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Abstract12

We propose TCRDivER, a global approach to T-cell repertoire comparison using diversity profiles13

sensitive to both clone size and sequence similarity. As immunotherapies improve, the long14

standing biological interest in connecting outcome with T cell receptor (TCR) repertoire status has15

become more urgent. Here we show that new insights can be extracted from high throughput16

repertoire sequencing data. Most current efforts focus on identification of immunisation-specific17

sequence motifs or on monitoring changes in frequency of individual clones. Applying TCRDivER18

to murine spleen samples shows it characterises an additional dimension of repertoire variation,19

beyond conventional diversity estimates, allowing distinction between immunised and20

non-immunised samples. We further apply TCRDivER to repertoires from human blood. In both21

cases we show characteristic relationships between repertoire features. These reveal biologically22

interpretable relationships between sequence similarity and clonal expansions. We thereby23

demonstrate a new tool for investigation in clinical and research applications.24

25

Introduction26

The T cell compartment of adaptive immunity plays a crucial role in cancer immunity, auto-immune27

and infectious diseases. Adaptive immune responses as a whole draw on diverse T-cell receptors.28

Due to the phenomenon of epitope spreading, T cells diversify their antigen-specific response by29

reacting to non-dominant epitopes present on the antigen, in addition to the main dominant epi-30

tope driven responseDidona and Di Zenzo (2018); Vanderlugt andMiller (2002). On the other hand,31

it has been shown that T cells responding to the same epitope sharemore sequence similarityDash32

et al. (2017). In addition, TCRs often exhibit cross-reactivity in order to ensure broad epitope recog-33

nition responses, despite the limited number of unique TCRs within each repertoire Petrova et al.34

(2012); Antunes et al. (2017); Bentzen and Hadrup (2019).35

T cells are generated through the imprecise stochastic process of V(D)J recombination giving36

rise to 1020 or more possible TCR combinations Miles et al. (2011); Mora and Walczak (2018). The37

number of possible generated TCRs is much larger than those estimated to be present within any38

individual T cell repertoire Laydon et al. (2015); Robins et al. (2009, 2010). The complexity and com-39
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position of TCR repertoires makes it difficult to compare and stratify individuals based on immune40

status or to even establish a healthy baseline. T cells activate and proliferate upon antigen-specific41

contact, creating a complex mix of receptors. Initial experimental approaches, such as spectratyp-42

ing Choi et al. (1989); Gorski et al. (1994);Memon et al. (2012); Ochsenreither et al. (2008) and flow43

cytometry Ciupe et al. (2013);Muraro et al. (2000) aimed to reveal oligoclonal expansions of T cells44

by tracking clonal sizes of CDR3s with the same length. However, they provided no insight into45

TCR similarity. Recent advances in high throughput sequencing (HTS) now allows characterisation46

of adaptive immune receptors in increasing depth and with improved quantitation. HTS methods47

supply information on both clonal sizes and sequence relatedness. However, this development48

has given rise to the need for summary measures to interpret the data generated by such exper-49

iments. Several methods have emerged to fulfil the demand to stratify repertoires either by the50

TCR antigen specificities Glanville et al. (2017); Dash et al. (2017); Sidhom et al. (2018) or by finding51

characteristics of TCR sequences Thomas et al. (2014a); Sun et al. (2017); Cinelli et al. (2017). Still,52

many of the employed methods aim to uncover epitope similarity without simultaneously exam-53

ining T cell clonal expansions, or vice versa. Measures that capture the global repertoire structure54

by incorporating both characteristics of the adaptive immune response, could potentially be used55

to stratify patients for disease outcome or therapy. Thereby, transcending the notion of "public56

TCRs" into "public repertoire structures" responsible for therapeutic outcome.57

A popular approach in characterisation of repertoires has been through measures of diversity.58

They have beenwidely used in evaluation of therapy and disease effects Twyman-Saint Victor et al.59

(2015); Rudqvist et al. (2018); Sherwood et al. (2013); Robert et al. (2014); Warren et al. (2011) or60

attempts at repertoire classification and diagnosis Carey et al. (2016); Chang et al. (2019); Robins61

et al. (2009). However, there are a variety of ways in which the intuitive idea of diversity can be62

formalised giving rise to ambiguity. In the naive sense, diversity is estimated based on the num-63

ber of and clonal expansion of unique TCRs in a repertoire. Commonly used diversity estimates64

are richness (number of different TCR clones), clonality (number of expanded clones) and diversity65

indices such as Shannon entropy Spellerberg and Fedor (2003), Simpson SIMPSON (1949), Gini-66

Simpson Jost (2006) and Berger-Parker Berger and Parker (1970) index. Different diversity indices67

will weight expanded clones differently, thereby imposing a threshold on the clonal frequencies68

within the repertoire. Thus counting unique clones with species richness will give rare clones the69

same weight as expanded clones. Entropy, will give give more weight to expanded clones than to70

rare clones. No single index will capture all information about the clone size distribution. Notably,71

this ambiguity has led to no clear consensus which diversity index should be applied in practical72

cases of interpreting immune diversity Izraelson et al. (2018); Chiffelle et al. (2020). The approach73

of using individual diversity indices provides no repertoire characteristics truly independent of sam-74

ple size Laydon et al. (2015) and can lead to erroneous conclusions on ordering repertoires (Figure75

1 A.). Additionally, measures of diversity should not only rely on clone counts but should also ac-76

count for sequence similarity of receptors.77

The first problem of debatable usage of individual indices, can be surmounted by estimating78

them simultaneously in a single expression of diversity: the diversity of order q, D(q), which sub-79

sumes most of the commonly used indices Jost (2006, 2010). Accounting for the distribution of80

clone sizes, diversity can be estimated in the form of "diversity profiles" Greiff et al. (2015); Mora81

and Walczak (2016); Chiffelle et al. (2020). Such profiles define "effective numbers" of receptors82

when viewed at different resolutions, making use of a single parameter (q) to systematically shift83

focus from counting each unique clone to giving weight only to the largest clone in a repertoire84

(Figure 1 A, C). The use of diversity profiles gives insight into T cell clonal expansions, as the re-85

lationship between diversities calculated at different clonality weights q can be correlated to the86

ratio of common to rare clones Leinster and Cobbold (2012). This approach has been previously87

implemented for one B- and three T-cell repertoires in the work of Greiff et al. (2015). Keeping in88

mind that the study focused solely on clonal frequency, the authors report remarkable separation89

based on immunological status, in 3 out of 4 immune repertoire datasets. However, as naive diver-90
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sity estimates only take clone frequencies into account they are not sensitive to minor polyclonal91

expansions of TCRs reacting to the same antigen which are mounting a unified front of reacting92

similar T cells.93

The second problem, incorporating sequence similarity in diversity estimates, has been less94

thoroughly explored. One approach is to count clusters of similar receptors Sidhom et al. (2018).95

Another approach is to use an effective number with sensitivity to sequence similarity Arora et al.96

(2018). These approaches suffer from a similar limitation as use of a single diversity index in that97

they adopt either a single arbitrary cutoff or a single sequence similarity distance in their defini-98

tion of effective number e.g. a single similarity corrected diversity index. Here we make use of99

approach used by Leinster and Cobbold (2012) in ecology to explore 2 dimensional profiles of ef-100

fective numbers. Our approach of using similarity scaled diversity D(q, �) allows for simultaneous101

characterisation of the clonal distributions and similarity of receptor repertoires (Figure 1 B). In-102

stead of depending on a single parameter, q, our profiles depend on two parameters, q and �. As103

in conventional diversity profiles, the q parameter probes the structure of the clone size distribu-104

tion. The � parameter plays an analogous role for sequence similarity (Figure 1 D.). As � varies105

from infinity down to zero the effective diversity gradually merges together more and more simi-106

lar sequences. Incorporating this additional aspect to the diversity estimation allows us not only to107

probe the clone size distribution, but also TCR similarity which may provide information on reper-108

toire convergence through expansion of similar clones.109

In this study, we showcase a new tool for estimating TCR repertoire diversity using similarity110

sensitive diversity estimates: TCRDivER. We apply TCRDivER to previously published murine TCR�111

sequence data from CD4+ T cells following immunization Sun et al. (2017). We show that TCRDivER,112

by simultaneously probing clonal expansion and sequence similarities reveals novel TCR repertoire113

traits. Using features of the similarity scaled diversity profile we detect differences in response to114

immunisation protocols at all sampling times, indicating unique features arise within repertoires115

can be detected as early as 5 days and persist for several months.116

Notably we find strong nonlinear correlations between features of the similarity scaled diver-117

sity profiles, including feature which characterise the average distance between sequences or the118

balance between large and small clones. The strength of the correlation indicates biological con-119

straints on repertoire development which couple together clone size with sequence similarity. The120

