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Mark Richardson†1

1Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States.
2Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin,
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Abstract: The application of machine learning to intracranial signal analysis has the potential to revolutionize deep brain

stimulation (DBS) by personalizing therapy to dynamic brain states, specific to symptoms and behaviors. Most decoding

pipelines for movement decoding in the context of adaptive DBS are based on single channel frequency domain features,

neglecting spatial information available in multichannel recordings. Such features are extracted either from DBS lead record-

ings in the subcortical target and/or from electrocorticography (ECoG). To optimize the simultaneous use of both types of

signals, we developed a supervised online-compatible movement decoding pipeline based on multichannel and multiple site

recordings. We found that adding spatial information to the model has the potential to improve decoding. In addition,

we demonstrate movement decoding from spatio-spectral features derived from cortical and subcortical oscillations. We

demonstrate between-patients variability of the spatial neural maps and its relationship to feature decoding performance.

This application of spatial filters to decode movement from combined cortical and subcortical recordings is an important

step in developing machine learning approaches for intelligent DBS systems.

Keywords: adaptive Deep Brain Stimulation; Movement Decoding; Machine Learning; Invasive Neural Oscillation;

Spatial Filters.

1 INTRODUCTION

Movement decoding from invasive neural oscillations has the potential to change the way implantable brain-

computer interfaces (BCI) can aid the therapy of movement disorders. Deep brain stimulation (DBS) of the

subthalamic nucleus (STN) or the globus pallidus internus (GPi) is an effective alternative treatment for patients

with Parkinson’s disease (PD) [1, 2]. Although continuous high-frequency DBS consistently improves motor

symptoms of PD patients [3], several side effects, such as dysarthria, dyskinesia and balance issues [4, 5] can

complicate treatment. In order to minimize such side-effects, closed-loop or adaptive DBS (aDBS), guided by the

patient’s electro-clinical state, has been proposed as a strategy to reduce the amount of unnecessary stimulation

energy delivered to the brain [6]. Closed-loop DBS devices therefore are bidirectional invasive brain-computer

interfaces (BCI) that can adapt stimulation in dependence of control algorithms that are informed by brain signals.
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The viability and success of bidirectional BCIs for aDBS strongly depends on the identification of reliable

biomarkers reflecting patients’ symptom severity and change with treatment, as well as on the computational

strategies used for neural decoding of such states and behavior. This will allow to augment aDBS strategies with

machine learning, e.g. by decoding kinematic parameters which could be used in the future to refine stimulation

parameters [7]. It has been shown that behavioral neural biomarkers can be identified from local field potentials

(LFPs) in the STN [8, 9], electrocorticography (ECoG) [10] or the combinational use of both [11, 12].

Making use of the spatio-spectral information has become an established approach in the field of non-invasive

BCI research, where the spatial information of the sensors can be incorporated into the decoding algorithms.

Importantly, due to the overlapping activity of multiple sources, specific neural population activity cannot be

observed directly and must be inferred with uncertainty [13]. Statistical generative models often assume that brain

signals arise from activity of uncorrelated sources, and that such sources appear distorted in the signal recording as

a consequence of a linear mixing (due to volume conduction), as illustrated in Figure 1. While the spatial signal to

source relationship is more precise in the field of invasive neurophysiology, the same underlying mechanisms are

at play, and invasive recordings are contaminated by a mix of local and distant (volume conducted) brain activity.

Figure 1: Illustration of the generative statistical model in invasive neurophysiology. The true neural sources

are inferred by unobservable source space signals. These sources are mixed to constitute the sensor space signals

(e.g. ECoG/STN-LFP). Spatial filters aim at estimating the sources by projecting the data in the sensor space to

the source space.

Spatial filtering methods aim to extract the relevant spatial information embedded in multivariate (multichan-

nel) signals. They directly work in the channel-time space of the signal, capturing spatial relationships of the

brain recordings. In the particular case of statistical spatial filters (Figure 1), the unobservable neural sources

are estimated via decomposition of the multichannel brain recording, i.e., by demixing the observable brain sig-

nals. The source power comodulation (SPoC) method [14] is a supervised spatial filter approach which allows

extraction of band-power related features correlated to a target signal (i.e. kinematic parameters, reaction times,

etc). Therefore, SPoC is well suited to extract spatio-spectral features for identifying neural biomarkers related to

movement, as recently showed in [15].

