

1 T-cell Receptor Diversity Estimates 2 for Repertoires (TCRDivER) uses 3 sequence similarity to find 4 signatures of immune response

5 **Milena Vujović¹, Paolo Marcatili¹, Benny Chain³, Joseph Kaplinsky^{1,2}, Thomas Lars
6 Andresen¹**

*For correspondence:

milvu@dtu.dk (MV);
joseph.kaplinsky@ludwig.ox.ac.uk
(JK)

7 ¹DTU HealthTech, Department of Health Technology, Technical University of Denmark,
8 Denmark; ²Ludwig Institute for Cancer Research Ltd, University of Oxford, Nuffield
9 Department of Medicine, United Kingdom; ³UCL Division of Infection and Immunity,
10 University College London, United Kingdom

11 **Abstract**

12 We propose TCRDivER, a global approach to T-cell repertoire comparison using diversity profiles
13 sensitive to both clone size and sequence similarity. As immunotherapies improve, the long
14 standing biological interest in connecting outcome with T cell receptor (TCR) repertoire status has
15 become more urgent. Here we show that new insights can be extracted from high throughput
16 repertoire sequencing data. Most current efforts focus on identification of immunisation-specific
17 sequence motifs or on monitoring changes in frequency of individual clones. Applying TCRDivER
18 to murine spleen samples shows it characterises an additional dimension of repertoire variation,
19 beyond conventional diversity estimates, allowing distinction between immunised and
20 non-immunised samples. We further apply TCRDivER to repertoires from human blood. In both
21 cases we show characteristic relationships between repertoire features. These reveal biologically
22 interpretable relationships between sequence similarity and clonal expansions. We thereby
23 demonstrate a new tool for investigation in clinical and research applications.

25 **Introduction**

26 The T cell compartment of adaptive immunity plays a crucial role in cancer immunity, auto-immune
27 and infectious diseases. Adaptive immune responses as a whole draw on diverse T-cell receptors.
28 Due to the phenomenon of epitope spreading, T cells diversify their antigen-specific response by
29 reacting to non-dominant epitopes present on the antigen, in addition to the main dominant epi-
30 tope driven response *Didona and Di Zenzo (2018); Vanderlugt and Miller (2002)*. On the other hand,
31 it has been shown that T cells responding to the same epitope share more sequence similarity *Dash
32 et al. (2017)*. In addition, TCRs often exhibit cross-reactivity in order to ensure broad epitope recog-
33 nition responses, despite the limited number of unique TCRs within each repertoire *Petrova et al.
34 (2012); Antunes et al. (2017); Bentzen and Hadrup (2019)*.

35 T cells are generated through the imprecise stochastic process of V(D)J recombination giving
36 rise to 10^{20} or more possible TCR combinations *Miles et al. (2011); Mora and Walczak (2018)*. The
37 number of possible generated TCRs is much larger than those estimated to be present within any
38 individual T cell repertoire *Laydon et al. (2015); Robins et al. (2009, 2010)*. The complexity and com-

40 position of TCR repertoires makes it difficult to compare and stratify individuals based on immune
41 status or to even establish a healthy baseline. T cells activate and proliferate upon antigen-specific
42 contact, creating a complex mix of receptors. Initial experimental approaches, such as spectratyping
43 *Choi et al. (1989); Gorski et al. (1994); Memon et al. (2012); Ochsenreither et al. (2008)* and flow
44 cytometry *Ciupé et al. (2013); Muraro et al. (2000)* aimed to reveal oligoclonal expansions of T cells
45 by tracking clonal sizes of CDR3s with the same length. However, they provided no insight into
46 TCR similarity. Recent advances in high throughput sequencing (HTS) now allows characterisation
47 of adaptive immune receptors in increasing depth and with improved quantitation. HTS methods
48 supply information on both clonal sizes and sequence relatedness. However, this development
49 has given rise to the need for summary measures to interpret the data generated by such exper-
50 iments. Several methods have emerged to fulfil the demand to stratify repertoires either by the
51 TCR antigen specificities *Glanville et al. (2017); Dash et al. (2017); Sidhom et al. (2018)* or by finding
52 characteristics of TCR sequences *Thomas et al. (2014a); Sun et al. (2017); Cinelli et al. (2017)*. Still,
53 many of the employed methods aim to uncover epitope similarity without simultaneously exam-
54 ining T cell clonal expansions, or vice versa. Measures that capture the global repertoire structure
55 by incorporating both characteristics of the adaptive immune response, could potentially be used
56 to stratify patients for disease outcome or therapy. Thereby, transcending the notion of "public
57 TCRs" into "public repertoire structures" responsible for therapeutic outcome.

58 A popular approach in characterisation of repertoires has been through measures of diversity.
59 They have been widely used in evaluation of therapy and disease effects *Twyman-Saint Victor et al.*
60 *(2015); Rudqvist et al. (2018); Sherwood et al. (2013); Robert et al. (2014); Warren et al. (2011)* or
61 attempts at repertoire classification and diagnosis *Carey et al. (2016); Chang et al. (2019); Robins*
62 *et al. (2009)*. However, there are a variety of ways in which the intuitive idea of diversity can be
63 formalised giving rise to ambiguity. In the naive sense, diversity is estimated based on the num-
64 ber of and clonal expansion of unique TCRs in a repertoire. Commonly used diversity estimates
65 are richness (number of different TCR clones), clonality (number of expanded clones) and diversity
66 indices such as Shannon entropy *Spellerberg and Fedor (2003)*, Simpson *SIMPSON (1949)*, Gini-
67 Simpson *Jost (2006)* and Berger-Parker *Berger and Parker (1970)* index. Different diversity indices
68 will weight expanded clones differently, thereby imposing a threshold on the clonal frequencies
69 within the repertoire. Thus counting unique clones with species richness will give rare clones the
70 same weight as expanded clones. Entropy, will give more weight to expanded clones than to
71 rare clones. No single index will capture all information about the clone size distribution. Notably,
72 this ambiguity has led to no clear consensus which diversity index should be applied in practical
73 cases of interpreting immune diversity *Izraelson et al. (2018); Chiffelle et al. (2020)*. The approach
74 of using individual diversity indices provides no repertoire characteristics truly independent of sam-
75 ple size *Laydon et al. (2015)* and can lead to erroneous conclusions on ordering repertoires (Figure
76 1 A.). Additionally, measures of diversity should not only rely on clone counts but should also ac-
77 count for sequence similarity of receptors.

78 The first problem of debatable usage of individual indices, can be surmounted by estimating
79 them simultaneously in a single expression of diversity: the diversity of order q , $D(q)$, which sub-
80 sumes most of the commonly used indices *Jost (2006, 2010)*. Accounting for the distribution of
81 clone sizes, diversity can be estimated in the form of "diversity profiles" *Greiff et al. (2015); Mora*
82 *and Walczak (2016); Chiffelle et al. (2020)*. Such profiles define "effective numbers" of receptors
83 when viewed at different resolutions, making use of a single parameter (q) to systematically shift
84 focus from counting each unique clone to giving weight only to the largest clone in a repertoire
85 (Figure 1 A, C). The use of diversity profiles gives insight into T cell clonal expansions, as the re-
86 lationship between diversities calculated at different clonality weights q can be correlated to the
87 ratio of common to rare clones *Leinster and Cobbold (2012)*. This approach has been previously
88 implemented for one B- and three T-cell repertoires in the work of *Greiff et al. (2015)*. Keeping in
89 mind that the study focused solely on clonal frequency, the authors report remarkable separation
90 based on immunological status, in 3 out of 4 immune repertoire datasets. However, as naive diver-

91 sity estimates only take clone frequencies into account they are not sensitive to minor polyclonal
92 expansions of TCRs reacting to the same antigen which are mounting a unified front of reacting
93 similar T cells.

94 The second problem, incorporating sequence similarity in diversity estimates, has been less
95 thoroughly explored. One approach is to count clusters of similar receptors *Sidhom et al. (2018)*.
96 Another approach is to use an effective number with sensitivity to sequence similarity *Arora et al.*
97 (2018). These approaches suffer from a similar limitation as use of a single diversity index in that
98 they adopt either a single arbitrary cutoff or a single sequence similarity distance in their defini-
99 tion of effective number e.g. a single similarity corrected diversity index. Here we make use of
100 approach used by *Leinster and Cobbold (2012)* in ecology to explore 2 dimensional profiles of ef-
101 fective numbers. Our approach of using similarity scaled diversity $D(q, \lambda)$ allows for simultaneous
102 characterisation of the clonal distributions and similarity of receptor repertoires (Figure 1 B). In-
103 stead of depending on a single parameter, q , our profiles depend on two parameters, q and λ . As
104 in conventional diversity profiles, the q parameter probes the structure of the clone size distribu-
105 tion. The λ parameter plays an analogous role for sequence similarity (Figure 1 D.). As λ varies
106 from infinity down to zero the effective diversity gradually merges together more and more simi-
107 lar sequences. Incorporating this additional aspect to the diversity estimation allows us not only to
108 probe the clone size distribution, but also TCR similarity which may provide information on reper-
109toire convergence through expansion of similar clones.

110 In this study, we showcase a new tool for estimating TCR repertoire diversity using similarity
111 sensitive diversity estimates: TCRDivER. We apply TCRDivER to previously published murine TCR β
112 sequence data from CD4 $^{+}$ T cells following immunization *Sun et al. (2017)*. We show that TCRDivER,
113 by simultaneously probing clonal expansion and sequence similarities reveals novel TCR repertoire
114 traits. Using features of the similarity scaled diversity profile we detect differences in response to
115 immunisation protocols at all sampling times, indicating unique features arise within repertoires
116 can be detected as early as 5 days and persist for several months.

117 Notably we find strong nonlinear correlations between features of the similarity scaled diver-
118 sity profiles, including feature which characterise the average distance between sequences or the
119 balance between large and small clones. The strength of the correlation indicates biological con-
120 straints on repertoire development which couple together clone size with sequence similarity. The
121 nonlinear shape of the correlations reveal that these features can exist in multiple discrete equi-
122 libria.

123 We validate our finding that TCR repertoires reside in a non-linear space on an independent
124 dataset of human bulk TCR sequences extracted from non-small-cell lung cancer (NSCLC) patients
125 following CTLA-4 blockade treatment *Formenti et al. (2018)*. We show that by estimating repertoire
126 diversity with TCRDivER we can unearth information which might allow us to understand more
127 subtle differences between repertoires, stratify them and ultimately guide therapy regimes.

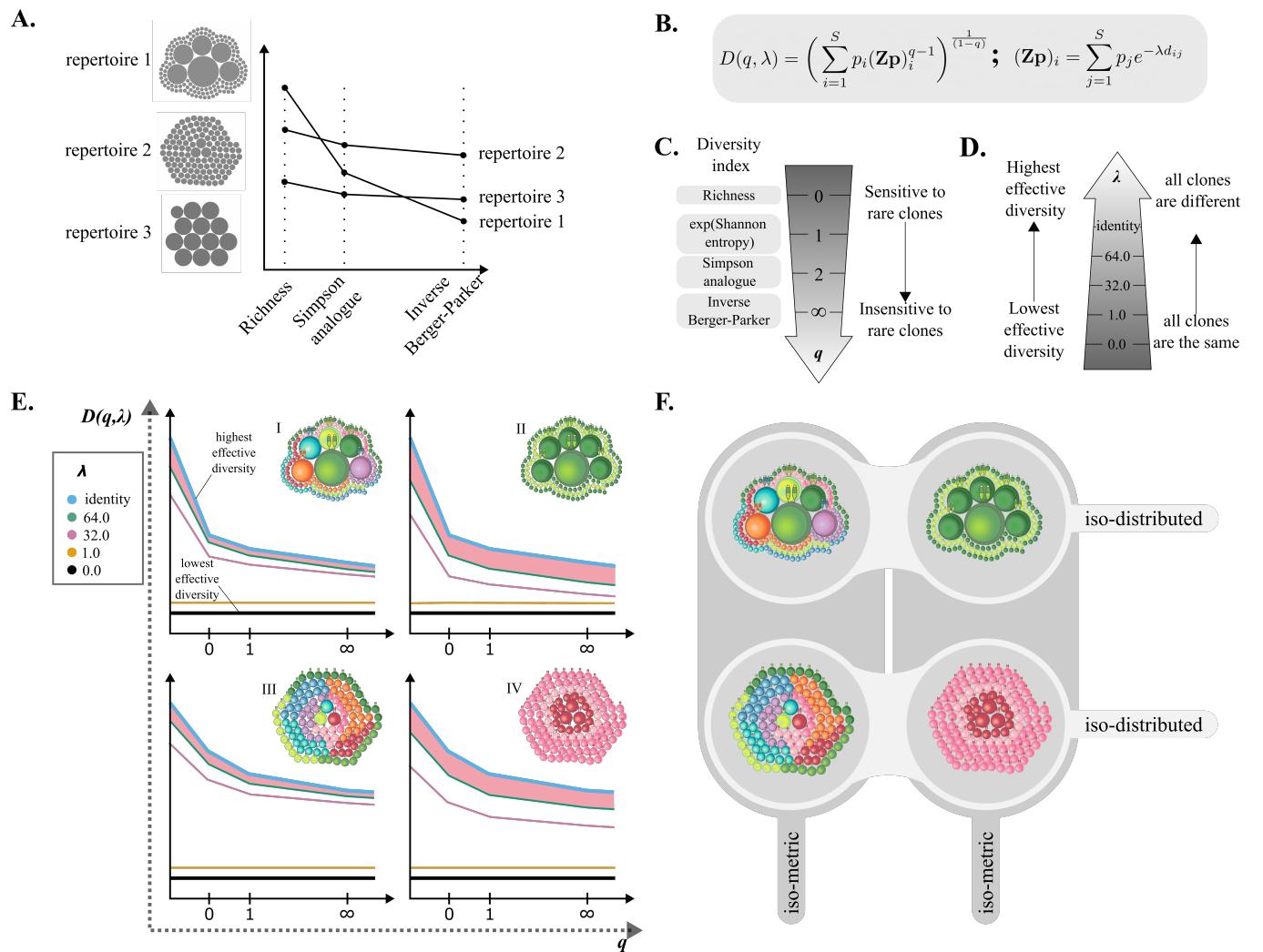


Figure 1. A. Naive diversity indices (richness, Simpson analogue and Inverse Berger-Parker) for three model repertoires. The repertoires contain the same total number of T cells, however they differ in the number of unique T cell clones and clone size distribution. Each T cell clone within the repertoire is presented as a grey circle and the size of each circle corresponds to its relative frequency. Repertoire 1 has the most uneven clonal distribution. Repertoires 2 and 3 have a more uniform distribution of clones. The number of unique clones falls from repertoire 1 through to repertoire 3. As different diversity indices are applied, the ordering of repertoires changes. **B.** Formula for calculating similarity scaled diversity $D(q, \lambda)$. Here p_i is the fraction of cells in clone i , \mathbf{Z} is a similarity kernel between clones, q controls sensitivity to clone size, and λ controls sensitivity to sequence similarity. **C.** Relationship of some commonly used diversity indices to the naive diversity of order q . **D.** Effect of introducing the λ distance scaling into the diversity calculation. As λ increases the distance between clones increases until at $\lambda = \infty$ clones have no similarity i.e. the similarity kernel \mathbf{Z} is the identity. **E.** Schematic representation of diversity profiles of four model repertoires are shown along the repertoires in the top right corner of each diversity profile. Repertoire composition is schematically represented with T cells of varying size and colour. Analogously to A. the size of individual cells corresponds to the clone frequency within the repertoire. More similar colouring indicates higher T cell sequence similarity in the repertoire (repertoires II and IV). Analogously, divergent colouring corresponds to higher sequence dissimilarity (repertoires I and III). **F.** Further explanation of structure differences between the four model repertoires in E. Repertoires sharing the same clone distributions are shown in rows (I = II and III = IV). Repertoires sharing same similarity relationships between T cell clones are shown in columns (I = III and II = IV).

128 Results

129 We analysed the frequency distribution and similarity of CDR₃ amino acid sequences in TCR repertoires 130 previously published in *Sun et al. (2017)*. Briefly, the dataset consists of CD4⁺ T-cell repertoires 131 harvested from murine spleens following immunisation with Complete Freund's Adjuvant 132 (CFA) with or without the addition of Ovalbumin (OVA) antigen. The T cells were harvested post 133 immunisation at three timepoints: early (days 5 and 14) and late (day 60). Additionally, we have 134 analysed untreated mouse repertoires from the same study. We used TCRDivER to calculate diversities 135 $D(q, \lambda)$, with varying orders of q and λ . From these we constructed diversity profiles (divPs), 136 which we present as graphs of the natural logarithm of diversity versus the varying order of q for 137 each lambda. Key features were extracted for analysis as shown below.

138 To validate some of our findings we analysed a human TCR repertoire data set previously published 139 in *Formenti et al. (2018)*. In short, T cells were isolated from blood samples taken from 140 non-small-cell lung cancer patients prior and post treatment with CTLA-4 blockade (ipilimumab) in 141 combination with radiation therapy (RT). The obtained T cells were sequenced in bulk. We analysed 142 these repertoires as with the murine data, using TCRDivER to construct diversity profiles for 143 analysis.

144 TCRDivER reveals unique TCR repertoire features

145 Examples of diversity profiles constructed for the murine samples are shown in figure 2. Each 146 dataset was sampled for 50,000 sequences in order to eliminate effects of sequencing depth. For 147 each sample a series of curves are plotted, corresponding to different values of λ . The constructed 148 diversity profiles provide a graphically intuitive way to capture the shape of a repertoire. Here we 149 highlight some features of these plots in order to develop an understanding of how features of the 150 plots map to structural and immunological characteristics of TCR repertoires.

151 In our framework the naive diversity profile corresponds to the case that the receptor of each 152 T cell clone is considered totally distinct, with no consideration of similarity to other clones i.e. the 153 highest effective diversity. In reality there will be some degree of functional overlap between clones, 154 which will reduce the functional diversity below the naive value. The naive diversity ($\lambda = \infty$) is 155 therefore a base case of maximal diversity. At the opposite extreme, $\lambda = 0$, all clones are considered 156 functionally identical. Biologically, this would correspond to non-specific binding of 157 TCRs to peptide-MHC complexes. In this case the functional diversity is therefore minimal and 158 equals one. In each repertoire sample these two extreme cases can be seen bounding the profile 159 (these curves are labelled in example figure 1 E.) The parameter λ interpolates between these two 160 extreme cases, as the intermediate profiles in each sample correspond to intermediate values of 161 λ .

162 We begin our account by highlighting features of the naive diversity, i.e. the upper bounding 163 curves, in each sample. We plotted naive diversity profiles from all samples together showing that 164 crossings in the range $0 \leq q \leq 2$ are common events (See *Supplementary information - Section 1.2* 165 and *1.6*). This confirmed in our data set that the ranking of repertoires based on a single value of q 166 would indeed depend strongly on the chosen index (similar to what is shown in example figure 1 167 A.). We concluded that the previously mentioned justification for analysing profiles across a range 168 of orders q is not merely theoretical.

169 The highest value of the naive diversity at $q = 0$ gives the number of unique TCR sequences 170 observed in the sample of 50,000 sequences. At $q = \infty$ we read off the effective number of clones 171 in the repertoire if it consisted only of the largest clones. The rate of fall of naive diversity as 172 q rises therefore encodes information about the balance between larger and smaller clones. To 173 characterise this we derived an expression for the gradient of the naive diversity at $q = 1$ and found 174 that it is proportional to the variance of the clone size distribution i.e. the ratio of rare to common 175 T cell clones in a repertoire (see Appendix 1 Evaluating the slope at $q = 1$).

176 Notably, when examining the diversity profiles in Figure 2 and *Supplementary information - Section* 177 *1.1*, a sharper slope can be seen in the curves from repertoires that have been immunised

178 compared to the untreated ones, especially for later time points. This is quantified in figure 3 A
179 by plotting the slope between $q = 0$ and $q = 1$ for each treatment group. The increasing value of
180 the slope is indicative of an increased clonal expansion at later timepoints. The impact of clonal
181 expansion in reducing diversity is seen to be mild at earlier time points after vaccination (5 and 14
182 days) and more marked at the day 60 time point.

183 In order to explore the effects of similarity scaling on measures of diversity, we investigate
184 in depth the features of similarity sensitive profiles with values of $\lambda < \infty$. A first feature of the
185 similarity sensitive profiles occurs near the flat curve for $\lambda = 0$ at the bottom of the profile. We
186 observed that for small values of λ the curves are approximately flat and are evenly spaced on a
187 log scale. This phenomenon can be seen in figure 2 by observing that the spacing between the
188 curves for $\lambda = 0$ (blue) and $\lambda = 1$ (orange) is equal to the spacing between the curves $\lambda = 1$ (orange)
189 and $\lambda = 2$ (red). To further investigate the biological significance of this we derived an expression
190 for the diversity at small λ using perturbation theory (See Appendix 2 Evaluation $\Delta \ln(D(q, \lambda))$ for
191 small λ : Perturbation around $\lambda = 0$). Interestingly, this shows that the spacing is proportional to
192 the mean distance between sequences in the repertoire. In particular, the spacing of profiles, which
193 we denote $\Delta \ln(D(q, \lambda))$ at small λ , is dependent solely on the distance and frequency of CDR3s, and
194 not on the weight q . Notably, this measure naturally integrates increases in similarity from both
195 expansion of particular clones and selection of clones with similar sequence. We are therefore able
196 to use these spacings to gain biological insight into repertoire structure following immunisation.
197 The spacing of profiles, $\Delta \ln(D(q, \lambda))$ at small λ , is presented for different treatment groups in figure 3
198 A. We concluded that while there may be a small rise in spacing at early time points after vaccination
199 (5 and 14 days), there is a distinct decline of around 15% at day 60 indicating an increase of CDR3
200 similarity at later time points.

201 A second feature is the rate at which diversity falls as λ falls from $\lambda = \infty$ to lower values, where
202 $\lambda = \infty$ characterises the naive profile. Unlike the case at small λ , the value of $\Delta \ln(D(q, \lambda))$ at large
203 λ is no longer independent of q . Remembering that $\lambda = \infty$ corresponds to no effective clustering
204 of similar sequences, large values of λ correspond to just a small amount of effective clustering
205 counting together only the most similar clones. If such clustering produces a large fall in effec-
206 tive diversity then the repertoire must contain many similar clones. Conversely, if such clustering
207 produces only a small fall in diversity then the clones must be spaced further apart.

