

PAPER

Interactions among rooting traits for deep water and nitrogen uptake in upland and lowland ecotypes of switchgrass (*Panicum virgatum* L.)

Marcus Griffiths^{1,†}, Xueyan Wang¹, Kundan Dhakal¹, Haichao Guo¹, Anand Seethepalli¹, Yun Kang¹ and Larry M. York^{1,*}

¹Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA

[†]Current address: Donald Danforth Plant Science Center, St. Louis, MO 63132

*To whom correspondence should be addressed. E-mail: lm.york@noble.org

Abstract

Plant phenotypic plasticity in response to nutrient and water availability is an important adaptation for abiotic stress tolerance. Roots intercept water and nutrients while foraging through soil searching for further resources. Substantial amounts of nitrate can leach into groundwater; yet, little is known about how deep rooting affects this process. Here, we phenotyped root system traits and deep ¹⁵N nitrate capture across 1.5 m profiles of solid-media using tall mesocosms in switchgrass (*Panicum virgatum* L.), a cellulosic bioenergy feedstock. Root and shoot biomass, photosynthesis and respiration, and nutrient uptake traits were quantified in response to a water and nitrate stress factorial experiment in the greenhouse for switchgrass upland (VS16) and lowland (AP13) ecotypes. The two switchgrass ecotypes shared common plastic abiotic responses to nitrogen (N) and water availability and yet showed genotypic differences for root and shoot traits. A significant interaction between nitrogen and water stress for axial and lateral root traits represents a complex and shared root development strategy for stress mitigation. Deep root growth and ¹⁵N capture were found to be closely linked to aboveground growth. Together, these results represent the wide genetic pool of switchgrass and that deep rooting promotes nitrate capture, plant productivity, and sustainability.

Key words: Deep rooting; water; nitrogen; abiotic stress; plasticity; partitioning; strategies; tolerance; switchgrass; mesocosm

Introduction

The root system of a plant serves multiple important roles, from structural stability in the soil to resource foraging for water and nutrients. The spatial and temporal arrangement of roots in the soil (broadly referred to as root system architecture) can greatly affect the interception and subsequent uptake of soil resources. Root growth and development are highly responsive to both the environmental conditions and the plant's resource requirements. Greater knowledge of this dynamic process in plants is important to characterize ecological adaptations and breed for beneficial adaptations enabling more

resource-efficient plant varieties.

Water and nitrogen (N) are the two most frequently limiting resources in agriculture, affecting plant growth and yield. Both water and nitrate-N are highly mobile in the soil profile, which means plants have a limited opportunity to acquire these resources. Plant adaptive responses help mitigate such abiotic stresses through changes in growth and development in response to the plant's nutritional requirements and the environment. Deep rooting is regarded as a beneficial trait for plant productivity and abiotic stress mitigation by expanding the soil volume explored, effectively increasing soil resources available to the plant. It increases the soil volume explored and

Highlight

Two main ecotypes of switchgrass have both shared and different root responses to varying water and nitrogen conditions, with deep rooting shown to be closely linked to aboveground growth.

consequently soil resources available to the plant (reviewed by Thorup-Kristensen et al., 2020). Increased root length at depth also enables plants to capture water and nitrate that otherwise would be lost through deep soil-water movement and leaching. Deep rooting traits in turn can reduce the environmental damage caused by the leaching of nutrients into groundwater (Foulkes et al., 2009; Kumar and Goh, 2002). However, roots are challenging to phenotype and evaluate quantitatively as they are the hidden half of the plant, and relatively little is known about root growth, nutrient capture, and root longevity of perennial crops. At present, root evaluation at depth is often conducted by soil coring methods in the field, with subsequent root washing and image analysis or qPCR for DNA abundance used for quantifying root length or mass (Kristensen and Thorup-Kristensen, 2004; Heuermann et al., 2019), stable isotope tracing (Ehleringer and Dawson, 1992; Chen et al., 2018), or under more controlled setups using large rhizotrons (Nagel et al., 2012; Ytting et al., 2014) or large mesocosms (Guo and York, 2019; Saengwilai et al., 2014; Zhan et al., 2015).

Switchgrass (*Panicum virgatum* L.) is a C4, warm-season perennial grass that is native to North America and has an extensive and deep root system with recorded rooting depths of 330 cm in field trials (Ma et al., 2000). As with many prairie grasses, switchgrass develops rhizomes which are underground, stem-derived organs that provide plants with the ability to grow clonally and regrow after disturbance in the soil (Weaver, 1954; Freschet et al., 2020). Switchgrass is found across a diverse geographical range from Canada to Central America and has a promising utility as a cellulosic bioenergy feedstock. Switchgrass has low input requirements, so is ideal for growth on marginal lands. In addition, switchgrass is reported to provide ecosystem services with an enhancement of soil organic matter, reduction in soil erosion, and associative N fixation (Lai et al., 2018; Gilley et al., 2000; Roley et al., 2019). Switchgrass can be divided into two main ecotypes, upland and lowland, which are estimated to have diverged 0.7–1.0 million years ago (Morris et al., 2011). The ecotype divergence in switchgrass is hypothesized to be through climatic-associated adaption with the upland ecotype found in more northern latitudes and across drier precipitation gradients than the lowland ecotype (Lovell et al., 2021). The upland ecotype has also been found to be generally smaller with a greater number of tillers and an earlier flowering time (Milano et al., 2016; Singer et al., 2019). As the ecotypes are diverse, each has its own beneficial breeding potential with different environmental adaptation and pathogen resistance (Milano et al., 2016). For switchgrass adoption as a bioenergy feedstock, the biomass yield will have to be maximized in a sustainable manner, which requires a greater understanding of the interactions among environment, ecotype, and soil dynamics (Lemus et al., 2014).

In-depth characterization of the physiological and morphological differences of the main switchgrass ecotypes is important to understand the functional adaptations to resource capture and to characterize the differences in abiotic stress tolerance. The aim of this study was to characterize and compare the root systems of the representative upland and lowland ecotypes of switchgrass and the root adaptive responses to water and nitrogen stress. To achieve this, we set up a tall mesocosm greenhouse study with water and nitrogen factorial stresses using clones of representative upland and lowland cultivars and

evaluated the vertical distribution of the root system across 150 cm depth along with other physiological characteristics.

Materials and methods

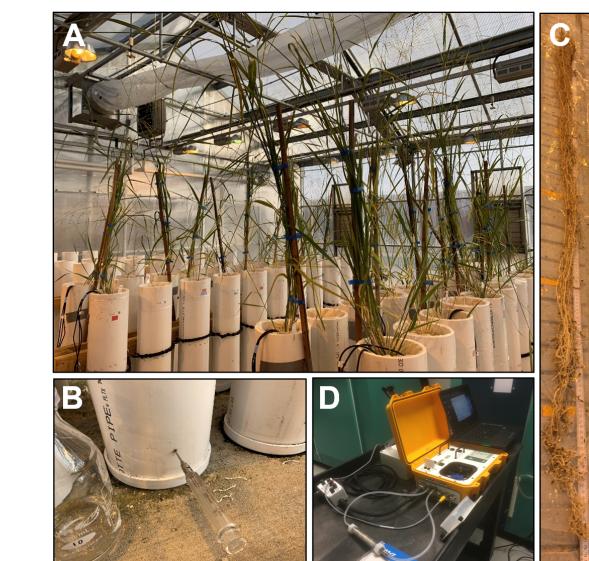
Plant materials and experiment design

Clones derived from two contrasting genotypes of switchgrass, AP13 and VS16, were used in this study to represent the two ecotypes. AP13 is a clone derived from the lowland cultivar 'Alamo', which is the source of the switchgrass reference genome, and VS16 is a clone derived from the upland cultivar 'Summer'. Mapping populations have been derived from crossing these two ecotypes (Milano et al., 2016), which highlights their importance for switchgrass research. Recently-emerged tillers from well-established plants were pulled apart by hand and one tiller consisting of a small shoot and root system was transplanted per mesocosm at the start of the experiment. The mesocosm experiment was conducted in a greenhouse from 30th September 2019 to 22nd January 2020 at the Noble Research Institute, LLC, Ardmore, OK, USA (34°11' N, 97°5' W; elevation 268 m). The greenhouse conditions were set to a 15/7 h day/night cycle at 24/21°C with an average photosynthetically active radiation (PAR) reading of 150 mol m² s⁻¹ provided with supplemental lighting. Monthly averages for greenhouse conditions are provided in Table S1. The mesocosm experiment was arranged as a randomized complete block design, replicated five times with a 2×2×2 factorial arrangement of treatments. The factors were two levels of N supply (high- and low-N, HN and LN), two watering levels (well-watered and drought-stressed, WW and DS), and two ecotypes (upland and lowland). The treatment combinations are hereafter referred to as HN/WW, LN/WW, HN/DS, and LN/DS.

