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Abstract 

Protein structure and dynamics can be probed using X-ray crystallography. Whereas the 

Bragg peaks are only sensitive to the average unit-cell electron density, the signal between the 

Bragg peaks -- diffuse scattering -- is sensitive to spatial correlations in electron-density variations. 

Although diffuse scattering contains valuable information about protein dynamics, the diffuse 

signal is more difficult to isolate from the background compared to the Bragg signal, and the 

reproducibility of diffuse signal is not yet well understood. We present a systematic study of the 

reproducibility of diffuse scattering from isocyanide hydratase (ICH) in three different protein 

forms. Both replicate diffuse datasets and datasets obtained from different mutants were similar in 

pairwise comparisons (Pearson correlation coefficient (CC) ≥0.8). The data were processed in a 

manner inspired by previously published methods using custom software with modular design, 

enabling us to perform an analysis of various data processing choices to determine how to obtain 

the highest quality data as assessed using unbiased measures of symmetry and reproducibility. The 
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diffuse data then were used to characterize atomic mobility using a liquid-like motions (LLM) 

model. This characterization was able to discriminate between distinct anisotropic atomic 

displacement parameter (ADP) models arising from different anisotropic scaling choices that 

agreed comparably with the Bragg data. Our results emphasize the importance of data 

reproducibility as a model-free measure of diffuse data quality, illustrate the ability of LLM 

analysis of diffuse scattering to select among alternative ADP models, and offer insights into the 

design of successful diffuse scattering experiments. 

 

I. INTRODUCTION 

In X-ray crystallography, the sharp Bragg reflections are the main source of information 

for structure determination; however, they only contain information about the average electron 

density of the unit cell. Diffuse scattering, on the other hand, contains information about the spatial 

correlations of electron density variations, and thus can, in principle, distinguish among different 

atomic motions that yield the same mean electron density.1-3 In addition, recent studies suggest 

that diffuse scattering might be used to extend the resolution of density maps beyond the resolution 

limit of the Bragg peaks,4,5 motivating further rigorous investigation of this possibility.6 

Early studies of protein diffuse scattering focused on interpreting features in individual 

diffraction images.7-15 Since the development of modern diffuse data processing methods,16,17 

protein diffuse scattering studies have mostly focused on working with three-dimensional (3D) 

datasets. In addition to improvements in light sources and detectors, notable developments in 3D 

data processing include finer sampling in reciprocal space to model long-range correlations,18 

rescuing useful diffuse data from experiments designed for Bragg diffraction,19 extracting finely 

sampled 3D datasets from serial femtosecond X-ray crystallography (SFX) experiments with X-

ray free-electron lasers (XFEL),4 increasing data quality via improved rejection of the solvent 

contribution and multivariate analysis methods,20 and a major advance in the scaling and merging 

of data from multiple crystals,21 yielding a substantial improvement in data quality. 

Given the variety of approaches to data processing, and the emerging importance of diffuse 

scattering for modeling protein dynamics, we sought to gain more insight into some fundamental 

questions about protein diffuse scattering data: How reproducible are single-crystal diffuse 

datasets? What is the influence of point mutations on the diffuse signal? How do changes in the 

data translate into differences in a model? What are the consequences of different data processing 

choices for data quality? Can diffuse scattering data discriminate between different models of 

atomic mobility that agree equally well with the Bragg data? 

Here we address each of these questions in a study of diffuse scattering from crystalline 

ICH. We selected the ICH system because it diffracts X-rays to atomic resolution at ambient 

temperature, has clearly visible diffuse features in ambient temperature X-ray diffraction datasets, 

and displays large concerted motion of an 𝛼-helix that is modulated by the chemical state of the 

active site nucleophile.22 Upon formation of the catalytic thioimidate intermediate, this helix 

becomes more mobile and permits water to enter the active site and complete the reaction. Because 

the extent of this concerted, functionally important 𝛼-helix motion can be controlled using various 
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experimental tools, ICH is a very promising system for exploring the utility of diffuse scattering 

data for characterizing functional protein dynamics. 

Specifically, we address the above questions using multiple datasets collected from wild-

type (WT) ICH and two mutants (G150A, G150T) that affect helix motion. Using a modular data 

processing pipeline in Python that we developed, we assessed quantitatively the reproducibility of 

the data and the influence of various data processing choices on the final quality of the datasets. 

Because our processing pipeline is modular in construction, individual steps can be easily modified 

and their impact on data quality separately evaluated. In this workflow, we assessed the data 

quality using unbiased measures of the internal consistency (CC1/2)
23 and reproducibility (CCRep), 

which we compared with prior metrics such as CCLaue and CCFriedel. Finally, we analyzed the 

diffuse data using simple phenomenological models of correlated protein motion: the LLM 

model9,11 using three different treatments of ADPs (B factors); and an independent rigid-body 

translational motions (RBT) model.1,4 This analysis yields insights into the impact of the various 

data processing choices on the model parameters and the agreement with the data.  

Overall, the results of this study indicate that single-crystal diffuse datasets can be 

measured reproducibly from WT and mutant ICH crystals (CCRep ≥ 0.81 to 1.4Å resolution). 

Differences in diffuse scattering among different ICH mutants are small when assessed directly 

using the data, yet are still detectable using the LLM analysis. Importantly, the LLM analysis 

showed that diffuse scattering can discriminate between ADP models that fit the Bragg data 

equally well. In addition, the LLM models of ICH yield higher correlations with the data than the 

independent RBT models. Finally, a systematic investigation of the influence of data processing 

methods using our Python workflow yielded a matrix of data quality measures, revealing insights 

into best practices for data collection and processing. In particular, the results emphasize the 

importance of background subtraction for increasing data quality, and highlight the benefits of 

adding a step to remove some of the variation in the isotropic radial intensity profiles.20 

 

II. METHODS 

ICH protein expression and crystallization 

WT, G150A, and G150T Pseudomonas protegens Pf-5 (formerly Pseudomonas 

fluorescens) ICH proteins were expressed in BL21(DE3) E. coli, purified by Ni2+-metal affinity 

chromatography, and crystallized by hanging drop vapor equilibration as previously described.22,24 

Briefly, ICH crystals were grown at room temperature (~22°C) by mixing 2 μl of protein at 20 

mg/ml with 2 μl of reservoir (22-24% PEG 3350, 100 mM Tris-HCl, pH 8.6, 200 mM magnesium 

chloride and 2 mM dithiothreitol (DTT)) and typically took one week to reach maximum size. 

Microseeding of drops equilibrated for 6-12 hours improved crystal size and morphology. As 

previously noted,22 G150T crystals form in a different space group (C2/I2) than WT and G150A 

crystals (P21) even when seeded with WT crystals. The largest crystals were ~700×700×150 μm, 

although typically G150A and G150T ICH crystals grew with a more compact prismatic habit than 

WT ICH. 
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Diffuse and Bragg X-ray data collection 

To study the reproducibility of diffuse scattering in independent samples, data were 

collected from three crystals of each form of ICH. For simplicity, these datasets are denoted as 

WT-1, WT-2, WT-3, G150A-1, G150A-2, G150A-3, G150T-1, G150T-2, and G150T-3, 

indicating the WT, G150A, and G150T mutant ICH proteins. Crystals were mounted in 10 μm 

thick glass number 50 borosilicate capillaries (Hampton Research) ranging from 0.7 to 1.0 mm 

diameter and sealed with wax. Excess solution near the crystal was wicked away while retaining 

a small volume of reservoir solution in the end of the capillary to maintain vapor equilibrium. For 

WT ICH, the plate-like crystals were mounted “edge-on”, such that their shortest axis was roughly 

parallel to the capillary axis. In this geometry, the X-ray beam illuminates approximately 

equivalent volumes of the crystal during rotation about the spindle axis, which was parallel with 

the capillary axis. G150A and G150T ICH crystals had more prismatic habits than WT ICH and 

did not require special orientation for data collection. 

Diffraction data were collected at 274 K on BL12-2 at the Stanford Synchrotron Radiation 

Lightsource (SSRL) using 16 keV incident X-rays and shutterless data collection with 0.5° 

rotation/image, 0.3 sec/exposure, and 98% attenuation. The data were recorded on a PILATUS 6M 

pixel array detector (PAD) with roughly 0.95Å resolution at the edge of the detector for each 

dataset. Absorbed doses were approximately 2-4×104 Gy per crystal as calculated using 

https://bl831.als.lbl.gov/xtallife.html.25 Doses were kept low to minimize X-ray-induced oxidation 

of the catalytic Cys101 nucleophile to sulfenic acid, which has been previously reported.22,24,26 To 

allow subtraction of the capillary background scattering from the diffraction images, non-crystal 

background diffraction patterns were collected using identical parameters to those used for crystal 

data collection but by increasing the exposure time and slightly shifting the X-ray beam to the 

region of the capillary away from the crystal, as shown in Fig. 1. The exposure time was 1 second 

per image for the non-crystal background patterns in order to accumulate more scattered photons 

and reduce error in the background measurements. The background images were later scaled by 

the ratio of the exposure times to be equal to the data images. 

 

Analysis of Bragg data 

The Bragg data from each crystal were indexed and scaled using XDS,27 Pointless,28 and 

Aimless29 with statistics reported in Table S1. For G150T, the data were (equivalently) reindexed 

from C2 to I2, yielding unit cells more comparable to those of WT and G150A ICH datasets in 

space group P21. Structures of WT, G150A, and G150T ICH were refined against these data in 

PHENIX (v1.17.1-3660)30 using riding hydrogen atoms and restrained anisotropic ADPs with 

weight optimization for coordinate and ADP refinements. Riding hydrogen atoms have their 

positions calculated from the geometry of the bonded heavier atoms upon which they “ride” and 

thus contribute to both the calculation of model structure factors and non-bonded contacts without 

adding additional refinement parameters. As noted previously,22,24 Ile152 is a Ramchandran outlier 

in all structures except G150T and is well-supported by the electron density maps in all cases. We 

also refined protein structures using the Refmac5 package (v5.8.0266)31 in the CCP4 suite of 
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programs32 in order to compare the behavior of Refmac5- and PHENIX-refined models against the 

same datasets. The Refmac5 refinements used riding hydrogen atoms and restrained anisotropic 

ADPs with a matrix weight term of 0.2-0.4. This range for the matrix weight term produced bond 

length root mean square differences (RMSD) in Refmac5-refined models that were comparable to 

those of the PHENIX-refined models. These refinement protocols produced models with similar 

Rfree/Rwork for the Bragg data (see Tables S2 and S3 for refined model statistics and PDB codes). 

Despite similar Rfree/Rwork values, the anisotropic ADPs of the PHENIX-refined models have 

anisotropy ratios (the ratio of smallest to largest eigenvalues to the ADP variance-covariance 

matrix) that were lower (more anisotropic) than the Refmac5-refined models (Fig. S1), while the 

ADP magnitudes in both models are highly similar (Fig. S2). This difference in anisotropies was 

observed for all models, but was most pronounced in the WT datasets. Moving from isotropic to 

anisotropic ADPs decreased the Rfree value by ~3-4% in all datasets in both Refmac5 (Table S2) 

and PHENIX (Table S3), confirming that anisotropic ADPs yield higher agreement with the Bragg 

diffraction data than isotropic displacements, and justifying the use of the additional parameters. 

