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ABSTRACT. Aldosterone, the main physiological mineralocorticoid in humans and other
terrestrial vertebrates, first appears in lungfish, which are lobe-finned fish that are forerunners of
terrestrial vertebrates. Aldosterone activation of the MR regulates internal homeostasis of water,
sodium and potassium, which was critical in the conquest of land by vertebrates. We studied
transcriptional activation of the slender African lungfish MR by aldosterone, other
corticosteroids and progesterone and find that aldosterone, 11-deoxycorticosterone, 11-
deoxycortisol and progesterone have half-maximal responses (EC50s) below 1 nM and are
potential physiological mineralocorticoids. In contrast, EC50s for corticosterone and cortisol
were 23 nM and 66 nM, respectively. Unexpectedly, truncated lungfish MR, consisting of the
DNA-binding, hinge and steroid-binding domains, had a stronger response to corticosteroids and
progesterone than full-length lungfish MR, indicating that the N-terminal domain represses
steroid activation of lungfish MR, unlike human MR in which the N-terminal domain contains an
activation function. BLAST searches of GenBank did not retrieve a GR ortholog, leading us to
test dexamethasone and triamcinolone for activation of lungfish MR. At 10 nM, both synthetic
glucocorticoids are about 4-fold stronger than 10 nM aldosterone in activating full-length

lungfish MR, leading us to propose that lungfish MR also functions as a GR.

Keywords: Lungfish, Lobe-finned Fish, Terrestrial Vertebrates, Aldosterone evolution;

mineralocorticoid receptor evolution; evolution

INTRODUCTION

The mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) belong to the
nuclear receptor family, a diverse group of transcription factors that arose in multicellular
animals [1-3]. The MR and GR have key roles in the physiology of humans and other terrestrial
vertebrates and fish [4-11]. The MR and GR evolved from an ancestral corticoid receptor (CR)
in a jawless fish (cyclostome), which has descendants in modern lampreys and hagfish [12—14].
A distinct MR and GR first appear in cartilaginous fishes (Chondrichthyes) [1,13,15—-17], which
diverged from bony vertebrates about 450 million years ago [18,19].

Aldosterone is the main physiological mineralocorticoid in humans and other terrestrial

vertebrates [5,6,9,20-23]. Aldosterone activation of the MR in the kidney regulates salt and
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water homeostasis by promoting sodium and water reabsorption and potassium secretion, a
mechanism that conserves salt and water. Thus, it is puzzling that aldosterone is a potent
transcriptional activator of lamprey and hagfish CRs [15], skate MR [16] and elephant shark MR
[13,24] because aldosterone is not synthesized by lampreys [15], cartilaginous fishes or ray
finned fishes [25]. Aldosterone first appears in lungfish [26-28], which are lobe-finned fish that
are forerunners of terrestrial vertebrates [29-31]. The key phylogenetic position of lungfish in
the transition of vertebrates from water to land [27,29,30,32] and the role of the MR in
maintaining internal electrolyte homeostasis [5,8,33,34] motivated us to investigate the response
of the slender African lungfish MR to aldosterone, cortisol and other corticosteroids (Figure 1),
as well as activation by progestins, which also activate elephant shark MR [24], ray-finned fish

MR [35-39] and chicken MR [24,40].

Spironolactone Dexamethasone Triamcinolone

Figure 1. Structures of Corticosteroids, Dexamethasone, Triamcinolone, Progesterone and
Spironolactone. Aldosterone andl1-deoxycorticosterone are mineralocorticoids [41]. 11-
deoxycortisol is a mineralocorticoid in lamprey [42,43]. Cortisol and corticosterone are
glucocorticoids in terrestrial vertebrates and ray-finned fish [41,44]. Dexamethasone and
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triamcinolone are synthetic glucocorticoids. Progesterone is female reproductive steroid that
also is important in male physiology [45,46]. Spironolactone is a mineralocorticoid antagonist in
humans [47,48].

