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Abstract

Background: Short-read whole genome sequencing (WGS) is a vital tool for clinical applications
and basic research. Genetic divergence from the reference genome, repetitive sequences, and
sequencing bias, reduce the performance of variant calling using short-read alignment, but the
loss in recall and specificity has not been adequately characterized. For the clonal pathogen
Mycobacterium tuberculosis (Mtb), researchers frequently exclude 10.7% of the genome believed
to be repetitive and prone to erroneous variant calls. To benchmark short-read variant calling, we
used 36 diverse clinical Mtb isolates dually sequenced with lllumina short-reads and PacBio long-
reads. We systematically study the short-read variant calling accuracy and the influence of
sequence uniqueness, reference bias, and GC content. a

Results: Reference based lllumina variant calling had a recall 289.0% and precision >98.5% across
parameters evaluated. The best balance between precision and recall was achieved by tuning the
mapping quality (MQ) threshold, i.e. confidence of the read mapping (recall 85.8%, precision
99.1% at MQ > 40). Masking repetitive sequence content is an alternative conservative approach
to variant calling that maintains high precision (recall 70.2%, precision 99.6% at MQ>40). Of the
genomic positions typically excluded for Mtb, 68% are accurately called using lllumina WGS
including 52 of the 168 PE/PPE genes (34.5%). We present a refined list of low confidence regions
and examine the largest sources of variant calling error.

Conclusions: Our improved approach to variant calling has broad implications for the use of WGS
in the study of Mtb biology, inference of transmission in public health surveillance systems, and
more generally for WGS applications in other organisms.

Background

lllumina short-read whole genome sequencing (WGS) followed by alignment to a reference
genome is widely used to identify genetic variants. Illumina sequencing and alignment can
confidently detect single nucleotide substitutions (SNSs) and small insertions or deletions (INDELs)
but is limited in several ways by its short ~100 bp target read lengths. First, short repetitive or
homologous query sequences are challenging to uniquely align to the genomic reference’?.
Second, genomic DNA extraction and sequencing library preparation of short-reads may be more
error or bias prone®”’. For example, regions with high GC content and/or low sequence complexity
may be particularly prone to PCR-dropout and reduced sequencing coverage’™. Third, the use of
a single reference genome introduces bias, especially when the genome being analyzed differs
substantially from the reference sequence'’. As the sequenced genome diverges from the
reference genome, short-read alignment becomes increasingly inaccurate and regions absent
from the reference genome are missed or poorly reconstructed.
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78  In contrast, long-read sequencing can generate high confidence complete genome assemblies,
79  which can also be used to benchmark lllumina WGS. For example, long-reads generated by PacBio
80  sequencing (with lengths on the order of ~10 kb) are ideal for assembling complete bacterial
81  genomes and identifying variants in repetitive regions'®. Although individual PacBio reads have a
82  considerably higher per base error rate (10-15%) than Illumina, the randomly distributed nature
83  of the errors allows for high coverage sequencing runs to converge to a high accuracy consensus'>.
84  More recently, circular consensus sequencing has further improved PacBio long-read per base
85  accuracy to levels on par with lllumina'. Alternatively, hybrid strategies that combine less accurate
86  long-reads and short Illumina reads can offer both high base-level accuracy and continuity of the
87  final assembly'">,
88
89  Mycobacterium tuberculosis (Mtb) is a globally prevalent pathogenic bacterium with a ~4.4 Mbp
90 genome known for high GC content, large repetitive regions, and an overall low mutation rate.
91  Owing to the clonality and stability of the Mtb genome, this organism is particularly well suited
92  for systematically identifying the sources of error that arise when short-read data is used for
93  variant detection. Approximately 10% of the Mtb reference genome (H37Rv) is regularly excluded
94  from genomic analysis because it is purported to be more error prone and enriched for repetitive
95  sequence content’®. This 10% of the Mtb genome, hitherto regions of putative low confidence
96  (PLC), span the following genes/families: 1) PE/PPE genes (N=168), 2) mobile genetic elements
97  (MGEs) (N=147), and 3) 69 additional genes with identified homology elsewhere in the genome’.
98  Despite their systematic exclusion from most Mtb genomic analyses'’~"°, PLC regions are yet to
99  be evaluated systematically for short-read variant calling accuracy. Here, we use long-read
100  sequencing data from 36 phylogenetically diverse Mtb isolates to benchmark short-read variant
101  detection accuracy and study genome characteristics that associate with erroneous variant calls.
102

103 Results

104 High confidence Mtb assemblies with hybrid short- and long-read sequencing
105  For this study, PacBio long-read and Illumina sequencing was performed for 31 clinical Mtb
106  isolates. The resultant data was combined with publicly available paired PacBio and Illumina
107  genome sequencing of 18 Mtb isolates from two previously published studies®®?'. From these
108  datasets, a total of 38 clinical isolates were selected for having a) paired end lllumina WGS with
109  median sequencing depth > 40X relative to the Mtb reference genome, and b) no evidence of
110 mixed infections or sample swaps (Additional File 2).

111

112 Across these 38 isolates, the mean sequencing depth relative to the H37Rv reference genome was
113 84x (IQR: 67x - 107x) for lllumina and 286x (IQR: 180x - 367x) for PacBio. We performed de novo
114  genome assembly and iteratively polished each assembly with the PacBio and Illumina reads
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115  generating a complete circular assembly for 36/38 isolates (Methods). For uniformity in assembly
116  completeness, we excluded the 2 non-circular assemblies from downstream analysis.

117

118  We assessed the accuracy of the de novo PacBio assemblies by examining the profile of errors
119  corrected during the Illumina polishing step (Supp. Figure 1, Additional File 3). Across all 36
120  assemblies, erroneous 1-bp insertions and deletions (INDELs) made up 97.9% of all corrections
121 made by lllumina polishing with Pilon??. The median number of erroneous insertions and deletions
122 per assembly was 5 (IQR: 2 - 88) and 15 (IQR: 4 - 37) respectively. Very few of the errors corrected
123 during lllumina polishing were single nucleotide changes; median of 0 (IQR: 0 - 2) across all
124  polished 36 genome assemblies. Overall, the number of changes made during lllumina polishing
125 of the de novo PacBio assembly was negatively correlated to PacBio sequencing depth
126  (Spearman’s R = -0.458, p < 4.9e-3) (Supp. Figure 1C).

127

128  The 36 assemblies spanned the Mtb global phylogeny and had a high degree of conservation in
129  genome structure and content relative to the H37Rv reference genome (Figure 1, Supp. Figure
130  2): Average Nucleotide Identity (ANI) to H37Rv (99.84% to 99.95%), genome size (4.38-4.44 Mb),
|131 GC content (65.59 - 65.64%), and predicted gene count (4017 - 4096 ORFs) (Additional File 2).
132

133 In accordance with the small variant benchmarking guidelines of Global Alliance for Genomics &
134 Health® (GA4GH), we excluded a small subset of regions with ambiguous ground truths on a per
135  isolate basis (Methods). These ambiguous regions fell into 2 categories: a) variable copy number
136  relative to the H37Rv reference genome or b) difficult to align regions due to a high level of
137  sequence divergence relative to the reference genome. We excluded these regions from our
138  performance evaluation in this paper due to their difficulty of interpretation (Additional File 4).
139  The percentage of the genome identified as ambiguous was consistently lower than 1% (median:
140  0.41%, IQR: 0.28% - 0.49%) across all assemblies. We observed that for the regions that were
141  frequently ambiguously (Ambiguous in > 25% of isolates, Additional File 5), 96.8% of bases were
142 from regions which overlapped with recognized PLC regions.