Mesocosm preparation

The media mixture used in the mesocosm study mimics mineral soil and consisted of sand, vermiculite, and perlite which was mixed using a cement mixer. By volume basis, the mixture constituents used were 50% medium size (0.3–0.5 mm) premium sand (Quikrete, GA, USA), 40% premium grade vermiculite (Sun Gro Horticulture, Agawam, MA, USA), and 10% perlite (Ambient Minerals, AR, USA). The gravimetric water content of the media mixture at mesocosm filling and before watering was 2.5%, as determined by oven-drying 20 g of media at 105 °C for 48 hours (Equation 1) (Rowell, 1994).

$$\Theta g = \frac{(\text{Wet soil mass} - \text{Dry soil mass})}{\text{Dry soil mass}} \quad (1)$$


Media N levels of the starting media mixture before the nutrient application was determined to be 0.11 mM by ion chromatography. Twenty grams of media were first added to 50 mL of 0 N 1/2 Hoagland's solution (detailed below) and then shaken for 30 min at 150 rpm. After shaking, the sample was left undisturbed for five minutes for the particles to settle, and then five mL of the supernatant was centrifuged at 10,000 rpm for five minutes in a 15 mL falcon tube. The ion concentrations

133 of the collected supernatant samples were then determined us-168
134 using a Thermo Scientific ICS-5000+ ion chromatographic sys-169
135 tem using 500 L of the sample (Thermo Fisher Scientific, MA, 170
136 USA).

137 The mesocosms used in this study consisted of polyvinyl
138 chloride (PVC) pipe cut to size 15.24 cm [internal diameter] \times
139 152.4 cm [height] with a flat-bottom PVC cap (IPS Corporation,
140 Collierville, TN, USA), and lined with a seamless heavy-duty
141 (6 Mil) poly tubing (Uline, WI, USA) (Fig. 1A). The mesocosms
142 were evenly filled from the top of the column with 28 L of the
143 air-dry media resulting in an approximate bulk density of 1.1 g
144 cm⁻³. Three days before transplanting, the mesocosms were ir-
145 gitated from the top with six L of nutrient solution. Half of the
146 mesocosms received a zero N 1/2-strength Hoagland's solution
147 for LN treatment and the other received a high N 1/2-strength
148 Hoagland's solution (6 mM NO₃-N) for HN treatment. The
149 high N solution composed of (in μ M) 500 KH₂PO₄, 5700 KNO₃,
150 300 NH₄NO₃, 2000 CaCl₂, 1000 MgSO₄, 46 H₃BO₃, 7 ZnSO₄·7H₂O,
151 9 MnCl₂·4H₂O, 0.32 CuSO₄·5H₂O, 0.114 (NH₄)₆Mo₇O₂₄·4H₂O,
152 and 150 Fe(III)-EDTA(C₁₀H₁₂N₂NaFeO₈). For the zero N solu-
153 tion, KNO₃ and NH₄NO₃ was replaced with 5700 KCl.

172 Mesocosm greenhouse growth conditions

154 One tiller of a clone was transplanted per mesocosm; the meso-175
155 cosms were watered with the respective nutrient solution three 176
156 times a week with 200 mL added from the top at each watering. 177
157 After four weeks of growth in the mesocosms, half of the meso-178
158 cosms were subjected to drought-stress receiving no more wa-179
159 ttering for the rest of the experiment. The well-watered meso-180
160 cosms continued to be watered three times a week with 200 181
161 mL double-deionized water instead of nutrient solution. At the 182
162 end of the experiment, the drought-stressed mesocosms had a 183
163 gravimetric water content ranging from 16% in the first 30 cm 184
164 layer to 28% in the deepest 30 cm layer (Table 1). The gravimet-185
165 ric water content of the well-watered mesocosms ranged from 186
166 27% in the first 30 cm layer to 34% in the bottom layer (Table 187

209 **Figure 1.** Switchgrass mesocosm experiment design. (A) Upland and lowland 210
211 ecotypes were grown in tall mesocosms under a factorial nitrogen and water 212
213 stress conditions HN/WW, LN/WW, HN/DS, LN/DS. (B) ¹⁵N was injected into 214
215 the deepest layer of the mesocosms 24 hours before the shoot material was har-216
217 vested. (C) The medium was carefully washed away, and the root system was 218
219 cut into 30 cm layers which were used for (D) instantaneous root respiration 220
221 analysis using an LI-8100 with custom chambers, and (E) root feature deter-222
223 mination by root scanning and image analysis using RhizoVision Explorer. 224

1.). The water stress was applied over a depth gradient. Aver-
168 aged across the whole mesocosm the gravimetric water content
169 for the water-stressed and well-watered mesocosms were 23%
170 and 29%, respectively.

Table 1. Gravimetric water content (%) of mesocosms determined at the end of the greenhouse study.

Soil horizon (cm depth)	Mesocosm treatment	
	Well-watered	Drought-stressed
0-30	27.28	16.47
30-60	26.52	23.26
60-90	27.36	19.80
90-120	29.84	26.04
120-150	33.86	27.86

172 Mesocosm sample collection and harvest measures

173 Four months after the flowering onset, the plants were de-
174 structively harvested. Phenotypic traits measured are defined
175 in Table 2. One day before destructive sampling, plant height
176 was recorded using a ruler measured from the mesocosm me-
177 dia surface to the tip of the tallest leaf when held to its max-
178 imum height and all tillers were counted. Gas exchange and
179 chlorophyll fluorescence parameters for the youngest fully ex-
180 panded leaf of each plant were measured using an LI-6800
181 portable photosynthesis system with Multiphase Flash Fluor-
182 rometer (LI-COR Biosciences, Lincoln, NE, USA) operating with
183 a six cm² aperture circular leaf adapter, a flow rate of 600
184 μ mol mol⁻¹, and a cuvette relative humidity of 60%. CO₂ ex-
185 change was logged manually, with stability criteria for both 20
186 and 2 standard deviation limits set to 0.1 over a period of 15
187 s. The leaf maximum width was used to normalize measure-
188 ments on leaf material smaller than the circular leaf adapter.
189 Then, the mesocosms were injected with ¹⁵NO₃ (98% atom)
190 to assess deep N capture by switchgrass roots. Three evenly-
191 spaced passage holes were drilled around the circumference of
192 each mesocosm at 132 cm depth, and five mL of Ca(¹⁵NO₃)₂ so-
193 lution (0.46 mg ¹⁵NO₃ mL⁻¹) was injected into each mesocosm
194 using these holes with a syringe (Fig. 1B).

195 The next day at 24 hours after ¹⁵N injection, the shoot of
196 each plant was severed at the stem base and dried at 60 °C for
197 3 d for dry biomass determination. The shoot samples were
198 thoroughly ground by placing the samples into glass vials with
199 three opposing surgical blades and shaking at a frequency of
200 30 Hz for 10 minutes using a Qiagen TissueLyser II (German-
201 town, MD, USA). Shoot tissue percentages of total N and ¹⁵N
202 were determined using a BioVision from Elementar including
203 an IsoPrime Vision isotope ratio mass spectrometer connected
204 to an IsoPrime Isotope cube that operates in CNS mode (Ele-
205 mentar, Langenselbold, Germany).

206 For root harvesting, the polyethylene bag that lined each
207 mesocosm was pulled out and the bag was sliced open longi-
208 tudinally on a root washing station (Fig. 1C). One-hundred
209 grams of media mixture samples excluding roots were bagged
210 at 30 cm layers for measuring gravimetric water content and N
211 content, as detailed above, and were placed in a cool box con-
212 taining ice and frozen at -20 °C within eight hours. The rest
213 of the mixture was then carefully washed away from the roots
214 using a water hose with a low-pressure nozzle starting at the
215 plant base. Immediately after root washing, roots were cut and
216 divided into 30 cm layers, and root respiration for each plant

Table 2. Traits measured and descriptors used in this study. Calculations for derived traits are found in the Supplementary R code. Traits measured in per plant basis refers to the entire plant within one biological unit.

