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ABSTRACT  

Genetic alterations of somatic cells can drive nonmalignant clone formation and 

promote cancer initiation. However, the link between these processes remains unclear 

hampering our understanding of tissue homeostasis and cancer development. Here 

we collect a literature-based repertoire of 3355 well-known or predicted drivers of 

cancer and noncancer somatic evolution in 122 cancer types and 12 noncancer 

tissues. Mapping the alterations of these genes in 7953 pancancer samples reveals 

that, despite the large size, the known compendium of drivers is still incomplete and 

biased towards frequently occurring coding mutations. High overlap exists between 

drivers of cancer and noncancer somatic evolution, although significant differences 

emerge in their recurrence. We confirm and expand the unique properties of drivers 

and identify a core of evolutionarily conserved and essential genes whose germline 

variation is strongly counter-selected. Somatic alteration in even one of these genes 

is sufficient to drive clonal expansion but not malignant transformation. Our study 

offers a comprehensive overview of our current understanding of the genetic events 

initiating clone expansion and cancer revealing significant gaps and biases that still 

need to be addressed. The compendium of cancer and noncancer somatic drivers, 

their literature support and properties are accessible at http://www.network-cancer-

genes.org/. 
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BACKGROUND 

Genetic alterations conferring selective advantages to cancer cells are the main 

drivers of cancer evolution and hunting for them has been at the core of international 

cancer genomic efforts 1,2,3. Given the instability of the cancer genome, distinguishing 

driver alterations from the rest relies on analytical approaches that identify genes 

altered more frequently than expected or quantify the positive selection acting on them 

4,5,6. The results of these analyses have greatly expanded our understanding of the 

mechanisms driving cancer evolution, revealing high heterogeneity across and within 

cancers 7,8,9.  

Recently, deep sequencing screens of noncancer tissues have started to map 

positively selected genetic mutations in somatic cells that drive in situ formation of 

phenotypically normal clones 10,11. Many of these mutations hit cancer drivers, 

sometimes at a frequency higher than in the corresponding cancer 12,13,14,15,16. Yet, 

they do not drive malignant transformation. This conundrum poses fundamental 

questions on how genetic drivers of normal somatic evolution are related to and differ 

from those of cancer evolution. Addressing these questions will clarify the genetic 

relationship between tissue homeostasis and cancer initiation, with profound 

implications for cancer early detection. 

To assess the extent of the current knowledge on cancer and noncancer 

drivers, we undertook a systematic review of the literature and assembled a 

comprehensive repertoire of genes whose somatic alterations have been reported to 

drive cancer or noncancer evolution. This allowed us to compare the current driver 

repertoire across and within cancer and noncancer tissues and map their alterations 

in the large pancancer collection of samples from The Cancer Genome Atlas (TCGA). 

This revealed significant gaps and biases in our current knowledge of the driver 
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landscape. We also computed an array of systems-level properties across driver 

groups, confirming the unique evolutionary path of driver genes and their central role 

in the cell.  

We collected all cancer and noncancer driver genes, together with a large set 

of their properties, in the Network of Cancer Genes and Healthy Drivers (NCGHD) 

open-access resource. 

 

RESULTS 

More than 3300 genes are canonical or candidate drivers of cancer and 

noncancer somatic evolution 

We conducted a census of currently known drivers through a comprehensive 

literature review of 331 scientific articles published between 2008 and 2020 describing 

somatically altered genes with a proven or predicted role in cancer or noncancer 

somatic evolution (Figure 1A). These publications included three sources of 

experimentally validated (canonical) cancer drivers, 311 sequencing screens of 

cancer (293) and noncancer (18) tissues and 17 pancancer studies (Supplementary 

Table 1, Additional File 1). Each paper was assessed by at least two independent 

experts (Supplementary Figure 1A-C, Additional File 2) returning a total of 3355 

drivers, 3347 in 122 cancer types and 95 in 12 noncancer tissues, respectively (Figure 

1A). We further computed the systems-level properties of drivers and annotated their 

function, somatic variation and drug interactions (Figure 1A). 