143

144  Empirical base-level performance of lllumina

145  To measure the consistency and accuracy of lllumina genotyping across the Mtb genome, we
146  defined the Empirical Base-level Recall metric (EBR) for each position of the H37Rv reference
147  genome (4.4 Mb, Additional File 6). EBR was calculated as the proportion of isolates for which
148  Illumina variant calling made a confident variant call that agreed with the ground truth, hence a
149  site with a perfect (1.0) EBR score requires lllumina read data to pass the default quality criteria
150 (Methods), and then agree with the PacBio defined ground truth for 100% of the isolates
151  (Examples in Figure 2). EBR was significantly lower within PLC regions (mean EBR = 0.905, N =
152 469,501 bp) than the rest of the genome (mean EBR = 0. 998, N = 3,942,031 bp, Mann-Whitney
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153 U Test, P < 2.225e-308) (Figure 3A, Table S1). But EBR was not consistently low across PLC
154  regions, with 67% of PLC base positions having EBR > 0.97. EBR averaged by gene (gene-level
155  EBR) also showed heterogeneity across PLC regions with 62.6%, 61.3% and 82.6% respectively of
156  the MGEs, PE/PPE, and previously classified repetitive genes having gene-level EBR > 0.97 (Figure
157 3B, Supp. Figure 3, Tables S2-S3, Additional File 7). All other, non-PLC, functional gene
|158 categories had a median gene-level EBR =1, among these only 14 non-PLC genes had a gene-
159  level EBR < 0.97.

160

161  Characteristics of regions with low empirical performance

162  Across all 36 isolates evaluated, we observed 1,825,385 sites where Illlumina failed to confidently
163  agree with the inferred ground truth. These low recall sites were spread across 267,471 unique
164  positions of the H37Rv reference genome with EBR < 1. We explored the underlying factors
165  associated with low recall at these positions using the associated filter and quality tags provided
166 by the variant caller, Pilon (Methods, Table S4). Across the 1,829,181 low recall sites, the
167  distribution of outcomes included: a) 62.78% low coverage (LowCov), b) 30.74% falsely called as
168  deleted (Del) with or without low coverage or other tags, ) 6.24% were missed deletions tagged
169  as PASS, d) 0.03% (669 sites) were false base calls (reference or alternate) tagged as PASS, e) 0.25%
170  remaining positions were labeled as ambiguous (Amb) due to evidence for two or more alleles at
171  afrequency > 25%.

172

173 Among all low recall sites annotated as with a Low Coverage tag: (a) 45.8% were due to insufficient
174  total coverage of aligned reads (sequencing bias or extreme sequence divergence, total Depth <
175 5), (b) 27.6% lacked uniquely aligning reads (repetitive sequence content, mapping quality = 0),
176  and (c) 26.6% were due to low confidence paired-end alignments that did not pass Pilon’s
177  heuristics (likely structural variation causing improper paired-alignment orientation).

178

179  Repetitive sequence content

180  We identified repetitive regions in H37Rv and evaluated their relationship with low EBR using the
181  pileup mappability metric (Methods). Pileup mappability scores range from 0 to 1, where 1
182  represents a genomic position where all overlapping sequence K-mers are unique in the genome
183  of interest within a similarity threshold of E mismatches. We calculated pileup mappability
184  conservatively with a K-mer size of 50 base pairs and up to 4 mismatches (P-Map-K50E4,
185  Additional File 6). P-Map-K50E4 is lower in PLC regions (mean = 0.856) than non-PLC regions
186  (mean = .997), (Mann-Whitney U Test, P < 0.001) (Figure 3A). Yet, 69.7% of positions in PLC
187  regions had P-Map-K50E4 scores of 1, indicating uniquely alignable sequence content even with
188  sequence lengths as short as 50 bp (Table S5). At the gene-level, PE/PPEs and MGEs had lower P-
189  Map-K50E4 than the rest of the genome (Wilcoxon, P < 2e-308) (Figure 3B, Table S6, Additional
190  File 7) but 34.5%, and 32.7% of these genes respectively had perfect (1.0) P-Map-K50E4 across
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191  the entire gene body. Previously identified repetitive genes (N = 69) had a gene-level P-Map-K50
192 below 1 which is expected given that this was their defining feature®®, but for the majority (51 of
193  69), median mappability was greater than 0.99, indicating that a high proportion of their sequence
194  content was actually unique. Non-PLC functional categories had a median gene level P-Map-
195 K50E4 = 1.0 (Supp. Figure 3, Table S7). Genome-wide P-Map-K50E4 and EBR scores were
196  moderately correlated (Spearman’s p= 0.47, P < 2e-308). Thirty percent of all genome positions
197  with EBR < 1.0 also had a P-Map-K50E4 score below 1.0.

198

199  Sequencing bias in high GC-content regions

200  Across several sequencing platforms, high-GC content associates with low sequencing depth due
201  to low sequence complexity, PCR biases in the library preparation and sequencing chemistry*™®.
202  We assessed the sequencing bias of lllumina and PacBio across each individual genome assembly
203  using the relative depth metric* (the depth per site divided by average depth across the entire
204  assembly) to control for varying depth between isolates. On average with Illumina, 1.2% of the
205 genome had low relative depth (< 0.25), while for PacBio sequencing the average proportion of
206  the genome with low relative depth was 0.0058% (Mann-Whitney U Test, P < 0.001). Both
207  sequencing technologies demonstrated coverage bias against high-GC regions, with more
208  extreme bias for lllumina than PacBio (Figure 4, Additional File 8). Across all base pair positions
209  with local GC% > 80%, using a window size of 100 bp, the mean relative depth was 0.79 for PacBio
210  and 0.35 for lllumina. Genome-wide, EBR was significantly negatively correlated with GC content
211  (Spearman’s p= - 0.12, P < 2e-308), but this correlation was weaker than that observed with
212 sequence uniqueness (P-Map-K50E4, as above Spearman'’s p=0.47).

213

214  False positive SNS variant calls

215  Next, we focused specifically on regions with high numbers of false positive SNSs identified
216  through comparison with the ground-truth variant calls. We examined the distribution of false
217  positive SNS calls across the H37Rv reference genome using a realistic intermediate variant
218 filtering threshold of mean mapping quality at the variant site (MQ > 30, Figure 5, Additional
219  File 9). The top 30 regions ranked by the number of false positives (23 genes and 7 intergenic
220  regions) contained 89.4% (490/548) of the total false positive calls and spanned 65 kb, 1.5% of the
221  H37Rv genome. Of these 30 false positive hotspot regions, 29 were either a PLC gene or an
222 intergenic region adjacent to a PLC gene: 17 PE/PPE genes, 3 MGEs, 2 were previously identified
223 repetitive genes®, and 7 PLC-adjacent intergenic regions. Across all false positives, the PE-PGRS
224 and PPE-MPTR sub-families of the PE/PPE genes were responsible for a large proportion (45.4%)
225  of total false positive variant calls. Of all the 556 false positives SNSs evaluated (MQ > 30), only
226 14 were detected across 4 non-PLC genes: Rv3785 (9 FPs), Rv2823c (1 FP), plsB2 (2 FPs), Rv1435c
227 (2 FPs).

228
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229  Masking to balance precision and recall

230 A common approach for reducing Mtb false positive variant calls is to mask/exclude all PLC
231  regions from variant calling. Here we investigated two variations on this that utilize directly
232 reference sequence uniqueness and variant quality metrics. We compared: (1) masking of regions
233 with non-unique sequence, defined as positions with P-Map-K50E4 < 1, (2) No a priori masking
234 of any regions, and (3) masking of all PLC genes (the current standard practice). We then filtered
235  potential variant calls by whether the variant passed all internal heuristics of the Pilon*-based
236  variant calling pipeline (Methods) and studied the effect of varying the mean mapping quality
237  (MQ) filtering threshold from 1 to 60 (Figure 6). We computed the F1-score, precision and recall
238  of detection of SNSs and small indels (<=15bp) for each masking schema and MQ threshold
239  across all 36 clinical isolates (Methods, Additional File 10).