The differences in the anisotropic ADPs of models refined in Refmac5 and PHENIX 

against the same dataset were surprising initially; however, we were able to demonstrate that they 

are well explained by differences in the overall anisotropic scaling matrices. To demonstrate this, 

we obtained refined anisotropic scaling parameters from the headers of both the Refmac5 and 

PHENIX models after zero cycles of refinement against the same data in PDB-REDO.33 Using 

PDB-REDO in this way invokes the Refmac5 refinement engine to recover the anisotropic scale 

parameters and guarantees that all models are handled in an identical fashion. The resulting 

anisotropic scaling matrices for Refmac5 and PHENIX models are often different (see Table S4). 

To determine whether differing anisotropic scale matrices are responsible for the different 

anisotropic ADP models obtained using Refmac5 and PHENIX refinement, we calculated 

difference anisotropic scaling matrices and used them to rescale the model ADPs (Supplementary 

Material section III). These difference matrices were added to the ANISOU records for each atom 

in the model after being made traceless by subtracting trace/3 from each diagonal element to ensure 

that Beq would not be altered (Table S4). Using the difference matrices, we found that we were 

able to convert a PHENIX-refined anisotropic ADP model into one that resembles its Refmac5-

refined counterpart, and vice versa (Fig. S3, S4, S5; Supplementary Material section III). 

Importantly, this rescaling of the models scarcely influenced the agreement with the Bragg data 

but could substantially influence the agreement of LLM models with the diffuse data (see below). 

 

Construction of 3D diffuse scattering maps 

Our 3D diffuse map construction pipeline includes six image pre-processing steps followed 

by 3D merging and two volume processing steps (Fig. 2). The pre-processing steps were designed 

to convert the raw intensities into useful diffuse signals and to reject non-diffuse intensities such 

as Bragg peaks, bad pixels, random noise, and isotropic and anisotropic background. In order of 

application, these steps were: (1) detector masking; (2) bad pixel removal; (3) non-crystal 

background pattern subtraction; (4) pixel position and intensity corrections; (5) Bragg peak 
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cleaning; and (6) image scaling and radial profile variance removal.20 Starting with raw diffraction 

patterns, step (1) was to mask out obvious bad pixels in the detector, including dead pixels, 

shadows, and grid lines between detector panels, pixels near the beamstop or with intensities that 

were either non-positive or greater than 10,000 photons. Step (2) was to perform a deeper cleaning 

of bad pixels, by masking pixels with intensities that are beyond 5 standard deviations from the 

mean value inside a 11×11 square window. Steps (1) and (2) were also applied to non-crystal 

background patterns in the same manner. In step (3), the filtered background patterns were scaled 

by the exposure time and subtracted frame-by-frame from the matching crystal diffraction patterns 

(see Methods). In step (4), pixel positions were corrected by the parallax broadening effect in the 

PILATUS 6M detector,20 and raw pixel intensities were converted to scattering intensities by 

applying polarization,16 solid-angle,16 and detector absorption corrections.21  

In step (5), Bragg peaks were predicted in positions and further cleaned, although some 

peaks were already removed in step (2) due to their strong intensities. Pixels were mapped into 

reciprocal space and converted into fractional Miller indices (h,k,l) using the XDS27 indexing 

result. Intensities were identified as belonging to Bragg peaks if their indices (h,k,l) are all within 

0.25 to the nearest integers. The intensity of each Bragg pixel was replaced with the median value 

in a 11×11 square window centered on this pixel. The order of filtering, background subtraction 

and correction steps described above is flexible, but Bragg peaks must be cleaned before image 

scaling and radial profile variance removal in step (6). The diffraction pattern after the previous 

five steps is considered as a combination of diffuse scattering, random noise, and isotropic signals 

from multiple sources such as the crystal, water, and air diffraction. Random noise can be averaged 

out later in the 3D merging stage, so dealing with the isotropic signal was the main focus in step 

(6). Firstly, the diffraction pattern was scaled using the radial intensity profile scale factor, 

calculated by minimizing the L2 distance between radial intensity profiles of the target diffraction 

pattern and a fixed reference diffraction pattern (the first pattern of each dataset in our method). 

Another radial profile variance removal step, first described in Peck et al.,20 was applied by 

performing principal component analysis (PCA) on the matrix of the scaled radial profiles and 

subtracting the contribution from the subspace of the three largest eigenvalues, as shown in Fig. 

S6. 

Each diffraction pattern corresponds to the intersection of an Ewald sphere surface with 

the 3D diffraction volume. Diffraction patterns after six pre-processing steps were mapped into 

reciprocal space using crystal orientations and experiment parameters, including the X-ray 

wavelength, detector distance (zd), and pixel size. The orientation information was calculated from 

XDS27 indexing results (including the A matrix) as well as the relative rotation angles in the 

experiment. Each pixel located at (x,y,zd) on the detector corresponds to fractional Miller indices 

(h,k,l) in reciprocal space, which lies within a voxel in the 3D diffraction volume. The voxel value 

was measured as the average intensity of all pixels that were assigned to it. To avoid contamination 

arising from Bragg peaks, we rejected every pixel located within a 0.5×0.5×0.5 box centered on 

the nearest reciprocal-space point with integer Miller indices. This Bragg rejection step can be 

equivalently applied in the image pre-processing stage by masking pixels rather than replacing 
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them with median intensities. In previous work, three different methods were mentioned regarding 

removal of Bragg pixels, by either filtering out Bragg pixels,16-18 replacing intensities,34 or 

preserving Bragg peak intensities together with diffuse scattering features.21 In this work, we chose 

to filter out all pixels in Bragg peak positions, as we were interested in large-scale diffuse features 

that vary on a length scale longer than the separation between Bragg peaks. The other two methods 

are useful for obtaining more finely sampled datasets and analyzing sharper diffuse scattering 

features. 

The 3D diffraction volume obtained by merging all crystal diffraction patterns (denoted as 

the raw unsymmetrized map), was symmetrized according to its Laue/Friedel point group into a 

Laue-/Friedel- symmetrized map. For the ICH crystal, Friedel symmetrization averages 2 voxels 

related by an inversion symmetry, and Laue symmetrization averages 4 voxels related by the Laue 

group (2/m for all nine crystals). To remove the scattering from other sources such as water, air, 

and uncorrelated protein motions, the symmetrized map was further processed with an isotropic 

component subtraction step by subtracting the radially averaged 3D volume to get the symmetrized 

anisotropic diffuse scattering map (Fig. 2). The 3D anisotropic diffuse scattering map is called the 

diffuse map in this work, and is assumed to contain anisotropic diffuse scattering features arising 

from correlated motions in the crystal, although further analysis and modeling are still required to 

confirm this. The dspack package for the whole analysis pipeline, including image pre-processing 

steps, 3D merging, and volume operations, is available online: 

https://github.com/zhenwork/dspack. 

 

Evaluation of the quality of diffuse scattering maps 

The diffuse map produced by our analysis pipeline contains both anisotropic diffuse 

scattering from correlated protein motions and any merging artifacts that have anisotropic features. 

Previous studies16,18,20 have used symmetry metrics such as CCLaue and CCFriedel (see Table 1) to 

assess the quality of 3D diffuse datasets, calculated using the function, 

CC(𝑋, 𝑌) =
∑ (𝑋𝑖

𝐶 − 𝑋𝐶̅̅ ̅̅ )(𝑌𝑖
𝐶 − 𝑌𝐶̅̅̅̅ )𝑛

𝑖=1

√∑ (𝑋𝑖
𝐶 − 𝑋𝐶̅̅ ̅̅ )

2𝑛
𝑖=1

√∑ (𝑌𝑖
𝐶 − 𝑌𝐶̅̅̅̅ )

2𝑛
𝑖=1

,    (1) 

where 𝑋𝐶  and 𝑌𝐶  represent two vectors sampled from n common voxels of unsymmetrized (𝑋) 

and Laue-/Friedel- symmetrized anisotropic maps (𝑌), respectively, and 𝑋𝐶̅̅ ̅̅  and 𝑌𝐶̅̅̅̅  represent the 

mean values. The symmetrized maps were calculated by averaging related Laue/Friedel voxels, as 

described in the previous section. 

Here, we use two additional metrics for quality evaluation of diffuse maps: the data 

symmetry (CC1/2) and reproducibility (CCRep). CC1/2 is an accepted metric for assessing the quality 

of Bragg diffraction data,23 and also has been used for diffuse scattering data.21 The CC1/2 metric 

was calculated using phenix.merging_statistics30 with the unsymmetrized anisotropic map as 

input. The CC1/2 measures whether the diffuse map follows the target symmetry, but it can be 

misleading if the diffuse map contains substantial anisotropic background features that partly obey 

the symmetry. To address this problem, we introduce another metric, CCRep, which is the average 
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CC between diffuse maps of the selected dataset and other independent datasets measured from 

different crystals of the same protein (see Table S5). For example, in this work the CCRep for the 

first dataset of WT ICH (WT-1) is measured as the average CC of CC(WT-1, WT-2) and CC(WT-

1, WT-3), where WT-2 and WT-3 are two additional datasets measured from crystals of WT ICH. 

 

Modeling diffuse scattering data with the LLM model 

We applied the LLM model using the refine_llm.py script in the Lunus software package,17 

starting with inputs of the experimental Laue-symmetrized diffuse map and the corresponding 

PDB file refined from Bragg data of the same dataset (Table S2). The LLM model uses the 

following equation to describe the diffuse intensity 𝐼𝑑(𝒒): 

𝐼𝑑(𝒒) ∝ 𝜎2𝑞2𝑒−𝜎2𝑞2
[𝐼0(𝒒) ∗ 𝛤𝛾(𝒒)],               (2) 

where 𝐼0(𝒒) is the squared structure factor of the unperturbed crystal, and 𝛤𝛾(𝒒) is the Fourier 

transform of the function describing the distance-dependence of the atomic displacement 

correlations. The LLM model has two refinable parameters: the average atomic displacement 𝜎, 

which estimates the average amplitude of atomic motions, and the correlation length 𝛾, which is 

the characteristic length scale of correlated atomic displacements.9,11 Before comparing 𝐼𝑑(𝒒) to 

the experimental data, 𝐼𝑑(𝒒) was Laue-symmetrized and the isotropic component was removed, 

to ensure that both maps were processed in a similar way. The parameters 𝜎 and 𝛾 of the LLM 

model were optimized using the Powell minimization method in scipy.optimize,35 using the CC 

between the model and the data as a target -- the highest value of the correlation is denoted as 

CCLLM. 

In Eq. (2), 𝐼0(𝒒) is computed after setting the individual B factors to zero. In addition to 

this model, here we consider models in which the individual B factors are preserved. Preserving 

the B factors yields the following equation for the LLM (Supplementary Material section IV): 

𝐼𝑑(𝒒) ∝ |𝒒|2𝜎2[𝐼𝐵(𝒒) ∗ 𝛤𝛾(𝒒)],              (3) 

where 𝐼𝐵(𝒒) is the Bragg intensity computed using the individual ADPs in the PDB file, and 𝜎 is 

the amplitude of the correlated atomic displacements (assumed to be the same for all atoms). Eq. 