208 Our measure is highlighted by the pink area in figure 2, defined as lying between the naive
209 profile $\lambda = \infty$ and the profile for $\lambda = 16$. By using the area highlighted in the figure as the feature of
210 interest we are effectively averaging over q . Notably, like $\Delta \ln(D(q, \lambda))$ at small λ , the area between
211 $\lambda = \infty$ and $\lambda = 16$ is a probe of distance. However, in this case the weighting is toward similar
212 clones. i.e. larger spacings correspond to more similarity of sequences in the repertoire. We
213 have shown that, in the case of a uniformly distributed CDR3s in a repertoire, with the increase
214 of similarity between CDR3s the area between the λ curves increases (see Appendix 2 Evaluation
215 $\Delta \ln(D(q, \lambda))$ for larger λ s and its relationship to distance). In the case of natural repertoires the
216 effect of clonal expansion will interplay with the similarity. The area between profiles for $\lambda = \infty$
217 and $\lambda = 16$, is presented for different treatment groups in figure 3 A. We concluded that there is
218 a tendency to fall at the early time points after vaccination (5 and 14 days), with a further fall of
219 comparable magnitude by day 60. As the area is influenced by q it is also closely connected to the
220 slope of diversity curves and therefore clonal expansion. Therefore the fall of value of area cannot
221 be attributed to a decrease in similarity at later time points. When other repertoire features are
222 taken into account, such as the slope and the trend of $\Delta \ln(D(q, \lambda))$ at small λ , the decrease in area
223 can be explained by the driving effect of clonal expansions at later time points.

224 Comparing the $\Delta \ln(D(q, \lambda))$ at small and large values of λ we were able to make some biological
225 conclusions about the structure of the repertoires. At early time points there is a reduction in
226 diversity of atypically similar (~ 1 amino acid difference) sequences. This may correspond to the
227 expansion of responding clones with distinct sequences at the expense of background diversity.
228 At early time points these expansions have little impact on the mean diversity, but by day 60 they

229 have reduced mean diversity across the whole repertoire.

230 **TCRDivER features improve separation of biologically distinct repertoires**

231 In order to test if the similarity scaled diversity profiles can be used to classify repertoires we used
232 principal component analysis (PCA). We carried out this analysis first on the values for the naive
233 diversity profiles alone and then for the all values in the complete similarity scaled diversity profile
234 (Figure 3 B. and *Supplementary information - Section 1.3.*).

235 Both the naive and similarity scaled profiles show a strong PC1 which is driven by the expansion
236 of large clones at the late day 60 time point. However, relative to the naive profile, PCA on
237 the similarity scaled profiles shows more than twice the variance in PC2. In contrast to the naive
238 profiles that give an effective 1 dimensional separation, the similarity scaled profiles are able to
239 give a robust 2 dimensional separation. It can be seen that this allows for substantial separation
240 of immunised vs. untreated controls in the second dimension (Figure 3 C.).

241 To validate the observation of improved PCA separation, we analysed an additional data set
242 of human TCR repertoires. Briefly, this arose from blood samples collected prior and post im-
243 munotherapy from 40 patients diagnosed with stage 4 non-small-cell lung carcinoma (NSCLC). The
244 therapy consisted of a regime of radiation and administering CTLA-4 blockade. After therapy com-
245 pletion each patient was categorised according to RECIST response criteria into four categories
246 based on the therapy outcome (for further details see Section Data Acquisition and Description).
247 We analysed the data as before by calculating the diversity $D(q, \lambda)$ and constructing diversity pro-
248 files (see *Supplementary information - Section 2.1.*).

249 To test if the features we have identified are useful in capturing key dimensions of variation
250 in the similarity scaled diversity profiles we then extracted these features and carried out PCA
251 on the features rather than the raw values. These include all the areas between different λ curves,
252 average values of $\Delta \ln(D(q, \lambda))$ for small λ s and slopes for $q = 0 \rightarrow 1$, $q = 1 \rightarrow 2$ and $q = 0 \rightarrow 2$. To
253 further mitigate the effect of repertoire size on the analysis we have log-transformed the values
254 of $D(q, \lambda)$ prior to feature extraction. The analysed features are therefore ratios and relationships
255 of the natural logarithm of $D(q, \lambda)$. The results of the PCA analysis on the human can be seen in
256 *Supplementary information - Section 2.2.*

257 In both the mouse and human data sets we found that the PCA on features was qualitatively
258 similar to that on the full diversity profile. However, the variance explained by PC1 was reduced
259 while that explained by PC2 was increased, leading to improved 2 dimensional separations. In the
260 case of the mouse data the effect was modest, while in the human data it was more substantial,
261 leading to an increase in variance explained by PC2 from 11% to 20%.

262 The reduction of variance explained in PC1 indicates that these features are indeed acting as
263 useful summaries of redundant (linearly correlated) information in the full profile. Therefore mak-
264 ing use of such features, rather than the raw profile values may help reduce experimental noise
265 and improve robustness.

266 **Non-linear relationships between TCRDivER features are driven by the structure
267 of repertoires**

268 Because a significant proportion of the variance is not captured by PC1 alone, there must be some
269 non-linear relationships between similarity sensitive diversity profile features. We therefore de-
270 cided to look more closely at pairwise relationships between these features, as shown in figure 3
271 D.

272 This revealed two interesting characteristics of the relationships. Firstly, while many of the
273 plots are clearly non-linear, they lie on surprisingly tight curves. This indicates that there is some
274 constraint at work in the structure of the repertoire meaning that the value of one feature tightly
275 constrains the value of other features. However, the second interesting characteristic is that these
276 constraints are not unique.

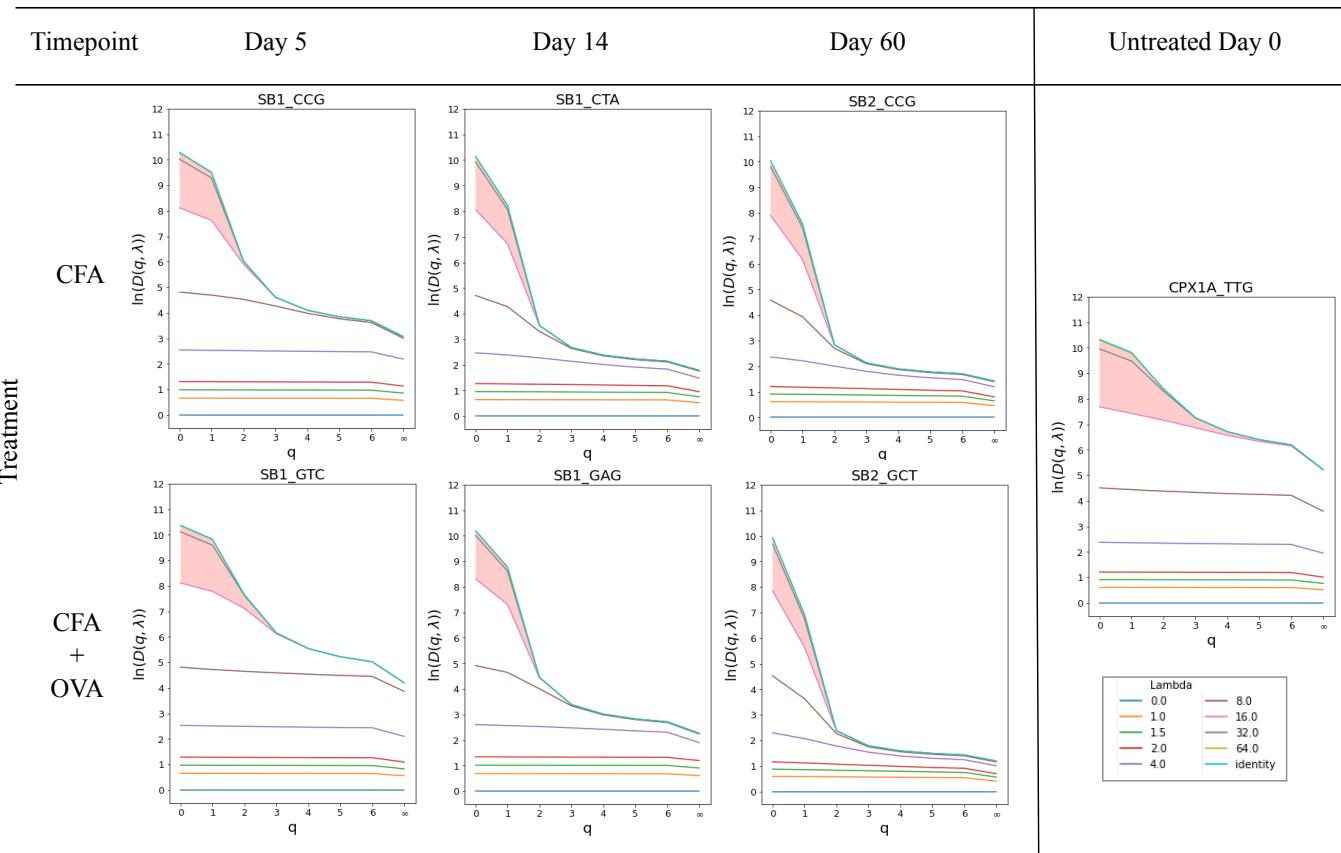


Figure 2. Diversity profiles (divPs) of calculated from CDR3 frequency within each repertoire and their similarity. DivPs of repertoires stemming from immunisation have been shown to the left, while the untreated is shown on the right. Natural logarithm transformed values of diversity ${}^q D$ for each calculated $\lambda = 0.0, 1.0, 1.5, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0$ and identity versus the increasing order of q . The legend for all diversity profiles is shown at the bottom right. The highlighted area represents the area between $\lambda=16.0$ and identity curves. It highlights the change in repertoire CDR3 similarity unification for repertoires of different origin. Diversity profiles of only one sample per group are shown, the rest can be found in *Supplementary information - Section 1.1*.

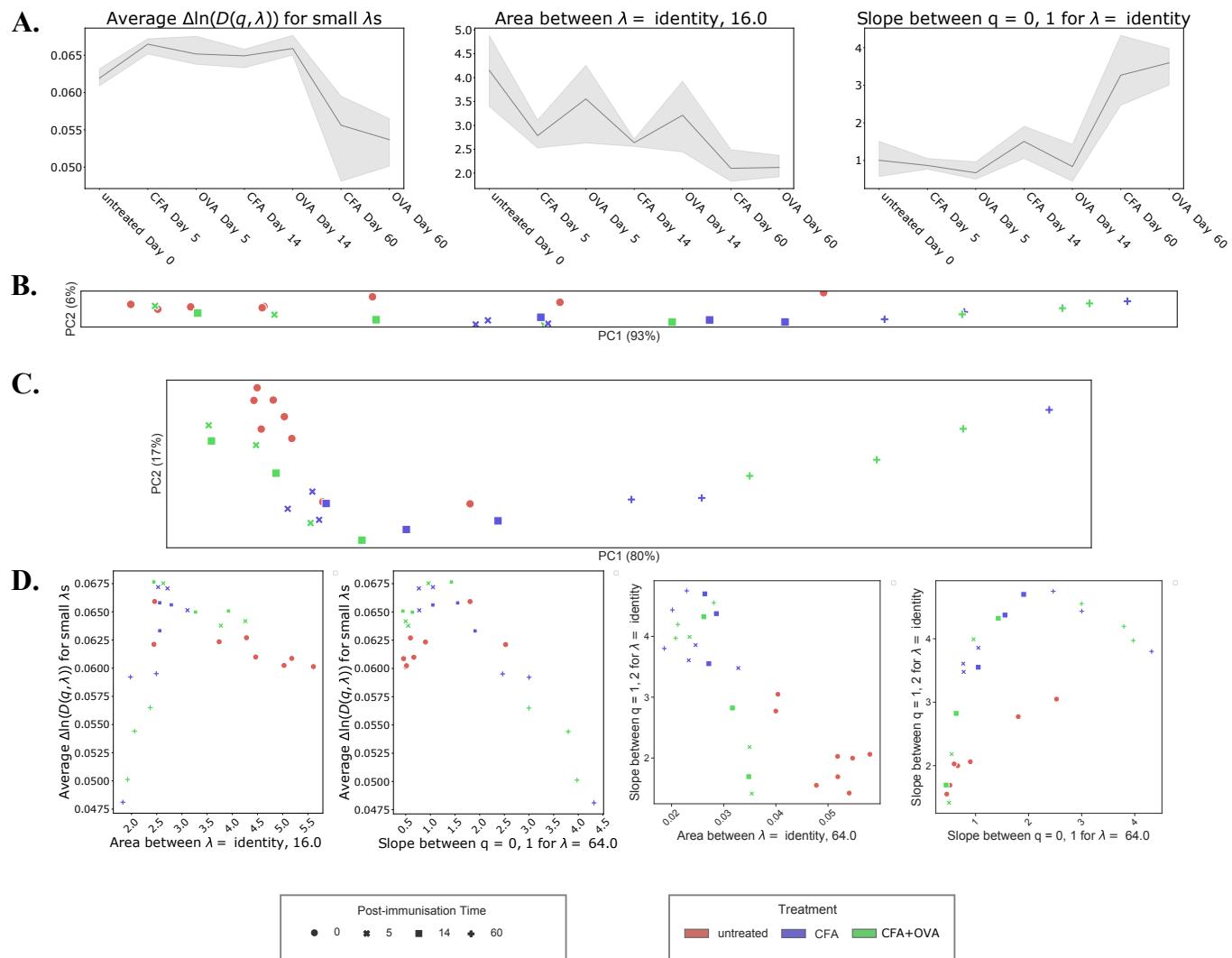


Figure 3. A. Trends of three features extracted from divPs are shown versus the treatment regime and timepoints ending with the latest timepoint. The features are, from left to right: average $\Delta \ln(D(q, \lambda))$ for small λ s, between curves of $\lambda = \text{identity}$ and 16.0 and slope of $q = 0 \rightarrow 1$ for value of λ identity. The line connects the mean values of the features for all samples within a group and the shaded area represents the confidence interval. **B.** PCA on naive diversity values ${}^q D$, i.e. $\lambda = \text{identity}$. The PCA plot aspect ratio has been adjusted and corresponds to variation explained by the first two principal components. **C.** PCA on features extracted from the diversity profiles constructed on the diversity values ${}^q D^Z$. These include areas between all lambda curves, average $\Delta \ln {}^q D^Z$ for small λ s and slopes $q = 0 \rightarrow 1$, $q = 0 \rightarrow 2$ and $q = 1 \rightarrow 2$. As in C., the aspect ratio corresponds to variation found by PCA. **D.** Graphs showing relationships between some of the divP features. From left to right: average $\Delta \ln(D(q, \lambda))$ for small λ s is shown versus the area between curves of $\lambda = \text{identity}$ and 16.0; average $\Delta \ln(D(q, \lambda))$ for small λ s is shown versus the slope of $q = 0 \rightarrow 1$ for value of λ 64.0; slope of $q = 1 \rightarrow 2$ for value of λ identity (i.e. naive diversity) is shown versus the area between curves of $\lambda = \text{identity}$ and 64.0; slope of $q = 1 \rightarrow 2$ for value of λ identity (i.e. naive diversity) is shown versus the slope of $q = 0 \rightarrow 1$ for value of λ 64.0. The legend corresponds to figures B, C and D.

277 An example is the relationship between $\Delta \ln(D(q, \lambda))$ at small λ and the area between profiles for
278 $\lambda = \infty$ and $\lambda = 16$, as shown in the first panel of figure 3 D. As noted above, these both depend on
279 the distances between sequences in the repertoire. Rising $\Delta \ln(D(q, \lambda))$ at small λ indicates mean
280 distances between sequences in the repertoire increasing. Falling values of the area indicate fewer
281 clones at very close distances to another clone. In a simple ideal case where the clone size and
282 distance distributions are uniform these two effects perfectly coincide. We illustrate this using
283 model data in Appendix 2 Evaluation $\Delta \ln(D(q, \lambda))$ for larger λ s and it's relationship to distance. In
284 real data with non-uniform clone size and distance distributions $D(q, \lambda)$ provides a measure where
285 the differential effect of changes in the most similar sequences and changes in comparisons across
286 the repertoire as a whole can be characterised.

287 For data from the mouse immunisation experiments, figure 3 D illustrates a non-linear change
288 point in the relationship between $\Delta \ln(D(q, \lambda))$ at small λ and area the between profiles for $\lambda = \infty$ and
289 $\lambda = 16$. Above a threshold in area for larger λ s of around 2.5 we see the expected behaviour for the
290 simple ideal case. Below this threshold we see the more complex phenomenon where a smaller
291 mean distance between sequences goes with fewer small inter-clone distances. This is most de-
292 veloped in the samples from late time points where expanded clones are present. Within these
293 clones the distances between sequences will be zero, pushing down the mean distance between
294 sequences. At the same time the presence of large expanded clones means that these clones are
295 less likely to have close neighbours.

296 The example of the relationship between $\Delta \ln(D(q, \lambda))$ at small λ and the area between profiles
297 for $\lambda = \infty$ and $\lambda = 16$ illustrates a non-unique constraint. A value of 0.06 for $\Delta \ln(D(q, \lambda))$ at small λ
298 constrains the value of the area between profiles for $\lambda = \infty$ and $\lambda = 16$ but to one of two possible
299 values - either around 2.0 or around 5.5. This again emphasises the importance of taking multiple
300 features of the diversity profile to more fully characterise repertoire structure. Similar non-unique
301 constraints can be seen in the other panels of figure 3 D.

302 The mathematical form of the diversity we have adopted does impose some restrictions on
303 possible diversity profiles. For example, the effective diversity must always fall (or stay constant)
304 as q rises, reflecting the down weighting of small clones. To test if these relationships might be an
305 artefact imposed by the mathematical form of the diversity we replaced the clone size distribution
306 with pseudo-random numbers while keeping the distance matrix fixed, with results shown in figure
307 4. This eliminated observed correlations, showing that the correlations are not mathematically
308 necessary. To confirm that the correlations are not a product of the particular distance definition
309 adopted we repeated the analysis using an alternative metric based on amino acid properties. This
310 shows qualitatively similar correlations (See *Supplementary information - Section 1.9*).

311 Turning to the human data set we found that pairwise relationships between features were
312 quantitatively quite different than the mouse data, but displayed the same characteristics of lying
313 on curves and giving rise to non-unique constraints (Figure 5 A.). Given differences in species, tissue
314 and treatment, it is unsurprising that the range of repertoire structures observed differs consider-
315 ably. At least some of these differences are captured in features of the similarity scaled diversity
316 profiles. Despite these differences, the human data corroborates the notion that regardless of
317 the immunisation strategy and dataset (human or murine), the natural TCR repertoires reside in a
318 subspace governed by a complex interplay of TCR clonality and similarity.

319 Discussion

320 The complex structure of immune repertoires makes them challenging to compare and classify.
321 Previous work making use of sequence information to understand TCR repertoires has focused on
322 determining the antigen specificity of particular sequences. In contrast, TCRDivER is able to make
323 use of sequence information to reveal structural similarity between repertoires that have little or
324 no sequence overlap. With 2 tunable parameters TCRDivER becomes an effective computational
325 microscope, able to focus on different scales of structure in the immune repertoire. The resulting
326 diversity profiles then provide highly interpretable summaries of global multiscale structure.

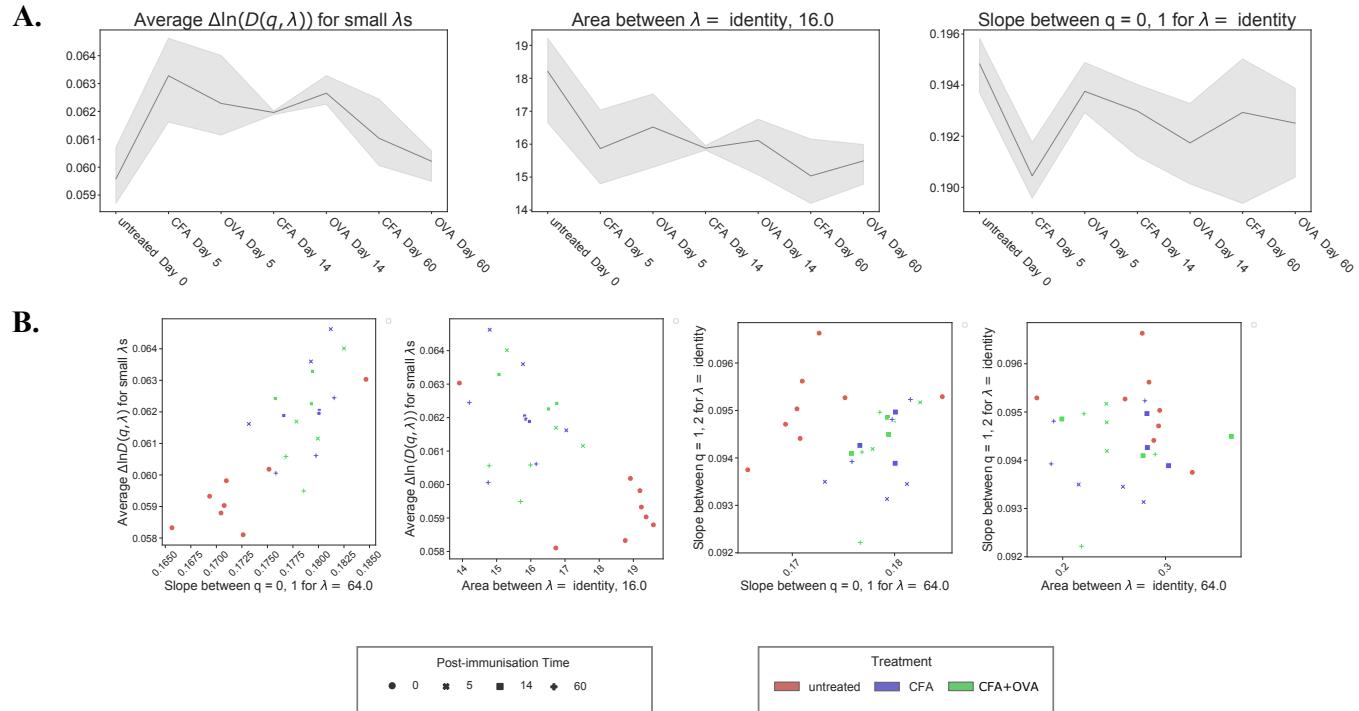


Figure 4. A. Trends of three features for the randomised murine dataset are shown versus the treatment regime and timepoints ending with the latest timepoint. The features are, from left to right: average $\Delta \ln(D(q, \lambda))$ for small λ s, between curves of $\lambda = \text{identity}$ and 16.0 and slope of $q = 0 \rightarrow 1$ for value of λ identity. The line connects the mean values of the features for all samples within a group and the shaded area represents the confidence interval. **B.** Graphs showing relationships between some of the divP features of the murine dataset with random frequencies. From left to right: average $\Delta \ln(D(q, \lambda))$ for small λ s is shown versus the slope of $q = 0 \rightarrow 1$ for value of λ 64.0; average $\Delta \ln(D(q, \lambda))$ for small λ s is shown versus the area between curves of $\lambda = \text{identity}$ and 16.0; slope of $q = 1 \rightarrow 2$ for value of λ identity (i.e. naive diversity) is shown versus the slope of $q = 0 \rightarrow 1$ for value of λ 64.0; slope of $q = 1 \rightarrow 2$ for value of λ identity (i.e. naive diversity) is shown versus the area between curves of $\lambda = \text{identity}$ and 64.0.