240

241  For SNSs, mean recall ranged from 63.6% to 89.0%, and precision ranged from 98.5% to 99.97%
242 across the three schemas (Figure 6A). At a threshold of MQ > 40, we observed the following mean
243 SNS performances: 1) Masking non-unique regions, F1 = 0.87 (Precision = 99.8%, Recall = 77.9%),
244 2) no masking of the genome, F1 = 0.92 (Precision = 99.1%, Recall = 85.8%), 3) Masking PLC
245  genes, F1 = 0.82 (Precision = 99.6%, Recall = 70.2%). Based on F1 score, no masking of the genome
246 had the highest overall performance, but masking non-unique regions had the highest precision.
247  Decreasing the MQ threshold to an optimal value for F1 score resulted in similar performance for
248  schema-1 and 3, but a balance of lower precision and higher recall for schema-2. Increasing the
249  MQ threshold to 60 optimized precision but at considerable loss of recall for all three schemas
250  (Table 1). Performance was most sensitive to the MQ threshold under schema 2 (no masking).
251

252  For INDELs (1-15 bp), precision was comparable to SNSs (96.2% - 100%, Figure 6B), while recall
253  was lower (48.9% - 82.4%). At a threshold of MQ > 40, we observed the following mean INDEL
254  performances: 1) Masking non-unique regions, F1 = 0.83 (Precision = 98.2, Recall = 72.1%), 2) no
255  masking of the genome, F1 = 0.89 (Precision = 98.9, Recall = 80.8%), 3) Masking PLC genes, F1 =
256 0.76 (Precision = 99.1%, Recall = 61.5%). Variant calling performance of short (1-5bp) INDELs was
257  comparable to SNSs, and the limited performance for INDELs was largely driven by low recall of
258 longer (6-15bp) INDELs (Supp. Figure 5, Additional File 11).

259

260  Structural variation

261  We assessed the effect of structural variation (SV), of length > 50 bp, a common source of
262  reference bias, on variant calling performance (Methods). Detected SVs included the known
263  regions of difference associated with Mtb Lineages 1, 2 and 3 (RD239, RD181, RD750
264  respectively)®>?® (Supp. Figure 6). Across all 36 isolate assemblies, we observed a strong negative
265  correlation between average nucleotide identity to the H37Rv reference and the number of SVs
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266  detected (Spearman’s R = -0.899, p < 1.1e-13, Supp. Figure 7). Additionally, we observe that 70%
267  of detected SVs overlapped with regions with low pileup mappability (P-Map-K50E4 < 1.0).

268

269  We compared SNS variant calling performance by proximity to an SV and sequence uniqueness
270  (Figure 7, Additional File 12), dividing variants into four groups: (1) SNSs in regions with perfect
271  mappability (Pmap-K50E4 = 1) with no identified SV (87.3% of total 47,412 SNSs), (2) SNSs in
272 regions with low mappability (Pmap-K50E4 < 1) with no identified SV (10.9% of SNSs), (3) SNSs in
273  regions with perfect mappability within 100 bp of any identified SV (0.8% of SNSs), and (4) SNSs
274  in regions with low mappability within 100bp of any identified SV (1.0% of SNSs). Variant calling
275  performance decreased most sharply in regions with evidence for structural variation, especially
276  when sequence content is also non-unique (Region types 3 & 4 respectively). Additionally, region
277  type (2), or low mappability sequence content with no nearby SV, demonstrated reduced
278  performance.

279

280 Refined regions of low confidence

281  Based on the presented analysis, we define a set of refined low confidence (RLC) regions of the
282  Mtb reference genome. The RLC regions are defined to account for the largest sources of error
283  and uncertainty in analysis of lllumina WGS, and is defined as the union of A) The 30 false positive
284  hot spot regions identified (65 kb), B) low recall genomic regions with EBR < 0.9 (142 kb with 30
285 kb overlap with (A)), and C) regions ambiguously defined by long-read sequencing (Methods, 16
286  kb). We additionally evaluated the overlap between all detected SVs and the three RLC categories:
287  RLC subset (A) overlapped 28% of SVs, RLC subset (B) overlapped with 65% of SVs, RLC subset (C)
288  overlapped with 14% of SVs.

289

290 In total, the proposed RLC regions account for 177 kb (4.0%) of the total H37Rv genome
291  (Additional File 13) and their masking represents a conservative approach to variant filtering.
292 Across the 36 isolates evaluated, masking of the RLC regions combined with a SNS filter of MQ >
|293 40 would produce a mean F1-score of 0.882, with a mean precision of 99.9% and a mean recall of
294 78.9%.

295

296 Discussion

297  The analysis and interpretation of Illumina WGS is critical for both research and clinical
298  applications. Here, we study the ‘blindspots’ of paired-end Illumina WGS by benchmarking
299  reference-based variant calling accuracy using 36 Mtb isolates with high confidence complete
300 genome assemblies. Overall, our results improve our general understanding of the factors that
301  affect lllumina WGS performance. In particular, we systematically quantify variant calling accuracy
302  and the effect of sequence uniqueness, GC-content, coverage bias, and structural variation. For
303  Mtb, we demonstrate that a much greater proportion of the genome can be analyzed with lllumina
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304 WGS than previously thought and provide a systematically defined set of low
305  confidence/troublesome regions for future studies.

306

307  Approaches to benchmarking variant calling from Illlumina WGS vary by field and species of
308 interest and more standardization is needed?®’. Variant calling accuracy is usually benchmarked
309  through in silico variant introduction with read simulation or otherwise using a small number of
310 reference genomes that seldom capture the full range of diversity within a particular species. Our
311  benchmarking exercise is unique in using a large and diverse set of high quality genome
312 assemblies that are built using a hybrid long and short read approach. We further demonstrate
313  that PacBio long-read sequencing is much less prone to coverage bias and is able to generate
314  complete circular bacterial assemblies bridging repetitive regions in the majority of isolates with
315 amedian depth > 180x. The assemblies we generate will be an important community resource for
316  benchmarking future variant calling or other WGS based bioinformatics tools.

317

318  The benchmarking results clearly demonstrate that low variant recall is a major limitation of
319  reference-based lllumina variant calling, which achieved at most 89% recall at the optimal F1-
320  score. Precision of variant calling using lllumina on the other hand was very high, with the small
321  number of false variant calls concentrated in repetitive and structurally variable regions. We find
322  that the best balance between precision and recall is achieved by tuning the variant mean
323 mapping quality threshold, i.e. confidence of the read mapping. The specific mapping quality
324  threshold will likely vary by species. For a GC-rich organism with highly repetitive sequence
325  content like Mtb, a threshold of 40 achieved 85.8% recall and 99.1% precision.

326

327  Studying specific sources of low recall from Illumina, we identified insufficient read coverage to
328  be the major driver, due not only to repetitive sequence content but also due to high-GC content
329  and other sources of coverage bias. We further identified regions near structural variation to be
330  particularly prone to low recall and precision. Of the variants we study, longer INDELs were recalled
331  at lower rates than SNSs or INDELs < 6bp in length. These observations support ongoing efforts
332 by the bioinformatics research community to build graph-reference genomes and align short
333  reads to these graphs. Using a graph pan-genome built with a diverse set of Mtb reference
334  genomes, there is great potential to both increase recall and precision of variant calling in
335  divergent regions of the genome.