(3) is the same as Eq. (2), with 𝐼0(𝒒) replaced by 𝐼𝐵(𝒒), and with the overall Debye-Waller factor 

𝑒−𝜎2𝑞2
 replaced by unity. Note that, whereas in Eq. (2), sufficiently high values of 𝜎 influence the 

resolution-dependence of the diffuse intensity, in Eq. (3), 𝜎 only influences the overall scale of the 

intensity. Because in our study the diffuse data are not placed on an absolute scale, and the CC 

target we use for optimization is not sensitive to the absolute scale, we cannot determine the value 

of 𝜎 using Eq. (3). 

We used fits to Eq. (2) to assess whether the diffuse intensity is more accurately described 

using LLM models with individual ADPs. Eq. (2) was used directly for the case of zero ADPs, 

and 𝐼0(𝒒) was replaced by 𝐼𝐵(𝒒) for the case of isotropic and anisotropic ADPs. In calculating 

𝐼0(𝒒) and 𝐼𝐵(𝒒), multiple conformations were handled by selecting only the A conformations and 

setting the occupancies to unity. In the case of zero ADPs, we interpret the value of 𝜎 after fitting 

the model as being indicative of the amplitude of motion of the atoms; however, in the case of 

individual ADPs, 𝜎 is smaller, for reasons described above, and the precise value is not as 
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meaningful; in this case, we only consider whether the value of 𝜎 refines to nearly zero, making 

the overall Debye-Waller factor close to unity. In this limit, Eq. (2) reduces to Eq. (3), indicating 

that the model is consistent with the use of this equation. If 𝜎 does not refine to something close 

to zero (as is the case for some models we consider here), it indicates a possible inconsistency with 

Eq. (3). 

The isotropic ADPs were calculated as Beq values from the anisotropic ADPs in the input 

PDB file that were previously refined against the Bragg data. Anisotropic ADPs contain 

information about both the direction and the amplitude of atomic motion, while the isotropic ADPs 

contain only information about displacement amplitude. To further examine the utility of using the 

LLM model for diffuse data analysis, we also fit the diffuse data using a RBT model for 

comparison, as was performed in a previous study.36 The RBT model assumes that the only 

correlated motions are rigid-body translations of asymmetric units and does not include rigid-body 

rotations and/or correlations between rigid units. The RBT contains a single fitting parameter 𝜎 

that describes the average translational displacement of the asymmetric unit. Lunus software17 was 

used to refine 𝜎 with respect to the CC of the model with the data. The best-fit correlation of the 

RBT model to the experimental data, denoted CCRBT, was compared with CCLLM to determine 

which physical model was in better agreement with the processed diffuse maps.  

 

Determining the importance of various steps in the analysis pipeline 

There are several reported methods4,16,17,20,21,34 for producing 3D protein diffuse scattering 

datasets, and they differ with respect to image pre-processing, scaling, and radial profile 

normalization techniques. In this work, we only focused on the most commonly used methods for 

processing single crystal synchrotron diffuse data16,17,20,34 as described in Methods, and then 

studied the effects of non-crystal background subtraction, pixel position and intensity 

corrections,16,20,21 radial profile variance removal, and per-image scale factors on the quality and 

reproducibility of the extracted diffuse scattering maps. We evaluated the impact of each of these 

processing steps on data quality by sequentially omitting each step in the standard pipeline as well 

as testing the influence of different scale factors on final data quality. Different processing choices 

were evaluated using multiple diffuse scattering quality metrics, including CC1/2 and CCRep. A 

similar type of analysis was used by Meisburger et al.21 to assess different approaches to merged 

diffuse data using a CC1/2 statistic. 

For the data processing choice analysis, we capitalized on the modular design of our 

developed program to turn on, turn off, or tune parameters in specific processing steps. For the 

present study, choices were assessed by eliminating individual data processing steps and 

determining the effect on the CCFriedel, CCLaue, CC1/2, CCRep, and CCLLM values. In total, we studied 

seven data processing choices, including (A) the standard pipeline, as well as processing that omits 

either (B) the non-crystal background image subtraction, (C) the polarization correction,16 (D) the 

radial profile variance removal,20 (E) the solid-angle correction,16 (F) the detector absorption 

correction,21 or (G) the parallax correction.20 The values of CCFriedel, CCLaue, CC1/2, CCRep, and 

CCLLM resulting from these processing choices is summarized in Table 2 and Table S6. 
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To study the effect of the choice of merging approach on data quality, we computed 

diffraction image scale factors using four different signal sources: (A) the profile of the image 

intensity vs. the scattering vector length, (B) the average intensity in the isotropic ring, (C) the 

average intensity in the diffraction image, and (D) the Bragg peaks. For (A), the profile in each 

image was scaled to minimize the difference with respect to the profile in a reference image, using 

intensities within the resolution range (up to 1.4Å). For (B), the scale factor was computed as the 

ratio of the average pixel intensities within the water ring region (5Å-1.82Å). For (C), the scale 

factor was computed as the ratio of average pixel intensities within the resolution range. For (D), 

the Bragg intensity scale factors reported by dials.scale37,38 were used. They are denoted as the (A) 

radial profile, (B) water ring, (C) overall, and (D) Bragg scale factor, respectively. The standard 

pipeline in this work uses method (A). The effectiveness of a particular scale factor was evaluated 

with data quality metrics of the diffuse map processed using that scale factor. The data quality 

statistics of each type of scale factor are summarized in Table S7. This table also includes another 

four choices (E)-(H) where the radial profile variance removal step was turned off as the scale 

factor was switched from (A) to (D) successively. 

 

III. RESULTS 

WT and mutant ICH structures and helix motion 

Prior work with ICH showed that X-ray photooxidation of Cys101 results in concerted 

motion of a helix near the active site that is also observed during formation of the catalytic 

thioimidate intermediate.22 These cysteine modification-activated motions in ICH26 occur owing 

to transient loss of negative charge on the catalytic cysteine thiolate and facilitate later steps in 

catalysis. Engineered mutations at residue 150 (e.g., G150A, G150T) also favor shifted 

conformations of the helix to varying degrees. Because the concerted motion of this helix can be 

modulated by mutation and the charge of the Cys101 S𝛾 atom, ICH is an attractive system for 

exploring diffuse scattering as a probe of functional correlated protein motions.  

In this work, structural models refined against replicate Bragg datasets that were collected 

simultaneously with the diffuse scattering data (see below) are essentially identical (0.02-0.03 Å 

C𝛼 RMSD). The refined WT and G150A ICH models are also highly similar (~0.05-0.07 Å C𝛼 

RMSD). As observed before,22 the G150T mutation constitutively shifts the helix to the relaxed 

conformation and crystallizes in a different space group than WT or G150A ICH (see Methods). 

As expected based on these structural and space group changes, G150T ICH superimposes onto 

WT and G150A ICH with a larger C𝛼 RMSD of ~0.8 Å (see Fig. 3). In addition, the six WT and 

G150A datasets show ~2𝜎 difference (mFo-DFc) electron density features around the mobile helix 

that indicate a minor population (< 10% occupancy) of the shifted helix conformation. Consistent 

with our efforts to minimize radiation damage to the crystals, these difference map features are 

much lower than those observed when Cys101 is oxidized to Cys101-SOH.22 These minor 

difference map peaks near the helix could indicate either the basal level of helical mobility in ICH 

or a response to minor X-ray-induced Cys101 modification in these datasets, possibly including 

thiyl radical formation. 
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Quantifying the quality of the experimental diffuse scattering maps 

Diffuse intensity is continuously distributed in reciprocal space and is weak compared to 

Bragg intensity; therefore, robust metrics for quantifying diffuse data quality are needed to avoid 

the introduction of noise or artifacts into the diffuse maps. Diffraction patterns were processed 

using our standard pipeline described in Methods to obtain 3D anisotropic diffuse scattering maps 

for all nine datasets. The diffraction volume was saved in a 3D lattice with 121×121×121 voxels 

sampled by integer Miller indices. The whole pipeline and visualization of each substep is 

displayed in Fig. 2. As shown in panel (F) of Fig. 2, anisotropic features were observable in 

processed diffraction patterns after the removal of Bragg peaks, although they were not as clear as 

those displayed in 3D diffraction volumes (panel (I)) after a deeper noise and isotropic component 

reduction. The average number of pixels that contribute to the intensity of each non-empty voxel 

in the diffraction volume is more than 1000 up to 1.4Å, as shown in Fig. S7, leading to a small 

standard error of the mean. In addition, the isotropic component is more than 10 times stronger 

than the anisotropic data (Fig. S8). Extracting large-scale anisotropic features from diffuse data 

therefore is challenging not only due to the high intensity of the Bragg peaks, but also due to the 

presence of a more intense isotropic component. The Laue-symmetrized anisotropic diffuse maps 

for all datasets are displayed as section cuts in Fig. 4 and 5 in the qy and qz directions, while other 

visualizations (in the qx direction) are shown in Fig. S9. Independent datasets of the same protein 

are very similar, as can be observed from their section cuts. This gives additional confidence that 

the diffuse maps produced by our pipeline contain bona fide protein diffuse scattering data and are 

not dominated by anisotropic background features or merging artifacts. 

In addition to using visual inspection, we assessed the quality of the extracted diffuse maps 

using quantitative metrics such as percent completeness, CCFriedel, and CCLaue (Table 1). The 

resolution-dependent curves of these metrics up to 1.4Å are displayed in Fig. S10. Each dataset 

is > 95% complete in each resolution shell and > 98% complete over the entire resolution range. 

The CCFriedel is > 0.7 in each resolution shell and > 0.9 overall. The CCLaue is lower than CCFriedel, 

but it is still > 0.5 in each resolution shell and ≥ 0.85 in the overall resolution range. These numbers 

have been used to evaluate the data quality of diffuse maps before,16,18,20 however, in this work we 

find that the CCFriedel and CCLaue metrics are less sensitive to the data quality than CC1/2. For 

example, CC1/2 is roughly twice as sensitive as CCLaue to changes in the diffuse map based on the 

observed decreases of both metrics in the analysis of different processing choices (Tables 2 and 

S6). In addition, as shown in Table 2, the CCLaue is > 0.75 even without key processing steps such 

as the polarization correction or radial profile variance removal, where merging artifacts are clearly 

shown in section cuts of corresponding diffuse maps (Fig. S11 and S12). This suggests that CCLaue 

fails to evaluate the data quality if there are contaminating background features in the images that 

roughly obey Friedel or Laue symmetry but are not the desired protein-derived diffuse signal. 

Based on these findings, we used CC1/2 to evaluate internal consistency of a diffuse map in this 

work, and increased emphasis on reproducibility to assess the data quality. 
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The CC1/2 values for each dataset are provided in Table 1, with the resolution-dependent 

curves shown in Fig. 6. CC1/2 varies from 0.76 to 0.89 for all datasets, indicating that the 

anisotropic diffuse features obey crystallographic point group symmetry reasonably well. CC1/2 is 

found to increase for the WT-1, WT-3, and G150A-2 datasets when the polarization correction is 

not used in the diffuse data processing pipeline (C in Table 2). This increase in correlation upon 

omitting an important correction is caused by the anisotropy in the diffraction pattern introduced 

by X-ray polarization that does not arise from the sample. Despite not representing crystal-derived 

diffuse features, these merging artifacts can greatly increase CC1/2 values when polarization-

induced features happen to coincide with a crystal symmetry axis. As shown in Fig. S11, these 

polarization features are much stronger along some directions. Importantly, these artifacts are not 

reproducible between datasets, indicating that inter-dataset reproducibility may be a valuable 

additional data quality metric for diffuse scattering data. 