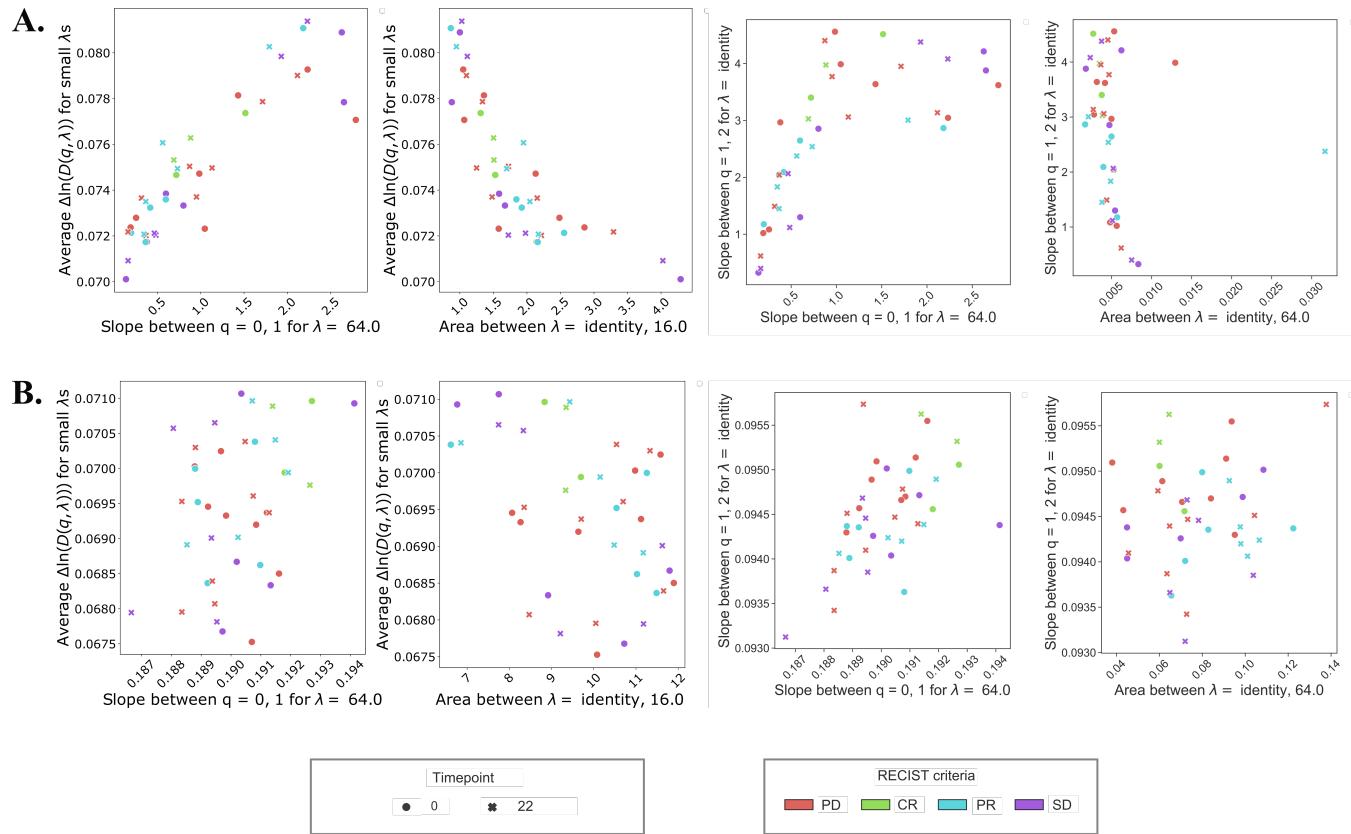


Figure 5. A. Graphs showing relationships between some of the divP features extracted from diPs of the human dataset. From left to right: average $\Delta \ln(D(q, \lambda))$ for small λ s is shown versus the slope of $q = 0 \rightarrow 1$ for value of λ 64.0; average $\Delta \ln(D(q, \lambda))$ for small λ s is shown versus the area between curves of $\lambda = \text{identity}$ and 16.0; slope of $q = 1 \rightarrow 2$ for value of λ identity (i.e. naive diversity) is shown versus the slope of $q = 0 \rightarrow 1$ for value of λ 64.0; slope of $q = 1 \rightarrow 2$ for value of λ identity (i.e. naive diversity) is shown versus the area between curves of $\lambda = \text{identity}$ and 64.0.

B. As A., but comparing features from the human dataset with randomized frequencies. The legend corresponds to both A. and B.

327 Here we provide a proof-of-concept study in application of similarity scaled diversity estimates
328 to TCR repertoire analysis. We have applied principal components analysis as a means of qualitative
329 repertoire stratification and shown it is able to capture variation in the diversity profiles which
330 characterise immunisation history. The similarity scaled diversity profiles are themselves quite
331 rich summaries and in the future we anticipate that they may be subject to more sophisticated
332 machine learning techniques. At present this possibility is limited by the number of available samples
333 for which comparable data is available. The need to define a similarity scaled diversity index
334 with a parameter λ arises naturally from a desire to generalise the idea of naive diversity profiles.
335 While there may be a variety of ways to define such a generalisation, it should be noted that the
336 specific form of equation 7 (also shown in figure 1 B.) that we use possesses important abstract
337 mathematical properties that will enable further investigation *Tom Leinster (2013)*.

338 As has previously been shown *Greiff et al. (2015)* the use of a single diversity index to rank
339 or classify repertoires is not robust, since the ranking will depend on the index selected. The use
340 of naive diversity profiles is a step forward in so far as they reflect the contribution of both large
341 and small clones. However, as applied to real TCR data naive diversity profiles typically give a
342 single effective dimension of separation. This is reflected in our results that show 93% of variance
343 explained by PC1 carried out on the naive diversity profile. The common choice to model clone
344 size distributions using power laws *Altan-Bonnet et al. (2020)* that have a single tunable parameter
345 further supports the idea that range of possible biological distributions is essentially 1 dimensional.
346 In this case, any practical classification of repertoires based on naive diversity will be based on a 1
347 dimensional separation.

348 The novel features identified in our similarity scaled diversity profiles provide a genuine second
349 dimension of variation in the structure of the repertoire based on sequence similarity. As shown
350 in our PCA analysis this opens the practical possibility of 2 dimensional separations of repertoires
351 which are inherently more powerful. Notably, this approach can make use of sequence data to
352 classify repertoires together even when they share no similar sequences.

353 The striking relationships between similarity profile features appear to reflect biological structure
354 in the TCR repertoires. We hypothesise that the non-linear relationships we observe reflect
355 the range of possible biological variation and are thus analogous to the way in which clone size
356 distributions are well approximated by power laws. Our observation motivates investigations of
357 extending of power law distributions to include description of sequence similarity.

358 Any calculation involving an all-against-all comparison will inevitably scale with the square of
359 the number sequences. Because TCRDivER is parallelisable, with the 50,000 sequences per sample
360 analysed here it is very practical to run on commonly available computer clusters. When distributed
361 over 8 cores of an Intel Xeon Gold 6126 2.60 GHz processor, each repertoire computation
362 took under 6 hours. There is scope for several-fold speed up, including optimisation of the distance
363 function. A possible gain would come from replacement of the exact all-against-all comparison at
364 high lambda with comparison against approximate k-nearest neighbours using a ball tree algorithm.
365 However, at low lambda values the all-against-all comparison cannot be avoided reflecting
366 the way in which the similarity scaled diversity incorporates genuinely global information about
367 the repertoire.

368 The form of equation 7 is motivated by rather general mathematical considerations, but these
369 still leave the metric used to compare sequences undetermined. There is no 'true' metric, in the
370 sense that assigning a single number to the distance between two sequences cannot fully capture
371 all the ways in which binding affinities vary. In our work we used two metrics which plausibly
372 reflect biological functional similarity (through use of evolutionary data in BLOSUM45 matrix) and
373 biochemical similarity (through the Atchley factors). While these gave qualitatively similar results,
374 the best metric to use for a given question is an open question in the field of TCR analysis as a
375 whole.

376 While in this study we have applied similarity scaled diversity profiles to TCR repertoires, we
377 believe that the same concept should also be applicable for understanding antibody repertoires.

³⁷⁸ The features of similarity scaled diversity profiles can easily be translated in to properties of the
³⁷⁹ repertoire. The functional biological significance of the similarity scaled diversity (as indeed the
³⁸⁰ naive diversity) is likely to be more variable and subject to experimental investigation. TCRDivER
³⁸¹ provides an important tool to enable those investigations.

382 **Materials and methods**

383 **Data Acquisition and Description**

384 The murine dataset consists of previously published data that has been analysed as part of a larger
385 dataset in the work by *Sun et al. (2017)*. Briefly, CD4⁺ T cells were isolated from spleens of 18
386 C57BL/6 mice immunised with Complete Freund's adjuvant (CFA) with or without an addition of
387 Ovalbumin antigen (OVA). The samples were collected at different times post-immunisation: at
388 day 5 and 14 (early timepoints) and day 60 (late timepoint). In addition, CD4⁺ T cells were collected
389 from 8 healthy unimmunised mice prior to study start. An overview of the dataset is given in Table
390 1. We have received the dataset already analysed with Decombinator, which described in depth
391 in *Thomas et al. (2013, 2014b)*. The data we have analysed consisted of a list of CDR3 sequences
392 present in each sample. The raw fastq files are available at <http://www.ncbi.nlm.nih.gov/sra/?term=SRP075893>.

393 Additionally, we have analysed a human TCR dataset previously analysed by *Formenti et al. (2018)*.
394 The participants of the study were 39 patients diagnosed with metastatic non-small-cell lung
395 cancer (NSCLC). They were treated with daily radiation therapy regimen in two phases of the trial
396 (phase I - 6Gy x 5 and phase II 9.5 Gy x) and intravenous ipilimumab (CTLA-4 blockade) following the
397 first radiation treatment and subsequently repeated every 3 weeks for four cycles. The assessment
398 of patient treatment response was performed with PET/CT scans at day 88 and evaluated using
399 Response Criteria In Solid Tumors (RECIST). The patients were then classified, according to RECIST,
400 into complete responders (CR), partial responders (PR) with tumour decrease in size $\leq 30\%$, stable
401 disease (SD) with insufficient shrinkage to qualify for any of the other criteria, and progressive
402 disease (PD) with increase in size $> 20\%$ or appearance of new lesions. Out of 39 patients 20 were
403 evaluable at day 88. Serial blood samples for peripheral blood mononuclear cells (PBMCs) were
404 collected at baseline (day 0), and on days 22, 43, 64, and 88. The isolated PBMC were subjected
405 to amplification and sequencing of bulk TCR β CDR3 regions by Adaptive Biotechnologies. We have
406 obtained the data from the Adaptive Biotechnologies ImmunoSEQ database *Imm* (????). Since
407 the samples collected at later timepoints (day 43 and onward) were not available for all of the 20
408 evaluable patients, we have restricted our analysis to samples collected at baseline and day 22 of
409 treatment. An overview of samples included in our analysis is given in Table 2.

411 **Subsampling to reduce computational load**

412 We have only considered "In" frame reads of CDR3s in our analysis. In order to reduce the com-
413 putational load of calculating pairwise similarity between a large number of CDR3 regions (order
414 of magnitude $\approx 10^5$), we have performed subsampling prior to analysis. We will refer to individual

Table 1. Murine Dataset overview

Treatment	Sample collection time (days)	Number of mice
CFA	5	3
CFA	14	3
CFA	60	3
CFA+OVA	5	3
CFA+OVA	14	3
CFA+OVA	60	3
Non-immunised	0	8

Table 1-source data 1. Overview of samples available in the analysed dataset, a part of a previously published dataset by *Sun et al. (2017)*. In total 26 CD4⁺ murine spleen samples were analysed. Sample collection time is given as the number of days post immunisation. Note that mice culled at day 60 received an additional booster shot of immunising agent (CFA or CFA+OVA).

415 CDR3 sequences as sequences, and a collection of identical CDR3 sequences as a clone. Each repertoire
416 was down sampled to contain 50000 CDR3 sequences. The sampling was random, based on
417 the original CDR3 frequency distribution. After sampling the number of CDR3 clones was ≤ 50000 .
418 An overview of number of unique clones for the murine and human dataset is given in Table 3 and
419 4, respectively. For each sample, the CDR3 clone count (number of identical CDR3s within a clone)
420 was transformed into frequencies, so that the all the CDR3 clone frequencies sum up to 1:

$$\sum_{i=1}^S p_i = 1 \quad (1)$$

421 ,where p_i is the frequency of the i -eth CDR3 clone in the repertoire. The clone CDR3 amino acid
422 sequences with their respective frequencies were used as input further downstream.

423 Calculating the Distance Matrix

424 In order to reduce computational time and memory usage of calculating pairwise comparison, we
425 have divided the distance matrix into smaller portions ("chunks") which are separately calculated.
426 The algorithm takes in the list of S CDR3 clones, and splits it up into n sub lists of predefined length,
427 default value is 100. For each sublist pairwise comparisons are made between the CDR3s in the
428 sublist versus all the CDR3s in the original list. An example of the distance matrix calculation can
429 be seen in Figure 6. Global alignment between two CDR3 clone sequences was performed with
430 a gap penalty of 10 and scored using the BLOSUM45 **Henikoff and Henikoff (1992)** substitution
431 matrix. The alignments were created using the PairwiseAligner function in the Bio.Align package
432 within Python3 **Van Rossum and Drake (2009)**. The distance between two CDR3s, $d(CDR3_i, CDR3_j)$,
433 was calculated based on the alignment scores:

$$d(CDR3_i, CDR3_j) = 1 - \frac{BLOSUM45score(CDR3_i, CDR3_j)}{\max(BLOSUM45score(CDR3_i, CDR3_i), BLOSUM45score(CDR3_j, CDR3_j))} \quad (2)$$

434 Alternatively, we have also employed a biochemical scoring based on the Atchley factors **Atchley**
435 **et al. (2005)**. The factors are based on biochemical properties of amino acid residues that are
436 grouped and transformed into five Atchley factors. For each CDR3 an average value for individual
437 Atchley factors was computed. The distance between two CDR3 sequences is then calculated as
438 an Euclidean distance between the averaged five Atchley factors.

439 The obtained distance matrix is mathematically connected to the similarity kernel Z as shown

Table 2. Human Dataset overview

RECIST criteria	Sample collection time (days)	Number of patients
PD	0	8
PD	22	8
SD	0	5
SD	22	5
PR	0	5
PR	22	5
CR	0	2
CR	22	2

Table 2-source data 1.

Overview of samples used from the dataset previously published by **Formenti et al. (2018)**. In total 40 human PMBC samples were sequenced for TCR β CDR3. Sample collection time has been given as the number of days after start of therapy, with 0 being baseline prior to first treatment.

440 in equation 3

$$Z_{ij} = e^{-\lambda d_{ij}}, \quad (3)$$

441 where the λ provides scaling.

442 Calculating Naive Diversity

443 Naive diversity does not take similarity into account and is calculated based on the frequencies of
444 CDR3 clones within the repertoire *Jost (2006, 2010)*:

$$D(q) \equiv \left(\sum_{i=1}^S p_i^q \right)^{\frac{1}{(1-q)}} \quad (4)$$

445 , where p_i is the frequency of the i -eth CDR3 clone and q is the diversity order, as diversity indices
446 are a functions of $\sum_{i=1}^S p_i^q$. We have chosen a list of qs which subsume the use of some common
447 diversity indices such as 0, 1, 2 and ∞ , which correspond to the richness, exponent of the Shannon
448 diversity *Spellerberg and Fedor (2003)*, Simpson *SIMPSON (1949)*; *Jost (2006)* and Berger-Parker
449 *Berger and Parker (1970)* index, respectively. To extend our surveying the clone size distribution
450 space we have also added 3, 4, 5 and 6th order of diversity. For values of $q = \{1, \infty\}$ the diversity
451 was calculated as the limit of q approaching the values of 0 and ∞ .

$$^\infty D = \frac{1}{p_{max}} \quad (5)$$

$$^1 D = e^{(\ln ^1 D)} = e^{(-\sum_{i=1}^S p_i \ln p_i)} \quad (6)$$

452 A detailed derivation of the equations is provided in Appendix 1.

453 Calculating Similarity scaled Diversity

454 Similarity scaled diversity of order q takes CDR3 clone sequence distances $d(CDR3_i, CDR3_j)$ along
455 with their respective frequencies. We have adapted the method of calculating similarity-sensitive
456 diversity measures, as proposed by *Leinster and Cobbold (2012)*. We have again chosen a list of qs ,
457 $q = 0, 1, 2, 3, 4, 5, 6, \infty$, in the same manner as when calculating the naive diversity. Furthering the
458 method, *Leinster and Cobbold (2012)*, propose the use of similarity-sensitive diversity measures
459 $^q D^Z$ (Equation 7), dependent on relative abundances and species similarity data as distance d_{ij} . We
460 introduced an alteration of the original approach is introducing the similarity scaling factor λ , which
461 allows us to weight TCR distances in much the same way as we do clone sizes (Figure 1 D.). Here we
462 choose a list of values $\lambda = \{0.0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0\}$. The
463 value of $\lambda = \text{identity}$ corresponds to the naive diversity calculation, $D(q)$.

$$^q D^Z = \left(\sum_{i=1}^S p_i (\mathbf{Zp})_i^{q-1} \right)^{\frac{1}{(1-q)}} \quad (\mathbf{Zp})_i = \sum_{j=1}^S Z_{ij} p_j \quad Z_{ij} = e^{-\lambda d_{ij}} \quad (7)$$

464 Algorithm overview

465 An overall scheme of the TCRDivER algorithm is given in Figure 7. The algorithm has been im-
466 plemented within Python (v3.6) *Van Rossum and Drake (2009)* and it's freely available at <https://github.com/sciencisto/TCRDivER>.

468 Downstream analysis of TCRDivER output

469 The final output of TCRDivER is a table containing all the values of diversity calculated with a
470 range of qs and λ s. The full downstream analysis is summarised in a Python3.6 jupyter note-
471 book *Kluyver et al. (2016)* available alongside the main TCRDivER algorithm at <https://github.com/sciencisto/TCRDivER>. The diversity profiles were constructed using the seaborn package *Waskom*

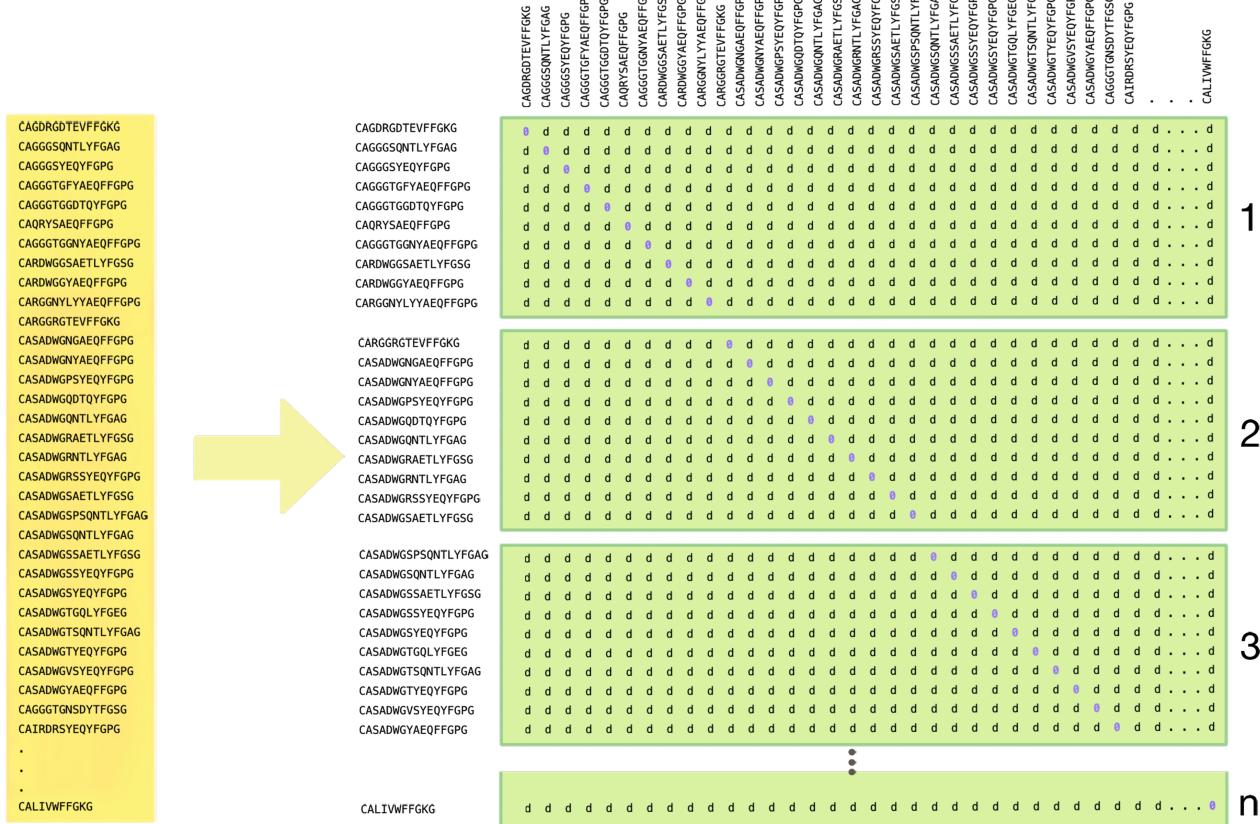


Figure 6. An overview of the calculation of the distance matrix. The list of CDR3 sequences is divided into lists of equal length, here 10 sequences, the default value is 100. These 10 CDR3s are then pairwise compared with all the other CDR3s in the total list of CDR3 sequences. Each portion of the distance matrix i.e. chunk has 10 rows and S columns, where S corresponds to the total number of CDR3 clone sequences. In the end there are n chunks, where n is equal to the floored division of total number of sequences by the length of chunk $n = \frac{S}{\text{length of chunk}}$. Distances d are $d(CDR3_i, CDR3_j)$ calculated based on the BLOSUM45 alignment score. The diagonal of the combined distance matrix is 0.