Our investigation also uncovered an unexpected role of the N-terminal domain (NTD) of
lungfish MR in inhibiting transcriptional activation by steroids. Like other steroid receptors,
lungfish MR is a multi-domain protein, consisting of an NTD (domains A and B), a central
DNA-binding domain (DBD) (domain C), a hinge domain (D) and a C-terminal ligand-binding
domain (LBD) (domain E) [49-51] (Figure 2). The NTD in the human MR contains an
activation function domain (AF1), which is split into two segments [49-51]. (Figure 2). As
described below, we find that in contrast to human MR [24,49,51,52], the NTD in full-length
lungfish MR reduces steroid-mediated activation of lungfish MR, compared to truncated lungfish
MR-CDE in cells transfected with a 3X-Tyrosine Amino Transferase (TAT3) promoter [53].

We also find that lungfish MR is activated by dexamethasone. At 10 nM, dexamethasone
activates full-length lungfish MR and truncated lungfish MR with a signal that is 4-fold and 6-
fold stronger, respectively, than that of 10 nM aldosterone. This strong response to
dexamethasone and the absence of a lungfish GR sequence after a BLAST search of GenBank
leads us to propose that lungfish MR also functions as a GR.
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99  Figure 2. Comparison of the functional domains of lungfish MR to corresponding domains
100  in selected vertebrate MRs (human, coelacanth, elephant shark, Xenopus, zebrafish) and
101  GRs (human, coelacanth, elephant shark). Lungfish MR and human MR have 97% and 74%
102 identity in DBD and LBD, respectively. Lungfish MR and elephant shark MR have 92% and
103 68% identity in DBD and LBD, respectively. This strong conservation of the DBD and LBD
104  contrasts with the low sequence identity of 44% and 47% between their NTDs. There are
105  similar % identities between corresponding domains in lungfish MR and other MRs.

106
107  RESULTS
108  Transcriptional activation of full-length and truncated lungfish MR by corticosteroids,

109  progestins and dexamethasone.

110 We screened a panel of steroids (Figure 1) at 10 nM for transcriptional activation of full-
111  length and truncated lungfish MR containing the CDE domains (MR-CDE) using two promoters:
112 2X-Mouse Mammary Tumor Virus (MMTV) [54,55] and TAT3 [53], which along with plasmids
113 for both lungfish MRs were transfected into HEK293 cells.
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As shown in Figure 3A, there was about 2 to 3-fold activation by 10 nM aldosterone,
other corticosteroids or progesterone of full-length lungfish MR using the MMT V-luc reporter
and less steroid activation of lungfish MR-CDE (Figure 3B).

Interestingly, compared to activation of full-length lungfish MR with the MMTV
promoter (Figure 3A), transcriptional activation of full-length lungfish MR with a TAT3
promoter and 10 nM aldosterone, other physiological corticosteroids or dexamethasone increased
by about 1.5 to 2-fold (Figure 3C). Unexpectedly, lungfish MR-CDE with the TAT3 promoter
had an additional 2-fold increase in activation by all corticosteroids (Figure 3D). Progesterone
activated lungfish MR in accord with the prediction of Fuller et al. [37,39,56]. Together, these
experiments show that removal of the NTD increases corticosteroid and progesterone activation
of lungfish MR in the presence of the TAT3 promoter.

Our results with dexamethasone, which activates human MR [52,57-59], were
unexpected. To our surprise, compared to aldosterone, dexamethasone was about 3-fold and 6-
fold more active, respectively, in activating full-length lungfish MR (Figure3C) and truncated
lungfish MR (Figure 3D) with the TAT3 promoter. Moreover, both cortisol and corticosterone
have stronger fold-activation than does aldosterone of lungfish MR using the TAT3 promoter.

Under these conditions, lungfish MR appears to have a GR-like response to steroids.
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135  Figure 3. Ligand specificity of full-length and truncated lungfish MR.

136  Plasmids for full-length lungfish MR or truncated lungfish MR (MR-CDE) were expressed in
137  HEK?293 cells with an MMT V-luciferase reporter or a TAT3-luciferase reporter. Transfected
138 cells were treated with either 10 nM aldosterone, cortisol, 11-deoxycortisol, corticosterone, 11-
139  deoxycorticosterone, progesterone, dexamethasone or vehicle alone (DMSO). Results are

140  expressed as means + SEM, n=3. Y-axis indicates fold-activation compared to the activity of
141  control vector with vehicle alone as 1. A. Full-length lungfish MR with MMTV-luciferase. B.
142 Truncated lungfish MR (MR-CDE) with MMT V-luciferase. C. Full-length lungfish MR with
143 TAT3-luciferase. D. Truncated lungfish MR (MR-CDE) with TAT3-luciferase.