We reviewed the three sources of canonical cancer drivers 17,18,19 to exclude 

false positives (Supplementary Table 2, Additional File 1) and fusion genes whose 

properties could not be mapped. Only 11% of the resulting 591 canonical drivers 

(Supplementary Table 3, Additional File 1) were common to all three sources 
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(Figure 1B), indicating poor consensus even in well-known cancer genes. We further 

annotated the genetic mode of action for >86% of canonical drivers, finding 

comparable proportions of oncogenes or tumour suppressors (Figure 1C). The rest 

had a dual role or could not be univocally classified.  

We extracted additional cancer drivers from the curation of 310 sequencing 

screens that applied a variety of statistical approaches (Supplementary Figure 1D, 

Additional File 2) to identify cancer drivers among all altered genes. After removing 

possible false positives (Supplementary Table 2, Additional File 1), the final list 

included 3177 cancer drivers, 2756 of which relied only on statistical support 

(candidate cancer drivers) and 421 were canonical drivers (Figure 1D, 

Supplementary Table 3, Additional File 1). Therefore, 170 canonical drivers have 

never been detected by any method, suggesting that they may elicit their role through 

non-mutational mechanisms or may fall below the detection limits of current 

approaches. Given the prevalence of cancer coding screens (Figure 1A), only coding 

driver alterations have been reported for most genes (Figure 1E) while 16% of them 

(531) were identified as drivers uniquely in noncoding screens. Since the prediction of 

drivers with noncoding alterations remains challenging, we further investigated the 

type of support that these genes had for their driver activity. The overwhelming 

majority of them (467 genes, 87%) have been predicted as drivers in only one screen. 

The remaining 64 genes are canonical drivers, have been predicted as drivers in 

multiple screens or have additional experimental support for their driver activity 

(Figure 1F) 

Applying a similar approach (Supplementary Figure 1A-C, Additional File 2), 

we reviewed 18 sequencing screens of healthy or diseased (noncancer) tissues. They 

collectively reported 95 genes whose somatic alterations could drive nonmalignant 
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clone formation (healthy drivers). Interestingly, only eight of them were not cancer 

drivers (Figure 1G, Supplementary Table 3, Additional File 1), suggesting high 

overlap between genetic drivers of cancer and noncancer evolution. However, since 

many noncancer screens only re-sequenced cancer genes or applied methods 

developed for cancer genomics (Supplementary Figure 1E, Additional File 2), this 

overlap may be overestimated. 

 

Figure 1. Collection of a comprehensive repertoire of cancer and healthy drivers 

 

a. Literature review and driver annotation workflow. Expert literature curation of 331 

publications led to a repertoire of cancer and healthy drivers in a variety of cancer and 

noncancer tissues. Combining multiple data sources, a set of properties and 

annotations were computed for all these drivers. 
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b. Intersection of canonical drivers from three sources 17,18,19 that passed our manual 

curation. 

c. Classification of canonical cancer drivers in tumour suppressors and oncogenes. 

Eighty-one cancer drivers had a dual role or could not be classified.  

d. Intersection of canonical and candidate driver genes from 310 sequencing screens. 

Genes whose driver role had only statistical support were considered candidate 

cancer drivers. 

e. Intersection between cancer drivers with coding and noncoding alterations. 

f. Level of support for the driver role of 531 cancer genes with noncoding driver 

alterations only. Level 1 means that the gene was predicted as a driver only in one 

cancer sequencing screen; levels 2, 3 and 4 mean that it was predicted by two, three 

or four screens or that it had experimental support. Experimental support was gathered 

from the 19 publications reporting noncoding cancer drivers (Supplementary Table 

1, Additional File 1) and form the CNCDatabase 20 and included in vitro and in vivo 

experiments, modification of gene expression and survival association. 

g. Proportion of healthy drivers that are also canonical or candidate cancer drivers, 

classified as canonical and candidate healthy drivers, respectively.  
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The ability to capture cancer but not healthy driver heterogeneity increases with 

the donor sample size. 

