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Abstract:

Precise interpretation of the effects of protein-truncating variants (PTVs) is important for
accurate determination of variant impact. Current methods for assessing the ability of
PTVs to induce nonsense-mediated decay (NMD) focus primarily on the position of the
variant in the transcript. We used RNA-sequencing of the Genotype Tissue Expression
v8 cohort to compute the efficiency of NMD using allelic imbalance for 2,320 rare
(genome aggregation database minor allele frequency <=1%) PTVs across 809
individuals in 49 tissues. We created an interpretable predictive model using penalized
logistic regression in order to evaluate the comprehensive influence of variant
annotation, tissue, and inter-individual variation on NMD. We found that variant position,
allele frequency, including ultra-rare and singleton variants, and conservation were
predictive of allelic imbalance. Furthermore, we found that NMD effects were highly
concordant across tissues and individuals. Due to this high consistency, we
demonstrate in silico that utilizing peripheral tissues or cell lines provides accurate
prediction of NMD for PTVs.
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Introduction

RNA expression is not only regulated by transcription but also by degradation (Pai et al.
2012); RNA transcripts with protein-truncating variants (PTVs) are often targeted for
degradation by the nonsense-mediated decay (NMD) pathway (Kurosaki, Popp, and
Maquat 2019). The accurate identification of PTV-harboring transcripts that are
successfully cleared by NMD can have a large effect on disease outcome. Some
nonsense mutations lead to dominant-negative effects where the truncated allele can
impede the function of the full length allele (Khajavi, Inoue, and Lupski 2006).
Mendelian disease diagnostics can benefit from the identification of the PTVs that
escape NMD and may therefore lead to truncated peptides and corresponding
gain-of-function effects (Coban-Akdemir et al. 2018). To be able to improve
identification of PTVs that undergo or escape NMD, existing tools have integrated
variant-level annotations which provide a prediction of the NMD efficiency, or ability for
a PTV containing transcript to be targeted and degraded by the NMD machinery as
measured by the relative amount of a PTV containing transcript as compared to the
wild-type (Nagy and Maquat 1998; Lindeboom, Supek, and Lehner 2016; Rivas et al.
2015).

Position explains most variation in NMD efficiency, summarized by the 50 nucleotide
(50nt) rule: if the variant occurs farther upstream than 55 to 50 nucleotides before the
last exon junction, it will be targeted for degradation. Additional analysis in cancer has
indicated that falling near the start of a gene or in a long exon (>407 base pairs)
impedes degradation and a simple decision tree, called NMDetective-B, which utilizes
these rules can explain 68% of the variation in NMD efficiency (Lindeboom et al. 2019).
These existing approaches have benefited from measuring NMD effects through
allele-specific measurement of RNA-sequencing (RNA-seq) read counts overlying PTV
variants. However, there is evidence that the ratio of the RNA read counts from the
aberrant allele to that of the wild type allele can vary between tissues, which would not
be expected if variant position was the only determining factor (Rivas et al. 2015),
(Zetoune et al. 2008).

We utilized the Genotype Tissue Expression (GTEXx) dataset to assess the impact of
tissue type on NMD efficiency (GTEx Consortium 2020). We measured the functional
impact of 2,320 rare (genome aggregation database [gnomAD] minor allele frequency
[MAF] <=1%) PTVs from 809 individuals across 49 different tissues. We observed that,
in addition to position, allele frequency, including rare, ultra-rare (MAF < 0.001%) and
singleton alleles predict NMD efficiency. However, tissue is not predictive of NMD
efficiency and PTVs showed more consistent allelic imbalance across tissues than any
other type of coding transcript variant. Using this information, we demonstrate that
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accurate identification of PTVs that either undergo or escape NMD can be further
achieved in peripheral tissues or cell lines.