144
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148  Spironolactone and eplerenone are transcriptional activators of lungfish MR.

149 Because spironolactone, an antagonist of human MR, activates elephant shark MR [24],
150  zebrafish MR [37,40,60] and trout MR [38], we investigated spironolactone for activation of full-
151  length lungfish MR and truncated lungfish MR-CDE. We also studied activation by eplerenone,
152  another antagonist of human MR [61]. As shown in Figure 4, both spironolactone and

153  eplerenone activated lungfish MR with a TAT3 promoter, and there was a further increase in

154  fold-activation by both steroids of lungfish MR-CDE.

155
A. Lungfish MR-full with TAT3 B. Lungfish MR-CDE with TAT3
o &
& O & X0
o & & e~ S R4
<@ o o o o N
o N ) N O <
o) ) 4 o )
\60 Q\( Q\Q \60 é\( Q\Qv
8-I v. LI} 6 T T @ 1 20- v. 6 @
c - c
o 6- © 154
T ©
2 2
S 41 © 101
c | ©
e o
S 21 S 57
G G
0- 0-
S & o S & & D
S & & Q& S & &S & ©
56 NIRCNENNIRONEN IS N NRONEFCNIRNENERS N

157  Figure 4. Spironolactone and eplerenone activation of full-length and truncated lungfish
158  MR. Plasmids for full-length lungfish MR or truncated lungfish MR (MR-CDE) were expressed
159  in HEK?293 cells with a TAT3-luciferase reporter. Transfected cells were treated with either 10
160  nM or 100 nM aldosterone, spironolactone or eplerenone or vehicle alone (DMSO). Results are
161  expressed as means + SEM, n=3. Y-axis indicates fold-activation compared to the activity of
162 control vector with vehicle alone as 1. A. Full-length lungfish MR with TAT3. B. Truncated
163 lungfish MR (MR-CDE) with TAT3.

164
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Concentration-dependent activation by corticosteroids and progestins of full-length and
truncated lungfish MR.
To gain a quantitative measure of corticosteroid and progestin activation of full-length

and truncated lungfish MR, we determined the concentration dependence of transcriptional
activation by corticosteroids and progestins of full-length lungfish MR and lungfish MR-CDE
using TAT3 (Figure 5). This data was used to calculate a half maximal response (EC50) for
steroid activation of lungfish MR with a TAT3 promoter (Table 1). For full-length lungfish MR,
the four lowest EC50s were for aldosterone (0.04nM), 11-deoxycorticosterone (0.04 nM), 11-
deoxycortisol (0.17nM) and progesterone (0.03nM). These low EC50s are consistent with a
physiological role for one or more of these steroids as ligand for lungfish MR. In contrast,
corticosterone and cortisol, two physiological corticosteroids in terrestrial vertebrates, had EC50s
of 23.1nM and 66.1nM, respectively. Two synthetic glucocorticoids, dexamethasone and
triamcinolone, had EC50s of 4.7nM and 1.3nM, respectively.

For truncated lungfish MR, there were similar low EC50s for aldosterone (0.24nM), 11-
deoxycorticosterone (0.013nM), 11-deoxycortisol (0.27nM) and progesterone (0.04nM). EC50s
for corticosterone and cortisol were 85.5nM and 86.7nM, respectively. EC50s for
dexamethasone and triamcinolone were 7.7nM and 2.4nM, respectively.

Overall, these results reveal that the EC50s of aldosterone, 11-deoxycorticosterone, 11-
deoxycortisol and progesterone for full-length lungfish MR and lungfish MR-CDE are similar
and that one or more of these steroids could be a physiological mineralocorticoid in lungfish.
Although EC50s for full-length lungfish MR of triamcinolone and dexamethasone were at least
10-fold higher than that of aldosterone, deoxycorticosterone, 11-deoxycortisol and progesterone,
compared to these steroids, dexamethasone and triamcinolone have a several fold higher
activation of full-length and truncated lungfish MR (Figure 5). Consistent with data in Figure 3,
deletion of the NTD to form truncated lungfish MR-CDE increased fold-activation by
aldosterone, the other corticosteroids, progesterone, dexamethasone and triamcinolone.

