

Odorant receptor copy number change, co-expression, and positive selection establish peripheral coding differences between fly species

Thomas O. Auer^{1,*} Raquel Álvarez-Ocaña^{1,*}, Steeve Cruchet¹, Richard Benton¹, J. Roman Arguello^{2,3}

¹*Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland*

²*Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland*

³*Swiss Institute of Bioinformatics*

^{*}*equal contribution*

1. Abstract

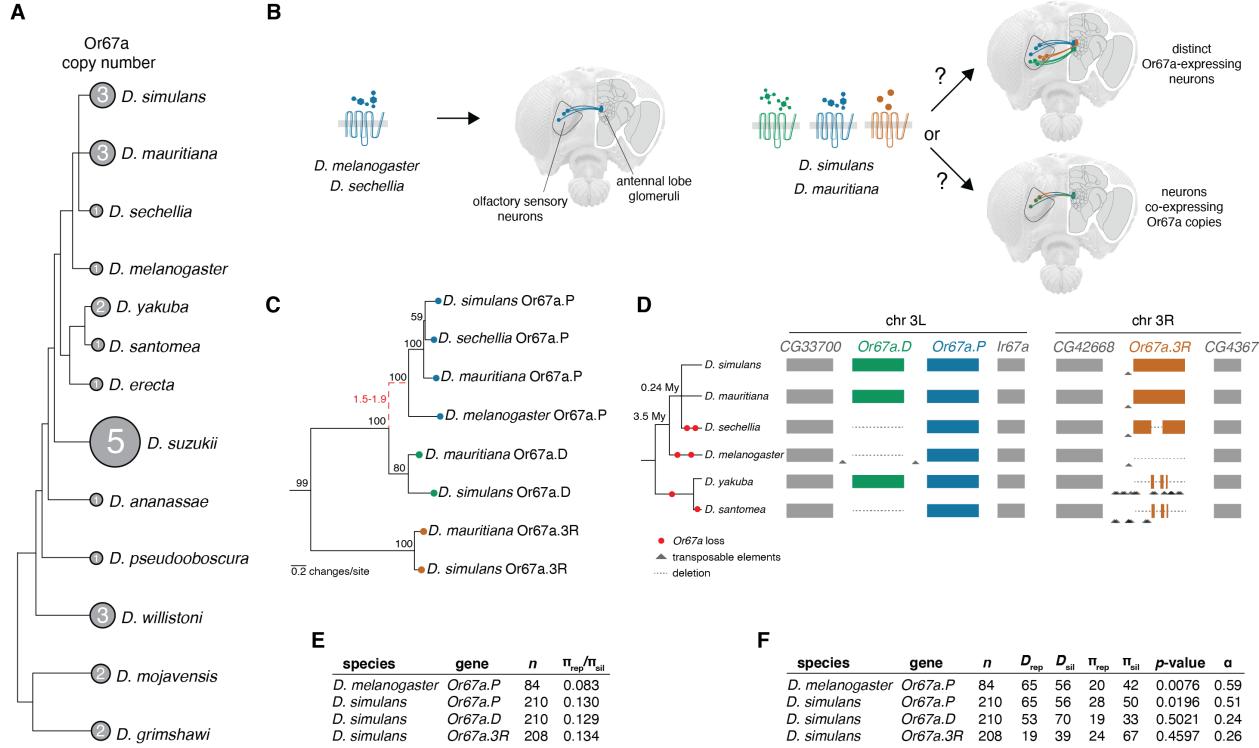
Despite numerous examples of chemoreceptor gene family expansions and contractions, how these changes relate to modifications in the neural circuitry in which they are expressed remains unclear. *Drosophila*'s Odorant receptor (Or) family is ideal for addressing this question because a large majority of Ors are uniquely expressed in single olfactory sensory neuron (OSN) types. Between-species changes in *Or* copy number, therefore, may indicate diversification/reduction of OSN populations. To test this, we investigated a rapidly duplicated/deleted subfamily (named *Or67a*) in *Drosophila melanogaster* and its sister species (*D. simulans*, *D. sechellia*, and *D. mauritiana*). We found that the common ancestor had three *Or67a* paralogs that had already diverged adaptively in their odor-evoked responses. Following their speciation, two *Or67a* paralogs were lost independently in *D. melanogaster* and *D. sechellia*, with ongoing positive selection acting on the intact genes. Instead of the expected singular expression of each diverged Ors, the three *D. simulans* *Or67a* paralogs are co-expressed. Thus, while neuroanatomy is conserved between these species, independent selection on co-expressed receptors has contributed to species-specific peripheral coding of olfactory information. This work reveals a model of adaptive change previously not considered for olfactory evolution and raises the possibility that similar processes may be operating among the largely uninvestigated cases of Or co-expression.

2. Introduction

The evolution of animal chemoreceptor families is characterized by rapid changes in gene copy number [1–6]. Numerous studies have correlated expansions and contractions of these families to known ecological shifts (i.e. dietary change, host-plant specialization), reflecting their capacity to quickly respond to environmental variation and to contribute to adaptive modifications [2, 7–10]. The evolution of chemoreceptor gene repertoires has raised considerable interest from a molecular evolution perspective, where they are often modeled as stochastic birth-and-death processes [11, 12]. These deletion and duplication events become additionally compelling in light of their roles in establishing the peripheral coding of chemical environments, and due to their extremely selective expression patterns: only one, or a small few, are expressed per neuron population. Thus, in addition to the gene family changes, understanding how chemoreceptor duplicates evolve cell-specific expression, and how chemoreceptor gains and losses functionally impact the sensory cells in which they are expressed, remain a puzzle.

A challenge to addressing these questions is the need for experimentally tractable systems with which to link changes at the level of the genome to physiology and neuroanatomy. *Drosophila melanogaster*, along with its closely related species, have emerged as an outstanding group for functional comparative studies of nervous systems. The extensive knowledge and resources that are available for *D. melanogaster* [13–16] is anchoring the development of genetic resources in its ecologically diverse sister species [17–21]. Additionally, the short evolutionary distances between

40 multiple species in the *D. melanogaster* species group significantly aids in identifying key mutational events and in
41 inferring the evolutionary processes that underly the changes of interest.


42 *Drosophila*'s Odorant receptor (Or) family is especially advantageous for relating between-species changes in
43 chemoreceptor copy number to expression and neuronal response evolution. Odorant receptor expression is limited to the
44 dendrites of neurons located in the fly's two main olfactory organs, the antenna and maxillary palps. Importantly, other
45 than a co-receptor (Orco [22]) expressed in all olfactory sensory neurons (OSN), a large majority of Ors are uniquely
46 expressed in OSN populations (analogous to the singular expression of vertebrate odorant receptor genes [23, 24]).
47 This distinct pattern of *Or* expression raises the intriguing possibility that between-species changes in *Or* copy number
48 reflect the evolution of new OSN populations (in coordination with *Or* duplication events) or a simplification of the
49 peripheral olfactory system (in coordination with *Or* deletion events). To investigate these questions, we focused on an
50 *Or* subfamily named *Or67a*.

51 **3. Results & Discussion**

52 **3.1. *Or67a* copy number is evolutionary dynamic**

53 *Or67a* is one of the few olfactory receptor genes that differs in copy number among the closely-related *Drosophila*
54 *melanogaster* species subgroup [2, 12, 25], which share a common ancestor ~3.4 million years ago [27]. It has also
55 experienced remarkable expansions in more distantly-related species (for example, *D. suzukii*, which shares a last
56 common ancestor with *D. melanogaster* ~15 million years ago [28], has five paralogs (Fig. 1A)) [12, 25, 26]. Recently,
57 *D. melanogaster* *Or67a* was shown to be the most broadly responding antennal Or when presented with headspace
58 odors from an extensive collection of fruits [29], suggesting that evolution of the *Or67a* subfamily may be related to
59 species-specific responses to food odors. To connect between-species differences in *Or* copy number and functional
60 changes in the sensory neurons where they are expressed (Fig. 1B), we focused on *D. melanogaster* and its sister
61 species in the *simulans* complex (*D. simulans*, *D. sechellia*, and *D. mauritiana*), which share a common ancestor ~0.24
62 million years ago [30, 31]. *D. sechellia* and *D. melanogaster* have a single intact *Or67a* gene while *D. simulans* and
63 *D. mauritiana* have three (Fig. 1A). We refer to these three *Or67a* genes as *Or67a.P* (the 3L copy proximal to the
64 centromere), *Or67a.D* (the 3L copy distal to the centromere), and *Or67a.3R* (the copy on the right arm of the third
65 chromosome).

66 To elucidate the evolutionary history of this *Or67a* subfamily, we first inferred a protein tree for the eight receptors.
67 The well-supported tree clusters each of the *Or67a.P*, *Or67a.D*, and *Or67a.3R* members together, indicating that the three
68 paralogs existed prior to this group's speciation events, and that the *Or67a.D* and *Or67a.3R* copies were lost independently
69 along *D. melanogaster*'s and *D. sechellia*'s branches (Fig. 1C). The scenario involving multiple independent *Or67a.D*
70 and *Or67a.3R* losses is further supported by inspecting alignments of the homologous chromosomal regions, and
71 polarizing the changes using the outgroup species, *D. yakuba* and *D. santomea*. The genes flanking the *Or67a* paralogs
72 are conserved across the six species, verifying that the chromosomal regions are homologous (Fig. 1D, Files S1,2).
73 However, considerable nucleotide and indel differences have arisen between species within the intervals containing