Results
Identifying NMD-targeted variants in GTEx
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Figure 1. Centrally located and rare truncating variants show stronger allelic imbalance.
A. Distribution of the proportion of reference reads for rare (genome aggregation database
[gnomAD] minor allele frequency [MAF] < 1%) protein truncating variants for those predicted by
the positional rules defined in Lindeboom et al. to escape NMD (light blue) or trigger NMD (light
purple). B. Distribution of rare stop variants for variants predicted to escape NMD (light blue) or
trigger NMD (light purple) by gnomAD allele frequency. Boxplots show mean and interquartile
range. Brackets show the significance of the difference in differences test between each
prediction type across decreasing allele frequencies P < 0.00001: **** ; P < 0.001: ***; not

significant: ns.


https://doi.org/10.1101/2021.02.03.429654
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429654; this version posted February 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

In order to evaluate NMD rules in and between normal human tissues, we annotated the
proportion of expressed reference reads for rare PTV sites across the GTEx dataset.
We used the genomes of 809 individuals of European descent to identify 2,320 different
PTVs with an allele frequency from the gnomAD database less than or equal to one
percent. Rare variants were selected in order to prevent inclusion of common variants
that appear as false positive PTVs due to selection and adaptation favoring the
truncated transcript. The proportion of expressed reference reads was calculated by
dividing the number of RNA-seq reads that map to a variant site containing the
reference allele by the total number of RNA-seq reads overlapping the variant site in a
single sample (i.e. one tissue in one person).

We analyzed RNA sequencing data from 49 distinct tissues where each individual had a
median number of 17 tissues and a median of five expressed PTVs that were testable in
at least one GTEXx tissue. We calculated the proportion of reference reads for each
variant in each tissue for a total of 40,402 variant-tissue-subject observations from the
13,849 tissue-subject samples. From these 40,402 observations, 55% (22,301) were
predicted to be targeted by the NMD machinery according to rules in Lindeboom et al.
of not being near the start of a gene, in a long exon, or after 55-50 nucleotides before
the last exon junction. The remaining 45% (18,629) of PTVs were predicted to escape
NMD. These rules, on a whole, provided good separation of variants that showed allelic
imbalance: 52% of observations of variants that were predicted to be targeted by NMD
showed allelic imbalance (reference read proportion > 65%) compared to only 20% of
those predicted to escape (Figure 1A).

Ultra-rare protein truncating variants have increased allelic imbalance

Previous studies have reported that rarer PTVs are more likely to trigger NMD
(Lindeboom et al. 2019; Kukurba et al. 2014; Rivas et al. 2015), including in an earlier
version of GTEx (Rivas et al. 2015). This initial exploration of NMD in GTEx analyzed
4,584 PTVs across the allele frequency spectrum acquired from 173 individuals. Given
our increased sample size, more extensive whole genome data in GTEx, and the
availability of precise allele frequency information from gnomAD (Karczewski et al.
2020), we set out to evaluate this effect with more granularity in the rare allele
frequency spectrum. Here, we evaluated the allelic imbalance for PTVs predicted to be
NMD targets versus those predicted to be NMD escapees stratified by allele frequency.
For rare variants, we saw significant separation between the predicted NMD escapees
and the predicted NMD targets; strikingly, this separation was significantly more
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pronounced (by a difference in differences test) at ultra-rare (MAF < 0.001%) allele
frequencies (Figure 1B).

By combining gnomAD allele frequency information with the whole genome sequencing
samples from GTEXx, we were able to further investigate the allelic imbalance of
ultra-rare variants seen in gnomAD against the 504 novel PTVs that were unobserved in
gnomAD but present in GTEx (Figure 1B). These novel PTVs showed increased allelic
imbalance, indicating that there is not a plateauing of the NMD effect for ultra-rare
PTVs.

