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Abstract  42 
Background: Short-read whole genome sequencing (WGS) is a vital tool for clinical applications 43 
and basic research. Genetic divergence from the reference genome, repetitive sequences, and 44 
sequencing bias, reduce the performance of variant calling using short-read alignment, but the 45 
loss in recall and specificity has not been adequately characterized. For the clonal pathogen 46 
Mycobacterium tuberculosis (Mtb), researchers frequently exclude 10.7% of the genome believed 47 
to be repetitive and prone to erroneous variant calls. To benchmark short-read variant calling, we 48 
used 36 diverse clinical Mtb isolates dually sequenced with Illumina short-reads and PacBio long-49 
reads. We systematically study the short-read variant calling accuracy and the influence of 50 
sequence uniqueness, reference bias, and GC content. å 51 

Results: Reference based Illumina variant calling had a recall ≥89.0% and precision ≥98.5% across 52 
parameters evaluated. The best balance between precision and recall was achieved by tuning the 53 
mapping quality (MQ) threshold, i.e. confidence of the read mapping (recall 85.8%, precision 54 
99.1% at MQ ≥ 40). Masking repetitive sequence content is an alternative conservative approach 55 
to variant calling that maintains high precision (recall 70.2%, precision 99.6% at MQ≥40). Of the 56 
genomic positions typically excluded for Mtb, 68% are accurately called using Illumina WGS 57 
including 52 of the 168 PE/PPE genes (34.5%). We present a refined list of low confidence regions 58 
and examine the largest sources of variant calling error. 59 

Conclusions: Our improved approach to variant calling has broad implications for the use of WGS 60 
in the study of Mtb biology, inference of transmission in public health surveillance systems, and 61 
more generally for WGS applications in other organisms. 62 
 63 

Background 64 
Illumina short-read whole genome sequencing (WGS) followed by alignment to a reference 65 
genome is widely used to identify genetic variants. Illumina sequencing and alignment can 66 
confidently detect single nucleotide substitutions (SNSs) and small insertions or deletions (INDELs) 67 
but is limited in several ways by its short ~100 bp target read lengths. First, short repetitive or 68 
homologous query sequences are challenging to uniquely align to the genomic reference1,2. 69 
Second, genomic DNA extraction and sequencing library preparation of short-reads may be more 70 
error or bias prone3–7. For example, regions with high GC content and/or low sequence complexity 71 
may be particularly prone to PCR-dropout and reduced sequencing coverage7–9. Third, the use of 72 
a single reference genome introduces bias, especially when the genome being analyzed differs 73 
substantially from the reference sequence10,11. As the sequenced genome diverges from the 74 
reference genome, short-read alignment becomes increasingly inaccurate and regions absent 75 
from the reference genome are missed or poorly reconstructed. 76 
 77 
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In contrast, long-read sequencing can generate high confidence complete genome assemblies, 78 
which can also be used to benchmark Illumina WGS. For example, long-reads generated by PacBio 79 
sequencing (with lengths on the order of ~10 kb) are ideal for assembling complete bacterial 80 
genomes and identifying variants in repetitive regions12. Although individual PacBio reads have a 81 
considerably higher per base error rate (10-15%) than Illumina, the randomly distributed nature 82 
of the errors allows for high coverage sequencing runs to converge to a high accuracy consensus13. 83 
More recently, circular consensus sequencing has further improved PacBio long-read per base 84 
accuracy to levels on par with Illumina14. Alternatively, hybrid strategies that combine less accurate 85 
long-reads and short Illumina reads can offer both high base-level accuracy and continuity of the 86 
final assembly12,15.  87 
 88 
Mycobacterium tuberculosis (Mtb) is a globally prevalent pathogenic bacterium with a ~4.4 Mbp 89 
genome known for high GC content, large repetitive regions, and an overall low mutation rate. 90 
Owing to the clonality and stability of the Mtb genome, this organism is particularly well suited 91 
for systematically identifying the sources of error that arise when short-read data is used for 92 
variant detection. Approximately 10% of the Mtb reference genome (H37Rv) is regularly excluded 93 
from genomic analysis because it is purported to be more error prone and enriched for repetitive 94 
sequence content16. This 10% of the Mtb genome, hitherto regions of putative low confidence 95 
(PLC), span the following genes/families: 1) PE/PPE genes (N=168), 2) mobile genetic elements 96 
(MGEs) (N=147), and 3) 69 additional genes with identified homology elsewhere in the genome17. 97 
Despite their systematic exclusion from most Mtb genomic analyses17–19, PLC regions are yet to 98 
be evaluated systematically for short-read variant calling accuracy. Here, we use long-read 99 
sequencing data from 36 phylogenetically diverse Mtb isolates to benchmark short-read variant 100 
detection accuracy and study genome characteristics that associate with erroneous variant calls. 101 
 102 