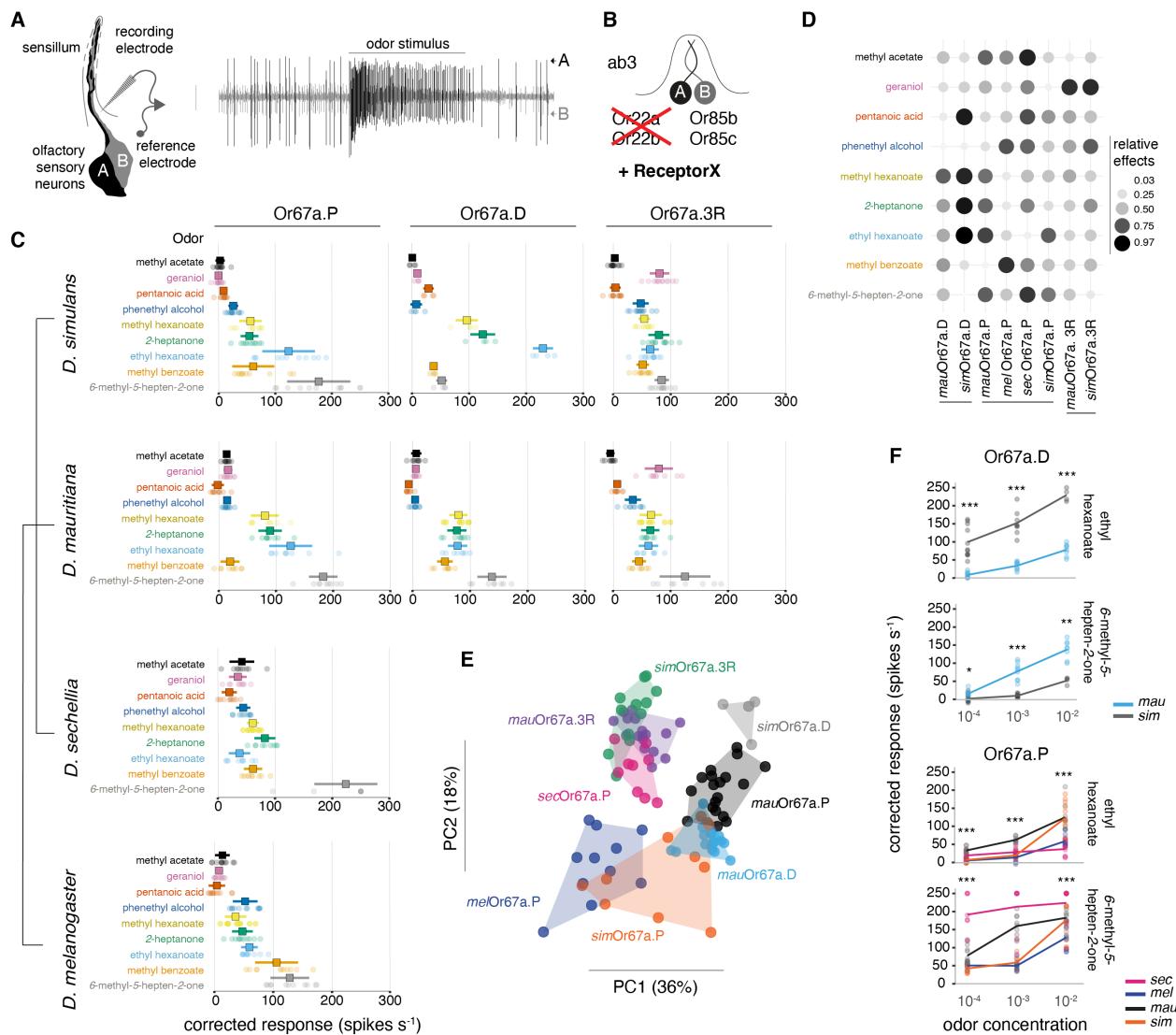
Figure 1: (A) *Drosophila* species tree (branches not to scale) illustrating *Or67a* copy number changes that have been reported in a subset of available genome assemblies (i.e. [2, 12, 25, 26]). These numbers exclude pseudogenes that are recognizable *Or67a* family members. (B) Illustration of the evolutionary scenario that is being investigated. To what extent are the three receptors tuned to different ligands? For *D. simulans* and *D. mauritiana*, are the three receptors expressed in distinct neuron populations that project to different regions (glomeruli) of the antennal lobe, or are they co-expressed in the same neuron population? (C) Bayesian protein tree inferred for the intact *Or67a* subfamily. Black numbers near nodes indicate posterior support. The branch with a dashed line was inferred to have a significant elevation in protein evolution (dN/dS = 1.5-1.9, red text); the remaining branches were inferred to have been under functional constraint (dN/dS < 0.5). (D) Overview of the parallel loss of the *Or67a.D* and *Or67a.3R* genes in *D. melanogaster* and the *simulans* group, using *D. yakuba* and *D. santomea* as outgroup species. On the left is a species tree for the samples included in the analyses (branches not to scale). Numbers at tree nodes indicate divergence dates in millions of years (My) for *D. melanogaster* and the *D. simulans* group [30, 31]. To the right of the tree are schematics of the alignments of the *Or67a*-containing chromosomal regions. Shown are the conserved genes (grey rectangles) that flank the *Or67a*-containing regions (colored rectangles) and the independent deletions of *Or67a.D* and *Or67a.3R* genes (dashed lines). The deletions are mapped onto the species tree with red dots. Many remnants of transposable elements were identified within these intervals, illustrated with grey triangles (the schematic is not to scale, but see Figs. S1, S2 and Files S1-3). (E) Table summarizing functional constraint on *Or67a* paralogs as measured by the ratio of nucleotide diversity at amino-acid replacement positions (π_{rep}) to nucleotide diversity at silent positions (π_{sil}). All copies have $\pi_{rep}/\pi_{sil} < 0.5$, indicating ongoing purifying selection. Sample sizes are indicated by n. (F) Table summarizing McDonald-Kreitman tests for adaptive protein evolution and α , the estimated number of amino acid substitutions fixed by positive selection. The *Or67a.P* copies were found to have experienced adaptive protein evolution in both *D. melanogaster* and *D. simulans*, while signatures of adaptation were not found in *simOr67a.D* or *simOr67a.3R*. # D_{rep} = number of amino acid replacement substitutions; # D_{sil} = number of silent substitutions; # π_{rep} = number of amino-acid replacement polymorphisms; # π_{sil} = number of silent polymorphisms. Sample sizes are indicated by n.

74 the *Or67a* paralogs, as have remnants of transposable elements, particularly for the *Or67a.3R*-containing region in
75 *D. yakuba* and *D. santomea* (Fig. 1D and Fig. S1,2, File S3). These alignments clarify that independent deletions
76 have completely removed the *Or67a.D* ortholog in *D. sechellia* (*secOr67a.D*), *D. melanogaster* (*melOr67a.D*), and *D.*
77 *santomea*, although it remains intact in *D. yakuba*. Deletions have also entirely removed the *melOr67a.3R* ortholog,
78 and a portion of the coding region in the *D. sechellia* ortholog (*secOr67a.3R*), eliminating sequences encoding two
79 transmembrane domains that are required for forming the ion channel of the receptor [32, 33]. Short remnants of the
80 *Or67a.3R* orthologs are still detectable in *D. yakuba* and *D. santomea*, additionally indicating that the ortholog was
81 present in these more distant species. In combination, these data support a history in which three *Or67a* paralogs existed
82 in the common ancestor of *D. melanogaster* and the *simulans* group, and that *D. sechellia* and *D. melanogaster* have
83 recently lost the *Or67a.D* and *Or67a.3R* copies in parallel. The rapid change in *Or67a* copy numbers is likely related to
84 past transposable element insertions and deletions in these loci.

85 **3.2. Recurrent positive selection on *Or67a* paralogs**

86 The observation of recent parallel gene losses among these closely-related species raises questions about the selective
87 constraints acting on the intact receptors. We tested models of protein evolution by fitting rates of amino acid-changing
88 (dN) and silent (dS) substitutions along the branches of the *Or67a* tree (Fig. 1C). Among the models we investigated,
89 those that fit best consistently resulted in strong selective constraint along nearly all branches (dN/dS < 0.45). The
90 branch leading to the *Or67a.P* clade was the only exception, with an elevated rate of amino acid changes that is consistent
91 with positive selection acting on the *Or67a.P* coding sequence following the *Or67a.D/Or67a.P* tandem duplication
92 event (dN/dS = 1.5-1.9; Tables S1 and S2, File S4). Using available population genomic datasets for *D. melanogaster*
93 and *D. simulans*, we carried out more sensitive tests of ongoing purifying selection based on the ratio of amino acid to
94 silent polymorphism (π_{rep}/π_{sil}). These measures lent additional support for functional constraint currently acting on
95 the intact *Or67a* members for these two species, with all $\pi_{rep}/\pi_{sil} < 0.2$ (Fig. 1E; File S5).

96 Combining our polymorphism datasets with between-species alignments, we applied McDonald-Kreitman tests
97 of adaptive protein changes [34], and estimated the fraction of amino acid substitutions that have been fixed within
98 a species by positive selection (α) [35]. These analyses also identified signals of adaptive protein evolution for the
99 *Or67a.P* copies in both *D. melanogaster* and *D. simulans*, where 75% and 54%, respectively, of the protein changes
100 were estimated to have been fixed by positive selection (Fig. 1F). In contrast, the *simOr67a.D* and *simOr67a.3R* copies
101 did not carry signatures of adaptation. This *D. melanogaster* result is consistent with previous population genomic
102 studies that identified *melOr67a.P* as evolving adaptively between species, as well as experiencing very recent positive
103 selection between extant populations [36, 37], and further underscores past and ongoing adaptive changes in *melOr67a.P*.
104 It has also been hypothesized that adaptive receptor gene loss may be an important route for sensory change within
105 chemosensory systems [38]. If the two *D. melanogaster* deletions were adaptive and swept to fixation in the recent
106 past, reduced genetic variation (and a negative Tajima's *D* [39]) may be detectable [40]. However, analyses of the
107 polymorphism at the loci containing these deletions did not provide evidence of adaptive loss, as the genetic variation

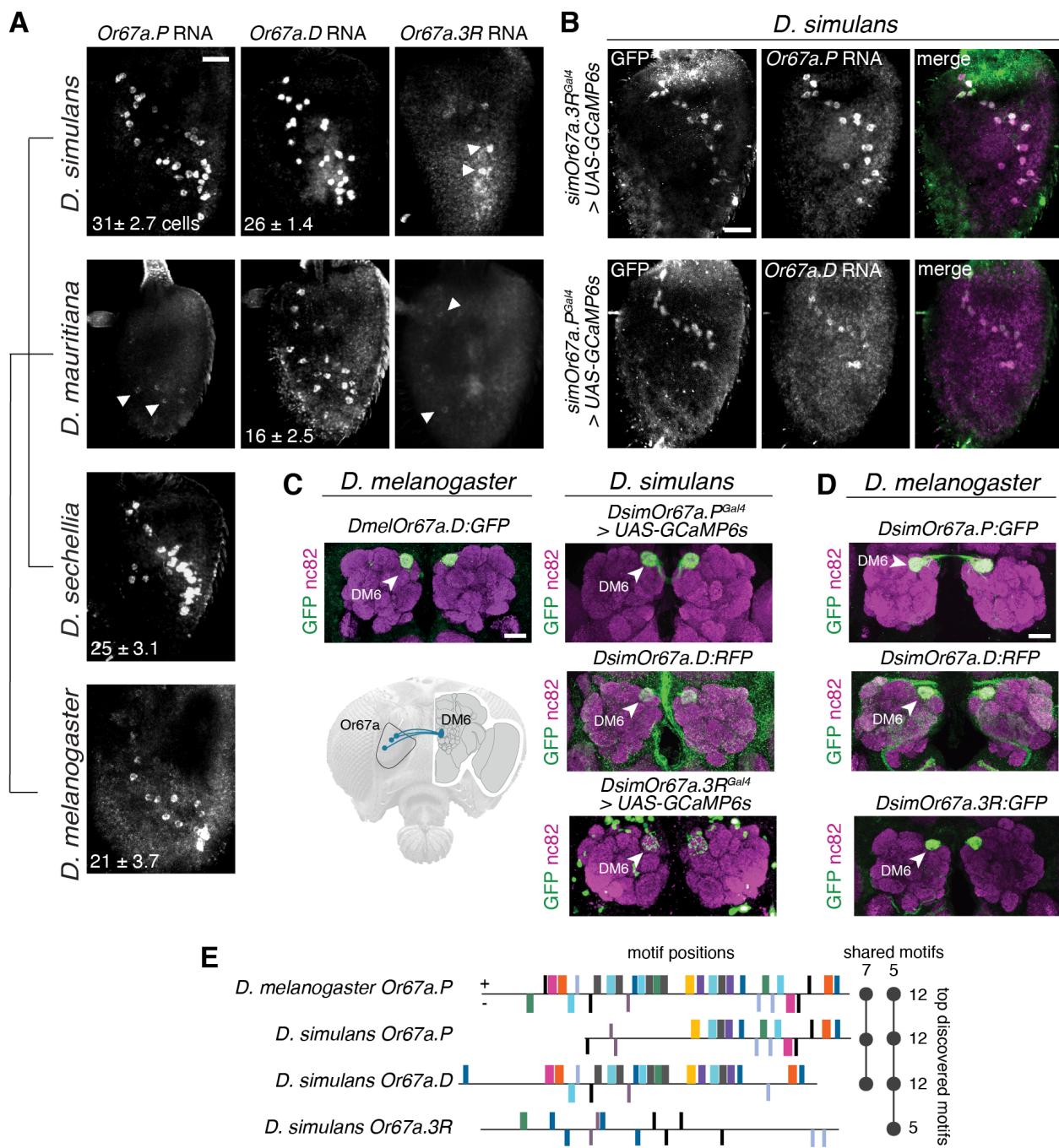

108 was not different from the larger surrounding chromosomal intervals (Fig. S3).