NMD efficiency is primarily determined by mutation location, allele frequency, and
conservation
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Figure 2. Predictive ability is improved by using variant allele frequency and
conservation, but not tissue or subject information. A. Plot of model performance over
LASSO regularization paths with different feature sets predicting the binary classification of
proportion of reference reads 2 0.65 or < 0.65. The x-axis shows the log,, value of the
regularization parameter lambda, with smaller values corresponding to less penalization. The
y-axis shows the area under the curve (AUC) metric of classification performance for each value
of lambda. Error bars are obtained from leave-group-out cross validation where the model was
trained on all but one chromosome and tested on the left out chromosome. “Lindeboom” model
includes 50nt rule, long exon and near start (yellow). “Cons(ervation) Incl(uded)” model also
includes the distance to the end (canonical stop), GC content, position in the coding sequence
(from start), gnomAD allele frequency, vertebrate phyloP score, RNA integrity number, and total
read depth at the site of interest (pink), “Tissue Incl(uded)” adds tissue to the conservation
included model (green). B. Forest plot of effect sizes and p-values for features that were chosen
by the model with the optimal lambda penalty value as measured by AUC using the multi-tissue
moderate ASE outcome.
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The primary means of detecting NMD has been the 50nt rule in which a transcript will
be degraded if the PTV occurs upstream of the point 55 to 50 nucleotides prior to the
last exon-exon junction (Popp and Maquat 2016; Nagy and Maquat 1998). However, as
the 50nt rule alone is not a perfect predictor of NMD efficiency (Supplementary Figure
1), we wanted to investigate if there were more subtle regulatory, tissue-specific, or
inter-individual effects that could be detected using the multi-tissue, population design of
GTEx. We chose to use the set of predictors previously described in Rivas et. al. 2015
as they had been shown to have predictive power for NMD. Motivated by our previous
findings (Figure 1B) and further leveraging the unique capabilities of GTEXx, we added
gnomAD MAF, tissue, and subject as predictors in the models to test their effects on
NMD efficiency.

Initially, we constructed our model to predict allelic imbalance as defined by the binary
classification of proportion of reference reads greater than or equal to 0.65 or less than
0.65. Notably, we found that including tissue as a predictive variable did not significantly
improve the model (Figure 2A), and including individuals as a predictive variable
actually decreased performance (Supplementary Figure 2). Although we did see
suggestive evidence for differences in median NMD efficiency between tissues
(Supplementary Figure 3), modeling tissue did not increase predictive performance
when combined with other information about the PTV. This is similar to what was
observed in Rivas et. al., where some samples showed differences in NMD efficiency.
Despite our increase in sample size, we were not able to identify a systematic pattern.

We were further able to leverage the multi-tissue design of the GTEx project to improve
performance by predicting the incidence of allelic specific expression (MODASE, equal
to 1 - [probability of no ASE]) using a Bayesian stratification approach that reduces
noise by including information from multiple observations of a PTV in one individual
across tissues (Rivas et al. 2015). Given the integration of multiple tissue information,
this approach may reduce our ability to detect tissue specific differences. We proceeded
to use MODASE because tissue was not a predictive variable of the proportion of
reference reads and the noise reduction led to an improvement in our predictive power
(Supplementary Figure 2).

In order to disentangle the often correlated biological predictors, we chose to use the
LASSO penalized logistic regression model implemented by the R package gimnet to
produce a sparse and interpretable model (Friedman, Hastie, and Tibshirani 2010). In
addition to the canonical 50nt rule, long exon, and start proximal predictors identified by
Lindeboom et. al., we found that the distance to the canonical stop, GC content, position
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in the coding sequence (the distance from the start), gnomAD allele frequency,
vertebrate phyloP score, RNA integrity number, and total read depth at the site of
interest were significant predictors of MODASE status (Figure 2B). Unsurprisingly, NMD
was easier to detect in samples with higher RNA quality, as denoted by RNA integrity
number, and for variants with higher read count.

In order to test the impact of additional factors, we included additional variant and
subject level information in our model. Sample level variables that were dropped from
the model include: age, sex, cause of death (Hardy scale), and post mortem interval.

Allelic imbalance of PTVs is consistent across tissues
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Figure 3. Nonsense variants show more consistent allelic imbalance between pairs of
tissues than variants in other coding transcripts. Densities of Pearson correlations of
proportion of reference reads for a variant in the same individual in different pairs of tissues.
Vertical lines denote median correlation. PTVs are highlighted in pink.