nonlinear shape of the correlations reveal that these features can exist in multiple discrete equi-121

libria.122

We validate our finding that TCR repertoires reside in a non-linear space on an independent123

dataset of human bulk TCR sequences extracted from non-small-cell lung cancer (NSCLC) patients124

following CTLA-4 blockade treatment Formenti et al. (2018). We show that by estimating repertoire125

diversity with TCRDivER we can unearth information which might allow us to understand more126

subtle differences between repertoires, stratify them and ultimately guide therapy regimes.127
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Figure 1. A. Naive diversity indices (richness, Simpson analogue and Inverse Berger-Parker) for three model repertoires. The repertoires contain
the same total number of T cells, however they differ in the number of unique T cell clones and clone size distribution. Each T cell clone within
the repertoire is presented as a grey circle and the size of each circle corresponds to its relative frequency. Repertoire 1 has the most uneven
clonal distribution. Repertoires 2 and 3 have a more uniform distribution of clones. The number of unique clones falls from repertoire 1 through
to repertoire 3. As different diversity indices are applied, the ordering of repertoires changes. B. Formula for calculating similarity scaled
diversity D(q, �). Here pi is the fraction of cells in clone i, Z is a similarity kernel between clones, q controls sensitivity to clone size, and � controls
sensitivity to sequence similarity. C. Relationship of some commonly used diversity indices to the naive diversity of order q. D. Effect of
introducing the � distance scaling into the diversity calculation. As � increases the distance between clones increases until at � = ∞ clones have
no similarity i.e. the similarity kernel Z is the identity. E. Schematic representation of diversity profiles of four model repertoires are shown along
the repertoires in the top right corner of each diversity profile. Repertoire composition is schematically represented with T cells of varying size
and colour. Analogously to A. the size of individual cells corresponds to the clone frequency within the repertoire. More similar colouring
indicates higher T cell sequence similarity in the repertoire (repertoires II and IV). Analogously, divergent colouring corresponds to higher
sequence dissimilarity (repertoires I and III). F. Further explanation of structure differences between the four model repertoires in E. Repertoires
sharing the same clone distributions are shown in rows (I = II and III = IV). Repertoires sharing same similarity relationships between T cell clones
are shown in columns (I = III and II = IV).
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Results128

We analysed the frequency distribution and similarity of CDR�3 amino acid sequences in TCR reper-129

toires previously published in Sun et al. (2017). Briefly, the dataset consists of CD4+ T-cell reper-130

toires harvested from murine spleens following immunisation with Complete Freund’s Adjuvant131

(CFA) with or without the addition of Ovalbumin (OVA) antigen. The T cells were harvested post132

immunisation at three timepoints: early (days 5 and 14) and late (day 60). Additionally, we have133

analysed untreated mouse repertoires from the same study. We used TCRDivER to calculate diver-134

sities D(q, �), with varying orders of q and �. From these we constructed diversity profiles (divPs),135

which we present as graphs of the natural logarithm of diversity versus the varying order of q for136

each lambda. Key features were extracted for analysis as shown bellow.137

To validate some of our findings we analysed a human TCR repertoire data set previously pub-138

lished in Formenti et al. (2018). In short, T cells were isolated from blood samples taken from139

non-small-cell lung cancer patients prior and post treatment with CTLA-4 blockade (ipilimumab) in140

combination with radiation therapy (RT). The obtained T cells were sequenced in bulk. We anal-141

ysed these repertoires as with the murine data, using TCRDivER to construct diversity profiles for142

analysis.143

TCRDivER reveals unique TCR repertoire features144

Examples of diversity profiles constructed for the murine samples are shown in figure 2. Each145

dataset was sampled for 50,000 sequences in order to eliminate effects of sequencing depth. For146

each sample a series of curves are plotted, corresponding to different values of �. The constructed147

diversity profiles provide a graphically intuitive way to caputre the shape of a repertoire. Here we148

highlight some features of these plots in order to develop an understanding of how features of the149

plots map to structural and immunological characteristics of TCR repertoires.150

In our framework the naive diversity profile corresponds to the case that the receptor of each151

T cell clone is considered totally distinct, with no consideration of similarity to other clones i.e. the152

highest effective diversity. In reality therewill be somedegree of functional overlap between clones,153

which will reduce the functional diversity below the naive value. The naive diversity (� = ∞) is154

therefore a base case ofmaximal diversity. At the opposite extreme, � = 0, all clones are considered155

considered functionally identical. Biologically, this would correspond to non-specific binding of156

TCRs to peptide-MHC complexes. In this case the functional diversity is therefore minimal and157

equals one. In each repertoire sample these two extreme cases can be seen bounding the profile158

(these curves are labelled in example figure 1 E.) The parameter � interpolates between these two159

extreme cases, as the intermediate profiles in each sample correspond to intermediate values of160

�.161

We begin our account by highlighting features of the naive diversity, i.e. the upper bounding162

curves, in each sample. We plotted naive diversity profiles from all samples together showing that163

crossings in the range 0 ⩽ q ⩽ 2 are common events (See Supplementary information - Section 1.2164

and 1.6). This confirmed in our data set that the ranking of repertoires based on a single value of q165

would indeed depend strongly on the chosen index (similar to what is shown in example figure 1166

A.). We concluded that the previously mentioned justification for analysing profiles across a range167

of orders q is not merely theoretical.168

The highest value of the naive diversity at q = 0 gives the number of unique TCR sequences169

observed in the sample of 50,000 sequences. At q = ∞ we read off the effective number of clones170

in the repertoire if it consisted only of the largest clones. The rate of fall of naive diversity as171

q rises therefore encodes information about the balance between larger and smaller clones. To172

characterise this we derived an expression for the gradient of the naive diversity at q = 1 and found173

that it is proportional to the variance of the clone size distribution i.e. the ratio of rare to common174

T cell clones in a repertoire (see Appendix 1 Evaluating the slope at q = 1 ).175

Notably, when examining the diversity profiles in Figure 2 and Supplementary information - Sec-176

tion 1.1, a sharper slope can be seen in the curves from repertoires that have been immunised177
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compared to the untreated ones, especially for later time points. This is quantified in figure 3 A178

by plotting the slope between q = 0 and q = 1 for each treatment group. The increasing value of179

the slope is indicative of an increased clonal expansion at later timepoints. The impact of clonal180

expansion in reducing diversity is seen to be mild at earlier time points after vaccination (5 and 14181

days) and more marked at the day 60 time point.182

In order to explore the effects of similarity scaling on measures of diversity, we investigate183

in depth the features of similarity sensitive profiles with values of � < ∞. A first feature of the184

similarity sensitive profiles occurs near the flat curve for � = 0 at the bottom of the profile. We185

observed that for small values of � the curves are approximately flat and are evenly spaced on a186

log scale. This phenomenon can be seen in figure 2 by observing that the spacing between the187

curves for � = 0 (blue) and � = 1 (orange) is equal to the spacing between the curves � = 1 (orange)188

and � = 2 (red). To further investigate the biological significance of this we derived an expression189

for the diversity at small � using perturbation theory (See Appendix 2 Evaluation Δln(D(q, �)) for190

small �: Perturbation around � = 0). Interestingly, this shows that the spacing is proportional to191

themeandistance between sequences in the repertoire. In particular, the spacing of profiles, which192

we denote Δln(D(q, �)) at small �, is dependent solely on the distance and frequency of CDR3s, and193

not on the weight q. Notably, this measure naturally integrates increases in similarity from both194

expansion of particular clones and selection of clones with similar sequence. We are therefore able195

to use these spacings to gain biological insight in to repertoire structure following immunisation.196

The spacing of profiles,Δln(D(q, �)) at small �, is presented for different treatment groups in figure 3197

A.We concluded thatwhile theremay be a small rise in spacing at early timepoints after vaccination198

(5 and 14 days), there is a distinct decline of around 15% at day 60 indicating an increase of CDR3199

similarity at later time points.200

A second feature is the rate at which diversity falls as � falls from � = ∞ to lower values, where201

� = ∞ characterises the naive profile. Unlike the case at small �, the value of Δln(D(q, �)) at large202

� is no longer independent of q. Remembering that � = ∞ corresponds to no effective clustering203

of similar sequences, large values of � correspond to just a small amount of effective clustering204

counting together only the most similar clones. If such clustering produces a large fall in effec-205

tive diversity then the repertoire must contain many similar clones. Conversely, if such clustering206

produces only a small fall in diversity then the clones must be spaced further apart.207

Our measure is highlighted by the pink area in figure 2, defined as lying between the naive208

profile � = ∞ and the profile for � = 16. By using the area highlighted in the figure as the feature of209

interest we are effectively averaging over q. Notably, like Δln(D(q, �)) at small �, the area between210