Results 103 

High confidence Mtb assemblies with hybrid short- and long-read sequencing 104 
For this study, PacBio long-read and Illumina sequencing was performed for 31 clinical Mtb 105 
isolates. The resultant data was combined with publicly available paired PacBio and Illumina 106 
genome sequencing of 18 Mtb isolates from two previously published studies20,21. From these 107 
datasets, a total of 38 clinical isolates were selected for having a) paired end Illumina WGS with 108 
median sequencing depth ≥ 40X relative to the Mtb reference genome, and b) no evidence of 109 
mixed infections or sample swaps (Additional File 2).  110 
 111 
Across these 38 isolates, the mean sequencing depth relative to the H37Rv reference genome was 112 
84x (IQR: 67x - 107x) for Illumina and 286x (IQR: 180x - 367x) for PacBio. We performed de novo 113 
genome assembly and iteratively polished each assembly with the PacBio and Illumina reads 114 
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generating a complete circular assembly for 36/38 isolates (Methods). For uniformity in assembly 115 
completeness, we excluded the 2 non-circular assemblies from downstream analysis.  116 
 117 
We assessed the accuracy of the de novo PacBio assemblies by examining the profile of errors 118 
corrected during the Illumina polishing step (Supp. Figure 1, Additional File 3). Across all 36 119 
assemblies, erroneous 1-bp insertions and deletions (INDELs) made up 97.9% of all corrections 120 
made by Illumina polishing with Pilon22. The median number of erroneous insertions and deletions 121 
per assembly was 5 (IQR: 2 - 88) and 15 (IQR: 4 - 37) respectively. Very few of the errors corrected 122 
during Illumina polishing were single nucleotide changes; median of 0 (IQR: 0 - 2) across all 123 
polished 36 genome assemblies. Overall, the number of changes made during Illumina polishing 124 
of the de novo PacBio assembly was negatively correlated to PacBio sequencing depth 125 
(Spearman’s R = -0.458, p < 4.9e-3) (Supp. Figure 1C).  126 
 127 
The 36 assemblies spanned the Mtb global phylogeny and had a high degree of conservation in 128 
genome structure and content relative to the H37Rv reference genome (Figure 1, Supp. Figure 129 
2): Average Nucleotide Identity (ANI) to H37Rv (99.84% to 99.95%), genome size (4.38-4.44 Mb), 130 
GC content (65.59 - 65.64%), and predicted gene count (4017 - 4096 ORFs) (Additional File 2).  131 
 132 
In accordance with the small variant benchmarking guidelines of Global Alliance for Genomics & 133 
Health23 (GA4GH), we excluded a small subset of regions with ambiguous ground truths on a per 134 
isolate basis (Methods). These ambiguous regions fell into 2 categories: a) variable copy number 135 
relative to the H37Rv reference genome or b) difficult to align regions due to a high level of 136 
sequence divergence relative to the reference genome. We excluded these regions from our 137 
performance evaluation in this paper due to their difficulty of interpretation (Additional File 4). 138 
The percentage of the genome identified as ambiguous was consistently lower than 1% (median: 139 
0.41%, IQR: 0.28% - 0.49%) across all assemblies. We observed that for the regions that were 140 
frequently ambiguously (Ambiguous in > 25% of isolates, Additional File 5), 96.8% of bases were 141 
from regions which overlapped with recognized PLC regions.  142 
 143 
Empirical base-level performance of Illumina 144 
To measure the consistency and accuracy of Illumina genotyping across the Mtb genome, we 145 
defined the Empirical Base-level Recall metric (EBR) for each position of the H37Rv reference 146 
genome (4.4 Mb, Additional File 6). EBR was calculated as the proportion of isolates for which 147 
Illumina variant calling made a confident variant call that agreed with the ground truth, hence a 148 
site with a perfect (1.0) EBR score requires Illumina read data to pass the default quality criteria 149 
(Methods), and then agree with the PacBio defined ground truth for 100% of the isolates 150 
(Examples in Figure 2). EBR was significantly lower within PLC regions (mean EBR = 0.905, N = 151 
469,501 bp) than the rest of the genome (mean EBR = 0. 998, N = 3,942,031 bp, Mann-Whitney 152 
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U Test, P < 2.225e-308) (Figure 3A, Table S1). But EBR was not consistently low across PLC 153 
regions, with 67% of PLC base positions having EBR ≥ 0.97. EBR averaged by gene (gene-level 154 
EBR) also showed heterogeneity across PLC regions with 62.6%, 61.3% and 82.6% respectively of 155 
the MGEs, PE/PPE, and previously classified repetitive genes having gene-level EBR ≥ 0.97 (Figure 156 
3B, Supp. Figure 3, Tables S2-S3, Additional File 7). All other, non-PLC, functional gene 157 
categories had a median gene-level EBR =1, among these only 14 non-PLC genes had a gene-158 
level EBR < 0.97.  159 
 160 
Characteristics of regions with low empirical performance 161 
Across all 36 isolates evaluated, we observed 1,825,385 sites where Illumina failed to confidently 162 
agree with the inferred ground truth. These low recall sites were spread across 267,471 unique 163 
positions of the H37Rv reference genome with EBR < 1. We explored the underlying factors 164 
associated with low recall at these positions using the associated filter and quality tags provided 165 
by the variant caller, Pilon (Methods, Table S4). Across the 1,829,181 low recall sites, the 166 
distribution of outcomes included: a) 62.78% low coverage (LowCov), b) 30.74% falsely called as 167 
deleted (Del) with or without low coverage or other tags, c) 6.24% were missed deletions tagged 168 
as PASS, d) 0.03% (669 sites) were false base calls (reference or alternate) tagged as PASS, e) 0.25% 169 
remaining positions were labeled as ambiguous (Amb) due to evidence for two or more alleles at 170 
a frequency ≥ 25%. 171 
 172 
Among all low recall sites annotated as with a Low Coverage tag: (a) 45.8% were due to insufficient 173 
total coverage of aligned reads (sequencing bias or extreme sequence divergence, total Depth < 174 
5), (b) 27.6% lacked uniquely aligning reads (repetitive sequence content, mapping quality = 0), 175 
and (c) 26.6% were due to low confidence paired-end alignments that did not pass Pilon’s 176 
heuristics (likely structural variation causing improper paired-alignment orientation).  177 
 178 
Repetitive sequence content 179 
We identified repetitive regions in H37Rv and evaluated their relationship with low EBR using the 180 
pileup mappability metric (Methods). Pileup mappability scores range from 0 to 1, where 1 181 
represents a genomic position where all overlapping sequence K-mers are unique in the genome 182 
of interest within a similarity threshold of E mismatches. We calculated pileup mappability 183 
conservatively with a K-mer size of 50 base pairs and up to 4 mismatches (P-Map-K50E4, 184 
Additional File 6). P-Map-K50E4 is lower in PLC regions (mean = 0.856) than non-PLC regions 185 
(mean = .997), (Mann-Whitney U Test, P < 0.001) (Figure 3A). Yet, 69.7% of positions in PLC 186 
regions had P-Map-K50E4 scores of 1, indicating uniquely alignable sequence content even with 187 
sequence lengths as short as 50 bp (Table S5). At the gene-level, PE/PPEs and MGEs had lower P-188 
Map-K50E4 than the rest of the genome (Wilcoxon, P < 2e-308) (Figure 3B, Table S6, Additional 189 
File 7) but 34.5%, and 32.7% of these genes respectively had perfect (1.0) P-Map-K50E4 across 190 
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the entire gene body. Previously identified repetitive genes (N = 69) had a gene-level P-Map-K50 191 
below 1 which is expected given that this was their defining feature24, but for the majority (51 of 192 
69), median mappability was greater than 0.99, indicating that a high proportion of their sequence 193 
content was actually unique. Non-PLC functional categories had a median gene level P-Map-194 
K50E4 = 1.0 (Supp. Figure 3, Table S7). Genome-wide P-Map-K50E4 and EBR scores were 195 
moderately correlated (Spearman’s ρ= 0.47, P < 2e-308). Thirty percent of all genome positions 196 
with EBR < 1.0 also had a P-Map-K50E4 score below 1.0.  197 
 198 
Sequencing bias in high GC-content regions 199 
Across several sequencing platforms, high-GC content associates with low sequencing depth due 200 
to low sequence complexity, PCR biases in the library preparation and sequencing chemistry3–6. 201 
We assessed the sequencing bias of Illumina and PacBio across each individual genome assembly 202 
using the relative depth metric4 (the depth per site divided by average depth across the entire 203 
assembly) to control for varying depth between isolates. On average with Illumina, 1.2% of the 204 
genome had low relative depth (< 0.25), while for PacBio sequencing the average proportion of 205 
the genome with low relative depth was 0.0058% (Mann-Whitney U Test, P < 0.001). Both 206 
sequencing technologies demonstrated coverage bias against high-GC regions, with more 207 
extreme bias for Illumina than PacBio (Figure 4, Additional File 8). Across all base pair positions 208 
with local GC% ≥ 80%, using a window size of 100 bp, the mean relative depth was 0.79 for PacBio 209 
and 0.35 for Illumina. Genome-wide, EBR was significantly negatively correlated with GC content 210 
(Spearman’s ρ= - 0.12, P < 2e-308), but this correlation was weaker than that observed with 211 
sequence uniqueness (P-Map-K50E4, as above Spearman’s ρ=0.47).  212 
 213 
False positive SNS variant calls 214 
Next, we focused specifically on regions with high numbers of false positive SNSs identified 215 
through comparison with the ground-truth variant calls. We examined the distribution of false 216 
positive SNS calls across the H37Rv reference genome using a realistic intermediate variant 217 
filtering threshold of mean mapping quality at the variant site (MQ ≥ 30, Figure 5, Additional 218 
File 9). The top 30 regions ranked by the number of false positives (23 genes and 7 intergenic 219 
regions) contained 89.4% (490/548) of the total false positive calls and spanned 65 kb, 1.5% of the 220 
H37Rv genome. Of these 30 false positive hotspot regions, 29 were either a PLC gene or an 221 
intergenic region adjacent to a PLC gene: 17 PE/PPE genes, 3 MGEs, 2 were previously identified 222 
repetitive genes24, and 7 PLC-adjacent intergenic regions. Across all false positives, the PE-PGRS 223 
and PPE-MPTR sub-families of the PE/PPE genes were responsible for a large proportion (45.4%) 224 
of total false positive variant calls. Of all the 556 false positives SNSs evaluated (MQ ≥ 30), only 225 
14 were detected across 4 non-PLC genes: Rv3785 (9 FPs), Rv2823c (1 FP), plsB2 (2 FPs), Rv1435c 226 
(2 FPs). 227 