Based on our observations that tissue was not predictive of allelic imbalance for PTVs,
we wanted to evaluate the consistency of allelic imbalance for PTVs across tissues and
within an individual. For each individual subject that had the same variant expressed in
multiple tissues, we performed a pairwise correlation of the allelic ratio of that variant in
those tissues. We were able to investigate most tissue combinations, but we did not
have individuals that were sampled for both male-specific tissues (prostate and testis)
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and female-specific tissues (ovary and vagina) or in two of the lower sampled tissues
analyzed (Small Intestine - Terminal lleum and Brain - Amygdala). We also computed
intra-individual, cross-tissue pairwise correlations of a variant’s allelic ratios for
missense and synonymous coding variants and non-coding variants in introns,
untranslated regions (UTRs) and non-coding exons (Supplementary Figure 4,
summarized in Figure 3).

We found a significantly stronger correlation between the proportion of reference reads
for all PTVs, with a median Pearson correlation of 0.508, than for any other coding
transcript variant, with a median Pearson correlation of 0.131 for synonymous variants
and 0.204 for missense variants, or non-coding variants in introns or UTRs (median
correlation of 0.176 for 3’ UTRs, 0.243 for 5 UTRs, and 0.257 for intronic variants).
Additionally, PTVs that were predicted to escape NMD showed lower correlation
(median 0.449) than those that were predicted to undergo NMD (median 0.552),
suggesting the consistency of NMD across tissues.

Intriguingly, noncoding transcripts were the only transcripts that showed higher
between-tissue allelic correlations. This higher correlation was not attributable to a
systematic difference in read depth (Supplementary Figure 5) or the distribution of the
proportion of reference reads between noncoding transcripts and other gene biotypes
(Supplementary Figure 6).

Unpredicted allelic balance is consistent across tissues.
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Figure 4. Additional disease relevant information may be gathered by analyzing readily
available tissues. A. Proportion of reference reads against the total number of reads covering
the variant for predicted NMD targets (light purple fill) and variants predicted to escape NMD
(light blue fill). The variant rs141826798 in Epidermal Growth Factor Like Domain Multiple 8
(EGFLS8), which has been implicated in psoriasis, is highlighted with a navy outline. B. The
premature termination variant rs141826798 in EGFL8 occurs 3bp from the end of exon 4. It is
not in a long (>407bp) exon, proximal to the start of the gene, in the last exon or 50nt before the
last exon junction. C. Balanced accuracy of the predictive ability in all other tissues of variants
observed in whole blood or fibroblasts using our best predictive model utilizing genomic
annotations (pink) or the classification called by the majority of observations across individuals
in the indicated tissue (green). D. Mosaic plot of the counts of pathogenic (dark colors: dark
purple, dark blue, dark green) and benign (light colors: light purple, light blue, light green)
variants as determined by ClinVar for variants observed to be all balanced (blues), all
imbalanced (purples), or a mixture of both (greens) in each of the indicated tissues. Hashed fills
indicate variants for which our predicted model and observed ASE classification differed
(incongruous).

Using these models to predict the efficiency of NMD and the RNA sequencing data to
verify the effects, we were able to discern which PTVs showed unpredicted allelic
balance -- that is, PTVs which are predicted to undergo NMD and are therefore
expected to show allelic imbalance but instead show allelic balance. Of the 2,320 rare
variants, we found 23.4% (543) variants that showed unpredicted allelic balance at least
once, with 7.5% (173) variants showing unpredicted allelic balance in over 90% of
observations.

