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Abstract

Protein structure and dynamics can be probed using X-ray crystallography. Whereas the
Bragg peaks are only sensitive to the average unit-cell electron density, the signal between the
Bragg peaks -- diffuse scattering -- is sensitive to spatial correlations in electron-density variations.
Although diffuse scattering contains valuable information about protein dynamics, the diffuse
signal is more difficult to isolate from the background compared to the Bragg signal, and the
reproducibility of diffuse signal is not yet well understood. We present a systematic study of the
reproducibility of diffuse scattering from isocyanide hydratase (ICH) in three different protein
forms. Both replicate diffuse datasets and datasets obtained from different mutants were similar in
pairwise comparisons (Pearson correlation coefficient (CC) >0.8). The data were processed in a
manner inspired by previously published methods using custom software with modular design,
enabling us to perform an analysis of various data processing choices to determine how to obtain
the highest quality data as assessed using unbiased measures of symmetry and reproducibility. The
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diffuse data then were used to characterize atomic mobility using a liquid-like motions (LLM)
model. This characterization was able to discriminate between distinct anisotropic atomic
displacement parameter (ADP) models arising from different anisotropic scaling choices that
agreed comparably with the Bragg data. Our results emphasize the importance of data
reproducibility as a model-free measure of diffuse data quality, illustrate the ability of LLM
analysis of diffuse scattering to select among alternative ADP models, and offer insights into the
design of successful diffuse scattering experiments.

I. INTRODUCTION

In X-ray crystallography, the sharp Bragg reflections are the main source of information
for structure determination; however, they only contain information about the average electron
density of the unit cell. Diffuse scattering, on the other hand, contains information about the spatial
correlations of electron density variations, and thus can, in principle, distinguish among different
atomic motions that yield the same mean electron density.! In addition, recent studies suggest
that diffuse scattering might be used to extend the resolution of density maps beyond the resolution
limit of the Bragg peaks,* motivating further rigorous investigation of this possibility.°®

Early studies of protein diffuse scattering focused on interpreting features in individual
diffraction images.”!* Since the development of modern diffuse data processing methods,'®!”
protein diffuse scattering studies have mostly focused on working with three-dimensional (3D)
datasets. In addition to improvements in light sources and detectors, notable developments in 3D
data processing include finer sampling in reciprocal space to model long-range correlations,'®
rescuing useful diffuse data from experiments designed for Bragg diffraction,'” extracting finely
sampled 3D datasets from serial femtosecond X-ray crystallography (SFX) experiments with X-
ray free-electron lasers (XFEL),* increasing data quality via improved rejection of the solvent
contribution and multivariate analysis methods,?® and a major advance in the scaling and merging
of data from multiple crystals,?! yielding a substantial improvement in data quality.

Given the variety of approaches to data processing, and the emerging importance of diffuse
scattering for modeling protein dynamics, we sought to gain more insight into some fundamental
questions about protein diffuse scattering data: How reproducible are single-crystal diffuse
datasets? What is the influence of point mutations on the diffuse signal? How do changes in the
data translate into differences in a model? What are the consequences of different data processing
choices for data quality? Can diffuse scattering data discriminate between different models of
atomic mobility that agree equally well with the Bragg data?

Here we address each of these questions in a study of diffuse scattering from crystalline
ICH. We selected the ICH system because it diffracts X-rays to atomic resolution at ambient
temperature, has clearly visible diffuse features in ambient temperature X-ray diffraction datasets,
and displays large concerted motion of an a-helix that is modulated by the chemical state of the
active site nucleophile.?> Upon formation of the catalytic thioimidate intermediate, this helix
becomes more mobile and permits water to enter the active site and complete the reaction. Because
the extent of this concerted, functionally important a-helix motion can be controlled using various
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experimental tools, ICH is a very promising system for exploring the utility of diffuse scattering
data for characterizing functional protein dynamics.

Specifically, we address the above questions using multiple datasets collected from wild-
type (WT) ICH and two mutants (G150A, G150T) that affect helix motion. Using a modular data
processing pipeline in Python that we developed, we assessed quantitatively the reproducibility of
the data and the influence of various data processing choices on the final quality of the datasets.
Because our processing pipeline is modular in construction, individual steps can be easily modified
and their impact on data quality separately evaluated. In this workflow, we assessed the data
quality using unbiased measures of the internal consistency (CC1,2)* and reproducibility (CCrep),
which we compared with prior metrics such as CCraue and CCerriedel. Finally, we analyzed the
diffuse data using simple phenomenological models of correlated protein motion: the LLM
model®!! using three different treatments of ADPs (B factors); and an independent rigid-body
translational motions (RBT) model.!** This analysis yields insights into the impact of the various
data processing choices on the model parameters and the agreement with the data.

Overall, the results of this study indicate that single-crystal diffuse datasets can be
measured reproducibly from WT and mutant ICH crystals (CCrep > 0.81 to 1.4A resolution).
Differences in diffuse scattering among different ICH mutants are small when assessed directly
using the data, yet are still detectable using the LLM analysis. Importantly, the LLM analysis
showed that diffuse scattering can discriminate between ADP models that fit the Bragg data
equally well. In addition, the LLM models of ICH yield higher correlations with the data than the
independent RBT models. Finally, a systematic investigation of the influence of data processing
methods using our Python workflow yielded a matrix of data quality measures, revealing insights
into best practices for data collection and processing. In particular, the results emphasize the
importance of background subtraction for increasing data quality, and highlight the benefits of
adding a step to remove some of the variation in the isotropic radial intensity profiles.?’

Il. METHODS
ICH protein expression and crystallization

WT, GI150A, and GI150T Pseudomonas protegens Pf-5 (formerly Pseudomonas
fluorescens) ICH proteins were expressed in BL21(DE3) E. coli, purified by Ni**-metal affinity
chromatography, and crystallized by hanging drop vapor equilibration as previously described.?>**
Briefly, ICH crystals were grown at room temperature (~22°C) by mixing 2 pl of protein at 20
mg/ml with 2 pl of reservoir (22-24% PEG 3350, 100 mM Tris-HCI, pH 8.6, 200 mM magnesium
chloride and 2 mM dithiothreitol (DTT)) and typically took one week to reach maximum size.
Microseeding of drops equilibrated for 6-12 hours improved crystal size and morphology. As
previously noted,?? G150T crystals form in a different space group (C2/12) than WT and G150A
crystals (P21) even when seeded with WT crystals. The largest crystals were ~700x700%x150 um,
although typically G150A and G150T ICH crystals grew with a more compact prismatic habit than
WT ICH.
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Diffuse and Bragg X-ray data collection

To study the reproducibility of diffuse scattering in independent samples, data were
collected from three crystals of each form of ICH. For simplicity, these datasets are denoted as
WT-1, WT-2, WT-3, G150A-1, G150A-2, G150A-3, G150T-1, G150T-2, and GI150T-3,
indicating the WT, G150A, and G150T mutant ICH proteins. Crystals were mounted in 10 pm
thick glass number 50 borosilicate capillaries (Hampton Research) ranging from 0.7 to 1.0 mm
diameter and sealed with wax. Excess solution near the crystal was wicked away while retaining
a small volume of reservoir solution in the end of the capillary to maintain vapor equilibrium. For
WT ICH, the plate-like crystals were mounted “edge-on”, such that their shortest axis was roughly
parallel to the capillary axis. In this geometry, the X-ray beam illuminates approximately
equivalent volumes of the crystal during rotation about the spindle axis, which was parallel with
the capillary axis. G150A and G150T ICH crystals had more prismatic habits than WT ICH and
did not require special orientation for data collection.

Diffraction data were collected at 274 K on BL12-2 at the Stanford Synchrotron Radiation
Lightsource (SSRL) using 16 keV incident X-rays and shutterless data collection with 0.5°
rotation/image, 0.3 sec/exposure, and 98% attenuation. The data were recorded on a PILATUS 6M
pixel array detector (PAD) with roughly 0.95A resolution at the edge of the detector for each
dataset. Absorbed doses were approximately 2-4x10* Gy per crystal as calculated using
https://bl831.als.Ibl.gov/xtallife.html.?*> Doses were kept low to minimize X-ray-induced oxidation
of the catalytic Cys101 nucleophile to sulfenic acid, which has been previously reported.?>**?° To
allow subtraction of the capillary background scattering from the diffraction images, non-crystal
background diffraction patterns were collected using identical parameters to those used for crystal
data collection but by increasing the exposure time and slightly shifting the X-ray beam to the
region of the capillary away from the crystal, as shown in Fig. 1. The exposure time was 1 second

per image for the non-crystal background patterns in order to accumulate more scattered photons
and reduce error in the background measurements. The background images were later scaled by
the ratio of the exposure times to be equal to the data images.