In this study, we constructed subject-specific ML-based invasive neurophysiology decoding models based on
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both the frequency and the spatial dimensions of the recorded brain activity, using a strategy that combines a

filter-bank analysis with a spatial filtering approach. A multiple recording site (STN-LFP and ECoG) dataset

from eleven (11) PD patients who performed a hand movement task during awake DBS implantation surgery

was used. The task comprised both contra- and ipsilateral movements with respect to the electrode localization.

A generalized linear model (GLM) with Poisson-like regularized regression was implemented for predicting the

movement. We evaluated regression performance of the model in two modalities: i) single recording site, in

which either ECoG or STN-LFP recordings were used as inputs to the decoding model and ii) multiple recording

sites, in which both ECoG and STN-LFP recordings were used together to train the model. Since spatial filters

were used, the solution was subjected to neurophysiological interpretation. We analyzed how band-power fea-

tures and brain recording modalities contribute to movement decoding. We found that multichannel approaches

have the potential to improve movement decoding as compared to a single-channel approach. This study ad-

vances the use of ML methods with multichannel and multiple site recordings for the potential development of

intelligent aDBS devices, taking into account the spatial information of recording sites. The source code used

throughout this work is available at GitHub https://github.com/Brain-Modulation-Lab/Paper_

SpatialPatternsMovementDecoding.

2 RESULTS

2.1 SPATIO-SPECTRAL DECOMPOSITION FOR MOVEMENT DECODING IN PD PATIENTS

We created a spatio-spectral pipeline for movement decoding in the context of invasive neuromodulation. The

pipeline is designed to work in real-time scenarios. Thus, data packets (segments) of 1000 ms were used to decode

the incoming target sample. These recording segments, either from ECoG, STN-LFP, or the combination of both,

were decomposed into 8 well-defined frequency-bands, ranging from theta to gamma band. The SPoC method

was used to estimate the neural source most correlated to the hand movement target signal at each frequency band.

Then a band-power feature was extracted over the estimated source. Thus, via SPoC, one spatio-spectral feature

per frequency-band was extracted. Concatenated features were then used to feed a GLM with Poisson sparse

regularized regression to predict the target. See Figure 2 and the Spatio-spectral multiple recording site decoding

pipeline in Materials and Methods for a detailed description of the model.

2.2 SPATIO-SPECTRAL FEATURES INFORM MOVEMENT IN PD PATIENTS

The SPoC method is designed to decompose, in a supervised manner, the multivariate brain recordings into

a set of source components. In theory, if enough training data is available for building the decoding model,

performance should be superior to that of a univariate approach. The advantages of using spatial approaches

are well-known for surface EEG based decoding [14], but given the more immediate relationship of sensor and

source, the impact of spatial methods for invasive neurophysiology remains to be elucidated. Here, we compared

the decoding capacity of our proposed spatio-spectral decoding model to a single channel pipeline [16]. While

the former uses all channels at once to build the model, the latter needs to evaluate the decoding capacity of each
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Figure 2: Schematic representation of the decoding pipeline. Segments of 1000 ms from the invasive multi-

channel recording were decomposed in eight frequency bands. The supervised spatial filtering SPoC method was

applied at each frequency band, extracting the source more correlated to the hand grip movement (target variable).

One spatio-spectral feature was extracted from each frequency band. Movement decoding was based on a GLM

regression model, in which a Poisson sparse penalized regularization was implemented.

electrode individually and then choose the best electrode to run the movement prediction. The comparative results

are shown in Figure 3.

We first found that a decoding model based on contralateral movements performed better than its ipsilateral

counterpart (e.g., meanR2 SPoC ECoG contralateral: 0.29, meanR2 SPoC ECoG ipsilateral: 0.13, p-value¡0.01).

Second, decoding based only on ECoG recording was consistently better than that based only on STN-LFP signals

(e.g., mean R2 SPoC ECoG contralateral: 0.29, mean R2 SPoC STN-LFP contralateral: 0.07, p-value¡0.01).

Third, the spatial information seemed to have the potential to improve the decoding capacity of the model (e.g.,

mean R2 SPoC ECoG contralateral: 0.29, mean R2 Best ECoG contralateral: 0.23, p-value=0.056).