Trait category	Trait description	Method	Units
Total root size	Root dry mass total	Measured after 3 days at 60 °C	g plant ⁻¹
	Root CO ₂ flux total	LI-8100A	nmol plant ⁻¹ s ⁻¹
	Root length total	RhizoVision Explorer	mm plant ⁻¹
	Root length axial	RhizoVision Explorer	mm plant ⁻¹
	Root length lateral	RhizoVision Explorer	mm plant ⁻¹
	Root length secondary lateral	RhizoVision Explorer	mm plant ⁻¹
	Root surface area total	RhizoVision Explorer	mm ² plant ⁻¹
	Root surface area axial	RhizoVision Explorer	mm ² plant ⁻¹
	Root surface area lateral	RhizoVision Explorer	mm ² plant ⁻¹
	Root surface area secondary lateral	RhizoVision Explorer	mm ² plant ⁻¹
	Root volume total	RhizoVision Explorer	mm ³ plant ⁻¹
	Root volume axial	RhizoVision Explorer	mm ³ plant ⁻¹
	Root volume lateral	RhizoVision Explorer	mm ³ plant ⁻¹
	Root volume secondary lateral	RhizoVision Explorer	mm ³ plant ⁻¹
	Root branch count total	RhizoVision Explorer	-
	Root tip count total	RhizoVision Explorer	-
	Specific root length	Root length / Root dry mass (derived)	m g ⁻¹
	Root lateral:axial ratio	Lateral + secondary lateral root length / crown root length (derived)	-
Root distribution	Root branching frequency	RhizoVision Explorer	freq mm ⁻¹
	Deep root dry mass total (mass basis)	Root dry mass in 120cm-150cm soil horizon	g plant ⁻¹
	Deep root length total (length basis)	Root length in 120cm-150cm soil horizon	mm plant ⁻¹
	Deep root fraction (mass basis)	Root dry mass in 120cm-150cm soil horizon / total root dry mass (derived)	g g ⁻¹
	Deep root fraction (length basis)	Root length in 120cm-150cm soil horizon / total root length (derived)	mm mm ⁻¹
Root diameter	Root maximum diameter	RhizoVision Explorer	mm plant ⁻¹
	Root median diameter	RhizoVision Explorer	mm plant ⁻¹
	Root average diameter	RhizoVision Explorer	mm plant ⁻¹
Root respiration	Root CO ₂ flux total	LI-8100A	nmol plant ⁻¹ s ⁻¹
	Specific root CO ₂ flux (length basis)	LI-8100A and root length (derived)	nmol m ⁻¹ s ⁻¹
Biomass distribution	Specific root CO ₂ flux (mass basis)	LI-8100A and root dry mass (derived)	nmol g ⁻¹ s ⁻¹
	Plant dry mass total	Root + Shoot dry mass (derived)	g plant ⁻¹
Shoot size	Root mass fraction	Root dry mass / total dry mass (derived)	g g ⁻¹
	Shoot dry mass total	Measured after 3 days at 60°C	g plant ⁻¹
	Plant height	Manual measurement soil level to leaf tip	cm plant ⁻¹
	Leaf maximum width	Manual measurement widest leaf width	cm plant ⁻¹
Shoot properties	Tiller count	Manual count	-
	Total leaf N	EA IRMS System	g plant ⁻¹
	Leaf N concentration	EA IRMS System	%
	Leaf protein percent	EA IRMS System	%
	Leaf C concentration	EA IRMS System	%
	Net CO ₂ assimilation rate (A)	LI-6800	umol m ⁻² s ⁻¹
	Shoot 15N concentration	EA IRMS System	%
	Shoot 15N content	EA IRMS System	mg plant ⁻¹
	Shoot 15N uptake rate	EA IRMS System	mg h ⁻¹ plant ⁻¹
	Leaf transpiration rate (E)	LI-6800	mol m ⁻² s ⁻¹
	Leaf stomatal conductance (gsw)	LI-6800	mol m ⁻² s ⁻¹
	Intercellular CO ₂ partial pressure (Pci)	LI-6800	-

and layer was measured (Fig. 1D and E). All roots from each layer were transferred into a custom 43 mL airtight chamber (as detailed in (Guo et al., 2020)) connected to an LI-8100 Automated Soil CO₂ Flux System (LI-COR Biosciences, NE, USA). A representative subsample of roots was measured if there was too much root materials to fit into the chamber. The CO₂ flux in the chamber was measured with an observation duration of 90 seconds using the LI-8100A v4.0.9 software (Fig. 1D). Total respiration rate was calculated automatically by the linear fit mode in SoilFluxPro v4.0.1 software (LI-COR Biosciences, NE, USA) with a curve-fit time of 20–90 seconds. After the root respiration measurement, the root material was bagged individually by plant, media layer, and by subsample if required

(Fig. 1E). The root material was then placed in a cool box containing ice and frozen at -20 °C within eight hours.

The bagged root samples were later thawed and imaged using a flatbed scanner equipped with a transparency unit (Epson Expression 12000XL, Epson America Inc, Los Alamitos, CA, USA). Roots were spread out on a transparent acrylic tray (420 mm x 300 mm) with a five mm layer (400 mL) of water and imaged at a resolution of 600 dpi as JPG files with 95% (high) quality. Multiple root scans were done when too much root material was present to scan in a single image to minimize root overlapping based on subjective determination, with an average root length of 10 m per scan retroactively calculated, and the cumulative root length was computed in R. The axial,

243 first-order lateral and second-order lateral root lengths, sur-²⁹⁷
244 face area, and volume for each plant was calculated from the²⁹⁸
245 flatbed images using RhizoVision Explorer v2.0.2 (Seethepalli²⁹⁹
246 and York, 2020) based on diameter thresholds (in mm) of > 0.9,
247 0.3–0.9, and < 0.3, respectively. The threshold level was set to³⁰⁰
248 200, filter non-root objects set to 10 mm², and root pruning³⁰¹
249 threshold set to 20 pixels. Total root tip number, branching fre-³⁰²
250 quencies, and average root diameter were also calculated in the³⁰³
251 software. During statistical analysis, the ratio of lateral roots³⁰⁴
252 (first- and second-order) to the axial traits was computed as³⁰⁵
253 lateral-to-axial ratios. After scanning, the root material was³⁰⁶
254 placed in a paper envelope and dried at 60 °C for three days³⁰⁷
255 for determination of root dry weight. Root mass fraction was³⁰⁸
256 calculated by dividing the total root dry mass by the total plant³⁰⁹
257 dry mass, and deep root fraction as the root length or mass³¹⁰
258 in the bottom 120–150 cm layer divided by the respective total³¹¹
259 root system length or mass.³¹²

260 Statistical analysis

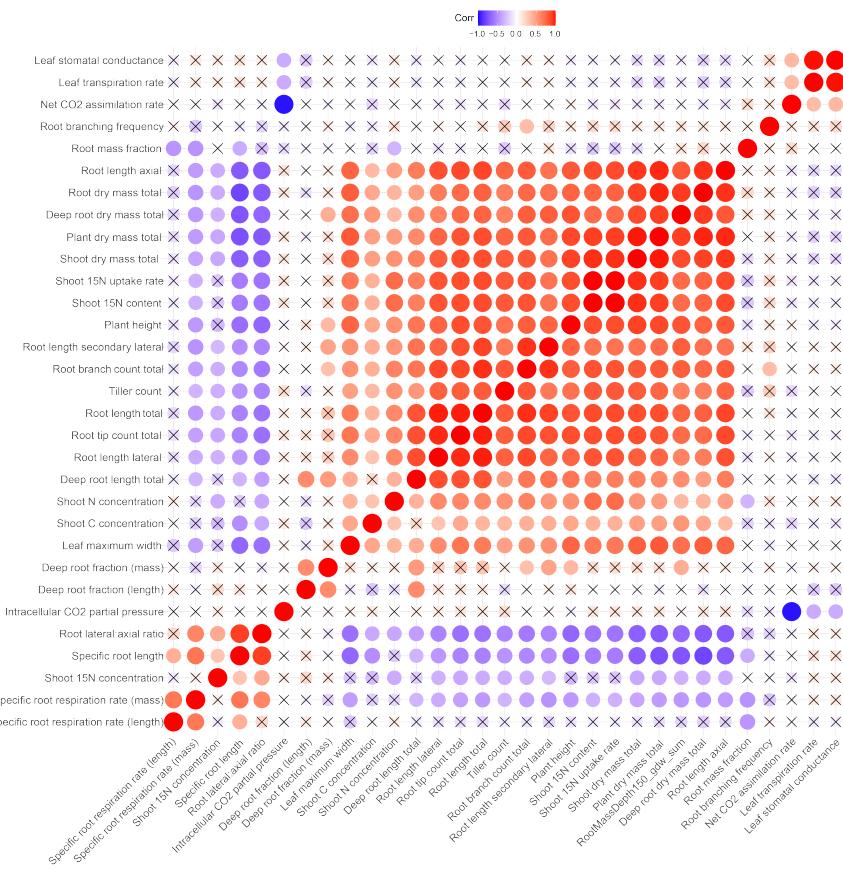
261 Statistical analyses were conducted using R version³¹⁹
262 4.0.3 (R Core Team, 2020); the statistical analysis R³²⁰
263 codes including the packages needed are available at³²¹
<https://doi.org/10.5281/zenodo.4281435> (Griffiths et al., 2021).³²²
264 Traits calculated are described in Table 2. Analysis of variance³²³
265 (ANOVA) of the plant data was conducted using the R package³²⁴
266 “lmerTest” (Kuznetsova et al., 2017) with block as the random³²⁵
267 effect. The Tukey’s HSD test used for the multiple comparison³²⁶
268 boxplots was conducted using the R package “agricolae”³²⁷
269 (De Mendiburu and Simon, 2015). The correlation matrix³²⁸
270 was generated using the R package “corrplot” (Wei and³²⁹
271 Simko, 2017) with plant trait data for both genotypes across³³⁰
272 all conditions. Linear discriminant analysis was conducted³³¹
273 using the ‘lda’ function from the MASS package (Venables³³²
274 and Ripley, 2002) to predict genotype, water treatment, or³³³
275 nitrogen treatment classes in separate analyses. Before LDA,³³⁴
276 data were standardized for each trait so that the mean was³³⁵
277 zero and the within-group standard deviation was 1 in order³³⁶
278 to interpret loadings.³³⁷