Analysis of Bragg data

The Bragg data from each crystal were indexed and scaled using XDS,?” Pointless,?® and
Aimless®® with statistics reported in Table S1. For G150T, the data were (equivalently) reindexed
from C2 to 12, yielding unit cells more comparable to those of WT and G150A ICH datasets in
space group P2;. Structures of WT, G150A, and G150T ICH were refined against these data in
PHENIX (v1.17.1-3660)*° using riding hydrogen atoms and restrained anisotropic ADPs with
weight optimization for coordinate and ADP refinements. Riding hydrogen atoms have their
positions calculated from the geometry of the bonded heavier atoms upon which they “ride” and
thus contribute to both the calculation of model structure factors and non-bonded contacts without
adding additional refinement parameters. As noted previously,?>** Ile152 is a Ramchandran outlier
in all structures except G150T and is well-supported by the electron density maps in all cases. We
also refined protein structures using the Refmac5 package (v5.8.0266)! in the CCP4 suite of
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programs>? in order to compare the behavior of Refmac5- and PHENIX-refined models against the
same datasets. The Refmac5 refinements used riding hydrogen atoms and restrained anisotropic
ADPs with a matrix weight term of 0.2-0.4. This range for the matrix weight term produced bond
length root mean square differences (RMSD) in Refmac5-refined models that were comparable to
those of the PHENIX-refined models. These refinement protocols produced models with similar
Riree/Rwork for the Bragg data (see Tables S2 and S3 for refined model statistics and PDB codes).
Despite similar Rfee/Rwork values, the anisotropic ADPs of the PHENIX-refined models have
anisotropy ratios (the ratio of smallest to largest eigenvalues to the ADP variance-covariance
matrix) that were lower (more anisotropic) than the Refmac5-refined models (Fig. S1), while the
ADP magnitudes in both models are highly similar (Fig. S2). This difference in anisotropies was
observed for all models, but was most pronounced in the WT datasets. Moving from isotropic to
anisotropic ADPs decreased the Reee value by ~3-4% in all datasets in both Refmac5 (Table S2)
and PHENIX (Table S3), confirming that anisotropic ADPs yield higher agreement with the Bragg
diffraction data than isotropic displacements, and justifying the use of the additional parameters.
The differences in the anisotropic ADPs of models refined in Refmac5 and PHENIX
against the same dataset were surprising initially; however, we were able to demonstrate that they
are well explained by differences in the overall anisotropic scaling matrices. To demonstrate this,
we obtained refined anisotropic scaling parameters from the headers of both the Refmac5 and
PHENIX models after zero cycles of refinement against the same data in PDB-REDO.* Using
PDB-REDO in this way invokes the Refmac5 refinement engine to recover the anisotropic scale
parameters and guarantees that all models are handled in an identical fashion. The resulting
anisotropic scaling matrices for Refmac5 and PHENIX models are often different (see Table S4).
To determine whether differing anisotropic scale matrices are responsible for the different
anisotropic ADP models obtained using Refmac5 and PHENIX refinement, we calculated
difference anisotropic scaling matrices and used them to rescale the model ADPs (Supplementary
Material section III). These difference matrices were added to the ANISOU records for each atom
in the model after being made traceless by subtracting trace/3 from each diagonal element to ensure
that Beq would not be altered (Table S4). Using the difference matrices, we found that we were
able to convert a PHENIX-refined anisotropic ADP model into one that resembles its Refmac5-
refined counterpart, and vice versa (Fig. S3, S4, S5; Supplementary Material section III).
Importantly, this rescaling of the models scarcely influenced the agreement with the Bragg data
but could substantially influence the agreement of LLM models with the diffuse data (see below).

Construction of 3D diffuse scattering maps

Our 3D diffuse map construction pipeline includes six image pre-processing steps followed
by 3D merging and two volume processing steps (Fig. 2). The pre-processing steps were designed
to convert the raw intensities into useful diffuse signals and to reject non-diffuse intensities such
as Bragg peaks, bad pixels, random noise, and isotropic and anisotropic background. In order of
application, these steps were: (1) detector masking; (2) bad pixel removal; (3) non-crystal
background pattern subtraction; (4) pixel position and intensity corrections; (5) Bragg peak
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cleaning; and (6) image scaling and radial profile variance removal.?° Starting with raw diffraction

patterns, step (1) was to mask out obvious bad pixels in the detector, including dead pixels,
shadows, and grid lines between detector panels, pixels near the beamstop or with intensities that
were either non-positive or greater than 10,000 photons. Step (2) was to perform a deeper cleaning
of bad pixels, by masking pixels with intensities that are beyond 5 standard deviations from the
mean value inside a 11x11 square window. Steps (1) and (2) were also applied to non-crystal
background patterns in the same manner. In step (3), the filtered background patterns were scaled
by the exposure time and subtracted frame-by-frame from the matching crystal diffraction patterns
(see Methods). In step (4), pixel positions were corrected by the parallax broadening effect in the
PILATUS 6M detector,?’ and raw pixel intensities were converted to scattering intensities by
applying polarization,'® solid-angle,'® and detector absorption corrections.?!

In step (5), Bragg peaks were predicted in positions and further cleaned, although some
peaks were already removed in step (2) due to their strong intensities. Pixels were mapped into
reciprocal space and converted into fractional Miller indices (4,k,/) using the XDS?’ indexing
result. Intensities were identified as belonging to Bragg peaks if their indices (4,k,/) are all within
0.25 to the nearest integers. The intensity of each Bragg pixel was replaced with the median value
in a 11x11 square window centered on this pixel. The order of filtering, background subtraction
and correction steps described above is flexible, but Bragg peaks must be cleaned before image
scaling and radial profile variance removal in step (6). The diffraction pattern after the previous
five steps is considered as a combination of diffuse scattering, random noise, and isotropic signals
from multiple sources such as the crystal, water, and air diffraction. Random noise can be averaged
out later in the 3D merging stage, so dealing with the isotropic signal was the main focus in step
(6). Firstly, the diffraction pattern was scaled using the radial intensity profile scale factor,
calculated by minimizing the L2 distance between radial intensity profiles of the target diffraction
pattern and a fixed reference diffraction pattern (the first pattern of each dataset in our method).
Another radial profile variance removal step, first described in Peck et al.,® was applied by
performing principal component analysis (PCA) on the matrix of the scaled radial profiles and
subtracting the contribution from the subspace of the three largest eigenvalues, as shown in Fig.
Se.

Each diffraction pattern corresponds to the intersection of an Ewald sphere surface with
the 3D diffraction volume. Diffraction patterns after six pre-processing steps were mapped into
reciprocal space using crystal orientations and experiment parameters, including the X-ray
wavelength, detector distance (z4), and pixel size. The orientation information was calculated from
XDS? indexing results (including the A matrix) as well as the relative rotation angles in the
experiment. Each pixel located at (x,y,z4) on the detector corresponds to fractional Miller indices
(h,k,1) in reciprocal space, which lies within a voxel in the 3D diffraction volume. The voxel value
was measured as the average intensity of all pixels that were assigned to it. To avoid contamination
arising from Bragg peaks, we rejected every pixel located within a 0.5%0.5%0.5 box centered on
the nearest reciprocal-space point with integer Miller indices. This Bragg rejection step can be
equivalently applied in the image pre-processing stage by masking pixels rather than replacing
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them with median intensities. In previous work, three different methods were mentioned regarding
removal of Bragg pixels, by either filtering out Bragg pixels,'®!'® replacing intensities,** or
preserving Bragg peak intensities together with diffuse scattering features.?! In this work, we chose
to filter out all pixels in Bragg peak positions, as we were interested in large-scale diffuse features
that vary on a length scale longer than the separation between Bragg peaks. The other two methods
are useful for obtaining more finely sampled datasets and analyzing sharper diffuse scattering
features.

The 3D diffraction volume obtained by merging all crystal diffraction patterns (denoted as
the raw unsymmetrized map), was symmetrized according to its Laue/Friedel point group into a
Laue-/Friedel- symmetrized map. For the ICH crystal, Friedel symmetrization averages 2 voxels
related by an inversion symmetry, and Laue symmetrization averages 4 voxels related by the Laue
group (2/m for all nine crystals). To remove the scattering from other sources such as water, air,
and uncorrelated protein motions, the symmetrized map was further processed with an isotropic
component subtraction step by subtracting the radially averaged 3D volume to get the symmetrized
anisotropic diffuse scattering map (Fig. 2). The 3D anisotropic diffuse scattering map is called the
diffuse map in this work, and is assumed to contain anisotropic diffuse scattering features arising
from correlated motions in the crystal, although further analysis and modeling are still required to
confirm this. The dspack package for the whole analysis pipeline, including image pre-processing
steps, 3D merging, and volume operations, 1S available online:
https://github.com/zhenwork/dspack.

Evaluation of the quality of diffuse scattering maps

The diffuse map produced by our analysis pipeline contains both anisotropic diffuse
scattering from correlated protein motions and any merging artifacts that have anisotropic features.
Previous studies!®!®?" have used symmetry metrics such as CCraye and CCrriedel (Se€ Table 1) to
assess the quality of 3D diffuse datasets, calculated using the function,

no(xE-xO)(vf -Y¢
LOE-XO0E T

?=1(Xic_ﬁ)2\/2?=1(yic_w)2

where X¢ and Y¢ represent two vectors sampled from 7 common voxels of unsymmetrized (X)

CC(X,Y) =

and Laue-/Friedel- symmetrized anisotropic maps (Y), respectively, and XCand YC represent the
mean values. The symmetrized maps were calculated by averaging related Laue/Friedel voxels, as
described in the previous section.