However, deletion of the NTD did not have a large effect on their EC50s.
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Fig. 5. Concentration-dependent transcriptional activation by corticosteroids,
progesterone, dexamethasone and triamcinolone of full length and truncated lungfish MR.
Plasmids for full-length lungfish MR or truncated lungfish MR, were expressed in HEK293 cells
with a TAT3-luciferase promoter. Cells were treated with increasing concentrations of either
aldosterone, cortisol, corticosterone, 11-deoxycorticosterone, 11-deoxycortisol, progesterone,
dexamethasone and triamcinolone or vehicle alone (DMSO). Results are expressed as means +
SEM, n=3. Y-axis indicates fold-activation compared to the activity of control vector with
vehicle (DMSO) alone as 1. A. Aldosterone, 11-deoxycorticosterone, 11-deoxycortisol and
progesterone with full-length lungfish MR with TAT3-luc. B. Aldosterone, 11-
deoxycorticosterone, 11-deoxycortisol and progesterone with truncated lungfish MR (Domains
CDE) with TAT3-luc. C. Cortisol, corticosterone, dexamethasone and triamcinolone with full-
length lungfish MR with TAT3-luc. D. Cortisol, corticosterone, dexamethasone and
triamcinolone with truncated lungfish MR (Domains CDE) with TAT3-luc.
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romoter.
Aldosterone | 11-deoxycorticosterone | 11-deoxycortisol | Progesterone
EC50 EC50 EC50 EC50
MR-full length 0.04 nM 0.04 nM 0.17 nM 0.03 nM
95% confidence interval | 0.02-0.07 nM | 0.02-0.09 nM 0.1-0.3 nM 0.02-0.06 nM
MR-CDE 0.24 nM 0.13 nM 0.27 nM 0.044 nM
95% confidence interval | 0.17-0.35 nM | 0.08-0.2 nM 0.14-0.53 nM 0.026-0.076 nM
Corticosterone | Cortisol Triamcinolone | Dexamethasone
EC50 EC50 EC50 EC50
MR-full length 23.1 nM 66.1 nM 1.3 nM 4.7 n M
95% confidence interval | 11.3-47.1 nM | 44.5-98.4 nM | 0.9-1.9 nM 3.3-6.9 nM
MR-CDE 85.5 nM 86.7 nM 24 nM 7.7 nM
95% confidence interval | 60.0-121.8 nM | 74.3-101.2 nM | 2.1-2.8 nM 6.6-9.1 nM

Transcriptional activation of full-length and truncated human MR and full-length and

truncated elephant shark MR by corticosteroids and progestins.

To gain an evolutionary perspective on activation of lungfish MR by steroids, we

screened a panel of steroids, at 10 nM, for transcriptional activation of full-length human and

elephant shark MRs and truncated human and elephant shark MR-CDEs using two reporters:

MMTV-luc and TAT3-luc.

Comparison of human MR and lungfish MR.

Overall, compared to lungfish MR, fold activation of human MR was significantly higher

for aldosterone and other corticosteroids. For example, compared to 2-fold activation by

aldosterone of full-length lungfish MR with the MMTYV promoter (Figure 3A), activation of full-

length human MR by aldosterone was about 70-fold with the MMTYV promoter (Figure 6A).

Although fold-activation by steroids for truncated human MR (Figure 6B) decreased compared

to full-length human MR (Figure 6A), activation by aldosterone and other corticosteroids of

truncated human MR with the MMTYV promoter (Figure 6B) was about 7-fold higher than for

truncated lungfish MR (Figure 3B).

11
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232 Unlike for lungfish MR, deletion of the NTD in human MR resulted in a loss of

233 activation by aldosterone and other corticosteroids for human MR-CDE with both promoters
234  (Figure 6A-D), consistent with the presence of two activation function domains in the NTD

235  (Figure 2) [49-52]. The relative loss of activation of human MR was greater with the MMTV
236  promoter than with the TAT3 promoter. For example, at 10 nM aldosterone, activation of full-
237  length human MR with the MMTYV reporter was 70-fold (Figure 6A), which decreased to 14-fold
238  for human MR-CDE (Figure 6B). In contrast, at 10 nM aldosterone, fold-activation of human
239  MR-CDE with the TAT3 promoter was about 75% of activity for full-length human MR (Figure
240 6C, D). However, 11-deoxycorticosterone and 11-deoxycortisol lost substantial activity for

241  human MR-CDE with the MMTYV and TAT3 promoters (Figure 6D).

