, however they differ in the number of unique T cell clones and clone size distribution. Each T cell clone within
the repertoire is presented as a grey circle and the size of each circle corresponds to its relative frequency. Repertoire 1 has the most uneven
clonal distribution. Repertoires 2 and 3 have a more uniform distribution of clones. The number of unique clones falls from repertoire 1 through
to repertoire 3. As different diversity indices are applied, the ordering of repertoires changes. B. Formula for calculating similarity scaled
diversity D(q, 4). Here p; is the fraction of cells in clone i, Z is a similarity kernel between clones, g controls sensitivity to clone size, and 4 controls
sensitivity to sequence similarity. C. Relationship of some commonly used diversity indices to the naive diversity of order 4. D. Effect of
introducing the A distance scaling into the diversity calculation. As 1 increases the distance between clones increases until at 4 = « clones have
no similarity i.e. the similarity kernel Z is the identity. E. Schematic representation of diversity profiles of four model repertoires are shown along
the repertoires in the top right corner of each diversity profile. Repertoire composition is schematically represented with T cells of varying size
and colour. Analogously to A. the size of individual cells corresponds to the clone frequency within the repertoire. More similar colouring
indicates higher T cell sequence similarity in the repertoire (repertoires Il and 1V). Analogously, divergent colouring corresponds to higher
sequence dissimilarity (repertoires | and Ill). F. Further explanation of structure differences between the four model repertoires in E. Repertoires
sharing the same clone distributions are shown in rows (I = Il and Ill = IV). Repertoires sharing same similarity relationships between T cell clones
are shown in columns (I = Il and Il = V).
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Results

We analysed the frequency distribution and similarity of CDR,;3 amino acid sequences in TCR reper-
toires previously published in Sun et al. (2017). Briefly, the dataset consists of CD4* T-cell reper-
toires harvested from murine spleens following immunisation with Complete Freund's Adjuvant
(CFA) with or without the addition of Ovalbumin (OVA) antigen. The T cells were harvested post
immunisation at three timepoints: early (days 5 and 14) and late (day 60). Additionally, we have
analysed untreated mouse repertoires from the same study. We used TCRDIVER to calculate diver-
sities D(q, 4), with varying orders of g and 1. From these we constructed diversity profiles (divPs),
which we present as graphs of the natural logarithm of diversity versus the varying order of q for
each lambda. Key features were extracted for analysis as shown bellow.

To validate some of our findings we analysed a human TCR repertoire data set previously pub-
lished in Formenti et al. (2018). In short, T cells were isolated from blood samples taken from
non-small-cell lung cancer patients prior and post treatment with CTLA-4 blockade (ipilimumab) in
combination with radiation therapy (RT). The obtained T cells were sequenced in bulk. We anal-
ysed these repertoires as with the murine data, using TCRDIVER to construct diversity profiles for
analysis.

TCRDIVER reveals unique TCR repertoire features

Examples of diversity profiles constructed for the murine samples are shown in figure 2. Each
dataset was sampled for 50,000 sequences in order to eliminate effects of sequencing depth. For
each sample a series of curves are plotted, corresponding to different values of 1. The constructed
diversity profiles provide a graphically intuitive way to caputre the shape of a repertoire. Here we
highlight some features of these plots in order to develop an understanding of how features of the
plots map to structural and immunological characteristics of TCR repertoires.

In our framework the naive diversity profile corresponds to the case that the receptor of each
T cell clone is considered totally distinct, with no consideration of similarity to other clones i.e. the
highest effective diversity. In reality there will be some degree of functional overlap between clones,
which will reduce the functional diversity below the naive value. The naive diversity (A = ) is
therefore a base case of maximal diversity. Atthe opposite extreme, A = 0, all clones are considered
considered functionally identical. Biologically, this would correspond to non-specific binding of
TCRs to peptide-MHC complexes. In this case the functional diversity is therefore minimal and
equals one. In each repertoire sample these two extreme cases can be seen bounding the profile
(these curves are labelled in example figure 1 E.) The parameter A interpolates between these two
extreme cases, as the intermediate profiles in each sample correspond to intermediate values of
A

We begin our account by highlighting features of the naive diversity, i.e. the upper bounding
curves, in each sample. We plotted naive diversity profiles from all samples together showing that
crossings in the range 0 < ¢ < 2 are common events (See Supplementary information - Section 1.2
and 1.6). This confirmed in our data set that the ranking of repertoires based on a single value of ¢
would indeed depend strongly on the chosen index (similar to what is shown in example figure 1
A.). We concluded that the previously mentioned justification for analysing profiles across a range
of orders g is not merely theoretical.

The highest value of the naive diversity at ¢ = 0 gives the number of unique TCR sequences
observed in the sample of 50,000 sequences. At ¢ = oo we read off the effective number of clones
in the repertoire if it consisted only of the largest clones. The rate of fall of naive diversity as
g rises therefore encodes information about the balance between larger and smaller clones. To
characterise this we derived an expression for the gradient of the naive diversity at g = 1 and found
that it is proportional to the variance of the clone size distribution i.e. the ratio of rare to common
T cell clones in a repertoire (see Appendix 1 Evaluating the slope atg =1).

Notably, when examining the diversity profiles in Figure 2 and Supplementary information - Sec-
tion 1.1, a sharper slope can be seen in the curves from repertoires that have been immunised
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compared to the untreated ones, especially for later time points. This is quantified in figure 3 A
by plotting the slope between ¢ = 0 and ¢ = 1 for each treatment group. The increasing value of
the slope is indicative of an increased clonal expansion at later timepoints. The impact of clonal
expansion in reducing diversity is seen to be mild at earlier time points after vaccination (5 and 14
days) and more marked at the day 60 time point.

In order to explore the effects of similarity scaling on measures of diversity, we investigate
in depth the features of similarity sensitive profiles with values of 1 < . A first feature of the
similarity sensitive profiles occurs near the flat curve for 4 = 0 at the bottom of the profile. We
observed that for small values of 4 the curves are approximately flat and are evenly spaced on a
log scale. This phenomenon can be seen in figure 2 by observing that the spacing between the
curves for 1 = 0 (blue) and 1 = 1 (orange) is equal to the spacing between the curves 1 = 1 (orange)
and 4 = 2 (red). To further investigate the biological significance of this we derived an expression
for the diversity at small 4 using perturbation theory (See Appendix 2 Evaluation Aln(D(q. A)) for
small A: Perturbation around A = 0). Interestingly, this shows that the spacing is proportional to
the mean distance between sequences in the repertoire. In particular, the spacing of profiles, which
we denote Aln(D(q, 4)) at small 4, is dependent solely on the distance and frequency of CDR3s, and
not on the weight ¢q. Notably, this measure naturally integrates increases in similarity from both
expansion of particular clones and selection of clones with similar sequence. We are therefore able
to use these spacings to gain biological insight in to repertoire structure following immunisation.
The spacing of profiles, Aln(D(q, 4)) at small 4, is presented for different treatment groups in figure 3
A.We concluded that while there may be a small rise in spacing at early time points after vaccination
(5 and 14 days), there is a distinct decline of around 15% at day 60 indicating an increase of CDR3
similarity at later time points.