One of the most consistent unpredicted allelic balance variants is rs141826798 in
EGFLS8 for which we observe the variant in 7 individuals and 44 different tissues for 131
total observations and 98% (128 of the 131) of the observations have a proportion of
reference reads below 0.65 (Figure 4A). Inspection of the PTV location shows that it is
not near the start, in a long exon, or after 50nt before the last exon junction (Figure 4B)
and is not associated with any aberrant splicing events. The variant, rs141826798, was
further previously identified as a risk variant for psoriasis in a UK BioBank genome wide
association study (Emdin et al. 2018). This further suggests that identification of
unpredicted allelic balance can be identified empirically by performing RNA sequencing
from a patient of a readily accessible tissue or cell line.

In order to determine if utilizing cell lines or readily accessible tissues could provide
improved accuracy for determining NMD in all tissues, we looked at the similarity
between the allelic imbalance of variants expressed in an easily accessible tissue and
cell line (whole blood and fibroblasts) and all other tissues. The category determined by
the maijority of observations of a variant in fibroblasts and whole blood was a marginally
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better predictor than our best predictive model using only genomic data. Using the
variants observed in fibroblasts to predict the categorical outcome of the variants in
other tissues, we found a balanced accuracy of 0.767 as compared to 0.728 for the
prediction for the same variants from our genomic model. The balanced accuracy of the
predictions derived from blood was 0.745 as compared to 0.734 for the same variants
using the predictions from our genomic model (Figure 4C). We found a similar marginal
improvement when using Cohen’s Kappa to measure reliability (0.539 versus 0.458 for
fibroblast and 0.496 versus 0.465 for whole blood, Supplementary Figure 7).

Because tissue and cell line observations provided additional information for
cross-tissue NMD predictions, we wanted to analyze the pathogenicity of the variants
for which predicted and observed ASE classification differed. We observed that all
imbalanced variants were more likely to be pathogenic (Figure 4D), possibly because
GTEXx individuals were not selected based on a specific disease phenotype and many
imbalanced pathogenic variants are likely recessive. The variants for which our genomic
model and the observed classification were congruous (i.e. both imbalanced) showed
the largest proportion of pathogenic variants (p<0.0001 Fisher’s exact test for each
category).

Discussion

We analyzed rare protein truncating variants (PTVs) across individuals and tissues
using GTEXx v8 project data. Using RNA-seq-based measurements of allelic imbalance
of PTVs as a measure for NMD efficiency, we observed that, in addition to the position
of the variant in the transcript, both allele frequency and conservation were predictive of
NMD efficiency. Previous studies have demonstrated increased allelic imbalance of rare
versus common PTVs (Kukurba et al. 2014; Rivas et al. 2015; Lappalainen et al. 2013).
We observed that these effects did not plateau in the rare portion of the allele frequency
spectrum; ultra-rare (MAF < 0.001%) and novel PTVs showed evidence of increased
NMD efficiency. Additionally, we observed that GC content impacted NMD efficiency,
suggesting an additional role of RNA structure. By combining these factors, we were
able to improve our ability to predict whether a PTV would show allelic imbalance
beyond the 50nt rule.

Strikingly, NMD efficiency is highly consistent across tissues and individuals, indicating
the fundamental importance of this cellular machinery. This is consistent with previous
observations of when the NMD machinery fails: individuals with mutations in one of the
key NMD factors, UPF3B, show severe intellectual disability and the variant only
persists in these families because it is X-linked (Laumonnier et al. 2010; Tejada et al.
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2019). As the GTEx individuals were not selected for any phenotypic abnormality, we
did not observe any missense or nonsense mutations in the core NMD proteins which
may have otherwise provided variation in NMD efficiency between individuals. The
relative lack of variation between tissues may be attributed to a finely tuned
autoregulatory feedback loop as several of the core NMD proteins are known to be
upregulated when NMD is inhibited (Yepiskoposyan et al. 2011).