Here, we use two additional metrics for quality evaluation of diffuse maps: the data
symmetry (CCi2) and reproducibility (CCrep). CCi12 is an accepted metric for assessing the quality
of Bragg diffraction data,?® and also has been used for diffuse scattering data.>! The CC1/2 metric
was calculated using phenix.merging statistics®® with the unsymmetrized anisotropic map as
input. The CCi, measures whether the diffuse map follows the target symmetry, but it can be
misleading if the diffuse map contains substantial anisotropic background features that partly obey
the symmetry. To address this problem, we introduce another metric, CCrep, Which is the average
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CC between diffuse maps of the selected dataset and other independent datasets measured from
different crystals of the same protein (see Table S5). For example, in this work the CCrep for the
first dataset of WT ICH (WT-1) is measured as the average CC of CC(WT-1, WT-2) and CC(WT-
1, WT-3), where WT-2 and WT-3 are two additional datasets measured from crystals of WT ICH.

Modeling diffuse scattering data with the LLM model

We applied the LLM model using the refine Ilm.py script in the Lunus software package,!’
starting with inputs of the experimental Laue-symmetrized diffuse map and the corresponding
PDB file refined from Bragg data of the same dataset (Table S2). The LLM model uses the
following equation to describe the diffuse intensity I;(q):

la(q) o 02q%e™" 0" [Io(q) * I, (@), (2)

where I(q) is the squared structure factor of the unperturbed crystal, and I, (q) is the Fourier
transform of the function describing the distance-dependence of the atomic displacement
correlations. The LLM model has two refinable parameters: the average atomic displacement o,
which estimates the average amplitude of atomic motions, and the correlation length y, which is
the characteristic length scale of correlated atomic displacements.”!! Before comparing I,(q) to
the experimental data, I;(q) was Laue-symmetrized and the isotropic component was removed,
to ensure that both maps were processed in a similar way. The parameters ¢ and y of the LLM
model were optimized using the Powell minimization method in scipy.optimize,* using the CC
between the model and the data as a target -- the highest value of the correlation is denoted as
CCLLm.

In Eq. (2), I5(q) is computed after setting the individual B factors to zero. In addition to
this model, here we consider models in which the individual B factors are preserved. Preserving
the B factors yields the following equation for the LLM (Supplementary Material section I[V):

1a(q) « |q|*0*[Is(q) = I, (@], (3)
where I5(q) is the Bragg intensity computed using the individual ADPs in the PDB file, and o is
the amplitude of the correlated atomic displacements (assumed to be the same for all atoms). Eq.
(3) is the same as Eq. (2), with I,(q) replaced by I5(q), and with the overall Debye-Waller factor

e 0’ replaced by unity. Note that, whereas in Eq. (2), sufficiently high values of ¢ influence the
resolution-dependence of the diffuse intensity, in Eq. (3), o only influences the overall scale of the
intensity. Because in our study the diffuse data are not placed on an absolute scale, and the CC
target we use for optimization is not sensitive to the absolute scale, we cannot determine the value
of o using Eq. (3).

We used fits to Eq. (2) to assess whether the diffuse intensity is more accurately described
using LLM models with individual ADPs. Eq. (2) was used directly for the case of zero ADPs,
and I,(q) was replaced by Iz(q) for the case of isotropic and anisotropic ADPs. In calculating
I,(q) and I5(q), multiple conformations were handled by selecting only the A conformations and
setting the occupancies to unity. In the case of zero ADPs, we interpret the value of ¢ after fitting
the model as being indicative of the amplitude of motion of the atoms; however, in the case of
individual ADPs, o is smaller, for reasons described above, and the precise value is not as
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meaningful; in this case, we only consider whether the value of o refines to nearly zero, making
the overall Debye-Waller factor close to unity. In this limit, Eq. (2) reduces to Eq. (3), indicating
that the model is consistent with the use of this equation. If o does not refine to something close
to zero (as is the case for some models we consider here), it indicates a possible inconsistency with
Eq. (3).

The isotropic ADPs were calculated as Beq values from the anisotropic ADPs in the input
PDB file that were previously refined against the Bragg data. Anisotropic ADPs contain
information about both the direction and the amplitude of atomic motion, while the isotropic ADPs
contain only information about displacement amplitude. To further examine the utility of using the
LLM model for diffuse data analysis, we also fit the diffuse data using a RBT model for
comparison, as was performed in a previous study.’® The RBT model assumes that the only
correlated motions are rigid-body translations of asymmetric units and does not include rigid-body
rotations and/or correlations between rigid units. The RBT contains a single fitting parameter o
that describes the average translational displacement of the asymmetric unit. Lunus software'” was
used to refine o with respect to the CC of the model with the data. The best-fit correlation of the
RBT model to the experimental data, denoted CCrpt, Was compared with CCLLm to determine
which physical model was in better agreement with the processed diffuse maps.

Determining the importance of various steps in the analysis pipeline

There are several reported methods*!%17:2021:34 for producing 3D protein diffuse scattering
datasets, and they differ with respect to image pre-processing, scaling, and radial profile
normalization techniques. In this work, we only focused on the most commonly used methods for
processing single crystal synchrotron diffuse data!®!”-?%34 as described in Methods, and then
studied the effects of non-crystal background subtraction, pixel position and intensity
corrections, 22! radial profile variance removal, and per-image scale factors on the quality and
reproducibility of the extracted diffuse scattering maps. We evaluated the impact of each of these
processing steps on data quality by sequentially omitting each step in the standard pipeline as well
as testing the influence of different scale factors on final data quality. Different processing choices
were evaluated using multiple diffuse scattering quality metrics, including CCi2 and CCrep. A
similar type of analysis was used by Meisburger et al.?! to assess different approaches to merged
diffuse data using a CCj,, statistic.

For the data processing choice analysis, we capitalized on the modular design of our
developed program to turn on, turn off, or tune parameters in specific processing steps. For the
present study, choices were assessed by eliminating individual data processing steps and
determining the effect on the CCrriedel, CCLaue, CC1/2, CCrep, and CCrrm values. In total, we studied
seven data processing choices, including (A) the standard pipeline, as well as processing that omits
either (B) the non-crystal background image subtraction, (C) the polarization correction,'® (D) the
radial profile variance removal,?® (E) the solid-angle correction,'® (F) the detector absorption
correction,?! or (G) the parallax correction.?® The values of CCrriedel, CCLave, CC1/2, CCrep, and
CCrom resulting from these processing choices is summarized in Table 2 and Table S6.
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To study the effect of the choice of merging approach on data quality, we computed
diffraction image scale factors using four different signal sources: (A) the profile of the image
intensity vs. the scattering vector length, (B) the average intensity in the isotropic ring, (C) the
average intensity in the diffraction image, and (D) the Bragg peaks. For (A), the profile in each
image was scaled to minimize the difference with respect to the profile in a reference image, using
intensities within the resolution range (up to 1.4A). For (B), the scale factor was computed as the
ratio of the average pixel intensities within the water ring region (5A-1.82A). For (C), the scale
factor was computed as the ratio of average pixel intensities within the resolution range. For (D),
the Bragg intensity scale factors reported by dials.scale®’® were used. They are denoted as the (A)
radial profile, (B) water ring, (C) overall, and (D) Bragg scale factor, respectively. The standard
pipeline in this work uses method (A). The effectiveness of a particular scale factor was evaluated
with data quality metrics of the diffuse map processed using that scale factor. The data quality
statistics of each type of scale factor are summarized in Table S7. This table also includes another
four choices (E)-(H) where the radial profile variance removal step was turned off as the scale
factor was switched from (A) to (D) successively.

lll. RESULTS
WT and mutant ICH structures and helix motion

Prior work with ICH showed that X-ray photooxidation of Cysl01 results in concerted
motion of a helix near the active site that is also observed during formation of the catalytic
thioimidate intermediate.?? These cysteine modification-activated motions in ICH?® occur owing
to transient loss of negative charge on the catalytic cysteine thiolate and facilitate later steps in
catalysis. Engineered mutations at residue 150 (e.g., G150A, G150T) also favor shifted
conformations of the helix to varying degrees. Because the concerted motion of this helix can be
modulated by mutation and the charge of the Cys101 Sy atom, ICH is an attractive system for
exploring diffuse scattering as a probe of functional correlated protein motions.