A second feature is the rate at which diversity falls as A falls from 4 = o to lower values, where
A = oo characterises the naive profile. Unlike the case at small 4, the value of Aln(D(g, 4)) at large
A is no longer independent of q. Remembering that 4 = o corresponds to no effective clustering
of similar sequences, large values of 4 correspond to just a small amount of effective clustering
counting together only the most similar clones. If such clustering produces a large fall in effec-
tive diversity then the repertoire must contain many similar clones. Conversely, if such clustering
produces only a small fall in diversity then the clones must be spaced further apart.

Our measure is highlighted by the pink area in figure 2, defined as lying between the naive
profile 2 = oo and the profile for 4 = 16. By using the area highlighted in the figure as the feature of
interest we are effectively averaging over ¢q. Notably, like Aln(D(q, 1)) at small 4, the area between
A = o0 and A = 16 is a probe of distance. However, in this case the weighting is toward similar
clones. i.e. larger spacings correspond to more similarity of sequences in the repertoire. We
have shown that, in the case of a uniformly distributed CDR3s in a repertoire, with the increase
of similarity between CDR3s the area between the 4 curves increases (see Appendix 2 Evaluation
Aln(D(q, 4)) for larger As and it's relationship to distance). In the case of natural repertoires the
effect of clonal expansion will interplay with the similarity. The area between profiles for 4 =
and 4 = 16, is presented for different treatment groups in figure 3 A. We concluded that there is
a tendency to fall at the early time points after vaccination (5 and 14 days), with a further fall of
comparable magnitude by day 60. As the area is influenced by q it is also closely connected to the
slope of diversity curves and therefore clonal expansion. Therefore the fall of value of area cannot
be attributed to a decrease in similarity at later time points. When other repertoire features are
taken into account, such as the slope and the trend of Aln(D(q, 1)) at small 4, the decrease in area
can be explained by the driving effect of clonal expansions at later time points.

Comparing the Aln(D(g, A)) at small and large values of 1 we were able to make some biological
conclusions about the structure of the repertoires. At early time points there is a reduction in
diversity of atypically similar (~ 1 amino acid difference) sequences. This may correspond to the
expansion of responding clones with distinct sequences at the expense of background diversity.
At early time points these expansions have little impact on the mean diversity, but by day 60 they
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have reduced mean diversity across the whole repertoire.

TCRDivER features improve separation of biologically distinct repertoires

In order to test if the similarity scaled diversity profiles can be used to classify repertoires we used
principal component analysis (PCA). We carried out this analysis first on the values for the naive
diversity profiles alone and then for the all values in the complete similarity scaled diversity profile
(Figure 3 B. and Supplementary information - Section 1.3.).

Both the naive and similarity scaled profiles show a strong PC1 which is driven by the expan-
sion of large clones at the late day 60 time point. However, relative to the naive profile, PCA on
the similarity scaled profiles shows more than twice the variance in PC2. In contrast to the naive
profiles that give an effective 1 dimensional separation, the similarity scaled profiles are able to
give a robust 2 dimensional separation. It can be seen that this allows for substantial separation
of immunised vs. untreated controls in the second dimension (Figure 3 C.).

To validate the observation of improved PCA separation, we analysed an additional data set
of human TCR repertoires. Briefly, this arose from blood samples collected prior and post im-
munotherapy from 40 patients diagnosed with stage 4 non-small-cell lung carcinoma (NSCLC). The
therapy consisted of a regime of radiation and administering CTLA-4 blockade. After therapy com-
pletion each patient was categorised according to RECIST response criteria into four categories
based on the therapy outcome (for further details see Section Data Acquisition and Description).
We analysed the data as before by calculating the diversity D(q, 1) and constructing diversity pro-
files (see Supplementary information - Section 2.1.).

To test if the features we have identified are useful in capturing key dimensions of variation
in the similarity scaled diversity profiles we then extracted these features and carried out PCA
on the features rather the raw values. These include all the areas between different A curves,
average values of Aln(D(q, 1)) for small As and slopesforg=0—->1,¢g=1—->2andg=0 - 2. To
further mitigate the effect of repertoire size on the analysis we have log-transformed the values
of D(q, 4) prior to feature extraction. The analysed features are therefore ratios and relationships
of the natural logarithm of D(q, 4). The results of the PCA analysis on the human can be seen in
Supplementary information - Section 2.2.

In both the mouse and human data sets we found that the PCA on features was qualitatively
similar to that on the full diversity profile. However, the variance explained by PC1 was reduced
while that explained by PC2 was increased, leading to improved 2 dimensional separations. In the
case of the mouse data the effect was modest, while in the human data it was more substantial,
leading to an increase in variance explained by PC2 from 11% to 20%.

The reduction of variance explained in PC1 indicates that these features are indeed acting as
useful summaries of redundant (linearly correlated) information in the full profile. Therefore mak-
ing use of such features, rather than the raw profile values may help reduce experimental noise
and improve robustness.

Non-linear relationships between TCRDiIivER features are driven by the structure
of repertoires

Because a significant proportion of the variance is not captured by PC1 alone, there must be some
non-linear relationships between similarity sensitive diversity profile features. We therefore de-
cided to look more closely at pairwise relationships between these features, as shown in figure 3
D.

This revealed two interesting characteristics of the relationships. Firstly, while many of the
plots are clearly non-linear, they lie on surprisingly tight curves. This indicates that there is some
constraint at work in the structure of the repertoire meaning that the value of one feature tightly
constrains the value of other features. However, the second interesting characteristic is that these
constraints are not unique.
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Figure 2. Diversity profiles (divPs) of calculated from CDR3 frequency within each repertoire and their similarity. DivPs of repertoires stemming
from immunisation have been shown to the left, while the untreated is show on the right. Natural logarithm transformed values of diversity ¢ D
for each calculated 4 = 0.0,1.0,1.5,2.0,4.0, 8.0, 16.0, 32.0,64.0 and identity versus the increasing order of q. The legend for all diversity profiles is
shown at the bottom right. The highlighted area represents the area between 1 16.0 and identity curves. It highlights the change in repertoire
CDR3 similarity unification for repertoires of different origin. Diversity profiles of only one sample per group are shown, the rest can be found in

Supplementary information - Section 1.1.
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Figure 3. A. Trends of three features extracted from divPs are shown versus the treatment regime and timepoints ending with the latest
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timepoint. The features are, from left to right: average Aln(D(q, A)) for small s, between curves of 1 = identity and 16.0 and slope of g=0 — 1
for value of 4 identity. The line connects the mean values of the features for all samples within a group and the shaded area represents the
confidence interval. B. PCA on naive diversity values ¢ D, i.e. A = identity. The PCA plot aspect ratio has been adjusted and corresponds to
variation explained by the first two principal components. C. PCA on features extracted from the diversity profiles constructed on the diversity
values ¢ DZ. These include areas between all lambda curves, average AIn? DZ for small As and slopesg=0—-1,g=0-2andg=1-2.AsinC,
the aspect ratio corresponds to variation found by PCA. D. Graphs showing relationships between some of the divP features. From left to right:
average Aln(D(q, 4)) for small As is shown versus the area between curves of 4 = identity and 16.0; average Aln(D(q, 4)) for small As is shown
versus the slope of ¢ = 0 — 1 for value of 1 64.0; slope of g = 1 — 2 for value of 4 identity (i.e. naive diversity) is shown versus the area between
curves of 1 = identity and 64.0; slope of g = 1 — 2 for value of A identity (i.e. naive diversity) is shown versus the slope of g = 0 — 1 for value of 1

