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Abstract: 
Precise interpretation of the effects of protein-truncating variants (PTVs) is important for 
accurate determination of variant impact. Current methods for assessing the ability of 
PTVs to induce nonsense-mediated decay (NMD) focus primarily on the position of the 
variant in the transcript. ​We used RNA-sequencing of the Genotype Tissue Expression 
v8 cohort ​to compute the efficiency of NMD​ using allelic imbalance for 2,320 rare 
( ​genome aggregation database minor allele frequency​ <=1%) PTVs across 809 
individuals in 49 tissues.​ We created an interpretable predictive model using penalized 
logistic regression in order to evaluate the comprehensive influence of variant 
annotation, tissue, and inter-individual variation on NMD. We found that variant position, 
allele frequency, including ultra-rare and singleton variants, and conservation were 
predictive of allelic imbalance. Furthermore, we found that NMD effects were highly 
concordant across tissues and individuals. Due to this high consistency, we 
demonstrate ​in silico ​that utilizing peripheral tissues or cell lines provides accurate 
prediction of NMD for PTVs. 
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Introduction 
RNA expression is not only regulated by transcription but also by degradation ​(Pai et al. 
2012)​; RNA transcripts with protein-truncating variants (PTVs) are often targeted for 
degradation by the nonsense-mediated decay (NMD) pathway ​(Kurosaki, Popp, and 
Maquat 2019)​. The accurate identification of PTV-harboring transcripts that are 
successfully cleared by NMD can have a large effect on disease outcome. Some 
nonsense mutations lead to dominant-negative effects where the truncated allele can 
impede the function of the full length allele ​(Khajavi, Inoue, and Lupski 2006)​. 
Mendelian disease diagnostics can benefit from the identification of the PTVs that 
escape NMD and may therefore lead to truncated peptides and corresponding 
gain-of-function effects ​(Coban-Akdemir et al. 2018)​. To be able to improve 
identification of PTVs that undergo or escape NMD, existing tools have integrated 
variant-level annotations which provide a prediction of the NMD efficiency, or ability for 
a PTV containing transcript to be targeted and degraded by the NMD machinery as 
measured by the relative amount of a PTV containing transcript as compared to the 
wild-type ​(Nagy and Maquat 1998; Lindeboom, Supek, and Lehner 2016; Rivas et al. 
2015)​. 
 
Position explains most variation in NMD efficiency, summarized by the 50 nucleotide 
(50nt) rule: if the variant occurs farther upstream than 55 to 50 nucleotides before the 
last exon junction, it will be targeted for degradation. Additional analysis in cancer has 
indicated that falling near the start of a gene or in a long exon (>407 base pairs) 
impedes degradation and a simple decision tree, called NMDetective-B, which utilizes 
these rules can explain 68% of the variation in NMD efficiency ​(Lindeboom et al. 2019)​. 
These existing approaches have benefited from measuring NMD effects through 
allele-specific measurement of RNA-sequencing (RNA-seq) read counts overlying PTV 
variants. However, there is evidence that the ratio of the RNA read counts from the 
aberrant allele to that of the wild type allele can vary between tissues, which would not 
be expected if variant position was the only determining factor ​(Rivas et al. 2015)​, 
(Zetoune et al. 2008)​.  
 
We utilized the Genotype Tissue Expression (GTEx) dataset to assess the impact of 
tissue type on NMD efficiency ​(GTEx Consortium 2020)​. We measured the functional 
impact of 2,320 rare (genome aggregation database [gnomAD] minor allele frequency 
[MAF] <=1%) PTVs from 809 individuals across 49 different tissues. We observed that, 
in addition to position, allele frequency, including rare, ultra-rare (MAF < 0.001%) and 
singleton alleles predict NMD efficiency. However, tissue is not predictive of NMD 
efficiency and PTVs showed more consistent allelic imbalance across tissues than any 
other type of coding transcript variant. Using this information, we demonstrate that 
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accurate identification of PTVs that either undergo or escape NMD can be further 
achieved in peripheral tissues or cell lines. 
 