In this work, structural models refined against replicate Bragg datasets that were collected
simultaneously with the diffuse scattering data (see below) are essentially identical (0.02-0.03 A
Ca RMSD). The refined WT and G150A ICH models are also highly similar (~0.05-0.07 A Ca
RMSD). As observed before,?* the G150T mutation constitutively shifts the helix to the relaxed
conformation and crystallizes in a different space group than WT or G150A ICH (see Methods).
As expected based on these structural and space group changes, G150T ICH superimposes onto
WT and G150A ICH with a larger C« RMSD of ~0.8 A (see Fig. 3). In addition, the six WT and
G150A datasets show ~20 difference (mF,-DF.) electron density features around the mobile helix
that indicate a minor population (< 10% occupancy) of the shifted helix conformation. Consistent
with our efforts to minimize radiation damage to the crystals, these difference map features are
much lower than those observed when Cys101 is oxidized to Cys101-SOH.?> These minor
difference map peaks near the helix could indicate either the basal level of helical mobility in ICH
or a response to minor X-ray-induced Cys101 modification in these datasets, possibly including
thiyl radical formation.
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Quantifying the quality of the experimental diffuse scattering maps

Diffuse intensity is continuously distributed in reciprocal space and is weak compared to
Bragg intensity; therefore, robust metrics for quantifying diffuse data quality are needed to avoid
the introduction of noise or artifacts into the diffuse maps. Diffraction patterns were processed
using our standard pipeline described in Methods to obtain 3D anisotropic diffuse scattering maps
for all nine datasets. The diffraction volume was saved in a 3D lattice with 121x121x121 voxels
sampled by integer Miller indices. The whole pipeline and visualization of each substep is
displayed in Fig. 2. As shown in panel (F) of Fig. 2, anisotropic features were observable in
processed diffraction patterns after the removal of Bragg peaks, although they were not as clear as
those displayed in 3D diffraction volumes (panel (I)) after a deeper noise and isotropic component
reduction. The average number of pixels that contribute to the intensity of each non-empty voxel
in the diffraction volume is more than 1000 up to 1.4A, as shown in Fig. S7, leading to a small
standard error of the mean. In addition, the isotropic component is more than 10 times stronger
than the anisotropic data (Fig. S8). Extracting large-scale anisotropic features from diffuse data
therefore is challenging not only due to the high intensity of the Bragg peaks, but also due to the
presence of a more intense isotropic component. The Laue-symmetrized anisotropic diffuse maps
for all datasets are displayed as section cuts in Fig. 4 and 5 in the ¢, and g directions, while other
visualizations (in the g, direction) are shown in Fig. S9. Independent datasets of the same protein
are very similar, as can be observed from their section cuts. This gives additional confidence that
the diffuse maps produced by our pipeline contain bona fide protein diffuse scattering data and are
not dominated by anisotropic background features or merging artifacts.

In addition to using visual inspection, we assessed the quality of the extracted diffuse maps
using quantitative metrics such as percent completeness, CCrricdel, and CCrae (Table 1). The
resolution-dependent curves of these metrics up to 1.4A are displayed in Fig. S10. Each dataset
is > 95% complete in each resolution shell and > 98% complete over the entire resolution range.
The CChriedel 1S > 0.7 in each resolution shell and > 0.9 overall. The CCpraue is lower than CCrriedel,
but it is still > 0.5 in each resolution shell and > 0.85 in the overall resolution range. These numbers
have been used to evaluate the data quality of diffuse maps before,'®!¥2° however, in this work we
find that the CCrricdel and CCraue metrics are less sensitive to the data quality than CCis. For
example, CCi.2 is roughly twice as sensitive as CCraue to changes in the diffuse map based on the
observed decreases of both metrics in the analysis of different processing choices (Tables 2 and
S6). In addition, as shown in Table 2, the CCLaue 1s > 0.75 even without key processing steps such
as the polarization correction or radial profile variance removal, where merging artifacts are clearly
shown in section cuts of corresponding diffuse maps (Fig. S11 and S12). This suggests that CCraue
fails to evaluate the data quality if there are contaminating background features in the images that
roughly obey Friedel or Laue symmetry but are not the desired protein-derived diffuse signal.
Based on these findings, we used CCi2 to evaluate internal consistency of a diffuse map in this
work, and increased emphasis on reproducibility to assess the data quality.
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The CCj,, values for each dataset are provided in Table 1, with the resolution-dependent
curves shown in Fig. 6. CCi, varies from 0.76 to 0.89 for all datasets, indicating that the
anisotropic diffuse features obey crystallographic point group symmetry reasonably well. CCy is
found to increase for the WT-1, WT-3, and G150A-2 datasets when the polarization correction is
not used in the diffuse data processing pipeline (C in Table 2). This increase in correlation upon
omitting an important correction is caused by the anisotropy in the diffraction pattern introduced
by X-ray polarization that does not arise from the sample. Despite not representing crystal-derived
diffuse features, these merging artifacts can greatly increase CCi, values when polarization-
induced features happen to coincide with a crystal symmetry axis. As shown in Fig. S11, these
polarization features are much stronger along some directions. Importantly, these artifacts are not
reproducible between datasets, indicating that inter-dataset reproducibility may be a valuable
additional data quality metric for diffuse scattering data.

Because anisotropic background features or artifacts can generate high values for CCiy,
another robust and unbiased quality metric for diffuse data is desired. To address this issue, we
introduced CCrep as a measure of the reproducibility of anisotropic diffuse maps of the same
protein collected from similar crystals. Collecting multiple datasets for the calculation of CCgep is
not a large experimental burden, as PADs and shutterless data collection have reduced the time
needed to collect a complete dataset to a few minutes at most synchrotron beamlines. The inter-
dataset metric CCrep is valuable because it is not expected to be influenced as much as CCi. by
artifacts or background scattering from the mount. Both metrics can be used together to increase
confidence in the assessment of the quality of the anisotropic diffuse data. These two metrics also
provide means to compare different data processing pipelines and to evaluate the effect of each
submodule during processing, as we discuss below.

The CChrep statistics is summarized in Table 1, with the resolution dependent CC curves of
dataset pairs of the same protein shown in Fig. 7. CCrep 1s > 0.8 for all datasets processed using
the standard pipeline, and drops to lower values when important steps are omitted, as shown in
Table 2. The detailed statistics of other diffuse data analysis choices is listed in Table S6. The
CCy2 value follows the same trend as CClLaue although it is more sensitive to diffuse data quality,
while the CCrep does not always follow the same trend as CCj 2. For example, the G150A-2 dataset
processed without the polarization correction (C in Table 2) shows that its CCraue value increases
by 0.07, and CCi, value increases by 0.13 due to the presence of merging artifacts with
symmetrical features (Fig. S11). In contrast, CCrep decreases by 0.31, demonstrating that the
improvement in CC12 might be due to background features or artifacts that are not reproducible in
independent samples. Using the standard processing pipeline, all ICH datasets display substantial
CCi2 and CChrep values.

The near-identical WT and G150A ICH dimeric protein structures (Ca RMSD~0.06 A)
provide an opportunity to evaluate the cross-correlation coefficient (CCcross) of their diffuse
scattering maps. WT and G150A crystallize in the same space group, while G150T crystallizes in
a different space group with a related cell to WT and G150A ICH (see Methods). The CCocross for
WT-1, for example, can be calculated as the average CC of CC(WT-1, G150A-1), CC(WT-1,
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G150A-2), and CC(WT-1, G150A-3). We find that the CCcross is > 0.83 for every WT and G150A
dataset (Table 1), and each data pair within the set of replicate WT and G150A datasets also has
CC > 0.8, as shown in orange-colored cells in Table S5. The high cross correlation between WT
and G150A diffuse datasets provides additional evidence that protein-derived diffuse scattering is
the dominant feature in the processed diffuse anisotropic maps and is consistent with the minor
differences in the crystal structures refined against the Bragg data.

Evaluating models of protein motion using the LLM and RBT models

Much of the motivation for collecting diffuse data has been to develop models of correlated
atomic motions. In this work, we develop LLM and independent RBT models as implemented in
Lunus!” (see Methods). The traditional LLM model assumes that atomic motions in
macromolecules have pairwise correlations that decay exponentially with a characteristic length
¥, even across molecular and unit-cell boundaries.’ The magnitude of the atomic displacement is
given by o, which is refined as a single value for all of the atoms in the unit cell. In contrast, the
RBT model assumes independent rigid body translation of the entire asymmetric unit.

Just as diffraction patterns can be mapped into reciprocal space to build 3D diffraction
volumes, simulated diffraction images can be generated using diffraction volumes obtained either
from experimental data or a model. This allows a direct visual comparison between the
experimental and simulated diffraction patterns in the same orientation. One example is shown in
Fig. S13, which compares the LLM model and the experimental data. Visual inspection of the
simulated and experimental diffuse scattering shows agreement in many regions, although the
simulated data display more detailed “granular” features, while the experimental data appear
somewhat more “smeared”.

The individual atomic ADPs are set to zero in the standard LLM model (I,(q) in Eq.
(2)).1%17 We wondered how well the diffuse data can discriminate between different models of
atomic displacement, and whether using the refined ADPs (either isotropic or anisotropic) from
the structural model might provide the LLM with a more accurate representation of variations in
atomic positions in the protein. We therefore considered a variation of the standard LLM where
I,(q) in Eq. (2) is replaced by Iz(q), computed using either isotropic or anisotropic individual
ADPs (Eq. (3) and Supplementary Material section IV). In addition to assessing the agreement
with the data using the CCrrm, we considered whether the optimal values of o were close to zero,
consistent with the predictions of Eq. (3) (see Methods).