To compare cancer and healthy drivers across and within tissues, we grouped 

the 122 cancer types and 12 noncancer tissues into 12 and seven organ systems, 

respectively (Methods). 

Despite the high numbers of sequenced samples (Supplementary Table 4, 

Additional File 1) and detected drivers (Figure 1), several lines of evidence indicated 

that our knowledge of cancer drivers is still incomplete. First, we detected a strong 

positive correlation between cancer drivers and donors overall (Figure 2A) and in 

individual organ systems (Supplementary Figure 2, Additional File 2). This 

suggests that the current ability to identify new drivers depends on the number of 

samples included in the analysis. Second, candidates outnumbered canonical drivers 

in all organ systems except those with small sample size or low mutation rate such as 

paediatric cancers, where only the most recurrent canonical drivers could be identified 

(Figure 2B). Third, large donor cohorts enabled detection of a broader representation 

of canonical drivers than small cohorts (Figure 2C). For example, pooling thousands 

of samples together led to >60% of canonical drivers being detected in adult 

pancancer re-analyses. Therefore, the size of the cohort influences the level of 

completeness and heterogeneity of the cancer driver repertoire. This is not surprising 

since all current approaches act at the cohort level, searching for positively selected 

genes altered more frequently than expected (Supplementary Figure 1D, Additional 

File 2). 

 Our analysis also showed that the contribution of noncoding driver alterations 

remains largely unappreciated and noncoding drivers have not yet been reported in 

several tumours, including all paediatric cancers (Figure 2D). Owing to the re-analysis 
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of large whole genome collections 21,22,23,24,25,26, almost 40% of adult pancancer drivers 

were instead modified by noncoding alterations (Figure 2D). Haematological and skin 

tumours also had a high proportion of noncoding driver variants thanks to screens 

focused on noncoding mutations 27,28. Therefore, the re-analysis of already available 

whole genome data and further sequencing screens of noncoding variants are needed 

to fully appreciate their driver contribution. 

Compared to cancer, sequencing screens of noncancer tissues are still in their 

infancy, as reflected by the lower numbers of screened tissues and detected drivers 

(Figure 2B). Despite this, some similarities and differences with cancer drivers could 

already be observed. Like cancer drivers (Figure 2E-F, Supplementary Table 5, 

Additional File 1), also healthy drivers were mostly organ-specific (Figure 2G) and 

the most recurrent healthy drivers were also cancer drivers in the same organ system 

(Figure 2H, Supplementary Table 5, Additional File 1). However, some recurrent 

cancer drivers (KRAS, PI3KCA, NRAS, NF1) were reported to drive noncancer clonal 

expansion only in one or two organ systems (Figure 2G). Therefore, differences start 

to emerge at the tissue level between drivers of cancer and noncancer evolution. 

Moreover, unlike cancer drivers, no correlation existed between numbers of drivers 

and donors (Figure 2I). This is likely affected by the lower number of noncancer 

sequencing studies available so far. If additional studies will confirm the absence of 

correlation, this may indicate that the healthy driver repertoire is easier to saturate 

since less drivers are needed to initiate and sustain noncancer clonal expansion 10,11.   
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Figure 2. Distribution of driver annotations by organ system 
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a. Correlation between numbers of sequenced donors and identified cancer drivers 

across organ systems. Spearman correlation coefficient R and associated p-value are 

shown. 

b. Number of canonical, candidate and healthy drivers in each organ system. 

Horizontal lines indicate the median number of canonical (92), candidate (160) and 

healthy (17) drivers across organ systems. 

c. Proportion of canonical drivers detected in each organ system over canonical 

drivers detected in all cancer screens (421). The horizontal line indicates the median 

across all organ systems (22%). 

d. Proportion of genes with noncoding driver alterations over all cancer drivers in each 

organ system. The horizontal line indicates the median across all organ systems (4%). 