64.0. The legend corresponds to figures B, C and D.
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An example is the relationship between Aln(D(q, A)) at small A and the area between profiles for
A= o0 and 4 = 16, as shown in the first panel of figure 3 D. As noted above, these both depend on
the distances between sequences in the repertoire. Rising Aln(D(q, A)) at small 1 indicates mean
distances between sequences in the repertoire increasing. Falling values of the area indicate fewer
clones at very close distances to another clone. In a simple ideal case where the clone size and
distance distributions are uniform these two effects perfectly coincide. We illustrate this using
model data in Appendix 2 Evaluation Al/n(D(g, 4)) for larger As and it's relationship to distance. In
real data with non-uniform clone size and distance distributions D(q, 4) provides a measure where
the differential effect of changes in the most similar sequences and changes in comparisons across
the repertoire as a whole can be characterised.

For data from the mouse immunisation experiments, figure 3 D illustrates a non-linear change
pointinthe relationship between Aln(D(q, 1)) at small A and area the between profiles for 4 = o0 and
A = 16. Above a threshold in area for larger As of around 2.5 we see the expected behaviour for the
simple ideal case. Below this threshold we see the more complex phenomenon where a smaller
mean distance between sequences goes with fewer small inter-clone distances. This is most de-
veloped in the samples from late time points where expanded clones are present. Within these
clones the distances between sequences will be zero, pushing down the mean distance between
sequences. At the same time the presence of large expanded clones means that these clones are
less likely to have close neighbours.

The example of the relationship between Aln(D(g, 4)) at small 1 and the area between profiles
for A = 0 and 4 = 16 illustrates a non-unique constraint. A value of 0.06 for Aln(D(q, A)) at small 4
constrains the value of the area between profiles for A = co and 4 = 16 but to one of two possible
values - either around 2.0 or around 5.5. This again emphasises the importance of taking multiple
features of the diversity profile to more fully characterise repertoire structure. Similar non-unique
constraints can be seen in the other panels of figure 3 D.

The mathematical form of the diversity we have adopted does impose some restrictions on
possible diversity profiles. For example, the effective diversity must always fall (or stay constant)
as q rises, reflecting the down weighting of small clones. To test if these relationships might be an
artefact imposed by the mathematical form of the diversity we replaced the clone size distribution
with pseudo-random numbers while keeping the distance matrix fixed, with results shown in figure
4. This eliminated observed correlations, showing that the correlations are not mathematically
necessary. To confirm that the correlations are not a product of the particular distance definition
adopted we repeated the analysis using an alternative metric based on amino acid properties. This
shows qualitatively similar correlations (See Supplementary information - Section 1.9).

Turning to the human data set we found that pairwise relationships between features were
quantitatively quite different that the mouse data, but displayed the same characteristics of lying
on curves and giving rise to non-unique constraints (Figure 5 A.). Given differences in species, tissue
and treatment, it is unsurprising that the range of repertoire structures observed differs consider-
ably. At least some of these differences are captured in features of the similarity scaled diversity
profiles. Despite these differences, the human data corroborates the notion that regardless of
the immunisation strategy and dataset (human or murine), the natural TCR repertoires reside in a
subspace governed by a complex interplay of TCR clonality and similarity.

Discussion

The complex structure of immune repertoires makes them challenging to compare and classify.
Previous work making use of sequence information to understand TCR repertoires has focused on
determining the antigen specificity of particular sequences. In contrast, TCRDIVER is able to make
use of sequence information to reveal structural similarity between repertoires that have little or
no sequence overlap. With 2 tunable parameters TCRDIVER becomes an effective computational
microscope, able to focus on different scales of structure in the immune repertoire. The resulting
diversity profiles then provide highly interpretable summaries of global multiscale structure.
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Figure 4. A. Trends of three features for the randomised murine dataset are shown versus the treatment regime and timepoints ending with
the latest timepoint. The features are, from left to right: average A In(D(qg, 4)) for small is, between curves of 1 = identity and 16.0 and slope of
q =0 — 1for value of 1identity. The line connects the mean values of the features for all samples within a group and the shaded area
represents the confidence interval. B. Graphs showing relationships between some of the divP features of the murine dataset with random
frequencies. From left to right: average A ln(D(q, 4)) for small As is shown versus the slope of ¢ =0 — 1 for value of 1 64.0; average A In(D(g, A))
for small 4s is shown versus the area between curves of 1 = identity and 16.0; slope of ¢ = 1 — 2 for value of 4 identity (i.e. naive diversity) is
shown versus the slope of g = 0 — 1 for value of 1 64.0; slope of g = 1 — 2 for value of 4 identity (i.e. naive diversity) is shown versus the area

between curves of 4 = identity and 64.0.
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Figure 5. A. Graphs showing relationships between some of the divP features extracted from diPs of the human dataset. From left to right:
average Aln(D(q, 4)) for small As is shown versus the slope of ¢ = 0 — 1 for value of 1 64.0; average Aln(D(q, 4)) for small As is shown versus the
area between curves of 1 = identity and 16.0; slope of ¢ = 1 — 2 for value of 4 identity (i.e. naive diversity) is shown versus the slope of g =0 - 1
for value of 1 64.0; slope of ¢ = 1 — 2 for value of 4 identity (i.e. naive diversity) is shown versus the area between curves of 1 = identity and 64.0.
B. As A., but comparing features from the human dataset with randomized frequencies. The legend corresponds to both A. and B.
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Here we provide a proof-of-concept study in application of similarity scaled diversity estimates
to TCR repertoire analysis. We have applied principal components analysis as a means of qualita-
tive repertoire stratification and shown it is able to capture variation in the diversity profiles which
characterise immunisation history. The similarity scaled diversity profiles are themselves quite
rich summaries and in the future we anticipate that they may be subject to more sophisticated
machine learning techniques. At present this possibility is limited by the number of available sam-
ples for which comparable data is available. The need to define a similarity scaled diversity index
with a parameter 1 arises naturally from a desire to generalise the idea of naive diversity profiles.
While there may be a variety of ways to define such a generalisation, it should be noted that the
specific form of equation 7 (also shown in figure 1 B.) that we use possesses important abstract
mathematical properties that will enable further investigation Tom Leinster (2013).

As has previously been shown Greiff et al. (2015) the use of a single diversity index to rank
or classify repertoires is not robust, since the ranking will depend on the index selected. The use
of naive diversity profiles is a step forward in so far as they reflect the contribution of both large
and small clones. However, as applied to real TCR data naive diversity profiles typically give a
single effective dimension of separation. This is reflected in our results that show 93% of variance
explained by PC1 carried out on the naive diversity profile. The common choice to model clone
size distributions using power laws Altan-Bonnet et al. (2020) that have a single tunable parameter
further supports the idea that range of possible biological distributions is essentially 1 dimensional.
In this case, any practical classification of repertoires based on naive diversity will be based on a 1
dimensional separation.