 228 
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Masking to balance precision and recall 229 
A common approach for reducing Mtb false positive variant calls is to mask/exclude all PLC 230 
regions from variant calling. Here we investigated two variations on this that utilize directly 231 
reference sequence uniqueness and variant quality metrics. We compared: (1) masking of regions 232 
with non-unique sequence, defined as positions with P-Map-K50E4 < 1, (2) No a priori masking 233 
of any regions, and (3) masking of all PLC genes (the current standard practice). We then filtered 234 
potential variant calls by whether the variant passed all internal heuristics of the Pilon22-based 235 
variant calling pipeline (Methods) and studied the effect of varying the mean mapping quality 236 
(MQ) filtering threshold from 1 to 60 (Figure 6). We computed the F1-score, precision and recall 237 
of detection of SNSs and small indels (<=15bp) for each masking schema and MQ threshold 238 
across all 36 clinical isolates (Methods, Additional File 10). 239 
 240 
For SNSs, mean recall ranged from 63.6% to 89.0%, and precision ranged from 98.5% to 99.97% 241 
across the three schemas (Figure 6A). At a threshold of MQ ≥ 40, we observed the following mean 242 
SNS performances: 1) Masking non-unique regions, F1 = 0.87 (Precision = 99.8%, Recall = 77.9%), 243 
2) no masking of the genome, F1 = 0.92 (Precision = 99.1%, Recall = 85.8%), 3) Masking PLC 244 
genes, F1 = 0.82 (Precision = 99.6%, Recall = 70.2%). Based on F1 score, no masking of the genome 245 
had the highest overall performance, but masking non-unique regions had the highest precision. 246 
Decreasing the MQ threshold to an optimal value for F1 score resulted in similar performance for 247 
schema-1 and 3, but a balance of lower precision and higher recall for schema-2. Increasing the 248 
MQ threshold to 60 optimized precision but at considerable loss of recall for all three schemas 249 
(Table 1). Performance was most sensitive to the MQ threshold under schema 2 (no masking). 250 
 251 
For INDELs (1-15 bp), precision was comparable to SNSs (96.2% - 100%, Figure 6B), while recall 252 
was lower (48.9% - 82.4%). At a threshold of MQ ≥ 40, we observed the following mean INDEL 253 
performances: 1) Masking non-unique regions, F1 = 0.83 (Precision = 98.2, Recall = 72.1%), 2) no 254 
masking of the genome, F1 = 0.89 (Precision = 98.9, Recall = 80.8%), 3) Masking PLC genes, F1 = 255 
0.76 (Precision = 99.1%, Recall = 61.5%). Variant calling performance of short (1-5bp) INDELs was 256 
comparable to SNSs, and the limited performance for INDELs was largely driven by low recall of 257 
longer (6-15bp) INDELs (Supp. Figure 5, Additional File 11).  258 
 259 
Structural variation  260 
We assessed the effect of structural variation (SV), of length ≥ 50 bp, a common source of 261 
reference bias, on variant calling performance (Methods). Detected SVs included the known 262 
regions of difference associated with Mtb Lineages 1, 2 and 3 (RD239, RD181, RD750 263 
respectively)25,26 (Supp. Figure 6). Across all 36 isolate assemblies, we observed a strong negative 264 
correlation between average nucleotide identity to the H37Rv reference and the number of SVs 265 
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detected (Spearman’s R = -0.899, p < 1.1e-13, Supp. Figure 7). Additionally, we observe that 70% 266 
of detected SVs overlapped with regions with low pileup mappability (P-Map-K50E4 < 1.0). 267 
 268 
We compared SNS variant calling performance by proximity to an SV and sequence uniqueness 269 
(Figure 7, Additional File 12), dividing variants into four groups: (1) SNSs in regions with perfect 270 
mappability (Pmap-K50E4 = 1) with no identified SV (87.3% of total 47,412 SNSs), (2) SNSs in 271 
regions with low mappability (Pmap-K50E4 < 1) with no identified SV (10.9% of SNSs), (3) SNSs in 272 
regions with perfect mappability within 100 bp of any identified SV (0.8% of SNSs), and (4) SNSs 273 
in regions with low mappability within 100bp of any identified SV (1.0% of SNSs). Variant calling 274 
performance decreased most sharply in regions with evidence for structural variation, especially 275 
when sequence content is also non-unique (Region types 3 & 4 respectively). Additionally, region 276 
type (2), or low mappability sequence content with no nearby SV, demonstrated reduced 277 
performance.  278 
 279 
Refined regions of low confidence 280 
Based on the presented analysis, we define a set of refined low confidence (RLC) regions of the 281 
Mtb reference genome. The RLC regions are defined to account for the largest sources of error 282 
and uncertainty in analysis of Illumina WGS, and is defined as the union of A) The 30 false positive 283 
hot spot regions identified (65 kb), B) low recall genomic regions with EBR < 0.9 (142 kb with 30 284 
kb overlap with (A)), and C) regions ambiguously defined by long-read sequencing (Methods, 16 285 
kb). We additionally evaluated the overlap between all detected SVs and the three RLC categories: 286 
RLC subset (A) overlapped 28% of SVs, RLC subset (B) overlapped with 65% of SVs, RLC subset (C) 287 
overlapped with 14% of SVs.  288 
 289 
In total, the proposed RLC regions account for 177 kb (4.0%) of the total H37Rv genome 290 
(Additional File 13) and their masking represents a conservative approach to variant filtering. 291 
Across the 36 isolates evaluated, masking of the RLC regions combined with a SNS filter of MQ ≥ 292 
40 would produce a mean F1-score of 0.882, with a mean precision of 99.9% and a mean recall of 293 
78.9%.  294 
 295 

Discussion 296 
The analysis and interpretation of Illumina WGS is critical for both research and clinical 297 
applications. Here, we study the ‘blindspots’ of paired-end Illumina WGS by benchmarking 298 
reference-based variant calling accuracy using 36 Mtb isolates with high confidence complete 299 
genome assemblies. Overall, our results improve our general understanding of the factors that 300 
affect Illumina WGS performance. In particular, we systematically quantify variant calling accuracy 301 
and the effect of sequence uniqueness, GC-content, coverage bias, and structural variation. For 302 
Mtb, we demonstrate that a much greater proportion of the genome can be analyzed with Illumina 303 
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WGS than previously thought and provide a systematically defined set of low 304 
confidence/troublesome regions for future studies. 305 
 306 
Approaches to benchmarking variant calling from Illumina WGS vary by field and species of 307 
interest and more standardization is needed27. Variant calling accuracy is usually benchmarked 308 
through in silico variant introduction with read simulation or otherwise using a small number of 309 
reference genomes that seldom capture the full range of diversity within a particular species. Our 310 
benchmarking exercise is unique in using a large and diverse set of high quality genome 311 
assemblies that are built using a hybrid long and short read approach. We further demonstrate 312 
that PacBio long-read sequencing is much less prone to coverage bias and is able to generate 313 
complete circular bacterial assemblies bridging repetitive regions in the majority of isolates with 314 
a median depth > 180x. The assemblies we generate will be an important community resource for 315 
benchmarking future variant calling or other WGS based bioinformatics tools. 316 

 317 
The benchmarking results clearly demonstrate that low variant recall is a major limitation of 318 
reference-based Illumina variant calling, which achieved at most 89% recall at the optimal F1-319 
score. Precision of variant calling using Illumina on the other hand was very high, with the small 320 
number of false variant calls concentrated in repetitive and structurally variable regions. We find 321 
that the best balance between precision and recall is achieved by tuning the variant mean 322 
mapping quality threshold, i.e. confidence of the read mapping. The specific mapping quality 323 
threshold will likely vary by species. For a GC-rich organism with highly repetitive sequence 324 
content like Mtb, a threshold of 40 achieved 85.8% recall and 99.1% precision. 325 

 326 
Studying specific sources of low recall from Illumina, we identified insufficient read coverage to 327 
be the major driver, due not only to repetitive sequence content but also due to high-GC content 328 
and other sources of coverage bias. We further identified regions near structural variation to be 329 
particularly prone to low recall and precision. Of the variants we study, longer INDELs were recalled 330 
at lower rates than SNSs or INDELs < 6bp in length. These observations support ongoing efforts 331 
by the bioinformatics research community to build graph-reference genomes and align short 332 
reads to these graphs. Using a graph pan-genome built with a diverse set of Mtb reference 333 
genomes, there is great potential to both increase recall and precision of variant calling in 334 
divergent regions of the genome.  335 