 
Results 
Identifying NMD-targeted variants in GTEx

 
 

Figure 1. Centrally located and rare truncating variants show stronger allelic imbalance.            
A. ​Distribution of the proportion of reference reads for rare (genome aggregation database             
[gnomAD] minor allele frequency [MAF] ≤ 1%) protein truncating variants for those predicted by              
the positional rules defined in Lindeboom et al. ​to escape NMD (light blue) or trigger NMD (light                 
purple). ​B. ​Distribution of rare stop variants for variants predicted to escape NMD (light blue) or                
trigger NMD (light purple) by gnomAD allele frequency. Boxplots show mean and interquartile             
range. Brackets show the significance of the difference in differences test between each             
prediction type across decreasing allele frequencies P < 0.00001: **** ; P < 0.001: ***; not                
significant: ns. 
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In order to evaluate NMD rules in and between normal human tissues, we annotated the 
proportion of expressed reference reads for rare PTV sites across the GTEx dataset. 
We used the genomes of 809 individuals of European descent to identify 2,320 different 
PTVs with an allele frequency from the gnomAD database less than or equal to one 
percent. Rare variants were selected in order to prevent inclusion of common variants 
that appear as false positive PTVs due to selection and adaptation favoring the 
truncated transcript. The proportion of expressed reference reads was calculated by 
dividing the number of RNA-seq reads that map to a variant site containing the 
reference allele by the total number of RNA-seq reads overlapping the variant site in a 
single sample (i.e. one tissue in one person). 
 
We analyzed RNA sequencing data from 49 distinct tissues where each individual had a 
median number of 17 tissues and a median of five expressed PTVs that were testable in 
at least one GTEx tissue. We calculated the proportion of reference reads for each 
variant in each tissue for a total of 40,402 variant-tissue-subject observations from the 
13,849 tissue-subject samples. From these 40,402 observations, 55% (22,301) were 
predicted to be targeted by the NMD machinery according to rules in Lindeboom​ et al. 
of not being near the start of a gene, in a long exon, or after 55-50 nucleotides before 
the last exon junction. The remaining 45% (18,629) of PTVs were predicted to escape 
NMD. These rules, on a whole, provided good separation of variants that showed allelic 
imbalance: 52% of observations of variants that were predicted to be targeted by NMD 
showed allelic imbalance (reference read proportion ​>​ 65%) compared to only 20% of 
those predicted to escape (Figure 1A).  
 
Ultra-rare protein truncating variants have increased allelic imbalance 
Previous studies have reported that rarer PTVs are more likely to trigger NMD 
(Lindeboom et al. 2019; Kukurba et al. 2014; Rivas et al. 2015)​, including in an earlier 
version of GTEx ​(Rivas et al. 2015) ​. This initial exploration of NMD in GTEx analyzed 
4,584 PTVs across the allele frequency spectrum acquired from 173 individuals. Given 
our increased sample size, more extensive whole genome data in GTEx, and the 
availability of precise allele frequency information from gnomAD ​(Karczewski et al. 
2020)​, we set out to evaluate this effect with more granularity in the rare allele 
frequency spectrum. Here, we evaluated the allelic imbalance for PTVs predicted to be 
NMD targets versus those predicted to be NMD escapees stratified by allele frequency. 
For rare variants, we saw significant separation between the predicted NMD escapees 
and the predicted NMD targets; strikingly, this separation was significantly more 
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pronounced (by a difference in differences test) at ultra-rare (MAF < 0.001%) allele 
frequencies (Figure 1B).  
 
By combining gnomAD allele frequency information with the whole genome sequencing 
samples from GTEx, we were able to further investigate the allelic imbalance of 
ultra-rare variants seen in gnomAD against the 504 novel PTVs that were unobserved in 
gnomAD but present in GTEx (Figure 1B). These novel PTVs showed increased allelic 
imbalance, indicating that there is not a plateauing of the NMD effect for ultra-rare 
PTVs. 
 