� = ∞ and � = 16 is a probe of distance. However, in this case the weighting is toward similar211

clones. i.e. larger spacings correspond to more similarity of sequences in the repertoire. We212

have shown that, in the case of a uniformly distributed CDR3s in a repertoire, with the increase213

of similarity between CDR3s the area between the � curves increases (see Appendix 2 Evaluation214

Δln(D(q, �)) for larger �s and it’s relationship to distance). In the case of natural repertoires the215

effect of clonal expansion will interplay with the similarity. The area between profiles for � = ∞216

and � = 16, is presented for different treatment groups in figure 3 A. We concluded that there is217

a tendency to fall at the early time points after vaccination (5 and 14 days), with a further fall of218

comparable magnitude by day 60. As the area is influenced by q it is also closely connected to the219

slope of diversity curves and therefore clonal expansion. Therefore the fall of value of area cannot220

be attributed to a decrease in similarity at later time points. When other repertoire features are221

taken into account, such as the slope and the trend of Δln(D(q, �)) at small �, the decrease in area222

can be explained by the driving effect of clonal expansions at later time points.223

Comparing the Δln(D(q, �)) at small and large values of �we were able to make some biological224

conclusions about the structure of the repertoires. At early time points there is a reduction in225

diversity of atypically similar (∼ 1 amino acid difference) sequences. This may correspond to the226

expansion of responding clones with distinct sequences at the expense of background diversity.227

At early time points these expansions have little impact on the mean diversity, but by day 60 they228
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have reduced mean diversity across the whole repertoire.229

TCRDivER features improve separation of biologically distinct repertoires230

In order to test if the similarity scaled diversity profiles can be used to classify repertoires we used231

principal component analysis (PCA). We carried out this analysis first on the values for the naive232

diversity profiles alone and then for the all values in the complete similarity scaled diversity profile233

(Figure 3 B. and Supplementary information - Section 1.3.).234

Both the naive and similarity scaled profiles show a strong PC1 which is driven by the expan-235

sion of large clones at the late day 60 time point. However, relative to the naive profile, PCA on236

the similarity scaled profiles shows more than twice the variance in PC2. In contrast to the naive237

profiles that give an effective 1 dimensional separation, the similarity scaled profiles are able to238

give a robust 2 dimensional separation. It can be seen that this allows for substantial separation239

of immunised vs. untreated controls in the second dimension (Figure 3 C.).240

To validate the observation of improved PCA separation, we analysed an additional data set241

of human TCR repertoires. Briefly, this arose from blood samples collected prior and post im-242

munotherapy from 40 patients diagnosed with stage 4 non-small-cell lung carcinoma (NSCLC). The243

therapy consisted of a regime of radiation and administering CTLA-4 blockade. After therapy com-244

pletion each patient was categorised according to RECIST response criteria into four categories245

based on the therapy outcome (for further details see Section Data Acquisition and Description).246

We analysed the data as before by calculating the diversity D(q, �) and constructing diversity pro-247

files (see Supplementary information - Section 2.1.).248

To test if the features we have identified are useful in capturing key dimensions of variation249

in the similarity scaled diversity profiles we then extracted these features and carried out PCA250

on the features rather the raw values. These include all the areas between different � curves,251

average values of Δ ln (D(q, �)) for small �s and slopes for q = 0 → 1, q = 1 → 2 and q = 0 → 2. To252

further mitigate the effect of repertoire size on the analysis we have log-transformed the values253

of D(q, �) prior to feature extraction. The analysed features are therefore ratios and relationships254

of the natural logarithm of D(q, �). The results of the PCA analysis on the human can be seen in255

Supplementary information - Section 2.2.256

In both the mouse and human data sets we found that the PCA on features was qualitatively257

similar to that on the full diversity profile. However, the variance explained by PC1 was reduced258

while that explained by PC2 was increased, leading to improved 2 dimensional separations. In the259

case of the mouse data the effect was modest, while in the human data it was more substantial,260

leading to an increase in variance explained by PC2 from 11% to 20%.261

The reduction of variance explained in PC1 indicates that these features are indeed acting as262

useful summaries of redundant (linearly correlated) information in the full profile. Therefore mak-263

ing use of such features, rather than the raw profile values may help reduce experimental noise264

and improve robustness.265

Non-linear relationships between TCRDivER features are driven by the structure266

of repertoires267

Because a significant proportion of the variance is not captured by PC1 alone, there must be some268

non-linear relationships between similarity sensitive diversity profile features. We therefore de-269

cided to look more closely at pairwise relationships between these features, as shown in figure 3270

D.271

This revealed two interesting characteristics of the relationships. Firstly, while many of the272

plots are clearly non-linear, they lie on surprisingly tight curves. This indicates that there is some273

constraint at work in the structure of the repertoire meaning that the value of one feature tightly274

constrains the value of other features. However, the second interesting characteristic is that these275

constraints are not unique.276
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Figure 2. Diversity profiles (divPs) of calculated from CDR3 frequency within each repertoire and their similarity. DivPs of repertoires stemming
from immunisation have been shown to the left, while the untreated is show on the right. Natural logarithm transformed values of diversity q D
for each calculated � = 0.0, 1.0, 1.5, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0 and identity versus the increasing order of q. The legend for all diversity profiles is
shown at the bottom right. The highlighted area represents the area between � 16.0 and identity curves. It highlights the change in repertoire
CDR3 similarity unification for repertoires of different origin. Diversity profiles of only one sample per group are shown, the rest can be found in
Supplementary information - Section 1.1.
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Figure 3. A. Trends of three features extracted from divPs are shown versus the treatment regime and timepoints ending with the latest
timepoint. The features are, from left to right: average Δ ln (D(q, �)) for small �s, between curves of � = identity and 16.0 and slope of q = 0→ 1
for value of � identity. The line connects the mean values of the features for all samples within a group and the shaded area represents the
confidence interval. B. PCA on naive diversity values q D , i.e. � = identity. The PCA plot aspect ratio has been adjusted and corresponds to
variation explained by the first two principal components. C. PCA on features extracted from the diversity profiles constructed on the diversity
values q DZ . These include areas between all lambda curves, average Δ ln q DZ for small �s and slopes q = 0→ 1, q = 0→ 2 and q = 1→ 2. As in C.,
the aspect ratio corresponds to variation found by PCA. D. Graphs showing relationships between some of the divP features. From left to right:
average Δ ln (D(q, �)) for small �s is shown versus the area between curves of � = identity and 16.0; average Δ ln (D(q, �)) for small �s is shown
versus the slope of q = 0→ 1 for value of � 64.0; slope of q = 1→ 2 for value of � identity (i.e. naive diversity) is shown versus the area between
curves of � = identity and 64.0; slope of q = 1→ 2 for value of � identity (i.e. naive diversity) is shown versus the slope of q = 0→ 1 for value of �
64.0. The legend corresponds to figures B, C and D.
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An example is the relationship betweenΔln(D(q, �)) at small � and the area between profiles for277

� = ∞ and � = 16, as shown in the first panel of figure 3 D. As noted above, these both depend on278

the distances between sequences in the repertoire. Rising Δln(D(q, �)) at small � indicates mean279

distances between sequences in the repertoire increasing. Falling values of the area indicate fewer280

clones at very close distances to another clone. In a simple ideal case where the clone size and281

distance distributions are uniform these two effects perfectly coincide. We illustrate this using282

model data in Appendix 2 Evaluation Δln(D(q, �)) for larger �s and it’s relationship to distance. In283

real data with non-uniform clone size and distance distributionsD(q, �) provides a measure where284

the differential effect of changes in themost similar sequences and changes in comparisons across285

the repertoire as a whole can be characterised.286

For data from the mouse immunisation experiments, figure 3 D illustrates a non-linear change287

point in the relationship betweenΔln(D(q, �)) at small � and area the betweenprofiles for � = ∞ and288

� = 16. Above a threshold in area for larger �s of around 2.5 we see the expected behaviour for the289

simple ideal case. Below this threshold we see the more complex phenomenon where a smaller290

mean distance between sequences goes with fewer small inter-clone distances. This is most de-291

veloped in the samples from late time points where expanded clones are present. Within these292

clones the distances between sequences will be zero, pushing down the mean distance between293

sequences. At the same time the presence of large expanded clones means that these clones are294

less likely to have close neighbours.295

The example of the relationship between Δln(D(q, �)) at small � and the area between profiles296

for � = ∞ and � = 16 illustrates a non-unique constraint. A value of 0.06 for Δln(D(q, �)) at small �297

constrains the value of the area between profiles for � = ∞ and � = 16 but to one of two possible298

values - either around 2.0 or around 5.5. This again emphasises the importance of taking multiple299

features of the diversity profile to more fully characterise repertoire structure. Similar non-unique300

constraints can be seen in the other panels of figure 3 D.301

The mathematical form of the diversity we have adopted does impose some restrictions on302

possible diversity profiles. For example, the effective diversity must always fall (or stay constant)303

as q rises, reflecting the down weighting of small clones. To test if these relationships might be an304

artefact imposed by the mathematical form of the diversity we replaced the clone size distribution305

with pseudo-randomnumbers while keeping the distancematrix fixed, with results shown in figure306