The results of the LLM analysis differed when using crystal structures refined using
Refmac$5 vs. PHENIX. For the Refmac5-refined PDB files, the LLM model parameters and CCrim
for all ICH datasets using different ADP treatments are shown in Fig. 8 and summarized in Table
S8; the resolution-dependent CCrim curves are shown in Fig. S14. In the case of the WT-1 dataset,
the zero ADP model yields an overall CCLim of 0.67 to 1.4A resolution, with a correlation length
¥ = 6.7A and an overall atomic displacement ¢ = 0.40A. The CCrim using the isotropic ADP
model is higher (0.71), with a longer correlation length ¥ = 7.9A and much smaller ¢ < 0.01A,
consistent with an overall Debye-Waller factor of unity as in Eq. (3). The anisotropic ADP model
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yields a value of CCrrm that is comparable to the isotropic LLM (Table S8), despite being a
superior model of the Bragg data. The other datasets show that the CCrowm varies within 0.66-0.80
for the various ADP treatments. The highest CCruwm is consistently achieved in the isotropic ADP
LLM model, which varies within 0.70-0.80. The anisotropic ADP LLM model yields higher
correlations than the zero ADP LLM model for all datasets. The correlation length y is shortest (~
7A) in the zero ADP LLM model and longest (~ 8.5A) in the anisotropic ADP model. We observe
that the correlation length increases as the ADP model becomes more detailed in most (seven)
datasets in this work.

Despite the Refmac5 and PHENIX models having comparable model statistics and
agreement with the Bragg data, the PHENIX models have different distributions of ADP
anisotropy (Fig. S1). In particular, for the WT PHENIX models, the distribution deviates from the
“bell-shaped” distribution centered on ~0.45 that is typically observed in proteins (Fig. S1).3*° In
contrast, the Refmac5-refined models have anisotropy distributions that are closer to the average
of other proteins, with fewer extreme anisotropy values (Fig. S1). The differing anisotropy values
are not correlated with changes in the overall magnitude of the PHENIX- and Refmac5-refined
ADPs, which are highly similar (Fig. S2). We determined that the difference in the anisotropic
ADPs is due to different overall anisotropic scale parameters produced by the two programs (see
Methods, Table S4, and Supplementary Material section III). We were able to use these different
anisotropic scale matrices to convert the PHENIX-refined anisotropic ADPs into ones that closely
resemble those in the Refmac5-refined model and vice versa (see Methods; Fig. S1, S3, S4, S5;
Supplementary Material section III), confirming that the differences in the PHENIX and Refmac5
anisotropic ADP models are due predominantly to different anisotropic scaling parameters. This
does not exclude the possibility of residual anisotropic ADP differences arising from different
restraints in the two programs, which might be important for solvent atoms (see Fig. S1, S4, S5).

Although the different ADP models agreed equally well with the Bragg data (Table S1),
this was not the case for the diffuse scattering data. Results of the LLM analysis using either the
Refmac5- and PHENIX-refined input models are summarized in Tables S8 and S9. These two sets
of models are comparable for all ADP treatments except anisotropic ADPs, which show marked
differences. In general, the CCrLm values are higher and o values are lower for the Refmac5
anisotropic ADP models compared to those refined in PHENIX. The discrepancies between the
Refmac5 and PHENIX models are clearest for the three replicate WT datasets, where the
agreement with the data is lower for the PHENIX anisotropic ADP models (CCrim~ 0.6) than the
Refmac5-refined models (CCrim ~ 0.7); the PHENIX models also lead to higher o values in the
best-fit LLM (~ 0.2A), suggesting an inconsistency with the predictions of Eq. (3). The difference
in mean CCrrm and o between the Refmac5 and PHENIX models are larger than their standard
deviations across three replicate WT datasets, supporting the significance of the discrepancies.
However, the higher o value for the WT-3 dataset indicates that there might be issues that remain
in that Refmac5 anisotropic ADP model, or, alternatively, that there might be issues with the WT-
3 diffuse data.
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Compared to the low sensitivity of the Bragg data to anisotropic ADP differences as judged
by the similar Rgee values for the PHENIX and Refmac5 models (Tables S1, S10), the increased
sensitivity of the diffuse data suggested that diffuse scattering might potentially be useful for
modeling ADPs. However, the R factors are computed in a different way than CCrrLm and these
two statistics are not directly comparable to each other. We therefore used a measure of the
agreement with the Bragg data -- CCpugg -- that is computed in the same way as CCrrm, except
using Bragg data. Specifically, CCarge Was computed as the Pearson correlation between the
model and Bragg data intensities (as opposed to amplitudes) after subtracting the isotropic
component, and, importantly, without applying overall anisotropic ADP scaling. Therefore,
CChiragg and CCrLLm provide quantitatively comparable measures of model quality that can be used
to assess the relative sensitivity of Bragg and diffuse scattering data to these different anisotropic
ADP models. We compared CCgragg and CCrrm values obtained for the Refmac5 and PHENIX
models as well as the Refmac5 and PHENIX models that had been rescaled using the difference
anisotropic scaling matrices (see above; Methods). The results are summarized in Fig. 9 and Table
S11, and clearly indicate that the diffuse data are more sensitive to the differences in the ADPs
than the Bragg data. For example, whereas CCLLm for the PHENIX WT-1 model increases from
0.6 to 0.7 after ADP rescaling, the CCprg value changes by a much smaller amount, from 0.893
to 0.895.

Considered together, the improved anisotropic ADP CCrrw, the lack of change in CCpragg
(Fig. 9 and Table S11), the lower values of o, and the more typical distribution of anisotropies for
the Refmac5-refined and rescaled PHENIX anisotropic ADP models show that diffuse scattering
data favor anisotropic ADP models that possess more plausible features even when the Bragg
models have similar Rfree/Rwork and CCrragg Values. The implications of this observation for using
diffuse and Bragg data together to refine crystallographic models are discussed below.

Some studies have indicated that independent rigid-body motions of macromolecules are
responsible for a significant portion of the diffuse scattering signal.*** To investigate this
possibility for ICH, we implemented an independent RBT model in Lunus and used a metric
equivalent to CCrLm, called CCrpr, as a target for optimization.!” The optimal CCrpr and
displacement parameter (o) values are summarized in Table S12. The CCrpr(~ 0.55) is lower than
CCLLMm by about 0.1 for all datasets and ADPs treatments. The optimal o values in the zero ADP
RBT model are generally similar to those in the zero ADP LLM model. Interestingly, as in the
LLM models, using the Refmac5-refined anisotropic ADP models (Table S12) produces higher
CCrar values than the PHENIX-refined models (Table S13), although their differences are not as
large as those for the LLM model.

Studying the effects of various steps in the analysis pipeline

To determine which aspects of the diffuse scattering experiment and subsequent image
processing have the greatest impact on final data quality, we systematically omitted each step in
our pipeline, one at a time. Results of this analysis are partially shown in Table 2 and summarized
in Table S6. Data quality assessed using CC12 and CCgep does not change greatly when the solid-
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angle, detector absorption, and parallax correction are omitted. In contrast, omitting the non-crystal
background subtraction, polarization correction, or radial profile variance removal step
substantially degrades the data quality. The omission of non-crystal background subtraction
reduces the two quality metrics by 0.02-0.08 for all datasets, with the visualization only changed
slightly (Fig. S15). The omission of the polarization correction reduces CCrep of all datasets by
more than 0.1, with CCy varying in a less informative way for each dataset. The omission of
radial profile variance removal step reduces both quality metrics by 0.01-0.09 for most datasets
and decreases a few of them by more than 0.1. The significant effects of these three steps are
expected, as they are critical to remove contaminating anisotropic background intensity and to
reduce merging artifacts (Fig. S11, S12). In contrast, other processing steps, such as the solid-
angle, detector absorption, and parallax correction, only affect the radial intensity distribution in
the diffraction pattern but do not introduce angular anisotropies. In addition, the omission of
polarization correction increases the CCj2 value because of strong anisotropic artifacts (see Fig.
S11) that are introduced by X-ray polarization are not removed. In this case, also omitting the
solid-angle correction can scale down the contribution of high resolution data to the calculation of
correlations, leading to slight improvements for both CCi2 and CCrep in the overall resolution
range.

For the study of four different scale factors, the radial profile, overall, and water ring scale
factors follow the same trend and only vary slightly (Fig. S16). However, the Bragg scale factor is
significantly different from the other three, especially in the last half of each dataset where it
increases more than the others (Fig. S16). This means that the last half of the images will be scaled
to a much higher intensity level using the Bragg scale factor. The data quality metrics using each
scale factor treatment are summarized in Table S7, where the radial profile variance removal step
is turned on for (A)-(D) and turned off for (E)-(H). The radial profile, overall, and water ring scale
factors with radial profile variance removal (A)-(D) produce the same CCj, and CCgep for all
datasets, while the Bragg scale factor performs slightly worse. However, when the radial profile
variance removal step is turned off (E)-(H), all four scale factors perform much worse, with the
Bragg scale factor treatment producing very poor diffuse maps that are dominated by merging
artifacts, as shown in Fig. S17. Interestingly, only the Bragg scale factor (H) has a measurable
effect on the CCrLLm even though the data quality as quantified by CCi2 and CCrep significantly
decreases for other processing choices (D)-(G).