242 There also was higher fold-activation by aldosterone of full-length and truncated human
243 MR with the TAT3 promoter (Figure 6C, D) compared to full-length and truncated lungfish MR
244  (Figure 3C, D). Aldosterone activation of full-length human MR with the TAT3 promoter

245  (Figure 6C) was about 45-fold higher than that for full-length lungfish MR with the TAT3

246  promoter (Figure 3C). Aldosterone activation of human MR-CDE with the TAT3 promoter

247  (Figure 6D) was about 15-fold higher than that for lungfish MR-CDE (Figure 3D).

248 The relative activation by aldosterone and dexamethasone of human MR and lungfish
249 MR was reversed. Aldosterone was more active than dexamethasone in stimulating transcription
250 by full-length human MR and human MR-CDE with the TAT3 promoter (Figure 6C, D). In
251 contrast, for lungfish MR dexamethasone was more active than aldosterone for full-length

252 lungfish MR and lungfish MR-CDE with the TAT3 promoter (Figure 3C, D).

253

254
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Comparison of elephant shark MR and lungfish MR.

Activation by corticosteroids and progesterone of elephant shark MR with the MMTV
promoter has some similarities with their activation of lungfish MR. Like lungfish MR,
corticosteroids have a similar activation of about 10-fold for full-length and truncated elephant
shark MR, with little difference in potency among the corticosteroids. However, unlike lungfish
MR, aldosterone is stronger than dexamethasone in activating full-length and truncated elephant
shark MR with the MMTYV promoter (Figure 6E, F).

At a 10 nM steroid concentration, aldosterone and other corticosteroids activated full-
length elephant shark MR with the TAT3 promoter by 9 to 12-fold (Figure 6G), which was
similar to activation with the MMTV promoter (Figure 6E). Activation of full-length elephant
shark MR by progesterone was about 5-fold with the TAT3 and MMTYV promoters (Figure 6E,
G). Aldosterone was about 2-fold more active than dexamethasone.

However, deletion of the NTD from elephant shark MR resulted in a significant increase
is activation by steroids in the presence of the TAT3 promoter (Figure 6H). Thus, truncated
elephant shark MR with the TAT3 promoter was activated from 300 to 350-fold by aldosterone
and other corticosteroids and about 200-fold by progesterone and dexamethasone (Figure 6H),
indicating that like lungfish MR, the NTD in elephant shark inhibits activation by
corticosteroids. However, unlike lungfish MR, compared to aldosterone, dexamethasone was
less active for full-length and truncated elephant shark MR with the MMTYV promoter and

truncated elephant shark MR with the TAT3 promoter.

13


https://doi.org/10.1101/2021.05.28.446239
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.446239; this version posted June 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A. Full-length human MR with MMTV B. Truncated human MR with MMTV
100 100 20

80
60
40

15

fold activation
fold activation

,\'\’ ,\\’

C. Full-length human MR with TAT3 D. Truncated human MR with TAT3
250 250 180 180

5200 5150 150

=} =

2150 g

8100 8 6o

L= z

e S 3

E: Full-length elephant shark MR with MMTV F. Truncated elephant shark MR with MMTV

15 15 15 15

10 10 10 10

fold activation
fold activation

G: Full-length elephant shark MR with TAT3 H. Truncated elephant shark MR with TAT3
14 14 500 500

1 12 400

1 10
8 300

N
(=3
o

= N W b
o o o
o o

c
o
2
©
2
=
o
©
z
o
L2

fold activation



https://doi.org/10.1101/2021.05.28.446239
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.446239; this version posted June 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

278  Figure 6. Ligand specificity of full-length and truncated human MR and elephant shark
279  MR. Plasmids for full-length human and elephant shark MR or truncated human and elephant
280  shark MR (MR-CDE) were expressed in HEK293 cells with an MMTV-luciferase reporter or a
281  TAT3-luciferase reporter. Transfected cells were treated with either 10 nM aldosterone, cortisol,
282  11-deoxycortisol, corticosterone, 11-deoxycorticosterone, progesterone, dexamethasone or

283  vehicle alone (DMSO). Results are expressed as means + SEM, n=3. Y-axis indicates fold-
284  activation compared to the activity of control vector with vehicle alone as 1. A. Full-length
285  human MR with MMT V-luciferase. B. Truncated human MR (MR-CDE) with MMTV-

286  luciferase. C. Full-length elephant shark MR with TAT3-luciferase. D. Truncated elephant
287  shark MR (MR-CDE) with TAT3-luciferase.