 336 
An alternative and generalizable approach to balancing precision and recall of reference-based 337 
Illumina variant calling is to mask repetitive (low mappability) regions. This simple approach does 338 
not require tuning the mapping quality threshold against a ground truth set of assemblies and 339 
relies instead on computing the pileup mappability metric across the reference sequence. This fills 340 
a gap for variant calling in other organisms using short-read mapping where low confidence 341 
regions may not already be defined. Compared with tuning against a ground-truth set of 342 
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assemblies, this masking approach is conservative: for Mtb and filtering by MQ ≥ 40, precision is 343 
slightly higher at 99.8% vs 99.1% respectively and recall is lower at 77.9% vs 85.8% respectively.  344 

 345 
Given Mtb’s genomic stability and clonality, this organism is particularly well suited for 346 
systematically identifying the sources of variant calling error from short-read data. Although 347 
10.7% of the Mtb reference sequence is commonly excluded from genomic analysis, our results 348 
demonstrate that more than half of these regions are accurately called using Illumina WGS. For 349 
the PE/PPE family, of highest concern for sequencing error, nearly one third (52/168) had perfect 350 
mappability and near perfect gene-level EBR (≥ 0.99). The PE/PPE genes with poor performance 351 
were largely the PE_PGRS and PPE_MPTR sub-families. Only 65 kb (1.5%) of the reference genome 352 
H37Rv were responsible for the majority of false positives (89.2% of false positives across 36 353 
isolates). 354 
 355 
We present a set of refined low confidence (RLC) regions of the Mtb genome, designed to account 356 
for the largest sources of error and uncertainty in analysis of Illumina WGS (Additional File 13). 357 
Long-read data can allow RLC regions to be defined for other species to improve accuracy of 358 
Illumina WGS. The Mtb RLC regions span 4.0% of the reference genome, and their masking 359 
provides a conservative approach to variant calling, appropriate for applications where precision 360 
is prioritized over recall. At the same time, RLC region masking offers higher recall than the current 361 
field standard where more than 10% of the Mtb reference genome is masked. One limitation is 362 
that RLC regions were largely defined based on EBR of Illumina sequencing in our dataset that 363 
was restricted by design to 100+ bp paired end sequencing. We do not recommend the use of 364 
these RLC regions for Illumina sequencing at shorter read lengths or single-end reads. Instead we 365 
make available a more appropriate masking scheme of RLC regions + low pileup mappability 366 
(Additional File 14).  Another limitation is that we defined RLC regions using the same set of high 367 
confidence assemblies evaluated. The reported precision and recall with RLC region masking are 368 
thus likely overestimates. On the other hand, we expect precision and recall estimates of the 369 
alternative approaches of masking low mappability regions or filtering at MQ ≥ 40 to be more 370 
robust. 371 
 372 
Improving Illumina variant recall has significant implications. For clonal Mtb, for example, 373 
transmission inference using genomic data often relies on a very small number of SNS or INDEL 374 
differences between genome pairs. The observed large increase in recall we observe has the 375 
potential to substantially improve transmission inference28 and/or our understanding of genome 376 
stability and adaptation.  377 
 378 
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Conclusions 379 
In summary, we show that Illumina whole genome sequencing has high precision but limited recall 380 
in repetitive and structurally variable regions when benchmarked against a diverse set of complete 381 
assemblies. We demonstrate that filtering variants using the mean mapping quality against a 382 
achieves the highest balance of precision and recall. Masking repetitive sequence content is a 383 
second generalizable solution, albeit a more conservative one, that maintains high precision. For 384 
Mtb, these two approaches increase recall of variants by 15.6% and 7.7% respectively, with a 385 
minimal change in precision (-0.5% and +0.1% respectively at MQ ≥ 40), allowing high variant 386 
recall in >50% of regions previously considered by the field to be error-prone. Our results improve 387 
variant recall from Illumina data with broad implications for clinical and research applications of 388 
sequencing. We also provide a high-quality set of genome assemblies for benchmarking future 389 
variant calling or other WGS based bioinformatics tools.   390 
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Methods 391 
Summary of sequencing data used 392 
Our dataset consisted of a convenience set of 16 clinical isolates from Lima, Peru, previously 393 
sequenced with Illumina WGS and archived in frozen culture29. These isolates were revived and 394 
sequenced with PacBio RS II long-read sequencing (Dataset #1). Additionally, 15 total clinical 395 
isolates isolated in Azerbaijan, Georgia, Moldova were sequenced with PacBio Sequel II long-read 396 
sequencing30 (Dataset #2). 397 
 398 
This dataset of 31 clinical isolates was combined with publicly available paired PacBio (RS II) and 399 
Illumina genome sequencing from 19 clinical isolates from two previously published studies20,21. 400 
From these four sources, 38 Mtb isolates were selected for having a) Illumina WGS with paired 401 
end reads with at least a median sequencing depth of 40X relative to the Mtb reference genome 402 
(H37Rv). All aggregated metadata and SRA/ENA accessions for PacBio and Illumina sequencing 403 
data associated with this analysis can be found in Additional File 15.  404 
 405 
DNA extraction for PacBio (RS II) Sequencing of Peruvian Isolates (Data Source #1) 406 
MTB cultures were allowed to grow for 4-6 weeks. Pellets were heat-killed at 80°C for 20 407 
minutes67,68, the supernatants were removed, and the enriched cell pellet was subjected to DNA 408 
extraction soon after or stored frozen until extraction. Largely intact DNA was extracted from heat-409 
killed cells pellets using a protocol tailored for mycobacteria that ends with a column-based 410 
elution31. Yields were determined using fluorescent quantitation (Qubit, Invitrogen/Thermo Fisher 411 
Scientific) and quality was assessed on a 0.8% GelRed agarose gel with 1XTAE, separated for 90 412 
minutes at 80V.  413 
 414 
PacBio (RS II) Sequencing of Peruvian Mtb Isolates (Data Source #1) 415 
Approximately 1 µg of high molecular weight genomic DNA was used as input for SMRTbell 416 
preparation, according to the manufacturer’s specifications (SMRTbell Template Preparation Kit 417 
1.0, Pacific Biosciences). Briefly, HMW gDNA was sheared to 20kb using the Covaris g-tube at 4500 418 
rpm. Following shearing, gDNA underwent DNA damage repair, ligation to SMRTbell adaptors 419 
and exonuclease treatment to remove any unligated gDNA. At least 500 ng final SMRTbell library 420 
per sample was cleaned with AMPure PB beads and 3-50 kb fragments were size selected using 421 
the BluePippin system on 0.75% agarose cassettes and S1 ladder, as specified by the manufacturer 422 
(Sage Science). Size selected SMRTbell libraries were annealed to sequencing primer and bound 423 
to the P6 polymerase prior to loading on the RSII sequencing system (Pacific Biosciences). 424 
Sequencing was performed using C4 chemistry and 240-minute movies. Following data collection, 425 
raw data was converted into subreads for subsequent analysis using the RS_Subreads.1 pipeline 426 
within SMRTPortal (version 2.3), the web-based bioinformatics suite for analysis of RSII data. 427 
 428 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2021. ; https://doi.org/10.1101/2021.04.08.438862doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.438862
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