NMD efficiency is primarily determined by mutation location, allele frequency, and 
conservation 

 
Figure 2. Predictive ability is improved by using variant allele frequency and            
conservation, but not tissue or subject information. A. Plot of model performance over             
LASSO regularization paths with different feature sets predicting the binary classification of            
proportion of reference reads ≥ 0.65 or < 0.65. The x-axis shows the log ​10 value of the                 
regularization parameter lambda, with smaller values corresponding to less penalization. The           
y-axis shows the area under the curve (AUC) metric of classification performance for each value               
of lambda. Error bars are obtained from leave-group-out cross validation where the model was              
trained on all but one chromosome and tested on the left out chromosome. “Lindeboom” model               
includes 50nt rule, long exon and near start (yellow). “Cons(ervation) Incl(uded)” model also             
includes the distance to the end (canonical stop), GC content, position in the coding sequence               
(from start), gnomAD allele frequency, vertebrate phyloP score, RNA integrity number, and total             
read depth at the site of interest (pink), “Tissue Incl(uded)” adds tissue to the conservation               
included model (green). ​B. ​Forest plot of effect sizes and p-values for features that were chosen                
by the model with the optimal lambda penalty value as measured by AUC using the multi-tissue                
moderate ASE outcome. 
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The primary means of detecting NMD has been the 50nt rule in which a transcript will 
be degraded if the PTV occurs upstream of the point 55 to 50 nucleotides prior to the 
last exon-exon junction ​(Popp and Maquat 2016; Nagy and Maquat 1998)​. However, as 
the 50nt rule alone is not a perfect predictor of NMD efficiency (Supplementary Figure 
1), we wanted to investigate if there were more subtle regulatory, tissue-specific, or 
inter-individual effects that could be detected using the multi-tissue, population design of 
GTEx. We chose to use the set of predictors previously described in Rivas et. al. 2015 
as they had been shown to have predictive power for NMD. Motivated by our previous 
findings (Figure 1B) and further leveraging the unique capabilities of GTEx, we added 
gnomAD MAF, tissue, and subject as predictors in the models to test their effects on 
NMD efficiency.  
 
Initially, we constructed our model to predict allelic imbalance as defined by the binary 
classification of proportion of reference reads greater than or equal to 0.65 or less than 
0.65. Notably, we found that including tissue as a predictive variable did not significantly 
improve the model (Figure 2A), and including individuals as a predictive variable 
actually decreased performance (Supplementary Figure 2). Although we did see 
suggestive evidence for differences in median NMD efficiency between tissues 
(Supplementary Figure 3), modeling tissue did not increase predictive performance 
when combined with other information about the PTV. This is similar to what was 
observed in Rivas et. al., where some samples showed differences in NMD efficiency. 
Despite our increase in sample size, we were not able to identify a systematic pattern. 
 
We were further able to leverage the multi-tissue design of the GTEx project to improve 
performance by predicting the incidence of allelic specific expression (MODASE, equal 
to 1 - [probability of no ASE]) using a Bayesian stratification approach that reduces 
noise by including information from multiple observations of a PTV in one individual 
across tissues ​(Rivas et al. 2015)​. Given the integration of multiple tissue information, 
this approach may reduce our ability to detect tissue specific differences. We proceeded 
to use MODASE because tissue was not a predictive variable of the proportion of 
reference reads and the noise reduction led to an improvement in our predictive power 
(Supplementary Figure 2).  
 
In order to disentangle the often correlated biological predictors, we chose to use the 
LASSO penalized logistic regression model implemented by the R package ​glmnet​ to 
produce a sparse and interpretable model ​(Friedman, Hastie, and Tibshirani 2010)​. In 
addition to the canonical 50nt rule, long exon, and start proximal predictors identified by 
Lindeboom et. al., we found that the distance to the canonical stop, GC content, position 
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in the coding sequence (the distance from the start), gnomAD allele frequency, 
vertebrate phyloP score, RNA integrity number, and total read depth at the site of 
interest were significant predictors of MODASE status (Figure 2B). Unsurprisingly, NMD 
was easier to detect in samples with higher RNA quality, as denoted by RNA integrity 
number, and for variants with higher read count. 
 
In order to test the impact of additional factors, we included additional variant and 
subject level information in our model. Sample level variables that were dropped from 
the model include: age, sex, cause of death (Hardy scale), and post mortem interval.  
 
Allelic imbalance of PTVs is consistent across tissues 

 
 

Figure 3. Nonsense variants show more consistent allelic imbalance between pairs of            
tissues than variants in other coding transcripts​. Densities of Pearson correlations of            
proportion of reference reads for a variant in the same individual in different pairs of tissues.                
Vertical lines denote median correlation. PTVs are highlighted in pink. 
 