109 These evolutionary genetic results provide evidence that the intact *Or67a* genes are currently under functional
110 constraint, despite parallel gene losses in the recent history of the subfamily. They additionally highlight recurrent bouts
111 of positive selection that presumably diversified receptor function, particularly for the *Or67a.P* clade.

112 **3.3. Positive selection has diversified *Or67a* receptor tuning**

113 To test the hypothesis that positive selection has contributed to the diversification of receptor function within the
114 *Or67a* subfamily, we performed *in vivo* electrophysiological recordings of odor-evoked activity of *Or67a* paralogs and
115 orthologs. We expressed individual *Or67a* receptors in a *D. melanogaster* antennal basiconic 3A (ab3A) “decoder”
116 neuron, which lacks its endogenous receptor [41] (Fig. 2A,B), and quantified neuronal responses to a panel of nine
117 odors. These nine odors were selected to cover a range of strong to weak *Or67a.P* ligands based on previous work in *D.*
118 *melanogaster* [42–44]. Globally, we observed highly significant evolutionary changes in odor response profiles (global
119 Wilks’ Lambda = 15.06, $p << 0.01$; Fig. 2C). When testing for differences across the *Or67a.P/D/3R* paralogs within
120 *D. mauritiana* or *D. simulans*, all comparisons were significantly different ($p < 0.01$). When testing for differences
121 among orthologs across species (between all four species for *Or67a.P* or between *D. simulans* and *D. mauritiana* for
122 *Or67a.D* and *Or67a.3R*), all comparisons were again significant ($p < 0.01$), except for the responses measured for
123 *Or67a.3R* orthologs of *D. simulans* and *D. mauritiana* ($p > 0.01$). The statistical approach that we used to test for
124 differences in odor responses [45] also allowed us to calculate the relative effects that the odors have on the receptor
125 responses, thereby highlighting key odors combinations that drove these significant ortholog/paralog differences (Fig.
126 2D; Table S3). For example, the relative effect of geraniol on *simOr67a.3R* is 86%, indicating a high probability of this
127 receptor responding the strongest to this odor given a random sample from the full set of recordings (a comparable
128 effect exists for *mauOr67a.3R*, 85%). Similarly, a recording from *simOr67a.D* has a 97% probability of having the
129 strongest response to ethyl hexanoate, which together with the large relative effects of pentanoic acid, methyl hexanoate,
130 and 2-heptanone, strongly differentiate it from its *mauOr67a.D* ortholog. Clustering these response data using principal
131 component analysis (PCA) further highlights the evolutionary changes among receptors (Fig. 2E). In particular, the
132 variation among *Or67a.P* copies is readily apparent, as is the distinct separation of the two *Or67a.3R* copies (together
133 with *secOr67a.P*) from the other receptors.

134 We tested for differences in sensitivity to our panel of odors by generating dose-response curves for the five odors that
135 resulted in the strongest responses at the 10^{-2} (v/v) concentration. These experiments revealed numerous differences in
136 sensitivity among both paralogs and orthologs, but were most pronounced in *Or67a.P* and *Or67a.D*, concordant with the
137 elevated diversity in response profiles to the full odor panel at the 10^{-2} concentration (Figs. 2F, S4). For example,
138 *simOr67a.D* is significantly more sensitive across concentrations of ethyl hexanoate than *mauOr67a.D* ($p < 0.01$; Table
139 S4), while the opposite is the case for 6-methyl-5-hepten-2-one ($p < 0.01$; Table S4). Other notable differences are the
140 *Or67a.P* responses to 6-methyl-5-hepten-2-one, where *secOr67a.P* has high sensitivity across all concentrations, with
141 additional species differences increasing with concentration (Fig. 2F; Table S4). These data demonstrate widespread


Figure 2: (A) Schematic for single sensilla recordings and a resulting spike train. The example displays a sensillum housing two olfactory sensory neurons (A and B), differentiable by large and small spike amplitudes. (B) Illustration of the *D. melanogaster* "decoder" system used to screen the *Or67a* from the four species [41]. (C) Quantification of *Or67a.P/D/3R* responses to a panel of nine odors at 10^{-2} (v/v) concentration, organized by the species relationship (tree in left margin, not to scale). Squares indicate the mean and error bars display the standard deviation. Samples size (number of independent sensilla recorded from) per odor/receptor combination = 4-12. (D) Relative effects of the odors on *Or67a.P/D/3R* responses at 10^{-2} (v/v) concentration. These values provide the probability that a given odor-receptor response will be the largest given the full dataset. (E) Principal component analyses based on the data from Fig. 2B. Percentages along the axes indicate the amount of variation explained by the principal components. Species names have been abbreviated to the first three letters. (F) The two odor-receptor combinations that resulted in the largest dose-response differences among the *Or67a.P/D/3R* orthologs (see Fig. S4 for the other odors). For simplicity, the level of significance indicated above each concentration's comparison is only for the single species comparison with the largest difference (see Table S4 for the full set of tests; * $p < .05$, ** $p < .01$, *** $p < .001$). p -value correction for multiple comparisons was done using the Holm method. Sample sizes = 4-11.

142 evolution of ligand response profiles within the *Or67a* subfamily, supporting our molecular evolutionary inferences that
143 positive selection has contributed to functional changes.

144 **3.4. The three *D. simulans* *Or67a* paralogs are co-expressed**

145 Our evolutionary genetic analyses and electrophysiological experiments uncovered adaptive functional diversification in
146 the *Or67a* subfamily. The three *D. simulans* receptors could either define different populations of OSNs (two of which
147 were lost in *D. melanogaster* and *D. sechellia*) or be co-expressed in a single neuron population (Fig. 1B). To investigate
148 these possibilities, we first examined receptor expression using RNA fluorescence *in situ* hybridization (FISH). For all
149 of the four species, we detected *Or67a*-expressing neurons within a comparable spatial domain of the antenna (Fig. 3A).
150 Quantification of neuron numbers indicates a similar number of cells expressing *Or67a.P* and *Or67a.D* in *D. simulans*.
151 However, the high sequence identity of these genes (Table S5) might result in cross-hybridization of RNA probes. We
152 observed very few *Or67a.3R* positive cells (possibly because of lower expression levels of this receptors); similarly,
153 *mauOr67a.P* and *mauOr67a.3R* expression was weak but detectable.

154 The high sequence similarity across paralogs, and the potential cross-reactivity of probes, prevents an unambiguous
155 interpretation of paralog-specific cell number, as well as the use of double FISH for co-expression experiments.
156 Therefore, we generated paralog-specific transgenic transcriptional reporters in *D. simulans*. We used a CRISPR/Cas9
157 mediated strategy to integrate Gal4 at the *simOr67a.3R* and *simOr67a.3P* loci (Fig. S5A), and combined both with a
158 fluorescent reporter (UAS-GCaMP6s) to visualize promoter activity. Our attempts to generate an equivalent *simOr67a.D*
159 Gal4 insertion were unsuccessful, so we generated a transgenic reporter for this gene using the upstream sequence of
160 *simOr67a.D* to drive RFP expression (similar to a previous *melOr67a.P* reporter [46], Fig. S5B). Using these tools,
161 together with RNA FISH, we confirmed that transcription from the *simOr67a.3R* locus overlaps with *simOr67a.P*, and
162 transcription from the *simOr67a.P* locus overlaps with *simOr67a.D* mRNA expression (Fig. 3B). In the antennal lobe,
163 *melOr67a.P* axonal projections uniquely innervate the DM6 glomerulus [46] (Fig. 3C). Similarly, both *D. simulans*
164 Gal4 alleles (*simOr67a.P^{Gal4}* and *simOr67a.3R^{Gal4}*), as well as the *simOr67a.D* transgenic reporter, uniquely labeled
165 neurons targeting DM6 in *D. simulans* (Fig. 3C). These results collectively argue for the co-expression of the three *D.*
166 *simulans* *Or67a* receptor paralogs in the homologous neuron population to *D. melanogaster* *Or67a* neurons.

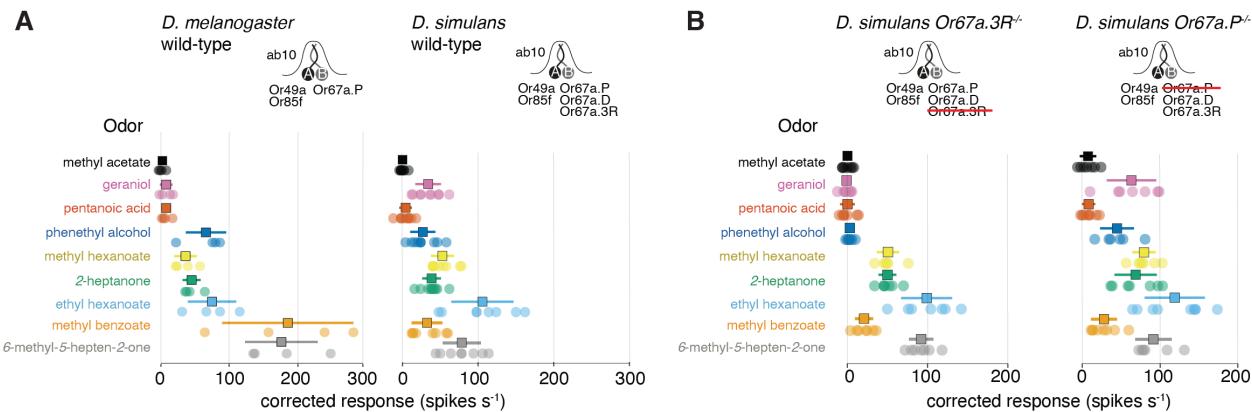


Figure 3: (A) Whole-mount antennal RNA expression of *Or67a* paralogs and orthologs in *D. simulans*, *D. mauritiana*, *D. sechellia* and *D. melanogaster* (top to bottom). Scale bar = 25 μ m. The number of *Or67a* expressing OSNs (+/- standard deviation) is indicated at the bottom left corner (n=5-12 antennae). Weak staining prevented quantification of OSN numbers expressing *Or67a.3R* in *D. simulans* and *Or67a.3R* and *Or67a.D* in *D. mauritiana*. Arrows point towards weakly labeled cells. (B) Antennal co-expression of knock-in Gal4 transcriptional reporters (visualized by *UAS-GCaMP6s*) and *Or67a.P* (top) and *Or67a.D* (bottom) RNA in *D. simulans*. Scale bar = 25 μ m. (C) (left) Antennal lobe innervation of the promoter transcriptional reporter for *Or67a* in *D. melanogaster*. (below) Schematic illustrating the innervation of DM6 by *Or67a*-expressing neurons. (right) Gal4- and promoter transcriptional reporters for *Or67a* paralogs in *D. simulans*. All reporters label neurons innervating the DM6 glomerulus (arrowheads). Scale bar = 25 μ m. (D) Antennal lobe innervation of transcriptional reporters for all three *D. simulans* paralogs in *D. melanogaster* (arrowheads show DM6 glomerulus). Scale bar = 25 μ m. (E) Putative regulatory motifs identified in the 5' DNA sequences of the *Or67a* paralogs in *D. simulans* and *melOr67a.P* (1.5-2 kb, see methods). Boxes indicate the placement of candidate motifs, with colors illustrating the same motif sequence. Positive strand motifs are above the horizontal line and negative strand motifs are below. The sequences have been arranged to approximate a DNA alignment without gaps. The plot to the right summarizes the number of motifs per sequence and the overlap of motifs between the four sequences.