The novel features identified in our similarity scaled diversity profiles provide a genuine second
dimension of variation in the structure of the repertoire based on sequence similarity. As shown
in our PCA analysis this opens the practical possibility of 2 dimensional separations of repertoires
which are inherently more powerful. Notably, this approach can make use of sequence data to
classify repertoires together even when they share no similar sequences.

The striking relationships between similarity profile features appear to reflect biological struc-
ture in the TCR repertoires. We hypothesise that the non-linear relationships we observe reflect
the range of possible biological variation and are thus analogous to the way in which clone size
distributions are well approximated by power laws. Our observation motivates investigations of
extending of power law distributions to include description of sequence similarity.

Any calculation involving an all-against-all comparison will inevitably scale with the square of
the number sequences. Because TCRDIVER is parallelisable, with the 50,000 sequences per sam-
ple analysed here it is very practical to run on commonly available computer clusters. When dis-
tributed over 8 cores of an Intel Xeon Gold 6126 2.60 GHz processor, each repertoire computation
took under 6 hours. There is scope for several-fold speed up, including optimisation of the distance
function. A possible gain would come from replacement of the exact all-against-all comparison at
high lambda with comparison against approximate k-nearest neighbours using a ball tree algo-
rithm. However, at low lambda values the all-against-all comparison cannot be avoided reflecting
the way in which the similarity scaled diversity incorporates genuinely global information about
the repertoire.

The form of equation 7 is motivated by rather general mathematical considerations, but these
still leave the metric used to compare sequences undetermined. There is no ‘true’ metric, in the
sense that a assigning a single number to the distance between two sequences cannot fully capture
all the ways in which binding affinities vary. In our work we used two metrics which plausibly
reflect biological functional similarity (through use of evolutionary data in BLOSUM45 matrix) and
biochemical similarity (thorough the Atchley factors). While these gave qualitatively similar results,
the best metric to use for a given question is an open question in the field of TCR analysis as a
whole.

While in this study we have applied similarity scaled diversity profiles to TCR repertoires, we
believe that the same concept should also be applicable for understanding antibody repertoires.

13 of 58


https://doi.org/10.1101/2021.01.11.417444
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.11.417444; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

The features of similarity scaled diversity profiles can easily be translated in to properties of the
repertoire. The functional biological significance of the similarity scaled diversity (as indeed the
naive diversity) is likely to be more variable and subject to experimental investigation. TCRDIiVER
provides an important tool to enable those investigations.
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Materials and methods

Data Acquisition and Description

The murine dataset consits of previously published data that has been analysed as part of a larger
dataset in the work by Sun et al. (2017). Briefly, CD4* T cells were isolated from spleens of 18
C57BL/6 mice immunised with Complete Freund’'s adjuvant (CFA) with or without an addition of
Ovalbumin antigen (OVA). The samples were collected at different times post-immunisation: at
day 5 and 14 (early timepoints) and day 60 (late timepoint). In addition, CD4* T cells were collected
from 8 healthy unimmunised mice prior to study start. An overview of the dataset is given in Table
1. We have received the dataset already analysed with Decombinator, which described in depth
in Thomas et al. (2013, 2014b). The data we have analysed consisted of a list of CDR3 sequences
present in each sample. The raw fastq files are available at http://www.ncbi.nlm.nih.gov/sra/?term=
SRP075893.

Additionally, we have analysed a human TCR dataset previously analysed by Formenti et al.
(2018). The participants of the study were 39 patients diagnosed with metastatic non-small-cell lung
cancer (NSCLC). They were treated with daily radiation therapy regimen in two phases of the trial
(phase I-6Gy x 5 and phase 11 9.5 Gy x) and intravenous ipilimumab (CTLA-4 blockade) following the
first radiation treatment and subsequently repeated every 3 weeks for four cycles. The assessment
of patient treatment response was performed with PET/CT scans at day 88 and evaluated using
Response Criteria In Solid Tumors (RECIST). The patients were then classified, according to RECIST,
into complete responders (CR), partial responders (PR) with tumour decrease in size < 30%, stable
disease (SD) with insufficient shrinkage to qualify for any of the other criteria , and progressive
disease (PD) with increase in size > 20% or appearance of new lesions. Out of 39 patients 20 were
evaluable at day 88. Serial blood samples for peripheral blood mononuclear cells (PBMCs) were
collected at baseline (day 0), and on days 22, 43, 64, and 88. The isolated PBMC were subjected
to amplification and sequencing of bulk TCRg CDR3 regions by Adaptive Biotechnologies. We have
obtained the data from the Adaptive Bioctechnologies ImmunoSEQ database Imm (????). Since
the samples collected at later timepoints (day 43 and onward) were not available for all of the 20
evaluable patients, we have restricted our analysis to samples collected at baseline and day 22 of
treatment. An overview of samples included in our analysis is given in Table 2.

Subsampling to reduce computational load

We have only considered "In" frame reads of CDR3s in our analysis. In order to reduce the com-
putational load of calculating pairwise similarity between a large number of CDR3 regions (order
of magnitude ~ 10° ), we have performed subsampling prior to analysis. We will refer to individual

Table 1. Murine Dataset overview

Treatment Sample collection time (days) Number of mice
CFA 5 3
CFA 14 3
CFA 60 3
CFA+QOVA 5 3
CFA+OVA 14 3
CFA+QOVA 60 3
Non-immunised 0 8

Table 1-source data 1. Overview of samples available in the analysed dataset, a part of a previously published
dataset by Sun et al. (2077). In total 26 CD4* murine spleen samples were analysed. Sample collection time is
given as the number of days post immunisation. Note that mice culled at day 60 received an additional booster
shot of immunising agent (CFA or CFA+OVA).

15 of 58


http://www.ncbi.nlm.nih.gov/sra/?term=SRP075893
http://www.ncbi.nlm.nih.gov/sra/?term=SRP075893
http://www.ncbi.nlm.nih.gov/sra/?term=SRP075893
https://doi.org/10.1101/2021.01.11.417444
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.11.417444; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

CDR3 sequences as sequences, and a collection of identical CDR3 sequences as a clone. Each reper-
toire was down sampled to contain 50000 CDR3 sequences. The sampling was random, based on
the original CDR3 frequency distribution. After sampling the number of CDR3 clones was < 50000.
An overview of number of unique clones for the murine and human dataset is given in Table 3 and
4, respectively. For each sample, the CDR3 clone count (number of identical CDR3s within a clone)
was transformed into frequencies, so that the all the CDR3 clone frequencies sum up to 1:

N
=1 M
i=1

.where p, is the frequency of the i-eth CDR3 clone in the repertoire. The clone CDR3 amino acid
sequences with their respective frequencies were used as input further downstream.