2.3 COMBINING CORTICAL AND SUBCORTICAL SPATIO-SPECTRAL FEATURES DOES NOT IMPROVE MOVE-

MENT DECODING

ECoG and STN-LFP signals were recorded simultaneously in these subjects, allowing the definition of decod-

ing models trained on a combination of both recording site signals. The spatio-spectral features were extracted

from 8 frequency bands, resulting in overall 16 input features (8 features per modality). Figure 4 shows the

performance of the decoding model using ECoG + STN-LFP recordings against decoding models that only use

either ECoG or STN data. The statistical analysis indicates that there are no significant differences between the

combined ECoG + STN-LFP decoding model and the decoding model based only on ECoG signals (p-value=0.9).
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Figure 3: Spatio-spectral brain signal decoding approaches can be applied in invasive neurophysiology. Per-

formance comparison between the spatio-spectral approach (based on SPoC) and the single-channel (Best single

recording location) approach, evaluated for each type of brain signal: ECoG and STN-LFP. The performance in

decoding contralateral and ipsilateral movement is shown separately. Statistical significance according to Fried-

man+Nemenyi test is denoted by ** (p-value ≤ 0.01), * (0.01 < p-value ≤ 0.05). The green triangle indicates the

mean value.

Figure 4: Adding STN-LFPs features does not significantly improve ECoG-based decoding. Performance

comparison between multiple recording sites and single recording site approaches. The performance in decoding

contralateral and ipsilateral movements is shown separately. The plot on the right links decoding performance

across the same subject (dot) when using STN, ECoG and ECoG + STN-LFP data. Statistical significance ac-

cording to Friedman+Nemenyi test is denoted by ** (p-value ≤ 0.01), * (0.01 < p-value ≤ 0.05).
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2.3.1 Model interpretability of cases in which the combined ECoG+STN models outperformed models

trained on ECoG signals only

Although on average combining spatio-spectral features from cortex and subcortex recording did not outper-

form the approach using only ECoG, we further analyzed those cases in which the combinational use did improve

movement decoding. Thus, for three patients in which performance improvement was found by adding the STN

signal to the ECoG decoding model, a detailed model interpretability analysis was performed.

Figure 5 shows the solutions vector of the Poisson-like GLM together with the learned spatial patterns from

the cortex and subcortex signals at each frequency band considered. Interestingly, for these subjects, the decoding

model depends on spatio-spectral features coming from both cortical and subcortical regions. The spatial patterns

from selected features map movement-related brain activity.

3 DISCUSSION

In this study we implemented a spatio-spectral approach to decode movement using invasive brain recordings

in patients with Parkinson’s disease. The supervised spatial filter SPoC method was used to extract features at

eight pre-defined frequency bands. The predictive model was built via GLM with regularized Poisson-like sparse

regression. Contra- and ipsilateral movements were decoded separately. First, the spatio-spectral approach was

compared against a single channel approach. Second, the decoding pipeline was tested using combined ECoG

and subthalamic LFP recordings and compared to models only informed by ECoG. Model interpretability was

assessed by analyzing the cases in which improvement was found at the combined recording site approach.

3.1 SPATIAL INFORMATION IN INVASIVE NEUROPHYSIOLOGY

The use of blind source separation methods has been largely investigated for understanding brain networks

by using different brain imaging modalities. These methods have one objective in common: recovering the

unknown (unobservable) source signals that explain the observable brain activity [17]. The statistical generative

models on which the spatial filtering methods rely, assume that the recorded brain activity is a consequence of the

distributions of different rhythms across electrode contacts (see Figure 1).

In invasive neurophysiology, as compared to non-invasive electro- or magnetoencephalography, the recordings

better reflect the surface distribution of cortical sources, yet there is still a distortion effect between the activity

of sources and the recordings [18]. In this work, we used a supervised spatial filtering approach for finding the

neural source more correlated in power to the movement task. The performance of this spatial filtering method was

compared against a similar decoding model which relies on correlating the power of a single recording location

with movement [16]. Our results showed that introducing the spatial information to a band-power decoding

model has the potential to improve decoding capacity in invasive neurophysiology (see Figure 3). In particular,

this improvement was observed for the ECoG recording but not for the STN-LFP. This could be explained by

the fact that in our cohort the STN-LFP were recorded by using 4 contacts separated by 0.5 mm (see Data in

Materials and Method), and thus minimal relative spatial information could be extracted. Similarly, most of the
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Figure 5: Spatio-spectral information shows feature importance and maps brain activity related to grip-

force encoding. Model interpretability for three subjects (S000, S004, S008) in which the multisite recording site

outperforms the single site ECoG decoding capacity. One subject per figure subpanel. Left side: GLM coefficient

values; right side: the associated spatial pattern at each frequency band considered. Due to the nature of the

Poisson-like distribution, for better interpretation of the output, the coefficient values were transformed by taking

the exponential and then normalized. For illustration purposes, the spatial patterns are also normalized between

-1 and 1.