167 The evolutionary stability of the co-expression of *D. simulans* paralogs is notable, given the divergence between their
168 putative regulatory regions (Table S6). To investigate the transcriptional activity of these sequences outside of their
169 endogenous genomic context, we generated transgenic transcriptional reporters containing the upstream sequences of
170 each *D. simulans* *Or67a* paralogs and placed them in a common *D. melanogaster* background. Within the antenna, all
171 three reporters display expression patterns that were consistent with the endogenous *melOr67a.P* mRNA (Fig. S5B,
172 C), and they also paired within ab10 sensillum with *Or49a*/*Or85f*-expressing neurons (Fig. S5D). Moreover, all three
173 labeled neurons target DM6 (Fig. 3D). Computational searches for putative regulatory motifs identified diverse patterns
174 of overlap within the upstream sequence of the *Or67a* genes in *D. melanogaster* and *D. simulans*. Consistent with their
175 sequence identity (Table S6), more motifs were shared between the upstream sequences of *Or67a.P* and *Or67a.D* than
176 either shared with *Or67a.3R* (Fig 3E; Table S7). This observation suggests that co-expression of the three receptors has
177 been maintained by diverse, possibly paralog-specific, regulators of Or expression.

178 **3.5. *D. simulans* *Or67a* paralogs provide unique and overlapping contributions to peripheral tuning**

179 The observation that the three *Or67a* paralogs are co-expressed in *D. simulans* led us to investigate the correspondence
180 between the decoder neuron responses (Fig. 2B,C) and those from endogenous neurons (housed in ab10 sensilla) in
181 *D. melanogaster* and *D. simulans*. For *D. melanogaster*, the wild-type ab10 response profile to the nine odors was
182 qualitatively similar to that obtained from the decoder neuron experiments (Figs. 4A, 2C). In *D. simulans*, we observed
183 the combined responses seen from three receptors that were individually expressed in the decoder neuron (though with
184 overall lower responses). For example, the geraniol response that was seen only for the *simOr67a.3R* paralog in the
185 decoder neuron recordings was observed in the *D. simulans* wild-type ab10 responses. Additionally, ethyl hexanoate,
186 which evoked the strongest responses across the three *simOr67a* paralogs in the decoder neuron recordings, remained
187 the strongest ligand in the *D. simulans* wild-type ab10 neuron (Fig. 4A). To investigate individual contributions of the *D.*
188 *simulans* *Or67a* paralogs to the overall response profile in their endogenous neuron, we employed our *simOr67a.3R*^{RFP}
189 and *simOr67a.P*^{Gal4} loss-of-function alleles. The recordings from the *simOr67a.3R*^{RFP} line revealed the loss of its
190 unique response to geraniol and a significant reduction in its response to phenethyl alcohol (both Wilcoxon rank sum
191 tests $p < 0.01$), but no modification in the responses to the other odors, consistent with *simOr67a.3R* contributing
192 uniquely to the global response profile (Fig. 4B; one-way MANOVA $F = 5.45$, $p > 0.05$; only the pairwise Wilcoxon rank
193 sum tests for geraniol and phenethyl alcohol were significant). Based on the decoder neuron recordings, *simOr67a.P*
194 had the highest responses to 6-methyl-5-hepten-2-one compared to the other two paralogs. However, recordings from
195 the *simOr67a.P*^{Gal4} flies did not result in a reduction in 6-methyl-5-hepten-2-one response (Wilcoxon rank sum test $p >$
196 0.05), likely because *simOr67a.D* and *simOr67a.3R* both respond to this odor. Recordings from this mutant did not
197 impact the global responses to the full panel of odors either (Fig. 4B; one-way MANOVA $F = 2.42$, $p > 0.05$), indicating
198 functional overlap between *simOr67a.D* and the other two *Or67a* paralogs (for at least these nine odors). Together, the
199 results of these electrophysiological experiments highlight both specific and overlapping contributions that the *Or67a*
200 paralogs make to the overall response profile of their endogenous OSNs.

Figure 4: (A) Quantification of wild-type ab10 sensilla recordings for *D. melanogaster* (left) and *D. simulans* (right) to a panel of nine odors (as in Fig. 2C). Sample size = 4-10. (B) (right) Quantification of *simOr67a.3R* KO responses to the panel of nine odors. Sample size = 6. (left) Quantification of *simOr67a.P* knockout responses to the panel of nine odors. Samples size = 6-9. For both panels, squares indicate the mean, error bars display the standard deviation, and sample sizes refer to the number of independent sensilla recorded per odor/receptor combination.

201 4. Conclusions

202 Comparative electrophysiological analysis of odor responses of homologous neurons across species have identified many
 203 instances of evolutionary change [18, 19, 47–50]. Such changes are generally assumed to be due to modifications in the
 204 tuning of singularly expressed receptors, which have been supported by direct examination of the receptor responses
 205 in heterologous expression systems, and, in a few cases, the mapping of amino acid substitutions that underlie the
 206 differences between orthologous receptors [18, 19]. Our evolutionary study of the *Or67a* subfamily reveals an alternative
 207 mechanism in which positive selection can diversify olfactory receptors that remain co-expressed over millions of years,
 208 thereby providing additional degrees of freedom for a single OSN population to evolve novel peripheral tuning. This
 209 evolutionary mechanism is unlikely to be specific to the *Or67a* subfamily as copy number variation for other olfactory
 210 receptor subfamilies exists, as do several cases of odorant receptor co-expression (beyond Orco) [51–54]. For example,
 211 another fruit odor receptor, *Or22a*, and its paralog, *Or22b*, are co-expressed in *D. melanogaster* and have been shown
 212 to vary in copy number between *Drosophila* species [2, 12, 18, 41, 55, 56]. Additionally, the highly divergent *Or33c*
 213 and *Or85e* receptors are co-expressed in several fly species [54]. While physiological data suggest that some of these
 214 examples of co-expression impact neuron response properties [18, 47, 56, 57], more detailed evolutionary and expression
 215 studies - as presented for the *Or67a* subfamily - are needed to determine if similar processes are shaping other olfactory
 216 channels. The co-expression of multiple differentially-tuned receptors in a single neuron population is reminiscent of a
 217 widespread coding principle in the insect gustatory system, where it is common for combinations of co-expressed taste
 218 receptors to determine the tuning profile of gustatory sensory neurons [58–66]. If additional examples of olfactory
 219 receptor co-expression are shown to be evolutionarily stable, co-expression may be a feature more broadly shared
 220 between the olfactory and gustatory systems than previously appreciated.

221 **5. Methods**

222 **5.1. *Drosophila stocks***

223 *Drosophila* stocks were maintained on standard wheat flour/yeast/fruit juice medium under a 12h light:12h dark cycle at
224 25°C. For *D. sechellia* strains, a few g of Formula 4-24® Instant *Drosophila* Medium, Blue (Carolina Biological Supply
225 Company) soaked in noni juice (nu3 GmbH) were added on top of the standard food.

226 **5.2. *CRISPR/Cas9-mediated genome engineering***

227 *sgRNA expression vectors*: To express multiple sgRNAs from the same vector backbone, oligonucleotide pairs (Table S8)
228 were used for PCR and inserted into *pCFD5* (Addgene no. 73914) via Gibson Assembly, as described [67]. For single
229 sgRNA expression, oligonucleotide pairs (Table S8) were annealed and cloned into *BbsI*-digested *pCFD3-dU6-3gRNA*
230 (Addgene no. 49410), as previously described [68].

231

232 *Donor vectors for homologous recombination*: Homology arms (1-1.6 kb) for *simOr67a.3R* were amplified from
233 *D. simulans* (DSSC 14021-0251.195) genomic DNA and inserted into *pHD-DsRed-attP* [69] via restriction cloning.
234 Oligonucleotide sequences are listed in Table S8. For endogenous tagging of *D. simulansOr67a.P* we generated a
235 *T2A-Gal4* targeting vector flanked by homology arms (1-1.1 kb) via gene synthesis (GenScript Biotech) as described [70].

236 **5.3. *Molecular cloning and sequencing***

237 *UAS-cDNA vectors*: To express the different Or67a receptors in the decoder neuron system, open reading frames were
238 amplified from genomic DNA of the respective species via PCR, digested with restriction enzymes (*BglII*, *EcoRI* and/or
239 *KpnI*) and integrated into *pUAST-attB* [71]. Oligonucleotide sequences are listed in Table S8.

240

241 *OrX-reporter vectors*: Promoter fragment for transcriptional reporters were amplified from *Dsim* (DSSC 14021-
242 0251.195) genomic DNA via PCR, inserted into *pDONR221-MCS* [18] via restriction cloning and the resulting vector
243 was combined with *pDEST-HemmarG* or *pDEST-HemmarR* [72] via LR recombination (Gateway, Thermo Fisher
244 Scientific). Oligonucleotide sequences are listed in Table S8.

245

246 The oligonucleotides used for Sanger sequencing of *D. simulans* paralogs from multiple strains are listed in Table S8.
247 The fasta sequences for these samples are found in Files S9-11.

248

249 **5.4. *Drosophila microinjections***

250 Transgenesis of *D. simulans* and *D. melanogaster* was performed in-house following standard [protocols](#), except for
251 *simOr67a.D-RFP* transgenics (generated by Rainbow Transgenic Flies Inc). For CRISPR/Cas9-mediated homologous
252 recombination, we injected a mix of an sgRNA-encoding construct (150 ng μ l-1), donor vector (400 ng μ l-1) and

253 *pHsp70-Cas9* (400 ng μ l-1) (Addgene #45945) [69]. Site-directed integration into attP sites was achieved by co-injection
254 of an attB-containing vector (400 ng μ l-1) and *pBS130* (encoding phiC31 integrase under control of a heat shock
255 promoter (Addgene #26290) [73]). All concentrations are given as final values in the injection mix.

256 **5.5. Electrophysiology**

257 Single sensillum electrophysiological recordings were performed as described previously [74] using chemicals of the
258 highest purity available from Sigma-Aldrich. Spike visualization and quantification was performed using AutoSpike32
259 (Syntech). To target ab10 sensilla in *D. melanogaster*, we used (*R*)-actinidine, which is a diagnostic odor for the
260 neighboring Or85f-expressing neuron [75]. To target ab10 sensilla in *D. simulans*, we used fluorescent-guided
261 recordings [76]. Spike visualization and quantification for these data performed using the Spike2 software (CED).
262 Generally, we observed a lower response rate in *D. simulans* ab10 recordings compared to the recordings from the
263 individually expressed receptors in the *D. melanogaster* “decoder” ab3A decoder neurons (Fig. 4B). This might be
264 related to differences between the two recording rigs used for the experiments, but may also reflect a biological difference
265 between natively-expressed and the misexpressed receptors. Odorants (6-methyl-5-hepten-2-one (CAS 110-93-0),
266 methyl benzoate (CAS 93-58-3), ethyl hexanoate (CAS 123-66-0), 2-heptanone (CAS 110-43-0), methyl hexanoate
267 (CAS 106-70-7), phenethyl alcohol (CAS 60-12-8), pentanoic acid (CAS 109-52-4), geraniol (CAS 106-24-1), methyl
268 acetate (CAS 79-20-9)) were used at 10^{-2} (v/v) in all experiments (unless noted otherwise in the figures or figure
269 legends) and diluted in paraffin oil or double distilled water. Corrected responses were calculated as the number of
270 spikes in a 0.5 s window at stimulus delivery (200 ms after stimulus onset to take account of the delay due to the air
271 path) subtracting the number of spontaneous spikes in a 0.5 s window 2 s before stimulation, multiplied by two to obtain
272 spikes s^{-1} . The amplitude of the A and B spikes in *D. simulans*’ ab10 did not differ greatly, and when the A cell
273 fired upon odor stimulus the amplitude would “pinch” such that spike sorting by amplitude was not possible. As a
274 result, the number of spikes for these recordings included both cells during the 0.5 s stimulation window. Odors that
275 resulted in saturated bursts of spiking that were too numerous to count were replaced with the maximum value from
276 those that were countable. The solvent-corrected responses shown in the figures were calculated by subtracting from
277 the response to each diluted odor the response obtained when stimulating with the corresponding solvent. Recordings
278 were performed on a maximum of three sensilla per fly. Response data was plotted using within R’s (v4.1.0 [77])
279 ggplot2 library (v3.3.0 [78]). To test for differences between Or67a.P/D/3R responses, we carried out a nonparametric
280 multivariate approach implemented in the npmv library (v2.4, [45]) in R (see [GitLab page](#)). Principal component
281 analyses were carried out with the “prcomp” function with in the R’s (v4.1.0) “stats” library, and plotted with the
282 “scatterplot3d” library (v0.3.41 [79]). Missing data was imputed using the nonparametric approach implemented in R’s
283 missForest (v1.4 [80]) on a per-odor basis. The full odor response datasets for all SSR experiments are provided in Files
284 S6-8, and an R markdown file with analyses and plotting code are provided on our [GitLab page](#).