336

337  An alternative and generalizable approach to balancing precision and recall of reference-based
338 Illumina variant calling is to mask repetitive (low mappability) regions. This simple approach does
339  not require tuning the mapping quality threshold against a ground truth set of assemblies and
340 relies instead on computing the pileup mappability metric across the reference sequence. This fills
341  a gap for variant calling in other organisms using short-read mapping where low confidence
342  regions may not already be defined. Compared with tuning against a ground-truth set of
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343  assemblies, this masking approach is conservative: for Mtb and filtering by MQ > 40, precision is
344  slightly higher at 99.8% vs 99.1% respectively and recall is lower at 77.9% vs 85.8% respectively.
345
346  Given Mtb’s genomic stability and clonality, this organism is particularly well suited for
347  systematically identifying the sources of variant calling error from short-read data. Although
348  10.7% of the Mtb reference sequence is commonly excluded from genomic analysis, our results
349  demonstrate that more than half of these regions are accurately called using Illumina WGS. For
350  the PE/PPE family, of highest concern for sequencing error, nearly one third (52/168) had perfect
351  mappability and near perfect gene-level EBR (> 0.99). The PE/PPE genes with poor performance
352 were largely the PE_PGRS and PPE_MPTR sub-families. Only 65 kb (1.5%) of the reference genome
353 H37Rv were responsible for the majority of false positives (89.2% of false positives across 36
54  isolates).
ESS
356  We present a set of refined low confidence (RLC) regions of the Mtb genome, designed to account
357  for the largest sources of error and uncertainty in analysis of lllumina WGS (Additional File 13).
358 Long-read data can allow RLC regions to be defined for other species to improve accuracy of
P59 lllumina WGS. The Mtb RLC regions span 4.0% of the_reference genome, and their masking
360  provides a conservative approach to variant calling, appropriate for applications where precision
361 s prioritized over recall. At the same time, RLC region masking offers higher recall than the current
P62 field standard where more than 10% of the Mtb reference genome is masked. One limitation is
363  that RLC regions were largely defined based on EBR of Illumina sequencing in our dataset that
364  was restricted by design to 100+ bp paired end sequencing. We do not recommend the use of
P65 these RLC regions for Illumina sequencing at shorter read lengths or single-end reads. Instead we
366 make available a more appropriate masking scheme of RLC regions + low pileup mappability
367 (Additional File 14). Another limitation is that we defined RLC regions using the same set of high
368  confidence assemblies evaluated. The reported precision and recall with RLC region masking are
369  thus likely overestimates. On the other hand, we expect precision and recall estimates of the
370 alternative approaches of masking low mappability regions or filtering at MQ > 40 to be more
P71 robust.
372
373  Improving Illumina variant recall has significant implications. For clonal Mtb, for example,
374  transmission inference using genomic data often relies on a very small number of SNS or INDEL
375  differences between genome pairs. The observed large increase in recall we observe has the
376  potential to substantially improve transmission inference?® and/or our understanding of genome
377  stability and adaptation.
378
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379 Conclusions

380  Insummary, we show that Illumina whole genome sequencing has high precision but limited recall
381 inrepetitive and structurally variable regions when benchmarked against a diverse set of complete
PSZ assemblies. We demonstrate that filtering variants using the_mean mapping quality against a
383  achieves the highest balance of precision and recall. Masking repetitive sequence content is a
384  second generalizable solution, albeit a more conservative one, that maintains high precision. For
385  Mtb, these two approaches increase recall of variants by 15.6% and 7.7% respectively, with a
386  minimal change in precision (-0.5% and +0.1% respectively at MQ 2 40), allowing high variant
387  recallin >50% of regions previously considered by the field to be error-prone. Our results improve
388  variant recall from lllumina data with broad implications for clinical and research applications of
389  sequencing. We also provide a high-quality set of genome assemblies for benchmarking future
390 variant calling or other WGS based bioinformatics tools.
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391 Methods

392  Summary of sequencing data used

393  Our dataset consisted of a convenience set of 16 clinical isolates from Lima, Peru, previously
394  sequenced with Illumina WGS and archived in frozen culture?®. These isolates were revived and
395  sequenced with PacBio RS Il long-read sequencing (Dataset #1). Additionally, 15 total clinical
396 isolates isolated in Azerbaijan, Georgia, Moldova were sequenced with PacBio Sequel Il long-read
397  sequencing®® (Dataset #2).

398

399  This dataset of 31 clinical isolates was combined with publicly available paired PacBio (RS Il) and
400  Illlumina genome sequencing from 19 clinical isolates from two previously published studies®®?'.
401  From these four sources, 38 Mtb isolates were selected for having a) lllumina WGS with paired
402  end reads with at least a median sequencing depth of 40X relative to the Mtb reference genome
403  (H37Rv). All aggregated metadata and SRA/ENA accessions for PacBio and Illumina sequencing
404  data associated with this analysis can be found in Additional File 15.

405

406 DNA extraction for PacBio (RS IlI) Sequencing of Peruvian Isolates (Data Source #1)
407  MTB cultures were allowed to grow for 4-6 weeks. Pellets were heat-killed at 80°C for 20
408  minutes67,68, the supernatants were removed, and the enriched cell pellet was subjected to DNA
409  extraction soon after or stored frozen until extraction. Largely intact DNA was extracted from heat-
410  killed cells pellets using a protocol tailored for mycobacteria that ends with a column-based
411  elution®'. Yields were determined using fluorescent quantitation (Qubit, Invitrogen/Thermo Fisher
412  Scientific) and quality was assessed on a 0.8% GelRed agarose gel with 1XTAE, separated for 90
413  minutes at 80V.

414

415  PacBio (RS Il) Sequencing of Peruvian Mtb Isolates (Data Source #1)

416  Approximately 1 pg of high molecular weight genomic DNA was used as input for SMRTbell
417  preparation, according to the manufacturer’s specifications (SMRTbell Template Preparation Kit
418 1.0, Pacific Biosciences). Briefly, HMW gDNA was sheared to 20kb using the Covaris g-tube at 4500
419  rpm. Following shearing, gDNA underwent DNA damage repair, ligation to SMRTbell adaptors
420  and exonuclease treatment to remove any unligated gDNA. At least 500 ng final SMRTbell library
421  per sample was cleaned with AMPure PB beads and 3-50 kb fragments were size selected using
422 the BluePippin system on 0.75% agarose cassettes and S1 ladder, as specified by the manufacturer
423  (Sage Science). Size selected SMRTbell libraries were annealed to sequencing primer and bound
424  to the P6 polymerase prior to loading on the RSIl sequencing system (Pacific Biosciences).
425  Sequencing was performed using C4 chemistry and 240-minute movies. Following data collection,
426  raw data was converted into subreads for subsequent analysis using the RS_Subreads.1 pipeline
427  within SMRTPortal (version 2.3), the web-based bioinformatics suite for analysis of RSII data.

428
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429  DNA extraction for PacBio (Sequel Il) Sequencing (Data Source #2)

430  For all samples from Azerbaijan and Georgia, MTB cultures were grown in 7H9+ADST broth to
431  A600 0.5-1.0. Pelleted cells were heat killed at 80°C for 2 hours. Cell pellets were resuspended in
432 450ul TE-Glu, 50ul of 10 mg/mL lysozyme was added and incubated at 37°C overnight. To each
433 sample 100ul of 10% sodium dodecyl sulfate and 50ul of 10 mg/ml proteinase K was added and
434  incubated at 55°C for 30 minutes. 200 ul of 5M sodium chloride and 160 ul Cetramide Saline
435  Solution (preheated 65°C) was added then incubated for 65°C for 10 minutes. To each sample 1
436  ml chloroform:iisoamyl alcohol (24:1) was added, mixed gently by inversion. Samples were
437  centrifuged at 5000g for minutes, and 900ul of aqueous layer was transferred to fresh tube. DNA
438  was re-extracted with chloroform:isoamyl alcohol (24:1) and 800 ul of aqueous layer was
439  transferred to fresh tube. To 800 aqueous layer 560 ul isopropanol was added, mix gently by
440 inversion. The precipitated DNA was collected by centrifuging for 10 minutes and supernatant
441  was removed. DNA was washed with 70% ethanol, and DNA was collected by centrifuging and
442  supernatant removed. Air dried DNA pellet was dissolved overnight in 100 ul of TE buffer, and
443  stored at 4°C.