Because anisotropic background features or artifacts can generate high values for CC1/2, 

another robust and unbiased quality metric for diffuse data is desired. To address this issue, we 

introduced CCRep as a measure of the reproducibility of anisotropic diffuse maps of the same 

protein collected from similar crystals. Collecting multiple datasets for the calculation of CCRep is 

not a large experimental burden, as PADs and shutterless data collection have reduced the time 

needed to collect a complete dataset to a few minutes at most synchrotron beamlines. The inter-

dataset metric CCRep is valuable because it is not expected to be influenced as much as CC1/2 by 

artifacts or background scattering from the mount. Both metrics can be used together to increase 

confidence in the assessment of the quality of the anisotropic diffuse data. These two metrics also 

provide means to compare different data processing pipelines and to evaluate the effect of each 

submodule during processing, as we discuss below.  

The CCRep statistics is summarized in Table 1, with the resolution dependent CC curves of 

dataset pairs of the same protein shown in Fig. 7. CCRep is > 0.8 for all datasets processed using 

the standard pipeline, and drops to lower values when important steps are omitted, as shown in 

Table 2. The detailed statistics of other diffuse data analysis choices is listed in Table S6. The 

CC1/2 value follows the same trend as CCLaue although it is more sensitive to diffuse data quality, 

while the CCRep does not always follow the same trend as CC1/2. For example, the G150A-2 dataset 

processed without the polarization correction (C in Table 2) shows that its CCLaue value increases 

by 0.07, and CC1/2 value increases by 0.13 due to the presence of merging artifacts with 

symmetrical features (Fig. S11). In contrast, CCRep decreases by 0.31, demonstrating that the 

improvement in CC1/2 might be due to background features or artifacts that are not reproducible in 

independent samples. Using the standard processing pipeline, all ICH datasets display substantial 

CC1/2 and CCRep values. 

The near-identical WT and G150A ICH dimeric protein structures (C𝛼 RMSD~0.06 Å) 

provide an opportunity to evaluate the cross-correlation coefficient (CCCross) of their diffuse 

scattering maps. WT and G150A crystallize in the same space group, while G150T crystallizes in 

a different space group with a related cell to WT and G150A ICH (see Methods). The CCCross for 

WT-1, for example, can be calculated as the average CC of CC(WT-1, G150A-1), CC(WT-1, 
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G150A-2), and CC(WT-1, G150A-3). We find that the CCCross is ≥ 0.83 for every WT and G150A 

dataset (Table 1), and each data pair within the set of replicate WT and G150A datasets also has 

CC ≥ 0.8, as shown in orange-colored cells in Table S5. The high cross correlation between WT 

and G150A diffuse datasets provides additional evidence that protein-derived diffuse scattering is 

the dominant feature in the processed diffuse anisotropic maps and is consistent with the minor 

differences in the crystal structures refined against the Bragg data. 

 

Evaluating models of protein motion using the LLM and RBT models 

Much of the motivation for collecting diffuse data has been to develop models of correlated 

atomic motions. In this work, we develop LLM and independent RBT models as implemented in 

Lunus17 (see Methods). The traditional LLM model assumes that atomic motions in 

macromolecules have pairwise correlations that decay exponentially with a characteristic length 

𝛾, even across molecular and unit-cell boundaries.9 The magnitude of the atomic displacement is 

given by 𝜎, which is refined as a single value for all of the atoms in the unit cell. In contrast, the 

RBT model assumes independent rigid body translation of the entire asymmetric unit. 

Just as diffraction patterns can be mapped into reciprocal space to build 3D diffraction 

volumes, simulated diffraction images can be generated using diffraction volumes obtained either 

from experimental data or a model. This allows a direct visual comparison between the 

experimental and simulated diffraction patterns in the same orientation. One example is shown in 

Fig. S13, which compares the LLM model and the experimental data. Visual inspection of the 

simulated and experimental diffuse scattering shows agreement in many regions, although the 

simulated data display more detailed “granular” features, while the experimental data appear 

somewhat more “smeared”. 

The individual atomic ADPs are set to zero in the standard LLM model (𝐼0(𝒒) in Eq. 

(2)).16,17 We wondered how well the diffuse data can discriminate between different models of 

atomic displacement, and whether using the refined ADPs (either isotropic or anisotropic) from 

the structural model might provide the LLM with a more accurate representation of variations in 

atomic positions in the protein. We therefore considered a variation of the standard LLM where 

𝐼0(𝒒) in Eq. (2) is replaced by 𝐼𝐵(𝒒), computed using either isotropic or anisotropic individual 

ADPs (Eq. (3) and Supplementary Material section IV). In addition to assessing the agreement 

with the data using the CCLLM, we considered whether the optimal values of 𝜎 were close to zero, 

consistent with the predictions of Eq. (3) (see Methods). 

The results of the LLM analysis differed when using crystal structures refined using 

Refmac5 vs. PHENIX. For the Refmac5-refined PDB files, the LLM model parameters and CCLLM 

for all ICH datasets using different ADP treatments are shown in Fig. 8 and summarized in Table 

S8; the resolution-dependent CCLLM curves are shown in Fig. S14. In the case of the WT-1 dataset, 

the zero ADP model yields an overall CCLLM of 0.67 to 1.4Å resolution, with a correlation length 

𝛾 = 6.7Å and an overall atomic displacement 𝜎 = 0.40Å. The CCLLM using the isotropic ADP 

model is higher (0.71), with a longer correlation length 𝛾 = 7.9Å and much smaller 𝜎 < 0.01Å, 

consistent with an overall Debye-Waller factor of unity as in Eq. (3). The anisotropic ADP model 
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yields a value of CCLLM that is comparable to the isotropic LLM (Table S8), despite being a 

superior model of the Bragg data. The other datasets show that the CCLLM varies within 0.66-0.80 

for the various ADP treatments. The highest CCLLM is consistently achieved in the isotropic ADP 

LLM model, which varies within 0.70-0.80. The anisotropic ADP LLM model yields higher 

correlations than the zero ADP LLM model for all datasets. The correlation length 𝛾 is shortest (~ 

7Å) in the zero ADP LLM model and longest (~ 8.5Å) in the anisotropic ADP model. We observe 

that the correlation length increases as the ADP model becomes more detailed in most (seven) 

datasets in this work. 

Despite the Refmac5 and PHENIX models having comparable model statistics and 

agreement with the Bragg data, the PHENIX models have different distributions of ADP 

anisotropy (Fig. S1). In particular, for the WT PHENIX models, the distribution deviates from the 

“bell-shaped” distribution centered on ~0.45 that is typically observed in proteins (Fig. S1).39,40 In 

contrast, the Refmac5-refined models have anisotropy distributions that are closer to the average 

of other proteins, with fewer extreme anisotropy values (Fig. S1). The differing anisotropy values 

are not correlated with changes in the overall magnitude of the PHENIX- and Refmac5-refined 

ADPs, which are highly similar (Fig. S2). We determined that the difference in the anisotropic 

ADPs is due to different overall anisotropic scale parameters produced by the two programs (see 

Methods, Table S4, and Supplementary Material section III). We were able to use these different 

anisotropic scale matrices to convert the PHENIX-refined anisotropic ADPs into ones that closely 

resemble those in the Refmac5-refined model and vice versa (see Methods; Fig. S1, S3, S4, S5; 

Supplementary Material section III), confirming that the differences in the PHENIX and Refmac5 

anisotropic ADP models are due predominantly to different anisotropic scaling parameters. This 

does not exclude the possibility of residual anisotropic ADP differences arising from different 

restraints in the two programs, which might be important for solvent atoms (see Fig. S1, S4, S5). 

Although the different ADP models agreed equally well with the Bragg data (Table S1), 

this was not the case for the diffuse scattering data. Results of the LLM analysis using either the 

Refmac5- and PHENIX-refined input models are summarized in Tables S8 and S9. These two sets 

of models are comparable for all ADP treatments except anisotropic ADPs, which show marked 

differences. In general, the CCLLM values are higher and 𝜎 values are lower for the Refmac5 

anisotropic ADP models compared to those refined in PHENIX. The discrepancies between the 

Refmac5 and PHENIX models are clearest for the three replicate WT datasets, where the 

agreement with the data is lower for the PHENIX anisotropic ADP models (CCLLM ~ 0.6) than the 

Refmac5-refined models (CCLLM ~ 0.7); the PHENIX models also lead to higher 𝜎 values in the 

best-fit LLM (~ 0.2Å), suggesting an inconsistency with the predictions of Eq. (3). The difference 

in mean CCLLM and 𝜎 between the Refmac5 and PHENIX models are larger than their standard 

deviations across three replicate WT datasets, supporting the significance of the discrepancies. 

However, the higher 𝜎 value for the WT-3 dataset indicates that there might be issues that remain 

in that Refmac5 anisotropic ADP model, or, alternatively, that there might be issues with the WT-

3 diffuse data. 
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Compared to the low sensitivity of the Bragg data to anisotropic ADP differences as judged 

by the similar Rfree values for the PHENIX and Refmac5 models (Tables S1, S10), the increased 

sensitivity of the diffuse data suggested that diffuse scattering might potentially be useful for 

modeling ADPs. However, the R factors are computed in a different way than CCLLM and these 

two statistics are not directly comparable to each other. We therefore used a measure of the 

agreement with the Bragg data -- CCBragg -- that is computed in the same way as CCLLM, except 

using Bragg data. Specifically, CCBragg was computed as the Pearson correlation between the 

model and Bragg data intensities (as opposed to amplitudes) after subtracting the isotropic 

component, and, importantly, without applying overall anisotropic ADP scaling. Therefore, 

CCBragg and CCLLM provide quantitatively comparable measures of model quality that can be used 

to assess the relative sensitivity of Bragg and diffuse scattering data to these different anisotropic 

ADP models. We compared CCBragg and CCLLM values obtained for the Refmac5 and PHENIX 

models as well as the Refmac5 and PHENIX models that had been rescaled using the difference 

anisotropic scaling matrices (see above; Methods). The results are summarized in Fig. 9 and Table 

S11, and clearly indicate that the diffuse data are more sensitive to the differences in the ADPs 

than the Bragg data. For example, whereas CCLLM for the PHENIX WT-1 model increases from 

0.6 to 0.7 after ADP rescaling, the CCBragg value changes by a much smaller amount, from 0.893 

to 0.895. 

Considered together, the improved anisotropic ADP CCLLM, the lack of change in CCBragg 

(Fig. 9 and Table S11), the lower values of 𝜎, and the more typical distribution of anisotropies for 

the Refmac5-refined and rescaled PHENIX anisotropic ADP models show that diffuse scattering 

data favor anisotropic ADP models that possess more plausible features even when the Bragg 

models have similar Rfree/Rwork and CCBragg values. The implications of this observation for using 

diffuse and Bragg data together to refine crystallographic models are discussed below. 