Calculating the Distance Matrix

In order to reduce computational time and memory usage of calculating pairwise comparison, we
have divided the distance matrix into smaller portions ("chunks") which are separately calculated.
The algorithm takes in the list of S CDR3 clones, and splits it up into n sub lists of predefined length,
default value is 100. For each sublist pairwise comparisons are made between the CDR3s in the
sublist versus all the CDR3s in the original list. An example of the distance matrix calculation can
be seen in Figure 6. Global alignment between two CDR3 clone sequences was performed with
a gap penalty of 10 and scored using the BLOSUM45 Henikoff and Henikoff (1992) substitution
matrix. The alignments were created using the PairwiseAligner function in the Bio.Align package
within Python3 Van Rossum and Drake (2009). The distance between two CDR3s, d(CDR3,,CDR3)),
was calculated based on the alignment scores:

BLOSUM45score(CDR3;,CDR3))
max(BLOSU M45score(CDR3;,CDR3;), BLOSU M45score(CDR3;, CDR3)))
(2)
Alternatively, we have also employed a biochemical scoring based on the Atchley factors Atchley
et al. (2005). The factors are based on biochemical properties of amino acid residues that are
grouped and transformed into five Atchley factors. For each CDR3 an average value for individual
Atchley factors was computed. The distance between two CDR3 sequences is then calculated as
an Euclidean distance between the averaged five Atchley factors.
The obtained distance matrix is mathematically connected to the similarity kernel Z as shown

d(CDR3,CDR3,) =1~

Table 2. Human Dataset overview

RECIST criteria  Sample collection time (days) Number of patients

PD 0 8

PD 22 8

SD 0 5

SD 22 5 Table 2-source data 1.
PR 0 5

PR 22 5

CR 0 2

CR 22 2

Overview of samples used from the dataset previously published by Formenti et al. (2018). In total 40 hu-
man PMBC samples were sequenced for TCRg CDR3. Sample collection time has been given as the number of
days after start of therapy, with 0 being baseline prior to first treatment.
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in equation 3

Z,, = e M, 3)

where the A provides scalling.

Calculating Naive Diversity
Naive diversity does not take similarity into account and is calculated based on the frequencies of
CDR3 clones within the repertoire Jost (2006, 2010):

AN
D(g) = <2p§')( ) @
i=1

, Where p, is the frequency of the j-eth CDR3 clone and g is the diversity order, as diversity indices
are a functions of Zle p!. We have chosen a list of gs which subsume the use of some common
diversity indices such as 0, 1, 2 and o0, which correspond to the richness, exponent of the Shannon
diversity Spellerberg and Fedor (2003), Simpson SIMPSON (1949); Jost (2006) and Berger-Parker
Berger and Parker (1970) index, respectively. To extend our surveying the clone size distribution
space we have also added 3, 4, 5 and 6% order of diversity. For values of g = {1, o} the diversity
was calculated as the limit of ¢ approaching the values of 0 and co.

wp |

5)

pmax
1D = on'D) — =X, pilnp) (6)

A detailed derivation of the equations is provided in Appendix 1.

Calculating Similarity scaled Diversity

Similarity scaled diversity of order ¢ takes CDR3 clone sequence distances d(CDR3,, CDR3,) along
with their respective frequencies. We have adapted the method of calculating similarity-sensitive
diversity measures, as proposed by Leinster and Cobbold (2072). We have again chosen a list of gs,
g =0,1,2,3,4,5,6,00, in the same manner as when calculating the naive diversity. Furthering the
method, Leinster and Cobbold (2012), propose the use of similarity-sensitive diversity measures
4D” (Equation 7), dependent on relative abundances and species similarity data as distance d,;. We
introduced an alteration of the original approach is introducing the similarity scaling factor 4, which
allows us to weight TCR distances in much the same way as we do clone sizes (Figure 1 D.). Here we
choose a list of values 1 = {0.0,0.1,0.2,0.25,0.3,0.4,0.5,0.75, 1.0, 1.5,2.0,4.0,8.0, 16.0, 32.0,64.0}. The
value of 1 = identity corresponds to the naive diversity calculation, D(g).

1

S T S
9p% = ( ZPI-(ZP),[-I_1> Zp); = Z Zijpj Zij =e M (7)

i=1 j=1

Algorithm overview

An overall scheme of the TCRDIvER algorithm is given in Figure 7. The algorithm has been im-
plemented within Python (v3.6) Van Rossum and Drake (2009) and it's freely available at https:
//github.com/sciencisto/ TCRDivER.

Downstream analysis of TCRDivER output

The final output of TCRDIVER is a table containing all the values of diversity calculated with a
range of gs and As. The full downstream analysis is summarised in a Python3.6 jupyter note-
book Kluyver et al. (2016) available alongside the main TCRDIVER algorithm at https://github.com/
sciencisto/ TCRDIivER. The diversity profiles were constructed using the seaborn package Waskom
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Figure 6. An overview of the calculation of the distance matrix. The list of CDR3 sequences is divided into lists of equal length, here 10
sequences, the default value is 100. These 10 CDR3s are then pairwise compared with all the other CDR3s in the total list of CDR3 sequences.
Each portion of the distance matrix i.e. chunk has 10 rows and S columns, where S corresponds to the total number of CDR3 clone sequences.

In the end there are n chunks, where n is equal to the floored division of total number of sequences by the length of chunk n = m.

Distances d are d(CDR3;, CDR3;) calculated based on the BLOSUM45 alignment score. The diagonal of the combined distance matrix is 0.
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Figure 7. An overview of the TCRDIVER algorithm. I./nput. The algorithm takes as input of CDR3 clone sequences with their clone sizes expressed
as count or frequency. Il.Filtering. The input sample is filtered to contain only "In" frame CDR3 regions. Afterwards, the repertoire is sampled for
CDR3s randomly, based on the frequency (count) distribution in the original repertoire. The default subsampling size is 50000 CDR3 sequences,
therefore the filtered and subsampled repertoires contain < 50000 unique CDR3s. The CDR3 sequence counts in the subsampled repertoire are
transformed into frequencies, so that the final output is a list of unique CDR3s with their respective frequencies summing up to 1 within the
repertoire. lll.Calculating distance matrix The filtered and downsampled repertoire is then provided as input for calculating the distance matrix.
This step is split up so the original list of unique CDR3 sequences is divided into sublists of equal length which are in turn pairwise compared
against the whole list of CDR3s using the BLOSUMA45 alignment score (see Figure 6). The output is a set of files which contain portions of the
distance matrix. If concatenated they would form the complete distance matrix. However, manipulating such a large file would computationally
expensive. IV.Calculating similarity scaled diversity This step is split into two parts: calculating naive and similarity scaled diversity (see sections
Calculating Naive Diversity and Calculating Similarity scaled Diversity. The first script takes in only the filtered and subsampled list of CDR3s and
their respective frequencies, since D(q) is not dependent on CDR3 sequence distances. The output of this calculation is a .tsv file containing
values of diversity at different values of ¢q. The second script takes in both the list of CDR3s with their frequencies and the distance matrix
"chunk" files. The calculation is done in a parallel fashion to reduce computational time. As output a .tsv file is given containing the values of
calculated diversity at different values of g and 4. V. Combining diversity calculations The final step is joining the two diversity calculations into a
complete overview of the diversity. Two previously obtained .tsv files with calculated diversity values are combined into one file containing all
calculated values of diversity. Downstream this file is used for constructing the diversity profiles and further statistical analysis.
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et al. (2017). Areas between 4 curves of In(D(q, 1)) was calculated within the numpy framework
Oliphant (2006) as an integration using the composite trapezoidal rule. Average Aln(D(q, 4)) for
small As was calculated for 4 = {0.0,0.1,0.2,0.3,0.4,0.5} as the mean of the average difference be-
tween In(D(q, A)) at each calculated q. Slopes of diversitywheng=0—-1,g=1—->2andg=0 -2
were calculated as differences between the diversities when g = 0, 1and2. We are aware that this is
not the slope of diversity at the specific values of ¢, as we also provide the mathematical evaluation
of the slope at these timepoints (See Appendix 1 Evaluating the slope at ¢ = 1). However, due to
time and memory considerations we have opted for the simplified calculation as we feel that it rep-
resents the slope sufficiently. For future implementations, we will update the algorithm to include
the analytical slope evaluation. Principal components analysis was performed as implemented in
the scikit-learn package Pedregosa FABIANPEDREGOSA et al. (2011).
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Table 3. Murine Dataset Subsampling