IV. DISCUSSION
Using multiple quality metrics to produce high quality diffuse scattering maps
Reliably extracting the relatively weak diffuse scattering signal from raw diffraction
images is vital for generating useful diffuse scattering maps for downstream applications. Several
different data quality metrics have been discussed in this article, including CCrriedel, CClLaue, and
CC 2 for evaluating internal consistency in diffuse datasets, and CCcross and CCrep for measuring
inter-dataset reproducibility. CCrae and CCrriedel €valuate whether the diffuse map follows the
expected symmetry but they have behaviors that make them less desirable as data quality metrics.
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In particular, CCraue values change by about half as much as CCi, values when perturbations to
the data processing are introduced (Tables S6, S7). Moreover, the value of CCraue can be rather
high even for a diffuse map with obvious merging artifacts (see Fig. S11). This is in part because
each voxel in a symmetrized map contains a contribution from the corresponding voxel in the
unsymmetrized map, leading to a nonzero correlation even for random datasets. The correlation is
highest for low-symmetry Laue groups: in P1, where CCraue corresponds to CCrricdel, the value is
about 0.7 for a random dataset. Because of this, we favor CCj; as a quality metric.

Despite the benefits of using CCj to assess data quality, a symmetry measure alone cannot
fully describe the data quality of a diffuse map, especially when the map is dominated by
anisotropic background features or artifacts which may approximately obey these symmetries.
This consideration motivated our use of the metric CCrep to validate whether the anisotropic
diffuse signal originates from protein crystal diffraction. The paucity of data quality metrics that
can discriminate between anisotropic diffuse scattering from the sample and from the background
is an important reason that different protocols for constructing diffuse maps have been
reported.'®?*3* The combined use of CCi/2 and CCrep provides a more complete picture of data
quality than CC;» alone. The use of these metrics also helped to assess quantitatively the
performance of our data processing pipeline and enabled the processing choice analysis in this
work. The CCcross 1s a special metric that can be used for two proteins with similar structures and
unit cell dimensions, such as WT and G150A ICH in our experiment. It may have particular value
when comparing changes in diffuse scattering between similar samples that have been subjected
to perturbations such as temperature change, mutation, etc.

Effects of each processing step in the diffuse map construction pipeline
Constructing and modeling the 3D diffuse map is now the standard method for diffuse
scattering analysis. Although different versions share a similar general workflow, the details may
vary. Benefiting from the introduction of two additional quality metrics, we are able to perform a
detailed analysis of the variations, yielding insight into the impact of each processing step on the
overall quality of the anisotropic diffuse map (Tables 2, S6, S7). The standard pipeline works
satisfactorily for all datasets giving CC12>0.76 and CCrep> 0.81. Eliminating the parallax, solid-
angle, and detector absorption corrections have small effects on both CCi2 and CCrep, perhaps
related to the fact that they only modulate the radial intensity distribution in the diffraction pattern.
In contrast, the non-crystal background subtraction, polarization correction, and radial profile
variance removal have stronger effects on the data quality of extracted diffuse maps. The omission
of these steps will affect the angular intensity distribution in the diffraction pattern and introduce
strong artifacts or anisotropic background features to the diffuse map, which leads to systematic
errors in the anisotropic diffuse intensity. It is important to note that the non-crystal background
image subtraction requires acquiring matched background exposures at the time of data collection.
The collection of non-crystal background patterns has not been consistently performed until
recently?! despite its simplicity. When a shadow from the capillary or beamstop is visible it can be
manually masked out from the detector image, but other anisotropic noise may not be visible by
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eye in the single diffraction pattern and thus can accumulate in the 3D diffuse map. We suggest
collecting non-crystal background patterns in rotation method experiments. For SFX experiments,
it might be possible to improve data quality by analyzing non-hit patterns and finding suitable
background patterns for subtraction. The radial profile variance removal is another important step
to avoid introducing merging artifacts in the diffuse map (Fig. S12). An alternative* to radial
profile variance removal is to subtract the radially averaged profile from each diffraction pattern
before the 3D merging step; indeed, in implementing our removal method, we found that the
difference in image radial profiles is similar to the first principal component. The diffuse map
construction pipeline is flexible to some extent and the main focus is to remove anisotropic noise
and avoid merging artifacts. Any steps that can introduce errors in the angular intensity distribution
in the diffraction pattern deserve careful attention.

In addition to the processing choice analysis, four different types of per-image scale factors
were also evaluated by comparing the data quality of diffuse maps processed by corresponding
scale factors. As shown in Results, the radial profile, overall, and water ring scale factors generate
similar results according to our data quality metrics, and perform moderately better than the Bragg
scale factor which was adopted similarly by Peck et al.?® for systems other than ICH, using scale
factors from XDS. When the radial profile variance removal step is turned off, all four scale factors
give much worse results than the standard pipeline and also perform differently, although Fig. S16
shows that curves of the radial profile, overall, and water ring scale factors only vary slightly for
all datasets. This indicates that data quality of the diffuse map is very sensitive to changes in the
scale factor when radial profile variance removal is absent, while the radial profile variance
removal step greatly reduces the impact of scale factors. In any case, for our ICH data, the Bragg
scale factor always behaves worse than the others, which can be inferred from its distinctive curve
that differs from the others especially for the last half images of each dataset. The Bragg scale
factor increases to higher values than the other three scale factors and this is probably induced by
the decrease of Bragg intensities in the last half diffraction patterns. The radial profile scale factor
therefore is preferred for extracting high-quality diffuse maps from ICH diffraction images.

Analysis of diffuse scattering using the LLM model

Using the standard LLM model with zero ADPs!®!7 (Eq. (2)), the agreement with the data
(CCLLm of ~ 0.7), the value of the atomic displacement ¢ (~ 0.4A), and the value of the correlation
length y (~7A) are all comparable to previous studies of other protein crystals using coarse-grained
diffuse data.'®!836 Using isotropic ADPs in the calculation of I,(q) in Eq. (2), the optimal LLM
models yielded slightly higher correlations with the data than using zero ADPs, and the differences
exceed the standard deviations of three replicate datasets for all protein forms. The CCrLm of 0.80
for G150T-3 is in the high end compared to the correlations reported from some previous
work. 61836 The fitted values of o for this model are very close to zero, indicating that the ADPs
from the Bragg analysis are consistent with the pattern of diffuse intensity predicted by Eq. (3).
The fact that including isotropic ADPs in the LLM leads to a low value of o lends additional
support to the utility of using a LLM model to analyze the ICH diffuse data. We consistently found
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that the refined correlation lengths y were longer for the isotropic (~ 8A) and anisotropic ADP
models (~ 8.5A) than in the zero ADP model (~ 7A) for all nine datasets. The dependence of the
correlation length on the complexity of the atomic displacement model was unexpected. However,
we note that the LLM used here involves only a single correlation length, whereas it is more likely
that displacements with multiple correlation lengths contribute to the actual diffuse signal.!!
Because atomic motions result in the loss of Bragg intensity and increased diffuse
scattering, there has been long-standing interest in combining Bragg and diffuse scattering data to
improve models of atomic motion in crystal structures.”%*! By using LLM models that incorporate
different anisotropic ADP models for the same structural model, we found that diffuse scattering
data can discriminate between more and less plausible representations of anisotropic atomic
motion, even when these models have similar Rfee/Rwork and CCpragg values and thus cannot be
distinguished easily based on Bragg data alone. Both Refmac5- and PHENIX-refined models agree
well with the Bragg data, however the PHENIX models consistently refine to lower anisotropy
values (corresponding to more anisotropic motion) than the Refmac5 refinements (see Tables S2,
S3) and sometimes have anisotropy distributions that deviate from the “bell-shaped” curve
centered on ~ 0.45 that is typically observed (Fig. S1).3**° We showed that the origin of this effect
is that these two widely used refinement programs can produce different anisotropic scaling
parameters even when the starting model and the datasets are identical. This results in different
anisotropy in the final model ADPs, even though the ADP magnitudes (i.e., Beq) are nearly
identical. This difference is understandable because the total anisotropy in the diffraction data
contains contributions from the crystal as a whole (anisotropic scaling parameters) and from
individual atomic motions (ADPs), whose values are highly correlated and thus they are refined
separately.*? Therefore, if different anisotropic scale parameters are initially refined by different
programs using otherwise identical starting models and datasets, there will be subsequent
compensatory changes in the refined anisotropic ADPs of the final models, as we have observed.
In addition, we find that when ICH LLM models that already include individual ADPs also have
substantial o values, the models tend to agree less well with the diffuse data; it is possible that
LLM analysis of o values might be used for other systems as a general indicator of when ADPs
deserve additional scrutiny. Interestingly, LLM models with anisotropic ADPs have CCrLm values
that are comparable to or lower than models using isotropic ADPs. The lack of improvement going
from the isotropic to anisotropic ADP model was unexpected because anisotropic ADPs contain
information about both the preferred directions and amplitudes of motion and substantially
improve the agreement of the refined models with the Bragg data (see Methods; Table S10). While
there are several lines of future investigation suggested by our results, the ability of diffuse
scattering data to discriminate between models of anisotropic atomic motion that are equally
consistent with the Bragg data indicates that joint refinement of models against Bragg and diffuse
scattering data -- an idea long discussed in the literature*! -- is promising and might result in more
accurate representations of atomic motion in proteins. We note that because ICH exhibits
controllable concerted helical motion, it makes an ideal system in which to explore the ability of
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diffuse scattering data to discriminate between various representations of correlated secondary
structure motions in the future.