280 Results

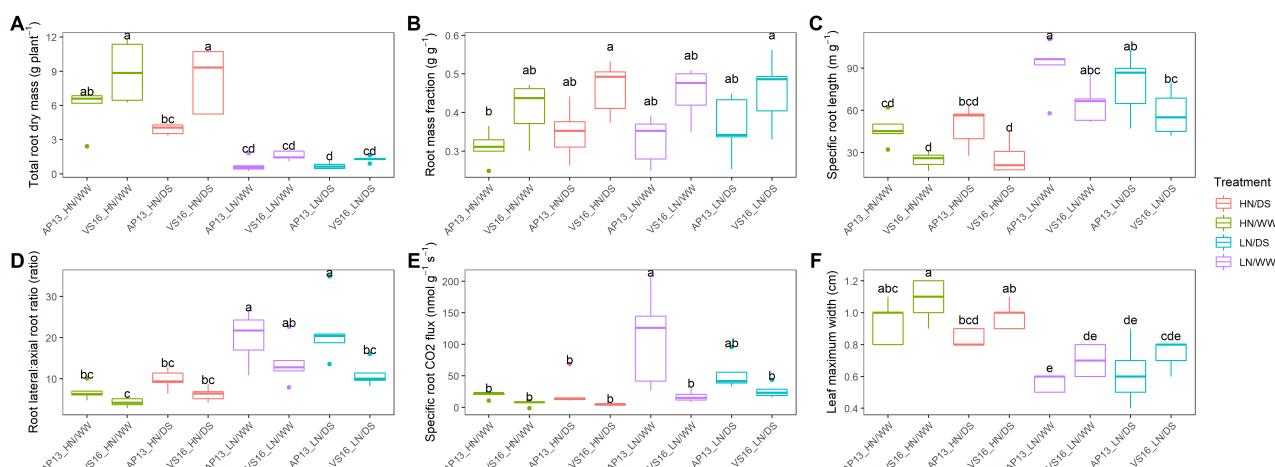
281 Positive correlations among root size traits and deep³⁴⁴ 282 rooting traits with shoot size traits in switchgrass³⁴⁵

283 Across both switchgrass ecotypes and all conditions, a cor-³⁴⁸
284 relation matrix showed strong positive correlations among³⁴⁹
285 root size-related traits, deep rooting traits, shoot size-related³⁵⁰
286 traits, and ¹⁵N content of leaves (P < 0.05, Fig. 2). Root length,³⁵¹
287 surface area, and volume traits were highly correlated (P < 0.05,³⁵²
288 Fig. S1). For the specific root traits, positive correlations were³⁵³
289 observed between specific root length, specific root respiration³⁵⁴
290 (length and mass basis), and ¹⁵N percent of leaves (P < 0.05,³⁵⁵
291 Fig. 2). For deep root fraction, the only correlated traits, aside³⁵⁶
292 from deep root mass, were for secondary lateral root traits and³⁵⁷
293 plant height (P < 0.05, Fig. 2). Gas exchange (Assimilation rate,³⁵⁸
294 transpiration rate, and stomatal conductance) and chlorophyll³⁵⁹
295 fluorescence parameters for the new fully expanded leaf were³⁶⁰
296 uncorrelated with all other measured plant traits (Fig. 2).³⁶¹

297 Substantial phenotypic variation between the upland²⁹⁸ 298 and lowland ecotypes for root and shoot traits repre-²⁹⁹ 299 senting the wide genetic pool of switchgrass³⁰⁰


300 For the plant traits measured, substantial differences between³⁰¹
301 the upland and lowland ecotypes were observed. Common to³⁰²
302 all conditions tested, total genotype-associated differences be-³⁰³
303 tween the ecotypes were observed for total root mass, root class³⁰⁴
304 distribution traits including root mass fraction, specific root³⁰⁵
305 length, lateral:axial root ratio, and also specific root respi-³⁰⁶
306 ration rate (mass basis), plus leaf maximum width (P < 0.05, Fig.³⁰⁷
307 3, Table S2). Across all conditions tested, the lowland ecotype³⁰⁸
308 had an average 80% larger root mass, 32% higher root mass³⁰⁹
309 fraction, 34% decrease in specific root length, 39% decrease in³¹⁰
310 lateral:axial root ratio, and a 74% decrease in specific root respi-³¹¹
311 ration rate (mass basis) compared to the upland ecotype (Fig.³¹²
312 3, Table S2). In favorable conditions only, HN/WW, genotypic³¹³
313 differences were also observed for tiller count with a 57% in-³¹⁴
314 crease in the lowland (P < 0.05, Table S3 and S5). In all stress³¹⁵
315 conditions tested (HN/DS, LN/WW, and LN/DS), genotypic³¹⁶
316 differences were observed for root mass in the deepest mesocosm³¹⁷
317 layer with a 50% larger root mass in the lowland relative to³¹⁸
318 upland under high-N conditions and a 140% larger root mass³¹⁹
319 in the upland compared to lowland under drought (P < 0.05,³²⁰
320 Table S4–S6). Under the most severe stress condition, LN/DS,³²¹
321 genotypic differences were observed for axial root size traits³²²
322 with a 152% larger axial root system in the upland (length,³²³
323 surface area, volume) (P < 0.001, Table S4 and S6). Additional³²⁴
324 significant genotypic differences were observed in the LN/WW³²⁵
325 conditions for plant height, root branching frequency, root tip³²⁶
326 count, root length proportion in the deepest mesocosm layer³²⁷
327 compared to all layers, and total ¹⁵N content captured from³²⁸
328 the deepest layer with the upland being larger for all (P < 0.05,³²⁹
329 Table S6).

330 A linear discriminant analysis using the plant traits was per-³³¹
331 formed to determine the differentiating capacity of the plant³³²
332 traits between the two ecotypes. Across all conditions, rooting³³³
333 traits were the greatest discriminant trait between the ecotypes³³⁴
334 with axial and total root surface area being the greatest discrim-³³⁵
335 inators followed by root volume and length traits (Fig. 4A).³³⁶
336 In favorable conditions, HN/WW, the main discriminant traits³³⁷
337 were maximum tiller count, specific root length, leaf maximum³³⁸
338 width, specific root respiration rate (mass basis), and root mass³³⁹
339 fraction (Fig. 4B). Common to the well-watered conditions³⁴⁰
340 (HN/WW and LN/WW) was specific root respiration as a dis-³⁴¹
341 criminant factor between the ecotypes (Fig. 4B and D). Com-³⁴²
342 mon to the low-N conditions (LN/WW and LN/DS) was root³⁴³
343 maximum diameter as a discriminant factor (Fig. 4D and E).³⁴⁴
344 Specific to HN/DS, the main discriminant factors between the³⁴⁵
345 switchgrass ecotypes were for shoot N and ¹⁵N concentration,³⁴⁶
346 and plant height (Fig. 4C). Shoot ¹⁵N concentration was also³⁴⁷
347 a main discriminant for LN/WW. Specific to LN/WW, specific³⁴⁸
348 root respiration rate (both mass and length basis) and shoot³⁴⁹
349 carbon concentration were the main discriminant traits (Fig.³⁵⁰
350 4D). Specific to LN/DS, root mass at depth and dry mass total³⁵¹
351 were main the discriminant traits (Fig. 4E).