4. This eliminated observed correlations, showing that the correlations are not mathematically307

necessary. To confirm that the correlations are not a product of the particular distance definition308

adopted we repeated the analysis using an alternativemetric based on amino acid properties. This309

shows qualitatively similar correlations (See Supplementary information - Section 1.9).310

Turning to the human data set we found that pairwise relationships between features were311

quantitatively quite different that the mouse data, but displayed the same characteristics of lying312

on curves and giving rise to non-unique constraints (Figure 5 A.). Given differences in species, tissue313

and treatment, it is unsurprising that the range of repertoire structures observed differs consider-314

ably. At least some of these differences are captured in features of the similarity scaled diversity315

profiles. Despite these differences, the human data corroborates the notion that regardless of316

the immunisation strategy and dataset (human or murine), the natural TCR repertoires reside in a317

subspace governed by a complex interplay of TCR clonality and similarity.318

Discussion319

The complex structure of immune repertoires makes them challenging to compare and classify.320

Previous work making use of sequence information to understand TCR repertoires has focused on321

determining the antigen specificity of particular sequences. In contrast, TCRDivER is able to make322

use of sequence information to reveal structural similarity between repertoires that have little or323

no sequence overlap. With 2 tunable parameters TCRDivER becomes an effective computational324

microscope, able to focus on different scales of structure in the immune repertoire. The resulting325

diversity profiles then provide highly interpretable summaries of global multiscale structure.326
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Figure 4. A. Trends of three features for the randomised murine dataset are shown versus the treatment regime and timepoints ending with
the latest timepoint. The features are, from left to right: average Δ ln (D(q, �)) for small �s, between curves of � = identity and 16.0 and slope of
q = 0→ 1 for value of � identity. The line connects the mean values of the features for all samples within a group and the shaded area
represents the confidence interval. B. Graphs showing relationships between some of the divP features of the murine dataset with random
frequencies. From left to right: average Δ ln (D(q, �)) for small �s is shown versus the slope of q = 0→ 1 for value of � 64.0; average Δ ln (D(q, �))
for small �s is shown versus the area between curves of � = identity and 16.0; slope of q = 1→ 2 for value of � identity (i.e. naive diversity) is
shown versus the slope of q = 0→ 1 for value of � 64.0; slope of q = 1→ 2 for value of � identity (i.e. naive diversity) is shown versus the area
between curves of � = identity and 64.0.
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Figure 5. A. Graphs showing relationships between some of the divP features extracted from diPs of the human dataset. From left to right:
average Δ ln (D(q, �)) for small �s is shown versus the slope of q = 0→ 1 for value of � 64.0; average Δ ln (D(q, �)) for small �s is shown versus the
area between curves of � = identity and 16.0; slope of q = 1→ 2 for value of � identity (i.e. naive diversity) is shown versus the slope of q = 0→ 1
for value of � 64.0; slope of q = 1→ 2 for value of � identity (i.e. naive diversity) is shown versus the area between curves of � = identity and 64.0.
B. As A., but comparing features from the human dataset with randomized frequencies. The legend corresponds to both A. and B.
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Here we provide a proof-of-concept study in application of similarity scaled diversity estimates327

to TCR repertoire analysis. We have applied principal components analysis as a means of qualita-328

tive repertoire stratification and shown it is able to capture variation in the diversity profiles which329

characterise immunisation history. The similarity scaled diversity profiles are themselves quite330

rich summaries and in the future we anticipate that they may be subject to more sophisticated331

machine learning techniques. At present this possibility is limited by the number of available sam-332

ples for which comparable data is available. The need to define a similarity scaled diversity index333

with a parameter � arises naturally from a desire to generalise the idea of naive diversity profiles.334

While there may be a variety of ways to define such a generalisation, it should be noted that the335

specific form of equation 7 (also shown in figure 1 B.) that we use possesses important abstract336

mathematical properties that will enable further investigation Tom Leinster (2013).337

As has previously been shown Greiff et al. (2015) the use of a single diversity index to rank338

or classify repertoires is not robust, since the ranking will depend on the index selected. The use339

of naive diversity profiles is a step forward in so far as they reflect the contribution of both large340

and small clones. However, as applied to real TCR data naive diversity profiles typically give a341

single effective dimension of separation. This is reflected in our results that show 93% of variance342

explained by PC1 carried out on the naive diversity profile. The common choice to model clone343

size distributions using power laws Altan-Bonnet et al. (2020) that have a single tunable parameter344

further supports the idea that range of possible biological distributions is essentially 1 dimensional.345

In this case, any practical classification of repertoires based on naive diversity will be based on a 1346

dimensional separation.347

The novel features identified in our similarity scaled diversity profiles provide a genuine second348

dimension of variation in the structure of the repertoire based on sequence similarity. As shown349

in our PCA analysis this opens the practical possibility of 2 dimensional separations of repertoires350

which are inherently more powerful. Notably, this approach can make use of sequence data to351

classify repertoires together even when they share no similar sequences.352

The striking relationships between similarity profile features appear to reflect biological struc-353

ture in the TCR repertoires. We hypothesise that the non-linear relationships we observe reflect354

the range of possible biological variation and are thus analogous to the way in which clone size355

distributions are well approximated by power laws. Our observation motivates investigations of356

extending of power law distributions to include description of sequence similarity.357

Any calculation involving an all-against-all comparison will inevitably scale with the square of358

the number sequences. Because TCRDivER is parallelisable, with the 50,000 sequences per sam-359

ple analysed here it is very practical to run on commonly available computer clusters. When dis-360

tributed over 8 cores of an Intel Xeon Gold 6126 2.60GHz processor, each repertoire computation361

took under 6 hours. There is scope for several-fold speed up, including optimisation of the distance362

function. A possible gain would come from replacement of the exact all-against-all comparison at363

high lambda with comparison against approximate k-nearest neighbours using a ball tree algo-364

rithm. However, at low lambda values the all-against-all comparison cannot be avoided reflecting365

the way in which the similarity scaled diversity incorporates genuinely global information about366

the repertoire.367

The form of equation 7 is motivated by rather general mathematical considerations, but these368

still leave the metric used to compare sequences undetermined. There is no ’true’ metric, in the369

sense that a assigning a single number to the distance between two sequences cannot fully capture370

all the ways in which binding affinities vary. In our work we used two metrics which plausibly371

reflect biological functional similarity (through use of evolutionary data in BLOSUM45 matrix) and372

biochemical similarity (thorough the Atchley factors). While these gave qualitatively similar results,373

the best metric to use for a given question is an open question in the field of TCR analysis as a374

whole.375

While in this study we have applied similarity scaled diversity profiles to TCR repertoires, we376

believe that the same concept should also be applicable for understanding antibody repertoires.377
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The features of similarity scaled diversity profiles can easily be translated in to properties of the378

repertoire. The functional biological significance of the similarity scaled diversity (as indeed the379

naive diversity) is likely to be more variable and subject to experimental investigation. TCRDivER380

provides an important tool to enable those investigations.381
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Materials and methods382

Data Acquisition and Description383

The murine dataset consits of previously published data that has been analysed as part of a larger384

dataset in the work by Sun et al. (2017). Briefly, CD4+ T cells were isolated from spleens of 18385

C57BL/6 mice immunised with Complete Freund’s adjuvant (CFA) with or without an addition of386

Ovalbumin antigen (OVA). The samples were collected at different times post-immunisation: at387

day 5 and 14 (early timepoints) and day 60 (late timepoint). In addition, CD4+ T cells were collected388

from 8 healthy unimmunised mice prior to study start. An overview of the dataset is given in Table389

1. We have received the dataset already analysed with Decombinator, which described in depth390

in Thomas et al. (2013, 2014b). The data we have analysed consisted of a list of CDR3 sequences391

present in each sample. The raw fastq files are available at http://www.ncbi.nlm.nih.gov/sra/?term=392

SRP075893.393

Additionally, we have analysed a human TCR dataset previously analysed by Formenti et al.394

(2018). The participants of the studywere 39 patients diagnosedwithmetastatic non-small-cell lung395

cancer (NSCLC). They were treated with daily radiation therapy regimen in two phases of the trial396

(phase I - 6Gy× 5 and phase II 9.5 Gy×) and intravenous ipilimumab (CTLA-4 blockade) following the397

first radiation treatment and subsequently repeated every 3weeks for four cycles. The assessment398

of patient treatment response was performed with PET/CT scans at day 88 and evaluated using399