444

445  For all samples from Moldova, DNA was extracted according to CTAB protocol®%.

446

447  PacBio (Sequel Il) Sequencing (Data Source #2)

448  Approximately 1 pg of high molecular weight genomic DNA was used as input for SMRTbell
449  preparation according to the manufacturer’'s protocol (Preparing Multiplexed Microbial Libraries
450  Using SMRTbell Express Template Prep Kit 2.0, Pacific Biosciences). Briefly, HMW gDNA was
451  sheared to ~15kb using the Covaris g-tube at 2029 x g. For about half of the samples the
452 molecular weight of the DNA did not need shearing. Following shearing, gDNA underwent DNA
453  damage repair, ligation to SMRTbell barcoded adaptors and exonuclease treatment to remove
454  any unligated gDNA. At least 500 ng of pooled SMRTbell library per sample was cleaned with
455  AMPure PB beads and 7-50 kb fragments were size selected using the BluePippin system on 0.75%
456  agarose cassettes and S1 ladder, as specified by the manufacturer (Sage Science). The pool of
457  size-selected SMRTbell libraries were annealed to v4 sequencing primer and bound to the
458  polymerase prior to loading on the Sequel Il sequencing system (Pacific Biosciences). Sequencing
459  was performed using version 1 chemistry and 15-hour movies.

460

461  H37Rv reference genome and gene annotations

462  The H37Rv (NCBI Accession: NC_000962.3) genome sequence and annotations was used as the
463  standard reference genome for all analyses. Functional category annotations for all genes of
464 H37Rv  were downloaded from Release 3 (2018-06-05) of MycoBrowser®
465  (https://mycobrowser.epfl.ch/releases). PE/PPE sub-family annotations of H37Rv were taken from

13


https://doi.org/10.1101/2021.04.08.438862
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.438862; this version posted June 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

466  Ates et al.**. Programmatic visualization of data along with annotations of the H37Rv genome
467  were made using the DNA Features Viewer python library®.

468

469 Genome assembly with PacBio long-read data

470  All PacBio reads were assembled using Flye*® (v2.6). After assembly, Flye performed three rounds
471  of iterative polishing of the genome assembly with the PacBio subreads, producing a polished de
472  novo PacBio assembly. If Flye identified the presence of a complete circular contig, Circlator®’
473  (v1.5.5) was used to standardize the start each assembly at the DnaA (Rv0001) locus.

474

475  Polishing of de novo PacBio assemblies with lllumina WGS

476  The paired-end lllumina WGS reads were trimmed with Trimmomatic®® (v0.39) with the following
477  parameters: 2:30:10:2:true SLIDINGWINDOW:4:20 MINLEN:75. Trimmed reads were aligned to the
478  associated de novo PacBio assembly with BWA-MEM?* (v0.7.17). Duplicate reads were removed
479  from the resulting alignments using PICARD* (v2.22.5). Using the deduplicated alignments, Pilon®?
480  (v1.23) was then used to correct SNSs and small INDELs in the de novo PacBio assembly, producing
481  a high confidence assembly polished by both PacBio and lllumina WGS.

482

483  ldentifying mixed infections using F2 metric and removing mismatched PacBio and
484  lllumina WGS

485  To further reduce the effects of contamination, we used the F2 metric to identify samples that
|486 may have inter-lineage variation due to co-infection*’. The F2 metric measures the heterogeneity
487  of genotypes at known lineage defining positions of the H37Rv genome. We computed the F2
488  lineage-mixture metric for both PacBio and Illumina WGS from each isolate. Isolates were filtered
489  out if either the F2 metric for Illlumina sequencing passed 0.05 or the F2 metric for PacBio
490  sequencing passed 0.35. The threshold used for PacBio sequencing subreads is much higher
491  because the inherent error rate per read is much higher than Illumina.
492

493  During polishing we identified the NOO52 isolate from Chiner-Oms et a

1.2° as a potential sample

494 mismatch, meaning PacBio and Illumina WGS were not performed on the same clinical isolate.
495  When polishing the de novo assembly of NO052, we found that the following changes were
496  performed based on the lllumina WGS: 594 SNPs, 19 insertions, and 92 deletions. The extreme
497  number of corrected SNPs by lllumina polishing is drastically different from the known error
498  profile (Additional File 2-3). Additionally, the inferred sub-lineage of the de novo PacBio
499  assembly was lineage 2.2.1, while the inferred sub-lineage based on Illumina WGS and the lllumina
500  Polished PacBio assembly was lineage 2.2.2 (Additional File 2). The fact that the polishing with
501  Illumina WGS changed known lineage defining SNPs makes the sample further suspect as a
502  mismatch. Thus, NOO52 was removed from analysis as to minimize chances of benchmarking
503  wrongly matched data.
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504

505 Evaluation of PacBio genome assembly characteristics and multiple genome
506 alignment

507  FastANI** was used to calculate the average nucleotide identity to the H37Rv reference genome
508  for all completed genome assemblies. The Prokka (v1.13) genome annotation pipeline* was used
509  to annotate genes in each completed genome assembly. The genome size and GC content of the
510 entire genome was calculated from each assembly using custom python code. The
511  progressiveMauve algorithm of the Mauve (v2.4.0)** alignment software was used to perform
512 multiple sequence alignment of all 36 completed Mtb assemblies and the H37Rv reference
513  genome (NCBI Accession: NC_000962.3). The multiple genome alignments of H37Rv and 36
514  assemblies were visualized using the Mauve GUI** (Supp. Figure 2).

515

516  Variant calling and structural variant detection using complete PacBio assemblies
517  Minimap2* was used to align each polished circular completed assembly to the H37Rv reference
518 genome, producing a base-level alignment of similar regions of the assembly to H37Rv. In regions
519  with high sequence diversity or large structural variation, Minimap2 will not produce alignments.
520  To account for this, the NucDiff*” analysis pipeline, which uses the MUMmer* aligner internally,
521  was also used to detect and classify the presence of large structural variants relative to the H37Rv
522 reference. All structural variants (> 50 bp) identified by NucDiff for each genome assembly can be
523  found in (Additional File 16).

524

525  Illlumina WGS data processing for variant calling relative to H37Rv

526  Paired-end Illumina reads were trimmed with Trimmomatic (v0.39) with the following parameters:
527  2:30:10:2:true SLIDINGWINDOW:4:20 MINLEN:75. Trimmed reads were aligned to the H37Rv
528  reference genome (NC_000962.3) with BWA-MEM?° (v0.7.17). Duplicate reads were removed from
529  the resulting alignments using PICARD*® (v2.22.5). Using the deduplicated alignments, small
530  genome variants (SNSs and INDELs) were inferred using Pilon®* (v1.23). Samtools, Bcftools, and
531  BEDtools were used as needed for SAM/BAM, and VCF/BCF format file manipulation®®".

532

533  Phylogenetic inference using complete genome assemblies

534 All single nucleotide variants inferred through alignment with Minimap2 of PacBio assembly to
535  the H37Rv genome were concatenated across the 36 strains. Any SNS position which was ever
536  ambiguously called in at least 1 isolate was excluded (No NAs allowed, only REF or ALT alleles
537 allowed). Thus, in order for a SNS position to be included it needed to have no ambiguity relative
538  to the H37Rv reference in any isolate. FastTree®® was used to infer an approximate maximum
539 likelihood phylogeny from the concatenated SNS alignment of all 36 clinical Mtb isolates (15,673
|540 total positions across 36 Mtb clinical isolates).