 
Based on our observations that tissue was not predictive of allelic imbalance for PTVs, 
we wanted to evaluate the consistency of allelic imbalance for PTVs across tissues and 
within an individual. For each individual subject that had the same variant expressed in 
multiple tissues, we performed a pairwise correlation of the allelic ratio of that variant in 
those tissues. We were able to investigate most tissue combinations, but we did not 
have individuals that were sampled for both male-specific tissues (prostate and testis) 
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and female-specific tissues (ovary and vagina) or in two of the lower sampled tissues 
analyzed (Small Intestine - Terminal Ileum and Brain - Amygdala). We also computed 
intra-individual, cross-tissue pairwise correlations of a variant’s allelic ratios for 
missense and synonymous coding variants and non-coding variants in introns, 
untranslated regions (UTRs) and non-coding exons (Supplementary Figure 4, 
summarized in Figure 3).  
 
We found a significantly stronger correlation between the proportion of reference reads 
for all PTVs, with a median Pearson correlation of 0.508, than for any other coding 
transcript variant, with a median Pearson correlation of 0.131 for synonymous variants 
and 0.204 for missense variants, or non-coding variants in introns or UTRs (median 
correlation of 0.176 for 3’ UTRs, 0.243 for 5’ UTRs, and 0.257 for intronic variants). 
Additionally, PTVs that were predicted to escape NMD showed lower correlation 
(median 0.449) than those that were predicted to undergo NMD (median 0.552), 
suggesting the consistency of NMD across tissues.  
 
Intriguingly, noncoding transcripts were the only transcripts that showed higher 
between-tissue allelic correlations. This higher correlation was not attributable to a 
systematic difference in read depth (Supplementary Figure 5) or the distribution of the 
proportion of reference reads between noncoding transcripts and other gene biotypes 
(Supplementary Figure 6). 
 
Unpredicted allelic balance is consistent across tissues. 
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Figure 4. Additional disease relevant information may be gathered by analyzing readily            
available tissues. A. ​Proportion of reference reads against the total number of reads covering              
the variant for predicted NMD targets (light purple fill) and variants predicted to escape NMD               
(light blue fill). The variant rs141826798 in Epidermal Growth Factor Like Domain Multiple 8              
(EGFL8), which has been implicated in psoriasis, is highlighted with a navy outline. ​B. The               
premature termination variant rs141826798 in ​EGFL8 occurs 3bp from the end of exon 4. It is                
not in a long (>407bp) exon, proximal to the start of the gene, in the last exon or 50nt before the                     
last exon junction. ​C. Balanced accuracy of the predictive ability in all other tissues of variants                
observed in whole blood or fibroblasts using our best predictive model utilizing genomic             
annotations (pink) or the classification called by the majority of observations across individuals             
in the indicated tissue (green). ​D. ​Mosaic plot of the counts of pathogenic (dark colors: dark                
purple, dark blue, dark green) and benign (light colors: light purple, light blue, light green)               
variants as determined by ClinVar for variants observed to be all balanced (blues), all              
imbalanced (purples), or a mixture of both (greens) in each of the indicated tissues. Hashed fills                
indicate variants for which our predicted model and observed ASE classification differed            
(incongruous). 
 
 
Using these models to predict the efficiency of NMD and the RNA sequencing data to 
verify the effects, we were able to discern which PTVs showed unpredicted allelic 
balance -- that is, PTVs which are predicted to undergo NMD and are therefore 
expected to show allelic imbalance but instead show allelic balance. Of the 2,320 rare 
variants, we found 23.4% (543) variants that showed unpredicted allelic balance at least 
once, with 7.5% (173) variants showing unpredicted allelic balance in over 90% of 
observations.  
 
One of the most consistent unpredicted allelic balance variants is rs141826798 in 
EGFL8 for which we observe the variant in 7 individuals and 44 different tissues for 131 
total observations and 98% (128 of the 131) of the observations have a proportion of 
reference reads below 0.65 (Figure 4A). Inspection of the PTV location shows that it is 
not near the start, in a long exon, or after 50nt before the last exon junction (Figure 4B) 
and is not associated with any aberrant splicing events. The variant, rs141826798, was 
further previously identified as a risk variant for psoriasis in a UK BioBank genome wide 
association study ​(Emdin et al. 2018)​. This further suggests that identification of 
unpredicted allelic balance can be identified empirically by performing RNA sequencing 
from a patient of a readily accessible tissue or cell line. 
 