Response Criteria In Solid Tumors (RECIST). The patients were then classified, according to RECIST,400

into complete responders (CR), partial responders (PR) with tumour decrease in size ⩽ 30%, stable401

disease (SD) with insufficient shrinkage to qualify for any of the other criteria , and progressive402

disease (PD) with increase in size > 20% or appearance of new lesions. Out of 39 patients 20 were403

evaluable at day 88. Serial blood samples for peripheral blood mononuclear cells (PBMCs) were404

collected at baseline (day 0), and on days 22, 43, 64, and 88. The isolated PBMC were subjected405

to amplification and sequencing of bulk TCR� CDR3 regions by Adaptive Biotechnologies. We have406

obtained the data from the Adaptive Bioctechnologies ImmunoSEQ database Imm (????). Since407

the samples collected at later timepoints (day 43 and onward) were not available for all of the 20408

evaluable patients, we have restricted our analysis to samples collected at baseline and day 22 of409

treatment. An overview of samples included in our analysis is given in Table 2.410

Subsampling to reduce computational load411

We have only considered "In" frame reads of CDR3s in our analysis. In order to reduce the com-412

putational load of calculating pairwise similarity between a large number of CDR3 regions (order413

of magnitude ≈ 105 ), we have performed subsampling prior to analysis. We will refer to individual414

Table 1. Murine Dataset overview

Treatment Sample collection time (days) Number of mice

CFA 5 3
CFA 14 3
CFA 60 3
CFA+OVA 5 3
CFA+OVA 14 3
CFA+OVA 60 3
Non-immunised 0 8

Table 1–source data 1. Overview of samples available in the analysed dataset, a part of a previously published
dataset by Sun et al. (2017). In total 26 CD4+ murine spleen samples were analysed. Sample collection time is
given as the number of days post immunisation. Note that mice culled at day 60 received an additional booster
shot of immunising agent (CFA or CFA+OVA).
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CDR3 sequences as sequences, and a collection of identical CDR3 sequences as a clone. Each reper-415

toire was down sampled to contain 50000 CDR3 sequences. The sampling was random, based on416

the original CDR3 frequency distribution. After sampling the number of CDR3 clones was ⩽ 50000.417

An overview of number of unique clones for the murine and human dataset is given in Table 3 and418

4, respectively. For each sample, the CDR3 clone count (number of identical CDR3s within a clone)419

was transformed into frequencies, so that the all the CDR3 clone frequencies sum up to 1:420

S
∑

i=1
pi = 1 (1)

,where pi is the frequency of the i-eth CDR3 clone in the repertoire. The clone CDR3 amino acid421

sequences with their respective frequencies were used as input further downstream.422

Calculating the Distance Matrix423

In order to reduce computational time and memory usage of calculating pairwise comparison, we424

have divided the distance matrix into smaller portions ("chunks") which are separately calculated.425

The algorithm takes in the list of S CDR3 clones, and splits it up into n sub lists of predefined length,426

default value is 100. For each sublist pairwise comparisons are made between the CDR3s in the427

sublist versus all the CDR3s in the original list. An example of the distance matrix calculation can428

be seen in Figure 6. Global alignment between two CDR3 clone sequences was performed with429

a gap penalty of 10 and scored using the BLOSUM45 Henikoff and Henikoff (1992) substitution430

matrix. The alignments were created using the PairwiseAligner function in the Bio.Align package431

within Python3 Van Rossum and Drake (2009). The distance between two CDR3s, d(CDR3i, CDR3j),432

was calculated based on the alignment scores:433

d(CDR3i, CDR3j) = 1 −
BLOSUM45score(CDR3i, CDR3j)

max(BLOSUM45score(CDR3i, CDR3i), BLOSUM45score(CDR3j , CDR3j))
(2)

Alternatively, wehave also employed abiochemical scoring basedon theAtchley factorsAtchley434

et al. (2005). The factors are based on biochemical properties of amino acid residues that are435

grouped and transformed into five Atchley factors. For each CDR3 an average value for individual436

Atchley factors was computed. The distance between two CDR3 sequences is then calculated as437

an Euclidean distance between the averaged five Atchley factors.438

The obtained distance matrix is mathematically connected to the similarity kernel Z as shown439

Table 2. Human Dataset overview

RECIST criteria Sample collection time (days) Number of patients

PD 0 8
PD 22 8
SD 0 5
SD 22 5
PR 0 5
PR 22 5
CR 0 2
CR 22 2

Table 2–source data 1.

Overview of samples used from the dataset previously published by Formenti et al. (2018). In total 40 hu-
man PMBC samples were sequenced for TCR� CDR3. Sample collection time has been given as the number of
days after start of therapy, with 0 being baseline prior to first treatment.
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in equation 3440

Zij = e−�dij , (3)

where the � provides scalling.441

Calculating Naive Diversity442

Naive diversity does not take similarity into account and is calculated based on the frequencies of443

CDR3 clones within the repertoire Jost (2006, 2010):444

D(q) ≡
( S
∑

i=1
pqi

)
1

(1−q)
(4)

, where pi is the frequency of the i-eth CDR3 clone and q is the diversity order, as diversity indices445

are a functions of ∑S
i=1 p

q
i . We have chosen a list of qs which subsume the use of some common446

diversity indices such as 0, 1, 2 and∞, which correspond to the richness, exponent of the Shannon447

diversity Spellerberg and Fedor (2003), Simpson SIMPSON (1949); Jost (2006) and Berger-Parker448

Berger and Parker (1970) index, respectively. To extend our surveying the clone size distribution449

space we have also added 3, 4, 5 and 6th order of diversity. For values of q = {1,∞} the diversity450

was calculated as the limit of q approaching the values of 0 and∞.451

∞D = 1
pmax

(5)

1D = e(ln 1D) = e(−
∑S
i=1 pi ln pi) (6)

A detailed derivation of the equations is provided in Appendix 1.452

Calculating Similarity scaled Diversity453

Similarity scaled diversity of order q takes CDR3 clone sequence distances d(CDR3i, CDR3j) along454

with their respective frequencies. We have adapted the method of calculating similarity-sensitive455

diversity measures, as proposed by Leinster and Cobbold (2012). We have again chosen a list of qs,456

q = 0, 1, 2, 3, 4, 5, 6,∞, in the same manner as when calculating the naive diversity. Furthering the457

method, Leinster and Cobbold (2012), propose the use of similarity-sensitive diversity measures458

qDZ (Equation 7), dependent on relative abundances and species similarity data as distance dij . We459

introduced an alteration of the original approach is introducing the similarity scaling factor �, which460

allows us to weight TCR distances inmuch the sameway as we do clone sizes (Figure 1 D.). Here we461

choose a list of values � = {0.0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0}. The462

value of � = identity corresponds to the naive diversity calculation, D(q).463

qDZ =
( S
∑

i=1
pi(Zp)

q−1
i

)
1

(1−q)
(Zp)i =

S
∑

j=1
Zijpj Zij = e−�dij (7)

Algorithm overview464

An overall scheme of the TCRDivER algorithm is given in Figure 7. The algorithm has been im-465

plemented within Python (v3.6) Van Rossum and Drake (2009) and it’s freely available at https:466

//github.com/sciencisto/TCRDivER.467

Downstream analysis of TCRDivER output468

The final output of TCRDivER is a table containing all the values of diversity calculated with a469

range of qs and �s. The full downstream analysis is summarised in a Python3.6 jupyter note-470

book Kluyver et al. (2016) available alongside the main TCRDivER algorithm at https://github.com/471

sciencisto/TCRDivER. The diversity profiles were constructed using the seaborn packageWaskom472
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Figure 6. An overview of the calculation of the distance matrix. The list of CDR3 sequences is divided into lists of equal length, here 10
sequences, the default value is 100. These 10 CDR3s are then pairwise compared with all the other CDR3s in the total list of CDR3 sequences.
Each portion of the distance matrix i.e. chunk has 10 rows and S columns, where S corresponds to the total number of CDR3 clone sequences.
In the end there are n chunks, where n is equal to the floored division of total number of sequences by the length of chunk n = S