541
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542  Measuring repetitive sequence content of the H37Rv reference genome using Pileup
543  Mappability

544  We evaluated sequence uniqueness using a mappability metric defined as the inverse of the
545  number of times a sequence of length K appears in a genome allowing for e mismatches and

546  considering the reverse complement®?

. The pileup mappability of a position in a genome is then
547  defined as the average mappability of all overlapping k-mers. Thus, there are 2 parameters when
548  calculating mappability, k (length of k-mer) and e (number of base mismatches allowed in
549  counting matching k-mers). Genmap>* (v1.3) was used to calculate the mappability of all k-mers
550  across the H37Rv reference genome with the following parameters: k-mer sizes of 50, 75, 100,
551 125, 150 base pairs and E = 0-4 mismatches. The Gene-level mappability (k = 50 bp , e = 4
552 mismatches) scores were computed as the average pileup mappability across all genes bodies
553  annotated in H37Rv (NCBI Accession: NC_000962.3). The base level pileup mappability scores of
554  H37Rv are available in TSV and BEDGRAPH format for easy visualization in a genome browser
555 (Additional Files 6 and 17).

556

557 Calculation of Empirical Base-level Recall (EBR) of Illumina variant calling

558  The goal of the empirical base-level recall (EBR) for score is to summarize the consistency by which
559  Illumina WGS correctly evaluated any given genomic position. The EBR for a genomic position
560  was defined as the proportion isolates where Illumina WGS confidently and correctly agreed with
561 the PacBio defined ground truth. The ground truth was inferred for each isolate by directly
562  comparing the completed PacBio genome assembly to the H37Rv reference using Minimap2®
563  and NucDiff*’. Due to Minimap2's inability to classify large structural variants, the ground truth
564  relative to H37Rv was supplemented with the structural variant calls generated by the NucDiff
565  analysis pipeline. lllumina WGS reads were aligned to the H37Rv reference genome with BWA-
566  MEM?®, and variants were inferred with the Pilon®* variant detection tool. In addition to identifying
567  variants relative to the reference genome, Pilon provides variant calling annotations for all
568  positions of H37Rv. The variant calling quality annotations of Pilon for all positions of H37Rv were
569  parsed for comparison to the PacBio defined ground truth for each isolate evaluated.

570  Only the following comparison outcomes were classified as a correctly recalled position:

571 1) Both lllumina variant calling and the PacBio ground truth agree on the genotype of a genomic
572  position, 2) Both lllumina variant calling and the PacBio ground truth agree that a genomic
573  position is deleted.

574

575  The following comparison outcomes were classified as poorly recalled position:

576  3) The PacBio ground truth supports a deletion, but lllumina is not confident in the presence of
577  thedeletion, 4) Both lllumina variant calling and the PacBio ground truth disagree on the genotype
578  of a genomic position, 5) The PacBio ground truth supports the presence of a genomic region,
579  while Illumina variant calling did not confidently support the presence of the region. 6) Illumina
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580  variant calling erroneously supports a deletion at a genomic position which is not deleted in the
581  PacBio ground truth.

582

583  The following EBR comparison outcomes were classified as ambiguous (N/A) due to ambiguities
584 in the interpretation of the ground truth: a) Cases where the PacBio ground truth contained
585  genome duplications relative to H37Rv, b) Cases where the PacBio ground truth did not provide
586 a confident alignment or structural variant call due to high sequence divergence from the
587  reference sequence.

588

589  For calculating the EBR for a genomic position, ambiguous (N/A) outcomes were ignored when
590  the number of N/As was <= 25%. In the case that a position had greater than 25% N/As at a
591  genomic position, the EBR score was defined as “Ambiguous”. Ambiguous (N/A) EBR scores
592  represent locations of the H37Rv genome where there appeared to be systematic trouble in
593  determining the ground truth genotype.

594

595  The base level EBR scores are available in TSV and BEDGRAPH format for easy visualization in a
596  genome browser (Additional Files 6 and 18).

597

598 Evaluating characteristics of low empirical performance across Mtb genome

599  The lllumina WGS variant caller used, Pilon, produces VCF tags for all reference positions
600 evaluated, including positions which were confidently called a reference. The tags associated with
601  each position can either be PASS or a combination of non-pass tags (LowCov, Del, Amb). Each
602  genomic position can be assigned a combination of the following VCF Tags: a) PASS, signifying
603  confirmation of either a reference or an alternative allele. b) LowCov, signifying insufficient high
604  confidence reads (Depth < 5). ¢) Del, signifying that the position is confidently inferred to be
605  deleted. d) Amb, signifying evidence for more than one allele at this position. We quantified the
606  frequency of all combinations of these tags across all positions that were classified as “poor
607  recalled” during EBR evaluation.

608

609 Measuring sequencing bias with per-base relative depth

610 We measured sequencing bias using the relative depth statistic, which for a given genome
611  assembly and sequencing dataset, is defined as the sequencing depth per site divided by average
612  depth across the entire genome?. We evaluated the relative depth of all base pair positions of all
613  sequencing runs (lllumina and PacBio) relative to the corresponding isolates’ complete PacBio
614  genome assembly. The sequencing depth of a base pair position was defined as the number of
615 reads with a nucleotide aligning to the position of interest. We calculated the mean coverage
616  across a sample by simply averaging the depth across all positions of the evaluated genome. For
617 ambiguous mapping reads, the aligners used (BWA-mem and Minimap2) use a random
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618  assignment policy between all possible alignment locations. This allows for approximation of
619  depth in regions with non-uniquely mapping reads. For each individual Mtb isolate, we then
620  calculated the mean relative depth across all positions with the same GC content (100 bp window
621  size, Additional File 8).

622

623  Defining and excluding ambiguous regions relative to H37Rv (per isolate genome
624 assembly)

625  Following GA4GH (Global Alliance for Genomics & Health) benchmarking guidelines®, we
626  excluded regions of the genome, where definition of the ground truth had ambiguity in its
627  definition relative to the reference genome. The following comparison outcomes were classified
628  as ambiguous (N/A) due to ambiguities in the interpretation of the ground truth: a) Cases where
629  the PacBio ground truth contained duplications relative to H37Rv, b) Cases where the PacBio
630  ground truth did not provide a confident alignment or structural variant call due to high sequence
631  divergence relative to H37Rv. These regions thus represent sequences of divergence relative to
632  the reference genome.

633

634  The percentage of the reference genome that was identified as “ambiguous” was consistently less
635  than 1% for all 36 clinical isolates evaluated. The median percent of the genome where the ground
636  truth was "ambiguously defined” was 0.4% (IQR: 0.3% - 0.5%). A large majority of these ambiguous
637  ground truth regions were either in Mobile Genetic Elements, PE_PGRS or PPE_MPTR genes. The
638  ambiguously defined regions for each isolate can be found in Additional File 4. Additionally, all
639  regions of the H37Rv genome which were ambiguous in over 25% of isolates, signifying high
640 levels of ambiguity, are present in Additional File 5.

641

642  Defining the putative low confidence (PLC) regions of the H37Rv genome

643  The regions most commonly excluded from Mtb genomics analysis, also referred to as the Putative
644  Low Confidence (PLC) regions in this work, were based on current literature’®?*>>*, Specifically,
645  we defined the PLC regions as the union of the 168 PE/PPE genes, all mobile genetic elements
646  (MGEs), and 82 genes with repetitive content previously identified*. PLC regions are defined in
647  Additional File 19 (BED format). Non-PLC regions were simply defined as the complement of the
648  PLC genes.