352 Switchgrass ecotypes share common plastic abiotic re-³⁵³ 353 sponses to N and water availability³⁵⁴

355 Genotypic differences in phenotypic traits were observed be-³⁵⁶
356 tween the upland and lowland ecotypes, however, in terms of³⁵⁷
357 abiotic stress responses, common plastic responses were also³⁵⁸
358 observed between the ecotypes.

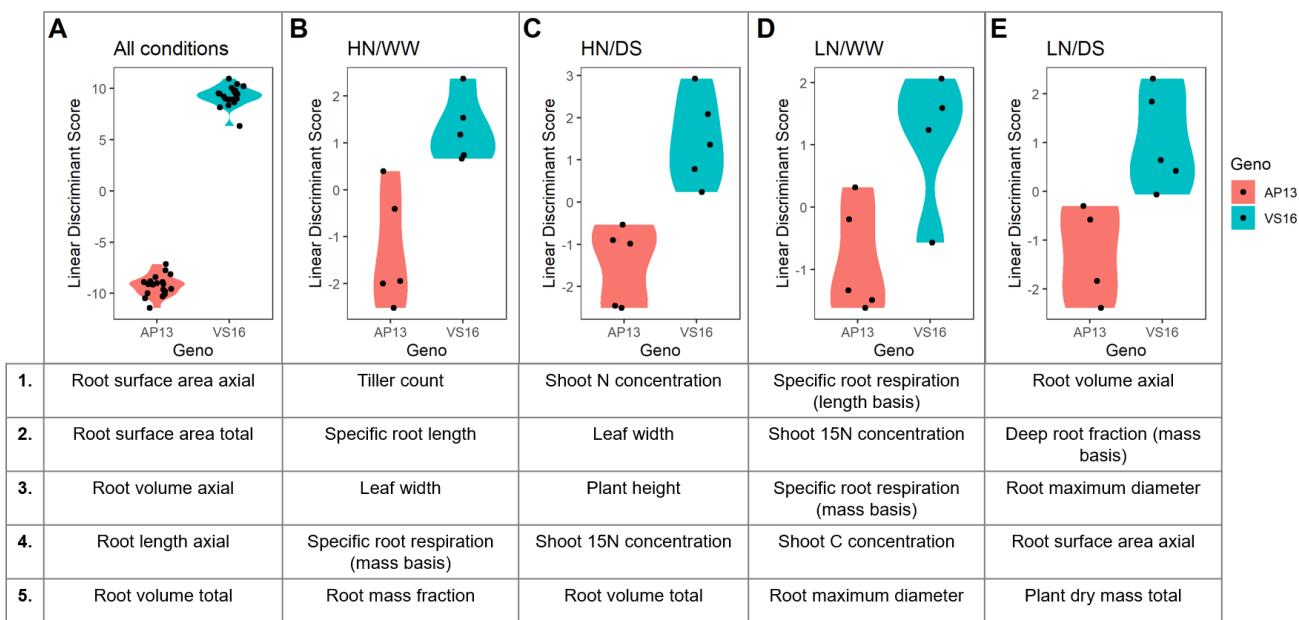
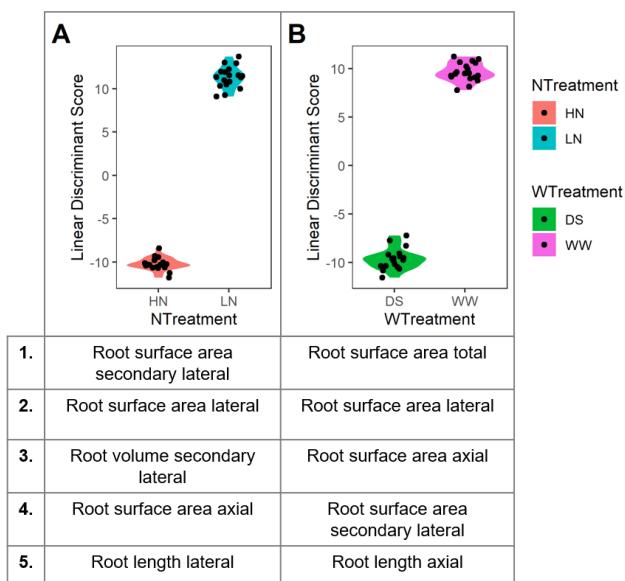

359 A significant water treatment response was common to both³⁶⁰
360 switchgrass ecotypes (HN conditions) with larger axial root³⁶¹
361 traits (length, surface area, volume), lateral root traits (surface

Figure 2. Correlation matrix for plant traits across both switchgrass ecotypes, upland (VS16) and lowland (AP13), and all conditions. Correlations are visualized using a color gradient. Red and blue color represent a strong positive and negative correlation respectively. No correlation is visualized with a cross symbol.

Figure 3. Total plant traits measured in each abiotic stress environment tested between the two switchgrass ecotypes, upland (VS16) and lowland (AP13). Boxes with the same letter were not significantly different at $P < 0.05$ according to Tukey's HSD test.

Figure 4. Linear discriminant analysis of total plant traits measured in each abiotic stress environment tested between the two switchgrass ecotypes, upland (VS16) and lowland (AP13). The five greatest discriminant traits by linear discriminant score both positive and negative are listed for each environment. (A) All conditions, (B) HN/WW, (C) HN/DS, (D) LN/WW, (E) LN/DS.

area, volume), root tip count, root maximum diameter, and shoot traits (tiller count, max leaf width) in well-watered conditions relative to drought-stressed conditions ($P < 0.05$, Table S5). A significant increase in lateral:axial root ratio and deep root fraction (mass basis) was observed in the water-stress conditions (HN conditions) ($P < 0.01$, Table S5). However, these water treatment effects were not observed in the LN conditions as the N stress appeared to have had a more severe and confounding effect on plant trait differences (Table S6).


In response to N treatment, a significant treatment effect was observed for all plant size traits with larger roots and shoots in high N conditions (WW and DS conditions, Table S3 and S4). In low N conditions, there was a significantly greater specific root length, lateral:axial root ratio, specific root respiration rate, and deep root fraction relative to the high N conditions. Traits with no significant difference by N treatment were for photosynthetic and transpiration measures (Table S3 and S4). No significant difference in root mass fraction was observed for either N treatments or water treatments with a shared reduction in both root and shoot mass by abiotic stress (Table S3 and S4). Under well-watered conditions, a significant genotype by N treatment interaction was observed for secondary lateral root size traits, branching frequency, and specific root respiration rate (mass basis) ($P < 0.05$, Table S3). Under drought conditions, a significant genotype by N treatment interaction was observed for root dry mass total, axial root size traits, deep root mass total, and deep root fraction ($P < 0.05$, Table S4).

A linear discriminant analysis using the plant traits was performed to determine the main discriminant trait between the water levels or N levels. The discriminant traits between N and W treatment levels were found to be rooting traits (Fig. 5A and B). For the N treatment, lateral and secondary lateral root traits were the top discriminant traits in addition to axial root surface area (Fig. 5A). For the W treatment, total root surface area and root surface area of each root class were the main discriminants plus axial root length (Fig. 5B).

Roots of both switchgrass ecotypes have the potential to grow deeper than 1.5 m with significant interaction between root depth related traits and abiotic stress

Across both ecotypes, almost all rooting traits tested were significantly affected by depth (Table S7-S10). Exceptions were for specific root respiration with no significant relationship with mesocosm depth and for lateral:axial root ratio in LN conditions.

Significant interaction between genotype and depth were observed for specific root respiration rate (weight basis) in favorable conditions, HN/WW. In the abiotic stress conditions, a significant genotype and depth interaction was observed for

Figure 5. Linear discriminant analysis of total plant traits for both ecotypes to determine common discriminant traits by (A) N treatments, and (B) water treatments. The five greatest discriminant traits by linear discriminant score from all environment data.