ECoG recordings were acquired by using low-dimensional ECoG grids (6 or 8 channels). We argue that higher

improvement could potentially be found for larger high-density ECoG electrodes.
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We would like also to note here the superiority of ECoG over STN-LFP for movement decoding (see figures

3 and 4). These findings are in line with Merk et al. [16] and could be explained by the fact that ECoG record-

ings have a better spatial resolution (more electrode contacts), providing a much stronger signal and allowing

measurements of higher amplitude oscillations than depth recordings [19].

3.2 COMBINING SPATIO-SPECTRAL FEATURES FROM MULTIPLE SITE RECORDINGS

Several works have investigated the relationship between STN oscillations and those from cerebral cortex

in patients with PD. It has been shown that the beta band of the STN is coupled with the cortex activity in

PD patients, and that such coupling changes with medication level [20]. Recently, the phase-locking between

STN oscillations and cortical beta oscillations has been reported to be different with respect to the cortical areas

being studied [21]. Thus, we investigated how the combinational use of spatio-spectral features coming from

simultaneously recorded cortical and subcortical activity could impact decoding performance. On average, we

found no gain when adding the STN-LFP features to the ECoG approach with respect to using only ECoG features.

The fact that no improvement was found in the combinational use of STN-LFP and ECoG features, however, could

reflect the fact that we explored here only features that rely on the band power information of the brain oscillations.

In fact, recently coherence between STN and motor cortex was shown to be relevant for differentiating motor states

in PD patients [12].

Interestingly, there were cases in which the combination of ECoG and LFP recordings approach did improve

the decoding capacity when compared to models informed by ECoG alone. To understand the underlying mech-

anisms that led to such improvement, the decoding model for those particular subjects was analyzed. One of

the main advantages of using blind-source separation methods for finding the neural sources is that the solution

is neurophysiologically interpretable. Since a linear model was used to learn the mapping between features and

movement target output, the coefficient values of the solution can depict feature importance. Figure 5 shows, for

each subject, the solution coefficient values associated to each spatio-spectral feature across the different brain

modalities and frequency bands. Common to these subjects is that both ECoG and STN coefficients show a strong

spatial pattern, with a frequency specific spatial peak of feature importance. Moreover, we note that the impact on

STN-LFP features varied significantly between these subjects. While in some cases only a few strong STN-LFP

features are selected (subject S000), there were other cases in which the associated weight for the subcortical

features was low (subject S008). An intermediate case is also shown in Figure 5, in which most of the STN-LFP

features are chosen by the model with different weights (subject S008). Generally, the shape of the spatial pat-

terns differs across subjects and frequency bands. Here, high-frequency oscillations have limited spatial spread

(the component contributes to recordings from few electrodes, and thus abrupt changes are observed in the spatial

patterns) while low-frequency oscillations present higher spatial spread, meaning that the source is contributing

to recordings from several electrodes [22, 23]. The individual spatial information cannot be inferred a priori, but

by visual inspecting the spatial patterns, feature importance, and model decoding could be anticipated.
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3.3 THE IMPORTANCE OF INDIVIDUALIZED SUBJECT SPECIFIC DECODING MODELS

For clinical standardization and out-of-the-box use of machine learning powered brain computer interfaces in

the future, the development of cross-patient decoding approaches would be beneficial. However, the results of

our study highlight the individualized spatio-spectral patterns that make such an across-patient implementation

difficult. Since spatial filters were used to extract the band-power features, we could investigate the neural activity

at each electrode location in each frequency band, by plotting the corresponding spatial pattern (Figure 5). The

spatial pattern at each frequency band reflects the mapping (in strength and sign) of the movement task-related

source at each electrode. Although some brain maps across subjects share similarities, each subject has its own

spatial map at each frequency band. Ultimately, for clinical brain computer interfaces, the individual spatio-

spectral activity patterns will be more informative for a patient specific precision medicine approach to adaptive

deep brain stimulation.