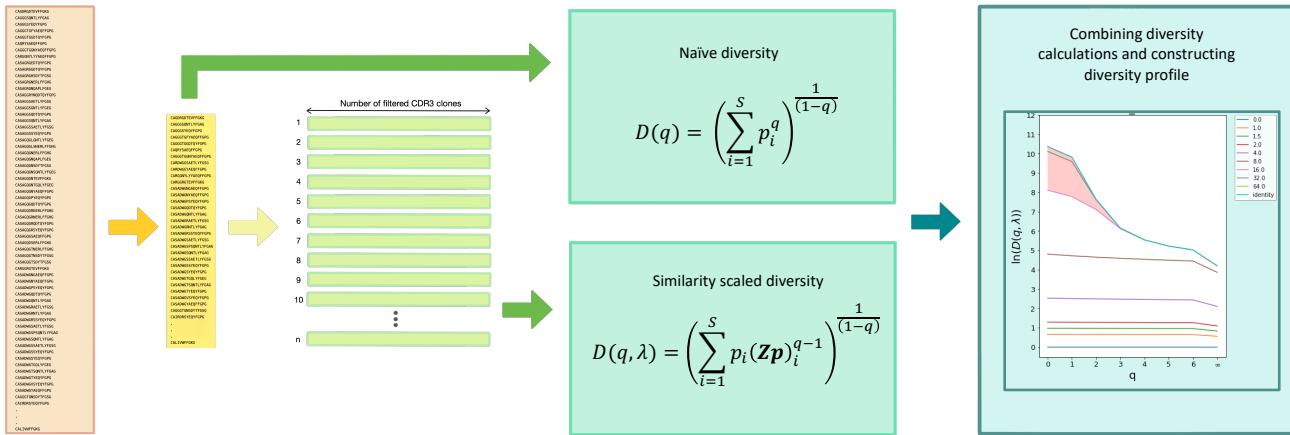


Figure 7. An overview of the TCRDivER algorithm. **I. Input.** The algorithm takes as input of CDR3 clone sequences with their clone sizes expressed as count or frequency. **II. Filtering.** The input sample is filtered to contain only "In" frame CDR3 regions. Afterwards, the repertoire is sampled for CDR3s randomly, based on the frequency (count) distribution in the original repertoire. The default subsampling size is 50000 CDR3 sequences, therefore the filtered and subsampled repertoires contain ≤ 50000 unique CDR3s. The CDR3 sequence counts in the subsampled repertoire are transformed into frequencies, so that the final output is a list of unique CDR3s with their respective frequencies summing up to 1 within the repertoire. **III. Calculating distance matrix** The filtered and downsampled repertoire is then provided as input for calculating the distance matrix. This step is split up so the original list of unique CDR3 sequences is divided into sublists of equal length which are in turn pairwise compared against the whole list of CDR3s using the BLOSUM45 alignment score (see Figure 6). The output is a set of files which contain portions of the distance matrix. If concatenated they would form the complete distance matrix. However, manipulating such a large file would computationally expensive. **IV. Calculating similarity scaled diversity** This step is split into two parts: calculating naive and similarity scaled diversity (see sections *Calculating Naïve Diversity* and *Calculating Similarity scaled Diversity*). The first script takes in only the filtered and subsampled list of CDR3s and their respective frequencies, since $D(q)$ is not dependent on CDR3 sequence distances. The output of this calculation is a .tsv file containing values of diversity at different values of q . The second script takes in both the list of CDR3s with their frequencies and the distance matrix "chunk" files. The calculation is done in a parallel fashion to reduce computational time. As output a .tsv file is given containing the values of calculated diversity at different values of q and λ . **V. Combining diversity calculations** The final step is joining the two diversity calculations into a complete overview of the diversity. Two previously obtained .tsv files with calculated diversity values are combined into one file containing all calculated values of diversity. Downstream this file is used for constructing the diversity profiles and further statistical analysis.

473 *et al. (2017)*. Areas between λ curves of $\ln(D(q, \lambda))$ was calculated within the numpy framework
474 *Oliphant (2006)* as an integration using the composite trapezoidal rule. Average $\Delta \ln(D(q, \lambda))$ for
475 small λ s was calculated for $\lambda = \{0.0, 0.1, 0.2, 0.3, 0.4, 0.5\}$ as the mean of the average difference be-
476 tween $\ln(D(q, \lambda))$ at each calculated q . Slopes of diversity when $q = 0 \rightarrow 1$, $q = 1 \rightarrow 2$ and $q = 0 \rightarrow 2$
477 were calculated as differences between the diversities when $q = 0, 1$ and 2 . We are aware that this is
478 not the slope of diversity at the specific values of q , as we also provide the mathematical evalution
479 of the slope at these timepoints (See Appendix 1 Evaluating the slope at $q = 1$). However, due to
480 time and memory considerations we have opted for the simplified calculation as we feel that it rep-
481 resents the slope sufficiently. For future implementations, we will update the algorithm to include
482 the analytical slope evalution. Principal components analysis was performed as implemented in
483 the scikit-learn package *Pedregosa FABIANPEDREGOSA et al. (2011)*.

Table 3. Murine Dataset Subsampling

Sample name	Treatment	Sample collection time (days)	Number clones prior to sampling	Number clones after sampling	of
SB1_AAA	CFA	5	655436	30400	
SB1_CCG	CFA	5	250334	29493	
SB1_TTG	CFA	5	1091977	32263	
SB1_ACC	CFA	14	411320	27156	
SB1_CTA	CFA	14	443454	25445	
SB1_GCT	CFA	14	357390	25435	
SB2_ATT	CFA	60	252947	19626	
SB2_CCG	CFA	60	253711	23146	
SB2_CGT	CFA	60	154234	15539	
SB1_ATT	CFA+OVA	5	805062	31315	
SB1_CAC	CFA+OVA	5	470031	30520	
SB1_GTC	CFA+OVA	5	428108	32077	
SB1_AGG	CFA+OVA	14	572343	33190	
SB1_GAG	CFA+OVA	14	437636	27132	
SB1_TAT	CFA+OVA	14	581210	32121	
SB2_CAC	CFA+OVA	60	153275	16251	
SB2_GCT	CFA+OVA	60	197386	20608	
SB2_GTC	CFA+OVA	60	193514	17966	
CPX1A_GGA	Non-immunised	0	413430	32295	
CPX1A_TTG	Non-immunised	0	283449	30541	
CPX1B_CAC	Non-immunised	0	171819	30131	
EAE1A_GGA	Non-immunised	0	201127	28170	
EAE1A_TTG	Non-immunised	0	155225	28699	
EAE1B_CCG	Non-immunised	0	80632	14866	
EAE1B_TTG	Non-immunised	0	89643	21506	
SB1_TGC	Non-immunised	0	284924	21727	

Table 3–source data

1. Overview of number CDR3 clones prior and post subsampling in CD4⁺ TCR repertoires of the murine dataset

Table 4. Human Dataset Subsampling

Sample name	RECIST criteria	Sample collection time (days)	Number clones prior to sampling	Number of clones after sampling
Pt10_PD_PBMC_Day0	PD	0	261326	39555
Pt16_PD_PBMC_Day0	PD	0	170417	36110
Pt27_PD_PBMC_Day0	PD	0	102012	25848
Pt28_PD_PBMC_Day0	PD	0	197523	38151
Pt36_PD_PBMC_Day0	PD	0	42953	21211
Pt38_PD_PBMC_Day0	PD	0	69248	18942
Pt40_PD_PBMC_Day0	PD	0	119828	20905
Pt43_PD_PBMC_Day0	PD	0	144548	32998
Pt10_PD_PBMC_Day22	PD	22	261955	39417
Pt16_PD_PBMC_Day22	PD	22	182238	35294
Pt27_PD_PBMC_Day22	PD	22	30562	17699
Pt28_PD_PBMC_Day22	PD	22	162481	36018
Pt36_PD_PBMC_Day22	PD	22	52416	22467
Pt38_PD_PBMC_Day22	PD	22	83106	20022
Pt40_PD_PBMC_Day22	PD	22	153595	26737
Pt43_PD_PBMC_Day22	PD	22	149218	32983
Pt5_SD_PBMC_Day0	SD	0	124049	36074
Pt9_SD_PBMC_Day0	SD	0	56702	21371
Pt22_SD_PBMC_Day0	SD	0	72589	26421
Pt30_SD_PBMC_Day0	SD	0	74019	17423
Pt32_SD_PBMC_Day0	SD	0	75631	18287
Pt5_SD_PBMC_Day22	SD	22	150203	36579
Pt9_SD_PBMC_Day22	SD	22	43496	20669
Pt22_SD_PBMC_Day22	SD	22	97833	30146
Pt30_SD_PBMC_Day22	SD	22	82704	20291
Pt32_SD_PBMC_Day22	SD	22	59017	19849
Pt1_PR_PBMC_Day0	PR	0	174555	33446
Pt17_PR_PBMC_Day0	PR	0	169671	37698
Pt23_PR_PBMC_Day0	PR	0	91260	16753
Pt37_PR_PBMC_Day0	PR	0	130788	33824
Pt44_PR_PBMC_Day0	PR	0	108678	29786
Pt1_PR_PBMC_Day22	PR	22	205316	33568
Pt17_PR_PBMC_Day22	PR	22	229810	32628
Pt23_PR_PBMC_Day22	PR	22	94146	17549
Pt37_PR_PBMC_Day22	PR	22	195069	35062
Pt44_PR_PBMC_Day22	PR	22	120658	28538
Pt3_CR_PBMC_Day0	CR	0	128860	29075
Pt4_CR_PBMC_Day0	CR	0	119253	27209
Pt3_CR_PBMC_Day22	CR	22	92123	27116
Pt4_CR_PBMC_Day22	CR	22	108383	29732

Table 4-source data 1.

Overview of number CDR3 clones prior and post subsampling in bulk TCR repertoires of the human dataset.

484 Acknowledgements

485 We would like to thank Prof. Nir Friedman, Dr. Shlomit Reich-Zeliger and Dr. Erik Shifrut from the
486 Weizmann Institute, Rehovot, Israel for generating and sharing the TCR sequence data analysed in
487 this paper.

488 Appendix 1

489 Evaluation of naive diversity of the first order

490 We start with:

491

$$492 \quad 493 \quad 494 \quad \ln(D(q)) = \ln \left(\sum_{i=1}^S p_i^q \right)^{\frac{1}{(1-q)}}$$

495 Exploring the limit as q approaches 1 allows us to apply L'Hopitals rule:

496

$$497 \quad 498 \quad 499 \quad \lim_{q \rightarrow 1} \ln(D(q)) = \lim_{q \rightarrow 1} \frac{\ln \sum_{i=1}^S p_i^q}{1-q} = \lim_{q \rightarrow 1} \frac{\left(\ln \sum_{i=1}^S p_i^q \right)'}{(1-q)'} \quad 500$$

501 The solution is:

502

$$503 \quad 504 \quad \ln(D(1)) = - \sum_{i=1}^S p_i \ln p_i \quad 505$$

506 This is equivalent to:

507

$$508 \quad D(1) = \frac{1}{p_1^{p_1} p_2^{p_2} \cdots p_i^{p_i}}$$

509 Evaluating the slope at $q = 1$

510 We start with the definition of ${}^q D$:

512

$$513 \quad 514 \quad D(q) = \left(\sum_{i=1}^N p_i^q \right)^{\frac{1}{1-q}}$$

515 define S as the internal sum

517

$$518 \quad 519 \quad S = \sum_{i=1}^N p_i^q$$

520 Now we can write

521

$$522 \quad \ln(D(q)) = \frac{1}{1-q} \ln S$$

523 Let ' denote differentiation with respect to q . Now evaluate

524

$$525 \quad 526 \quad 527 \quad \ln(D(q))' = \frac{1}{(1-q)^2} \ln S + \frac{1}{1-q} (\ln S)' \\ = \frac{\ln S + (1-q)(\ln S)'}{(1-q)^2}$$

528 To evaluate the limit as q goes to 1 we need to apply l'hopital's rule twice. Calling the
529 numerator t

530

$$531 \quad t = \ln S + (1-q)(\ln S)'$$

532

$$533 \quad t' = (1-q)(\ln S)''$$

534

$$t'' = (1-q)(\ln S)''' - (\ln S)''$$

Since $\ln S$ and all its derivatives are finite as q goes to 1

$$\lim_{q \rightarrow 1} t'' = - \lim_{q \rightarrow 1} (\ln S)''$$

535

536

537

538

539

540

541

542

543

544

545

546

547

548

Call the denominator b

$$b'' = 2$$

and

$$\lim_{q \rightarrow 1} b'' = 2$$

Putting this together we have

$$\begin{aligned} \lim_{q \rightarrow 1} \ln(D(q))' &= \frac{\lim_{q \rightarrow 1} t''}{\lim_{q \rightarrow 1} b''} \\ &= -\frac{1}{2} (\ln S)'' \Big|_{q=1} \end{aligned}$$

We need

$$(\ln S)' = \frac{\sum_{i=1}^N p_i^q \ln p_i}{S}$$

$$(\ln S)'' = \frac{\sum_{i=1}^N p_i^q (\ln p_i)^2}{S} - \frac{(\sum_{i=1}^N p_i^q \ln p_i)^2}{S^2}$$

Because p_i is a probability distribution

$$\lim_{q \rightarrow 1} S = 1$$

which means (since the limit of quotient is the quotient of the limits)

$$\lim_{q \rightarrow 1} S'' = \sum_{i=1}^N p_i^q (\ln p_i)^2 - \left(\sum_{i=1}^N p_i^q \ln p_i \right)^2$$

Finally, we want to evaluate $D(q)'$ and then take the limit as q goes to 1.

$$D(q)' = D(q) (\ln(D(q)))'$$

and

$$\begin{aligned} \lim_{q \rightarrow 1} D(q)' &= \lim_{q \rightarrow 1} D(q) \lim_{q \rightarrow 1} -\frac{1}{2} (\ln S)'' \\ &= -\frac{1}{2} D(1) \left(\sum_{i=1}^N p_i^q (\ln p_i)^2 - \left(\sum_{i=1}^N p_i^q \ln p_i \right)^2 \right) \end{aligned}$$

To generalise to the case $\mathbf{Z} \neq \mathbf{I}$ we simply have to replace S with

$$S = \sum_{i=1}^N p_i (\mathbf{Zp})_i^{q-1}.$$

In this case

$$(\ln S)' = \frac{\sum_{i=1}^N p_i (\mathbf{Zp})_i^{q-1} \ln (\mathbf{Zp})_i}{S}$$

$$(\ln S)'' = \frac{\sum_{i=1}^N p_i (\mathbf{Zp})_i^{q-1} (\ln \mathbf{Zp})_i^2}{S} - \frac{(\sum_{i=1}^N p_i (\mathbf{Zp})_i^{q-1} \ln (\mathbf{Zp})_i)^2}{S^2}$$

595

596

597

Evaluation of similarity scaled diversity of the first order

We start with:

598

599

600

$$\ln D(q, \lambda) = \ln \left(\sum_{i=1}^S p_i (\mathbf{Zp})_i^{q-1} \right)^{\frac{1}{(1-q)}}$$

601

602

603

604

Rewriting the equation, calculating the limit as q approaches 1 and applying L'Hopitals rule:

$$\lim_{q \rightarrow 1} \ln D(q, \lambda) = \lim_{q \rightarrow 1} \frac{\ln \sum_{i=1}^S p_i (\mathbf{Zp})_i^{q-1}}{1-q} = \lim_{q \rightarrow 1} \frac{\left(\ln \sum_{i=1}^S p_i (\mathbf{Zp})_i^{q-1} \right)'}{(1-q)'} \quad (1)$$

605

The result is:

606

607

608

$$\ln (D(1, \lambda)) = - \sum_{i=1}^S p_i \ln (\mathbf{Zp})_i$$

609

610

, which is equivalent to:

$$D(q, \lambda) = \frac{1}{(\mathbf{Zp})_1^{p_1} (\mathbf{Zp})_2^{p_2} \cdots (\mathbf{Zp})_i^{p_i}}$$

611

Evaluation of naive diversity of the infinity order

612

We start with the formula for naive diversity and extract the largest clone frequency p_{max} :

613

614

615

616

$$D(q) = \left(\sum_{i=1}^S p_i^q \right)^{\frac{1}{1-q}} = (p_{max})^{\frac{q}{1-q}} \left(1 + \sum_{j=1}^S p_j'^q \right)^{\frac{1}{1-q}}$$

617

618

619

620

, where $p_j' = \frac{p_j}{p_{max}}$ for $j \neq max$, and p_{max} is represented in the first term of the sum. Since a limit of products is a product of limits, it follows:

621

622

623

624

$$\lim_{q \rightarrow \infty} D(q) = \lim_{q \rightarrow \infty} (p_{max})^{\frac{q}{1-q}} \lim_{q \rightarrow \infty} \left(1 + \sum_{j=1}^S p_j'^q \right)^{\frac{1}{1-q}}$$

The first limit is evaluated as:

625

$$\lim_{q \rightarrow \infty} (p_{max})^{\frac{q}{1-q}} = \frac{1}{p_{max}}$$

626

627

The second limit is evaluated by taking the logarithm:

628

629

630

631

$$\log \left(\lim_{q \rightarrow \infty} \left(1 + \sum_{j=1}^S p_j'^q \right)^{\frac{1}{1-q}} \right) = \lim_{q \rightarrow \infty} \log \left(\left(1 + \sum_{j=1}^S p_j'^q \right)^{\frac{1}{1-q}} \right) = \lim_{q \rightarrow \infty} \frac{1}{(1-q)} \log \left(1 + \sum_{j=1}^S p_j'^q \right)$$

632

633

634

Since $0 < \sum_j p_j'^q < 1$, the bounds of logarithm are:

635

636

637

$$0 < \log \left(1 + \sum_{j=1}^S p_j'^q \right) < \log 2$$

638

, which gives:

639

640

641

642

$$\lim_{q \rightarrow \infty} \frac{1}{(1-q)} \log \left(1 + \sum_{j=1}^S p_j'^q \right) = 0$$

643

644

$$\Rightarrow \log \left(\lim_{q \rightarrow \infty} \left(1 + \sum_{j=1}^S p_j'^q \right)^{\frac{1}{1-q}} \right) = 0$$

645

646

647

649

648

650

651

652

$$\implies \lim_{q \rightarrow \infty} \left(1 + \sum_{j=1}^S p_j'^q\right)^{\frac{1}{1-q}} = 1$$

$$\implies \lim_{q \rightarrow \infty} D(q) = \frac{1}{p_{max}}$$

654

Evaluation of similarity scaled diversity of the infinity order

655 We start with:

656

657

658

$$D(q, \lambda) = \left(\sum_{i=1}^S p_i (\mathbf{Zp})_i^{q-1} \right)^{\frac{1}{1-q}} = ((\mathbf{Zp})_{max})^{\frac{q-1}{1-q}} \left(p_{max} \left(1 + \sum_j p_j' (\mathbf{Zp})_j'^{q-1}\right)^{\frac{1}{1-q}} \right)$$

659

660

661

662

where the term that has been pulled out is the one for which $(\mathbf{Zp})_i$ is maximum. The p_{max} is the corresponding p_i . As before, the p_j' are defined as $\frac{p_j}{p_{max}}$ for $j \neq max$ and $(\mathbf{Zp})_j'$ is defined as $\frac{(\mathbf{Zp})_j}{(\mathbf{Zp})_{max}}$. Again, the limit splits in to two factors:

663

664

$$\lim_{q \rightarrow \infty} (\mathbf{Zp})_{max}^{\frac{q-1}{1-q}} = \frac{1}{(\mathbf{Zp})_{max}}$$

665

666

Taking the log of the second term gives:

667

668

$$\lim_{x \rightarrow \infty} \frac{1}{1-q} \log \left(p_{max} \left(1 + \sum_j p_j' (\mathbf{Zp})_j'^{q-1}\right)^{\frac{1}{1-q}} \right)$$

669

670

and now the log is bounded by:

671

672

$$\log p_{max} < \log \left(p_{max} \left(1 + \sum_j p_j' (\mathbf{Zp})_j'^{q-1}\right)^{\frac{1}{1-q}} \right) < \log 2$$

673

674

so again the limit of the log second factor in (*) is 0, and limit of the factor itself is 1. The end result is:

675

676

$$\lim_{q \rightarrow \infty} D(q, \lambda) = \frac{1}{(\mathbf{Zp})_{max}}$$

677

which reduces to the correct limit when $\mathbf{Z}=\mathbf{I}$ which is the naive diversity.

678 Appendix 2

679 **Evaluation $\Delta \ln(D(q, \lambda))$ for small λ : Perturbation around $\lambda = 0$**

680 Conjecture: gradient of $\frac{D(q, \lambda)}{dq} \Big|_{q=0}$ is a decreasing function of λ . N.B. $D(q, \lambda)$ is an increasing
681 function of λ for all q .

682 We start with the assumption that for λ around 0:

683
$$\ln(D(q, \lambda)) \propto \lambda$$

684 Where $\ln(D(q, \lambda))$ is:

685
$$\begin{aligned} 686 \ln(D(q, \lambda)) &= \ln \left(\sum_{i=1}^S p_i (\mathbf{Zp})_i^{q-1} \right)^{\frac{1}{(1-q)}} \\ 687 &= \frac{1}{1-q} \ln \left(\sum_{i=1}^S p_i (\mathbf{Zp})_i^{q-1} \right) \\ 688 &= \frac{1}{1-q} \ln \left(\sum_{i=1}^S p_i \left(\sum_{j=1}^S p_j e^{-\lambda d_{ij}} \right)_i^{q-1} \right) \end{aligned}$$

689 For $\lambda \rightarrow 0$ by applying Taylor expansion $e^{-\lambda d_{ij}}$ reduces to $1 - \lambda d_{ij}$ which gives:

690
$$\ln(D(q, \lambda)) \approx \frac{1}{1-q} \ln \left(\sum_{i=1}^S p_i \left(\sum_{j=1}^S p_j (1 - \lambda d_{ij}) \right)_i^{q-1} \right)$$

691 We can then rewrite:

692
$$\begin{aligned} 693 \left(\sum_{j=1}^S p_j (1 - \lambda d_{ij}) \right)_i^{q-1} &\approx \left(p_0 (1 - \lambda d_{i0}) + p_1 (1 - \lambda d_{i1}) + \dots + p_j (1 - \lambda d_{ij}) \right)^{q-1} \\ 694 &\approx \left(1 - \lambda \left(\sum_{j=1}^S p_j d_{ij} \right) \right)^{q-1} \end{aligned}$$

695 By applying the binomial expansion we arrive at:

696
$$\left(\sum_{j=1}^S p_j (1 - \lambda d_{ij}) \right)_i^{q-1} \approx \left(1 - (q-1)\lambda \left(\sum_{j=1}^S p_j d_{ij} \right) \right)$$

697 By substituting the derived expressions in the formula for $\ln(D(q, \lambda))$ and keeping in mind
698 that $\sum_{i=1}^S p_i = 1$, we can write:

699
$$\begin{aligned} 700 \ln(D(q, \lambda)) &= \frac{1}{1-q} \ln \left(\sum_{i=1}^S p_i \left(\sum_{j=1}^S p_j e^{-\lambda d_{ij}} \right)_i^{q-1} \right) \\ 701 &\approx \frac{1}{1-q} \ln \left(\sum_{i=1}^S p_i \left(1 - (q-1)\lambda \left(\sum_{j=1}^S p_j d_{ij} \right) \right)_i^{q-1} \right) \\ 702 &\approx \frac{1}{1-q} \ln \left(1 - \sum_{i=1}^S p_i (q-1)\lambda \left(\sum_{j=1}^S p_j d_{ij} \right) \right) \\ 703 &\approx \frac{1}{1-q} \ln \left(1 - (q-1)\lambda \sum_{i=1}^S p_i \left(\sum_{j=1}^S p_j d_{ij} \right) \right) \end{aligned}$$

By applying the linear approximation $\ln(1 - x) \approx x$, we finally arrive:

$$\begin{aligned} 712 \quad \ln(D(q, \lambda)) &\approx \frac{1}{1-q} \left(- (q-1)\lambda \sum_{i=1}^S p_i \left(\sum_{j=1}^S p_j d_{ij} \right) \right) \\ 713 \\ 714 \\ 715 \quad &\approx \lambda \sum_{i=1}^S p_i \left(\sum_{j=1}^S p_j d_{ij} \right) \end{aligned}$$

716 Note that the final form of the evaluation of $D(q, \lambda)$ for $\lambda \rightarrow 0$ is independent of the order
717 of diversity q . It is solely dependent on the distance between CDR3 sequences weighted by
718 their respective frequencies.