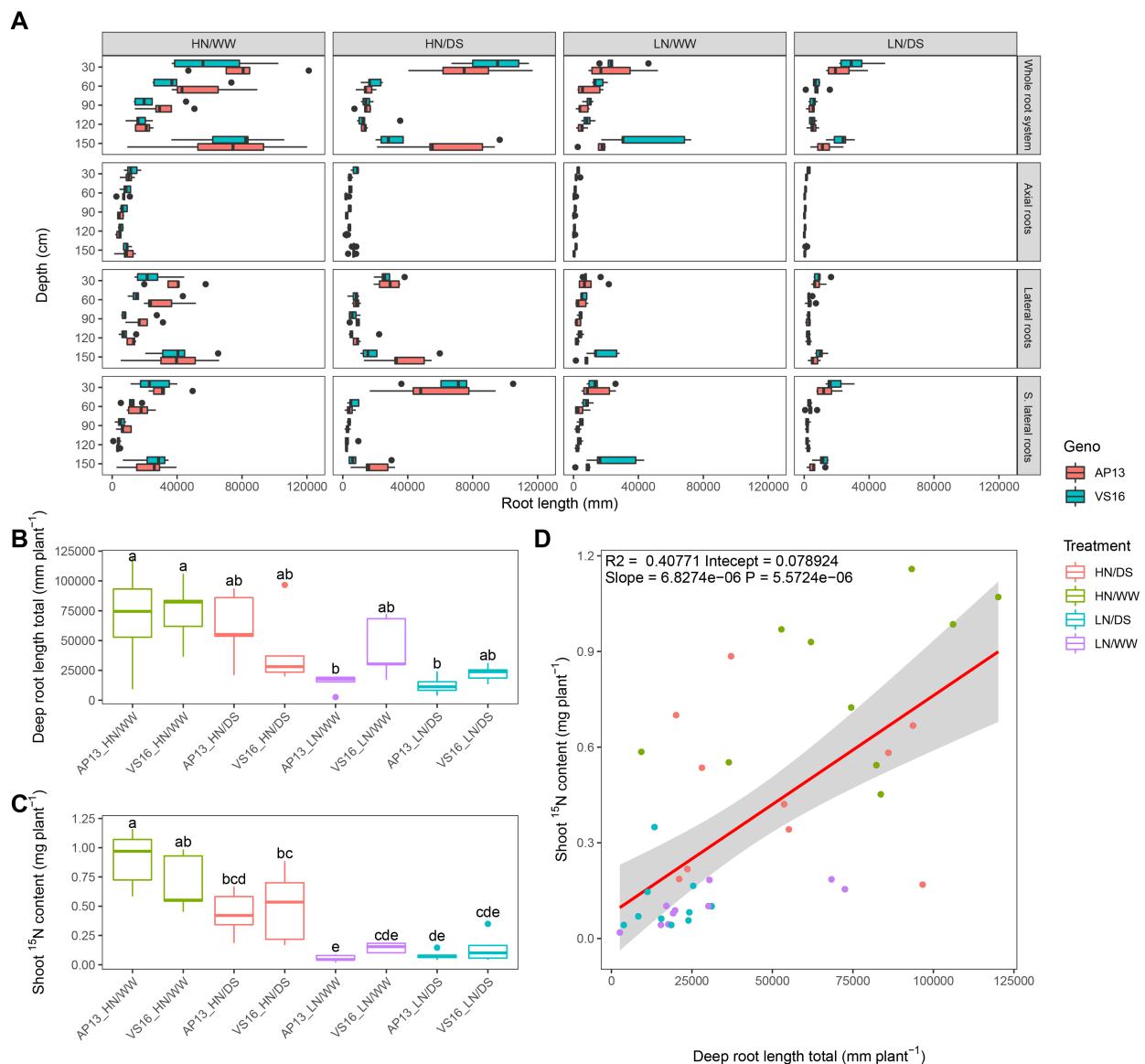
410 lateral root traits (length and surface area) in LN/WW, root axial traits (length and surface area) and root average diameter in LN/DS, and root maximum diameter in HN/DS. 411 412

413 The root distribution across the vertical profile varied greatly by water and nitrogen conditions (Fig. 6A). For both 414 switchgrass ecotypes, total root length was greatest in the favorable 415 condition, HN/WW, and least in the combined stress condition, LN/DS. 416 In favorable conditions, there was no significant genotypic difference 417 in root length by layer. However, in the low-N conditions, the upland 418 ecotype had a greater root length in the deepest layer compared to the lowland 419 ecotype. 420 The greatest difference between the ecotypes was observed in the LN/WW 421 condition with the upland ecotype having a 193% increased root length in 422 the deepest layer, with the LN/DS condition reducing further the root length 423 at depth for both ecotypes. 424 The differences observed in the root length by depth also conferred 425 with the shoot ^{15}N content results with a 500% average greater ^{15}N uptake in 426 the HN condition plants than in the LN conditions, reflecting uptake 24 hours after ^{15}N was injected to the bottom layer (Fig. 6B and C). An increase in lateral and secondary 427 lateral roots in the upland ecotype contributed to this root length increase in the 428 deepest mesocosm layer (Fig. 6A). A positive significant relationship was 429 observed between the root length in the deepest layer and ^{15}N content in shoot 430 material with greater root length conforming to greater ^{15}N uptake (P < 0.001, Fig. 6D). 431 432

433 Significant interaction between N and W stress combination 434 treatments for axial and lateral root traits

435 Using the whole dataset containing both ecotypes and all conditions, interactions 436 between N and water treatment were explored. Across all conditions, significant 437 interactions between N and water treatment were observed for axial root traits (length, 438 surface area, volume), total root traits (volume, surface area), deep root fraction (mass 439 basis) compared to all depths, shoot ^{15}N content, ^{15}N uptake rate, and shoot mass (P < 0.05, Table S11). In the lowland ecotype only, an interaction between N and water treatment was also observed for tiller count, total plant dry mass, and shoot N% (P < 0.05, Table S12). In the upland ecotype only, an interaction between N and water treatment was observed for secondary lateral root traits (length and surface area) (P < 0.05, Table S13). 440 441 442 443 444 445 446 447 448 449 450

451 Discussion


452 Here, we show that members of two main ecotypes of switchgrass, upland (VS16) 453 and lowland (AP13), share common root plastic response strategies to abiotic 454 stress despite having large intrinsic root morphological differences. Appropriate 455 growth responses to abiotic stress can be important stress mitigation 456 strategies with efficient soil exploration for required resources. 457 Despite previous studies finding switchgrass productivity of cultivar 'Cave-in-Rock' to be not receptive to fertilizer treatments (Duran et al., 2016), here a large N treatment effect was found in both switchgrass ecotypes. Potentially, this cultivar could have a different N response, the field experiment could have been growth-limited by other factors, or else the field soil had more residual available N than in the LN mesocosms. In response to N application in the current experiment, all plant size traits were significantly affected with an overall reduction in root and shoot size traits under stress conditions. Similarly, water-stress conditions in this study had significant plant size reducing effects for both root and shoot traits. 458 459 460 461 462 463 464 465 466 467 468 469 470 471

The switchgrass root system makes up a large proportion of the plant biomass with 34% of total biomass as roots for

472 the lowland ecotype and 44% of total biomass in the upland ecotype in these single year plants, averaged across all treatments. 473 Switchgrass can sequester a large amount of carbon and has been shown to increase soil carbon levels over time (Ma et al., 2001). Interestingly, the differences observed in root mass fraction in this study was by ecotype only with a stable fraction across water and N conditions. A significant interaction between drought and N stress conditions was observed in switchgrass for axial and lateral root traits representing a complex and shared root development strategy for stress mitigation. Both ecotypes had a smaller axial and lateral root length in the stressed conditions compared to the favorable conditions, probably driven by a reduction in growth and photosynthate availability. A similar relationship was found across 12 temperate herbaceous species with changes in belowground biomass allocation in response to nutrient supply but no change in root mass fraction (Freschet et al., 2015). For switchgrass, the main discriminants between favorable and stress conditions, water and N, across both ecotypes were for total root surface area size traits. Roots are a large carbon investment and maintenance cost to the plant and therefore a reduced root axial investment under stressed conditions is an efficient plastic root response. These innate responses to abiotic stress reflect the hardiness of the species and the ideal nature of switchgrass as a low-input crop (Vogel, 1996).