For classifying novel variants, especially for rare disease diagnostic purposes, it is very
promising that NMD is consistent across tissues, age, and sex. The high tissue-sharing
of NMD efficiency further indicates that potential gain-of-function effects of NMD
escapees, such as those reported by Coban-Akdemir et al, are unlikely to manifest in a
single tissue when the target gene is expressed across multiple tissues (Coban-Akdemir
et al. 2018). This provides confidence that tissue-agnostic predictive tools such as
NMDetectiveB (Lindeboom et al. 2019) provide equal predictive power regardless of the
tissue in which a gene is expressed. Further, since tissue is not strongly predictive of
NMD efficiency, future studies may benefit from testing in easily biopsied tissues or
synthetically testing PTVs in cell lines, with the exception of PTVs in genes with tissue
specific splicing. This is especially valuable given the importance of collecting high
quality RNA with high coverage at the site of interest. Given datasets like GTEX, it is
possible to assess the degradation of many rare variants for appropriate classification
without further experiments. To this end, we provide the classification for rare variants
identified in this study (Supplementary Table 1) for future research.

Methods

Calling nonsense-mediated decay from allele-specific expression

The set of calls generated from BAMs aligned with STAR using the WASP method for
allelic mapping bias (van de Geijn et al. 2015) were used. Allele-specific expression
(ASE) was called from GTEx v8 data using ASEAIlleleCounter from GATK (Castel et al.
2015). Nonsense-mediated decay (NMD) from ASE calls was defined as occurring at a
protein-truncating variant (PTV) if the ratio of reference reads to the total number of
reads was greater than 0.65.

Variant annotation

Variants were annotated using Variant Effect Predictor (Karczewski et al. 2020) with
Ensembl version 88, the same annotation used for other analyses in GTEx v8, except to
obtain gnomAD allele frequencies, for which version 97 of the Ensembl annotation was
used. The LOFTEE plugin for VEP (Karczewski et al. 2020) was used to obtain the 50nt
rule and loss of function prediction. Conservation scores and GC content were obtained
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from CADD (Kircher et al. 2014; Rentzsch et al. 2019). The canonical isoform was used
to select a single annotation for each variant, with variants which were annotated to
multiple genes, had multiple predicted consequences, or were annotated as intergenic
being removed. NMD was only considered for variants which were exclusively
annotated as “stop_gained”. The additional categories “missense_variant”,
“synonymous_variant”, “intron_variant”, “3_prime_UTR _variant”,

“5_prime_UTR variant”, and “non_coding_transcript_exon_variant” were used for the

comparison of different classes of variants described below.

Multi-tissue allele-specific expression

The proportion of reference reads does not account for the number of reads supporting
it, nor does it exploit the availability of gene expression from multiple tissues in a
subject. We used a procedure described in Rivas et. al. 2015 to integrate this
information and compute a probability of ASE (Rivas et al. 2015). This normally
produces probabilities for no ASE, moderate ASE, or strong ASE. We disabled the
estimation of strong ASE in each tissue as this usually exhibited a low probability, that
is, a variant was unlikely to be predicted to undergo strong ASE. Using only the
moderate ASE measurement provided one probability for the presence of ASE per
sample. For every variant, an individual probability was given for each tissue from an
individual. NMD was defined as occurring in a given variant if the ASE probability was
greater than 0.8 and the proportion of reference reads was greater than 0.5 (to remove
variants that exhibited a bias towards the alternate allele).

Predictive models

NMD efficiency was predicted as either a categorical outcome, using the proportion of
reference reads or the multi-tissue ASE probabilities, or a continuous outcome, using
L1-penalized regression with the gimnet R package (Friedman, Hastie, and Tibshirani
2010) on scaled and centered predictors. For the categorical outcomes, the logistic
family was used, with area under the curve (AUC) used as the performance metric,
while for the continuous outcomes, the Gaussian family was used on the
logit-transformed probabilities, with a correction applied (Smithson and Verkuilen 2006)
to adjust probabilities of 0.0 or 1.0, and root mean square error (RMSE) as the
performance metric. The penalization parameter lambda was optimized across a range
of values chosen by gimnet using cross-validation using chromosomes as the folds to
guarantee that all variants in the test set were never used in the training set. The best
lambda was chosen as the value for which the mean performance metric was best
across all 22 folds. P-values and confidence intervals were estimated using the
selectivelnference package (Tibshirani et al. 2016), using the optimal lambda identified
in the cross-validation.
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Correlation of ASE across tissues

We estimated the Pearson’s correlation of ASE across pairs of tissues by matching all
instances of a variant being shared between two tissues in the same subject, and
correlating the corresponding proportions of reference reads. Separate correlations
were performed for each of the following classes of variants: stop gain, missense
variant, synonymous variant, intronic variant, non-coding transcript exon variant, 5’ UTR
variant, or 3’ UTR variant.