3.4 LIMITATIONS

Several limitations of this study are worth noting. First, we based our analyses on data obtained with a grip-

force task, which describes just one type of motor behavior. Second, the data was recorded during DBS implanta-

tion surgery, when participants were without medication or neurostimulation, an otherwise unnatural state relative

to typical condition. Given that such conditions change the state of recorded brain activity, further research is

needed to account for these potential sources of variability. Thirdly, in general, the number of contacts in both

STN and cortex recordings was sometimes too low to appreciate the spatial information of the signals. Lastly,

our numerical experiments were based on a single session per patient. Considering the lack of stationarity in the

electrophysiological brain data, future models ideally should be tested in several recording sessions, acquired at

different days.

3.5 CLINICAL RELEVANCE

While grip-force decoding per se, may not be required for adaptive stimulation paradigm, we would like to

argue that it is a very good application to investigate decoding methods, because it allows a fine-grained analysis

of brain signals and behavior. Importantly, grip-force represents movement vigor, which is known to be modulated

by the basal ganglia and the STN [24] and can be impaired in PD. Independent of the specific target variable of

grip-force, the results shown here are likely transferrable to other domains of symptom and behavior decoding,

which may be augmented by spatio-spectral methods in specific patients.

In conclusion, we have shown that movement decoding could benefit from i) the use of the spatial informa-

tion and ii) multimodal brain recordings. Our results suggest that by combining two recording modalities both

the decoding capacity of the model and model robustness can be improved in some cases, but an individual as-

sessment of features and model performances is required to achieve optimal decoding performances. The high

impact contribution of cortical recording for movement decoding supports the utility of ECoG for future invasive

bidirectional BCI devices.
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4 METHODS AND MATERIALS

4.1 DATA

The dataset used in this study (available upon request) corresponds to that from a previously published study

[25] and is comprised of subthalamic LFP and subdural ECoG recordings simultaneously acquired from 11 PD

patients (1 female, mean age ± SD = 60.1 ± 8.3 years, disease duration ± SD = 9.8 ± 4.0 years) undergoing

DBS implantation surgery. All subjects were recommended for surgery by a multidisciplinary review board and

provided written informed consent. The study was approved by the Institutional Review Board of the University

of Pittsburgh (IRB Protocol #PRO13110420). UPDRS Part III scores for the off-medication conditions were

collected in a time period of 1-3 months prior to surgery by movement disorder neurologists. Antiparkinsonian

medications were held off for at least 12 hours prior to intraoperative testing.

Subjects were instructed to press a hand-grip force transducer with either their right or left hand after a visual

cue appeared. The laterality of the movement (contra- or ipsilateral) was annotated with respect to the electrodes’

hemisphere localization. A trial was considered successful if the subject was able to maintain for at least 100

ms with the indicated hand at least 10% of their maximum voluntary grip force. Each trial was followed by a

variable inter-trial interval of 500–1000 ms. During the task, subjects were fully awake. No anesthetic agents

were administered for at least 1 hour prior to the task procedure. No medication was given during the task.

ECoG recording were acquired using 6, 8, 28 or 32 contacts electrode strips (Ad-Tech, Medical Instrument

Corporation), placed as close as possible to the hand knob area through the burr hole used for DBS lead implanta-

tion [26]. Ground and reference electrodes were placed in the shoulder and mastoid, respectively. LFPs from the

STN were recorded using a clinical four contacts DBS lead (model 3389, Medtronic). Data was sampled at 1000

Hz and band-pass filtered (0.3–250 Hz), using a Grapevine neural interface processor (Ripple Inc.). STN-LFP

data was re-referenced offline to a bipolar montage by referencing each contact to its immediate neighbor, thus

three new bipolar channels were generated after this procedure.

All the analogical signals, corresponding to the grip-force output, were processed offline to remove baseline

drift, by estimating the baseline using the optimization problem proposed in [27] and then subtracting it from the

original output. After this procedure, the grip-force output was a continuous signal with zero (rest) or positive

values (movement), where a value different from zero corresponds to the grip-force applied by the subject.