Some studies have indicated that independent rigid-body motions of macromolecules are 

responsible for a significant portion of the diffuse scattering signal.4,34 To investigate this 

possibility for ICH, we implemented an independent RBT model in Lunus and used a metric 

equivalent to CCLLM, called CCRBT, as a target for optimization.17 The optimal CCRBT and 

displacement parameter (𝜎) values are summarized in Table S12. The CCRBT (~ 0.55) is lower than 

CCLLM by about 0.1 for all datasets and ADPs treatments. The optimal 𝜎 values in the zero ADP 

RBT model are generally similar to those in the zero ADP LLM model. Interestingly, as in the 

LLM models, using the Refmac5-refined anisotropic ADP models (Table S12) produces higher 

CCRBT values than the PHENIX-refined models (Table S13), although their differences are not as 

large as those for the LLM model. 

 

Studying the effects of various steps in the analysis pipeline 

To determine which aspects of the diffuse scattering experiment and subsequent image 

processing have the greatest impact on final data quality, we systematically omitted each step in 

our pipeline, one at a time. Results of this analysis are partially shown in Table 2 and summarized 

in Table S6. Data quality assessed using CC1/2 and CCRep does not change greatly when the solid-
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angle, detector absorption, and parallax correction are omitted. In contrast, omitting the non-crystal 

background subtraction, polarization correction, or radial profile variance removal step 

substantially degrades the data quality. The omission of non-crystal background subtraction 

reduces the two quality metrics by 0.02-0.08 for all datasets, with the visualization only changed 

slightly (Fig. S15). The omission of the polarization correction reduces CCRep of all datasets by 

more than 0.1, with CC1/2 varying in a less informative way for each dataset. The omission of 

radial profile variance removal step reduces both quality metrics by 0.01-0.09 for most datasets 

and decreases a few of them by more than 0.1. The significant effects of these three steps are 

expected, as they are critical to remove contaminating anisotropic background intensity and to 

reduce merging artifacts (Fig. S11, S12). In contrast, other processing steps, such as the solid-

angle, detector absorption, and parallax correction, only affect the radial intensity distribution in 

the diffraction pattern but do not introduce angular anisotropies. In addition, the omission of 

polarization correction increases the CC1/2 value because of strong anisotropic artifacts (see Fig. 

S11) that are introduced by X-ray polarization are not removed. In this case, also omitting the 

solid-angle correction can scale down the contribution of high resolution data to the calculation of 

correlations, leading to slight improvements for both CC1/2 and CCRep in the overall resolution 

range. 

For the study of four different scale factors, the radial profile, overall, and water ring scale 

factors follow the same trend and only vary slightly (Fig. S16). However, the Bragg scale factor is 

significantly different from the other three, especially in the last half of each dataset where it 

increases more than the others (Fig. S16). This means that the last half of the images will be scaled 

to a much higher intensity level using the Bragg scale factor. The data quality metrics using each 

scale factor treatment are summarized in Table S7, where the radial profile variance removal step 

is turned on for (A)-(D) and turned off for (E)-(H). The radial profile, overall, and water ring scale 

factors with radial profile variance removal (A)-(D) produce the same CC1/2 and CCRep for all 

datasets, while the Bragg scale factor performs slightly worse. However, when the radial profile 

variance removal step is turned off (E)-(H), all four scale factors perform much worse, with the 

Bragg scale factor treatment producing very poor diffuse maps that are dominated by merging 

artifacts, as shown in Fig. S17. Interestingly, only the Bragg scale factor (H) has a measurable 

effect on the CCLLM even though the data quality as quantified by CC1/2 and CCRep significantly 

decreases for other processing choices (D)-(G). 

 

IV. DISCUSSION 

Using multiple quality metrics to produce high quality diffuse scattering maps 

Reliably extracting the relatively weak diffuse scattering signal from raw diffraction 

images is vital for generating useful diffuse scattering maps for downstream applications. Several 

different data quality metrics have been discussed in this article, including CCFriedel, CCLaue, and 

CC1/2 for evaluating internal consistency in diffuse datasets, and CCCross and CCRep for measuring 

inter-dataset reproducibility. CCLaue and CCFriedel evaluate whether the diffuse map follows the 

expected symmetry but they have behaviors that make them less desirable as data quality metrics. 
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In particular, CCLaue values change by about half as much as CC1/2 values when perturbations to 

the data processing are introduced (Tables S6, S7). Moreover, the value of CCLaue can be rather 

high even for a diffuse map with obvious merging artifacts (see Fig. S11). This is in part because 

each voxel in a symmetrized map contains a contribution from the corresponding voxel in the 

unsymmetrized map, leading to a nonzero correlation even for random datasets. The correlation is 

highest for low-symmetry Laue groups: in P1, where CCLaue corresponds to CCFriedel, the value is 

about 0.7 for a random dataset. Because of this, we favor CC1/2 as a quality metric. 

Despite the benefits of using CC1/2 to assess data quality, a symmetry measure alone cannot 

fully describe the data quality of a diffuse map, especially when the map is dominated by 

anisotropic background features or artifacts which may approximately obey these symmetries. 

This consideration motivated our use of the metric CCRep to validate whether the anisotropic 

diffuse signal originates from protein crystal diffraction. The paucity of data quality metrics that 

can discriminate between anisotropic diffuse scattering from the sample and from the background 

is an important reason that different protocols for constructing diffuse maps have been 

reported.16,20,34 The combined use of CC1/2 and CCRep provides a more complete picture of data 

quality than CC1/2 alone. The use of these metrics also helped to assess quantitatively the 

performance of our data processing pipeline and enabled the processing choice analysis in this 

work. The CCCross is a special metric that can be used for two proteins with similar structures and 

unit cell dimensions, such as WT and G150A ICH in our experiment. It may have particular value 

when comparing changes in diffuse scattering between similar samples that have been subjected 

to perturbations such as temperature change, mutation, etc. 

 

Effects of each processing step in the diffuse map construction pipeline 

Constructing and modeling the 3D diffuse map is now the standard method for diffuse 

scattering analysis. Although different versions share a similar general workflow, the details may 

vary. Benefiting from the introduction of two additional quality metrics, we are able to perform a 

detailed analysis of the variations, yielding insight into the impact of each processing step on the 

overall quality of the anisotropic diffuse map (Tables 2, S6, S7). The standard pipeline works 

satisfactorily for all datasets giving CC1/2 ≥ 0.76 and CCRep ≥ 0.81. Eliminating the parallax, solid-

angle, and detector absorption corrections have small effects on both CC1/2 and CCRep, perhaps 

related to the fact that they only modulate the radial intensity distribution in the diffraction pattern. 

In contrast, the non-crystal background subtraction, polarization correction, and radial profile 

variance removal have stronger effects on the data quality of extracted diffuse maps. The omission 

of these steps will affect the angular intensity distribution in the diffraction pattern and introduce 

strong artifacts or anisotropic background features to the diffuse map, which leads to systematic 

errors in the anisotropic diffuse intensity. It is important to note that the non-crystal background 

image subtraction requires acquiring matched background exposures at the time of data collection. 

The collection of non-crystal background patterns has not been consistently performed until 

recently21 despite its simplicity. When a shadow from the capillary or beamstop is visible it can be 

manually masked out from the detector image, but other anisotropic noise may not be visible by 
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eye in the single diffraction pattern and thus can accumulate in the 3D diffuse map. We suggest 

collecting non-crystal background patterns in rotation method experiments. For SFX experiments, 

it might be possible to improve data quality by analyzing non-hit patterns and finding suitable 

background patterns for subtraction. The radial profile variance removal is another important step 

to avoid introducing merging artifacts in the diffuse map (Fig. S12). An alternative34 to radial 

profile variance removal is to subtract the radially averaged profile from each diffraction pattern 

before the 3D merging step; indeed, in implementing our removal method, we found that the 

difference in image radial profiles is similar to the first principal component. The diffuse map 

construction pipeline is flexible to some extent and the main focus is to remove anisotropic noise 

and avoid merging artifacts. Any steps that can introduce errors in the angular intensity distribution 

in the diffraction pattern deserve careful attention. 

In addition to the processing choice analysis, four different types of per-image scale factors 

were also evaluated by comparing the data quality of diffuse maps processed by corresponding 

scale factors. As shown in Results, the radial profile, overall, and water ring scale factors generate 

similar results according to our data quality metrics, and perform moderately better than the Bragg 

scale factor which was adopted similarly by Peck et al.20 for systems other than ICH, using scale 

factors from XDS. When the radial profile variance removal step is turned off, all four scale factors 

give much worse results than the standard pipeline and also perform differently, although Fig. S16 

shows that curves of the radial profile, overall, and water ring scale factors only vary slightly for 

all datasets. This indicates that data quality of the diffuse map is very sensitive to changes in the 

scale factor when radial profile variance removal is absent, while the radial profile variance 

removal step greatly reduces the impact of scale factors. In any case, for our ICH data, the Bragg 

scale factor always behaves worse than the others, which can be inferred from its distinctive curve 

that differs from the others especially for the last half images of each dataset. The Bragg scale 

factor increases to higher values than the other three scale factors and this is probably induced by 

the decrease of Bragg intensities in the last half diffraction patterns. The radial profile scale factor 

therefore is preferred for extracting high-quality diffuse maps from ICH diffraction images.  

 

Analysis of diffuse scattering using the LLM model 

Using the standard LLM model with zero ADPs16,17 (Eq. (2)), the agreement with the data 

(CCLLM of ~ 0.7), the value of the atomic displacement 𝜎 (~ 0.4Å), and the value of the correlation 

length 𝛾 (~ 7Å) are all comparable to previous studies of other protein crystals using coarse-grained 

diffuse data.16,18,36 Using isotropic ADPs in the calculation of 𝐼0(𝒒) in Eq. (2), the optimal LLM 

models yielded slightly higher correlations with the data than using zero ADPs, and the differences 

exceed the standard deviations of three replicate datasets for all protein forms. The CCLLM of 0.80 

for G150T-3 is in the high end compared to the correlations reported from some previous 

work.16,18,36 The fitted values of 𝜎 for this model are very close to zero, indicating that the ADPs 

from the Bragg analysis are consistent with the pattern of diffuse intensity predicted by Eq. (3). 

The fact that including isotropic ADPs in the LLM leads to a low value of 𝜎 lends additional 

support to the utility of using a LLM model to analyze the ICH diffuse data. We consistently found 
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that the refined correlation lengths 𝛾 were longer for the isotropic (~ 8Å) and anisotropic ADP 

models (~ 8.5Å) than in the zero ADP model (~ 7Å) for all nine datasets. The dependence of the 

correlation length on the complexity of the atomic displacement model was unexpected. However, 

we note that the LLM used here involves only a single correlation length, whereas it is more likely 

that displacements with multiple correlation lengths contribute to the actual diffuse signal.11  

Because atomic motions result in the loss of Bragg intensity and increased diffuse 

scattering, there has been long-standing interest in combining Bragg and diffuse scattering data to 

improve models of atomic motion in crystal structures.2,6,41 By using LLM models that incorporate 

different anisotropic ADP models for the same structural model, we found that diffuse scattering 

data can discriminate between more and less plausible representations of anisotropic atomic 

motion, even when these models have similar Rfree/Rwork and CCBragg values and thus cannot be 

distinguished easily based on Bragg data alone. Both Refmac5- and PHENIX-refined models agree 

well with the Bragg data, however the PHENIX models consistently refine to lower anisotropy 

values (corresponding to more anisotropic motion) than the Refmac5 refinements (see Tables S2, 

S3) and sometimes have anisotropy distributions that deviate from the “bell-shaped” curve 

centered on ~ 0.45 that is typically observed (Fig. S1).39,40 We showed that the origin of this effect 

is that these two widely used refinement programs can produce different anisotropic scaling 

parameters even when the starting model and the datasets are identical. This results in different 

anisotropy in the final model ADPs, even though the ADP magnitudes (i.e., Beq) are nearly 

identical. This difference is understandable because the total anisotropy in the diffraction data 

contains contributions from the crystal as a whole (anisotropic scaling parameters) and from 

individual atomic motions (ADPs), whose values are highly correlated and thus they are refined 

separately.42 Therefore, if different anisotropic scale parameters are initially refined by different 

programs using otherwise identical starting models and datasets, there will be subsequent 

compensatory changes in the refined anisotropic ADPs of the final models, as we have observed. 