719 **Evaluation $\Delta \ln(D(q, \lambda))$ for small λ and it's relationship to distance**

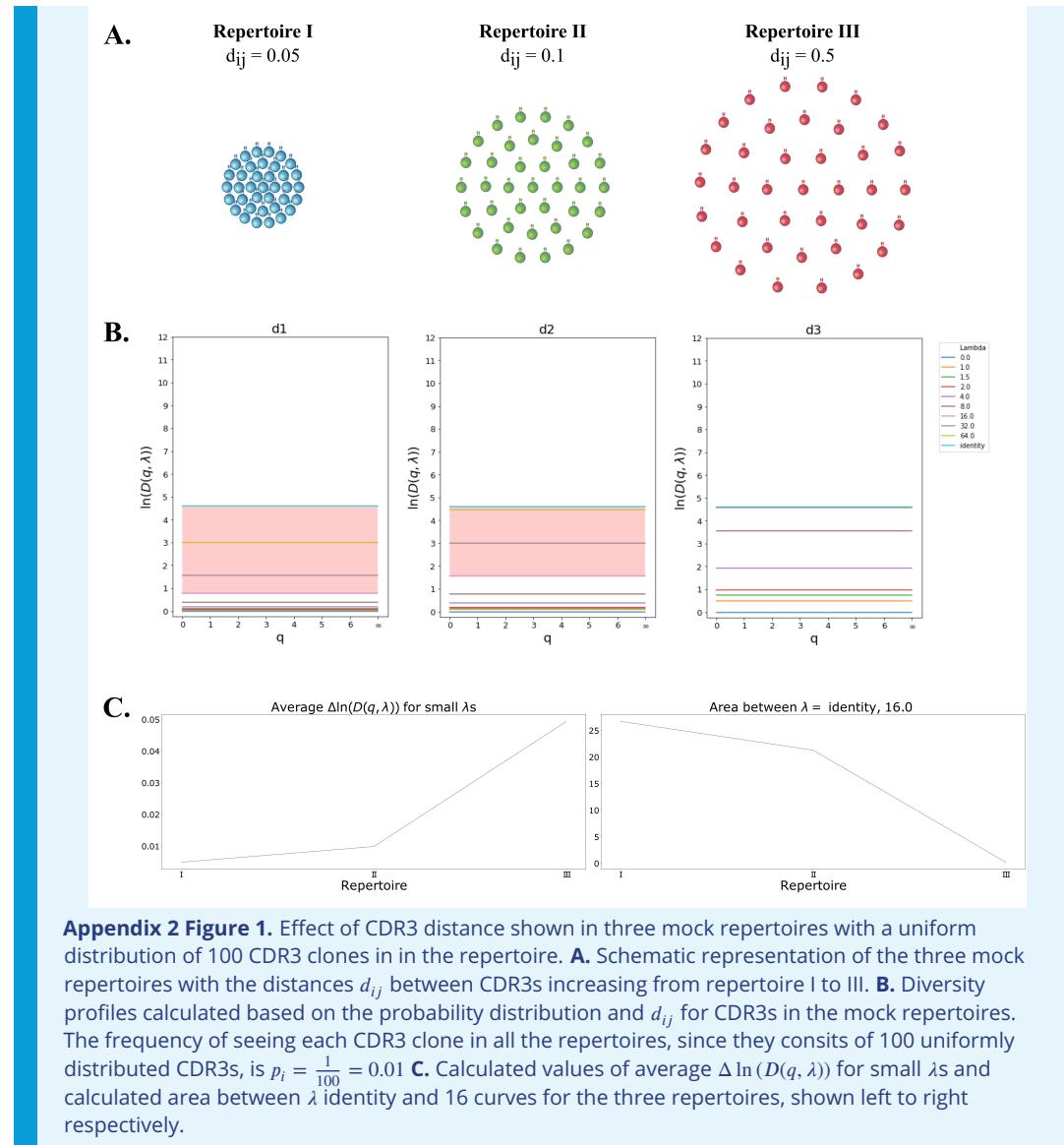
720 By evaluating $\Delta \ln(D(q, \lambda))$ for two values of small λ , where $\lambda' > \lambda''$ we arrive at:

$$\begin{aligned} 721 \quad \Delta \ln(D(q, \lambda)) &\approx D(q, \lambda') - D(q, \lambda'') \\ 722 \\ 723 \quad &\approx \lambda' \sum_{i=1}^S p_i \left(\sum_{j=1}^S p_j d_{ij} \right) - \lambda'' \sum_{i=1}^S p_i \left(\sum_{j=1}^S p_j d_{ij} \right) \\ 724 \\ &\approx (\lambda' - \lambda'') \sum_{i=1}^S p_i \left(\sum_{j=1}^S p_j d_{ij} \right) \end{aligned}$$

725 It is evident that $\Delta \ln(D(q, \lambda))$ is linearly dependent on the distances between CDR3s and
726 their probabilities. In the case of two hypothetical repertoires, I and II, which have a uniform
727 distribution of CDR3 frequencies within the repertoire $p_i^I = p_i^{II} = p$ and distances between
728 CDR3s $d_{ij}^I > d_{ij}^{II}$, $\Delta \ln(D(q, \lambda))$ for repertoire I is larger than $\Delta \ln(D(q, \lambda))$ for repertoire II. That
729 is with the increase of similarity between CDR3s, the area between the curves for small λ s
730 decreases (Appendix 2 Figure 1 C.). Alternatively, if the distances between CDR3s of the two
731 repertoires are the same $d_{ij}^I = d_{ij}^{II} = d$, and the distribution is still uniform, but the number
732 of clones differs so that repertoire I has less clones than II i.e. $p_i^I > p_i^{II}$, then $\Delta \ln(D(q, \lambda))$ is
733 larger than $\Delta \ln(D(q, \lambda))$. Meaning that repertoires with more abundant clones have a larger
734 $\Delta \ln(D(q, \lambda))$ for small λ s.

735 **Evaluation $\Delta \ln(D(q, \lambda))$ for larger λ s and it's relationship to distance**

736 In order to evaluate the relationship between CDR3 clone distance and the area between
737 the curves of larger λ s we have constructed three mock repertoires. The repertoires consist
738 of 100 CDR3s that are uniformly distributed in the repertoire, i.e. $p_i = \frac{1}{S} = \frac{1}{100} = 0.01$. For
739 each mock repertoire a mock distance matrix was calculated so that the distance between
740 the CDR3s within the repertoire were equal, but that they differ between the repertoires.
741 The distances were $d_{i,j}^I = 0.05$, $d_{i,j}^{II} = 0.1$ and $d_{i,j}^{III} = 0.5$, for repertoire I, II and III respectively
742 when $i \neq j$, else $d_{i,j} = 0$ for $i = j$. Individual λ curves of the diversity profiles straight lines - a
743 remnant of uniform distribution of CDR3 frequencies in the repertoire (Appendix 2 Figure
744 1).



Appendix 2 Figure 1. Effect of CDR3 distance shown in three mock repertoires with a uniform distribution of 100 CDR3 clones in the repertoire. **A.** Schematic representation of the three mock repertoires with the distances d_{ij} between CDR3s increasing from repertoire I to III. **B.** Diversity profiles calculated based on the probability distribution and d_{ij} for CDR3s in the mock repertoires. The frequency of seeing each CDR3 clone in all the repertoires, since they consist of 100 uniformly distributed CDR3s, is $p_i = \frac{1}{100} = 0.01$ **C.** Calculated values of average $\Delta \ln(D(q, \lambda))$ for small λ s and calculated area between $\lambda = \text{identity}$ and 16.0 curves for the three repertoires, shown left to right respectively.

755 Acknowledgements

756 References

757 immunoSEQ – Adaptive Biotechnologies;. <https://www.adaptivebiotech.com/products-services/immunoseq/>.

758 **Altan-Bonnet G**, Mora T, Walczak AM. Quantitative immunology for physicists. *Physics Reports*. 2020 3; 849:1–83. doi: [10.1016/j.physrep.2020.01.001](https://doi.org/10.1016/j.physrep.2020.01.001).

760 **Antunes DA**, Rigo MM, Freitas MV, Mendes MFA, Sinigaglia M, Lizée G, Kavraki LE, Selin LK, Cornberg M, Vieira GF. Interpreting T-Cell cross-reactivity through structure: Implications for TCR-based cancer immunotherapy. *Frontiers in Immunology*. 2017 10; 8(OCT):1210. doi: [10.3389/fimmu.2017.01210](https://doi.org/10.3389/fimmu.2017.01210).

763 **Arora R**, Burke H, Arnaout R. Immunological Diversity with Similarity. *bioRxiv*. 2018 12; p. 483131. <https://doi.org/10.1101/483131>, doi: 10.1101/483131.

765 **Atchley WR**, Zhao J, Fernandes AD, Drüke T. Solving the protein sequence metric problem. *Proceedings of the National Academy of Sciences of the United States of America*. 2005 5; 102(18):6395–6400. www.genome.org, doi: [10.1073/pnas.0408677102](https://doi.org/10.1073/pnas.0408677102).

768 **Bentzen AK**, Hadrup SR. T-cell-receptor cross-recognition and strategies to select safe T-cell receptors for clinical translation. *Immuno-Oncology Technology*. 2019 9; 2:1–10. doi: [10.1016/j.iotech.2019.06.003](https://doi.org/10.1016/j.iotech.2019.06.003).

770 **Berger WH**, Parker FL. Diversity of planktonic foraminifera in deep-sea sediments. *Science*. 1970 6; 168(3937):1345–1347. doi: [10.1126/science.168.3937.1345](https://doi.org/10.1126/science.168.3937.1345).

772 **Carey AJ**, Gracias DT, Thayer JL, Boesteanu AC, Kumova OK, Mueller YM, Hope JL, Fraietta JA, Zessen DBHv, Katsikis PD. Rapid Evolution of the CD8+ TCR Repertoire in Neonatal Mice. *The Journal of Immunology*. 2016 3; 196(6):2602–2613. <http://www.ncbi.nlm.nih.gov/pubmed/26873987><http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779665/>, doi: [10.4049/jimmunol.1502126](https://doi.org/10.4049/jimmunol.1502126).

776 **Chang LW**, Doan LT, Fields P, Vignali M, Akilov OE. The Utility of T-Cell Clonality in Differential Diagnostics of Acute Graft-versus-Host Disease from Drug Hypersensitivity Reaction. *Journal of Investigative Dermatology*. 2019; doi: [10.1016/j.jid.2019.11.009](https://doi.org/10.1016/j.jid.2019.11.009).

779 **Chiffelle J**, Genolet R, Perez MA, Coukos G, Zoete V, Harari A, T-cell repertoire analysis and metrics of diversity and clonality. Elsevier Ltd; 2020. doi: [10.1016/j.copbio.2020.07.010](https://doi.org/10.1016/j.copbio.2020.07.010).

781 **Choi Y**, Kotzin B, Herron L, Callahan J, Marrack P, Kappler J. Interaction of *Staphylococcus aureus* toxin 'superantigens' with human T cells. *Proceedings of the National Academy of Sciences of the United States of America*. 1989 11; 86(22):8941–8945. <https://www.pnas.org/content/86/22/8941><https://www.pnas.org/content/86/22/8941.abstract>, doi: [10.1073/pnas.86.22.8941](https://doi.org/10.1073/pnas.86.22.8941).

785 **Cinelli M**, Sun Yuxin, Best K, Heather JM, Reich-Zeliger S, Shifrut E, Friedman N, Shawe-Taylor J, Chain B. Feature selection using a one dimensional naïve Bayes' classifier increases the accuracy of support vector machine classification of CDR3 repertoires. *Bioinformatics*. 2017 1; 33(7):951–955. <https://doi.org/10.1093/bioinformatics/btw771>, doi: 10.1093/bioinformatics/btw771.

789 **Ciupe SM**, Devlin BH, Markert ML, Kepler TB. Quantification of total T-cell receptor diversity by flow cytometry and spectratyping. *BMC Immunology*. 2013 8; 14(1):35. <https://bmcc Immunol.biomedcentral.com/articles/10.1186/1471-2172-14-35>, doi: 10.1186/1471-2172-14-35.

792 **Dash P**, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S, Souquette A, Crawford JC, Clemens EB, Nguyen THO, Kedzierska K, La Gruta NL, Bradley P, Thomas PG. Quantifiable predictive features define epitope-specific T cell receptor repertoires. *Nature*. 2017 6; 547(7661):89–93. <http://www.nature.com/doifinder/10.1038/nature22383>, doi: 10.1038/nature22383.

796 **Didona D**, Di Zenzo G. Humoral epitope spreading in autoimmune bullous diseases. *Frontiers Media S.A.*; 2018. www.frontiersin.org, doi: [10.3389/fimmu.2018.00779](https://doi.org/10.3389/fimmu.2018.00779).

798 **Formenti SC**, Rudqvist NP, Golden E, Cooper B, Wennerberg E, Lhuillier C, Vanpouille-Box C, Friedman K, Ferrari de Andrade L, Wucherpfennig KW, Heguy A, Imai N, Gnjatic S, Emerson RO, Zhou XK, Zhang T, Chachoua A, Demaria S. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. *Nature Medicine*. 2018 12; 24(12):1845–1851. <https://doi.org/10.1038/s41591-018-0232-2>, doi: 10.1038/s41591-018-0232-2.

802 **Glanville J**, Huang H, Nau A, Hatton O, Wagar LE, Rubelt F, Ji X, Han A, Krams SM, Pettus C, Haas N, Arlehamn CSL, Sette A, Boyd SD, Scriba TJ, Martinez OM, Davis MM. Identifying specificity groups in the T cell receptor repertoire. *Nature*. 2017 7; 547(7661):94–98. doi: 10.1038/nature22976.

805 **Gorski J**, Yassai M, Zhu X, Kissela B, Kissella B [corrected to Kissela B, Keever C, Flomenberg N. Circulating T cell
806 repertoire complexity in normal individuals and bone marrow recipients analyzed by CDR3 size spectratyping.
807 Correlation with immune status. *The Journal of Immunology*. 1994; 152(10).

808 **Greiff V**, Bhat P, Cook SC, Menzel U, Kang W, Reddy ST. A bioinformatic framework for immune repertoire
809 diversity profiling enables detection of immunological status. *Genome Medicine*. 2015 5; 7(1):49. <http://genomemedicine.com/content/7/1/49>, doi: 10.1186/s13073-015-0169-8.

811 **Henikoff S**, Henikoff JG. Amino acid substitution matrices from protein blocks. *Proceedings of the National Academy of Sciences of the United States of America*. 1992 11; 89(22):10915–10919. <https://www-pnas-org.proxy.findit.dtu.dk/content/89/22/10915> <https://www-pnas-org.proxy.findit.dtu.dk/content/89/22/10915.abstract>, doi: 10.1073/pnas.89.22.10915.

815 **Israelson M**, Nakonechnaya TO, Moltedo B, Egorov ES, Kasatskaya SA, Putintseva EV, Mamedov IZ, Staroverov
816 DB, Shemiakina II, Zakharova MY, Davydov AN, Bolotin DA, Shugay M, Chudakov DM, Rudensky AY, Britanova
817 OV. Comparative analysis of murine T-cell receptor repertoires. *Immunology*. 2018 2; 153(2):133–144. <http://doi.wiley.com/10.1111/imm.12857>, doi: 10.1111/imm.12857.

819 **Jost L**. Entropy and diversity. *Oikos*. 2006 5; 113(2):363–375. <http://doi.wiley.com/10.1111/j.2006.0030-1299.14714.x>, doi: 10.1111/j.2006.0030-1299.14714.x.

821 **Jost L**. The Relation between Evenness and Diversity. *Diversity*. 2010 3; 2. doi: 10.3390/d2020207.

822 **Kluyver T**, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing C. Jupyter Notebooks—a publishing format for reproducible computational workflows. In: *Positioning and Power in Academic Publishing: Players, Agents and Agendas - Proceedings of the 20th International Conference on Electronic Publishing, ELPUB 2016* IOS Press BV; 2016. p. 87–90. doi: 10.3233/978-1-61499-649-1-87.

827 **Laydon DJ**, Bangham CRM, Asquith B. Estimating T-cell repertoire diversity: Limitations of classical estimators
828 and a new approach. *Philosophical Transactions of the Royal Society B: Biological Sciences*. 2015 8; 370(1675).
829 doi: 10.1098/rstb.2014.0291.

830 **Leinster T**, Cobbold CA. Measuring diversity: the importance of species similarity. *Ecology*. 2012 3; 93(3):477–
831 489. <http://doi.wiley.com/10.1890/10-2402.1>, doi: 10.1890/10-2402.1.

832 **Memon SA**, Sportès C, Flomerfelt FA, Gress RE, Hakim FT. Quantitative analysis of T cell receptor diversity
833 in clinical samples of human peripheral blood. *Journal of Immunological Methods*. 2012 1; 375(1-2):84–92.
834 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253939/?report=abstract>, doi:
835 10.1016/j.jim.2011.09.012.

836 **Miles JJ**, Douek DC, Price DA, Bias in the $\alpha\beta$ T-cell repertoire: Implications for disease pathogenesis and vaccination. John Wiley & Sons, Ltd; 2011. doi: 10.1038/icb.2010.139.

838 **Mora T**, Walczak AM. Rényi entropy, abundance distribution, and the equivalence of ensembles. *Physical Review E*. 2016 5; 93(5):052418. <https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.052418>, doi:
839 10.1103/PhysRevE.93.052418.

841 **Mora T**, Walczak AM. Quantifying lymphocyte receptor diversity. In: *Systems Immunology* CRC Press; 2018.p.
842 183–198. doi: 10.1201/9781315119847-11.

843 **Muraro PA**, Jacobsen M, Necker A, Nagle JW, Gaber R, Sommer N, Oertel WH, Martin R, Hemmer B. Rapid
844 identification of local T cell expansion in inflammatory organ diseases by flow cytometric T cell receptor V β
845 analysis. *Journal of Immunological Methods*. 2000 12; 246(1-2):131–143. <https://pubmed.ncbi.nlm.nih.gov/11121554/>, doi: 10.1016/S0022-1759(00)00309-4.

847 **Ochsenreither S**, Fusi A, Busse A, Nagorsen D, Schrama D, Becker J, Thiel E, Keilholz U. Relative quantification
848 of TCR Vbeta-chain families by real time PCR for identification of clonal T-cell populations. *Journal of
849 Translational Medicine*. 2008 7; 6. <https://pubmed.ncbi.nlm.nih.gov/18593466/>, doi: 10.1186/1479-5876-6-34.

850 **Oliphant TE**. A guide to NumPy, vol. 1. Trelgol Publishing USA; 2006.

851 **Pedregosa FABIANPEDREGOSA F**, Michel V, Grisel OLIVIERGRISEL O, Blondel M, Prettenhofer P, Weiss R, Van-
852 derplas J, Cournapeau D, Pedregosa F, Varoquaux G, Gramfort A, Thirion B, Grisel O, Dubourg V, Passos A,
853 Brucher M, Perrot and Édouardand M, Duchesnay a, Duchesnay EDOUARDDUCHESNAY F. Scikit-learn: Ma-
854 chine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA,
855 VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot; 2011.

856 **Petrova G**, Ferrante A, Gorski J, Cross-reactivity of T cells and its role in the immune system. Begell House Inc.;
857 2012. doi: [10.1615/CritRevImmunol.v32.i4.50](https://doi.org/10.1615/CritRevImmunol.v32.i4.50).

858 **Robert L**, Tsoi J, Wang X, Emerson R, Homet B, Chodon T, Mok S, Huang RR, Cochran AJ, Comin-Anduix B,
859 Koya RC, Graeber TG, Robins H, Ribas A. CTLA4 blockade broadens the peripheral T-cell receptor repertoire.
860 Clinical Cancer Research. 2014 5; 20(9):2424–2432. doi: [10.1158/1078-0432.CCR-13-2648](https://doi.org/10.1158/1078-0432.CCR-13-2648).

861 **Robins HS**, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Khsai O, Riddell SR, Warren EH, Carlson CS.
862 Comprehensive assessment of T-cell receptor β -chain diversity in $\alpha\beta$ T cells. Blood. 2009 11; 114(19):4099–
863 4107. doi: [10.1182/blood-2009-04-217604](https://doi.org/10.1182/blood-2009-04-217604).

864 **Robins HS**, Srivastava SK, Campregher PV, Turtle CJ, Andriesen J, Riddell SR, Carlson CS, Warren EH. Overlap
865 and effective size of the human CD8+ T cell receptor repertoire. Science Translational Medicine. 2010 9;
866 2(47):64–47. doi: [10.1126/scitranslmed.3001442](https://doi.org/10.1126/scitranslmed.3001442).

867 **Rudqvist NP**, Pilones KA, Lhuillier C, Wennerberg E, Sidhom JW, Emerson RO, Robins HS, Schneck J, Formenti SC,
868 Demaria S. Radiotherapy and CTLA-4 blockade shape the tcr repertoire of tumor-infiltrating t cells. Cancer
869 Immunology Research. 2018 2; 6(2):139–150. doi: [10.1158/2326-6066.CIR-17-0134](https://doi.org/10.1158/2326-6066.CIR-17-0134).

870 **Sherwood AM**, Emerson RO, Scherer D, Habermann N, Buck K, Staffa J, Desmarais C, Halama N, Jaeger D,
871 Schirmacher P, Herpel E, Kloer M, Ulrich A, Schneider M, Ulrich CM, Robins H. Tumor-infiltrating lymphocytes
872 in colorectal tumors display a diversity of T cell receptor sequences that differ from the T cells in adjacent
873 mucosal tissue. Cancer Immunology, Immunotherapy. 2013 9; 62(9):1453–1461. doi: [10.1007/s00262-013-1446-2](https://doi.org/10.1007/s00262-013-1446-2).