Sample name Treatment Sample Number Number of
collection  clones prior clones
time (days) tosampling after sam-

pling
SB1_AAA CFA 5 655436 30400
SB1_CCG CFA 5 250334 29493
SB1_TTG CFA 5 1091977 32263
SB1_ACC CFA 14 411320 27156
SB1_CTA CFA 14 443454 25445
SB1_GCT CFA 14 357390 25435
SB2_ATT CFA 60 252947 19626
SB2_CCG CFA 60 253711 23146
SB2_CGT CFA 60 154234 15539
SB1_ATT CFA+OVA 5 805062 31315
SB1_CAC CFA+OVA 5 470031 30520 Table 3-source data
SB1_GTC CFA+OVA 5 428108 32077
SB1_AGG CFA+OVA 14 572343 33190
SB1_GAG CFA+OVA 14 437636 27132
SB1_TAT CFA+OVA 14 581210 32121
SB2_CAC CFA+OVA 60 153275 16251
SB2_GCT CFA+OVA 60 197386 20608
SB2_GTC CFA+OVA 60 193514 17966
CPX1A_GGA Non-immunised 0 413430 32295
CPX1A_TTG Non-immunised 0 283449 30541
CPX1B_CAC  Non-immunised 0 171819 30131
EAE1A_ GGA Non-immunised 0 201127 28170
EAE1A_TTG Non-immunised 0 155225 28699
EAE1B_CCG  Non-immunised 0 80632 14866
EAE1B_TTG Non-immunised 0 89643 21506
SB1_TGC Non-immunised 0 284924 21727

1. Overview of number CDR3 clones prior and post subsampling in CD4*+ TCR repertoires of the murine dataset
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Table 4. Human Dataset Subsampling

Sample name RECIST Sample Number  Number
criteria collection clones of clones
time prior to after

(days) sampling sampling

Pt10_PD_PBMC_Day0  PD 0 261326 39555
Pt16_PD_PBMC_Day0  PD 0 170417 36110
Pt27_PD_PBMC_Day0  PD 0 102012 25848
Pt28_PD_PBMC_Day0  PD 0 197523 38151
Pt36_PD_PBMC_Day0  PD 0 42953 21211
Pt38_PD_PBMC_Day0  PD 0 69248 18942
Pt40_PD_PBMC_Day0  PD 0 119828 20905
Pt43_PD_PBMC_Day0  PD 0 144548 32998
Pt10_PD_PBMC_Day22 PD 22 261955 39417
Pt16_PD_PBMC_Day22 PD 22 182238 35294
Pt27_PD_PBMC_Day22 PD 22 30562 17699
Pt28_PD_PBMC_Day22 PD 22 162481 36018
Pt36_PD_PBMC_Day22 PD 22 52416 22467
Pt38_PD_PBMC_Day22 PD 22 83106 20022
Pt40_PD_PBMC_Day22 PD 22 153595 26737
Pt43_PD_PBMC_Day22 PD 22 149218 32983

Pt5_SD_PBMC_Day0  SD 0 124049 36074
Pto_SD_PBMC_Day0  SD 0 56702 21371 Table 4-source data 1.
Pt22_SD_PBMC_Day0  SD 0 72589 26421
Pt30_SD_PBMC_Day0  SD 0 74019 17423
0

Pt32_SD_PBMC_Day0 SD 75631 18287

Pt5_SD_PBMC_Day22  SD 22 150203 36579
Pt9_SD_PBMC_Day22  SD 22 43496 20669
Pt22_SD_PBMC_Day22 SD 22 97833 30146
Pt30_SD_PBMC_Day22 SD 22 82704 20291
Pt32_SD_PBMC_Day22 SD 22 59017 19849

Pt1_PR_PBMC_Day0 PR 0 174555 33446
Pt17_PR_PBMC_Day0O PR 0 169671 37698
Pt23_PR_PBMC_Day0 PR 0 91260 16753
Pt37_PR_PBMC_Day0 PR 0 130788 33824
Pt44_PR_PBMC_Day0 PR 0 108678 29786

Pt1_PR_PBMC_Day22 PR 22 205316 33568
Pt17_PR_PBMC_Day22 PR 22 229810 32628
Pt23_PR_PBMC_Day22 PR 22 94146 17549
Pt37_PR_PBMC_Day22 PR 22 195069 35062
Pt44_PR_PBMC_Day22 PR 22 120658 28538
Pt3_CR_PBMC_Day0 CR 0 128860 29075
Pt4_CR_PBMC_Day0 CR 0 119253 27209
Pt3_CR_PBMC_Day22 CR 22 92123 27116
Pt4_CR_PBMC_Day22 CR 22 108383 29732

Overview of number CDR3 clones prior and post subsampling in bulk TCR repertoires of the human dataset.
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Appendix 1

Evaluation of naive diversity of the first order
We start with:

S, \T
In(D(@) = In ( Zp,‘.f)( )

i=1
Exploring the limit as ¢ approaches 1 allows us to apply L'Hopitals rule:

S g
In Zil P <ln Zi:lpi)

i) = i == S i =y

The solution is:

S
In(D(1)) == p;Inp,
i=1
This is equivalent to:
1
D(l) = —

p11p1272 .. 'pfi

Evaluating the slope at g =1
We start with the definition of ¢D:

define S as the internal sum

N
S = Z pl
i=1
Now we can write
In(D(q)) =

1 InS
l—gq

Let’ denote differentiation with respect to q. Now evaluate

| 1 /
In(D(q)) = = In S+ — q(ln S)
_InS+(1-¢g)(InS)
(1-g7

To evaluate the limit as ¢ goes to 1 we need to apply I'hopital’s rule twice. Calling the
numerator ¢

t=InS+1-¢q)(InS)
! =(1-¢)(InS)"
" = (1 — ¢)(In .S)"” — (In S)"

Since In.S and all its derivatives are finite as ¢ goes to 1

lim?" = —lim(In.S)”
q—1 g—1
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Call the denominator b

b//=2

and

limb"” =2

g—1

Putting this together we have

P lim,_, "
nmIn(D@) = g o
1
=—=(nS)"’
2 -
We need
>N plnp,
l S ’ — i= i i
(In.S) B
(105" = L plnp)?  (TL plnp)
B S S2
Because p; is a probability distribution
IlimS =1

q—1

which means (since the limit of quotient is the quotient of the limits)

g—1

N N
lim §” = 3" pl(np)* ~ (Y o Inp,’
i=1 i=1
Finally, we want to evaluate D(q)’ and then take the limit as g goes to 1.
D(g)" = D(q) (In(D(q)))’
and

lim D(q)’ = lim D(q) lim —~(In "
g—1 q—1 g—1 2

N N
=-10() (21,;1(1,,,,,.)2 -Qp lnpf)
i=1 i=1

To generalise to the case Z # I we simply have to replace S with

N
s= p@p .

i=1

In this case

> p(Zp) In(Zp),

(InS) = S

L p@p)y nZp))’ (XL p@p) InZp))?
S 52

(InS)" =
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Evaluation of similarity scaled diversity of the first order
We start with:

S =)
In D(g, 1) =In < Zpi(zp)?_l>( )
i=1

Rewritting the equation, calculating the limit as g approaches 1 and applying L'Hopitals rule:

!