In order to determine if utilizing cell lines or readily accessible tissues could provide 
improved accuracy for determining NMD in all tissues, we looked at the similarity 
between the allelic imbalance of variants expressed in an easily accessible tissue and 
cell line (whole blood and fibroblasts) and all other tissues. The category determined by 
the majority of observations of a variant in fibroblasts and whole blood was a marginally 
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better predictor than our best predictive model using only genomic data. Using the 
variants observed in fibroblasts to predict the categorical outcome of the variants in 
other tissues, we found a balanced accuracy of 0.767 as compared to 0.728 for the 
prediction for the same variants from our genomic model. The balanced accuracy of the 
predictions derived from blood was 0.745 as compared to 0.734 for the same variants 
using the predictions from our genomic model (Figure 4C). We found a similar marginal 
improvement when using Cohen’s Kappa to measure reliability (0.539 versus 0.458 for 
fibroblast and 0.496 versus 0.465 for whole blood, Supplementary Figure 7). 
 
Because tissue and cell line observations provided additional information for 
cross-tissue NMD predictions, we wanted to analyze the pathogenicity of the variants 
for which predicted and observed ASE classification differed. We observed that all 
imbalanced variants were more likely to be pathogenic (Figure 4D), possibly because 
GTEx individuals were not selected based on a specific disease phenotype and many 
imbalanced pathogenic variants are likely recessive. The variants for which our genomic 
model and the observed classification were congruous (i.e. both imbalanced) showed 
the largest proportion of pathogenic variants (p<0.0001 Fisher’s exact test for each 
category). 
 
 
Discussion 
We analyzed rare protein truncating variants (PTVs) across individuals and tissues 
using GTEx v8 project data. Using RNA-seq-based measurements of allelic imbalance 
of PTVs as a measure for NMD efficiency, we observed that, in addition to the position 
of the variant in the transcript, both allele frequency and conservation were predictive of 
NMD efficiency. Previous studies have demonstrated increased allelic imbalance of rare 
versus common PTVs ​(Kukurba et al. 2014; Rivas et al. 2015; Lappalainen et al. 2013)​. 
We observed that these effects did not plateau in the rare portion of the allele frequency 
spectrum;  ultra-rare (MAF < 0.001%) and novel PTVs showed evidence of increased 
NMD efficiency. Additionally, we observed that GC content impacted NMD efficiency, 
suggesting an additional role of RNA structure. By combining these factors, we were 
able to improve our ability to predict whether a PTV would show allelic imbalance 
beyond the 50nt rule. 
 
Strikingly, NMD efficiency is highly consistent across tissues and individuals, indicating 
the fundamental importance of this cellular machinery. This is consistent with previous 
observations of when the NMD machinery fails: individuals with mutations in one of the 
key NMD factors, UPF3B, show severe intellectual disability and the variant only 
persists in these families because it is X-linked ​(Laumonnier et al. 2010; Tejada et al. 
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2019)​. As the GTEx individuals were not selected for any phenotypic abnormality, we 
did not observe any missense or nonsense mutations in the core NMD proteins which 
may have otherwise provided variation in NMD efficiency between individuals. The 
relative lack of variation between tissues may be attributed to a finely tuned 
autoregulatory feedback loop as several of the core NMD proteins are known to be 
upregulated when NMD is inhibited ​(Yepiskoposyan et al. 2011)​. 
 
For classifying novel variants, especially for rare disease diagnostic purposes, it is very 
promising that NMD is consistent across tissues, age, and sex. The high tissue-sharing 
of NMD efficiency further indicates that potential gain-of-function effects of NMD 
escapees, such as those reported by Coban-Akdemir et al, are unlikely to manifest in a 
single tissue when the target gene is expressed across multiple tissues ​(Coban-Akdemir 
et al. 2018) ​.​ ​This provides confidence that tissue-agnostic predictive tools such as 
NMDetectiveB ​(Lindeboom et al. 2019)​ provide equal predictive power regardless of the 
tissue in which a gene is expressed. Further, since tissue is not strongly predictive of 
NMD efficiency, future studies may benefit from testing in easily biopsied tissues or 
synthetically testing PTVs in cell lines, with the exception of PTVs in genes with tissue 
specific splicing. This is especially valuable given the importance of collecting high 
quality RNA with high coverage at the site of interest. Given datasets like GTEx, it is 
possible to assess the degradation of many rare variants for appropriate classification 
without further experiments. To this end, we provide the classification for rare variants 
identified in this study (Supplementary Table 1) for future research. 
 