285 **5.6. Immunohistochemistry**

286 RNA fluorescent *in situ* hybridization using digoxigenin- or fluorescein-labelled probes and immunofluorescence on
287 whole-mount antennae were performed essentially as described [81,82] using a rabbit α -GFP 1:500 (Invitrogen) and
288 a chicken α -GFP 1:500 (Abcam) polyclonal antibody. *D. simulans* probe templates were generated by amplification
289 of regions of genomic DNA (DSSC 14021-0251.004) using primer pairs listed in Table S8; these were cloned into
290 *pCR-Blunt II-TOPO* and sequenced. Species specific *in situ* probes were generated for *D. melanogaster*, *D. sechellia*
291 and *D. mauritiana* but did not show improved staining quality compared to *D. simulans* probes (data not shown).
292 Immunofluorescence on adult brains was performed as described [83] using mouse monoclonal antibody nc82 1:10
293 (Developmental Studies Hybridoma Bank), rabbit α -GFP 1:500 (Invitrogen) and chicken α -GFP 1:500 (Abcam).
294 Alexa488- and Cy5-conjugated goat α -rabbit and goat α -mouse IgG (Molecular Probes; Jackson Immunoresearch) and
295 Alexa488-conjugated goat α -chicken (Abcam) secondary antibodies were used at 1:500.

296 **5.7. Image acquisition and processing**

297 Confocal images of antennae and brains were acquired on an inverted confocal microscope (Zeiss LSM 710) equipped
298 with an oil immersion 40X objective (Plan Neofluar 40X Oil immersion DIC objective; 1.3 NA), unless stated otherwise.
299 Images were processed in Fiji [84]. OSN numbers were counted using the Cell Counter Plugin in Fiji or Imaris
300 (Bitplane).

301 **5.8. Molecular evolution and polymorphism analyses**

302 To infer the protein tree, *Or67a.P/D/3R* amino acid sequences were aligned using Clustal Omega with default settings [85].
303 The *Or67a* protein tree was inferred using Mr.Bayes (v3.2.7a) with the following settings: lset nucmodel=protein,
304 mcmc nchains=6 ngen=10000, samplefreq=500, printfreq=100, diagnfreq=1000, burnin=500) [86]. To estimate dN/dS
305 ratios over the branches of the *Or67a* subfamily tree, we used Maximum likelihood estimation implemented in PAML's
306 CODEML (v4.8 [87]), using the pamlX GUI (v1.3.1 [88]). Model testing was carried out using likelihood ratio tests
307 on the outputted likelihoods of the models found in Table S1. For analyses of *D. simulans* polymorphism data in Fig.
308 1, we used an existing dataset [89], and the sequences from 15 additional strains (above). For the data set of Signor
309 et al., we extract *Or67a.P/D/3R* regions from the full VCF file using VCFtools (v0.1.17 [90]), requiring a minimum
310 mean depth of 5 (-min-meanDP 5) and sites that have a proportion of missing data greater than 0.5 (-max-missing 0.5).
311 We converted these gene region VCF files to fasta format using the custom "vcf2fasta_remove_het.py" script, where
312 nucleotides at heterozygous positions were sampled randomly. These fasta sequences were combined with the 15 sanger
313 sequenced samples for the results shown in Fig. 1E,F. For *melOr67a.P*, we extracted the gene region for the prefilter
314 VCF provided in [91]. For calculating silent and replacement diversity estimates, we used a custom script "calc_N_S.py"
315 together with the paralog specific GTF file. Similarly, for silent and replacement divergence, we used a custom script
316 "Div_N_S.py". The custom scripts can be found our [GitLab page](#). The reference genome used to make the alignments
317 in Fig. 1D were: *D. melanogaster* v6.4 from flybase.org, *D. sechellia* and *D. simulans* from [92], *D. mauritiana* and

318 *D. yakuba* from [93], and *D. santomea* from [Prin_Dsan_1.0](#). The alignments of the *Or67a*-containing regions was
319 generated with Clustal Omega (v1.2.3 [85]). Annotations of the transposable element fragments used RepeatMasker
320 (v4.1.2-p1 [94]), with Dfam_3.0 and rmlblastn v(2.9.0+), and existing annotations within flybase's JBrowse.

321 **5.9. Regulatory motif searches**

322 We used the "MEME" programs within the MEME package (v5.4.1) to search for putative regulatory motifs within 5'
323 promoter regions of the *D. simulans* and *D. melanogaster* *Or67a* copies [95, 96]. We inputted 2kb for each gene, except
324 for *simOr67a.P*, where only ~1.5 kb exists between it and the upstream *simOr67a.D* copy. We limited the total number
325 of significant motifs to 12 for the comparative analysis.

326 **References**

- 327 1. H. M. Robertson and K. W. Wanner, “The chemoreceptor superfamily in the honey bee, *apis mellifera*: expansion of the odorant, but not gustatory, receptor family,” *Genome Res* **16**, 1395–403 (2006).
- 328 2. C. S. McBride and J. R. Arguello, “Five *drosophila* genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily,” *Genetics* **177**, 1395–416 (2007).
- 329 3. H. M. Robertson, “Molecular evolution of the major arthropod chemoreceptor gene families,” *Annu. Rev Entomol* **64**, 227–242 (2019).
- 330 4. Y. Gilad, V. Wiebe, M. Przeworski, D. Lancet, and S. Pääbo, “Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates,” *PLoS Biol* **2**, E5 (2004).
- 331 5. G. M. Hughes, E. S. M. Boston, J. A. Finarelli, W. J. Murphy, D. G. Higgins, and E. C. Teeling, “The birth and death of olfactory receptor gene families in mammalian niche adaptation,” *Mol Biol Evol* **35**, 1390–1406 (2018).
- 332 6. Y. Niimura, A. Matsui, and K. Touhara, “Extreme expansion of the olfactory receptor gene repertoire in african elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals,” *Genome Res* **24**, 1485–96 (2014).
- 333 7. H. Robertson and K. Wanner, “The chemoreceptor superfamily in the honey bee, *apis mellifera*: Expansion of the odorant, but not gustatory, receptor family,” *Genome Res* **16**, 1395 (2006).
- 334 8. S. K. McKenzie, M. E. Winston, F. Grewe, G. Vargas Asensio, N. Rodríguez-Hernández, B. E. R. Rubin, C. Murillo-Cruz, C. von Beeren, C. S. Moreau, G. Suen, A. A. Pinto-Tomás, and D. J. C. Kronauer, “The genomic basis of army ant chemosensory adaptations,” *Mol Ecol* (2021).
- 335 9. H. Zhao, J. Li, and J. Zhang, “Molecular evidence for the loss of three basic tastes in penguins,” *Curr Biol* **25**, R141–2 (2015).
- 336 10. H. Zhao, J.-R. Yang, H. Xu, and J. Zhang, “Pseudogenization of the umami taste receptor gene *tas1r1* in the giant panda coincided with its dietary switch to bamboo,” *Mol Biol Evol* **27**, 2669–73 (2010).
- 337 11. M. Nei and A. P. Rooney, “Concerted and birth-and-death evolution of multigene families,” *Annu. Rev Genet.* **39**, 121–52 (2005).
- 338 12. S. Guo and J. Kim, “Molecular evolution of *drosophila* odorant receptor genes,” *Mol Biol Evol* **24**, 1198–207 (2007).
- 339 13. Z. Zheng, J. S. Lauritzen, E. Perlman, C. G. Robinson, M. Nichols, D. Milkie, O. Torrens, J. Price, C. B. Fisher, N. Sharifi, S. A. Calle-Schuler, L. Kmecova, I. J. Ali, B. Karsh, E. T. Trautman, J. A. Bogovic, P. Hanslovsky, G. S. X. E. Jefferis, M. Kazhdan, K. Khairy, S. Saalfeld, R. D. Fetter, and D. D. Bock, “A complete electron microscopy volume of the brain of adult *drosophila melanogaster*,” *Cell* **174**, 730–743.e22 (2018).
- 340 14. C. Eschbach, A. Fushiki, M. Winding, B. Afonso, I. V. Andrade, B. T. Cocanougher, K. Eichler, R. Gepner, G. Si, J. Valdes-Aleman, M. Gershon, G. S. Jefferis, J. W. Truman, R. D. Fetter, A. Samuel, A. Cardona, and M. Zlatic, “Circuits for integrating learnt and innate valences in the fly brain,” *bioRxiv* (2020).
- 341 15. A. M. Allen, M. C. Neville, S. Birtles, V. Croset, C. D. Treiber, S. Waddell, and S. F. Goodwin, “A single-cell transcriptomic atlas of the adult *drosophila* ventral nerve cord,” *Elife* **9** (2020).
- 342 16. H. Li, J. Janssens, M. De Waegeneer, S. S. Kolluru, K. Davie, V. Gardeux, W. Saelens, F. David, M. Brbić, J. Leskovec, C. N. McLaughlin, Q. Xie, R. C. Jones, K. Brueckner, J. Shim, S. G. Tattikota, F. Schnorrer, K. Rust, T. G. Nystul, Z. Carvalho-Santos, C. Ribeiro, S. Pal, T. M. Przytycka, A. M. Allen, S. F. Goodwin, C. W. Berry, M. T. Fuller, H. White-Cooper, E. L. Matunis, S. DiNardo, A. Galenza, L. E. O'Brien, J. A. T. Dow, F. Consortium, H. Jasper, B. Oliver, N. Perrimon, B. Deplancke, S. R. Quake, L. Luo, and S. Aerts, “Fly cell atlas: a single-cell transcriptomic atlas of the adult fruit fly,” *bioRxiv* (2021).
- 343 17. T. O. Auer, M. P. Shahandeh, and R. Benton, “*Drosophila sechellia*: A genetic model for behavioral evolution and neuroecology,” *Annu. Rev Genet.* (2021).
- 344 18. T. O. Auer, M. A. Khallaf, A. F. Silbering, G. Zappia, K. Ellis, R. Álvarez-Ocaña, J. R. Arguello, B. S. Hansson, G. S. X. E. Jefferis, S. J. C. Caron, M. Knaden, and R. Benton, “Olfactory receptor and circuit evolution promote host specialization,” *Nature* **579**, 402–408 (2020).
- 345 19. L. L. Prieto-Godino, R. Rytz, S. Cruchet, B. Bargeton, L. Abuin, A. F. Silbering, V. Ruta, M. Dal Peraro, and R. Benton, “Evolution of acid-sensing olfactory circuits in drosophilids,” *Neuron* **93**, 661–676.e6 (2017).
- 346 20. Y. Ding, J. L. Lillvis, J. Cande, G. J. Berman, B. J. Arthur, X. Long, M. Xu, B. J. Dickson, and D. L. Stern, “Neural evolution of context-dependent fly song,” *Curr. Biol.* **29**, 1089–1099.e7 (2019).
- 347 21. L. F. Seeholzer, M. Seppo, D. L. Stern, and V. Ruta, “Evolution of a central neural circuit underlies *drosophila* mate preferences,” *Nature* **559**, 564–569 (2018).