649

650 Evaluating variant calling performance of genome masking approaches

651  Following the small variant benchmarking standards outlined by the GA4GH, we used Hap.py
652  (v0.3.13) to evaluate the lllumina WGS variant calling performance of Pilon for all 36 isolates
653  individually. For each complete genome assembly, SNSs and small INDELs 1-15 bp inferred by the
654  Minimap2-paftools pipeline were used as ground truth. We evaluated variant calling performance
655  of lllumina WGS when using different region filtering schemas: (1) masking of all PLC genes, the
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656  current standard practice, (2) masking of repetitive regions with P-Map-K50E4 < 100%, and (3) No
657  masking. Masking schemas (1 and 2) are provided in BED format (Additional File 19 and 20).
658  After applying each masking schema, we filtered potential variants according to whether the Pilon
659  variant calling pipeline gave the variant a PASS filter and the mean mapping quality (MQ) of all
660  reads aligned to the variant position.

661

662  For each combination of region masking and variant filtering using mapping quality, we then
663  calculated the absolute number of true positives (TP, i.e. a variant in the ground truth variant set
664  and correctly called by the lllumina variant calling pipeline), false positives (FP, the lllumina variant
665  calling pipeline calls a variant not in the ground truth set), and false negative (FN, the variant is in
666  the ground truth set but is not called by the lllumina variant calling pipeline) variant calls. For each
667  set of parameters, we calculated the overall precision (positive predictive value) as TP/(TP + FP),
668  and recall (sensitivity) as TP/(TP + FN). In agreement with the default behavior of Hap.py, and to
669  avoid undefined precision values, filtering parameters that yielded no TP or FP were defined as
670  having a precision of 1.0 and a recall of 0. Additionally, we calculated the F1-score, which weights
671  precision and recall with equally: F1 = 2 * (precision * recall)/(precision + recall). The F1 score
672  summarizes each variant calling performance as a single value between 0 and 1 (where 1
673  represents both perfect precision and recall).

674

675  To aggregate the performance evaluation across all 36 isolates, the mean and standard error of
676  the mean (SEM) of precision, recall and F1 score was calculated for all sets of parameters evaluated
677  (Additional File 10). The individual variant calling performance statistics for each isolate can also
678  be found in Additional File 10. The variant calling performance comparison of shorter (1-5bp) vs
|679 longer (6-15bp) INDELs can_be found in Additional File 11.

680

681 Evaluating variant calling performance near regions with structural variation and
682  repetitive sequence content

683  Using Hap.py and the same approach defined in the above section, we evaluated SNS variant
684  calling performance in the following types of regions: (1) SNSs in regions with perfect mappability
685  (Pmap-K50E4 = 1) with no identified SV (2) SNSs in regions with low mappability (Pmap-K50E4 <
686 1) with no identified SV, (3) SNSs in regions with perfect mappability within 100 bp of any
687 identified SV, and (4) SNSs in regions with low mappability within 100bp of any identified SV.
688  Genomic contexts not near SVs (1 and 2) were evaluated with MQ thresholds ranging from 1-60.
689  For genomic contexts within 100 bp of an SV (3 and 4), the MQ thresholds evaluated ranged from
690  1-40. The MQ threshold evaluated near SVs was limited due to the fact that a majority of SNSs
691  near SVs typically have lower MQ values, and higher MQ values resulted in recalls of approximately
692 0. As explained in the previous section, the mean and SEM of precision, recall, and F1 score were
693  calculated for all MQ filtering thresholds across all 4 region types (Additional File 12).
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694

695 Evaluation of the distribution of potential false positive SNS calls across the Mtb
696 genome

697  False positive SNS calls were identified by the Hap.py evaluation software through comparison to
698  the assembly-based ground truth variant call set. Additionally, false positive calls with MQ < 30
699  were filtered out, as to only include false positives which would realistically pass standard filtering.
700  For each genomic region (gene or intergenic region) of the H37Rv genome, the total number of
701  overlapping false positives across all 36 isolates was calculated (Additional File 9). Across all 36
702 clinical isolates, there were 548 false positive SNSs with MQ > 30 and 696 total false positive SNS
|703 with MQ > 1 detected.

704

705  Defining Refined Low Confidence (RLC) regions

706  We defined the refined low confidence regions (RLC) of the Mtb reference genome as the union
707  of A) The 30 false positive hot spot regions (gene and intergenic) identified (65 kb), B) poorly
708  recalled genomic regions as identified by EBR (EBR < 0.9, 142 kb), and C) regions with frequently
709  ambiguously defined ground truths (16 kb). We provide the complete set of RLC regions in BED
710  format (177 kb, Additional File 13), along with each separate component of the RLC regions in
711  BED format (Additional Files 21, 22, and 23). For very conservative masking of the Mtb reference
712 genome, we additionally provide a masking scheme that specifies the union of a) the RLC regions
713 and b) all low pileup mappability regions (PmapK50E4 < 1) (277 kb, Additional File 14).
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Data availability and materials

All new sequencing data generated for this study and complete Mtb genome assemblies were
submitted to NCBI SRA and Genbank databases under BioProject accession number PRINA719670
(Submission Pending). The publicly available PacBio and Illumina data from two previously
published studies®®2*" is available from PRJEB8783, PRJEB31443, PRJEB27802, and PRINA598991.
SRA/ENA accessions and related sequencing metadata for all data can be found in Additional File
15. All code for data processing and analysis in this study is available from the following GitHub
repository, https://github.com/farhat-lab/mtb-illumina-wgs-evaluation. The repository README
provides instructions to run each part of the analysis using the Snakemake>® workflow engine and
using Python based Jupyter notebooks.
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913  Overview of 36 clinical Mtb isolates with completed genome assemblies. a) Maximum

914  likelihood Phylogeny of M. tuberculosis isolates with PacBio complete genome assemblies. The

915  sequences of all 36 complete M. tb genomes were aligned to the H37rv reference genome using
916  minimap2, and a maximum likelihood phylogeny was inferred using a concatenated SNS alignment
917 (15,673 total positions). b) Representative isolates from each lineage sampled from the whole

918  genome sequence alignment between the H37Rv reference genome and all completed circular
919  Mtb genome assemblies, The complete alignment is visualized in Supplemental Figure 2. The

920  whole genome multiple sequence alignment was performed using the progressiveMauve*

921  algorithm. Each contiguously colored region is a locally collinear block (LCB), a region without

922  rearrangement of homologous backbone sequence.
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925
926  EBR, Pileup Mappability, and GC content across two example regions of the H37Rv genome. Empirical

927 Base Pair Recall (EBR), Pileup Mappability (K=50 bp, e = 4 mismatches) and GC% (100 bp window) values are
928 plotted across all base pair positions of two regions of interest. @) InhA, an antibiotic resistance gene, shows
929  perfect EBR across the entire gene body. b) In contrast, PE_PGRS54, a known highly repetitive gene with high
930 GC content, has extremely low EBR across the entire gene body. Browser tracks of EBR and Pileup Mappability
931  in BEDGRAPH format are made available as Additional Files 17 and 18.
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942 Empirical Base Pair Recall Pileup Mappability
943  The Distribution of EBR and Pileup Mappability scores in PLC and non-PLC regions. a) The distribution of

944  Empirical Base Pair Recall (EBR) and Pileup Mappability (P-Map, K=50,E=4) scores of PLC and non-PLC regions.
945 Excluded regions harbor significantly more low EBR base pair positions when compared to the included genes,
946  but 68% of routinely excluded positions still have > 97% EBR. The Pileup mappability with K=50 bp is lower in
947 PLC regions (mean = 0.86) than non-PLC regions (mean = .997). b) The Distribution of gene-level mean EBR
948  and P-Map (K=50,E=4) between PLC and non-PLC regions. We compared the mean EBR and Pileup