Number of canonical (e), candidate (f) and healthy (g) drivers across screens and 

organ systems. Representative genes with different recurrence between cancer and 

healthy tissues are indicated. 

h. Organ system distribution of the top eight recurrent healthy drivers. The full list is 

provided as Supplementary Table 5, Additional File 1. 

i. Correlation between numbers of sequenced donors and identified healthy drivers 

across organ systems. Spearman correlation coefficient R and associated p-value are 

shown. 
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Alteration pattern hints at driver mode of action and confirms the 

incompleteness of the driver repertoire 

To gain further insights into their mode of action, we mapped the type of 

alterations acquired by cancer and healthy drivers in 34 cancer types from TCGA. 

After predicting the damaging alterations in 7953 TCGA samples with matched 

mutation, copy number and gene expression data (Methods), we identified the drivers 

with loss-of-function (LoF) and gain-of-function (GoF) alterations in these samples, 

respectively (Figure 3A).  

The comparison between canonical cancer drivers detected and undetected in 

sequencing screens (Figure 1D) revealed that the latter were damaged in a 

significantly lower number of samples, due to fewer LoF alterations (Figure 3B, 

Supplementary Figure 3A, Additional File 2). GoF alterations were instead 

comparable between the two groups, suggesting that current driver detection methods 

fail to identify drivers that undergo copy number gains but are rarely mutated. 

We confirmed that the driver alteration patterns reflected their mode of action, 

with canonical tumour suppressors and oncogenes showing a prevalence of LoF and 

GoF alterations, respectively (Figure 3C). Canonical drivers with a dual role 

resembled the alteration pattern of oncogenes while those still unclassified had a 

prevalence of LoF alterations, suggesting a putative tumour suppressor role (Figure 

3C). While all frequently altered (>500 samples) oncogenes were overwhelmingly 

modified by GoF alterations (Supplementary Table 6, Additional File 1), 16 of the 

22 most frequently altered tumour suppressors had a prevalence of GoF alterations 

(Figure 3D). In the majority of cases this was due to different alteration patterns across 

organ systems (Supplementary Figure 3B, Additional File 2) and a possible 

oncogenic role has been documented for some others 29,30,31,32,33,34,35,36,37,38.  
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Since candidate drivers had no annotation of their mode of action, we reasoned 

that their alteration pattern could hint at their role as tumour suppressors or 

oncogenes. According to their prevalent pancancer alterations, 1318 candidates could 

be classified as putative tumour suppressors and 1405 as putative oncogenes 

(Supplementary Table 6, Additional File 1). Interestingly, while candidates with 

predicted coding driver alterations showed similar distributions of LoF and GoF 

alterations (Figure 3E), those with only noncoding driver alterations had significantly 

lower occurrence of LoF alterations (Figure 3F, Supplementary Figure 3C, 

Additional File 2). This may suggest an activating role for their noncoding alterations 

too. Almost all candidates damaged in ≥500 samples (111/115) were putative 

oncogenes (Figure 3E, Supplementary Table 6, Additional File 1). Of the four 

putative tumour suppressors, CSMD3 has a disputed cancer role 39,40,41 and a likely 

inflated mutation rate 42, while CDKN2B cooperates with its paralog CDKN2A to inhibit 

cell cycle 43, supporting its tumour suppressor role.  

The number of damaged cancer drivers in individual TCGA samples confirmed 

that, despite all efforts, the current driver repertoire is still largely incomplete. The large 

majority of samples (71% and 87%, considering all drivers or only canonical drivers, 

respectively) had less than five damaged drivers and ~15% of them had no damaged 

driver (Figure 3G).  

Given their high overlap with cancer drivers, most healthy drivers were 

recurrently damaged in cancer samples with no prevalence of GoF or LoF alterations 

(Figure 3H, Supplementary Table 6, Additional File 1). Interestingly, all healthy 

drivers, even the eight with no cancer involvement, were damaged in significantly more 

cancer samples than the rest of human genes (Figure 3I). Moreover, 57% of TCGA 

samples had at least two altered drivers, one of which was a healthy driver, further 
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supporting the hypothesis that more than one driver may be needed to promote 

transformation of nonmalignant clones into cancer 10,11.   
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Figure 3. Damaging alteration pattern of drivers in TCGA 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.08.31.458177doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458177
http://creativecommons.org/licenses/by/4.0/