In addition, we find that when ICH LLM models that already include individual ADPs also have 

substantial 𝜎 values, the models tend to agree less well with the diffuse data; it is possible that 

LLM analysis of 𝜎 values might be used for other systems as a general indicator of when ADPs 

deserve additional scrutiny. Interestingly, LLM models with anisotropic ADPs have CCLLM values 

that are comparable to or lower than models using isotropic ADPs. The lack of improvement going 

from the isotropic to anisotropic ADP model was unexpected because anisotropic ADPs contain 

information about both the preferred directions and amplitudes of motion and substantially 

improve the agreement of the refined models with the Bragg data (see Methods; Table S10). While 

there are several lines of future investigation suggested by our results, the ability of diffuse 

scattering data to discriminate between models of anisotropic atomic motion that are equally 

consistent with the Bragg data indicates that joint refinement of models against Bragg and diffuse 

scattering data -- an idea long discussed in the literature41 -- is promising and might result in more 

accurate representations of atomic motion in proteins. We note that because ICH exhibits 

controllable concerted helical motion, it makes an ideal system in which to explore the ability of 
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diffuse scattering data to discriminate between various representations of correlated secondary 

structure motions in the future. 

Recent articles4,34 have suggested that independent rigid-body translations, like those in 

our RBT model, are responsible for the majority of the diffuse signal in protein X-ray diffraction. 

For ICH, we found that the LLM model agrees better with the diffuse data distributed between the 

Bragg peaks than the RBT model for all datasets in all ADP models (CCLLM and CCRBT values in 

Tables S8 and S12). This result indicates that the large-scale diffuse features in ICH are more 

accurately described using liquid-like rather than independent translational rigid-body motions. As 

the values of 𝛾 from the LLM fits are much smaller than the size of the protein, our results suggest 

that the correlation lengths inherent in the RBT model might be too long. Note that we did not 

consider rigid-body rotations, and that our findings do not exclude the possibility that rigid-body 

motions coupled across molecular and unit-cell boundaries are important for modeling the sharper 

diffuse features in the neighborhood of the Bragg peak.21 

It is important to interpret data quality metrics (such as CC1/2 and CCRep) and model quality 

metrics (CCLLM, CCRBT) in their appropriate contexts. Data quality metrics pertain only to the 

measured signal and are independent of model quality metrics, which quantify agreement between 

a representation of the data and the measured signal. However, better data processing approaches 

are expected to result in more accurate models. A prominent example is the development of paired 

model refinement in concert with CC1/2 for processing Bragg data, which uses the model Rwork and 

Rfree values obtained from refinements against datasets processed to different resolution limits in 

order to determine the maximal resolution at which meaningful signal is present.23 Although we 

did not use a full paired refinement-like workflow, we found that the CCLLM values for the refined 

LLMs were not sensitive to even serious degradation in the quality of the diffuse maps, unlike the 

data quality metrics CC1/2 and CCRep. For example, CCLLM does not change significantly even 

when the diffuse data quality is severely reduced, such as in the WT-3 dataset processed without 

the radial profile variance removal step (D in Table 2). In this case, the data quality as quantified 

by CCRep decreases by 0.11 while CCLLM does not change. Therefore, we do not currently 

recommend using model CC values as a metric for evaluating diffuse scattering data processing 

decisions, although this may change with improved models of correlated motions. 

 

Lessons about experimental best practices for the collection of macromolecular 

diffuse scattering data 

Our detailed analysis of the influence of various processing steps on the quality of diffuse 

maps provides insights into important experimental aspects of collecting diffuse scattering data. 

The weak intensity values of diffuse scattering compared to Bragg diffraction places a premium 

on experimental approaches that reduce background scattering,21 and our results underscore the 

importance of careful treatment of the background. Because the speed of modern data collection 

makes collecting multiple datasets straightforward, we suggest collecting non-crystal background 

images which, in the case of a rotation series, match the spindle angles of the crystal exposures. 

There is broad agreement that the sample-derived signal should be maximized by using large 
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crystals and by reducing sources of scattering in the beamline setup. However, the best choice of 

the sample mount is still debated. In this study, we used thin-walled borosilicate glass capillaries 

that are expected to have nearly isotropic background scattering. However, glass scatters X-rays 

~10 times more strongly than plastics such as kapton,43 and thus will produce an intrinsically 

higher background that obscures weak diffuse scattering signals. In addition, depending on the 

diffracted beam path through the capillary walls, the greater absorption of glass might lead to 

anisotropy in the absorption of scattered X-rays. While most plastic mounts enjoy the advantage 

of lower scattering, they generate an anisotropic background owing to scattering by partially 

oriented molecules that compose the plastic. Our work and those of others20,21 indicate that 

combining the collection and careful subtraction of background non-crystal images with PCA 

analysis allows for effective removal of contaminating anisotropic background signals; however, 

a model of the capillary would be required to account for anisotropic absorption effects. This 

suggests that plastic capillaries with lower scattering may be preferable for diffuse scattering 

experiments despite their more anisotropic background. An important consideration with plastic 

capillaries is that the loop that is typically used to support the crystal in these mounts can generate 

a large anisotropic background signal. Therefore, it is advisable to use a loop that is smaller than 

the crystal and to aim the X-ray beam into portions of the crystal that are fully outside the loop 

throughout the entire rotation range. This is important because it is difficult to collect well-matched 

non-crystal background images that include empty loop scattering for later subtraction from the 

diffraction images. 

Prior diffuse scattering work has used large, well-diffracting crystals with comparable 

thickness in all three dimensions.6,16,19,21 Such crystals are advantageous for diffuse scattering 

because they place comparable volumes of the crystal in the X-ray beam in all orientations during 

data collection, resulting in images with similar diffraction intensity throughout the dataset. In 

contrast, WT ICH crystals grew with a difficult, plate-shaped habit that required careful mounting 

in order to orient the short axis of the plate co-linearly with the capillary axis so that the X-ray 

beam illuminated similar thicknesses of crystal during rotation. Our initial inspection of diffuse 

data collected from crystals that were not so carefully oriented indicated that the data quality 

suffered when the X-ray beam illuminated very different thicknesses of the crystal during data 

collection. We note that rods do not present this problem so long as the long axis of the rod is 

roughly collinear with the rotation axis, which is their naturally preferred orientation during 

capillary mounting. Although it is clear that diffuse scattering researchers previously appreciated 

the importance of crystal size and shape for data quality, crystal morphology should be considered 

by experimentalists when planning a diffuse scattering experiment, particularly if plate-shaped 

crystals are being used. 

Our use of the reproducibility metric CCRep showed that there was a much larger amount 

of contaminating anisotropic intensity in the WT-3 dataset compared to the other two replicates, 

which may not have been obvious had we not collected the other two datasets for comparison. The 

radial profile variance removal approach was able to suppress these problematic features and 

resulted in a usable final dataset that compared well with its replicates after processing based on 
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the quality metrics. However, the LLM model of WT-3 still stands out as an outlier with a much 

larger 𝜎 in the anisotropic ADP model. The absence of comparable contaminating anisotropic 

features in WT-1 and WT-2 excludes beamline components, detector issues, or other sources that 

would be common to all three datasets. It is possible that the culprit is contaminating detritus (e.g., 

lint, a fiber from the wick, etc.) that may have adhered to the crystal used to collect the WT-3 

dataset during mounting. This illustrates the sensitivity of diffuse scattering data to minor sources 

of non-crystalline scattering that make a negligible contribution to the Bragg data and demonstrates 

the value of collecting multiple datasets. 

The intrinsic weakness of diffuse scattering data presents detection challenges that are 

tempting to solve by increasing the X-ray dose. However, because diffuse scattering data are 

typically collected from crystals at ambient (i.e., non-cryogenic) temperatures, radiation damage 

is a major concern. In this regard, the ICH system was especially valuable, as it contains a 

radiation-sensitive active site cysteine nucleophile (Cys101) that is readily photooxidized to 

cysteine-sulfenic acid at X-ray doses lower than the typically quoted 3×105 Gy dose limit for 

ambient temperature Bragg data collection.22,44 We did not see strong evidence of Cys101 

oxidation in these datasets, although we cannot exclude that some minor oxidation occurred. The 

minimal radiation damage in these sensitive crystals indicates that PADs, rapid shutterless data 

collection, and the use of large beams (~100-200 μm) can limit radiation damage and allow the 

collection of usable diffuse scattering data from moderately radiation-sensitive protein crystals. 

As in prior work,19 we collected usable Bragg and diffuse scattering data simultaneously, and it is 

possible that such combined Bragg/diffuse datasets could be used for the global refinement of 

macromolecular structure, atomic mobility, and correlated motions in the future. 

 

V. CONCLUSION 

 In this work, we have developed an open-source data analysis pipeline dspack to extract 

diffuse scattering features from X-ray diffraction patterns. Detailed studies were performed to 

validate the effectiveness of this pipeline and demonstrate how each submodule and different 

analysis variables can affect the data quality of extracted diffuse maps. We described our 

systematic study of the reproducibility of diffuse scattering from isocyanide hydratase (ICH) with 

nine datasets of three different protein forms demonstrating that the replicate diffuse datasets were 

similar in pairwise comparisons (Pearson correlation coefficient (CC) ≥0.8). In particular, these 

studies emphasized the importance for data quality of non-crystal background pattern subtraction, 

radial profile variance removal of radial intensity profiles, and the approach to calculating per-

image scale factors. We introduced two unbiased and robust metrics (CC1/2 and CCRep) to evaluate 

the data quality of diffuse maps. We conclude that using CC1/2 alone can lead to artificially high 

assessments of data quality, and that including CCRep can help to obtain a more reasonable 

assessment of data quality. We found that diffuse scattering data are more sensitive than Bragg 

data to different models of anisotropic atomic motion resulting from distinct anisotropic scaling 

parameters, and that diffuse scattering data favor models with more typical distributions of atomic 

anisotropy. In a comparison of the LLM and independent RBT models of protein motions inside 
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the ICH crystal, we found that the agreement with the data is higher for the LLM model than for 

the RBT model, and that the LLM model agreement is in the high end among those reported in 

some other studies.16,18,36 Overall, this study provides a new set of computational tools for the 

analysis of diffuse scattering data, demonstrates the potential value of diffuse scattering for 

evaluating some types of ADP models, and indicates that ICH is an excellent system for future 

diffuse scattering studies. 