lengtℎ of cℎunk .
Distances d are d(CDR3i, CDR3j ) calculated based on the BLOSUM45 alignment score. The diagonal of the combined distance matrix is 0.
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Figure 7. An overview of the TCRDivER algorithm. I.Input. The algorithm takes as input of CDR3 clone sequences with their clone sizes expressed
as count or frequency. II.Filtering. The input sample is filtered to contain only "In" frame CDR3 regions. Afterwards, the repertoire is sampled for
CDR3s randomly, based on the frequency (count) distribution in the original repertoire. The default subsampling size is 50000 CDR3 sequences,
therefore the filtered and subsampled repertoires contain ≤ 50000 unique CDR3s. The CDR3 sequence counts in the subsampled repertoire are
transformed into frequencies, so that the final output is a list of unique CDR3s with their respective frequencies summing up to 1 within the
repertoire. III.Calculating distance matrix The filtered and downsampled repertoire is then provided as input for calculating the distance matrix.
This step is split up so the original list of unique CDR3 sequences is divided into sublists of equal length which are in turn pairwise compared
against the whole list of CDR3s using the BLOSUM45 alignment score (see Figure 6). The output is a set of files which contain portions of the
distance matrix. If concatenated they would form the complete distance matrix. However, manipulating such a large file would computationally
expensive. IV.Calculating similarity scaled diversity This step is split into two parts: calculating naive and similarity scaled diversity (see sections
Calculating Naive Diversity and Calculating Similarity scaled Diversity. The first script takes in only the filtered and subsampled list of CDR3s and
their respective frequencies, since D(q) is not dependent on CDR3 sequence distances. The output of this calculation is a .tsv file containing
values of diversity at different values of q. The second script takes in both the list of CDR3s with their frequencies and the distance matrix
"chunk" files. The calculation is done in a parallel fashion to reduce computational time. As output a .tsv file is given containing the values of
calculated diversity at different values of q and �. V. Combining diversity calculations The final step is joining the two diversity calculations into a
complete overview of the diversity. Two previously obtained .tsv files with calculated diversity values are combined into one file containing all
calculated values of diversity. Downstream this file is used for constructing the diversity profiles and further statistical analysis.
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et al. (2017). Areas between � curves of ln (D(q, �)) was calculated within the numpy framework473

Oliphant (2006) as an integration using the composite trapezoidal rule. Average Δ ln (D(q, �)) for474

small �s was calculated for � = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} as the mean of the average difference be-475

tween ln (D(q, �)) at each calculated q. Slopes of diversity when q = 0 → 1, q = 1 → 2 and q = 0 → 2476

were calculated as differences between the diversities when q = 0, 1and2. We are aware that this is477

not the slope of diversity at the specific values of q, as we also provide themathematical evaluation478

of the slope at these timepoints (See Appendix 1 Evaluating the slope at q = 1). However, due to479

time andmemory considerations we have opted for the simplified calculation as we feel that it rep-480

resents the slope sufficiently. For future implementations, we will update the algorithm to include481

the analytical slope evaluation. Principal components analysis was performed as implemented in482

the scikit-learn package Pedregosa FABIANPEDREGOSA et al. (2011).483
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Table 3. Murine Dataset Subsampling

Sample name Treatment Sample
collection
time (days)

Number
clones prior
to sampling

Number of
clones
after sam-
pling

SB1_AAA CFA 5 655436 30400
SB1_CCG CFA 5 250334 29493
SB1_TTG CFA 5 1091977 32263
SB1_ACC CFA 14 411320 27156
SB1_CTA CFA 14 443454 25445
SB1_GCT CFA 14 357390 25435
SB2_ATT CFA 60 252947 19626
SB2_CCG CFA 60 253711 23146
SB2_CGT CFA 60 154234 15539
SB1_ATT CFA+OVA 5 805062 31315
SB1_CAC CFA+OVA 5 470031 30520
SB1_GTC CFA+OVA 5 428108 32077
SB1_AGG CFA+OVA 14 572343 33190
SB1_GAG CFA+OVA 14 437636 27132
SB1_TAT CFA+OVA 14 581210 32121
SB2_CAC CFA+OVA 60 153275 16251
SB2_GCT CFA+OVA 60 197386 20608
SB2_GTC CFA+OVA 60 193514 17966
CPX1A_GGA Non-immunised 0 413430 32295
CPX1A_TTG Non-immunised 0 283449 30541
CPX1B_CAC Non-immunised 0 171819 30131
EAE1A_GGA Non-immunised 0 201127 28170
EAE1A_TTG Non-immunised 0 155225 28699
EAE1B_CCG Non-immunised 0 80632 14866
EAE1B_TTG Non-immunised 0 89643 21506
SB1_TGC Non-immunised 0 284924 21727

Table 3–source data

1. Overview of number CDR3 clones prior and post subsampling in CD4+ TCR repertoires of themurine dataset
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Table 4. Human Dataset Subsampling

Sample name RECIST
criteria

Sample
collection
time
(days)

Number
clones
prior to
sampling

Number
of clones
after
sampling

Pt10_PD_PBMC_Day0 PD 0 261326 39555
Pt16_PD_PBMC_Day0 PD 0 170417 36110
Pt27_PD_PBMC_Day0 PD 0 102012 25848
Pt28_PD_PBMC_Day0 PD 0 197523 38151
Pt36_PD_PBMC_Day0 PD 0 42953 21211
Pt38_PD_PBMC_Day0 PD 0 69248 18942
Pt40_PD_PBMC_Day0 PD 0 119828 20905
Pt43_PD_PBMC_Day0 PD 0 144548 32998
Pt10_PD_PBMC_Day22 PD 22 261955 39417
Pt16_PD_PBMC_Day22 PD 22 182238 35294
Pt27_PD_PBMC_Day22 PD 22 30562 17699
Pt28_PD_PBMC_Day22 PD 22 162481 36018
Pt36_PD_PBMC_Day22 PD 22 52416 22467
Pt38_PD_PBMC_Day22 PD 22 83106 20022
Pt40_PD_PBMC_Day22 PD 22 153595 26737
Pt43_PD_PBMC_Day22 PD 22 149218 32983
Pt5_SD_PBMC_Day0 SD 0 124049 36074
Pt9_SD_PBMC_Day0 SD 0 56702 21371
Pt22_SD_PBMC_Day0 SD 0 72589 26421
Pt30_SD_PBMC_Day0 SD 0 74019 17423
Pt32_SD_PBMC_Day0 SD 0 75631 18287
Pt5_SD_PBMC_Day22 SD 22 150203 36579
Pt9_SD_PBMC_Day22 SD 22 43496 20669
Pt22_SD_PBMC_Day22 SD 22 97833 30146
Pt30_SD_PBMC_Day22 SD 22 82704 20291
Pt32_SD_PBMC_Day22 SD 22 59017 19849
Pt1_PR_PBMC_Day0 PR 0 174555 33446
Pt17_PR_PBMC_Day0 PR 0 169671 37698
Pt23_PR_PBMC_Day0 PR 0 91260 16753
Pt37_PR_PBMC_Day0 PR 0 130788 33824
Pt44_PR_PBMC_Day0 PR 0 108678 29786
Pt1_PR_PBMC_Day22 PR 22 205316 33568
Pt17_PR_PBMC_Day22 PR 22 229810 32628
Pt23_PR_PBMC_Day22 PR 22 94146 17549
Pt37_PR_PBMC_Day22 PR 22 195069 35062
Pt44_PR_PBMC_Day22 PR 22 120658 28538
Pt3_CR_PBMC_Day0 CR 0 128860 29075
Pt4_CR_PBMC_Day0 CR 0 119253 27209
Pt3_CR_PBMC_Day22 CR 22 92123 27116
Pt4_CR_PBMC_Day22 CR 22 108383 29732

Table 4–source data 1.

Overview of number CDR3 clones prior and post subsampling in bulk TCR repertoires of the human dataset.
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Appendix 1488

Evaluation of naive diversity of the first order489

We start with:490

ln (D(q)) = ln
( S
∑

i=1
pqi

)
1

(1−q)

491

492

493

494

Exploring the limit as q approaches 1 allows us to apply L’Hopitals rule:495

lim
q→1

ln (D(q)) = lim
q→1

ln
∑S

i=1 p
q
i

1 − q
= lim

q→1

(

ln
∑S

i=1 p
q
i

)′

(1 − q)′

496

497

498

499

The solution is:500

ln (D(1)) = −
S
∑

i=1
pi ln pi

501

502

503

504

This is equivalent to:
D(1) = 1

pp11 p
p2
2 ⋅ ⋅ ⋅ ppii

505

506

507

508

Evaluating the slope at q = 1509

We start with the definition of qD:510

D(q) =

(

N
∑

i=1
pqi

)

1
1−q

511

512

513

514

define S as the internal sum515

S =
N
∑

i=1
pqi

516

517

518

519

Now we can write
ln(D(q)) = 1

1 − q
lnS

Let ′ denote differentiation with respect to q. Now evaluate

ln(D(q))′ = 1
(1 − q)2

lnS + 1
1 − q

(lnS)′

=
lnS + (1 − q)(lnS)′

(1 − q)2

520

521

522

523

524

525

526

527

To evaluate the limit as q goes to 1 we need to apply l’hopital’s rule twice. Calling the
numerator t