N q—1
1-q = (1-9q)

limln D(gq, A) = lim
=il g=1

The result is:

S|
In(D(1, ) = — Zp,. In (Zp),
i=1

, which is equivalent to:
1

D(g, 4) = ,
! @Zp)}' @Zp)y? - - - (Zp);"

Evaluation of naive diversity of the infinity order
We start with the formula for naive diversity and extract the largest clone frequency p,,..:

1

S
D(q) = Z ) = malil"'Zp =

.where p —L for j # max, and p,,,. is represented in the first term of the sum. Since a
limit of products is a product of limits, it follows:

lim D(g) = lim(p,,,) ™ lim(1 + 2 P
g—00 g—00
The first limit is evaluated as:

. o]
lim (p,,,, ) '~
q—?OO pmax

The second limit is evaluated by taking the logarithm:

5

1 ’
lo 11m(1+ pq)l-q> —hmlo <(1+ pq)‘—'i) = lim log(l+ ) p%)
o(ima+3 (00 3 07%) =i g s + 5

j=1 Jj=1

Since 0 < Zf p;." < 1, the bounds of logarithm are:

S
0 <log(l+ Y p) <log2

Jj=1

, Which gives:

lim

g—0 (

— log(hm(l+2p %,>=0

Jj=1

S
1 !
log(1 + E p=
-q) =
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645

646

S
647 ’ 1
649 g NT—q =
= lm+ 3 )t =1
650 Jj=1
651 1

= lim D(q) =
652 g—00 ‘max

884 Evaluation of similarity scaled diversity of the infinity order
685 We start with:

656 5 Tiq) L / ﬁ
D(g. ) = ( D p,-(Zp)?'1> = (ZP) ) (pma +> p;(Zp),"'1>
658 i=1 j

where the term that has been pulled out is the one for which (Zp), is maximum. The p,,. is
the corresponding p,. As before, the p; are defined as 2 for j # max and (Zp);. is defined

'max

661 Zp); g 8 f A g
as (z(pp)/ . Again, the limit splits in to two factors:
662 'max
663 =1 1
1—

S @)™ = 5

Taking the log of the second term gives:

lim log <pmax(l + Zp;(Zp);"_l)
668 x—o0 | —¢q n

and now the log is bounded by:

o 10g ppar < log (pmax(l + Zp;(Zp)j‘Fl) <log2
672 J
o so again the limit of the log second factor in (*) is 0, and limit of the factor itself is 1. The
or end result is: |
675 N
lim D(q, A) =
676 q= (ZP)max
677 which reduces to the correct limit when Z=I which is the naive diversity.
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Appendix 2

Evaluation Aln(D(q, 4)) for small A: Perturbation around 4 =0

D(q A)

Conjecture: gradient of is a decreasing function of 4. N.B. D(g, 4) is an increasing

q=0
function of A for all 4.
We start with the assumption that for 4 around 0:
In(D(g, 1)) 4

Where In (D(q, 1)) is:

In(D(q, 1))

]
5
/N
'Mra
LS}
~~
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©
e
~—

Il
—_
=3
/N
=
—
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SN
3
~

I
—
| |~
=
5
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>
—_~
=
[y
L
5
S—
-
N~

For 2 — 0 by applying Taylor expansion e~*% reduces to 1 — id,; which gives:

S

n<z ;pj(l Ad;))! >

In(D(g, ) ~ 1 i

We can then rewrite:

q—1
pr(l Ad, ) (po(l — Adyy) +p(1 = Ad;) +- - -+ p;(1 - ld,.j)>

S q—1
~(1-4Fna)

By applying the binomial expansion we arrive at:

S
Zp/(l ;) <1—(f1—1)/1(21’jdi/)>
=1

By substituting the derived expressions in the formula for In (D(g, 4)) and keeping in mind
that ¥ p, = 1, we can write:

In(D(q, 1) =

S

Z I’z i e Adij
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el
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By applying the linear approximation /n(1 — x) ~ x, we finally arrive:

S S
1
713 In(D(g, 1)) ~ m(‘(fl—l)/1 ;P:(ZP,-%))
714 i= j=1
715 &) D)
~ AZp,.( Zl’jdu)
i=1 j=1
716 Note that the final form of the evaluation of D(q, 4) for 4 — 0 is independent of the order
717 of diversity ¢. It is solely dependent on the distance between CDR3 sequences weighted by
718 their respective frequencies.
710 Evaluation Aln(D(g, 1)) for small 4 and it's relationship to distance
720 By evaluating Aln(D(g, 4)) for two values of small 4, where 4" > A" we arrive at:
72 Aln(D(g, ) ~ D(g,4') — D(q, 1)"

S S S S
723 zﬁ,Zpi(zpde)—A,ZPi(ijdij)
i=1 i=1 i=1 =1
js s j
~ =2 Y (Y pdy)
i=1 Jj=1

725 It is evident that Aln(D(q, 4)) is linearly dependent on the distances between CDR3s and
726 their probabilities. In the case of two hypothetical repertoires, I and I, which have a uniform
727 distribution of CDR3 frequencies within the repertoire p/ = p/’ = p and distances between
728 CDR3s dl,’j > di;’, Aln(D(q, 4)) for repertoire | is larger than Aln(D(q, A)) for repertoire Il. That
720 is with the increase of similarity between CDR3s, the area between the curves for small s
730 decreases (Appendix 2 Figure 1 C.). Alternatively, if the distances between CDR3s of the two
731 repertoires are the same d;; = d/ = d, and the distribution is still uniform, but the number
732 of clones differs so that repertoire I has less clones than Il i.e. p! > p!!, then Aln(D(q, A)) is
733 larger than Aln(D(g, 4)). Meaning that repertoires with more abundant clones have a larger
734 Aln(D(q, 4)) for small is.