 
Methods 
Calling nonsense-mediated decay from allele-specific expression 
The set of calls generated from BAMs aligned with STAR using the WASP method for 
allelic mapping bias ​(van de Geijn et al. 2015)​ were used. Allele-specific expression 
(ASE) was called from GTEx v8 data using ​ASEAlleleCounter​ from GATK ​(Castel et al. 
2015)​. Nonsense-mediated decay (NMD) from ASE calls was defined as occurring at a 
protein-truncating variant (PTV) if the ratio of reference reads to the total number of 
reads was greater than 0.65.  
 
Variant annotation 
Variants were annotated using Variant Effect Predictor ​(Karczewski et al. 2020)​ with 
Ensembl version 88, the same annotation used for other analyses in GTEx v8, except to 
obtain gnomAD allele frequencies, for which version 97 of the Ensembl annotation was 
used. The LOFTEE plugin for VEP ​(Karczewski et al. 2020) ​ was used to obtain the 50nt 
rule and loss of function prediction. Conservation scores and GC content were obtained 
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from CADD ​(Kircher et al. 2014; Rentzsch et al. 2019)​. The canonical isoform was used 
to select a single annotation for each variant, with variants which were annotated to 
multiple genes, had multiple predicted consequences, or were annotated as intergenic 
being removed. NMD was only considered for variants which were exclusively 
annotated as “stop_gained”. The additional categories “missense_variant”, 
“synonymous_variant”, “intron_variant”, “3_prime_UTR_variant”, 
“5_prime_UTR_variant”, and “non_coding_transcript_exon_variant” were used for the 
comparison of different classes of variants described below. 
 
Multi-tissue allele-specific expression 
The proportion of reference reads does not account for the number of reads supporting 
it, nor does it exploit the availability of gene expression from multiple tissues in a 
subject. We used a procedure described in Rivas et. al. 2015 to integrate this 
information and compute a probability of ASE ​(Rivas et al. 2015)​. This normally 
produces probabilities for no ASE, moderate ASE, or strong ASE. We disabled the 
estimation of strong ASE in each tissue as this usually exhibited a low probability, that 
is, a variant was unlikely to be predicted to undergo strong ASE. Using only the 
moderate ASE measurement provided one probability for the presence of ASE per 
sample. For every variant, an individual probability was given for each tissue from an 
individual. NMD was defined as occurring in a given variant if the ASE probability was 
greater than 0.8 and the proportion of reference reads was greater than 0.5 (to remove 
variants that exhibited a bias towards the alternate allele).  
 
Predictive models 
NMD efficiency was predicted as either a categorical outcome, using the proportion of 
reference reads or the multi-tissue ASE probabilities, or a continuous outcome, using 
L1-penalized regression with the ​glmnet​ R package ​(Friedman, Hastie, and Tibshirani 
2010)​ on scaled and centered predictors. For the categorical outcomes, the logistic 
family was used, with area under the curve (AUC) used as the performance metric, 
while for the continuous outcomes, the Gaussian family was used on the 
logit-transformed probabilities, with a correction applied ​(Smithson and Verkuilen 2006) 
to adjust probabilities of 0.0 or 1.0, and root mean square error (RMSE) as the 
performance metric. The penalization parameter lambda was optimized across a range 
of values chosen by ​glmnet​ using cross-validation using chromosomes as the folds to 
guarantee that all variants in the test set were never used in the training set. The best 
lambda was chosen as the value for which the mean performance metric was best 
across all 22 folds. P-values and confidence intervals were estimated using the 
selectiveInference​ package ​(Tibshirani et al. 2016)​, using the optimal lambda identified 
in the cross-validation. 
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Correlation of ASE across tissues 
We estimated the Pearson’s correlation of ASE across pairs of tissues by matching all 
instances of a variant being shared between two tissues in the same subject, and 
correlating the corresponding proportions of reference reads. Separate correlations 
were performed for each of the following classes of variants: stop gain, missense 
variant, synonymous variant, intronic variant, non-coding transcript exon variant, 5’ UTR 
variant, or 3’ UTR variant. 
 