370 22. M. C. Larsson, A. I. Domingos, W. D. Jones, M. E. Chiappe, H. Amrein, and L. B. Vosshall, “Or83b encodes a broadly expressed odorant receptor
371 essential for drosophila olfaction,” *Neuron* **43**, 703–14 (2004).

372 23. S. Serizawa, K. Miyamichi, H. Nakatani, M. Suzuki, M. Saito, Y. Yoshihara, and H. Sakano, “Negative feedback regulation ensures the one
373 receptor-one olfactory neuron rule in mouse,” *Science* **302**, 2088–94 (2003).

374 24. J. W. Lewcock and R. R. Reed, “A feedback mechanism regulates monoallelic odorant receptor expression,” *Proc Natl Acad Sci U S A* **101**,
375 1069–74 (2004).

376 25. A. Gardiner, D. Barker, R. K. Butlin, W. C. Jordan, and M. G. Ritchie, “Drosophila chemoreceptor gene evolution: selection, specialization and
377 genome size,” *Mol Ecol* **17**, 1648–57 (2008).

378 26. S. Ramasamy, L. Ometto, C. M. Crava, S. Revadi, R. Kaur, D. S. Horner, D. Pisani, T. Dekker, G. Anfora, and O. Rota-Stabelli, “The evolution
379 of olfactory gene families in drosophila and the genomic basis of chemical-ecological adaptation in *drosophila suzukii*,” *Genome Biol Evol* **8**,
380 2297–311 (2016).

381 27. D. J. Obbard, J. Maclennan, K.-W. Kim, A. Rambaut, P. M. O’Grady, and F. M. Jiggins, “Estimating divergence dates and substitution rates in the
382 drosophila phylogeny,” *Mol. Biol. Evol.* **29**, 3459–3473 (2012).

383 28. L. Ometto, A. Cestaro, S. Ramasamy, A. Grassi, S. Revadi, S. Siozios, M. Moretto, P. Fontana, C. Varotto, D. Pisani, T. Dekker, N. Wrobel,
384 R. Viola, I. Pertot, D. Cavalieri, M. Blaxter, G. Anfora, and O. Rota-Stabelli, “Linking genomics and ecology to investigate the complex evolution
385 of an invasive drosophila pest,” *Genome Biol Evol* **5**, 745–57 (2013).

386 29. H. K. M. Dweck, S. A. M. Ebrahim, T. Retzke, V. Grabe, J. Weißflog, A. Svatoš, B. S. Hansson, and M. Knaden, “The olfactory logic behind fruit
387 odor preferences in larval and adult drosophila,” *Cell Reports* **23**, 2524–2531 (2018).

388 30. D. Garrigan, S. B. Kingan, A. J. Geneva, P. Andolfatto, A. G. Clark, K. R. Thornton, and D. C. Presgraves, “Genome sequencing reveals complex
389 speciation in the *drosophila simulans* clade,” *Genome Res* **22**, 1499–511 (2012).

390 31. D. R. Schrider, J. Ayroles, D. R. Matute, and A. D. Kern, “Supervised machine learning reveals introgressed loci in the genomes of *drosophila*
391 *simulans* and *d. sechellia*,” *PLOS Genet.* **14**, 1–29 (2018).

392 32. J. A. Butterwick, J. Del Mármlol, K. H. Kim, M. A. Kahlson, J. A. Rogow, T. Walz, and V. Ruta, “Cryo-em structure of the insect olfactory
393 receptor orco,” *Nature* **560**, 447–452 (2018).

394 33. J. Del Mármlol, M. A. Yedlin, and V. Ruta, “The structural basis of odorant recognition in insect olfactory receptors,” *Nature* (2021).

395 34. J. H. McDonald and M. Kreitman, “Adaptive protein evolution at the adh locus in drosophila,” *Nature* **351**, 652–654 (1991).

396 35. N. G. C. Smith and A. Eyre-Walker, “Adaptive protein evolution in drosophila,” *Nature* **415**, 1022–1024 (2002).

397 36. J. R. Arguello, M. Cardoso-Moreira, J. K. Grenier, S. Gottipati, A. G. Clark, and R. Benton, “Extensive local adaptation within the chemosensory
398 system following *drosophila melanogaster*’s global expansion,” *Nat Commun* **7**, ncomms11855 (2016).

399 37. S. Mansourian, A. Enjin, E. V. Jirle, V. Ramesh, G. Rehermann, P. G. Becher, J. E. Pool, and M. C. Stensmyr, “Wild african *drosophila*
400 *melanogaster* are seasonal specialists on marula fruit,” *Curr Biol* **28**, 3960–3968.e3 (2018).

401 38. R. Albalat and C. Cañestro, “Evolution by gene loss,” *Nat Rev Genet.* **17**, 379–91 (2016).

402 39. F. Tajima, “Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism,” *Genetics* **123**, 585–595 (1989).

403 40. P. A. Hohenlohe, P. C. Phillips, and W. A. Cresko, “Using population genomics to detect selection in natural populations: Key concepts and
404 methodological considerations,” *Int J Plant Sci* **171**, 1059–1071 (2010).

405 41. A. A. Dobritsa, W. van der Goes van Naters, C. G. Warr, R. A. Steinbrecht, and J. R. Carlson, “Integrating the molecular and cellular basis of odor
406 coding in the *drosophila* antenna,” *Neuron* **37**, 827–41 (2003).

407 42. E. Hallem and J. Carlson, “Coding of odors by a receptor repertoire,” *Cell* **125**, 143–160 (2006).

408 43. E. Hallem, M. Ho, and J. Carlson, “The molecular basis of odor coding in the *drosophila* antenna,” *Cell* **117**, 965–979 (2004).

409 44. C. G. Galizia, D. Münch, M. Strauch, A. Nissler, and S. Ma, “Integrating heterogeneous odor response data into a common response model: A
410 door to the complete olfactome,” *Chem Senses* **35**, 551–63 (2010).

411 45. W. W. Burchett, A. R. Ellis, S. W. Harrar, and A. C. Bathke, “Nonparametric inference for multivariate data: The r package npmv,” *J. Stat. Softw.*
412 **76** (2017).

413 46. T. Dekker, I. Ibba, K. P. Siju, M. C. Stensmyr, and B. S. Hansson, “Olfactory shifts parallel superspecialism for toxic fruit in *drosophila*

414 melanogaster sibling, *d. sechellia*,” *Curr Biol* **16**, 101–9 (2006).

415 47. M. C. Stensmyr, T. Dekker, and B. S. Hansson, “Evolution of the olfactory code in the *drosophila melanogaster* subgroup,” *Proc Biol Sci* **270**,
416 2333–40 (2003).

417 48. M. A. Khallaf, R. Cui, J. Weißflog, M. Erdogmus, A. Svatoš, H. K. M. Dweck, D. R. Valenzano, B. S. Hansson, and M. Knaden, “Large-scale
418 characterization of sex pheromone communication systems in *drosophila*,” *Nat Commun* **12**, 4165 (2021).

419 49. M. A. Khallaf, T. O. Auer, V. Grabe, A. Depetris-Chauvin, B. Ammagarahalli, D.-D. Zhang, S. Lavista-Llanos, F. Kaftan, J. Weißflog, L. M.
420 Matzkin, S. M. Rollmann, C. Löfstedt, A. Svatoš, H. K. M. Dweck, S. Sachse, R. Benton, B. S. Hansson, and M. Knaden, “Mate discrimination
421 among subspecies through a conserved olfactory pathway,” *Sci Adv* **6**, eaba5279 (2020).

422 50. M. C. Stensmyr, H. K. M. Dweck, A. Farhan, I. Ibba, A. Strutz, L. Mukunda, J. Linz, V. Grabe, K. Steck, S. Lavista-Llanos, D. Wicher, S. Sachse,
423 M. Knaden, P. Becher, Y. Seki, and B. S. Hansson, “A conserved dedicated olfactory circuit for detecting harmful microbes in *drosophila*,” *Cell*
424 **151**, 1345–1357 (2012).

425 51. L. B. Vosshall and R. F. Stocker, “Molecular architecture of smell and taste in *drosophila*,” *Annu. Rev. Neurosci.* **30**, 505–533 (2007).

426 52. A. Ray, W. v. d. G. van Naters, and J. R. Carlson, “A regulatory code for neuron-specific odor receptor expression,” *PLoS Biol* **6**, e125 (2008).

427 53. A. Ray, W. v. d. G. van Naters, T. Shiraiwa, and J. R. Carlson, “Mechanisms of odor receptor gene choice in *drosophila*,” *Neuron* **53**, 353–69
428 (2007).

429 54. A. L. Goldman, W. Van der Goes van Naters, D. Lessing, C. G. Warr, and J. R. Carlson, “Coexpression of two functional odor receptors in one
430 neuron,” *Neuron* **45**, 661–6 (2005).

431 55. M. Aguadé, “Nucleotide and copy-number polymorphism at the odorant receptor genes *or22a* and *or22b* in *drosophila melanogaster*,” *Mol Biol
432 Evol* **26**, 61–70 (2009).

433 56. S. Lebreton, F. Borrero-Echeverry, F. Gonzalez, M. Solum, E. A. Wallin, E. Hedenström, B. S. Hansson, A.-L. Gustavsson, M. Bengtsson,
434 G. Birgersson, W. B. Walker, 3rd, H. K. M. Dweck, P. G. Becher, and P. Witzgall, “A *drosophila* female pheromone elicits species-specific
435 long-range attraction via an olfactory channel with dual specificity for sex and food,” *BMC Biol* **15**, 88 (2017).

436 57. M. de Bruyne, R. Smart, E. Zammit, and C. G. Warr, “Functional and molecular evolution of olfactory neurons and receptors for aliphatic esters
437 across the *drosophila* genus,” *J Comp Physiol A Neuroethol Sens Neural Behav Physiol* **196**, 97–109 (2010).

438 58. K. Scott, “Gustatory processing in *drosophila melanogaster*,” *Annu. Rev. Entomol.* **63**, 15–30 (2018).

439 59. A. Dahanukar, Y.-T. Lei, J. Y. Kwon, and J. R. Carlson, “Two gr genes underlie sugar reception in *drosophila*,” *Neuron* **56**, 503–16 (2007).

440 60. S. Fujii, A. Yavuz, J. Slone, C. Jagge, X. Song, and H. Amrein, “*Drosophila* sugar receptors in sweet taste perception, olfaction, and internal
441 nutrient sensing,” *Curr. Biol.* **25**, 621–627 (2015).

442 61. Y. Jiao, S. J. Moon, X. Wang, Q. Ren, and C. Montell, “*Gr64f* is required in combination with other gustatory receptors for sugar detection in
443 *drosophila*,” *Curr Biol* **18**, 1797–801 (2008).

444 62. J. Y. Kwon, A. Dahanukar, L. A. Weiss, and J. R. Carlson, “Molecular and cellular organization of the taste system in the *drosophila* larva,” *J
445 Neurosci* **31**, 15300–9 (2011).

446 63. J. Slone, J. Daniels, and H. Amrein, “Sugar receptors in *drosophila*,” *Curr Biol* **17**, 1809–16 (2007).

447 64. H. K. M. Dweck and J. R. Carlson, “Molecular logic and evolution of bitter taste in *drosophila*,” *Curr Biol* **30**, 17–30.e3 (2020).