288

289  Does lungfish contain a separate GR gene?

290 We used sequences of human GR, coelacanth GR and elephant shark GR as probes in a
291  BLAST search of GenBank and did not retrieve a lungfish GR sequence. The absence of a

292  lungfish GR ortholog coupled with the strong response of lungfish MR to dexamethasone and
293  triamcinolone (Figure 5) leads us to propose that lungfish MR also functions as a GR.

294

295  Discussion

296 Dobzhansky’s aphorism “Nothing in Biology Makes Sense Except in the Light of

297  Evolution” [62] explains the importance of the evolution of aldosterone in lungfish because
298  aldosterone activation of the kidney MR in terrestrial vertebrates regulates sodium, potassium
299  and water transport, which is critical in maintaining internal electrolyte homeostasis in terrestrial
300 vertebrates [30,34,63—65] an activity that was important in the transition from water to land.
301  Here we report that aldosterone, 11-deoxycorticosterone, and progesterone have EC50s below 1
302  nM for lungfish MR (Table 1), which makes these steroids potential physiological ligands for

303  lungfish MR. Another potential physiological steroid is 11-deoxycortisol, which is a steroid for
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the CR in Atlantic sea lamprey [42,43]. 11-deoxycortisol has EC50 of 0.17 nM for full-length
lungfish MR (Table 1).

A functional advantage of 11-deoxycorticosterone, 11-deoxycortisol and progesterone as
ligands for the MR is that they lack an 11B-hydroxyl group, and thus, like aldosterone, they are
inert to 11B-hydroxysteroid dehydrogenase-type 2, unlike cortisol and corticosterone [66—69].
Indeed, this inertness to 11B3-hydroxysteroid dehydrogenase-type 2 and the low EC50s of these
steroids for lungfish MR suggests that more than one corticosteroid and progesterone [39] may
be physiological mineralocorticoids.

Like ray-finned fish MRs [24,37,38,60] and elephant shark MR [24,39], lungfish MR is
activated by spironolactone (Figure 4), and, as reported here, by eplerenone [47,48,61].

We also find important differences between the response of lungfish MR and human MR
to aldosterone, 11-deoxycorticosterone, 11-deoxycortisol and progesterone, indicating that
further selectivity for aldosterone in human MR occurred during the evolution of terrestrial
vertebrates [13,15,37,40,52,69,70].

An unexpected difference between lungfish MR and human MR is the substantial
increase in fold-activation by steroids of lungfish MR after deletion of the NTD, in contrast to
human MR in which the NTD contains an activation function domain (Figure 2) [49-52].
Deletion of the NTD in elephant shark MR also resulted in a substantial increase in fold-
activation by corticosteroids and progesterone using the TAT3 promoter (Figure 6), but not for
the MMTYV promoter [17]. These data with lungfish MR and elephant shark MR suggest that
early in the evolution of the MR there was an allosteric interaction between the LBD and NTD
[71,72] that repressed steroid activation of the MR, and that the activation function in the NTD

as found in human MR [49-52] evolved later in terrestrial vertebrates, along with changes in

16


https://doi.org/10.1101/2021.05.28.446239
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.446239; this version posted June 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

327  steroid specificity, such loss of MR activation by progesterone [37,39,70]. The different

328  responses of full-length and truncated lungfish MR, human MR and elephant shark MR with the
329  MMTYV and TAT3 promoters indicate that the NTD and the promoter are important regulators of
330  steroid activation of these MRs. Corticosteroid activation of these MRs in the presence of other
331  promoters merits investigation.

332 The stronger response of lungfish MR to dexamethasone compared to aldosterone and the
333  absence a lungfish GR ortholog sequence are puzzling. At a 10 nM concentration, fold-

334  activation by dexamethasone and triamcinolone is substantially higher than that of cortisol,

335  corticosterone, as well as aldosterone, 11-deoxycorticosterone, 11-deoxycortisol and

336  progesterone for lungfish MR (Figure 5). One explanation is that lungfish MR also has a GR
337  function.