735 Evaluation Aln(D(q, 1)) for larger is and it's relationship to distance

736 In order to evaluate the relationship between CDR3 clone distance and the area between
737 the curves of larger As we have constructed three mock repertoires. The reperotires constist
738 of 100 CDR3s that are uniformly distributed in the repertoire, i.e. p, = é = 1(1)—0 = 0.01. For
730 each mock repertoire a mock distance matrix was calculated so that the distance between
740 the CDR3s within the repertoire were equal, but that they differ between the repertoires.
741 The distances were d/, = 0.05, d// = 0.1 and d/!" = 0.5, for repertoire |, Il and Ill respectively
742 wheni # j, elsed,; = 0 fori=j. InlelduaI A curves of the diversity profiles straight lines - a
743 remnant of uniform distribution of CDR3 frequencies in the repertoire (Appendix 2 Figure
744 1)
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746 Appendix 2 Figure 1. Effect of CDR3 distance shown in three mock repertoires with a uniform
747 distribution of 100 CDR3 clones in in the repertoire. A. Schematic representation of the three mock
748 repertoires with the distances d;; between CDR3s increasing from repertoire | to lIl. B. Diversity
749 profiles calculated based on the probability distribution and d;; for CDR3s in the mock repertoires.
750 The frequency of seeing each CDR3 clone in all the repertoires, since they consits of 100 uniformly
751 distributed CDR3s, is p; = ﬁ =0.01 C. Calculated values of average A In (D(g, 4)) for small As and
752 calculated area between 4 identity and 16 curves for the three repertoires, shown left to right
758 respectively.
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Supplementary information TCRDivER: T cell Receptor Diversity
Estimates for Repertoires

Milena Vujovi¢ Paolo Marcatili Benny Chain Joseph Kaplinsky
Thomas Lars Andresen

1 Murine Dataset

Results concerning the murine CD4" TCR repertoire dataset following immunisation with Complete Freund’s Adjuvant
(CFA) with or without the additon of Ovalbumin (OVA) antigen. The dataset also contains unimminused mice. The
samples were collected at 3 timepoints (5, 14 and 60 day) for immunised mice, and day 0 for unimmunised mice. Two
TCR distance metrics were used a BLOSUM45 and Atchley factor based score. Each subsection will therefore be marked
with the distance metric

1.1 Diversity ProfilessBLOSUM45

Diversity profiles calculated for the murine dataset with 50000 subsample size. The profiles are organised into tables
according to post-immunisation sample collection time with untreated mice, day 5, day 14 and day 60 in Table 1, 2, 3 and
4, respectively.
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Table 1: Untreated day 0
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Table 2: Immunised day 5

CFA

CFA + OVA
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Table 3: Immunised day 14

CFA

CFA + OVA
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Table 4: Immunised day 60

CFA

CFA + OVA

ot
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1.2 Naive (¢ = (°f°diversity profiles-BLOSUM45

Figure 1: Naive (¢ = 0) diversity profiles plotted for all murine samples. Frequent crossings of the curves can be observed
illustrating that the rank order of samples depends on the specific choice of index.

1.3 PCA on natural logarithm transformed values of true diversity-BLOSUMA45
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Figure 2: PCA on values of true diversity D(q,A). for the murine dataset. The aspect ratio corresponds to variation
found by PCA.
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1.4 PCA on divé¥sity values from the randomised murine dataset with random frequencies-

BLOSUMA45
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Figure 3: Principal Components Analysis on diversity calculated for the randomised murine dataset. The aspect ratio
corresponds to variation found by PCA.a. PCA on features extracted from the diversity profiles constructed from the true
diversity D(g, A). b. PCA on values of true diversity D(g,\). c. PCA on naive diversity values D(q) , i.e. A\ = identity.
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1.5 Diversity Praéfiles-Atchley factor distance

Diversity profiles calculated for the murine dataset with 50000 subsample size. The profiles are organised into tables
according to post-immunisation sample collection time with untreated mice, day 5, day 14 and day 60 in Table 1, 2, 3 and

4, respectively.
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Table 5: Untreated day 0


https://doi.org/10.1101/2021.01.11.417444
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.11.417444; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

923

Table 6: Immunised day 5

CFA

CFA + OVA

10
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Table 7: Immunised day 14

CFA

CFA + OVA

11
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Table 8: Immunised day 60

CFA

CFA + OVA

12
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1.6 Naive (¢ = (°diversity profiles—Atchley factor distance

Figure 4: Naive (¢ = 0) diversity profiles plotted for all murine samples. Frequent crossings of the curves can be observed
illustrating that the rank order of samples depends on the specific choice of index.

1.7 PCA on natural logarithm transformed values of diversity—Atchley factor distance
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Figure 5: Principal Components Analysis on diversity calculated for the murine dataset using the Atchley Factor distance
for TCRs. The aspect ratio corresponds to variation found by PCA.a. PCA on features extracted from the diversity
profiles constructed from the true diversity D(g,A). b. PCA on values of true diversity D(q,\). c. PCA on naive
diversity values D(q) , i.e. A = identity.

1.8 Trends of three features extracted from divPs versus timepoint and treatment regime-
Atchley factor distance

Average AIn(D(qg, A)) for small As
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Figure 7: Trends of three features extracted from divPs are shown versus the treatment regime and timepoints ending
with the latest timepoint. The features are, from left to right: average Aln D(g, A) for small As, between curves of A\ =
identity and 16.0 and slope of ¢ = 0 — 1 for value of A identity. The line connects the mean values of the features for all
samples within a group and the shaded area represents the confidence interval.
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1.9 DivP featur®s relationships -Atchley factor distance
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Figure 8: Graphs showing relationships between some of the divP features. a. average Aln D(g,\) for small As is shown

versus the area between curves of A = identity and 16.0; b. average Aln D(q, A) for small As is shown versus the slope

of ¢ = 0 — 1 for value of A 64.0; c. slope of ¢ =1 — 2 for value of \ identity (i.e. naive diversity) is shown versus the

area between curves of A\ = identity and d. 64.0; slope of ¢ =1 — 2 for value of X identity (i.e. naive diversity) is shown

versus the slope of ¢ = 0 — 1 for value of A 64.0.
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2 Human Dataset

Results concerning the human TCR repertoire dataset following combination therapy (RT and anti-CTLA4 blockade
ipilimumab. The patients were stratified into RECIST response criteria and by time of sample collection. We show the
results in the same order.

2.1 Diversity Profiles

Diversity profiles calculated for the human dataset with 50000 subsample size. The profiles are organised according to
RECIST criteria and timepoint in Tables 5 to 12 for progressive disease (PD) day 0 and 22, stable disease (SD) day 0 and
22, partial responders (PR) day 0 and 22 and complete responders (CR) day 0 and 22, respectively. The distance metric
used in estimating diversity was based on the BLOSUM45 alignment.
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Table 9: Progressive Disease (PD) Day 0
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Table 10: Progressive Disease (PD) Day 22
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Table 11: Stable Disease (SD) Day 0
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Table 12: Stable Disease (SD) Day 22
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Table 13: Partial Responders (PR) Day 0
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Table 14: Partial Responders (PR) Day 22
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Table 15: Complete Responders (CR) Day 0

Table 16: Complete Responders (CR) Day 22
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2.2 PCA on div8tsity profiles
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Figure 9: Principal Components Analysis on diversity calculated for the human dataset.The aspect ratio corresponds to
variation found by PCA. a. PCA on features extracted from the diversity profiles constructed from the true diversity
D(g,\). b. PCA on values of true diversity D(q,A). ¢. PCA on naive diversity values D(q) , i.e. A = identity.
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