 16 

a. Identification of damaged drivers in 7953 TCGA samples. Mutations, gene deletions 

and amplifications were annotated according to their predicted damaging effect. This 

allowed to distinguish drivers acquiring loss-of-function (LoF) or gain-of-function (GoF) 

alterations.  

b. Number of TCGA samples with damaging alterations (all, LoF, GoF) in canonical 

drivers that were detected (421) or undetected (170) by cancer driver detection 

methods. 

c. Proportion of TCGA samples with GoF and LoF alterations in tumour suppressors, 

oncogenes and canonical drivers with a dual or unclassified role.  

Proportion of TCGA samples with GoF and LoF alterations in (d) canonical drivers and 

(e) candidate drivers. Genes mentioned in the text are highlighted. The two-

dimensional gaussian kernel density estimations were calculated for each driver group 

using the R density function.  

f. Number of TCGA samples with damaging alterations (all, LoF, GoF) in drivers 

previously reported in coding and noncoding sequences.  

g. Proportion of samples with variable numbers of all damaged drivers or only 

canonical drivers. 

h. Proportion of TCGA samples with GoF and LoF alterations in healthy drivers. 

Canonical and candidate healthy drivers correspond to genes with a known or 

predicted cancer driver role. 

i. Number of TCGA samples with damaged canonical, candidate and remaining 

healthy drivers and the rest of human genes.  

All distributions were compared using a two-sided Wilcoxon rank-sum test.   
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Properties of cancer and healthy drivers support their central role in the cell. 

A substantial body of work including our own 44,45,46,47,48,49,50,51,52,53 has shown 

that cancer drivers differ from the rest of genes for an array of systems-level properties 

(Figure 1A) that are consequence of their unique evolutionary path and role in the 

cell. Using our granular annotation of drivers, we set out to check for similarities and 

differences across driver groups.  

We confirmed that cancer drivers, and in particular canonical drivers, were more 

conserved throughout evolution and less likely to retain gene duplicates than other 

human genes (Figure 4A, Supplementary Table 7, Additional File 1). They also 

showed broader tissue expression, engaged in a larger number of protein complexes, 

and occupied more central and highly connected positions in the protein-protein and 

miRNA-gene networks (Figure 4A). We reported substantial differences between 

tumour suppressors and oncogenes, with the former enriched in old and single-copy 

genes showing broader tissue expression (Figure 4B, Supplementary Table 7, 

Additional File 1). 

We further expanded the systems-level properties of cancer drivers by exploring 

their tolerance towards germline variation, because this may indicate their essentiality. 

Using germline data from healthy individuals 54, we compared the loss-of-function 

observed/expected upper bound fraction (LOEUF) score, which quantifies selection 

towards LoF variation 54 as well as the number of damaging mutations and structural 

variants (SVs) per coding base pairs (bp) between drivers and the rest of genes 

(Methods). Cancer drivers, and in particular canonical drivers, had a significantly lower 

LOEUF score and retained fewer damaging germline mutations and SVs than the rest 

of genes (Figure 4A). This indicates that they are indispensable for cell survival in the 

germline. Selection against harmful variation was stronger in tumour suppressors than 
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oncogenes (Figure 4B). This was supported by a significantly higher proportion of cell 

lines where cancer drivers, and in particular tumour suppressors, were essential 

(Figure 4A-B), as gathered from the integration of nine genome-wide essentiality 

screens 55,56,57,58,59,60,61,62,63 (Methods).  

Genes with noncoding driver alterations had weaker systems-level properties 

than those with coding alterations (Figure 4C, Supplementary Table 7, Additional 

File 1) and the subset of them with >50% GoF alterations resembled the property 

profile of oncogenes when compared to tumour suppressors (Figure 4D, 

Supplementary Table 7, Additional File 1). In general, all candidate drivers with a 

prevalence of GoF were similar to oncogenes, showing higher proportion of duplicated 

genes, narrower tissue expression, and higher tolerance to germline variation than 

tumour suppressors (Figure 4E, Supplementary Table 7, Additional File 1). 