949  Mappability across all genes within PLC and non-PLC regions. The pe and ppe gene families (PE/PPEs) and
950 mobile genetic elements (MGE), which make up 82% of PLC genes, demonstrated significantly lower mean EBR

951  and Pileup Mappability than other non-PLC genes.
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958 Relative sequencing depth as a function of local GC content across all 36 complete isolates. We evaluated the
959 relative depth of our lllumina and PacBio sequencing data as a function of GC content (100 bp window size) across all
960 positions of each isolate’s complete genome assembly. The relative depth was averaged across all positions with the
961 same GC% across each genome assembly. The standard error of the mean of the relative depth across all 36 isolates is
962 shaded for each sequencing technology. At high (>70%) GC contents, lllumina starts to show lower relative depth
963  compared to PacBio sequencing.
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970 The distribution of potential false positive SNS calls across all genomic regions of the H37Rv genome. The
971 frequency of false positive SNS calls detected (MQ > 30) across all 36 isolates evaluated was plotted for all regions of
972 the H37Rv genome (gene or intergenic regions). The top 30 regions ranked by the number of total false positives
973 contained 89.4% (490/548) of the total false positive SNSs and spanned only 65 kb of the H37Rv genome. Full results
974 for all annotated genomic regions (gene or intergenic) can be found in Additional File 9.
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993  Mean SNV and INDEL variant calling performance across different masking approaches. a) SNS variant calling
994 performance was evaluated across the following three schemas: (1) masking of regions with non-unique sequence, as
995 defined as positions with P-Map-K50E4 < 1, (2) No a priori masking of any regions, and compared to (3) masking of
996 all PLC genes (the current standard practice). (b) short INDEL (1-15 bp) variant calling performance was evaluated
997 across the same schemas. The orange diamonds represent the mean precision and recall using a MQ threshold of 40
998 for both (a) and (b). Shaded regions represent the SEM of precision across all 36 isolates evaluated.

999 For all masking approaches evaluated, the MQ thresholds evaluated ranged from 1-60. Complete benchmarking
1000 results can be found for each individual isolate in Additional File 10.
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1001 Table 1.

Masking Schema | Metric MQ F1 Precision | Recall
Optimized Threshold
F1-score 19 0.87 99.77% 77.98%
Masking non- Comparator 40 0.88 99.79% 77.86%
unique regions Precision 60 0.82 99.94% 70.00%
F1-score 8 0.94 98.56% 88.95%
No masking Comparator 40 0.92 99.13% 85.77%
Precision 60 0.83 99.90% 72.06%
F1-score 35 0.82 99.50% 70.30%
Masking PLC genes | Comparator 40 0.82 99.62% 70.17%
(current standard) Precision 60 0.77 99.97% 63.56%

1002 Comparison of performance of proposed genome-masking schemas for SNS variant calling. For each masking
1003 scheme and MQ filtering threshold shown, the corresponding mean Precision, Recall, and F1 score is shown across all
1004 36 Mtb isolates. Corresponding Precision-Recall curves are given in Figure 5A. Performance at a threshold of MQ>40
1005 is given as a common point of comparison across the three masking schemas.
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1022  Figure 7

1.0+ I —
L 2 *—se,
c *
9O 0.84
Ry
]
o
}
o
0.6 ® High mappability, no SV
® Low mappability, no SV
o High mappability, within 100 bp of SV
‘ ® Low mappability, within 100 bp of SV

0.2 0.4 0.6 0.8 1.0

Recall
1023

1024  Variant calling performance of single nucleotide substitutions stratified by proximity to structural variants
1025 and low pileup mappability sequence. Mappability is dichotomized at Pmap-K50E4 =100% or <100%. Regions
1026 within 100bp of a SV categorized as “with SV". Precision and recall is plotted for the following genomic contexts: (1)
1027  regions with high mappability with no SV (Blue, F1 = 0.98 (precision = 99.89%, recall = 96.49%, MQ threshold of 40)),
1028  (2) regions with low mappability and no SV (green, F1 = 0.62 (precision = 96.98%, recall = 45.65%, MQ threshold of
1029  40), (3) regions with high mappability with SV (orange, F1 = 0.64 (precision = 84.07%, recall = 52.73%, MQ threshold
1030  of 40), (4) regions with low mappability and with SV (red, F1 = 0.32 (precision = 52.10%, recall = 23.47%, MQ

1031 threshold of 40). The standard error of the mean (SEM) for precision is shaded for each curve. Orange diamonds
1032 represent the precision and recall using the same MQ threshold of 40. Genomic contexts not near SVs (1 and 2) were
1033  evaluated with MQ thresholds ranging from 1-60. For genomic contexts within 100 bp of an SV (3 and 4), the MQ
1034 thresholds evaluated ranged from 1-40. Complete benchmarking results can be found for each individual isolate in
1035  Additional File 12.
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1049  Additional File 1: Supplementary Figures and Tables (Figure S1-7, Table S1-6)
1050

1051  Additional File 2: Results and quality control for assembly and sequencing for both PacBio and lllumina
1052  sequencing

1053

1054  Additional File 3: List of all changes made during lllumina polishing of the de novo PacBio assemblies
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1056  Additional File 4: List of genomic regions with ambiguously defined ground truths relative to H37Rv for all
1057  each isolate evaluation
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1059  Additional File 5: List of genomic regions which were frequently had an ambiguously defined ground truth
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1061  Additional File 6: Table containing the EBR, Pileup Mappability, and GC% of all genomic positions of the
1062  H37Rv reference. Due to large file size, Additional File 6> is hosted on Zenodo at

1063  https://zenodo.org/record/4662193.
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1065  Additional File 7: EBR, and Pileup Mappability across all genomic regions of H37Rv (both genes and
1066 intergenic regions)
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1068  Additional File 8: Table of the mean relative sequencing depth of both Illumina and PacBio at varying GC%
1069  across all 36 isolates evaluated.
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1071  Additional File 9: Table containing the frequency of observed False Positive SNSs (MQ > 30) across all
1072  genomic regions of H37Rv (both genes and intergenic regions)

1073

1074  Additional File 10: Variant call benchmarking of SNSs and small indels (<=15bp)
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1076  Additional File 11: Variant call benchmarking stratified by shorter (< 6bp) and longer indels (6-15bp)
1077

1078  Additional File 12: Variant call benchmarking of SNSs stratified by proximity to an SV and low pileup
1079  mappability

1080

1081 Additional File 13: Masking scheme in BED format specifying the Refined Low Confidence Regions
1082

1083  Additional File 14: Masking scheme in BED format specifying the union of a) Refined Low Confidence
1084  Regions, and b) regions with Pileup Mappability (K= 50 bp, E = 4 mismatches) < 1.
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Additional File 15: SRA/ENA sequencing run metadata for PacBio and Illumina sequencing used in this
study

Additional File 16: All identified structural variants for each complete genome assembly as identified by
the NucDiff analysis pipeline.

Additional File 17: Base-level Pileup Mappability scores (P-Map-K50E4) across the H37Rv in BEDGRAPH
format

Additional File 18: Base-level EBR scores (36 isolates) across the H37Rv in BEDGRAPH format
Additional File 19: Masking scheme for the Putative Low Confidence (PLC) Regions in BED format
Additional File 20: All regions with low pileup mappability (P-Map-K50E4 < 100%) in BED format

Additional File 21: Component (A) of RLC regions. Masking scheme Specifying the 30 false positive hot
spot regions (gene and intergenic) in BED format.

Additional File 22:
Component (B) of RLC regions. Masking scheme specifying poorly recalled genomic regions as identified
by EBR< 0.9) in BED format.

Additional File 23:

Component (C) of RLC regions. Masking scheme specifying regions that frequently (> 25%) had an
ambiguously defined ground truth in BED format. Same information as Additional File 5 but this file is
instead in BED format.
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