Recent articles*** have suggested that independent rigid-body translations, like those in
our RBT model, are responsible for the majority of the diffuse signal in protein X-ray diffraction.
For ICH, we found that the LLM model agrees better with the diffuse data distributed between the
Bragg peaks than the RBT model for all datasets in all ADP models (CCrim and CCrgr values in
Tables S8 and S12). This result indicates that the large-scale diffuse features in ICH are more
accurately described using liquid-like rather than independent translational rigid-body motions. As
the values of y from the LLM fits are much smaller than the size of the protein, our results suggest
that the correlation lengths inherent in the RBT model might be too long. Note that we did not
consider rigid-body rotations, and that our findings do not exclude the possibility that rigid-body
motions coupled across molecular and unit-cell boundaries are important for modeling the sharper
diffuse features in the neighborhood of the Bragg peak.?!

It is important to interpret data quality metrics (such as CC12 and CCrep) and model quality
metrics (CCrLLm, CCrat) in their appropriate contexts. Data quality metrics pertain only to the
measured signal and are independent of model quality metrics, which quantify agreement between
a representation of the data and the measured signal. However, better data processing approaches
are expected to result in more accurate models. A prominent example is the development of paired
model refinement in concert with CC; for processing Bragg data, which uses the model Rwork and
Riee values obtained from refinements against datasets processed to different resolution limits in
order to determine the maximal resolution at which meaningful signal is present.?® Although we
did not use a full paired refinement-like workflow, we found that the CCrLwm values for the refined
LLMs were not sensitive to even serious degradation in the quality of the diffuse maps, unlike the
data quality metrics CC12 and CCrep. For example, CCrLm does not change significantly even
when the diffuse data quality is severely reduced, such as in the WT-3 dataset processed without
the radial profile variance removal step (D in Table 2). In this case, the data quality as quantified
by CCrep decreases by 0.11 while CCrim does not change. Therefore, we do not currently
recommend using model CC values as a metric for evaluating diffuse scattering data processing
decisions, although this may change with improved models of correlated motions.

Lessons about experimental best practices for the collection of macromolecular
diffuse scattering data

Our detailed analysis of the influence of various processing steps on the quality of diffuse
maps provides insights into important experimental aspects of collecting diffuse scattering data.
The weak intensity values of diffuse scattering compared to Bragg diffraction places a premium
on experimental approaches that reduce background scattering,?! and our results underscore the
importance of careful treatment of the background. Because the speed of modern data collection
makes collecting multiple datasets straightforward, we suggest collecting non-crystal background
images which, in the case of a rotation series, match the spindle angles of the crystal exposures.
There is broad agreement that the sample-derived signal should be maximized by using large
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crystals and by reducing sources of scattering in the beamline setup. However, the best choice of
the sample mount is still debated. In this study, we used thin-walled borosilicate glass capillaries
that are expected to have nearly isotropic background scattering. However, glass scatters X-rays
~10 times more strongly than plastics such as kapton,*’ and thus will produce an intrinsically
higher background that obscures weak diffuse scattering signals. In addition, depending on the
diffracted beam path through the capillary walls, the greater absorption of glass might lead to
anisotropy in the absorption of scattered X-rays. While most plastic mounts enjoy the advantage
of lower scattering, they generate an anisotropic background owing to scattering by partially
oriented molecules that compose the plastic. Our work and those of others*®?! indicate that
combining the collection and careful subtraction of background non-crystal images with PCA
analysis allows for effective removal of contaminating anisotropic background signals; however,
a model of the capillary would be required to account for anisotropic absorption effects. This
suggests that plastic capillaries with lower scattering may be preferable for diffuse scattering
experiments despite their more anisotropic background. An important consideration with plastic
capillaries is that the loop that is typically used to support the crystal in these mounts can generate
a large anisotropic background signal. Therefore, it is advisable to use a loop that is smaller than
the crystal and to aim the X-ray beam into portions of the crystal that are fully outside the loop
throughout the entire rotation range. This is important because it is difficult to collect well-matched
non-crystal background images that include empty loop scattering for later subtraction from the
diffraction images.

Prior diffuse scattering work has used large, well-diffracting crystals with comparable
thickness in all three dimensions.®!®!%2! Such crystals are advantageous for diffuse scattering
because they place comparable volumes of the crystal in the X-ray beam in all orientations during
data collection, resulting in images with similar diffraction intensity throughout the dataset. In
contrast, WT ICH crystals grew with a difficult, plate-shaped habit that required careful mounting
in order to orient the short axis of the plate co-linearly with the capillary axis so that the X-ray
beam illuminated similar thicknesses of crystal during rotation. Our initial inspection of diffuse
data collected from crystals that were not so carefully oriented indicated that the data quality
suffered when the X-ray beam illuminated very different thicknesses of the crystal during data
collection. We note that rods do not present this problem so long as the long axis of the rod is
roughly collinear with the rotation axis, which is their naturally preferred orientation during
capillary mounting. Although it is clear that diffuse scattering researchers previously appreciated
the importance of crystal size and shape for data quality, crystal morphology should be considered
by experimentalists when planning a diffuse scattering experiment, particularly if plate-shaped
crystals are being used.

Our use of the reproducibility metric CCrep showed that there was a much larger amount
of contaminating anisotropic intensity in the WT-3 dataset compared to the other two replicates,
which may not have been obvious had we not collected the other two datasets for comparison. The
radial profile variance removal approach was able to suppress these problematic features and
resulted in a usable final dataset that compared well with its replicates after processing based on
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the quality metrics. However, the LLM model of WT-3 still stands out as an outlier with a much
larger o in the anisotropic ADP model. The absence of comparable contaminating anisotropic
features in WT-1 and WT-2 excludes beamline components, detector issues, or other sources that
would be common to all three datasets. It is possible that the culprit is contaminating detritus (e.g.,
lint, a fiber from the wick, etc.) that may have adhered to the crystal used to collect the WT-3
dataset during mounting. This illustrates the sensitivity of diffuse scattering data to minor sources
of non-crystalline scattering that make a negligible contribution to the Bragg data and demonstrates
the value of collecting multiple datasets.

The intrinsic weakness of diffuse scattering data presents detection challenges that are
tempting to solve by increasing the X-ray dose. However, because diffuse scattering data are
typically collected from crystals at ambient (i.e., non-cryogenic) temperatures, radiation damage
is a major concern. In this regard, the ICH system was especially valuable, as it contains a
radiation-sensitive active site cysteine nucleophile (Cys101) that is readily photooxidized to
cysteine-sulfenic acid at X-ray doses lower than the typically quoted 3x10°> Gy dose limit for
ambient temperature Bragg data collection.”*** We did not see strong evidence of Cys101
oxidation in these datasets, although we cannot exclude that some minor oxidation occurred. The
minimal radiation damage in these sensitive crystals indicates that PADs, rapid shutterless data
collection, and the use of large beams (~100-200 um) can limit radiation damage and allow the
collection of usable diffuse scattering data from moderately radiation-sensitive protein crystals.
As in prior work,!® we collected usable Bragg and diffuse scattering data simultaneously, and it is
possible that such combined Bragg/diffuse datasets could be used for the global refinement of
macromolecular structure, atomic mobility, and correlated motions in the future.

V. CONCLUSION

In this work, we have developed an open-source data analysis pipeline dspack to extract
diffuse scattering features from X-ray diffraction patterns. Detailed studies were performed to
validate the effectiveness of this pipeline and demonstrate how each submodule and different
analysis variables can affect the data quality of extracted diffuse maps. We described our
systematic study of the reproducibility of diffuse scattering from isocyanide hydratase (ICH) with
nine datasets of three different protein forms demonstrating that the replicate diffuse datasets were
similar in pairwise comparisons (Pearson correlation coefficient (CC) >0.8). In particular, these
studies emphasized the importance for data quality of non-crystal background pattern subtraction,
radial profile variance removal of radial intensity profiles, and the approach to calculating per-
image scale factors. We introduced two unbiased and robust metrics (CCi2 and CCrep) to evaluate
the data quality of diffuse maps. We conclude that using CCi, alone can lead to artificially high
assessments of data quality, and that including CCrep can help to obtain a more reasonable
assessment of data quality. We found that diffuse scattering data are more sensitive than Bragg
data to different models of anisotropic atomic motion resulting from distinct anisotropic scaling
parameters, and that diffuse scattering data favor models with more typical distributions of atomic
anisotropy. In a comparison of the LLM and independent RBT models of protein motions inside

22


https://doi.org/10.1101/2021.01.24.428002
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.24.428002; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the ICH crystal, we found that the agreement with the data is higher for the LLM model than for
the RBT model, and that the LLM model agreement is in the high end among those reported in
some other studies.!®!%3¢ Overall, this study provides a new set of computational tools for the
analysis of diffuse scattering data, demonstrates the potential value of diffuse scattering for
evaluating some types of ADP models, and indicates that ICH is an excellent system for future
diffuse scattering studies.

SUPPLEMENTARY MATERIAL
See the supplementary material for additional figures, tables, and detailed descriptions of the
individual B factor LLM model.
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TABLE 1. The diffuse data quality statistics of each dataset. CCcross Was not evaluated for G150T
datasets due to the different space group.