875 **Sidhom JW**, Bessell CA, Havel JJ, Kosmides A, Chan TA, Schneck JP. ImmunoMap: A bioinformatics tool for T-cell
876 repertoire analysis. Cancer Immunology Research. 2018 2; 6(2):151–162. doi: [10.1158/2326-6066.CIR-17-0114](https://doi.org/10.1158/2326-6066.CIR-17-0114).

878 **SIMPSON EH**. Measurement of Diversity. Nature. 1949 4; 163(4148):688–688. <http://www.nature.com/articles/163688a0>, doi: [10.1038/163688a0](https://doi.org/10.1038/163688a0).

880 **Spellerberg IF**, Fedor PJ. A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species
881 richness, species diversity and the 'Shannon-Wiener' Index; 2003.

882 **Sun Y**, Best K, Cinelli M, Heather JM, Reich-Zeliger S, Shifrut E, Friedman N, Shawe-Taylor J, Chain B. Specificity,
883 privacy, and degeneracy in the CD4 T cell receptor repertoire following immunization. Frontiers in Immunology.
884 2017 4; 8(APR). doi: [10.3389/fimmu.2017.00430](https://doi.org/10.3389/fimmu.2017.00430).

885 **Thomas N**, Best K, Cinelli M, Reich-Zeliger S, Gal H, Shifrut E, Madi A, Friedman N, Shawe-Taylor J, Chain
886 B. Tracking global changes induced in the CD4 T-cell receptor repertoire by immunization with a com-
887 plex antigen using short stretches of CDR3 protein sequence. Bioinformatics. 2014 11; 30(22):3181–3188.
888 <https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btu523>, doi: [10.1093/bioinformatics/btu523](https://doi.org/10.1093/bioinformatics/btu523).

890 **Thomas N**, Best K, Cinelli M, Reich-Zeliger S, Gal H, Shifrut E, Madi A, Friedman N, Shawe-Taylor J, Chain
891 B. Tracking global changes induced in the CD4 T-cell receptor repertoire by immunization with a com-
892 plex antigen using short stretches of CDR3 protein sequence. Bioinformatics. 2014 8; 30(22):3181–3188.
893 <https://doi.org/10.1093/bioinformatics/btu523>, doi: [10.1093/bioinformatics/btu523](https://doi.org/10.1093/bioinformatics/btu523).

894 **Thomas N**, Heather J, Ndifon W, Shawe-Taylor J, Chain B. Decombinator: a tool for fast, efficient gene as-
895 signment in T-cell receptor sequences using a finite state machine. Bioinformatics. 2013 1; 29(5):542–550.
896 <https://doi.org/10.1093/bioinformatics/btt004>, doi: [10.1093/bioinformatics/btt004](https://doi.org/10.1093/bioinformatics/btt004).

897 **Tom Leinster**. The Magnitude of Metric Spaces. Documenta Mathematica. 2013; 18:857–905. <https://www.math.uni-bielefeld.de/documenta/vol-18/27.html>.

899 **Twyman-Saint Victor C**, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekti E, Benci JL, Xu B, Dada H, Odorizzi PM,
900 Herati RS, Mansfield KD, Patsch D, Amaravadi RK, Schuchter LM, Ishwaran H, Mick R, Pryma DA, Xu X, Feldman
901 MD, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer.
Nature. 2015 4; 520(7547):373–377. [http://www.nature.com/articles/nature14292](https://www.nature.com/articles/nature14292), doi: [10.1038/nature14292](https://doi.org/10.1038/nature14292).

903 **Van Rossum G**, Drake FL. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace; 2009.

904 **Vanderlugt CL**, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy.
905 Nature Reviews Immunology. 2002 2; 2(2):85–95. [http://www.nature.com/articles/nri724](https://www.nature.com/articles/nri724), doi: [10.1038/nri724](https://doi.org/10.1038/nri724).

906 Warren RL, Freeman JD, Zeng T, Choe G, Munro S, Moore R, Webb JR, Holt RA. Exhaustive T-cell reper-
907 toire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly
908 measured repertoire size of at least 1 million clonotypes. *Genome Research*. 2011; 21(5):790–797. doi:
909 [10.1101/gr.115428.110](https://doi.org/10.1101/gr.115428.110).

910 Waskom M, Botvinnik O, O’Kane D, Hobson P, Lukauskas S, Gemperline DC, Augspurger T, Halchenko Y, Cole JB,
911 Warmenhoven J, de Ruiter J, Pye C, Hoyer S, Vanderplas J, Villalba S, Kunter G, Quintero E, Bachant P, Martin
912 M, Meyer K, et al., mwaskom/seaborn: v0.8.1 (September 2017). Zenodo; 2017. <https://doi.org/10.5281/zenodo.883859>, doi: [10.5281/zenodo.883859](https://doi.org/10.5281/zenodo.883859).

Supplementary information TCRDivER: T cell Receptor Diversity Estimates for Repertoires

Milena Vujović Paolo Marcatili Benny Chain Joseph Kaplinsky
Thomas Lars Andresen

1 Murine Dataset

Results concerning the murine CD4⁺ TCR repertoire dataset following immunisation with Complete Freund's Adjuvant (CFA) with or without the addition of Ovalbumin (OVA) antigen. The dataset also contains unimmunised mice. The samples were collected at 3 timepoints (5, 14 and 60 day) for immunised mice, and day 0 for unimmunised mice. Two TCR distance metrics were used a BLOSUM45 and Atchley factor based score. Each subsection will therefore be marked with the distance metric

1.1 Diversity Profiles-BLOSUM45

Diversity profiles calculated for the murine dataset with 50000 subsample size. The profiles are organised into tables according to post-immunisation sample collection time with untreated mice, day 5, day 14 and day 60 in Table 1, 2, 3 and 4, respectively.

Table 1: Untreated day 0

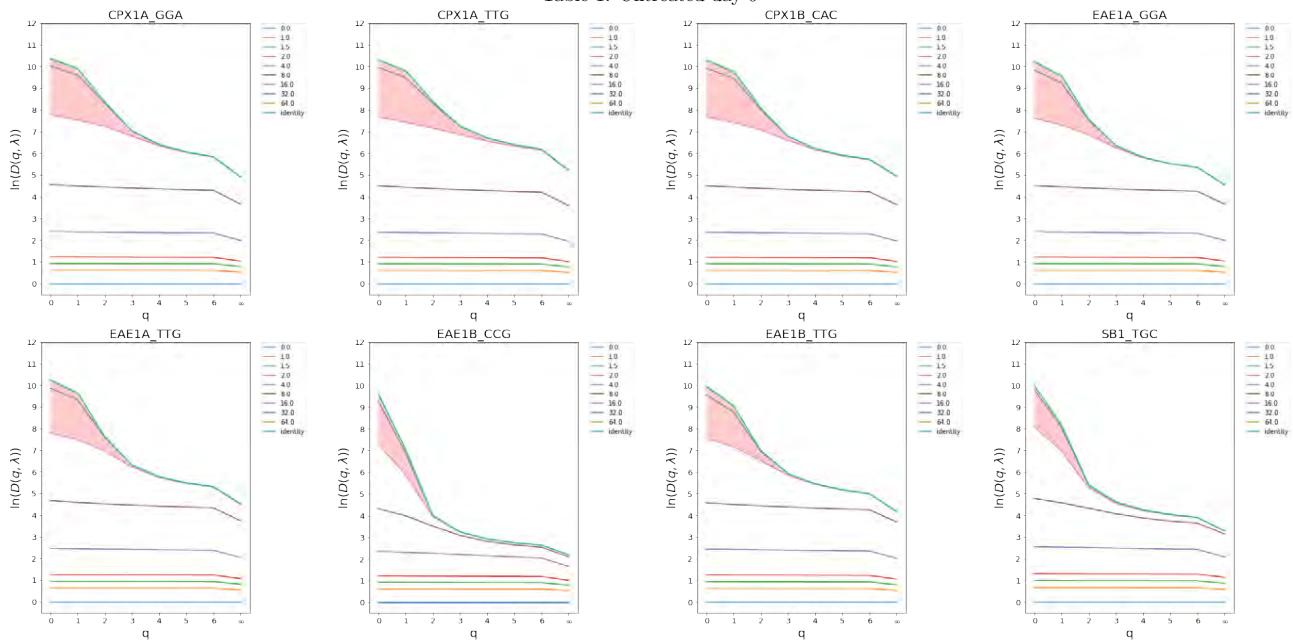


Table 2: Immunised day 5

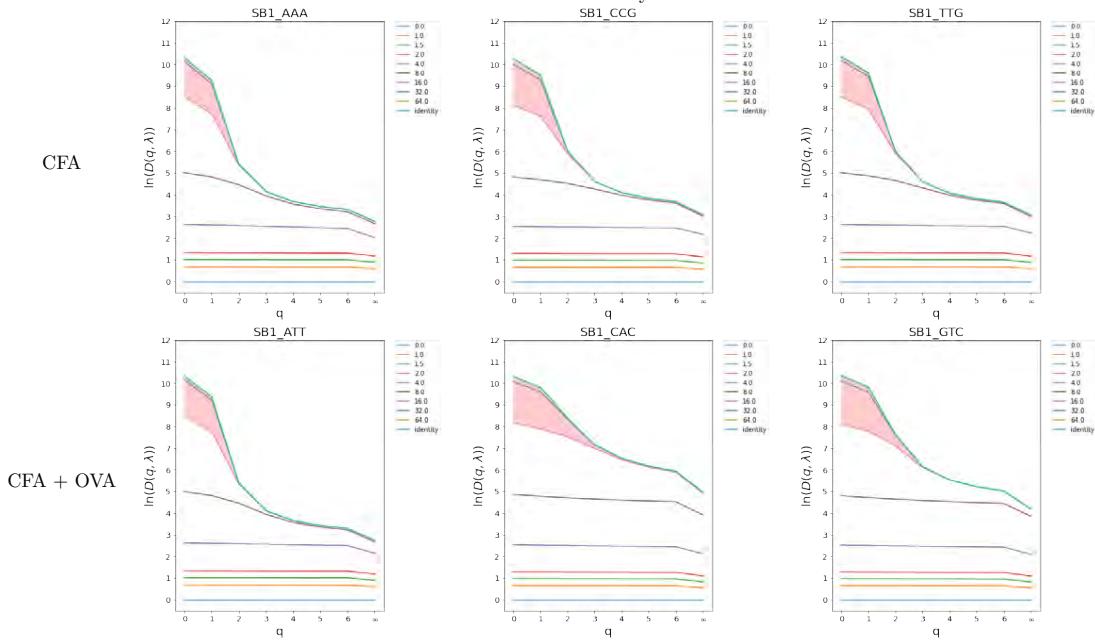
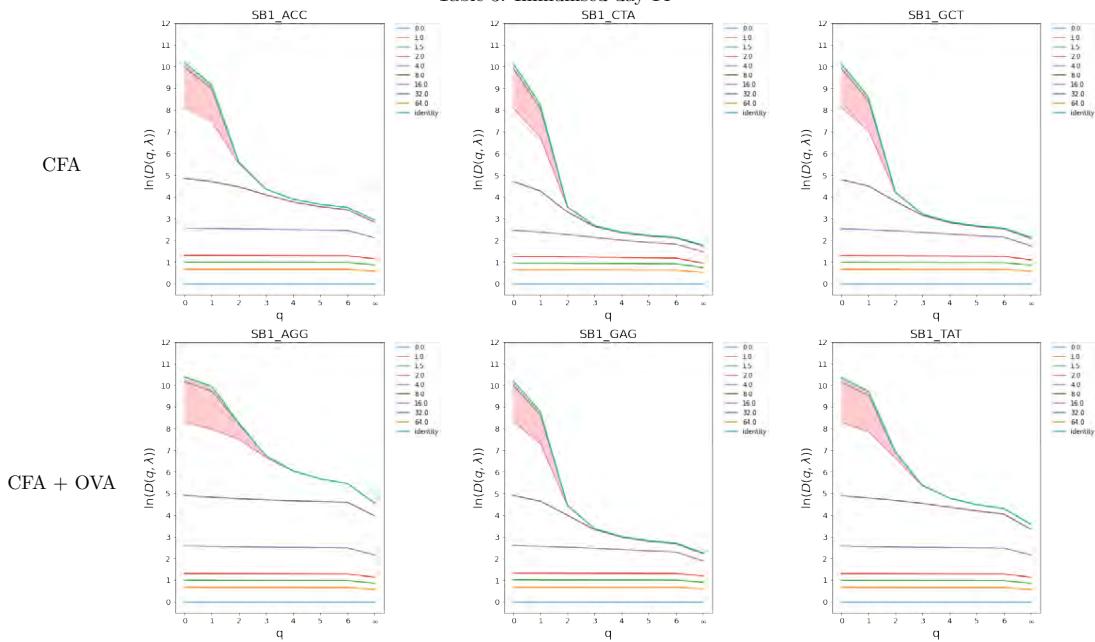
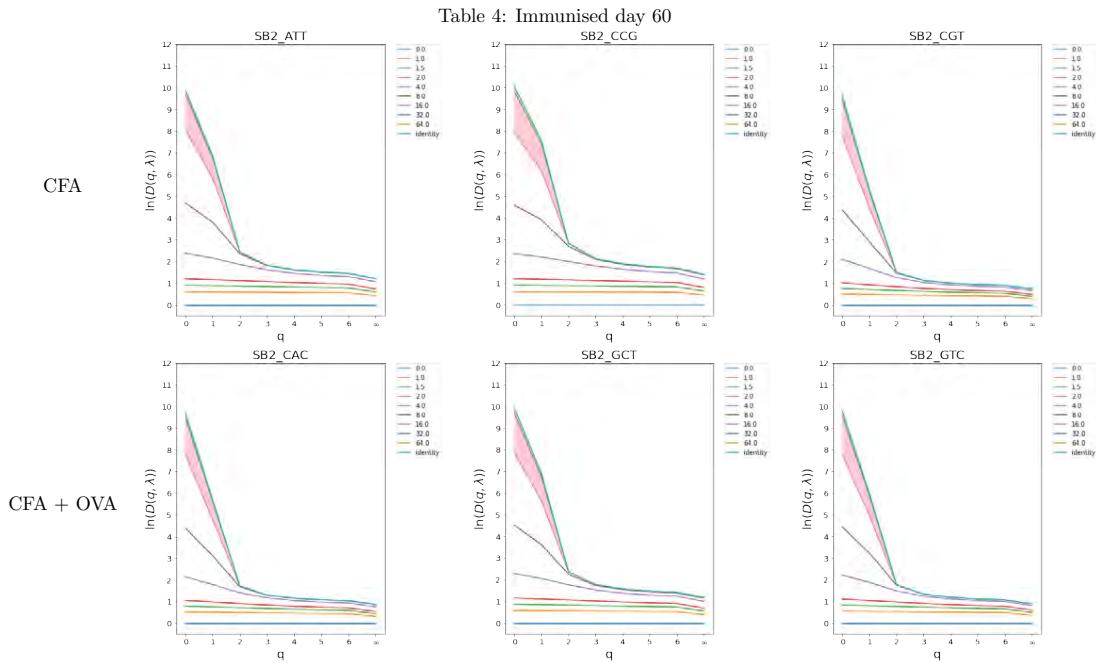


Table 3: Immunised day 14





1.2 Naive ($q = 0$) diversity profiles-BLOSUM45

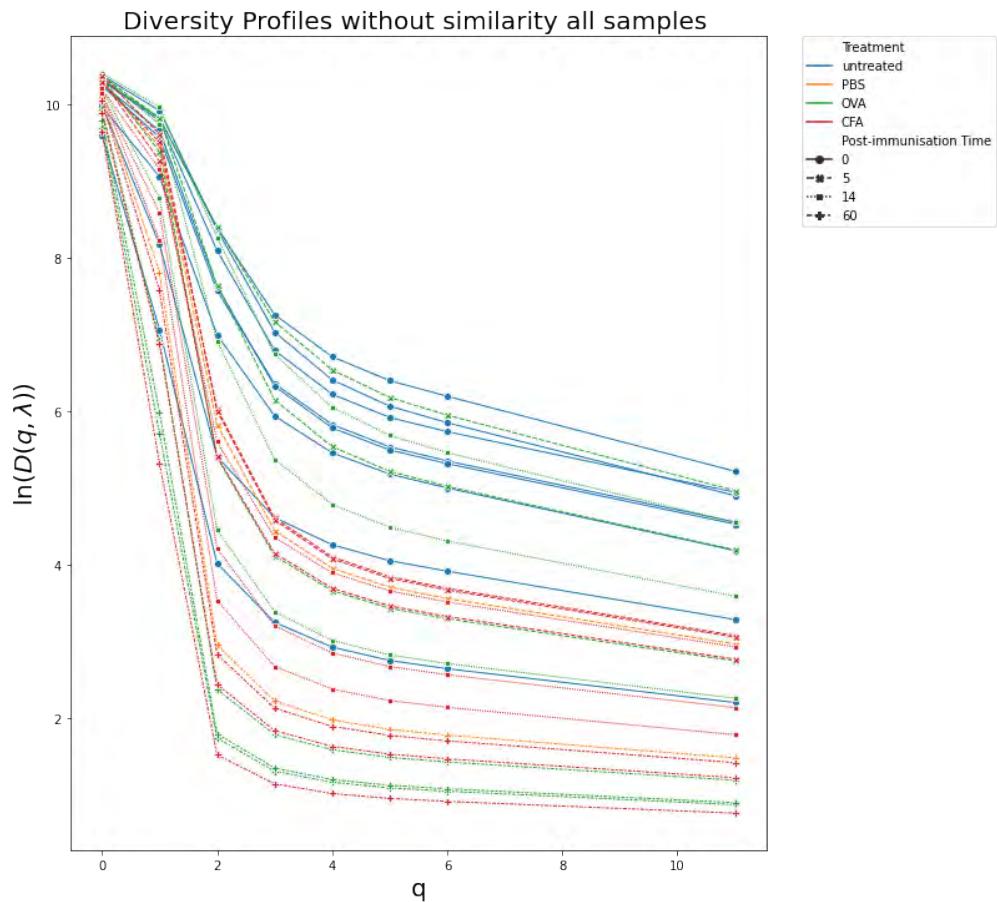


Figure 1: Naive ($q = 0$) diversity profiles plotted for all murine samples. Frequent crossings of the curves can be observed illustrating that the rank order of samples depends on the specific choice of index.

1.3 PCA on natural logarithm transformed values of true diversity-BLOSUM45

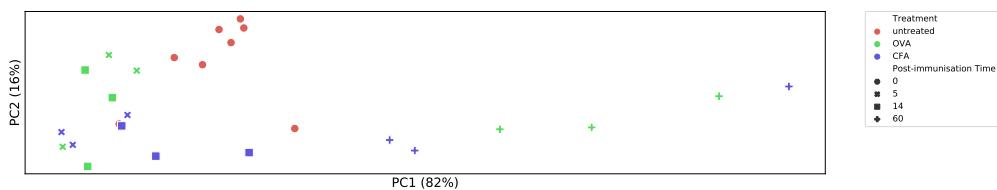


Figure 2: PCA on values of true diversity $D(q, \lambda)$. for the murine dataset. The aspect ratio corresponds to variation found by PCA.

1.4 PCA on diversity values from the randomised murine dataset with random frequencies-BLOSUM45

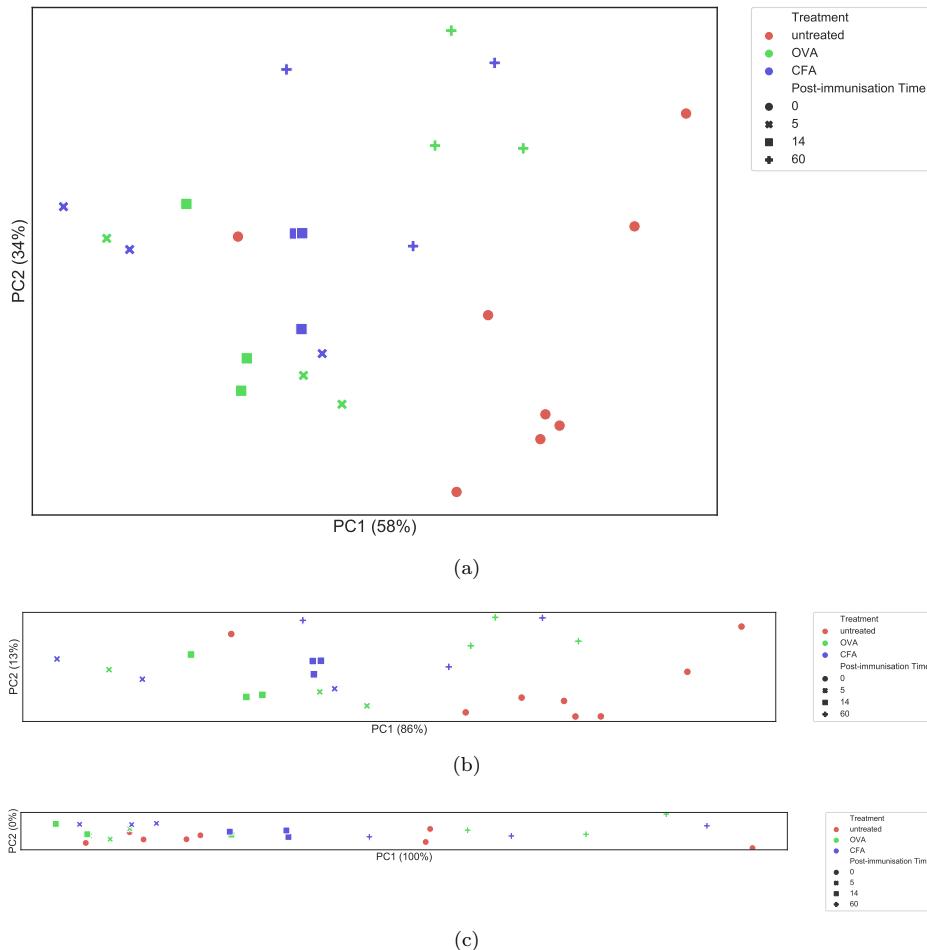


Figure 3: Principal Components Analysis on diversity calculated for the randomised murine dataset. The aspect ratio corresponds to variation found by PCA. **a.** PCA on features extracted from the diversity profiles constructed from the true diversity $D(q, \lambda)$. **b.** PCA on values of true diversity $D(q, \lambda)$. **c.** PCA on naive diversity values $D(q)$, i.e. $\lambda = \text{identity}$.

1.5 Diversity Profiles-Atchley factor distance

Diversity profiles calculated for the murine dataset with 50000 subsample size. The profiles are organised into tables according to post-immunisation sample collection time with untreated mice, day 5, day 14 and day 60 in Table 1, 2, 3 and 4, respectively.