528

529

t = lnS + (1 − q)(lnS)′

t′ = (1 − q)(lnS)′′

t′′ = (1 − q)(lnS)′′′ − (lnS)′′

530

531

532

533

Since lnS and all its derivatives are finite as q goes to 1534

lim
q→1

t′′ = − lim
q→1
(lnS)′′
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535

536

537

538

Call the denominator b539

b′′ = 2

540

541

542

543

and544

lim
q→1

b′′ = 2

545

546

547

548

Putting this together we have

lim
q→1

ln(D(q))′ =
limq→1 t′′

limq→1 b′′

= −1
2
(lnS)′′

|

|

|

|q=1

549

550

551

552

We need553

(lnS)′ =
∑N

i=1 p
q
i ln pi
S

(lnS)′′ =
∑N

i=1 p
q
i (ln pi)

2

S
−
(
∑N

i=1 p
q
i ln pi)

2

S2

554

555

556

557

558

559

560

Because pi is a probability distribution561

lim
q→1

S = 1

562

563

564

565

which means (since the limit of quotient is the quotient of the limits)566

lim
q→1

S ′′ =
N
∑

i=1
pqi (ln pi)

2 − (
N
∑

i=1
pqi ln pi)

2

567

568

569

570

Finally, we want to evaluate D(q)′ and then take the limit as q goes to 1.571

D(q)′ = D(q) (ln(D(q)))′

572

573

574

575

and

lim
q→1

D(q)′ = lim
q→1

D(q) lim
q→1

−1
2
(lnS)′′

= −1
2
D(1)

(

N
∑

i=1
pqi (ln pi)

2 − (
N
∑

i=1
pqi ln pi)

2

)

576

577

578

579

To generalise to the case Z ≠ I we simply have to replace S with580

S =
N
∑

i=1
pi(Zp)

q−1
i .

581

582

583

584

In this case585

(lnS)′ =
∑N

i=1 pi(Zp)
q−1
i ln(Zp)i
S

586

587

588

589

(lnS)′′ =
∑N

i=1 pi(Zp)
q−1
i (lnZp)i)2

S
−
(
∑N

i=1 pi(Zp)
q−1
i ln(Zp)i)2

S2

590

591

592

593
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Evaluation of similarity scaled diversity of the first order594

We start with:

ln D(q, �) = ln
( S
∑

i=1
pi(Zp)

q−1
i

)
1

(1−q)

Rewritting the equation, calculating the limit as q approaches 1 and applying L’Hopitals rule:

lim
q→1

ln D(q, �) = lim
q→1

ln
∑S

i=1 pi(Zp)
q−1
i

1 − q
= lim

q→1

(

ln
∑S

i=1 pi(Zp)
q−1
i

)′

(1 − q)′

The result is:

ln (D(1, �) = −
S
∑

i=1
pi ln (Zp)i

, which is equivalent to:
D(q, �) = 1

(Zp)p11 (Zp)
p2
2 ⋅ ⋅ ⋅ (Zp)pii

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

Evaluation of naive diversity of the infinity order611

We start with the formula for naive diversity and extract the largest clone frequency pmax:612

D(q) =
(

S
∑

i=1
pqi
)

1
1−q = (pmax)

q
1−q

(

1 +
S
∑

j=1
p
′q
j

)
1
1−q

,where p′j =
pj
pmax

for j ≠ max, and pmax is represented in the first term of the sum. Since a
limit of products is a product of limits, it follows:

613

614

615

616

617

618

lim
q→∞

D(q) = lim
q→∞

(pmax)
q
1−q lim

q→∞
(1 +

S
∑

j=1
p
′q
j )

1
1−q

619

620

621

622

The first limit is evaluated as:623

lim
q→∞

(pmax)
q
1−q = 1

pmax

624

625

626

627

The second limit is evaluated by taking the logarithm:

log
(

lim
q→∞

(1 +
S
∑

j=1
p
′q
j )

1
1−q

)

= lim
q→∞

log
(

(1 +
S
∑

j=1
p
′q
j )

1
1−q

)

= lim
q→∞

1
(1 − q)

log(1 +
S
∑

j=1
p
′q
j )

628

629

630

631

Since 0 < ∑S
j p

′q
j < 1, the bounds of logarithm are:632

0 < log(1 +
S
∑

j=1
p
′q
j ) < log 2

633

634

635

636

, which gives:

lim
q→∞

1
(1 − q)

log(1 +
S
∑

j=1
p
′q
j ) = 0

637

638

639

640

⟹ log
(

lim
q→∞

(1 +
S
∑

j=1
p
′q
j )

1
1−q

)

= 0

641

642

643

644
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⟹ lim
q→∞

(1 +
S
∑

j=1
p
′q
j )

1
1−q = 1

645

646

647

648

⟹ lim
q→∞

D(q) = 1
pmax

649

650

651

652

Evaluation of similarity scaled diversity of the infinity order653

We start with:

D(q, �) =
( S
∑

i=1
pi(Zp)

q−1
i

)
1

(1−q)
= ((Zp)max)

q−1
1−q

(

pmax(1 +
∑

j
p′j(Zp)

′q−1
j

)
1
1−q

where the term that has been pulled out is the one for which (Zp)i is maximum. The pmax is
the corresponding pi. As before, the p

′

j are defined as pj
pmax

for j ≠ max and (Zp)′j is defined

as (Zp)j
(Zp)max

. Again, the limit splits in to two factors:

lim
q→∞

(Zp)max)
q−1
1−q = 1

(Zp)max)

Taking the log of the second term gives:

lim
x→∞

1
1 − q

log
(

pmax(1 +
∑

j
p′j(Zp)

′q−1
j

)

and now the log is bounded by:

log pmax < log
(

pmax(1 +
∑

j
p′j(Zp)

′q−1
j

)

< log 2

so again the limit of the log second factor in (*) is 0, and limit of the factor itself is 1. The
end result is:

lim
q→∞

D(q, �) = 1
(Zp)max

which reduces to the correct limit when Z=I which is the naive diversity.

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676
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Appendix 2678

Evaluation Δln(D(q, �)) for small �: Perturbation around � = 0679

Conjecture: gradient of D(q,�)
dq

|

|

|

|q=0
is a decreasing function of �. N.B. D(q, �) is an increasing

function of � for all q.
680

681

We start with the assumption that for � around 0:

ln (D(q, �)) ∝ �

682

683

684

685

Where ln (D(q, �)) is:686

ln(D(q, �)) = ln
( S
∑

i=1
pi(Zp)

q−1
i

)
1

(1−q)

= 1
1 − q

ln
( S
∑

i=1
pi(Zp)

q−1
i

)

= 1
1 − q

ln
( S
∑

i=1
pi
(

S
∑

j=1
pje

−�dij
)q−1
i

)

687

688

689

690

For � → 0 by applying Taylor expansion e−�dij reduces to 1 − �dij which gives:691

ln(D(q, �)) ≈ 1
1 − q

ln
( S
∑

i=1
pi
(

S
∑

j=1
pj(1 − �dij)

)q−1
i

)

692

693

694

695

We can then rewrite:696

(

S
∑

j=1
pj(1 − �dij)

)q−1
i ≈

(

p0(1 − �di0) + p1(1 − �di1) + ⋅ ⋅ ⋅ + pj(1 − �dij)
)q−1

≈
(

1 − �
(

S
∑

j=1
pjdij

)

)q−1

697

698

699

700

By applying the binomial expansion we arrive at:701

(

S
∑

j=1
pj(1 − �dij)

)q−1
i ≈

(

1 − (q − 1)�
(

S
∑

j=1
pjdij

)

)

702

703

704

705

By substituting the derived expressions in the formula for ln (D(q, �)) and keeping inmind
that∑S

i=1 pi = 1, we can write:
706

707

ln (D(q, �)) = 1
1 − q
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By applying the linear approximation ln(1 − x) ≈ x, we finally arrive:

ln (D(q, �)) ≈ 1
1 − q

(

− (q − 1)�
S
∑

i=1
pi
(

S
∑

j=1
pjdij

)

)

≈ �
S
∑

i=1
pi
(

S
∑

j=1
pjdij

)

712

713

714

715

Note that the final form of the evaluation ofD(q, �) for � → 0 is independent of the order
of diversity q. It is solely dependent on the distance between CDR3 sequences weighted by
their respective frequencies.