338

339  Materials and Methods

340  Chemical reagents

341 Aldosterone, cortisol, corticosterone, 11-deoxycorticosterone, 11-deoxycortisol and

342  progesterone, spironolactone and eplerenone were purchased from Sigma-Aldrich. For reporter
343  gene assays, all hormones were dissolved in dimethyl-sulfoxide (DMSO); the final DMSO

344  concentration in the culture medium did not exceed 0.1%.

345

346  Animal

347 A slender spotted African lungfish, Protopterus dolloi, was purchased from a local

348  commercial supplier. Lungfish were anesthetized in freshwater containing 0.02% ethyl 3-

349  aminobenzoate methane-sulfonate from Sigma-Aldrich, and tissue samples were quickly
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350  dissected and frozen in liquid nitrogen. Animal handling procedures conformed to the guidelines
351  set forth by the Institutional Animal Care and Use Committee at the University of Tokyo.

352

353  Molecular cloning of lungfish mineralocorticoid receptor

354 Two conserved amino acid regions, GCHYGV and LYFAPD of vertebrate MRs were
355  selected and degenerate oligonucleotides were used as primers for PCR. First-strand cDNA was
356  synthesized from 2 pg of total RNA isolated from the liver after amplification, and an additional
357  primer set (CKVFFK and LYFAPD) was used for the second PCR. The amplified DNA

358 fragments were subcloned with TA-cloning plasmid pGEM-T Easy vector, sequenced using a
359  BigDye terminator Cycle Sequencing-kit with T7 and SP6 primers, and analyzed on the 3130
360  Genetic Analyzer (Applied Biosystems). The 5’- and 3’-ends of the mineralocorticoid receptor
361 cDNAs were amplified by rapid amplification of the cDNA end (RACE) using a SMART RACE
362 cDNA Amplification kit. Genbank accessions for this lungfish MR are: Nucleotide ID:

363  LC630795 and Protein ID: BCV19931.

364  Construction of plasmid vectors

365  The full-length and truncated MRs were amplified by PCR with KOD DNA polymerase. The
366  PCR products were gel-purified and ligated into pcDNA3.1 vector (Invitrogen). The truncated
367 MR proteins were designed to possess methionine and valine residues at the N-terminus and
368  contain a DNA-binding domain, a hinge-region, and a ligand-binding domain. The truncated
369  MRs were amplified by PCR with KOD DNA polymerase by using the following primers:

370  lungfish MR forward primer (5’-

371 CAAGCTTACCATGGTGTGTCTGGTGTGTGGTGACGAAG-3’ containing Hindlll site) and

372 lungfish MR reverse primer (5’-CCTACTTCCTGTGAAAGTACAATGAC -3’ containing stop
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373  codon), human MR forward primer (5’-

374  CGGATCCACCATGGTGTGTTTGGTGTGTGGGGATGAG-3’ containing BamHI site) and
375  human MR reverse primer (5’-CTCACTTCCGGTGGAAGTAGAGCGGC -3’ containing stop
376  codon). The amplified DNA fragments were subcloned with TA-cloning plasmid pGEM-T Easy
377  vector and sequenced, and then subcloned into pcDNA 3.1 vector by using HindlIII-NotI sites for
378  lungfish MR truncated form or BamHI-Notl sites for human MR truncated form. Mouse

379  mammary tumor virus-long terminal repeat (MMTV-LTR) was amplified from pMSG vector by
380 PCR, and inserted into pGL3-basic vector containing the Photinus pyralis lucifease gene. 3X-
381  Tyrosine Amino Transferase (TAT3) promoter containing reporter vector named pGL4.23-

382  TAT3-Luc was constructed as described previously [53]. All cloned DNA sequences were

383  verified by sequencing.

384

385  Transactivation assay and statistical methods

386  Transfection and reporter assays were carried out in HEK293 cells, as described previously

387  [40,73]. All experiments were performed in triplicate. The values shown are mean = SEM from
388 three separate experiments, and dose-response data, which were used to calculate the half

389  maximal response (EC50) for each steroid, were analyzed using GraphPad Prism.
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