13 

DNA extraction for PacBio (Sequel II) Sequencing (Data Source #2) 429 
For all samples from Azerbaijan and Georgia, MTB cultures were grown in 7H9+ADST broth to 430 
A600 0.5–1.0.  Pelleted cells were heat killed at 80°C for 2 hours. Cell pellets were resuspended in 431 
450ul TE-Glu, 50ul of 10 mg/mL lysozyme was added and incubated at 37°C overnight. To each 432 
sample 100ul of 10% sodium dodecyl sulfate and 50ul of 10 mg/ml proteinase K was added and 433 
incubated at 55°C for 30 minutes. 200 ul of 5M sodium chloride and 160 ul Cetramide Saline 434 
Solution (preheated 65°C) was added then incubated for 65°C for 10 minutes. To each sample 1 435 
ml chloroform:isoamyl alcohol (24:1) was added, mixed gently by inversion. Samples were 436 
centrifuged at 5000g for minutes, and 900ul of aqueous layer was transferred to fresh tube. DNA 437 
was re-extracted with chloroform:isoamyl alcohol (24:1) and 800 ul of aqueous layer was 438 
transferred to fresh tube. To 800 aqueous layer 560 ul isopropanol was added, mix gently by 439 
inversion.  The precipitated DNA was collected by centrifuging for 10 minutes and supernatant 440 
was removed.  DNA was washed with 70% ethanol, and DNA was collected by centrifuging and 441 
supernatant removed.  Air dried DNA pellet was dissolved overnight in 100 ul of TE buffer, and 442 
stored at 4°C.  443 
 444 
For all samples from Moldova, DNA was extracted according to CTAB protocol32.     445 
 446 
PacBio (Sequel II) Sequencing (Data Source #2) 447 
Approximately 1 µg of high molecular weight genomic DNA was used as input for SMRTbell 448 
preparation according to the manufacturer’s protocol (Preparing Multiplexed Microbial Libraries 449 
Using SMRTbell Express Template Prep Kit 2.0, Pacific Biosciences). Briefly, HMW gDNA was 450 
sheared to ~15kb using the Covaris g-tube at 2029 x g. For about half of the samples the 451 
molecular weight of the DNA did not need shearing. Following shearing, gDNA underwent DNA 452 
damage repair, ligation to SMRTbell barcoded adaptors and exonuclease treatment to remove 453 
any unligated gDNA. At least 500 ng of pooled SMRTbell library per sample was cleaned with 454 
AMPure PB beads and 7-50 kb fragments were size selected using the BluePippin system on 0.75% 455 
agarose cassettes and S1 ladder, as specified by the manufacturer (Sage Science). The pool of 456 
size-selected SMRTbell libraries were annealed to v4 sequencing primer and bound to the 457 
polymerase prior to loading on the Sequel II sequencing system (Pacific Biosciences). Sequencing 458 
was performed using version 1 chemistry and 15-hour movies.  459 
 460 
H37Rv reference genome and gene annotations 461 
The H37Rv (NCBI Accession: NC_000962.3) genome sequence and annotations was used as the 462 
standard reference genome for all analyses. Functional category annotations for all genes of 463 
H37Rv were downloaded from Release 3 (2018-06-05) of MycoBrowser33 464 
(https://mycobrowser.epfl.ch/releases). PE/PPE sub-family annotations of H37Rv were taken from 465 
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Ates et al.34. Programmatic visualization of data along with annotations of the H37Rv genome 466 
were made using the DNA Features Viewer python library35.  467 
 468 
Genome assembly with PacBio long-read data 469 
All PacBio reads were assembled using Flye36 (v2.6). After assembly, Flye performed three rounds 470 
of iterative polishing of the genome assembly with the PacBio subreads, producing a polished de 471 
novo PacBio assembly. If Flye identified the presence of a complete circular contig, Circlator37 472 
(v1.5.5) was used to standardize the start each assembly at the DnaA (Rv0001) locus.  473 
 474 
Polishing of de novo PacBio assemblies with Illumina WGS 475 
The paired-end Illumina WGS reads were trimmed with Trimmomatic38 (v0.39) with the following 476 
parameters: 2:30:10:2:true SLIDINGWINDOW:4:20 MINLEN:75. Trimmed reads were aligned to the 477 
associated de novo PacBio assembly with BWA-MEM39 (v0.7.17). Duplicate reads were removed 478 
from the resulting alignments using PICARD40 (v2.22.5). Using the deduplicated alignments, Pilon22 479 
(v1.23) was then used to correct SNSs and small INDELs in the de novo PacBio assembly, producing 480 
a high confidence assembly polished by both PacBio and Illumina WGS.  481 
 482 
Identifying mixed infections using F2 metric and removing mismatched PacBio and 483 
Illumina WGS 484 
To further reduce the effects of contamination, we used the F2 metric to identify samples that 485 
may have inter-lineage variation due to co-infection41. The F2 metric measures the heterogeneity 486 
of genotypes at known lineage defining positions of the H37Rv genome. We computed the F2 487 
lineage-mixture metric for both PacBio and Illumina WGS from each isolate. Isolates were filtered 488 
out if either the F2 metric for Illumina sequencing passed 0.05 or the F2 metric for PacBio 489 
sequencing passed 0.35. The threshold used for PacBio sequencing subreads is much higher 490 
because the inherent error rate per read is much higher than Illumina. 491 
 492 
During polishing we identified the N0052 isolate from Chiner-Oms et al.20 as a potential sample 493 
mismatch, meaning PacBio and Illumina WGS were not performed on the same clinical isolate. 494 
When polishing the de novo assembly of N0052, we found that the following changes were 495 
performed based on the Illumina WGS: 594 SNPs, 19 insertions, and 92 deletions. The extreme 496 
number of corrected SNPs by Illumina polishing is drastically different from the known error 497 
profile (Additional File 2-3). Additionally, the inferred sub-lineage of the de novo PacBio 498 
assembly was lineage 2.2.1, while the inferred sub-lineage based on Illumina WGS and the Illumina 499 
Polished PacBio assembly was lineage 2.2.2 (Additional File 2). The fact that the polishing with 500 
Illumina WGS changed known lineage defining SNPs makes the sample further suspect as a 501 
mismatch. Thus, N0052 was removed from analysis as to minimize chances of benchmarking 502 
wrongly matched data.  503 
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 504 
Evaluation of PacBio genome assembly characteristics and multiple genome 505 
alignment 506 
FastANI42 was used to calculate the average nucleotide identity to the H37Rv reference genome 507 
for all completed genome assemblies. The Prokka (v1.13) genome annotation pipeline43 was used 508 
to annotate genes in each completed genome assembly. The genome size and GC content of the 509 
entire genome was calculated from each assembly using custom python code. The 510 
progressiveMauve algorithm of the Mauve (v2.4.0)44 alignment software was used to perform 511 
multiple sequence alignment of all 36 completed Mtb assemblies and the H37Rv reference 512 
genome (NCBI Accession: NC_000962.3). The multiple genome alignments of H37Rv and 36 513 
assemblies were visualized using the Mauve GUI45 (Supp. Figure 2). 514 
 515 
Variant calling and structural variant detection using complete PacBio assemblies 516 
Minimap246 was used to align each polished circular completed assembly to the H37Rv reference 517 
genome, producing a base-level alignment of similar regions of the assembly to H37Rv. In regions 518 
with high sequence diversity or large structural variation, Minimap2 will not produce alignments. 519 
To account for this, the NucDiff47 analysis pipeline, which uses the MUMmer48 aligner internally, 520 
was also used to detect and classify the presence of large structural variants relative to the H37Rv 521 
reference. All structural variants (≥ 50 bp) identified by NucDiff for each genome assembly can be 522 
found in (Additional File 16).  523 
 524 
Illumina WGS data processing for variant calling relative to H37Rv 525 
Paired-end Illumina reads were trimmed with Trimmomatic (v0.39) with the following parameters: 526 
2:30:10:2:true SLIDINGWINDOW:4:20 MINLEN:75. Trimmed reads were aligned to the H37Rv 527 
reference genome (NC_000962.3) with BWA-MEM39 (v0.7.17). Duplicate reads were removed from 528 
the resulting alignments using PICARD40 (v2.22.5). Using the deduplicated alignments, small 529 
genome variants (SNSs and INDELs) were inferred using Pilon22 (v1.23). Samtools, Bcftools, and 530 
BEDtools were used as needed for SAM/BAM, and VCF/BCF format file manipulation49–51.  531 
 532 
Phylogenetic inference using complete genome assemblies 533 
All single nucleotide variants inferred through alignment with Minimap2 of PacBio assembly to 534 
the H37Rv genome were concatenated across the 36 strains. Any SNS position which was ever 535 
ambiguously called in at least 1 isolate was excluded (No NAs allowed, only REF or ALT alleles 536 
allowed). Thus, in order for a SNS position to be included it needed to have no ambiguity relative 537 
to the H37Rv reference in any isolate. FastTree52 was used to infer an approximate maximum 538 
likelihood phylogeny from the concatenated SNS alignment of all 36 clinical Mtb isolates (15,673 539 
total positions across 36 Mtb clinical isolates). 540 
 541 
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Measuring repetitive sequence content of the H37Rv reference genome using Pileup 542 
Mappability 543 
We evaluated sequence uniqueness using a mappability metric defined as the inverse of the 544 
number of times a sequence of length K appears in a genome allowing for e mismatches and 545 
considering the reverse complement53. The pileup mappability of a position in a genome is then 546 
defined as the average mappability of all overlapping k-mers. Thus, there are 2 parameters when 547 
calculating mappability, k (length of k-mer) and e (number of base mismatches allowed in 548 
counting matching k-mers). Genmap54 (v1.3) was used to calculate the mappability of all k-mers 549 
across the H37Rv reference genome with the following parameters: k-mer sizes of 50, 75, 100, 550 
125, 150 base pairs and E = 0-4 mismatches. The Gene-level mappability (k = 50 bp , e = 4 551 
mismatches) scores were computed as the average pileup mappability across all genes bodies 552 
annotated in H37Rv (NCBI Accession: NC_000962.3). The base level pileup mappability scores of 553 
H37Rv are available in TSV and BEDGRAPH format for easy visualization in a genome browser 554 
(Additional Files 6 and 17). 555 
 556 
Calculation of Empirical Base-level Recall (EBR) of Illumina variant calling 557 
The goal of the empirical base-level recall (EBR) for score is to summarize the consistency by which 558 
Illumina WGS correctly evaluated any given genomic position. The EBR for a genomic position 559 
was defined as the proportion isolates where Illumina WGS confidently and correctly agreed with 560 
the PacBio defined ground truth. The ground truth was inferred for each isolate by directly 561 
comparing the completed PacBio genome assembly to the H37Rv reference using Minimap246 562 
and NucDiff47. Due to Minimap2’s inability to classify large structural variants, the ground truth 563 
relative to H37Rv was supplemented with the structural variant calls generated by the NucDiff 564 
analysis pipeline. Illumina WGS reads were aligned to the H37Rv reference genome with BWA-565 
MEM39, and variants were inferred with the Pilon22 variant detection tool. In addition to identifying 566 
variants relative to the reference genome, Pilon provides variant calling annotations for all 567 
positions of H37Rv. The variant calling quality annotations of Pilon for all positions of H37Rv were 568 
parsed for comparison to the PacBio defined ground truth for each isolate evaluated.  569 
Only the following comparison outcomes were classified as a correctly recalled position: 570 
1) Both Illumina variant calling and the PacBio ground truth agree on the genotype of a genomic 571 