Assessing NMD variants using ClinVar Pathogenicity information

PTV pathogenicity was assessed using the September 2020 release of the ClinVar
Variant Summary table. Data was accessed from
https://ftp.ncbi.nim.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz on
September 6, 2020 and filtered for premature termination variants. We then intersected
the variants with ClinVar pathogenicity information with the NMD variants recovering
309/2,320 (13%). This accounted for 157 out of 1,189 observations (13.2%) in
fibroblasts and 164 out of 1,013 observations (16.2%) in whole blood.
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Supplementary Figure 1. The 50nt rule is an imperfect predictor of whether a variant will
be targeted by nonsense mediated decay (NMD). A. Scatter plot of the average proportion of
reference reads across all observations of a variant, across all individuals and tissues, against
the position of that variant relative to the last canonical exon junction. Dot size corresponds to
the square root of the total number of reads observed over the variant site, showing only
variants from 1000 nucleotides before the last exon junction to 950 nucleotides after. The solid
horizontal line shows the expected proportion of reference reads without NMD, 0.5, while the
dashed line shows our cutoff for binning a variant as targeted by NMD, 0.65. The vertical dotted
line shows 50 nucleotides before the last exon junction. B. As in A, but showing only variants
from 150 nucleotides before the last exon junction to 50 nucleotides after.
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Supplementary Figure 2. MODASE improves predictive performance over using the
measured proportion of reference reads. Plot of model performance over LASSO
regularization paths with different feature sets. The x-axis shows the log,, value of the
regularization parameter lambda, with smaller values corresponding to less penalization. The
y-axis shows the area under the curve (AUC) metric of classification performance for each value
of lambda. Error bars are obtained from leave-group-out cross-validation where the model was
trained on all but one chromosome and tested on the left out chromosome. “Lindeboom” model
includes 50nt rule, long exon and near start (yellow), “Cons(ervation) Incl(uded)” model also
includes the distance to the end (canonical stop), GC content, position in the coding sequence
(from start), gnomAD allele frequency, vertebrate phyloP score, RNA integrity number, and total
read depth at the site of interest (pink), “Tissue Incl(uded)” adds tissue to the conservation
included model (green). The left shows the AUC for predicting the MODASE while the right
shows the same for the Proportion of Reference reads.
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Supplementary Figure 3. The proportion of reference reads across a protein truncating
variant site remains consistent across tissues. Box plot of the proportion of reference reads
for each expressed PTV in each tissue. Thick horizontal line shows the median, the box shows
the interquartile range, the whiskers show 1.5 times the interquartile range, and the dots show
sites beyond the whiskers.
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Supplementary Figure 5. ASE variants in non-coding transcript exons have a comparable
number of counts to variants in other genomic regions. For each tissue, a box plot
summarizes the distribution of total read counts of ASE variants in each genomic region. A
small number of variants had an extremely high number of reads. To aid in visualization,
variants with more than 200 reads are not shown.
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Supplementary Figure 6. ASE variants in non-coding transcript exons have a comparable
distribution of reference ratios to other genomic regions. For each tissue, a box plot
summarizes the distribution of reference ratios in ASE variants in each genomic region.
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Supplementary Figure 7. Additional disease relevant information may be gathered by
analyzing readily available tissues. Cohen’s Kappa of the predictive ability in all other tissues
of variants observed in whole blood or fibroblasts using our best predictive model using genomic
annotations (pink) or the classification called by the majority of observations across individuals
in the indicated tissue (green).
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