Table 5: Untreated day 0

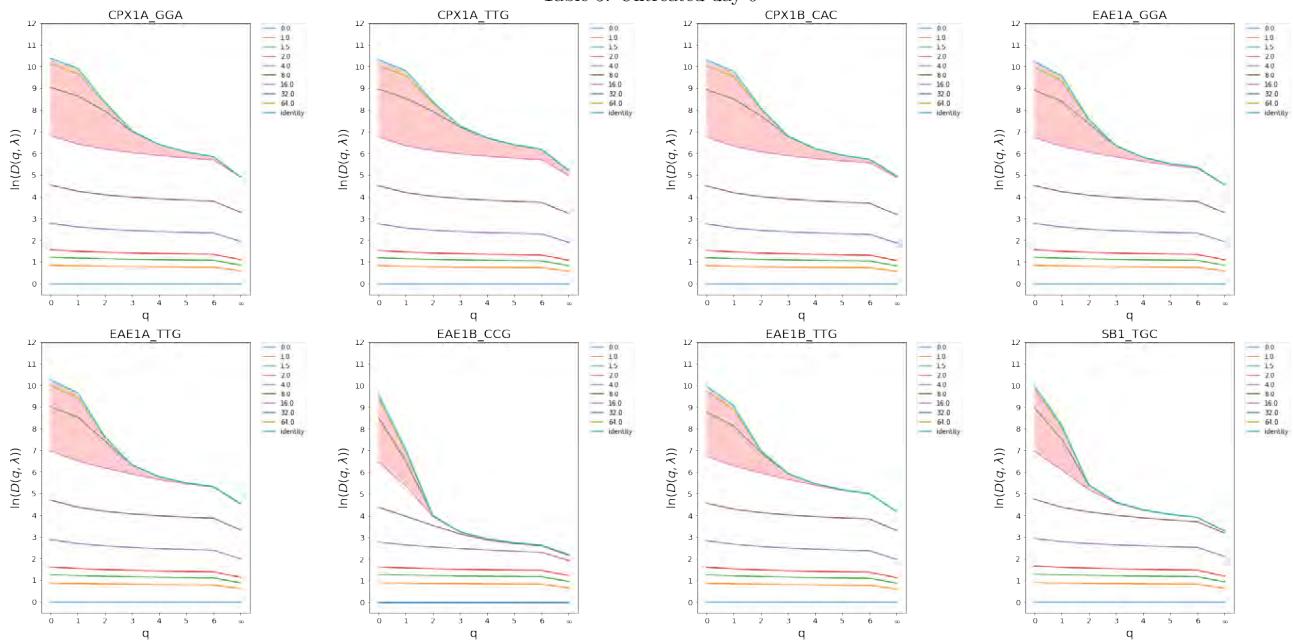
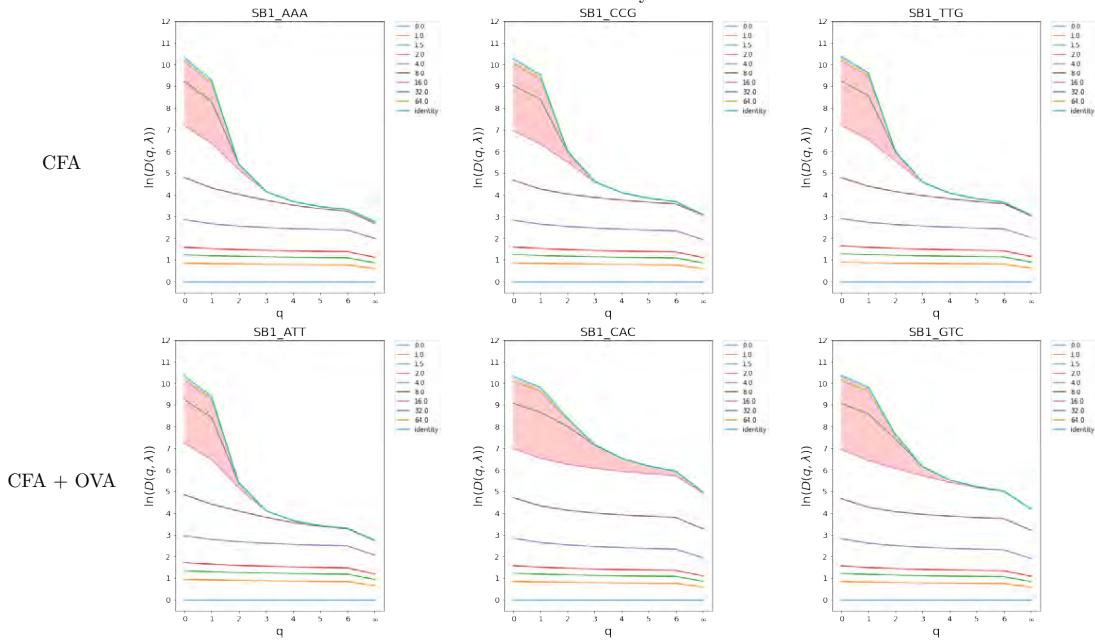


Table 6: Immunised day 5



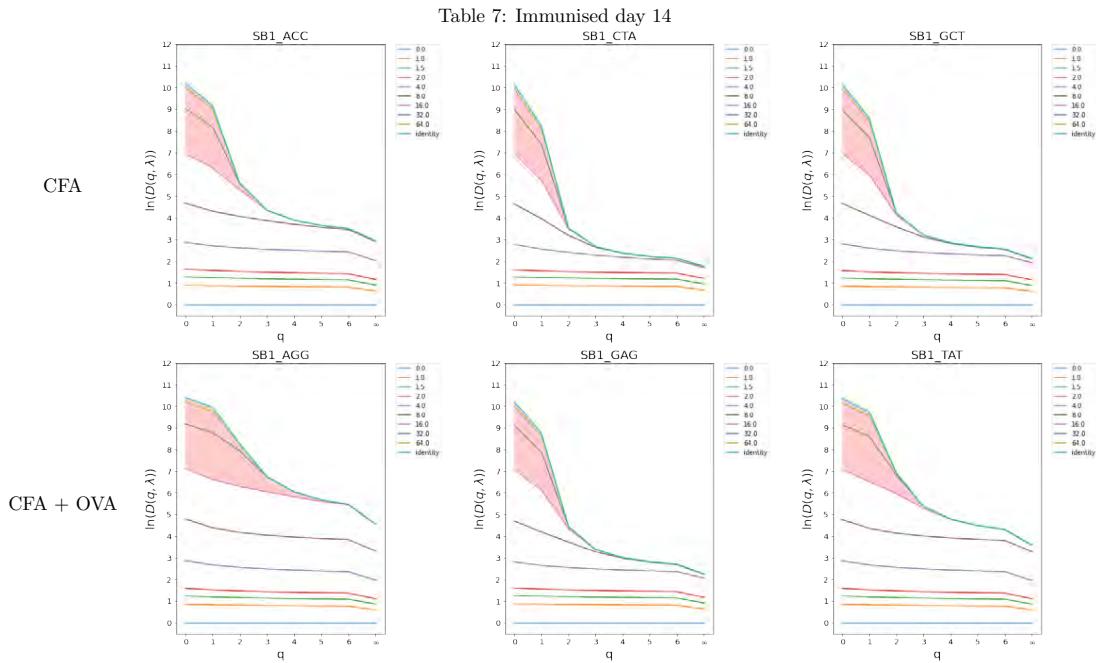
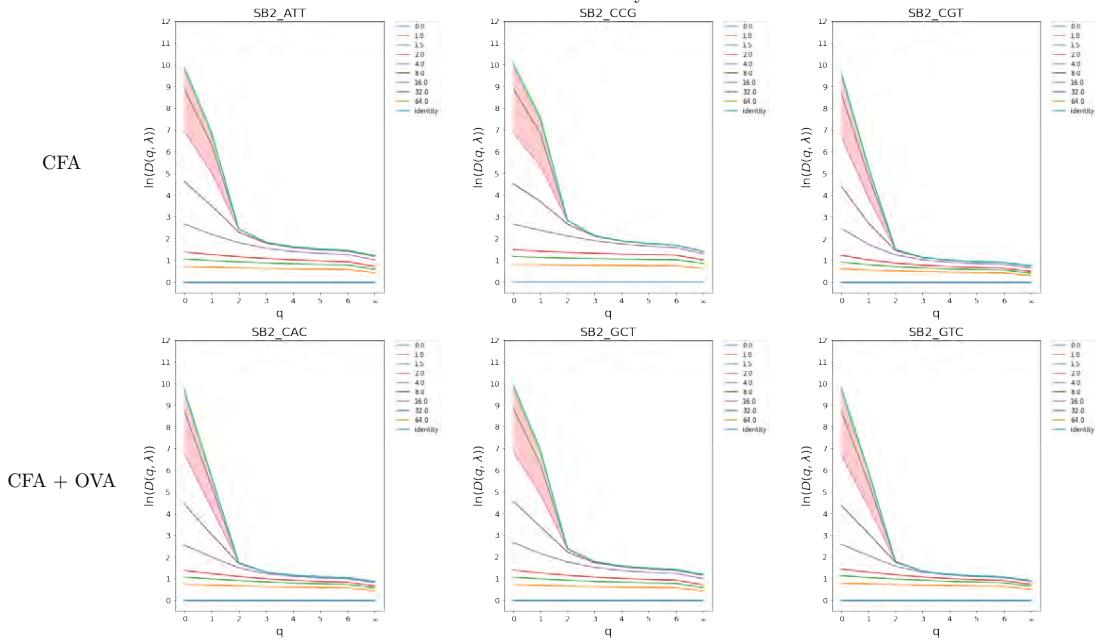


Table 8: Immunised day 60



1.6 Naive ($q = 0$) diversity profiles—Atchley factor distance

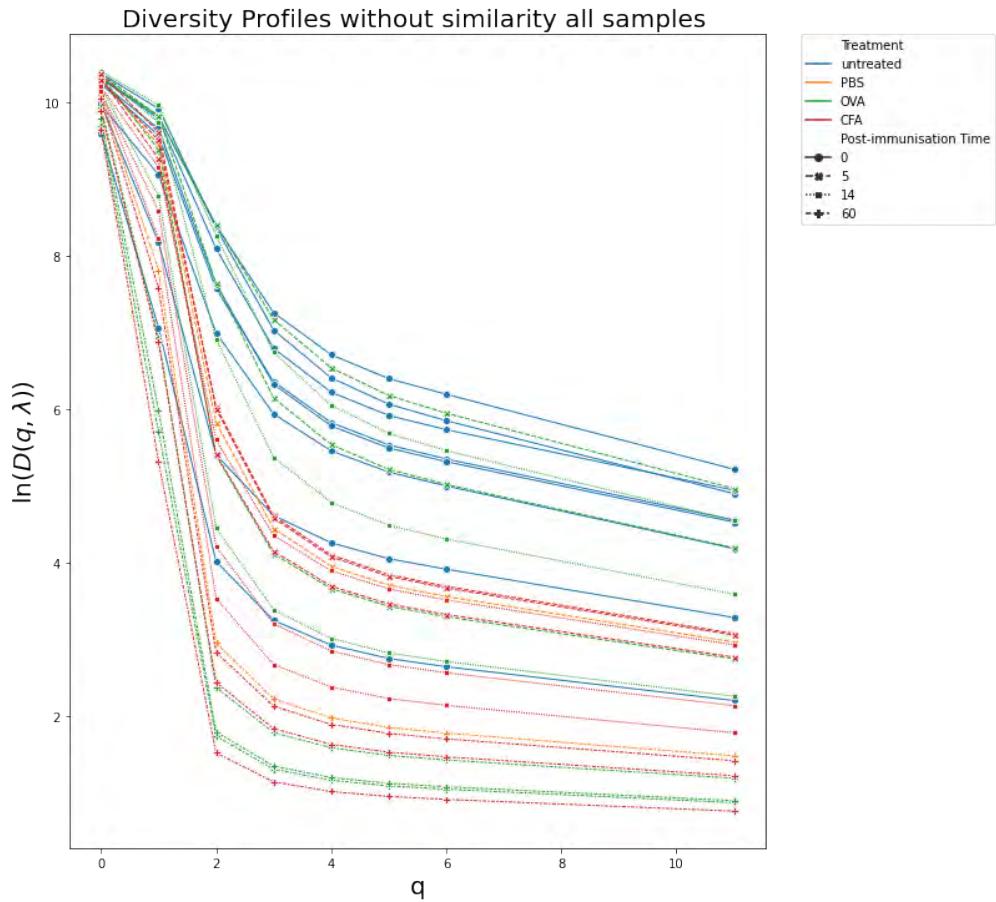


Figure 4: Naive ($q = 0$) diversity profiles plotted for all murine samples. Frequent crossings of the curves can be observed illustrating that the rank order of samples depends on the specific choice of index.

1.7 PCA on natural logarithm transformed values of diversity—Atchley factor distance

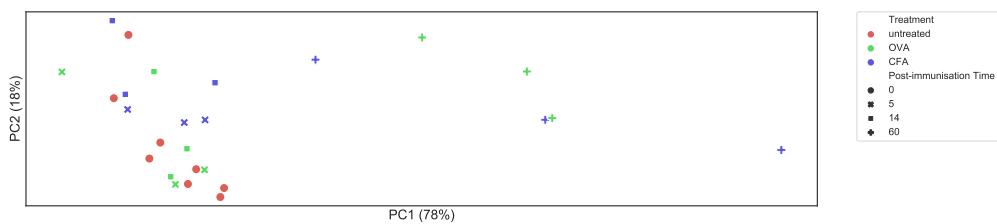


Figure 6: PCA on values of true diversity $D(q, \lambda)$. for the murine dataset. The aspect ratio corresponds to variation found by PCA.

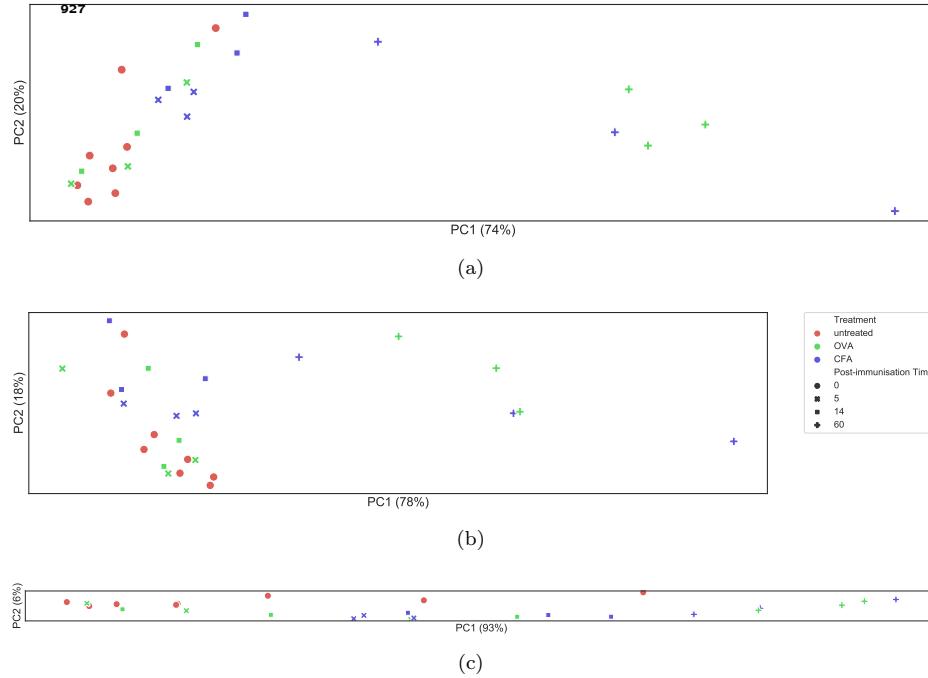


Figure 5: Principal Components Analysis on diversity calculated for the murine dataset using the Atchley Factor distance for TCRs. The aspect ratio corresponds to variation found by PCA. **a.** PCA on features extracted from the diversity profiles constructed from the true diversity $D(q, \lambda)$. **b.** PCA on values of true diversity $D(q, \lambda)$. **c.** PCA on naive diversity values $D(q)$, i.e. $\lambda = \text{identity}$.

1.8 Trends of three features extracted from divPs versus timepoint and treatment regime-Atchley factor distance

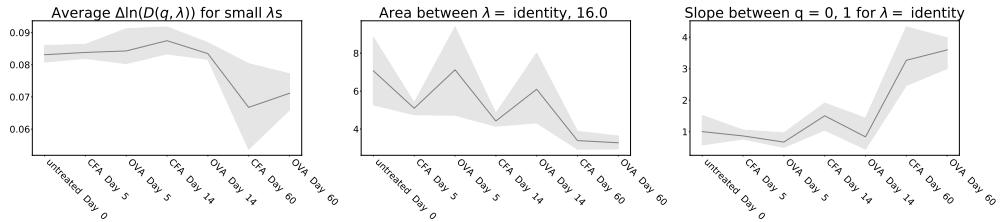


Figure 7: Trends of three features extracted from divPs are shown versus the treatment regime and timepoints ending with the latest timepoint. The features are, from left to right: average $\Delta \ln D(q, \lambda)$ for small λ s, between curves of $\lambda = \text{identity}$ and 16.0 and slope of $q = 0 \rightarrow 1$ for value of λ identity. The line connects the mean values of the features for all samples within a group and the shaded area represents the confidence interval.

1.9 DivP features relationships - Atchley factor distance

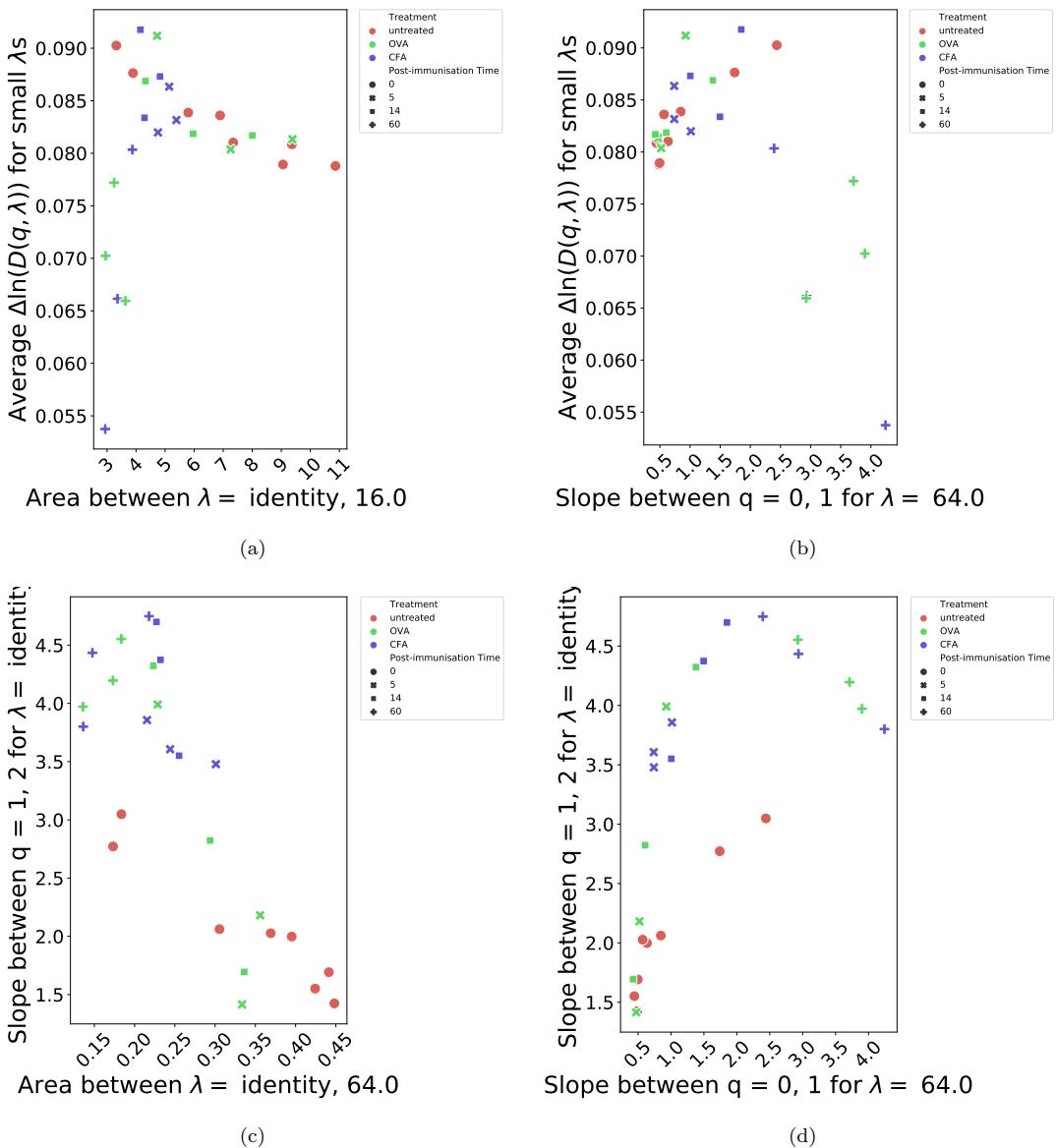


Figure 8: Graphs showing relationships between some of the divP features. **a.** average $\Delta \ln D(q, \lambda)$ for small λ s is shown versus the area between curves of $\lambda = \text{identity}$ and 16.0; **b.** average $\Delta \ln D(q, \lambda)$ for small λ s is shown versus the slope of $q = 0 \rightarrow 1$ for value of λ 64.0; **c.** slope of $q = 1 \rightarrow 2$ for value of λ identity (i.e. naive diversity) is shown versus the area between curves of $\lambda = \text{identity}$ and **d.** 64.0; slope of $q = 1 \rightarrow 2$ for value of λ identity (i.e. naive diversity) is shown versus the slope of $q = 0 \rightarrow 1$ for value of λ 64.0.

2 Human Dataset

Results concerning the human TCR repertoire dataset following combination therapy (RT and anti-CTLA4 blockade ipilimumab. The patients were stratified into RECIST response criteria and by time of sample collection. We show the results in the same order.

2.1 Diversity Profiles

Diversity profiles calculated for the human dataset with 50000 subsample size. The profiles are organised according to RECIST criteria and timepoint in Tables 5 to 12 for progressive disease (PD) day 0 and 22, stable disease (SD) day 0 and 22, partial responders (PR) day 0 and 22 and complete responders (CR) day 0 and 22, respectively. The distance metric used in estimating diversity was based on the BLOSUM45 alignment.