474 Specifically, in response to N conditions, lateral root traits were also found to be the main discriminants. Lateral roots are regarded as the primary site for the uptake of soil resources and often the greatest contributor to total root length and surface area in contact with soil (Hund et al., 2009; Yu et al., 2019). Total root length was reduced under N stress indicating that the plant was unable to sustain the total carbon cost of a large root system. However, the inability to maintain the larger total size was partially compensated by more efficient carbon use by increasing the allocation to cheaper lateral roots, as shown by the greater lateral:axial root ratio. An increase in resource distribution to lateral roots, therefore, increased the root exploration in the soil with a reduced resource allocation to roots which can be seen as an efficient abiotic stress adaptive response, as also shown in maize (Guo and York, 2019). This highlights the importance of lateral roots for abiotic stress mitigation in switchgrass and that selection for improved, resource-efficient switchgrass varieties could use lateral:axial root ratio as a selection criterion for further investigation. This trait is convenient as it can be measured in a subsample of the root system, rather than requiring full excavation or measurements of entire root systems.

475 Switchgrass can be found across a wide range of climatic conditions and the upland and lowland ecotype represent the main divergent groups. Members of each ecotype, AP13 and VS16, were chosen for this study as AP13 is the source of the lowland reference genome and mapping populations have been derived from the two ecotypes (Milano et al., 2016). Variation among these ecotypes and others could be harnessed for improving abiotic stress tolerance and yield. Between these two switchgrass ecotypes, large morphological differences were observed in root traits with potential implications for abiotic stress tolerance. In a previous study, the upland ecotype was found to be more drought tolerant and had higher nitrogen demand than the lowland ecotype in 1-gallon pot trials, but the root traits were not quantified (Milano et al., 2016). In this single year study, a greater root mass was found in the upland ecotype in all conditions, which may be a contributor to its greater drought tolerance potential, although a shoot biomass difference was not observed. Across all conditions, rooting traits were the greatest discriminant between the ecotypes with lateral and secondary lateral roots being the main discriminants by N condition. The two ecotypes did not differ by shoot

Figure 6. Root distribution of upland (VS16) and lowland (AP13) switchgrass ecotypes across 1.5 m mesocosms under abiotic stress environment. The roots distributions by root class were separated into 30 cm mesocosm layers. (B) Root length in the deepest layer and (C) ¹⁵N content in the shoot for the switchgrass ecotypes by treatment condition. Boxes with different letters were significantly different at $P < 0.05$ according to Tukey's HSD test. (D) Linear regression analysis using all data between root length in the deepest layer and ¹⁵N content in the shoot.

540 mass per condition in this study, but there was a significant 607
541 tiller count difference with the lowland having a greater number 608
542 of tillers in favorable conditions (HN/WW). Tiller counts 609
543 in switchgrass have been shown to vary greatly year by year 610
544 in field trials which is a likely response to the environment 611
545 including rainfall patterns and competition with neighboring 612
546 plants (Cassida et al., 2005; Price and Casler, 2014). The up- 613
547 land ecotype maintained the same number of tillers between 614
548 the nitrogen and water conditions indicating stability across 615
549 abiotic stress. The lowland ecotype tillered more in favorable 616
550 conditions which may translate to an increase in overall shoot 617
551 biomass and resilience across multiple years. Therefore, the 618
552 upland and lowland ecotypes have varying strategies and adap- 619
553 tations that may translate to stress resistance and productivity 620
554 in varying environments. Upland alleles have been previously 616
555 associated with shoot size and vigor which may explain the 617
556 greater root mass differences observed between the ecotypes 618
557 in this study (Lowry et al., 2019). 619

558 An important plant trait for water and nutrient capture is 621
559 deep rooting, however, it is technically challenging to excavate 622
560 a representative root system from the field and quantify root 623
561 length by soil depths. In this study, 1.5 m mesocosms were 624
562 used to phenotype root distribution in switchgrass in 30 cm 625
563 layers along the vertical profile with minimal root loss com- 626
564 pared to field studies. Switchgrass is a particularly deep-rooted 627
565 species, and in this study, a positive correlation was found be- 628
566 tween root length at depth and deep 15N capture by roots. Both 629
567 ecotypes had roots in the deepest layer and had the potential 630
568 to grow deeper than 1.5 m, given the substantial root length 631
569 density in the bottom layers. Deep rooting is an important 632
570 trait for crop performance because water and nitrate are of- 633
571 ten found in deep soil layers. Variance observed in switchgrass 634
572 root size traits and 15N capture were found to explain differ- 635
573 ences in shoot mass highlighting the link between root and 636
574 shoot. Between the upland and lowland ecotypes, differences 637
575 in abiotic stress mitigation strategies were observed. Across 638
576 all stress conditions tested, a genotype-associated difference 639
577 was observed between the upland and lowland ecotypes for root 640
578 mass in the deepest layer of the mesocosm. In the low-N con- 641
579 ditions, a greater root length and mass were observed in the 642
580 upland ecotype which conformed to a greater 15N shoot content 643
581 which was applied to the deepest layer. Therefore, the upland 644
582 ecotype was more receptive to the vertical N stress gradient 645
583 with greater root development at depth and greater N uptake, 646
584 which is an advantageous trait for low input cropping systems. 647
585 Given the difficulties in excavating root systems and soil cor- 648
586 coring in the field, injection of 15N in deep layers and measuring 649
587 uptake in the shoot is a viable method to screen for deep root- 650
588 ing activity. Interestingly, in response to drought conditions, 651
589 the lowland ecotype had a smaller root mass compared to the 652
590 upland ecotype in the deepest layer, however, the upland had a 653
591 greater proportion of roots in this bottom layer. This indicates 654
592 a root length distribution change to the vertical gradient wa- 655
593 ter stress in the lowland ecotype and could be an advantageous 656
594 drought tolerance trait. 657

595 Our findings highlight the importance of the root system 658
596 with switchgrass ecotypes sharing common strategies for abi- 659
597 otic stress mitigation and deep N capture. We also show that 660
598 the ecotypes have differing strategies to abiotic stress toler- 661
599 ance with biomass distribution changes and deep rooting in 662
600 response to factorial water and N stress. Admixture between 663
601 the divergent genomes is expected to enhance climate adapta- 664
602 tion and yield improvement (Lovell et al., 2021). For switch- 665
603 grass to be a productive bioenergy crop a balance between pro- 666
604 ductivity and resource sustainability will have to be reached by 667
605 enhancing plant abiotic stress tolerance and soil resource use 668
606 efficiency. 669

Availability of supporting data and materials

The dataset supporting the results of this article is available online as a Zenodo repository <https://doi.org/10.5281/zenodo.4281435> (Griffiths et al., 2021).

Competing Interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

Funding provided by The Center for Bioenergy Innovation a U.S. Department of Energy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Author's Contributions

L.M.Y. and M.G. conceived the research. M.G., H.G., K.D., and A.S. contributed to the experimentation. M.G., A.S., and L.M.Y. analyzed the data. All authors contributed to the writing of the manuscript.

Acknowledgements

The authors would like to thank Michael Cloyde, Yixin Ge, Amy Lee, and Jenifer Bonner for mesocosm sampling assistance; David Huhman and Bonnie Watson for operating the elemental analysis; and Jennifer Black and Malay Saha for providing the clonal material used in this study.

References

- Cassida KA, Muir JP, Hussey MA, Read JC, Venuto BC, Ocumphaug WR. 2005. Biomass yield and stand characteristics of switchgrass in South Central U.S. environments. *Crop Science* **45**: 673–681. ISSN 0011183X.
- Chen S, van der Graaff E, Ytting NK, Thorup-Kristensen K. 2018. Evaluation of deep root phenotyping techniques in tube rhizotrons. *Acta Agriculturae Scandinavica Section B: Soil and Plant Science* **69**: 62–74. ISSN 16511913.
- De Mendiburu F, Simon R. 2015. Agricolae – Ten years of an open source statistical tool for experiments in breeding, agriculture and biology. *PeerJ PrePrints* **3**: e1404v1. ISSN 2167-8359.
- Duran BE, Duncan DS, Oates LG, Kucharik CJ, Jackson RD. 2016. Nitrogen fertilization effects on productivity and nitrogen loss in three grass-based perennial bioenergy cropping systems. *PLoS ONE* **11**: e0151919. ISSN 19326203.
- Ehleringer JR, Dawson TE. 1992. Water uptake by plants: perspectives from stable isotope composition. *Plant, Cell & Environment* **15**: 1073–1082. ISSN 13653040.
- Foulkes MJ, Hawkesford MJ, Barraclough PB, Holdsworth MJ, Kerr S, Kightley S, Shewry PR. 2009. Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. *Field Crops Research* **114**: 329–342. ISSN 03784290.
- Freschet G, Pagès L, Iversen C, Comas L, Rewald B, Et A. 2020. A starting guide to root ecology: Strengthening ecological concepts and standardizing root classification, sampling, processing and trait measurements. *Hal-02918834* : 291.