716

717

718

Evaluation Δln(D(q, �)) for small � and it’s relationship to distance719

By evaluating Δln(D(q, �)) for two values of small �, where �′ > �′′ we arrive at:720

Δln(D(q, �)) ≈ D(q, �′) −D(q, �)′′

≈ �′
S
∑

i=1
pi
(

S
∑

j=1
pjdij

)

− �′
S
∑

i=1
pi
(

S
∑

j=1
pjdij

)

≈ (�′ − �′′ )
S
∑

i=1
pi
(

S
∑

j=1
pjdij

)

721

722

723

724

It is evident that Δln(D(q, �)) is linearly dependent on the distances between CDR3s and
their probabilities. In the case of two hypothetical repertoires, I and II, which have a uniform
distribution of CDR3 frequencies within the repertoire pIi = pIIi = p and distances between
CDR3s dIij > dIIij , Δln(D(q, �)) for repertoire I is larger than Δln(D(q, �)) for repertoire II. That
is with the increase of similarity between CDR3s, the area between the curves for small �s
decreases (Appendix 2 Figure 1 C.). Alternatively, if the distances between CDR3s of the two
repertoires are the same dIij = dIIij = d, and the distribution is still uniform, but the number
of clones differs so that repertoire I has less clones than II i.e. pIi > pIIi , then Δln(D(q, �)) is
larger than Δln(D(q, �)). Meaning that repertoires with more abundant clones have a larger
Δln(D(q, �)) for small �s.

725

726

727

728

729

730

731

732

733

734

Evaluation Δln(D(q, �)) for larger �s and it’s relationship to distance735

In order to evaluate the relationship between CDR3 clone distance and the area between
the curves of larger �swe have constructed threemock repertoires. The reperotires constist
of 100 CDR3s that are uniformly distributed in the repertoire, i.e. pi =

1
S
= 1

100
= 0.01. For

each mock repertoire a mock distance matrix was calculated so that the distance between
the CDR3s within the repertoire were equal, but that they differ between the repertoires.
The distances were dIi,j = 0.05, dIIi,j = 0.1 and dIIIi,j = 0.5, for repertoire I, II and III respectively
when i ≠ j, else di,j = 0 for i = j. Individual � curves of the diversity profiles straight lines - a
remnant of uniform distribution of CDR3 frequencies in the repertoire (Appendix 2 Figure
1).
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745

Appendix 2 Figure 1. Effect of CDR3 distance shown in three mock repertoires with a uniform
distribution of 100 CDR3 clones in in the repertoire. A. Schematic representation of the three mock
repertoires with the distances dij between CDR3s increasing from repertoire I to III. B. Diversity
profiles calculated based on the probability distribution and dij for CDR3s in the mock repertoires.
The frequency of seeing each CDR3 clone in all the repertoires, since they consits of 100 uniformly
distributed CDR3s, is pi =

1
100 = 0.01 C. Calculated values of average Δ ln (D(q, �)) for small �s and

calculated area between � identity and 16 curves for the three repertoires, shown left to right
respectively.
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Supplementary information TCRDivER: T cell Receptor Diversity

Estimates for Repertoires

Milena Vujović Paolo Marcatili Benny Chain Joseph Kaplinsky
Thomas Lars Andresen

1 Murine Dataset

Results concerning the murine CD4+ TCR repertoire dataset following immunisation with Complete Freund’s Adjuvant
(CFA) with or without the additon of Ovalbumin (OVA) antigen. The dataset also contains unimminused mice. The
samples were collected at 3 timepoints (5, 14 and 60 day) for immunised mice, and day 0 for unimmunised mice. Two
TCR distance metrics were used a BLOSUM45 and Atchley factor based score. Each subsection will therefore be marked
with the distance metric

1.1 Diversity Profiles-BLOSUM45

Diversity profiles calculated for the murine dataset with 50000 subsample size. The profiles are organised into tables
according to post-immunisation sample collection time with untreated mice, day 5, day 14 and day 60 in Table 1, 2, 3 and
4, respectively.
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Table 1: Untreated day 0
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Table 2: Immunised day 5

CFA

CFA + OVA

3
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Table 3: Immunised day 14

CFA

CFA + OVA

4
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Table 4: Immunised day 60

CFA

CFA + OVA

5
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1.2 Naive (q = 0) diversity profiles-BLOSUM45

Figure 1: Naive (q = 0) diversity profiles plotted for all murine samples. Frequent crossings of the curves can be observed
illustrating that the rank order of samples depends on the specific choice of index.

1.3 PCA on natural logarithm transformed values of true diversity-BLOSUM45
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Figure 2: PCA on values of true diversity D(q, λ). for the murine dataset. The aspect ratio corresponds to variation
found by PCA.
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1.4 PCA on diversity values from the randomised murine dataset with random frequencies-
BLOSUM45
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Figure 3: Principal Components Analysis on diversity calculated for the randomised murine dataset. The aspect ratio
corresponds to variation found by PCA.a. PCA on features extracted from the diversity profiles constructed from the true
diversity D(q, λ). b. PCA on values of true diversity D(q, λ). c. PCA on naive diversity values D(q) , i.e. λ = identity.
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1.5 Diversity Profiles-Atchley factor distance

Diversity profiles calculated for the murine dataset with 50000 subsample size. The profiles are organised into tables
according to post-immunisation sample collection time with untreated mice, day 5, day 14 and day 60 in Table 1, 2, 3 and
4, respectively.
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Table 5: Untreated day 0
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Table 6: Immunised day 5

CFA

CFA + OVA

10

923

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.11.417444doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.417444
http://creativecommons.org/licenses/by-nc/4.0/


Table 7: Immunised day 14

CFA

CFA + OVA

11
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Table 8: Immunised day 60

CFA

CFA + OVA

12
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1.6 Naive (q = 0) diversity profiles–Atchley factor distance

Figure 4: Naive (q = 0) diversity profiles plotted for all murine samples. Frequent crossings of the curves can be observed
illustrating that the rank order of samples depends on the specific choice of index.

1.7 PCA on natural logarithm transformed values of diversity–Atchley factor distance
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Figure 6: PCA on values of true diversity D(q, λ). for the murine dataset. The aspect ratio corresponds to variation
found by PCA.
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Figure 5: Principal Components Analysis on diversity calculated for the murine dataset using the Atchley Factor distance
for TCRs. The aspect ratio corresponds to variation found by PCA.a. PCA on features extracted from the diversity
profiles constructed from the true diversity D(q, λ). b. PCA on values of true diversity D(q, λ). c. PCA on naive
diversity values D(q) , i.e. λ = identity.

1.8 Trends of three features extracted from divPs versus timepoint and treatment regime-
Atchley factor distance
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Figure 7: Trends of three features extracted from divPs are shown versus the treatment regime and timepoints ending
with the latest timepoint. The features are, from left to right: average ∆ lnD(q, λ) for small λs, between curves of λ =
identity and 16.0 and slope of q = 0 → 1 for value of λ identity. The line connects the mean values of the features for all
samples within a group and the shaded area represents the confidence interval.
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1.9 DivP features relationships -Atchley factor distance
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Figure 8: Graphs showing relationships between some of the divP features. a. average ∆ lnD(q, λ) for small λs is shown
versus the area between curves of λ = identity and 16.0; b. average ∆ lnD(q, λ) for small λs is shown versus the slope
of q = 0 → 1 for value of λ 64.0; c. slope of q = 1 → 2 for value of λ identity (i.e. naive diversity) is shown versus the
area between curves of λ = identity and d. 64.0; slope of q = 1 → 2 for value of λ identity (i.e. naive diversity) is shown
versus the slope of q = 0 → 1 for value of λ 64.0.
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2 Human Dataset

Results concerning the human TCR repertoire dataset following combination therapy (RT and anti-CTLA4 blockade
ipilimumab. The patients were stratified into RECIST response criteria and by time of sample collection. We show the
results in the same order.

2.1 Diversity Profiles

Diversity profiles calculated for the human dataset with 50000 subsample size. The profiles are organised according to
RECIST criteria and timepoint in Tables 5 to 12 for progressive disease (PD) day 0 and 22, stable disease (SD) day 0 and
22, partial responders (PR) day 0 and 22 and complete responders (CR) day 0 and 22, respectively. The distance metric
used in estimating diversity was based on the BLOSUM45 alignment.
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Table 9: Progressive Disease (PD) Day 0
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Table 10: Progressive Disease (PD) Day 22
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Table 11: Stable Disease (SD) Day 0

19

19

932

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.11.417444doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.417444
http://creativecommons.org/licenses/by-nc/4.0/


Table 12: Stable Disease (SD) Day 22
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Table 13: Partial Responders (PR) Day 0
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Table 14: Partial Responders (PR) Day 22
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Table 15: Complete Responders (CR) Day 0

Table 16: Complete Responders (CR) Day 22

23

936

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.11.417444doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.417444
http://creativecommons.org/licenses/by-nc/4.0/


2.2 PCA on diversity profiles
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Figure 9: Principal Components Analysis on diversity calculated for the human dataset.The aspect ratio corresponds to
variation found by PCA. a. PCA on features extracted from the diversity profiles constructed from the true diversity
D(q, λ). b. PCA on values of true diversity D(q, λ). c. PCA on naive diversity values D(q) , i.e. λ = identity.
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