Table 9: Progressive Disease (PD) Day 0

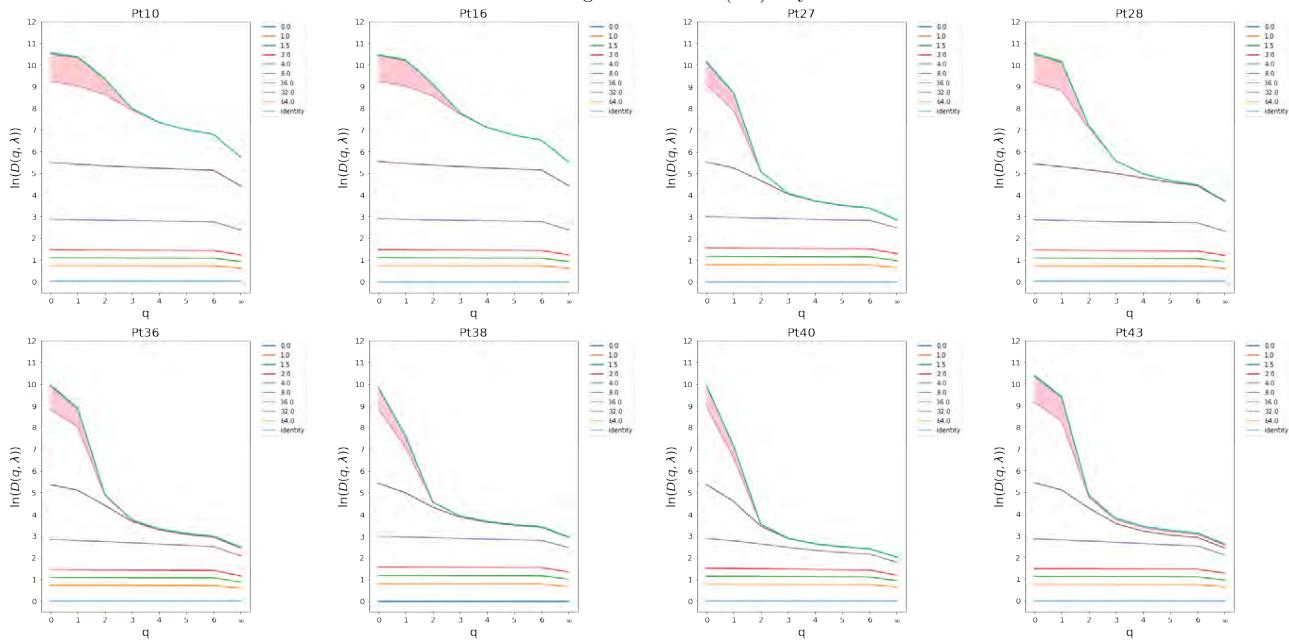


Table 10: Progressive Disease (PD) Day 22

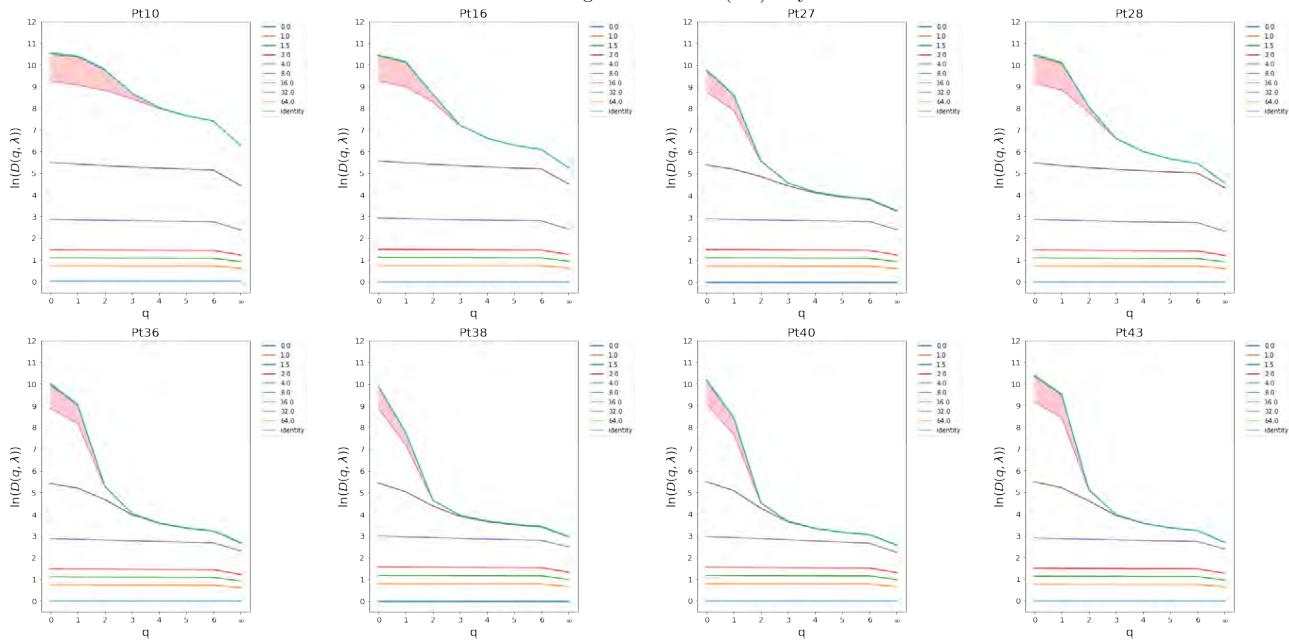


Table 11: Stable Disease (SD) Day 0

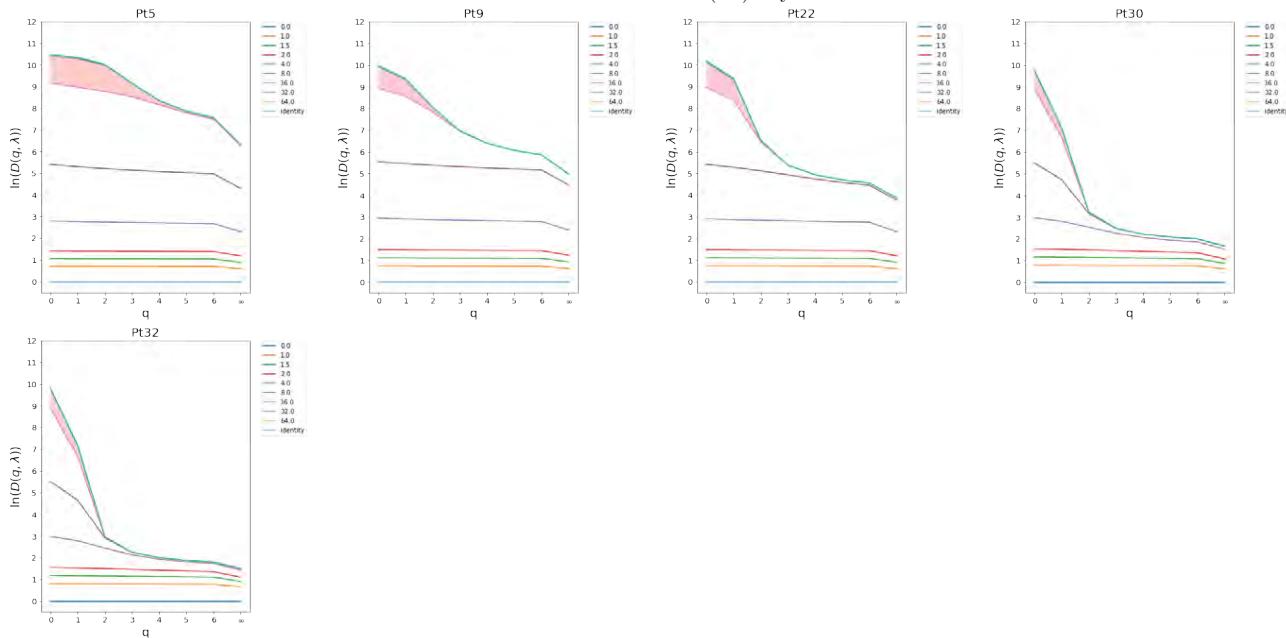


Table 12: Stable Disease (SD) Day 22

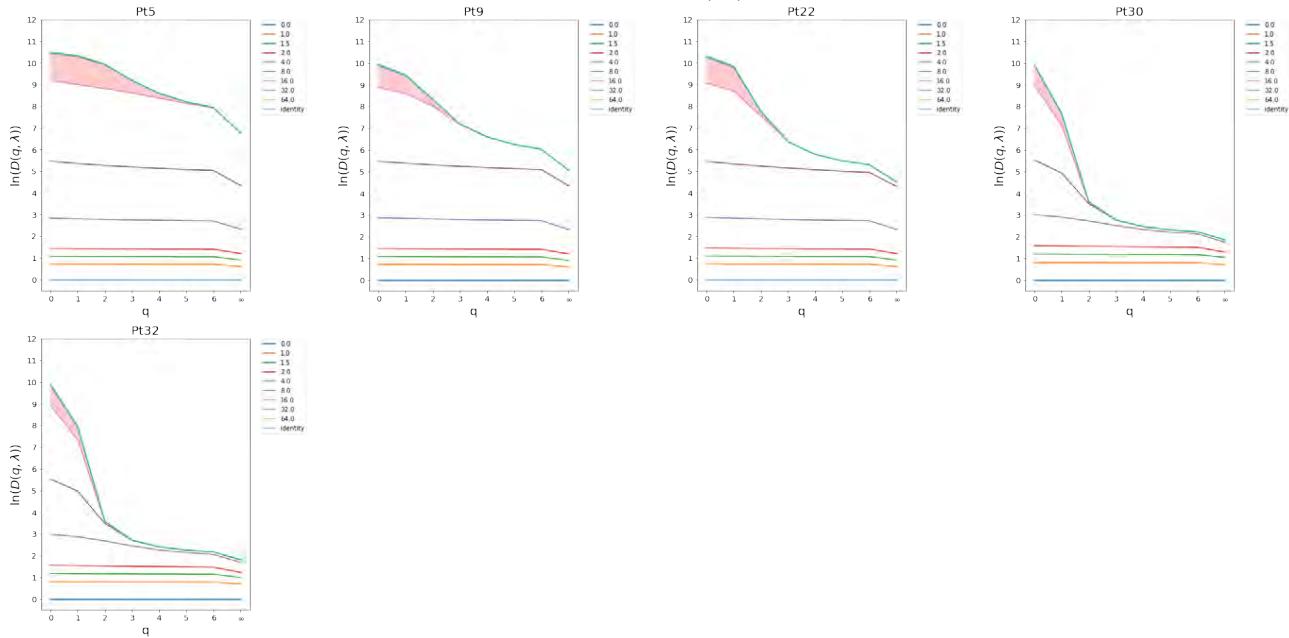


Table 13: Partial Responders (PR) Day 0

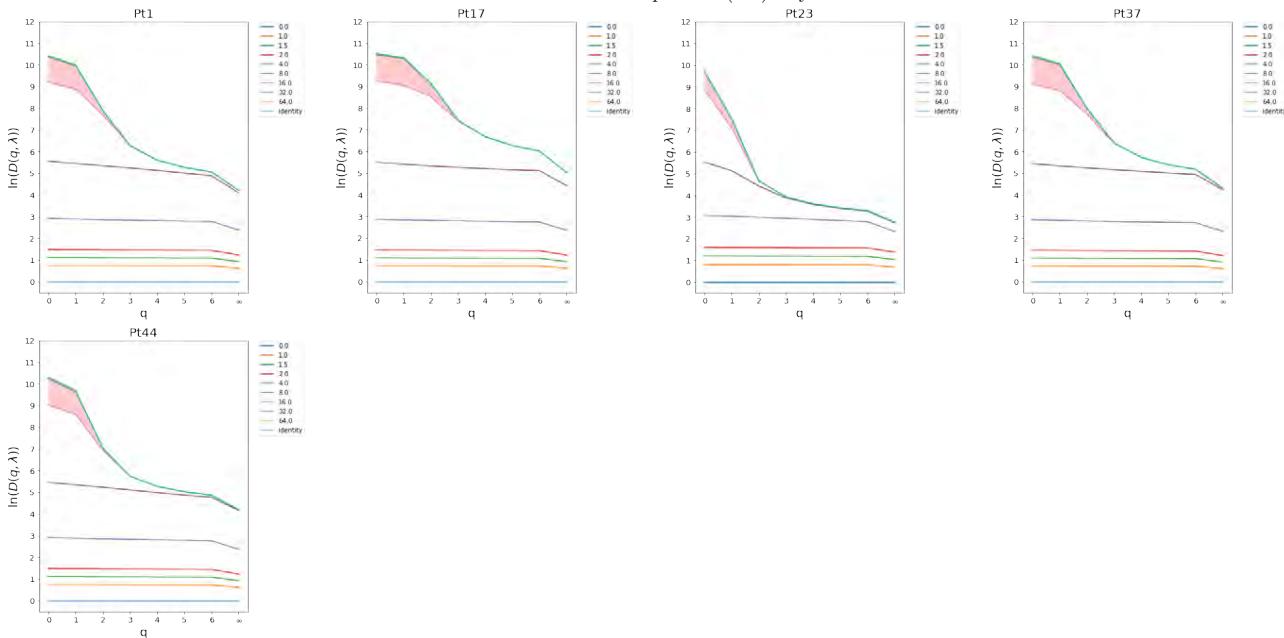
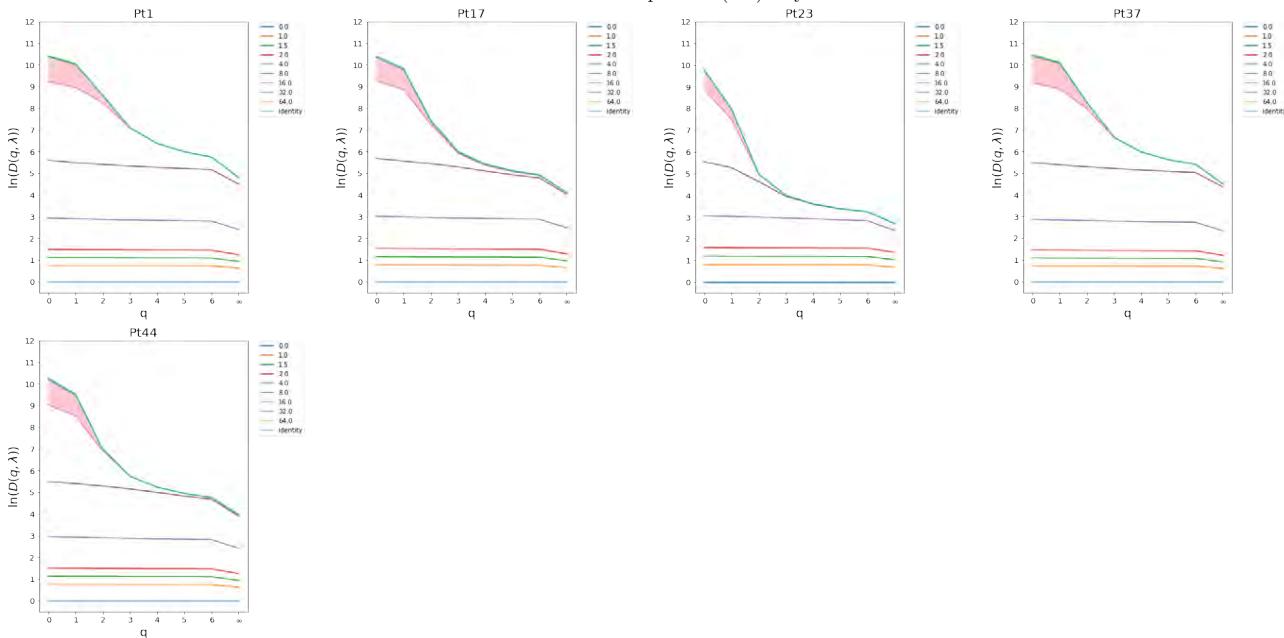


Table 14: Partial Responders (PR) Day 22



936

Table 15: Complete Responders (CR) Day 0

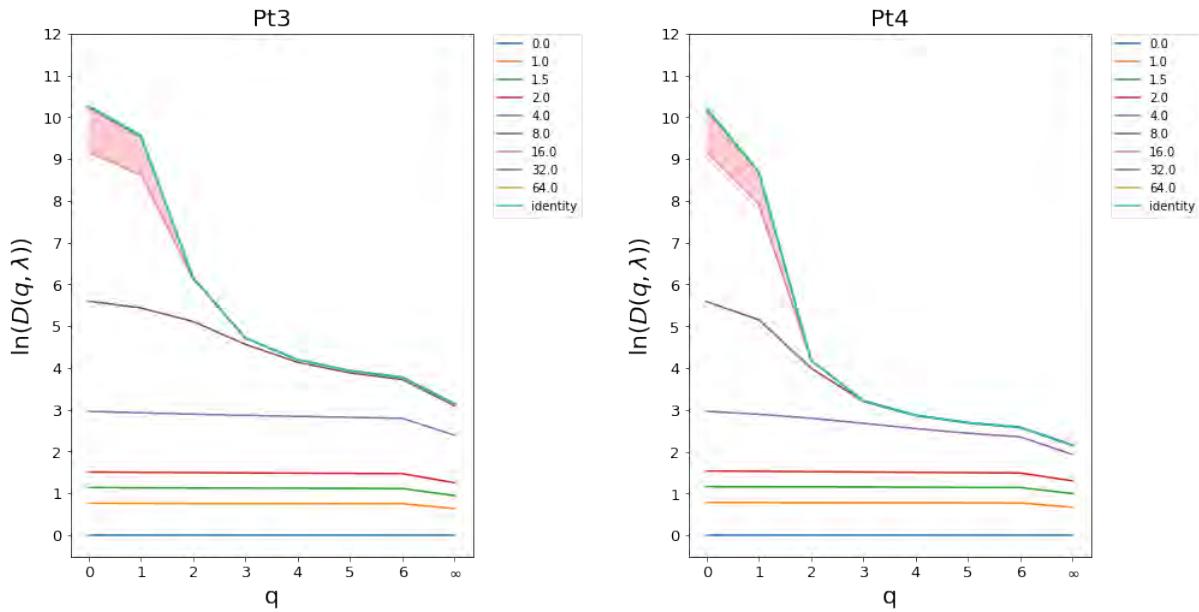
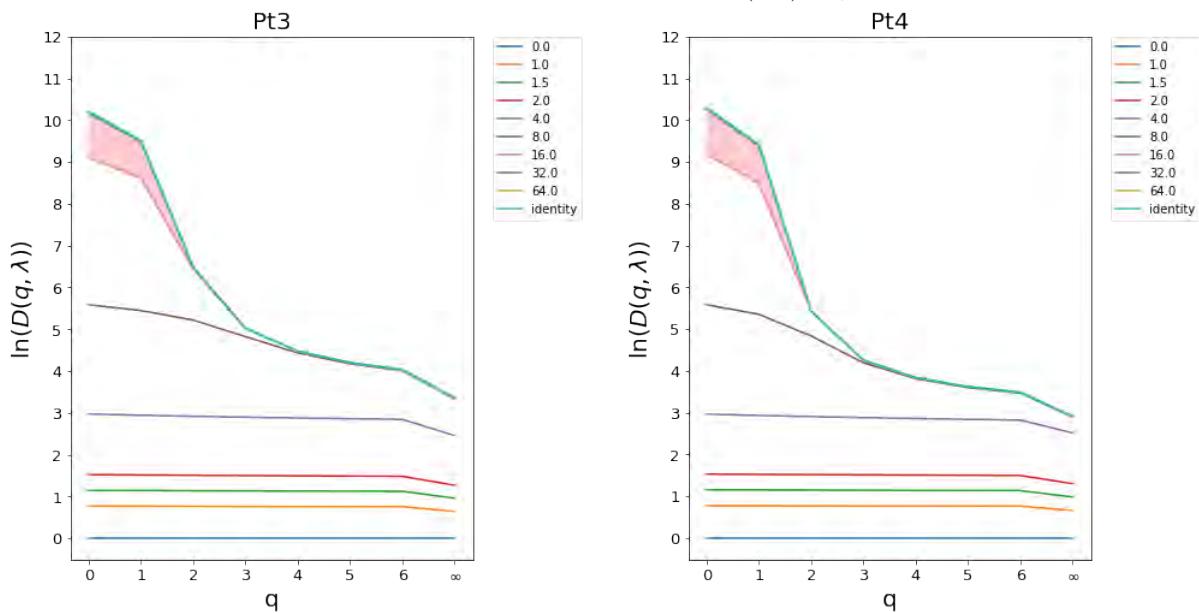


Table 16: Complete Responders (CR) Day 22



2.2 PCA on diversity profiles

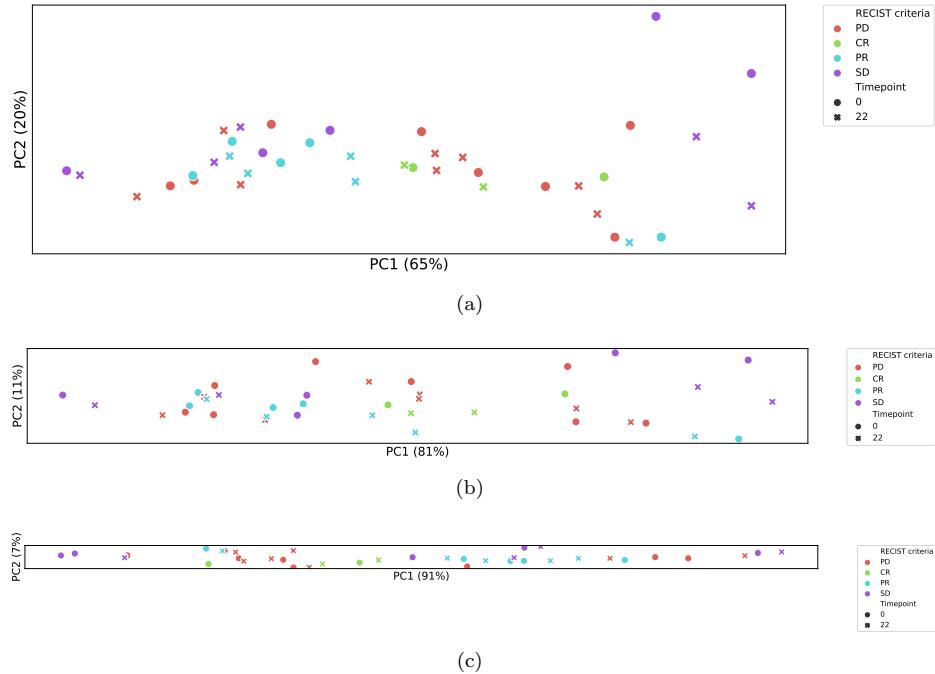


Figure 9: Principal Components Analysis on diversity calculated for the human dataset. The aspect ratio corresponds to variation found by PCA. **a.** PCA on features extracted from the diversity profiles constructed from the true diversity $D(q, \lambda)$. **b.** PCA on values of true diversity $D(q, \lambda)$. **c.** PCA on naive diversity values $D(q)$, i.e. $\lambda = \text{identity}$.