Conversely, candidate drivers with a prevalence of LoF were older, less duplicated 

and less tolerant to germline variation than oncogenes (Figure 4F, Supplementary 

Table 7, Additional File 1).  

Systems-level properties of healthy drivers varied according to the overlap with 

cancer drivers (Figure 4G, Supplementary Table 7, Additional File 1). Intriguingly, 

canonical healthy drivers showed stronger systems-level properties than any other 

group of drivers. In particular, they were enriched in evolutionarily conserved and 

broadly expressed genes encoding highly inter-connected proteins are regulated by 

many miRNA. Moreover, these genes showed a strong selection against germline 

variation and high enrichment in essential genes (Figure 4G). They therefore 

represent a core of genes with a very central role in the cell, whose modifications are 

not tolerated in the germline but are selected for in somatic cells because they confer 

selective growth advantages. Candidate healthy drivers and those not involved in 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.08.31.458177doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458177
http://creativecommons.org/licenses/by/4.0/


 19 

cancer had a substantially different property profile (Figure 4G). Although numbers 

are too low for any robust conclusion, it is tempting to speculate that genes able to 

initiate noncancer clonal expansion but not tumourigenesis may follow a different 

evolutionary path.  
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Figure 4. Systems-level properties of cancer and healthy drivers 
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Comparisons of systems-level properties between (a) canonical or candidate cancer 

drivers and the rest of human genes; (b) tumour suppressors and oncogenes, (c) 

cancer genes with coding driver alterations and cancer genes with noncoding driver 

alterations. The normalised property score was calculated as the normalised 

difference between the median (continuous properties) or proportion (categorical 

properties) values in each driver group and the rest of human genes (Methods). 

Comparisons of systems-level properties between (d) candidate oncogenes with 

noncoding driver alterations (324) and canonical tumour suppressors; (e) candidate 

oncogenes (1405) and canonical tumour suppressors; (f) candidate tumour 

suppressors (1318) and canonical oncogenes.  

g. Comparisons of systems-level properties between canonical healthy, candidate 

healthy and remaining healthy drivers and the rest of human genes. 

Proportions of old (pre-metazoan), duplicated, essential genes, and proteins involved 

in complexes were compared using a two-sided Fisher’s exact test. Distributions of 

gene and protein expression, protein-protein, miRNA-gene interactions, and germline 

variation were compared using a two-sided Wilcoxon rank-sum test. False discover 

rate (FDR) was corrected for using Benjamini-Hochberg.  
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The Network of Cancer Genes: an open-access repository of annotated drivers. 

We collected the whole repertoire of 3347 cancer and 95 healthy drivers, their 

literature support and properties in the seventh release of the Network of Cancer 

Genes and Healthy Drivers (NCGHD) database. NCGHD is accessible through an open-

access portal that enables interactive queries of drivers (Figure 5A) as well as the 

bulk download of the database content.  

In addition to the known or predicted mode of action and systems-level 

properties of cancer and healthy drivers, NCGHD 7.0 also annotates their function, 

alteration pattern and gene expression profile in TCGA and cancer cell lines, reported 

interactions with antineoplastic drugs and potential role as treatment biomarkers 

(Figure 5B). Altogether this constitutes an extensive compendium of annotation of 

driver genes, including information relevant for planning experiments involving them. 

Functional gene set enrichment analysis showed that at least 60% of enriched 

pathways (FDR <0.05) in any driver group converge to five broad functional processes 

(signal transduction, gene expression, immune system, cell cycle and DNA repair, 

Figure 5B, Supplementary Table 8, Additional File 1). Within these, tumour 

suppressors showed a prevalence in cell cycle and DNA repair pathways, while 

oncogenes were enriched in gene expression and immune system-related pathways 

(Supplementary Table 8, Additional File 1). Healthy drivers closely resembled the 

functional profile of cancer drivers, given the high overlap (Figure 5B). Because of the 

low number, it was not possible to assess the functional enrichment of healthy drivers 

not involved in cancer.  