position, 2) Both Illumina variant calling and the PacBio ground truth agree that a genomic 572 
position is deleted. 573 
 574 
The following comparison outcomes were classified as poorly recalled position: 575 
3) The PacBio ground truth supports a deletion, but Illumina is not confident in the presence of 576 
the deletion, 4) Both Illumina variant calling and the PacBio ground truth disagree on the genotype 577 
of a genomic position, 5) The PacBio ground truth supports the presence of a genomic region, 578 
while Illumina variant calling did not confidently support the presence of the region. 6) Illumina 579 
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variant calling erroneously supports a deletion at a genomic position which is not deleted in the 580 
PacBio ground truth.  581 
 582 
The following EBR comparison outcomes were classified as ambiguous (N/A) due to ambiguities 583 
in the interpretation of the ground truth: a) Cases where the PacBio ground truth contained 584 
genome duplications relative to H37Rv, b) Cases where the PacBio ground truth did not provide 585 
a confident alignment or structural variant call due to high sequence divergence from the 586 
reference sequence.  587 
 588 
For calculating the EBR for a genomic position, ambiguous (N/A) outcomes were ignored when 589 
the number of N/As was <= 25%. In the case that a position had greater than 25% N/As at a 590 
genomic position, the EBR score was defined as “Ambiguous”. Ambiguous (N/A) EBR scores 591 
represent locations of the H37Rv genome where there appeared to be systematic trouble in 592 
determining the ground truth genotype.  593 
 594 
The base level EBR scores are available in TSV and BEDGRAPH format for easy visualization in a 595 
genome browser (Additional Files 6 and 18). 596 
 597 
Evaluating characteristics of low empirical performance across Mtb genome 598 
The Illumina WGS variant caller used, Pilon, produces VCF tags for all reference positions 599 
evaluated, including positions which were confidently called a reference. The tags associated with 600 
each position can either be PASS or a combination of non-pass tags (LowCov, Del, Amb). Each 601 
genomic position can be assigned a combination of the following VCF Tags: a) PASS, signifying 602 
confirmation of either a reference or an alternative allele. b) LowCov, signifying insufficient high 603 
confidence reads (Depth < 5). c) Del, signifying that the position is confidently inferred to be 604 
deleted. d) Amb, signifying evidence for more than one allele at this position. We quantified the 605 
frequency of all combinations of these tags across all positions that were classified as “poor 606 
recalled” during EBR evaluation. 607 
 608 
Measuring sequencing bias with per-base relative depth 609 
We measured sequencing bias using the relative depth statistic, which for a given genome 610 
assembly and sequencing dataset, is defined as the sequencing depth per site divided by average 611 
depth across the entire genome4. We evaluated the relative depth of all base pair positions of all 612 
sequencing runs (Illumina and PacBio) relative to the corresponding isolates’ complete PacBio 613 
genome assembly. The sequencing depth of a base pair position was defined as the number of 614 
reads with a nucleotide aligning to the position of interest. We calculated the mean coverage 615 
across a sample by simply averaging the depth across all positions of the evaluated genome. For 616 
ambiguous mapping reads, the aligners used (BWA-mem and Minimap2) use a random 617 
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assignment policy between all possible alignment locations. This allows for approximation of 618 
depth in regions with non-uniquely mapping reads. For each individual Mtb isolate, we then 619 
calculated the mean relative depth across all positions with the same GC content (100 bp window 620 
size, Additional File 8).  621 
 622 
Defining and excluding ambiguous regions relative to H37Rv (per isolate genome 623 
assembly)  624 
Following GA4GH (Global Alliance for Genomics & Health) benchmarking guidelines23, we 625 
excluded regions of the genome, where definition of the ground truth had ambiguity in its 626 
definition relative to the reference genome. The following comparison outcomes were classified 627 
as ambiguous (N/A) due to ambiguities in the interpretation of the ground truth: a) Cases where 628 
the PacBio ground truth contained duplications relative to H37Rv, b) Cases where the PacBio 629 
ground truth did not provide a confident alignment or structural variant call due to high sequence 630 
divergence relative to H37Rv. These regions thus represent sequences of divergence relative to 631 
the reference genome.  632 
 633 
The percentage of the reference genome that was identified as “ambiguous” was consistently less 634 
than 1% for all 36 clinical isolates evaluated. The median percent of the genome where the ground 635 
truth was “ambiguously defined” was 0.4% (IQR: 0.3% - 0.5%). A large majority of these ambiguous 636 
ground truth regions were either in Mobile Genetic Elements, PE_PGRS or PPE_MPTR genes. The 637 
ambiguously defined regions for each isolate can be found in Additional File 4. Additionally, all 638 
regions of the H37Rv genome which were ambiguous in over 25% of isolates, signifying high 639 
levels of ambiguity, are present in Additional File 5. 640 
 641 
Defining the putative low confidence (PLC) regions of the H37Rv genome 642 
The regions most commonly excluded from Mtb genomics analysis, also referred to as the Putative 643 
Low Confidence (PLC) regions in this work, were based on current literature16,24,55,56. Specifically, 644 
we defined the PLC regions as the union of the 168 PE/PPE genes, all mobile genetic elements 645 
(MGEs), and 82 genes with repetitive content previously identified24. PLC regions are defined in 646 
Additional File 19 (BED format). Non-PLC regions were simply defined as the complement of the 647 
PLC genes. 648 
 649 
Evaluating variant calling performance of genome masking approaches 650 
Following the small variant benchmarking standards outlined by the GA4GH, we used Hap.py 651 
(v0.3.13) to evaluate the Illumina WGS variant calling performance of Pilon for all 36 isolates 652 
individually. For each complete genome assembly, SNSs and small INDELs 1-15 bp inferred by the 653 
Minimap2-paftools pipeline were used as ground truth. We evaluated variant calling performance 654 
of Illumina WGS when using different region filtering schemas: (1) masking of all PLC genes, the 655 
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current standard practice, (2) masking of repetitive regions with P-Map-K50E4 < 100%, and (3) No 656 
masking. Masking schemas (1 and 2) are provided in BED format (Additional File 19 and 20). 657 
After applying each masking schema, we filtered potential variants according to whether the Pilon 658 
variant calling pipeline gave the variant a PASS filter and the mean mapping quality (MQ) of all 659 
reads aligned to the variant position.  660 
 661 
For each combination of region masking and variant filtering using mapping quality, we then 662 
calculated the absolute number of true positives (TP, i.e. a variant in the ground truth variant set 663 
and correctly called by the Illumina variant calling pipeline), false positives (FP, the Illumina variant 664 
calling pipeline calls a variant not in the ground truth set), and false negative (FN, the variant is in 665 
the ground truth set but is not called by the Illumina variant calling pipeline) variant calls. For each 666 
set of parameters, we calculated the overall precision (positive predictive value) as TP/(TP + FP), 667 
and recall (sensitivity) as TP/(TP + FN). In agreement with the default behavior of Hap.py, and to 668 
avoid undefined precision values, filtering parameters that yielded no TP or FP were defined as 669 
having a precision of 1.0 and a recall of 0. Additionally, we calculated the F1-score, which weights 670 
precision and recall with equally: F1 = 2 * (precision * recall)/(precision + recall). The F1 score 671 
summarizes each variant calling performance as a single value between 0 and 1 (where 1 672 
represents both perfect precision and recall).  673 
 674 
To aggregate the performance evaluation across all 36 isolates, the mean and standard error of 675 
the mean (SEM) of precision, recall and F1 score was calculated for all sets of parameters evaluated 676 
(Additional File 10). The individual variant calling performance statistics for each isolate can also 677 
be found in Additional File 10. The variant calling performance comparison of shorter (1-5bp) vs 678 
longer (6-15bp) INDELs can be found in Additional File 11. 679 
 680 
Evaluating variant calling performance near regions with structural variation and 681 
repetitive sequence content 682 
Using Hap.py and the same approach defined in the above section, we evaluated SNS variant 683 
calling performance in the following types of regions: (1) SNSs in regions with perfect mappability 684 
(Pmap-K50E4 = 1) with no identified SV (2) SNSs in regions with low mappability (Pmap-K50E4 < 685 
1) with no identified SV, (3) SNSs in regions with perfect mappability within 100 bp of any 686 
identified SV, and (4) SNSs in regions with low mappability within 100bp of any identified SV. 687 
Genomic contexts not near SVs (1 and 2) were evaluated with MQ thresholds ranging from 1-60. 688 
For genomic contexts within 100 bp of an SV (3 and 4), the MQ thresholds evaluated ranged from 689 
1-40. The MQ threshold evaluated near SVs was limited due to the fact that a majority of SNSs 690 
near SVs typically have lower MQ values, and higher MQ values resulted in recalls of approximately 691 
0. As explained in the previous section, the mean and SEM of precision, recall, and F1 score were 692 
calculated for all MQ filtering thresholds across all 4 region types (Additional File 12).  693 
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 694 
Evaluation of the distribution of potential false positive SNS calls across the Mtb 695 
genome 696 
False positive SNS calls were identified by the Hap.py evaluation software through comparison to 697 
the assembly-based ground truth variant call set. Additionally, false positive calls with MQ < 30 698 
were filtered out, as to only include false positives which would realistically pass standard filtering.  699 
For each genomic region (gene or intergenic region) of the H37Rv genome, the total number of 700 
overlapping false positives across all 36 isolates was calculated (Additional File 9). Across all 36 701 
clinical isolates, there were 548 false positive SNSs with MQ ≥ 30 and 696 total false positive SNS 702 
with MQ ≥ 1 detected.  703 
 704 
Defining Refined Low Confidence (RLC) regions  705 
We defined the refined low confidence regions (RLC) of the Mtb reference genome as the union 706 
of A) The 30 false positive hot spot regions (gene and intergenic) identified (65 kb), B) poorly 707 
recalled genomic regions as identified by EBR (EBR < 0.9, 142 kb), and C) regions with frequently 708 
ambiguously defined ground truths (16 kb). We provide the complete set of RLC regions in BED 709 
format (177 kb, Additional File 13), along with each separate component of the RLC regions in 710 
BED format (Additional Files 21, 22, and 23). For very conservative masking of the Mtb reference 711 
genome, we additionally provide a masking scheme that specifies the union of a) the RLC regions 712 
and b) all low pileup mappability regions (PmapK50E4 < 1) (277 kb, Additional File 14). 713 
 714 
 715 
 716 
 717 
 718 
 719 
 720 
 721 
 722 
 723 
 724 
 725 
 726 
 727 
 728 
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Figures & Tables 910 