4.2 SPATIO-SPECTRAL MULTIPLE RECORDING SITE DECODING PIPELINE

A subject-specific invasive neurophysiology movement decoding model that combines a filter-bank analysis

with a spatial filtering approach was implemented. Data segments of 1000ms were decomposed in eight frequency

bands. Then the supervised SPoC spatial filtering approach was applied at each frequency band, extracting one

spatio-spectral feature per frequency band considered. The resulting feature vector was used as input to a GLM

with Poisson-like distribution sparse regression. A visual representation of the model is shown in Figure 2. The

decoding pipeline consists of three online-compatible main steps: i) data pre-processing, ii) feature learning and
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iii) movement decoding.

4.2.1 Online-compatible data pre-processing

Considering real-world applications, pre-processing steps should account for online real-time decoding chal-

lenges, that is, data is only available in packets, and future packets from the time point of decoding are not

available to the decoder or processing pipeline. Thus, in this work, consecutive epochs of 1000 ms in step of

100 ms were extracted from the brain recording in order to continuously decode the grip-force target. Com-

mon average reference was applied to the extracted ECoG segments. All epochs were notch (60/120/180 Hz)

and band-pass filtered in eight frequency bands of interest θ : [4-8] Hz, α: [8-12] Hz, lowβ: [13-20] Hz,

highβ: [20-35] Hz, allβ [13-35] Hz, lowγ: [60-80] Hz, highγ: [90-200] Hz, and allγ: [60-200] Hz). The

pre-processed brain recordings were arranged in a four-dimensional array accounting for the number of ex-

tracted epochs Nt, the number of channels Nc, the numbers of sample point per epoch Ns and the number of

filter-bands Nf . In the case of the target variable, in accordance with the 1000 ms time window length ex-

tracted in steps of 100 ms, it was downsampled by selecting the 100th sample point from the processed grip-

force. These online-compatible pre-processing steps were made by the py neuromodulation package (https:

//github.com/neuromodulation/py_neuromodulation).

4.2.2 Feature extraction via source power comodulation

Electrophysiological recordings can be modeled as a linear and instantaneous superposition of neural sources

[28, 29]. Let x(t) ∈ RNc be the brain recordings in the sensor space (raw data) at time t, where Nc denotes for

the number of channels. Let s(t) ∈ RNc be the sources (or components) and let A ∈ RNc×Nc be the mixing

matrix, whose ith column vector ai is what is known as spatial pattern. Considering additive noise, the following

definition holds to represent the generative model:

x(t) = As(t). (1)

In the context of spatial filtering, the objective is to estimate s(t) and thus, transform the signal from the sensor

to the source space. This sensor-to-source transformation can be obtained by means of the so-called blind source

separation methods, as follows:

ŝ(t) = WTx(t), (2)

where W = [w1, . . . ,wi, . . . ,wNc ] is a Nc ×Nc demixing matrix whose ith column vector corresponds to what

is known in the literature as spatial filter. Each of the spatial filter is meant to extract the signal from one source

while suppressing the activity of the others, such that the resulting projected signal is a close approximation of

the original source signal [14]. In the particular case of the SPoC algorithm, method simultaneously discovered

by [14, 30], the information contained in the target variable is used to guide the decomposition. Denoting z(t) to
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the target variable (grip-force movement), the first SPoC filter is found by:

wspoc = arg max
w∈RNc

wTCzw

wT C̄w
, (3)

where C̄ = 1
Nt

∑Nt
i Ci is the Euclidean average covariance matrix across the Nt data segments and C̄z =

1
Nt

∑Nt
i ziCi is the weighted average covariance matrix. The rest of the filters are obtained by solving a general-

ized eigenvalue decomposition problem [14]. As shown in [13], the matrix Wspoc recovers the inverse of mixing

matrix A defined in (1).

When data has been band-pass filtered, the power of the projected signal wTx(t) approximates the target

function z. Thus, after applying SPoC spatio-spectral features can be extracted by

var
[
wTx(t)

]
.

In this work, the SPoC method was applied at each frequency band considered. Each band-power feature was

extracted from the projected signal in the first SPoC component, taking the entirely 1000 ms for the θ band, last

500 ms for α, last 330 ms for the β bands and last 100 ms for the γ bands. Thus, at the end of the procedure eight

(8) spatio-spectral features were computed. It is timely to mention here that while offline learning of the spatial

filters Wspoc is needed, once such a matrix is learned, the spatio-spectral features can be extracted in real-time by

projecting the signals through Wspoc.