661 Freschet GT, Swart EM, Cornelissen JH. 2015. Integrated plant 729 phenotypic responses to contrasting above- and below-730 ground resources: Key roles of specific leaf area and root 731 mass fraction. *New Phytologist* **206**: 1247–1260. ISSN 732 14698137. 733

666 Gilley JE, Eghball B, Kramer LA, Moorman TB. 2000. Narrow 734 grass hedge effects on runoff and soil loss. *Journal of Soil and 735 Water Conservation* **55**: 190–196. ISSN 00224561. 736

669 Griffiths M, Seethepalli A, York LM. 2021. Data and statisti-737 cal analysis scripts for manuscript on switchgrass roots in 738 nitrogen and water stresses [Data set]. 739

672 Guo H, Ayalew H, Seethepalli A, Dhakal K, Griffiths M, Ma 740 XF, York LM. 2020. Functional phenomics and genetics 741 of the root economics space in winter wheat using high-742 throughput phenotyping of respiration and architecture. 743 *bioRxiv* ISSN 26928205. 744

677 Guo H, York LM. 2019. Maize with fewer nodal roots allocates 745 mass to more lateral and deep roots that improve nitrogen 746 uptake and shoot growth. *Journal of Experimental Botany* ISSN 747 14602431. 748

681 Heuermann D, Gentsch N, Boy J, Schwenecker D, Feuerstein U, 749 Groß J, Bauer B, Guggenberger G, von Wirén N. 2019. In-750 terspecific competition among catch crops modifies verti-751 cal root biomass distribution and nitrate scavenging in soils. 752 *Scientific Reports* **9**: 1–11. ISSN 20452322. 753

686 Hund A, Ruta N, Liedgens M. 2009. Rooting depth and wa-754 ter use efficiency of tropical maize inbred lines, differing 755 in drought tolerance. *Plant and Soil* **318**: 311–325. ISSN 756 0032079X. 757

690 Kristensen HL, Thorup-Kristensen K. 2004. Root Growth and 758 Nitrate Uptake of Three Different Catch Crops in Deep Soil 759 Layers The method involves inserting transparent tubes. 760 *Soil Science Society of America Journal* **68**: 529–537. 761

694 Kumar K, Goh KM. 2002. Recovery of 15N-labelled fertilizer 762 applied to winter wheat and perennial ryegrass crops and 763 residual 15N recovery by succeeding wheat crops under dif-764 ferent crop residue management practices. *Nutrient Cycling 765 in Agroecosystems* **62**: 123–130. ISSN 13851314. 766

699 Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. lmerTest 767 Package: Tests in Linear Mixed Effects Models . *Journal of 768 Statistical Software* **82**. ISSN 1548–7660. 769

702 Lai L, Kumar S, Osborne S, Owens VN. 2018. Switchgrass im-770 pact on selected soil parameters, including soil organic car-771 bon, within six years of establishment. *Catena* **163**: 288–296. 772 ISSN 03418162. 773

706 Lemus R, Parrish DJ, Wolf DD. 2014. Switchgrass culti-774 var/ecotype selection and management for biofuels in the 775 upper southeast USA. *Scientific World Journal* **2014**. ISSN 776 1537744X. 777

710 Lovell JT, MacQueen AH, Mamidi S. 2021. Genomic mecha-778 nisms of climate adaptation in polyploid bioenergy switch-779 grass. *Nature* . 780

713 Lowry DB, Lovell JT, Zhang L, Bonnette J, Fay PA, Mitchell RB, 781 Lloyd-Reilley J, Boe AR, Wu Y, Rouquette FM, Wynia RL, 782 Weng X, Behrman KD, Healey A, Barry K, Lipzen A, Bauer 783 D, Sharma A, Jenkins J, Schmutz J, Fritschi FB, Juenger TE. 784 2019. QTL × environment interactions underlie adaptive di-785 vergence in switchgrass across a large latitudinal gradient. 786 *Proceedings of the National Academy of Sciences of the United 787 States of America* **116**: 12933–12941. ISSN 10916490. 788

791 Ma Z, Wood CW, Bransby DI. 2000. Impacts of soil management 792 on root characteristics of switchgrass. *Biomass and Bioenergy* 793 **18**: 105–112. ISSN 09619534. 794

797 Ma Z, Wood CW, Bransby DI. 2001. Impact of row spacing, ni-798 tragen rate, and time on carbon partitioning of switchgrass. 799 *Biomass and Bioenergy* **20**: 413–419. ISSN 09619534. 800

803 Milano ER, Lowry DB, Juenger TE. 2016. The genetic basis of up-804 land/lowland ecotype divergence in switchgrass (*Panicum 805* virgatum). *G3: Genes, Genomes, Genetics* **6**: 3561–3570. ISSN 806 21601836. 807

810 Morris GP, Grabowski P, Borevitz JO. 2011. Genomic diversity 811 in switchgrass (*Panicum virgatum*): from the continental 812 scale to a dune landscape. *Molecular Ecology* **20**: 4938–4952. 813

816 Nagel KA, Putz A, Gilmer F, Heinz K, Fischbach A, Pfeifer 817 J, Faget M, Blossfeld S, Ernst M, Dimaki C, Kastenholz B, 818 Kleinert AK, Galinski A, Scharr H, Fiorani F, Schurr U. 2012. 819 GROWSCREEN-Rhizo is a novel phenotyping robot enabling 820 simultaneous measurements of root and shoot growth for 821 plants grown in soil-filled rhizotrons. *Functional Plant Biology* 822 **39**: 891–904. ISSN 14454408. 823

826 Price DL, Casler MD. 2014. Inheritance of secondary morpho-827 logical traits for among-and-within-family selection in up-828 land tetraploid switchgrass. *Crop Science* **54**: 646–653. ISSN 829 0011183X. 830

833 R Core Team. 2020. R: A language and environment for statis-834 tical computing. *R Foundation for Statistical Computing* . 835 URL <https://www.r-project.org/> 836

838 Roley SS, Xue C, Hamilton SK, Tiedje JM, Robertson GP. 2019. 839 Isotopic evidence for episodic nitrogen fixation in switch-840 grass (*Panicum virgatum* L.). *Soil Biology and Biochemistry* 841 **129**: 90–98. ISSN 00380717. 842

844 Saengwilai P, Nord EA, Chimungu JG, Brown KM, Lynch JP. 845 2014. Root cortical aerenchyma enhances nitrogen acquisi-846 tion from low-nitrogen soils in maize. *Plant Physiology* **166**: 847 726–735. ISSN 15322548. 848

851 Seethepalli A, York LM. 2020. RhizoVision Explorer – Interac-852 tive software for generalized root image analysis designed 853 for everyone. *Zenodo* . 854

856 Singer E, Bonnette J, Kenaley SC, Woyke T, Juenger TE. 2019. 857 Plant compartment and genetic variation drive microbiome 858 composition in switchgrass roots. *Environmental Microbiology 859 Reports* **11**: 185–195. ISSN 17582229. 860

863 Venables WN, Ripley BD. 2002. *Modern applied statistics with S*. 864 New York: Springer-Verlag, 4 edition. ISBN 0387954570. 865

868 Vogel KP. 1996. Energy production from forages (or American 869 agriculture–Back to the future). *Journal of Soil and Water Con- 870 servation* **51**: 137–139. ISSN 00224561. 871

873 Weaver J. 1954. *North American Prairie*. Johnsen Publishing. 874

876 Wei T, Simko V. 2017. R package "corrplot": Visualization of a 877 Correlation Matrix (Version 0.84). 878 URL <https://github.com/taiyun/corrplot> 879

882 Ytting NK, Andersen SB, Thorup-Kristensen K. 2014. Us-883 ing tube rhizotrons to measure variation in depth pene-884 tration rate among modern North-European winter wheat 885 (*Triticum aestivum* L.) cultivars. *Euphytica* **199**: 233–245. 886 ISSN 15735060. 887

890 Yu P, Hochholdinger F, Li C. 2019. Plasticity of lateral root 891 branching in maize. *Frontiers in Plant Science* **10**: 363. ISSN 892 1664462X. 893

896 Zhan A, Schneider H, Lynch JP. 2015. Reduced lateral root 897 branching density improves drought tolerance in maize. 898 *Plant Physiology* **168**: 1603–1615. ISSN 15322548. 899