Figure 1 911 

 912 
Overview of 36 clinical Mtb isolates with completed genome assemblies. a) Maximum 913 
likelihood Phylogeny of M. tuberculosis isolates with PacBio complete genome assemblies. The 914 
sequences of all 36 complete M. tb genomes were aligned to the H37rv reference genome using 915 
minimap2, and a maximum likelihood phylogeny was inferred using a concatenated SNS alignment 916 
(15,673 total positions). b) Representative isolates from each lineage sampled from the whole 917 
genome sequence alignment between the H37Rv reference genome and all completed circular 918 
Mtb genome assemblies, The complete alignment is visualized in Supplemental Figure 2. The 919 
whole genome multiple sequence alignment was performed using the progressiveMauve44 920 
algorithm. Each contiguously colored region is a locally collinear block (LCB), a region without 921 
rearrangement of homologous backbone sequence.  922 
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 923 

Figure 2  924 

 925 
EBR, Pileup Mappability, and GC content across two example regions of the H37Rv genome. Empirical 926 
Base Pair Recall (EBR), Pileup Mappability (K=50 bp, e = 4 mismatches) and GC% (100 bp window) values are 927 
plotted across all base pair positions of two regions of interest. a) InhA, an antibiotic resistance gene, shows 928 
perfect EBR across the entire gene body. b) In contrast, PE_PGRS54, a known highly repetitive gene with high 929 
GC content, has extremely low EBR across the entire gene body. Browser tracks of EBR and Pileup Mappability 930 
in BEDGRAPH format are made available as Additional Files 17 and 18. 931 
 932 
 933 
 934 
 935 
 936 
 937 
 938 
 939 
 940 
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Figure 3  941 

 942 
The Distribution of EBR and Pileup Mappability scores in PLC and non-PLC regions. a) The distribution of 943 
Empirical Base Pair Recall (EBR) and Pileup Mappability (P-Map, K=50,E=4) scores of PLC and non-PLC regions. 944 
Excluded regions harbor significantly more low EBR base pair positions when compared to the included genes, 945 
but 68% of routinely excluded positions still have ≥ 97% EBR. The Pileup mappability with K=50 bp is lower in 946 
PLC regions (mean = 0.86) than non-PLC regions (mean = .997). b) The Distribution of gene-level mean EBR 947 
and P-Map (K=50,E=4) between PLC and non-PLC regions.  We compared the mean EBR and Pileup 948 
Mappability across all genes within PLC and non-PLC regions. The pe and ppe gene families (PE/PPEs) and 949 
mobile genetic elements (MGE), which make up 82% of PLC genes, demonstrated significantly lower mean EBR 950 
and Pileup Mappability than other non-PLC genes. 951 
 952 
 953 
 954 
 955 
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Figure 4 956 

 957 
Relative sequencing depth as a function of local GC content across all 36 complete isolates. We evaluated the 958 
relative depth of our Illumina and PacBio sequencing data as a function of GC content (100 bp window size) across all 959 
positions of each isolate’s complete genome assembly. The relative depth was averaged across all positions with the 960 
same GC% across each genome assembly. The standard error of the mean of the relative depth across all 36 isolates is 961 
shaded for each sequencing technology. At high (>70%) GC contents, Illumina starts to show lower relative depth 962 
compared to PacBio sequencing. 963 
 964 
 965 
 966 
 967 
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Figure 5 968 