 

SUPPLEMENTARY MATERIAL 

See the supplementary material for additional figures, tables, and detailed descriptions of the 

individual B factor LLM model. 
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TABLE 1. The diffuse data quality statistics of each dataset. CCCross was not evaluated for G150T 

datasets due to the different space group. 

Sample WT-1 WT-2 WT-3 G150A-1 G150A-2 G150A-3 G150T-1 G150T-2 G150T-3 

  Compl1 98.36 100.0 99.30 100.0 98.80 100.0 99.84 100.0 98.97 

  CCFriedel 0.93 0.91 0.91 0.93 0.91 0.91 0.91 0.92 0.94 

  CCLaue 0.90 0.87 0.87 0.88 0.86 0.85 0.86 0.88 0.91 

  CC1/2 0.85 0.78 0.81 0.81 0.76 0.77 0.82 0.84 0.89 

  CCRep 0.86 0.84 0.85 0.82 0.81 0.82 0.88 0.87 0.89 

  CCCross 0.83 0.84 0.85 0.84 0.84 0.85 --- --- --- 
1Compl represents the completeness (%) of the diffuse data. 

 

 

TABLE 2. The CC statistics of each dataset are analyzed with different data processing choices. 

The diffuse map generated by each processing method was evaluated with five CC metrics: 

CCFriedel, CCLaue, CC1/2, CCRep, and CCLLM (anisotropic ADP model). Method A (standard 

processing pipeline) contains real CC values of each dataset up to 1.4Å, while other methods (B)-

(D) are filled with relative CC changes compared to those in method A. Cells in (B)-(D) are colored 

with four different colors depending on the relative changes. A cell is colored as white if the 

relative CC change is ±0.00, as light blue/red if CC increases/decreases by less than 0.1, otherwise 

it will be colored as dark blue/red. 

Sample WT-1 WT-2 WT-3 G150A-1 G150A-2 G150A-3 G150T-1 G150T-2 G150T-3 

A. Standard data processing pipeline 

  CCFriedel 0.93 0.91 0.91 0.93 0.91 0.91 0.91 0.92 0.94 

  CCLaue 0.90 0.87 0.87 0.88 0.86 0.85 0.86 0.88 0.91 

  CC1/2 0.85 0.78 0.81 0.81 0.76 0.77 0.82 0.84 0.89 

  CCRep 0.86 0.84 0.85 0.82 0.81 0.82 0.88 0.87 0.89 

  CCLLM 0.70 0.71 0.67 0.70 0.68 0.73 0.76 0.75 0.80 

B. Standard pipeline without non-crystal background image subtraction 

  CCFriedel -0.01 -0.01 -0.02 -0.01 -0.03 -0.02 -0.03 -0.02 -0.02 

  CCLaue -0.01 -0.03 -0.02 -0.02 -0.03 -0.03 -0.03 -0.04 -0.02 

  CC1/2 -0.02 -0.06 -0.04 -0.04 -0.07 -0.06 -0.06 -0.06 -0.03 

  CCRep -0.03 -0.05 -0.05 -0.08 -0.08 -0.05 -0.03 -0.05 -0.03 

  CCLLM -0.01 -0.02 -0.04 -0.03 -0.06 -0.02 -0.04 -0.03 -0.02 

C. Standard pipeline without the polarization correction 

  CCFriedel +0.04 +0.04 +0.04 +0.03 +0.05 +0.04 +0.03 +0.03 +0.02 

  CCLaue +0.05 -0.02 +0.04 -0.01 +0.07 -0.03 +0.03 -0.11 +0.03 

  CC1/2 +0.08 -0.06 +0.08 -0.06 +0.13 -0.11 +0.02 -0.19 +0.04 

  CCRep -0.13 -0.32 -0.27 -0.58 -0.31 -0.32 -0.16 -0.35 -0.15 

  CCLLM -0.17 -0.14 -0.27 -0.23 -0.33 -0.16 -0.18 -0.09 -0.19 

D. Standard pipeline without the radial profile variance removal step 

  CCFriedel -0.01 -0.01 -0.02 -0.02 -0.01 -0.03 -0.02 -0.03 -0.00 

  CCLaue -0.02 -0.06 -0.01 -0.05 -0.10 -0.07 -0.03 -0.04 -0.03 

  CC1/2 -0.04 -0.11 -0.03 -0.09 -0.18 -0.15 -0.05 -0.07 -0.04 

  CCRep -0.05 -0.08 -0.11 -0.04 -0.02 -0.04 -0.01 -0.02 -0.01 

  CCLLM +0.01 -0.01 +0.00 -0.01 -0.01 -0.06 -0.01 -0.04 -0.01 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.01.24.428002doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.428002
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

REFERENCES 
1P. B. Moore, “On the relationship between diffraction patterns and motions in macromolecular 

crystals,” Structure 17, 1307–1315 (2009). 
2M. E. Wall, P. D. Adams, J. S. Fraser, and N. K. Sauter, “Diffuse x-ray scattering to model 

protein motions,” Structure 22, 182–184 (2014). 
3S. P. Meisburger, W. C. Thomas, M. B. Watkins, and N. Ando, “X-ray scattering studies of 

protein structural dynamics,” Chemical reviews 117, 7615–7672 (2017). 
4K. Ayyer, O. M. Yefanov, D. Oberthür, S. Roy-Chowdhury, L. Galli, V. Mariani, S. Basu, J. 

Coe, C. E. Conrad, R. Fromme, et al., “Macromolecular diffractive imaging using imperfect 

crystals,” Nature 530, 202–206 (2016). 
5A. J. Morgan, K. Ayyer, A. Barty, J. P. Chen, T. Ekeberg, D. Oberthuer, T. A. White, O. Yefanov, 

and H. N. Chapman, “Ab initio phasing of the diffraction of crystals with translational disorder,” 

Acta Crystallographica Section A: Foundations and Advances 75, 25–40 (2019). 
6M. E. Wall, A. M. Wolff, and J. S. Fraser, “Bringing diffuse x-ray scattering into focus,” Current 

opinion in structural biology 50, 109–116 (2018). 
7G. Phillips Jr, J. Fillers, and C. Cohen, “Motions of tropomyosin. crystal as metaphor,” 

Biophysical journal 32, 485–502 (1980). 
8J. Doucet and J. Benoit, “Molecular dynamics studied by analysis of the x-ray diffuse scattering 

from lysozyme crystals,” Nature 325, 643–646 (1987). 
9D. Caspar, J. Clarage, D. Salunke, and M. Clarage, “Liquid-like movements in crystalline 

insulin,” Nature 332, 659–662 (1988). 
10I. Glover, G. Harris, J. Helliwell, and D. Moss, “The variety of x-ray diffuse scattering from 

macromolecular crystals and its respective components,” Acta Crystallographica Section B: 

Structural Science 47, 960–968 (1991). 
11J. B. Clarage, M. S. Clarage, W. C. Phillips, R. M. Sweet, and D. L. Caspar, “Correlations of 

atomic movements in lysozyme crystals,” Proteins: Structure, Function, and Bioinformatics 12, 

145–157 (1992). 
12K. Mizuguchi, A. Kidera, and N. Go̅, “Collective motions in proteins investigated by x-ray 

diffuse scattering,” Proteins: Structure, Function, and Bioinformatics 18, 34–48 (1994). 
13P. Faure, A. Micu, D. Perahia, J. Doucet, J. C. Smith, and J. Benoit, “Correlated intramolecular 

motions and diffuse x–ray scattering in lysozyme,” Nature structural biology 1, 124–128 (1994). 
14J. Pérez, P. Faure, and J.-P. Benoit, “Molecular rigid-body displacements in a tetragonal 

lysozyme crystal confirmed by x-ray diffuse scattering,” Acta Crystallographica Section D: 

Biological Crystallography 52, 722–729 (1996). 
15S. Héry, D. Genest, and J. C. Smith, “X-ray diffuse scattering and rigid-body motion in 

crystalline lysozyme probed by molecular dynamics simulation,” Journal of molecular biology 

279, 303–319 (1998). 
16M. E. Wall, S. E. Ealick, and S. M. Gruner, “Three-dimensional diffuse x-ray scattering from 

crystals of staphylococcal nuclease,” Proceedings of the National Academy of Sciences 94, 

6180–6184 (1997). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.01.24.428002doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.428002
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

17M. E. Wall, “Methods and software for diffuse x-ray scattering from protein crystals,” in Micro 

and Nano Technologies in Bioanalysis (Springer, 2009) pp. 269–279. 
18M. E. Wall, J. B. Clarage, and G. N. Phillips Jr, “Motions of calmodulin characterized using both 

bragg and diffuse x-ray scattering,” Structure 5, 1599–1612 (1997). 
19A. H. Van Benschoten, L. Liu, A. Gonzalez, A. S. Brewster, N. K. Sauter, J. S. Fraser, and M. 

E. Wall, “Measuring and modeling diffuse scattering in protein x-ray crystallography,” 

Proceedings of the National Academy of Sciences 113, 4069–4074 (2016). 
20A. Peck, F. Poitevin, and T. J. Lane, “Intermolecular correlations are necessary to explain diffuse 

scattering from protein crystals,” IUCrJ 5, 211–222 (2018). 
21S. P. Meisburger, D. A. Case, and N. Ando, “Diffuse x-ray scattering from correlated motions in 

a protein crystal,” Nature communications 11, 1–13 (2020). 
22M. Dasgupta, D. Budday, S. H. De Oliveira, P. Madzelan, D. Marchany-Rivera, J. Seravalli, B. 

Hayes, R. G. Sierra, S. Boutet, M. S. Hunter, et al., “Mix-and-inject xfel crystallography reveals 

gated conformational dynamics during enzyme catalysis,” Proceedings of the National Academy 

of Sciences 116, 25634–25640 (2019). 
23P. A. Karplus and K. Diederichs, “Linking crystallographic model and data quality,” Science 

336, 1030–1033 (2012). 
24M. Lakshminarasimhan, P. Madzelan, R. Nan, N. M. Milkovic, and M. A. Wilson, “Evolution 

of new enzymatic function by structural modulation of cysteine reactivity in pseudomonas 

fluorescens isocyanide hydratase,” Journal of Biological Chemistry 285, 29651–29661 (2010). 
25J. M. Holton, “A beginner’s guide to radiation damage,” Journal of synchrotron radiation 16, 

133–142 (2009). 
26H. Van Den Bedem and M. A. Wilson, “Shining light on cysteine modification: connecting 

protein conformational dynamics to catalysis and regulation,” Journal of synchrotron radiation 

26, 958–966 (2019). 
27W. Kabsch, “Xds,” Acta Crystallographica Section D: Biological Crystallography 66, 125–132 

(2010). 
28P. Evans, “Scaling and assessment of data quality,” Acta Crystallographica Section D: Biological 

Crystallography 62, 72–82 (2006). 
29P. R. Evans and G. N. Murshudov, “How good are my data and what is the resolution?” Acta 

Crystallographica Section D: Biological Crystallography 69, 1204–1214 (2013). 
30P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L.-

W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, et al., “Phenix: a comprehensive python-based 

system for macromolecular structure solution,” Acta Crystallographica Section D: Biological 

Crystallography 66, 213–221 (2010). 
31G. N. Murshudov, P. Skubák, A. A. Lebedev, N. S. Pannu, R. A. Steiner, R. A. Nicholls, M. D. 