Assessing NMD variants using ClinVar Pathogenicity information 
PTV pathogenicity was assessed​ ​using the September 2020 release of the ClinVar 
Variant Summary table. Data was accessed from 
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz​ on 
September 6, 2020 and filtered for premature termination variants. We then intersected 
the variants with ClinVar pathogenicity information with the NMD variants recovering 
309/2,320 (13%). This accounted for 157 out of 1,189 observations (13.2%) in 
fibroblasts and 164 out of 1,013 observations (16.2%) in whole blood. 
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Supporting information captions:  

 
Supplementary Figure 1. The 50nt rule is an imperfect predictor of whether a variant will               
be targeted by nonsense mediated decay (NMD). ​A. Scatter plot of the average proportion of               
reference reads across all observations of a variant, across all individuals and tissues, against              
the position of that variant relative to the last canonical exon junction. Dot size corresponds to                
the square root of the total number of reads observed over the variant site, showing only                
variants from 1000 nucleotides before the last exon junction to 950 nucleotides after. The solid               
horizontal line shows the expected proportion of reference reads without NMD, 0.5, while the              
dashed line shows our cutoff for binning a variant as targeted by NMD, 0.65. The vertical dotted                 
line shows 50 nucleotides before the last exon junction. ​B. As in A, but showing only variants                 
from 150 nucleotides before the last exon junction to 50 nucleotides after. 
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Supplementary Figure 2. MODASE improves predictive performance over using the          
measured proportion of reference reads. Plot of model performance over LASSO           
regularization paths with different feature sets. The x-axis shows the log ​10 value of the              
regularization parameter lambda, with smaller values corresponding to less penalization. The           
y-axis shows the area under the curve (AUC) metric of classification performance for each value               
of lambda. Error bars are obtained from leave-group-out cross-validation where the model was             
trained on all but one chromosome and tested on the left out chromosome. “Lindeboom” model               
includes 50nt rule, long exon and near start (yellow), “Cons(ervation) Incl(uded)” model also             
includes the distance to the end (canonical stop), GC content, position in the coding sequence               
(from start), gnomAD allele frequency, vertebrate phyloP score, RNA integrity number, and total             
read depth at the site of interest (pink), “Tissue Incl(uded)” adds tissue to the conservation               
included model (green). The left shows the AUC for predicting the MODASE while the right               
shows the same for the Proportion of Reference reads. 
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Supplementary Figure 3. The proportion of reference reads across a protein truncating            
variant site remains consistent across tissues. ​Box plot of the proportion of reference reads              
for each expressed PTV in each tissue. Thick horizontal line shows the median, the box shows                
the interquartile range, the whiskers show 1.5 times the interquartile range, and the dots show               
sites beyond the whiskers. 
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Supplementary Figure 4. Nonsense variants show more consistent allelic imbalance          
between pairs of tissues than missense variants. A. ​Pearson correlations of reference allele             
proportion for PTVs (upper triangle) or missense variants (lower triangle) in the same individual              
in different pairs of tissues. High correlation: green; low correlation: pink; matrix diagonal or no               
subject overlap: black. ​B. ​As in A, but upper half is 3’ UTR variants and lower half is 5’ UTR                    
variants ​C. ​As in A, but upper half is non-coding transcript exon variants and lower half is                 
intronic variants ​D. ​As in A, but upper half is synonymous variants. 
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Supplementary Figure 5. ASE variants in non-coding transcript exons have a comparable            
number of counts to variants in other genomic regions. For each tissue, a box plot               
summarizes the distribution of total read counts of ASE variants in each genomic region. A               
small number of variants had an extremely high number of reads. To aid in visualization,               
variants with more than 200 reads are not shown. 
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Supplementary Figure 6. ASE variants in non-coding transcript exons have a comparable            
distribution of reference ratios to other genomic regions. For each tissue, a box plot              
summarizes the distribution of reference ratios in ASE variants in each genomic region.   
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Supplementary Figure 7. Additional disease relevant information may be gathered by           
analyzing readily available tissues. ​Cohen’s Kappa of the predictive ability in all other tissues              
of variants observed in whole blood or fibroblasts using our best predictive model using genomic               
annotations (pink) or the classification called by the majority of observations across individuals             
in the indicated tissue (green). 
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