 969 
The distribution of potential false positive SNS calls across all genomic regions of the H37Rv genome. The 970 
frequency of false positive SNS calls detected (MQ ≥ 30) across all 36 isolates evaluated was plotted for all regions of 971 
the H37Rv genome (gene or intergenic regions). The top 30 regions ranked by the number of total false positives 972 
contained 89.4% (490/548) of the total false positive SNSs and spanned only 65 kb of the H37Rv genome. Full results 973 
for all annotated genomic regions (gene or intergenic) can be found in Additional File 9. 974 
 975 
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Figure 6 991 

 992 
Mean SNV and INDEL variant calling performance across different masking approaches. a) SNS variant calling 993 
performance was evaluated across the following three schemas: (1) masking of regions with non-unique sequence, as 994 
defined as positions with P-Map-K50E4 < 1, (2) No a priori masking of any regions, and compared to (3) masking of 995 
all PLC genes (the current standard practice). (b) short INDEL (1-15 bp) variant calling performance was evaluated 996 
across the same schemas. The orange diamonds represent the mean precision and recall using a MQ threshold of 40 997 
for both (a) and (b). Shaded regions represent the SEM of precision across all 36 isolates evaluated.  998 
For all masking approaches evaluated, the MQ thresholds evaluated ranged from 1-60. Complete benchmarking 999 
results can be found for each individual isolate in Additional File 10.  1000 
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Table 1. 1001 
Masking Schema Metric 

Optimized 
MQ 
Threshold 

F1  Precision  Recall  

 
Masking non-
unique regions 

F1-score 19 0.87 99.77% 77.98% 
Comparator 40 0.88 99.79% 77.86% 
Precision 60 0.82 99.94% 70.00% 

 
No masking 
 

F1-score 8 0.94 98.56% 88.95% 
Comparator 40 0.92 99.13% 85.77% 
Precision 60 0.83 99.90% 72.06% 

 
Masking PLC genes 
(current standard) 

F1-score 35 0.82 99.50% 70.30% 
Comparator 40 0.82 99.62% 70.17% 
Precision 60 0.77   99.97% 63.56% 

Comparison of performance of proposed genome-masking schemas for SNS variant calling. For each masking 1002 
scheme and MQ filtering threshold shown, the corresponding mean Precision, Recall, and F1 score is shown across all 1003 
36 Mtb isolates. Corresponding Precision-Recall curves are given in Figure 5A. Performance at a threshold of MQ≥40 1004 
is given as a common point of comparison across the three masking schemas. 1005 
 1006 
 1007 
 1008 
 1009 
 1010 
 1011 
 1012 
 1013 
 1014 
 1015 
 1016 
 1017 
 1018 
 1019 
 1020 
 1021 
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Figure 7 1022 

 1023 
Variant calling performance of single nucleotide substitutions stratified by proximity to structural variants 1024 
and low pileup mappability sequence. Mappability is dichotomized at Pmap-K50E4 =100% or <100%. Regions 1025 
within 100bp of a SV categorized as “with SV”. Precision and recall is plotted for the following genomic contexts: (1) 1026 
regions with high mappability with no SV (Blue, F1 = 0.98 (precision = 99.89%, recall = 96.49%, MQ threshold of 40)), 1027 
(2) regions with low mappability and no SV (green, F1 = 0.62 (precision = 96.98%, recall = 45.65%, MQ threshold of 1028 
40), (3) regions with high mappability with SV (orange, F1 = 0.64 (precision = 84.07%, recall = 52.73%, MQ threshold 1029 
of 40), (4) regions with low mappability and with SV (red, F1 = 0.32 (precision = 52.10%, recall = 23.47%, MQ 1030 
threshold of 40). The standard error of the mean (SEM) for precision is shaded for each curve. Orange diamonds 1031 
represent the precision and recall using the same MQ threshold of 40. Genomic contexts not near SVs (1 and 2) were 1032 
evaluated with MQ thresholds ranging from 1-60. For genomic contexts within 100 bp of an SV (3 and 4), the MQ 1033 
thresholds evaluated ranged from 1-40. Complete benchmarking results can be found for each individual isolate in 1034 
Additional File 12. 1035 
 1036 
 1037 
 1038 
 1039 
 1040 
 1041 
 1042 
 1043 
 1044 
 1045 
 1046 
 1047 
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Supplementary Information 1048 

Additional File 1: Supplementary Figures and Tables (Figure S1-7, Table S1-6)    1049 
 1050 
Additional File 2: Results and quality control for assembly and sequencing for both PacBio and Illumina 1051 
sequencing  1052 
 1053 
Additional File 3: List of all changes made during Illumina polishing of the de novo PacBio assemblies  1054 
 1055 
Additional File 4: List of genomic regions with ambiguously defined ground truths relative to H37Rv for all 1056 
each isolate evaluation 1057 
 1058 
Additional File 5: List of genomic regions which were frequently had an ambiguously defined ground truth 1059 
 1060 
Additional File 6: Table containing the EBR, Pileup Mappability, and GC% of all genomic positions of the 1061 
H37Rv reference. Due to large file size, Additional File 659 is hosted on Zenodo at 1062 
https://zenodo.org/record/4662193. 1063 
 1064 
Additional File 7: EBR, and Pileup Mappability across all genomic regions of H37Rv (both genes and 1065 
intergenic regions) 1066 
 1067 
Additional File 8: Table of the mean relative sequencing depth of both Illumina and PacBio at varying GC% 1068 
across all 36 isolates evaluated. 1069 
 1070 
Additional File 9: Table containing the frequency of observed False Positive SNSs (MQ ≥ 30) across all 1071 
genomic regions of H37Rv (both genes and intergenic regions) 1072 
 1073 
Additional File 10: Variant call benchmarking of SNSs and small indels (<=15bp) 1074 
 1075 
Additional File 11: Variant call benchmarking stratified by shorter (< 6bp) and longer indels (6-15bp) 1076 
 1077 
Additional File 12: Variant call benchmarking of SNSs stratified by proximity to an SV and low pileup 1078 
mappability 1079 
 1080 
Additional File 13: Masking scheme in BED format specifying the Refined Low Confidence Regions 1081 
 1082 
Additional File 14: Masking scheme in BED format specifying the union of a) Refined Low Confidence 1083 
Regions, and b) regions with Pileup Mappability (K= 50 bp, E = 4 mismatches) < 1.  1084 
 1085 
 1086 
 1087 
 1088 
 1089 
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Additional File 15: SRA/ENA sequencing run metadata for PacBio and Illumina sequencing used in this 1090 
study 1091 
 1092 
Additional File 16: All identified structural variants for each complete genome assembly as identified by 1093 
the NucDiff analysis pipeline. 1094 
 1095 
Additional File 17: Base-level Pileup Mappability scores (P-Map-K50E4) across the H37Rv in BEDGRAPH 1096 
format 1097 
 1098 
Additional File 18: Base-level EBR scores (36 isolates) across the H37Rv in BEDGRAPH format 1099 
 1100 
Additional File 19: Masking scheme for the Putative Low Confidence (PLC) Regions in BED format 1101 
 1102 
Additional File 20: All regions with low pileup mappability (P-Map-K50E4 < 100%) in BED format 1103 
 1104 
Additional File 21: Component (A) of RLC regions.  Masking scheme Specifying the 30 false positive hot 1105 
spot regions (gene and intergenic) in BED format.  1106 
 1107 
Additional File 22:  1108 
Component (B) of RLC regions. Masking scheme specifying poorly recalled genomic regions as identified 1109 
by EBR< 0.9) in BED format.  1110 
 1111 
Additional File 23:  1112 
Component (C) of RLC regions. Masking scheme specifying regions that frequently (> 25%) had an 1113 
ambiguously defined ground truth in BED format. Same information as Additional File 5 but this file is 1114 
instead in BED format. 1115 
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