More than 9% of canonical cancer drivers are targets of anti-cancer drugs and 

cancer drivers constitute around 40% of their targets (Figure 5C). Moreover, most of 

the genes used as biomarkers of resistance or response to treatment in cell lines 
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(Figure 5D) or clinical trials (Figure 5E) are cancer drivers, with an overwhelming 

prevalence of canonical cancer drivers.  

 

Figure 5. NCGHD annotations of driver genes 
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a. Example of the type of annotation provided in NCGHD for cancer and healthy drivers 

(in this case PTEN). Annotation boxes can be expanded for further details, with the 

possibility of intersecting data interactively (for example in the case of protein-protein 

or miRNA-gene interactions) and downloading data for local use. 

b. Proportion of Reactome levels 2-8 enriched pathways mapping to the respective 

level 1 in each driver group. Enrichment was measured comparing the proportion of 

drivers in each pathway to that of the rest of human genes with a one-sided Fisher’s 

exact test. FDR was calculated using Benjamini-Hochberg. The numbers of drivers 

and enriched Reactome pathways are reported for each group.  

Proportion of canonical and candidate cancer divers and rest of genes that are (c) 

targets of FDA approved antineoplastic drugs or biomarkers of response or resistance 

to oncological drugs in (d) cancer cell lines and (e) clinical studies. The corresponding 

numbers for each group are also shown.  
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DISCUSSION  

The wealth of cancer genomic data and the availability of increasingly 

sophisticated analytical approaches for their interpretation have substantially 

improved the understanding of how cancer starts and develops. However, our in-depth 

analysis of the vast repertoire of drivers that have been collected so far shows clear 

limits in the current knowledge of the driver landscape.  

The identification of drivers as genes under positive selection or with a higher 

than expected mutation frequency within a cohort of patients has biased the current 

cancer driver repertoire towards genes whose coding point mutations or small indels 

frequently recur across patients. This strongly impairs the ability to map the full extent 

of driver heterogeneity leading to an underappreciation of the driver contribution of 

rarely altered genes and those modified through noncoding or gene copy number 

alterations, particularly amplifications. It also results in a sizeable fraction of samples 

with very few or no cancer drivers. This gap can be solved by complementing cohort-

level approaches with methods that account for all types of alterations and predict 

drivers in individual samples, for example identifying their network deregulations 64,65,66 

or applying machine learning to identify driver alterations 67. Alternatively, we have 

shown that systems-level properties capture the main features of cancer drivers, 

justifying their use for patient-level driver detection 68,69. 

Our comprehensive study has also shown that cancer sequencing screens have 

so far mostly focused on resequencing and analysing the protein-coding portion of 

cancer genomes, leaving the contribution of noncoding drivers mostly uncovered. This 

bias may be addressed by performing additional cancer whole genome sequencing 

screens and improving analytical methods for the prediction of noncoding driver 

alterations. 
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Biases are starting to emerge also in the knowledge of healthy drivers. Many 

noncancer sequencing screens only targeted cancer genes and healthy driver 

detection methods used so far were originally developed for cancer genomics. Both 

these factors may contribute at least in part to explain the high overlap between drivers 

of cancer and noncancer evolution. An unbiased investigation of altered genes able to 

promote clonal expansion but not tumourigenesis could confirm whether their 

properties are indeed different from cancer drivers as suggested by our initial analysis 

on the few of them that have been identified so far. Additionally, the investigation of 

somatically mutated clones in noncancer tissues has just started and new screens are 

continuously published. The integrated analysis of these new studies will broaden our 

understanding of noncancer clonal expansion and further clarify its relationship with 

cancer transformation. 

Our literature review did not cover driver genes deriving from chromosomal 

rearrangements or epigenetic changes because of their scattered annotations in the 

literature and difficulty in mapping their properties. Adding these genes to the 

repertoire when their knowledge will be mature will help closing the gaps in the 

knowledge of the genetic drivers of tumourigenesis.  