4.2.3 Generalized regularized linear models

Let H ∈ RNp×Nt be the matrix of Np predictors (features), where Nt is the number of extracted epochs. Let

z ∈ RNs be as before, the target variable. Traditional linear model assumes that the distribution of the output is

normal (z ∼ N ) and thus, it can be modeled as a linear combination of the predictors and suitable weights, that

is:

z = β0 + βH + ε,

where the model parameters β0, β ∈ RNp can be estimated using ordinary least squares or its regularized ver-

sions. In the particular case of the elastic-net penalty (enet), a compromise between the `1 and `2 norm of the

solution is imposed, and thus the solution vector and intercept can be found by solving the following unconstrained

regularized problem:

min
β0,β

1

N

N∑
i=1

L(zi, β0 + βThi) + λ[
1

2
(1− α)‖β‖22 + α‖β‖1], (4)

where L(·) is the loss function aimed to be minimized, hi is the ith column vector of H, and λ and α are positive

constants called regularization parameters. In particular, α ∈ [0, 1] and thus it balances between the Ridge

regression (α = 0) and LASSO regression (α = 1).

When working with non-normally distributed outputs, we can extend this approach by means of generalized

linear models (GLMs). The Poisson distribution is a discrete probability distribution that expresses the probability

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.06.06.447145doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.06.447145
http://creativecommons.org/licenses/by-nc-nd/4.0/


of a given number of events occurring in a fixed interval of time. Since the grip-force target is a non-negative

output which accounts for rest and movement events, we assume here, from practical reasons, that z can be

modeled as coming from a Poisson-like distribution. Under this assumption, a log - exp relationship between the

predictors and the output exists. Using the softplus formulating proposed by [31], the loss function L(·) in (4) is

given by:

L(β0,β) = −
∑
i

{
zi log(κi)− κi

}
, with κi = log(1 + exp(β0 + βThi)). (5)

4.3 MODEL TRAINING AND EVALUATION

In order to investigate the practical use of the spatial filters for the development of aDBS, different compu-

tational experiments were conducted. Since the dataset comprised bilateral movements (contra- and ipsilateral

to the electrodes’ position on the respective hemisphere), one decoding model was built for each subject at each

movement laterality. A 5-fold non-shuffled cross-validation procedure was performed, where the coefficient of

determination R2 was used for measuring the performance of the predicted grip-force when compared to the true

grip-force output. The SPoC algorithm was applied as a feature extraction method at each frequency band con-

sidered. The demixing matrix Wspoc was learned using the training set in each cross-validation fold, and features

from the unseen testing set were extracted using these estimated filters. One spatial filter was used to compute

the feature at each frequency band, leading to eight spatio-spectral features at the end of the filter-bank analysis.

Features were concatenated and z-score scaled. In order to avoid any circularity, the statistics (mean and standard

deviation) were estimated in the training set and then applied to scale the unseen testing test. These features corre-

sponded to the inputs to the Poisson-like GLM with enet penalty regression model. In order to equally balance the

Ridge and Lasso penalty, we set the α parameter of (4) equal to 0.5. The regularization parameter λ was searched

via Bayesian Optimization [32] over a 3-fold non-shuffled cross-validation on training data. Statistical analy-

ses were performed via the non-parametric Friedman test and the post-hoc Nemenyi test at level of significance

0.05 [33].

4.3.1 Computing environment

The corresponding Python source codes developed for this work are publicly available at https://github.

com/Brain-Modulation-Lab/Paper_SpatialPatternsMovementDecoding. We used the

py neuromodulation package (https://github.com/neuromodulation/py_neuromodulation) for

implementing the online-compatible pre-processing steps, the MNE-Python library [34] (https://mne.tools)

for implementing SPoC, the pyglmnet package (https://pypi.org/project/pyglmnet/) for running

the GLM [35], scikit-learn for constructing pipelines [36] (https://scikit-learn.org), and the Bayesian

Optimization package [37] (https://github.com/fmfn/BayesianOptimization) for finding the op-

timal regularization parameter.
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[30] A. de Cheveigné and L. C. Parra, “Joint decorrelation, a versatile tool for multichannel data analysis,” Neuroimage, vol. 98, pp.

487–505, 2014.

[31] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia, “Incorporating second-order functional knowledge for better option

pricing,” Advances in neural information processing systems, pp. 472–478, 2001.

[32] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization of machine learning algorithms,” in Proceedings of the

25th International Conference on Neural Information Processing Systems-Volume 2, 2012, pp. 2951–2959.
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