Winn, F. Long, and A. A. Vagin, “Refmac5 for the refinement of macromolecular crystal 

structures,” Acta Crystallographica Section D: Biological Crystallography 67, 355–367 (2011). 
32M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, 

E. B. Krissinel, A. G. Leslie, A. McCoy, et al., “Overview of the ccp4 suite and current 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.01.24.428002doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.428002
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

developments,” Acta Crystallographica Section D: Biological Crystallography 67, 235–242 

(2011). 
33R. P. Joosten, F. Long, G. N. Murshudov, and A. Perrakis, “The pdb_redo server for 

macromolecular structure model optimization,” IUCrJ 1, 213–220 (2014). 
34T. De Klijn, A. Schreurs, and L. Kroon-Batenburg, “Rigid-body motion is the main source of 

diffuse scattering in protein crystallography,” IUCrJ 6, 277–289 (2019). 
35P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, 

P. Peterson, W. Weckesser, J. Bright, et al., “Scipy 1.0: fundamental algorithms for scientific 

computing in python,” Nature methods 17, 261–272 (2020). 
36D. C. Wych, J. S. Fraser, D. L. Mobley, and M. E. Wall, “Liquid-like and rigid-body motions in 

molecular-dynamics simulations of a crystalline protein,” Structural Dynamics 6, 064704 (2019). 
37G. Winter, D. G. Waterman, J. M. Parkhurst, A. S. Brewster, R. J. Gildea, M. Gerstel, L. Fuentes-

Montero, M. Vollmar, T. Michels-Clark, I. D. Young, et al., “Dials: implementation and 

evaluation of a new integration package,” Acta Crystallographica Section D 74, 85–97 (2018). 
38J. Beilsten-Edmands, G. Winter, R. Gildea, J. Parkhurst, D. Waterman, and G. Evans, “Scaling 

diffraction data in the dials software package: algorithms and new approaches for multi-crystal 

scaling,” Acta Crystallographica Section D: Structural Biology 76 (2020). 
39E. A. Merritt, “Expanding the model: anisotropic displacement parameters in protein structure 

refinement,” Acta Crystallographica Section D: Biological Crystallography 55, 1109–1117 

(1999). 
40F. Zucker, P. Champ, and E. A. Merritt, “Validation of crystallographic models containing tls or 

other descriptions of anisotropy,” Acta Crystallographica Section D: Biological Crystallography 

66, 889–900 (2010). 
41J. B. Clarage and G. N. Phillips Jr, “[21] analysis of diffuse scattering and relation to molecular 

motion,” in Methods in enzymology, Vol. 277 (Elsevier, 1997) pp. 407–432. 
42P. V. Afonine, R. W. Grosse-Kunstleve, and P. D. Adams, “A robust bulk-solvent correction and 

anisotropic scaling procedure,” Acta Crystallographica Section D: Biological Crystallography 

61, 850–855 (2005). 
43E. Maslen, A. Fox, and M. O’Keefe, “International Tables for Crystallography, Vol. C, 2nd ed.,” 

Table 6.1.1.4. Dordrecht: Kluwer Academic Publishers. (1999). 
44E. de la Mora, N. Coquelle, C. S. Bury, M. Rosenthal, J. M. Holton, I. Carmichael, E. F. Garman, 

M. Burghammer, J.-P. Colletier, and M. Weik, “Radiation damage and dose limits in serial 

synchrotron crystallography at cryo-and room temperatures,” Proceedings of the National 

Academy of Sciences 117, 4142–4151 (2020). 
45IRRMC Contributors, “X-Ray Diffraction Data for the 7l9q Project,” Integrated Resource for 

Reproducibility in Macromolecular Crystallography (2021). 

https://doi.org/10.18430/M3.IRRMC.5696.  
46IRRMC Contributors, “X-Ray Diffraction Data for the 7l9s Project,” Integrated Resource for 

Reproducibility in Macromolecular Crystallography (2021). 

https://doi.org/10.18430/M3.IRRMC.5695.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.01.24.428002doi: bioRxiv preprint 

https://doi.org/10.18430/M3.IRRMC.5696
https://doi.org/10.18430/M3.IRRMC.5695
https://doi.org/10.1101/2021.01.24.428002
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

47IRRMC Contributors, “X-Ray Diffraction Data for the 7l9w Project,” Integrated Resource for 

Reproducibility in Macromolecular Crystallography (2021). 

https://doi.org/10.18430/M3.IRRMC.5694.  
48IRRMC Contributors, “X-Ray Diffraction Data for the 7l9z Project,” Integrated Resource for 

Reproducibility in Macromolecular Crystallography (2021). 

https://doi.org/10.18430/M3.IRRMC.5693.  
49IRRMC Contributors, “X-Ray Diffraction Data for the 7la0 Project,” Integrated Resource for 

Reproducibility in Macromolecular Crystallography (2021). 

https://doi.org/10.18430/M3.IRRMC.5692.  
50IRRMC Contributors, “X-Ray Diffraction Data for the 7la3 Project,” Integrated Resource for 

Reproducibility in Macromolecular Crystallography (2021). 

https://doi.org/10.18430/M3.IRRMC.5691.  
51IRRMC Contributors, “X-Ray Diffraction Data for the 7lav Project,” Integrated Resource for 

Reproducibility in Macromolecular Crystallography (2021). 

https://doi.org/10.18430/M3.IRRMC.5690.  
52IRRMC Contributors, “X-Ray Diffraction Data for the 7lax Project,” Integrated Resource for 

Reproducibility in Macromolecular Crystallography (2021). 

https://doi.org/10.18430/M3.IRRMC.5689.  
53IRRMC Contributors, “X-Ray Diffraction Data for the 7lb9 Project,” Integrated Resource for 

Reproducibility in Macromolecular Crystallography (2021). 

https://doi.org/10.18430/M3.IRRMC.5688.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.01.24.428002doi: bioRxiv preprint 

https://doi.org/10.18430/M3.IRRMC.5694
https://doi.org/10.18430/M3.IRRMC.5693
https://doi.org/10.18430/M3.IRRMC.5692
https://doi.org/10.18430/M3.IRRMC.5691
https://doi.org/10.18430/M3.IRRMC.5690
https://doi.org/10.18430/M3.IRRMC.5689
https://doi.org/10.18430/M3.IRRMC.5688
https://doi.org/10.1101/2021.01.24.428002
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

 
FIG. 1. Illustration of distinction between crystal exposure and background exposure. (Left) 

experimental setup for diffuse data collection. (Right) the dark object in the center is the WT-1 

crystal and the blue cross marks the X-ray beam position for crystal diffraction measurements. The 

crystal is hydrated by a buffer solution inside the capillary. The non-crystal background images 

were collected by translating the capillary so that the X-ray beam (red cross) only interacts with 

the capillary, buffer, and air bubbles. Crystal and background diffraction pattern pairs were 

collected in each orientation. 
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FIG. 2. Data analysis pipeline from raw diffraction patterns to a Laue-symmetrized anisotropic 

diffuse map. Numbers (1)-(6) correspond to the same image pre-processing substeps as mentioned 

in Methods. Following this pipeline, the (A) crystal diffraction and (B) non-crystal background 

patterns are applied with the user-defined detector mask and a deeper bad pixel removal step based 

on pixel positions and intensities. The non-crystal background patterns are then scaled with the 

exposure time and subtracted from crystal diffraction patterns, giving rise to the (C) background 

subtracted patterns, followed by multiple pixel intensity and position corrections to produce the 

(D) corrected diffraction patterns. Bragg peaks are predicted in positions and then replaced with 

median intensities to generate (E) patterns without Bragg peaks, followed by image scaling and 

the radial profile variance removal method which end up with the final pre-processed diffraction 

patterns (F). These patterns are merged into a (G) 3D diffraction volume using indexing results 

and orientations from the goniometer. This 3D volume is then applied with Laue symmetrization 

to generate the (H) Laue-symmetrized diffraction volume, followed by the isotropic component 

subtraction step which produces the final (I) Laue-symmetrized anisotropic diffuse map. For 

improved visualization, panels (G)-(I) were created using more finely sampled diffraction volumes 

than were used in data quality evaluation and modelling. 

 

 

 

 

 

 
FIG. 3. Structure of ICH. The ribbon diagram for the WT ICH dimer is shown in blue, with 

protomer A colored darker blue and protomer B lighter blue. The structure of G150T ICH (yellow-

green) is superimposed on protomer A of WT ICH. The location of residue 150 is represented as 

a red sphere and the mobile helix is labeled H and shown in brighter colors. 
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FIG. 4. Central slices of Laue-symmetrized anisotropic diffuse maps (standard pipeline) of nine 

datasets perpendicular to qy direction. Each image is cut from the center of the corresponding 

diffuse map which is three-time finely sampled over Miller indices H,K,L. Each subfigure shows 

average voxels within a depth of 0.05Å-1 in qy direction, and 0.02 × 0.02Å-1 in qxqz plane. Both qx 

and qz axes extend to 1.4Å, and O represents the center in the reciprocal space. These finely 

sampled diffraction volumes were used for improved visualization only and were not used in data 

quality evaluation and modelling. 
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FIG. 5. Central slices of Laue-symmetrized anisotropic diffuse maps (standard pipeline) of nine 

datasets perpendicular to qz direction. Each image is cut from the center of the corresponding 

diffuse map which is three-time finely sampled over Miller indices H,K,L. Each subfigure shows 

average voxels within a depth of 0.05Å-1 in qz direction, and 0.02 × 0.02Å-1 in qxqy plane. Both qx 

and qy axes extend to 1.4Å, and O represents the center in the reciprocal space. 
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FIG. 6. The resolution dependent CC1/2 curves for WT, G150A, and G150T datasets. Each curve 

was calculated using PHENIX up to 1.4Å, with the unsymmetrized anisotropic map as input. 

 

 

 

 

 
FIG. 7. The resolution dependent CC curves of dataset pairs of the same protein. Each subfigure 

shows three CC curves between every two independent measurements for WT, G150A, and 

G150T, respectively. For example, the curve of WT-1 & WT-2 was calculated as the CC between 

Laue-symmetrized anisotropic diffuse maps of WT-1 and WT-2 datasets. 

 

 

 

 

 
FIG. 8. The LLM model statistics for all ICH datasets using Refmac5-refined PDB files with 

different ADP treatments. The two subfigures display the best-fit CCLLM and average correlation 

length 𝛾, respectively. Each dataset was analyzed using three different ADP models including the 

zero, isotropic, and anisotropic ADP, respectively. The dashed vertical line separates WT, G150A, 

and G150T datasets. The full LLM statistics are presented in Table S8. 
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FIG. 9. CCBragg and CCLLM between experimental data and calculated Refmac5, PHENIX models 

with and without rescaling of the model B factors using Uztr for the WT-1 dataset. The sensitivity 

of CCLLM to changes in the ADPs is much greater than that of CCBragg, indicating that diffuse 

scattering data are more sensitive than Bragg data to anisotropic scale factor-related changes in 

ADPs. The displayed CC values are calculated with a low resolution cutoff of 10 Å because no 

bulk solvent correction was used. Both the Bragg and diffuse intensities have had the isotropic 

component removed as described in Methods. 
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