448 65. A. Ganguly, L. Pang, V.-K. Duong, A. Lee, H. Schoniger, E. Varady, and A. Dahanukar, “A molecular and cellular context-dependent role for
449 *ir76b* in detection of amino acid taste,” *Cell Rep* **18**, 737–750 (2017).

450 66. J. M. Tauber, E. B. Brown, Y. Li, M. E. Yurgel, P. Masek, and A. C. Keene, “A subset of sweet-sensing neurons identified by *ir56d* are necessary
451 and sufficient for fatty acid taste,” *PLoS Genet.* **13**, e1007059 (2017).

452 67. F. Port and S. L. Bullock, “Augmenting crispr applications in *drosophila* with tRNA-flanked sgRNAs,” *Nat Methods* **13**, 852–4 (2016).

453 68. F. Port, H.-M. Chen, T. Lee, and S. L. Bullock, “Optimized crispr/cas tools for efficient germline and somatic genome engineering in *drosophila*,”
454 *Proc Natl Acad Sci U S A* **111**, E2967–76 (2014).

455 69. S. J. Gratz, F. P. Ukkenn, C. D. Rubinstein, G. Thiede, L. K. Donohue, A. M. Cummings, and K. M. O’Connor-Giles, “Highly specific and efficient
456 crispr/cas9-catalyzed homology-directed repair in *drosophila*,” *Genetics* **196**, 961–71 (2014).

457 70. S. Kondo, T. Takahashi, N. Yamagata, Y. Imanishi, H. Katow, S. Hiramatsu, K. Lynn, A. Abe, A. Kumaraswamy, and H. Tanimoto, “Neurochemical

458 organization of the drosophila brain visualized by endogenously tagged neurotransmitter receptors," *Cell Rep* **30**, 284–297.e5 (2020).

459 71. J. Bischof, R. K. Maeda, M. Hediger, F. Karch, and K. Basler, "An optimized transgenesis system for drosophila using germ-line-specific phic31

460 integrases," *Proc Natl Acad Sci U S A* **104**, 3312–7 (2007).

461 72. C. Han, L. Y. Jan, and Y.-N. Jan, "Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron-glia interactions

462 in drosophila," *Proc Natl Acad Sci U S A* **108**, 9673–8 (2011).

463 73. D. M. Gohl, M. A. Silies, X. J. Gao, S. Bhalerao, F. J. Luongo, C.-C. Lin, C. J. Potter, and T. R. Clandinin, "A versatile in vivo system for directed

464 dissection of gene expression patterns," *Nat Methods* **8**, 231–7 (2011).

465 74. R. Benton and A. Dahanukar, "Electrophysiological recording from drosophila olfactory sensilla," *Cold Spring Harb Protoc* **2011**, 824–38 (2011).

466 75. S. A. M. Ebrahim, H. K. M. Dweck, J. Stökl, J. E. Hofferberth, F. Trona, K. Weniger, J. Rybak, Y. Seki, M. C. Stensmyr, S. Sachse, B. S. Hansson,

467 and M. Knaden, "Drosophila avoids parasitoids by sensing their semiochemicals via a dedicated olfactory circuit," *PLoS Biol* **13**, e1002318

468 (2015).

469 76. C.-C. Lin and C. J. Potter, "Re-classification of drosophila melanogaster trichoid and intermediate sensilla using fluorescence-guided single

470 sensillum recording," *PLoS One* **10**, e0139675 (2015).

471 77. R. C. Team, "R: A language and environment for statistical computing," (2020).

472 78. H. Wickham, *ggplot2: Elegant Graphics for Data Analysis* (Springer-Verlag New York, 2016).

473 79. U. Ligges and M. Mächler, "Scatterplot3d - an r package for visualizing multivariate data," *J. Stat. Softw.* **8**, 1–20 (2003).

474 80. D. J. Stekhoven and P. Bühlmann, "Missforest–non-parametric missing value imputation for mixed-type data," *Bioinformatics* **28**, 112–8 (2012).

475 81. M. Saina and R. Benton, "Visualizing olfactory receptor expression and localization in drosophila," *Methods Mol Biol* **1003**, 211–28 (2013).

476 82. A. F. Silbering, R. Rytz, Y. Grosjean, L. Abuin, P. Ramdy, G. S. X. E. Jefferis, and R. Benton, "Complementary function and integrated wiring

477 of the evolutionarily distinct drosophila olfactory subsystems," *J Neurosci* **31**, 13357–75 (2011).

478 83. J. A. Sánchez-Alcañiz, G. Zappia, F. Marion-Poll, and R. Benton, "A mechanosensory receptor required for food texture detection in drosophila,"

479 *Nat Commun* **8**, 14192 (2017).

480 84. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez,

481 D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, "Fiji: an open-source platform for biological-image analysis," *Nat Methods*

482 **9**, 676–82 (2012).

483 85. F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Söding, J. D. Thompson, and D. G.

484 Higgins, "Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega," *Mol. Syst. Biol.* **7**, 539 (2011).

485 86. F. Ronquist and J. P. Huelsenbeck, "MrBayes 3: Bayesian phylogenetic inference under mixed models," *Bioinformatics* **19**, 1572–4 (2003).

486 87. Z. Yang, "Paml 4: phylogenetic analysis by maximum likelihood," *Mol Biol Evol* **24**, 1586–91 (2007).

487 88. B. Xu and Z. Yang, "Pamlx: a graphical user interface for paml," *Mol Biol Evol* **30**, 2723–4 (2013).

488 89. S. A. Signor, F. N. New, and S. Nuzhdin, "A large panel of drosophila simulans reveals an abundance of common variants," *Genome Biol Evol* **10**,

489 189–206 (2018).

490 90. P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean,

491 R. Durbin, and . G. P. A. Group, "The variant call format and vcftools," *Bioinformatics* **27**, 2156–2158 (2011).

492 91. J. K. Grenier, J. R. Arguello, M. Cardoso Moreira, S. Gottipati, J. Mohammed, S. R. Hackett, R. Boughton, A. J. Greenberg, and A. G. Clark,

493 "Global diversity lines - a five-continent reference panel of sequenced drosophila melanogaster strains," *G3* pp. 593–603 (2015).

494 92. M. Chakraborty, C.-H. Chang, D. E. Khost, J. Vedanayagam, J. R. Adrion, Y. Liao, K. L. Montooth, C. D. Meiklejohn, A. M. Larracuente, and

495 J. J. Emerson, "Evolution of genome structure in the drosophila simulans species complex," *Genome Res* **31**, 380–396 (2021).

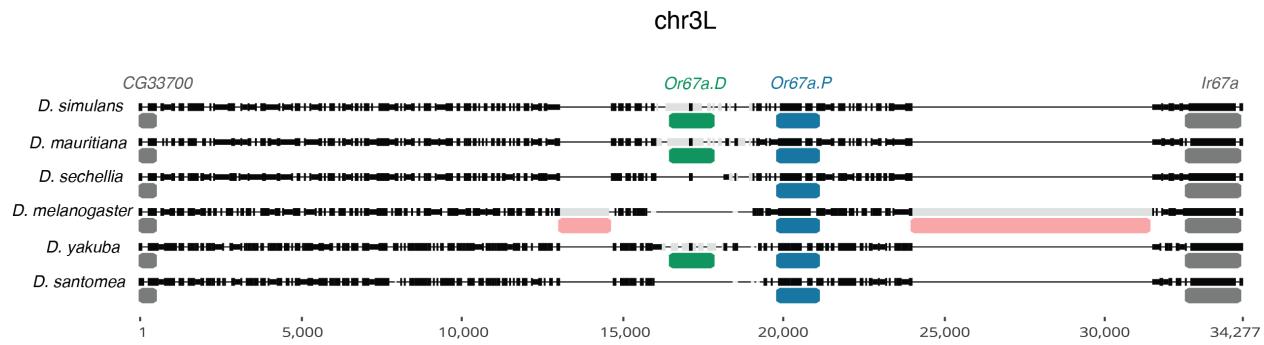
496 93. D. E. Miller, C. Staber, J. Zeitlinger, and R. S. Hawley, "Highly contiguous genome assemblies of 15 drosophila species generated using nanopore

497 sequencing," *G3 (Bethesda)* **8**, 3131–3141 (2018).

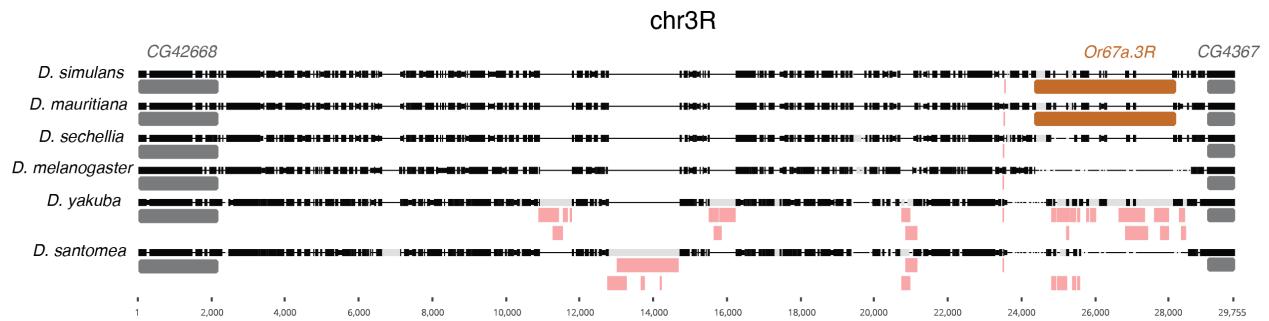
498 94. A. Smit, R. Hubley, and P. Green, "Repeatmasker open-4.0," .

499 95. T. L. Bailey, N. Williams, C. Misleh, and W. W. Li, "Meme: discovering and analyzing dna and protein sequence motifs," *Nucleic Acids Res.* **34**,

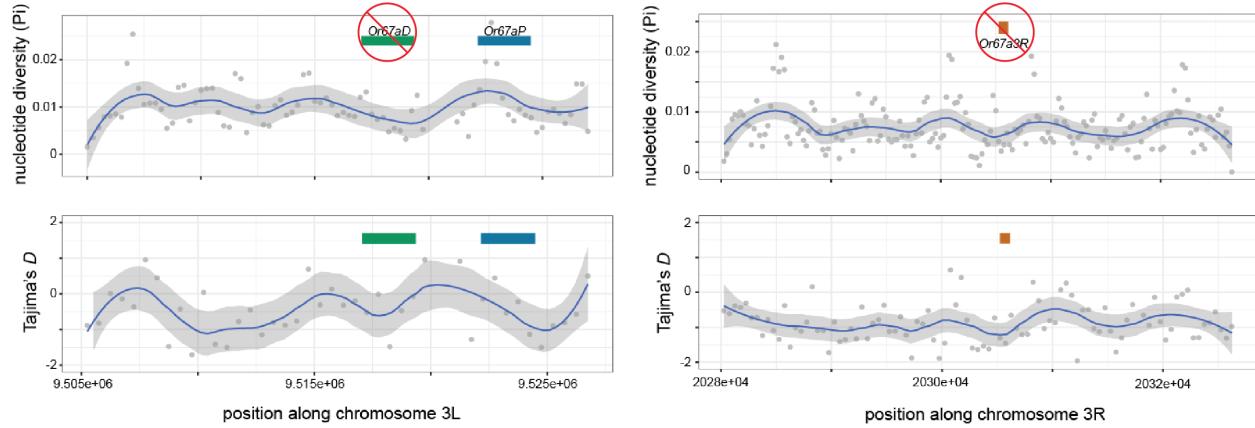
500 W369–W373 (2006).