Sample WT-1 WT-2 WT-3  G150A-1 G150A-2 G150A-3 GI150T-1 GI150T-2 GI150T-3
Compl! 98.36 100.0 99.30 100.0 98.80 100.0 99.84 100.0 98.97
CCriedel 0.93 0.91 0.91 0.93 0.91 0.91 0.91 0.92 0.94
CClaue 0.90 0.87 0.87 0.88 0.86 0.85 0.86 0.88 0.91
CCin 0.85 0.78 0.81 0.81 0.76 0.77 0.82 0.84 0.89
CCrep 0.86 0.84 0.85 0.82 0.81 0.82 0.88 0.87 0.89
CClross 0.83 0.84 0.85 0.84 0.84 0.85 --—- --—-

'Compl represents the completeness (%) of the diffuse data.

TABLE 2. The CC statistics of each dataset are analyzed with different data processing choices.
The diffuse map generated by each processing method was evaluated with five CC metrics:
CCFriedel, CCraue, CCi2, CCrep, and CCrim (anisotropic ADP model). Method A (standard
processing pipeline) contains real CC values of each dataset up to 1.4A, while other methods (B)-
(D) are filled with relative CC changes compared to those in method A. Cells in (B)-(D) are colored
with four different colors depending on the relative changes. A cell is colored as white if the
relative CC change is £0.00, as light blue/red if CC increases/decreases by less than 0.1, otherwise
it will be colored as dark blue/red.

Sample WT-1 WT-2 WT-3 G150A-1 G150A-2 G150A-3 G150T-1 G150T-2 G150T-3
A. Standard data processing pipeline

CCrric¢el 0.93 0.91 0.91 0.93 0.91 0.91 0.91 0.92 0.94
CCrae 0.90 0.87 0.87 0.88 0.86 0.85 0.86 0.88 0.91
CCiz 085 0.78 0.81 0.81 0.76 0.77 0.82 0.84 0.89
CCrep 0.86 0.84 0.85 0.82 0.81 0.82 0.88 0.87 0.89
CCrum 0.70 0.71 0.67 0.70 0.68 0.73 0.76 0.75 0.80
B. Standard pipeline without non-crystal background image subtraction
CCrricder -0.01 -0.01 -0.02 -0.01 -0.03 -0.02 -0.03 -0.02 -0.02
CCLme -0.01 -0.03 -0.02 -0.02 -0.03 -0.03 -0.03 -0.04 -0.02

CCiz  -0.02 -0.06 -0.04 -0.04 -0.07 -0.06 -0.06 -0.06 -0.03

CCrep -0.03 -0.05 -0.05 -0.08 -0.08 -0.05 -0.03 -0.05 -0.03

CCuvm__ -0.01 -0.02 -0.04 -0.03 -0.06 -0.02 -0.04 -0.03 -0.02
C. Standard pipeline without the polarization correction
CCruieder 10.04 +0.04 +0.04 +0.03 +0.05 +0.04 +0.03 +0.03 +0.02
CCrae +0.05 -0.02 +0.04 -0.01 +0.07 -0.03 +0.03
CCi2  10.08 -0.06 +0.08 -0.06 0.02
CCrep
CCrim
D. Standard pipeline without the radial profile variance removal step

CCrricaer -0.01 -0.01 -0.02 -0.02 -0.01 -0.03 -0.02 -0.03 -0.00
CCrLae -0.02 -0.06 -0.01 -0.05 -0.07 -0.03 -0.04 -0.03
CCiz  -0.04 -0.03 -0.09 -0.05 -0.07 -0.04
CCrep -0.05 -0.08 -0.04 -0.02 -0.04 -0.01 -0.02 -0.01
CCrm__ +0.01 -0.01 +0.00 -0.01 -0.01 -0.06 -0.01 -0.04 -0.01
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FIG. 1. Illustration of distinction between crystal exposure and background exposure. (Left)
experimental setup for diffuse data collection. (Right) the dark object in the center is the WT-1
crystal and the blue cross marks the X-ray beam position for crystal diffraction measurements. The
crystal is hydrated by a buffer solution inside the capillary. The non-crystal background images
were collected by translating the capillary so that the X-ray beam (red cross) only interacts with
the capillary, buffer, and air bubbles. Crystal and background diffraction pattern pairs were
collected in each orientation.
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FIG. 2. Data analysis pipeline from raw diffraction patterns to a Laue-symmetrized anisotropic
diffuse map. Numbers (1)-(6) correspond to the same image pre-processing substeps as mentioned
in Methods. Following this pipeline, the (A) crystal diffraction and (B) non-crystal background
patterns are applied with the user-defined detector mask and a deeper bad pixel removal step based
on pixel positions and intensities. The non-crystal background patterns are then scaled with the
exposure time and subtracted from crystal diffraction patterns, giving rise to the (C) background
subtracted patterns, followed by multiple pixel intensity and position corrections to produce the
(D) corrected diffraction patterns. Bragg peaks are predicted in positions and then replaced with
median intensities to generate (E) patterns without Bragg peaks, followed by image scaling and
the radial profile variance removal method which end up with the final pre-processed diffraction
patterns (F). These patterns are merged into a (G) 3D diffraction volume using indexing results
and orientations from the goniometer. This 3D volume is then applied with Laue symmetrization
to generate the (H) Laue-symmetrized diffraction volume, followed by the isotropic component
subtraction step which produces the final (I) Laue-symmetrized anisotropic diffuse map. For
improved visualization, panels (G)-(I) were created using more finely sampled diffraction volumes
than were used in data quality evaluation and modelling.

FIG. 3. Structure of ICH. The ribbon diagram for the WT ICH dimer is shown in blue, with
protomer A colored darker blue and protomer B lighter blue. The structure of G150T ICH (yellow-
green) is superimposed on protomer A of WT ICH. The location of residue 150 is represented as
a red sphere and the mobile helix is labeled H and shown in brighter colors.
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FIG. 4. Central slices of Laue-symmetrized anisotropic diffuse maps (standard pipeline) of nine
datasets perpendicular to g, direction. Each image is cut from the center of the corresponding
diffuse map which is three-time finely sampled over Miller indices H,K,L. Each subfigure shows
average voxels within a depth of 0.05A! in g, direction, and 0.02 x 0.02A"! in g.g- plane. Both g
and ¢. axes extend to 1.4A, and O represents the center in the reciprocal space. These finely
sampled diffraction volumes were used for improved visualization only and were not used in data
quality evaluation and modelling.
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FIG. 5. Central slices of Laue-symmetrized anisotropic diffuse maps (standard pipeline) of nine
datasets perpendicular to ¢. direction. Each image is cut from the center of the corresponding
diffuse map which is three-time finely sampled over Miller indices H,K,L. Each subfigure shows
average voxels within a depth of 0.05A"! in ¢ direction, and 0.02 x 0.02A™! in ¢.g, plane. Both gx
and ¢, axes extend to 1.4A, and O represents the center in the reciprocal space.

1.0
0.5
0.0
-0.5
-1.0
=15
-2.0

2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
=15
-2.0

33


https://doi.org/10.1101/2021.01.24.428002
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.24.428002; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1.0 1.0 1.0
0.8~ 0.8 0.8
582: —— wT1 82: —— G150A-1 82: —— G150T-1
o ' —e— WT-2 * —ea— (G150A-2 ) —e— G150T-2

0.2 - wr3 0.2+ —— G150a-3 0.2 —— G150T-3

T T T T T 0.0 T T T T T 0.0 T T T T T
10,0 39 25 18 1.4 10,0 39 25 18 1.4 1000 39 25 18 1.4
Resolution (4) Resolution (4) Resolution (4)

FIG. 6. The resolution dependent CCi.> curves for WT, G150A, and G150T datasets. Each curve
was calculated using PHENIX up to 1.4A, with the unsymmetrized anisotropic map as input.
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FIG. 7. The resolution dependent CC curves of dataset pairs of the same protein. Each subfigure
shows three CC curves between every two independent measurements for WT, G150A, and
G150T, respectively. For example, the curve of WT-1 & WT-2 was calculated as the CC between
Laue-symmetrized anisotropic diffuse maps of WT-1 and WT-2 datasets.
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FIG. 8. The LLM model statistics for all ICH datasets using Refmac5-refined PDB files with
different ADP treatments. The two subfigures display the best-fit CCrLm and average correlation
length y, respectively. Each dataset was analyzed using three different ADP models including the
zero, isotropic, and anisotropic ADP, respectively. The dashed vertical line separates WT, G150A,
and G150T datasets. The full LLM statistics are presented in Table S8.
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FIG. 9. CCprage and CCrLm between experimental data and calculated Refmac5, PHENIX models
with and without rescaling of the model B factors using Uy for the WT-1 dataset. The sensitivity
of CCLrm to changes in the ADPs is much greater than that of CCpurgg, indicating that diffuse
scattering data are more sensitive than Bragg data to anisotropic scale factor-related changes in
ADPs. The displayed CC values are calculated with a low resolution cutoff of 10 A because no
bulk solvent correction was used. Both the Bragg and diffuse intensities have had the isotropic
component removed as described in Methods.
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