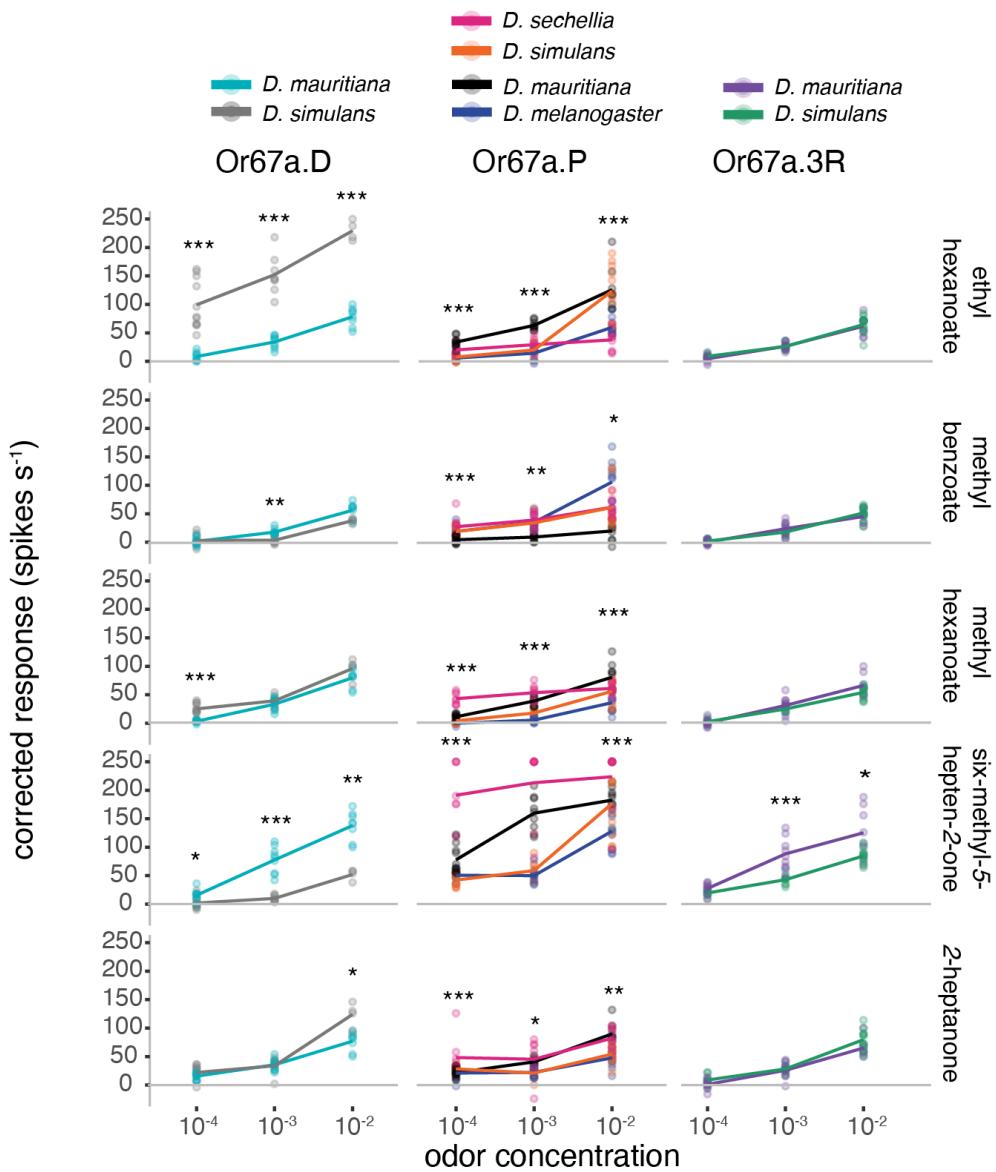

501 96. T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren, W. W. Li, and W. S. Noble, "Meme suite: tools for motif discovery

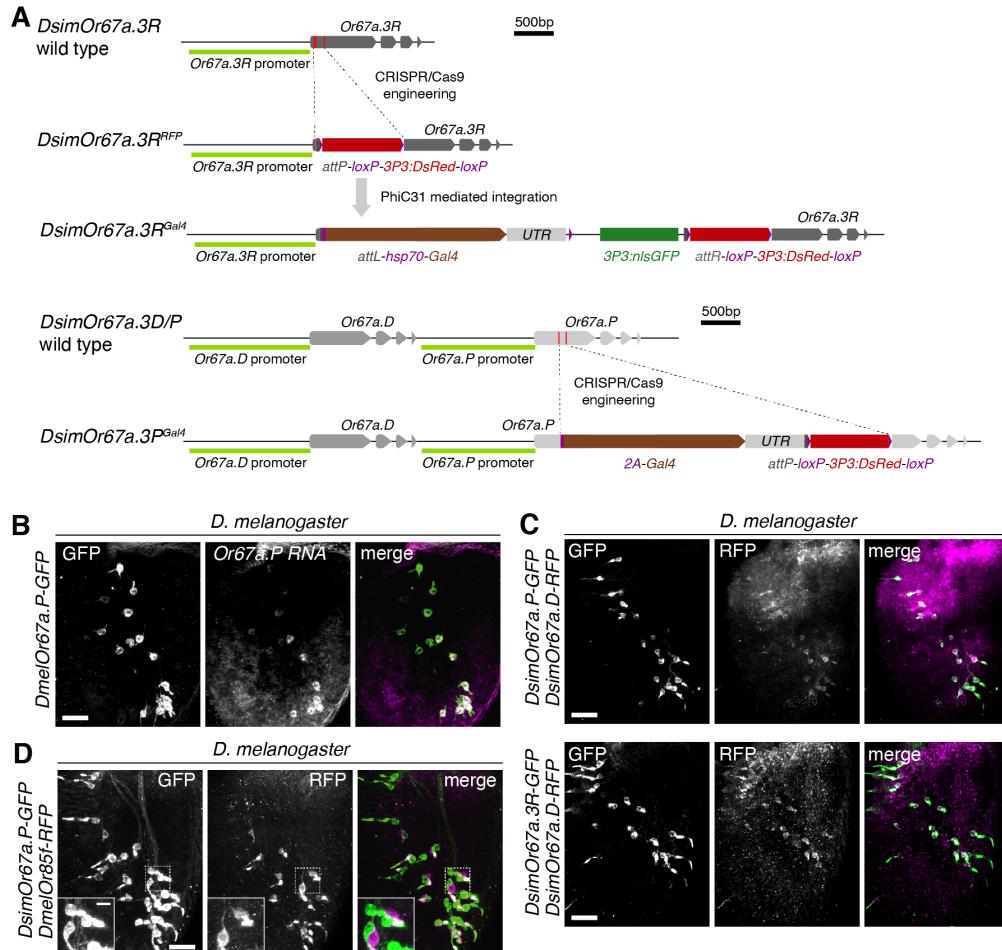
502 and searching," Nucleic Acids Res **37**, W202–8 (2009).


503 **6. Acknowledgements**

504 We thank Margarida Cardoso Moreira, Lucia Prieto-Godino, Juan Antonio Sanchez Alcañiz, Laurent Keller, Manyuan
505 Long, and member of the Arguello lab for comments on earlier versions of the manuscript. Research J.R.A.'s lab is
506 supported by the Swiss National Science Foundation grants PP00P3_176956 and 310030_201188. T.O.A. was supported
507 by a Human Frontier Science Program Long-Term Fellowship (LT000461/2015-L) and a Swiss National Science
508 Foundation Ambizione Grant (PZ00P3 185743). Research in R.B.'s laboratory was supported by ERC Consolidator and
509 Advanced Grants (615094 and 833548, respectively) and the Swiss National Science Foundation. We thank Mohammed
510 Khallaf, Markus Knaden, Ales Svatos and Jerrit Weissflog at the Max Planck Institute for Chemical Ecology for the
511 synthesized (*R*)-actinidine, and John Carlson and David Stern for sharing transgenic fly lines.


512 7. Supplementary Figures


Sup. Fig. 1. Alignment for the chromosome 3L interval containing *Or67a.D* and *Or67a.P* for six species. Higher sequence identity is indicated with black alignment blocks with low sequence identity indicated in grey. Thin horizontal lines are alignment gaps. Red annotations indicate locations of transposable elements. Chromosome position on the horizontal axis are relative to the extracted interval. See File S1 for the alignment in a flat file and File S3 for repeat annotations.


Sup. Fig. 2. Alignment for the chromosome 3R interval containing *Or67a.D* and *Or67a.P* for six species. Higher sequence identity is indicated with black alignment blocks with low sequence identity indicated in grey. Thin horizontal lines are alignment gaps. Red annotations indicate locations of transposable elements. Chromosome position on the horizontal axis are relative to the extracted interval. See File S2 for the alignment in a flat file and File S3 for repeat annotations.

Sup. Fig. 3. Nucleotide diversity and Tajima's D over the over *D. melanogaster*'s chromosome regions containing the intact *Or67a.P* gene and the deleted *Or67a.D* and *Or67a.3R*. The regions containing the deleted *Or67a* paralogs do not show differences genetic diversity in comparison to the surrounding regions, as would be expected if the deletions were adaptive and swept in the population.

Sup. Fig. 4. The full set of dose-response experiments for the subset of odors that evoked high or intermediate responses in our initial screen of nine odors (Fig. 2B). For simplicity, the level of significance indicated above each concentration's comparison is only for the single comparison with the largest difference (see Table S4 for the full set of tests; * $p < .05$, ** $p < .01$, *** $p < .001$). Colors correspond to those in Fig. 2D. p -value correction for multiple comparisons was done using the Holm method. Sample sizes = 4-12).

Sup. Fig. 5. (A) Schematics of the wild-type and knock-in Gal4 transcriptional reporter alleles at the *DsimOr67a.3R* (top) and *DsimOr67a.D/P* (bottom) loci. The first was created via a two-step process (CRISPR/Cas9 engineering + PhiC31 mediated integration) while the latter was resulting from a direct CRISPR/Cas9 mediated insertion. (B) Antennal co-expression of the *DmelOr67a.P-GFP* transcriptional reporter and *Or67a.P* RNA in *D. melanogaster*. Scale bar = 25 μ m. (C) Antennal co-expression of the *simOr67a.P-GFP* and *simOr67a.D-RFP* transcriptional reporters (top) and the *simOr67a.3R-GFP* and *simOr67a.D-RFP* transcriptional reporters (bottom) in *D. melanogaster*. Scale bar = 25 μ m. (D) Pairing of the *simOr67a.P-GFP* and *melOr85f-RFP* transcriptional reporter in neighboring neurons in the antenna of *D. melanogaster*. Scale bar = 25 μ m. Inset scale bar = 5 μ m.

513 **8. Supplemental Tables**

514 • Table S1. Codeml table of models tested and likelihoods

515 • Table S2. Codeml table of likelihood ratio tests

516 • Table S3. Relative effects of odors on receptor responses based on the NPMV analysis

517 • Table S4. Dose-response tests

518 • Table S5. Pairwise identity between *Or67a* gene sequences

519 • Table S6. Pairwise identity between *Or67a* promoter sequences

520 • Table S7. Table with MEME results

521 • Table S8. Oligonucleotides used in this study

522 **9. Supplemental Files**

523 • File S1. Extending alignment for the 3L region containing *Or67a.D* and *Or67a.P*

524 • File S2. Extending alignment for the 3R region containing *Or67a.3R*

525 • File S3. RepeatMasker output used in Fig. S1 and S2.

526 • File S4. Codeml output files form models used in Table S1

527 • File S5. *D. simulans* and *D. melanogaster* polymorphism summaries

528 • File S6. Odor response data from electrophysiology experiments: 10^{-2}

529 • File S7. Odor response data from electrophysiology experiments: dose-responses

530 • File S8. Odor response data from electrophysiology experiments: fluorescent-guided SSR

531 • File S9-11. *D. simulans* Sanger sequences generated in this study