 

CONCLUSIONS  

Our comprehensive analysis of cancer sequencing screens showed that the 

current repertoire of cancer driver genes is still incomplete and biased towards 

frequent mutations altering the gene coding sequence. This calls for the need of 

additional screens and methods to identify further coding and noncoding cancer 

drivers at single patient resolution. We confirmed the central role of cancer drivers 

within the cell, which is reflected in their evolutionary path and is shared by the majority 
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of known healthy drivers. Further sequencing screens of healthy tissues are needed 

to clarify whether this is a feature of all genes whose mutations can driver noncancer 

clonal expansion or there is a group of healthy drivers that underwent a different 

evolutionary path. 

 

METHODS 

Literature curation 

A literature search was carried out in PubMed, TCGA (https://www.cancer.gov/tcga) 

and ICGC (https://dcc.icgc.org/) to retrieve cancer screens published between 2018 

and 2020 (Supplementary Figure 1A, Additional File 2). This resulted in 135 coding 

and 154 noncoding cancer screens. Of these, only 80 and 37 were retained after 

examining abstracts and full text, respectively. Criteria for removal were absence of 

driver genes or driver detection methods and the impossibility to map noncoding driver 

alterations to genes. The 37 new cancer screens were added to 273 publications 

previously curated by our team 70, totalling 310 publications (Supplementary Table 

1, Additional File 1). A similar literature search retrieved 24 sequencing screens of 

noncancer tissues publications, 18 of which were retained after abstract and full-text 

examination (Supplementary Figure 1A, Additional File 2; Supplementary Table 

1, Additional File 1). Each paper was reviewed independently by two experts and 

further discussed if annotations differed to extract the list of driver genes, the number 

of donors, the type of screen (whole genome, whole exome, target gene 

resequencing), the cancer or noncancer tissues and the driver detection method 

(Supplementary Figure 1B, Additional File 2).  

Canonical cancer drivers were extracted from two publications 17,18 and the 

Cancer Gene Census 71 v.91. In the latter case, all Tiers 1 and 2 genes were retained, 
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except those from genomic rearrangements leading to gene fusion (Supplementary 

Figure 1B, Additional File 2). Collected genes were further classified as tumour 

suppressor, oncogene or having a dual role according to the annotation in the majority 

of sources. Genes with conflicting or unavailable annotation were left unclassified. 

Drivers from cancer screens and canonical sources underwent further filtering 

(Supplementary Figure 1C, Additional File 2). First, they were intersected with a list 

of 148 possible false positives 18,42. After manual check of the supporting evidence, 

two drivers were retained as canonical, five were considered as candidates, and 41 

were removed (Supplementary Table 2, Additional File 1). The three resulting lists 

(canonical drivers, drivers from cancer screens and healthy drivers) were intersected 

to annotate canonical drivers in cancer screens, remaining drivers in cancer screens 

(candidate cancer drivers), canonical healthy drivers, candidate healthy drivers, and 

remaining healthy drivers (Supplementary Figure 1C, Additional File 2; 

Supplementary Table 3, Additional File 1).  

Cancer types and noncancer tissues were mapped to organ systems using 

previous classification 72. Cancer types not included in this classification were mapped 

based on their histopathology (retinoblastoma to central nervous system; vascular and 

peripheral nervous system cancers to soft tissue; penile tumours to urologic system).  

 

Pancancer TCGA data  

A dataset of 7953 TCGA samples with quality-controlled mutation (SNVs and indels), 

copy number and gene expression data in 34 cancer types was assembled from the 

Genomic Data Commons portal l 73 (https://portal.gdc.cancer.gov/). Mutations were 

annotated with ANNOVAR 74 (April 2018) and dbNSFP 75 v3.0 and only those identified 

as exonic or splicing were retained. Damaging mutations included (1) truncating 
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(stopgain, stoploss, frameshift) mutations; (2) missense mutations predicted by at 

least seven out of 10 predictors (SIFT 76, PolyPhen-2 HDIV 77, PolyPhen-2 HVAR, 

MutationTaster 78, MutationAssessor 79, LRT 80, FATHMM 81, PhyloP 82, GERP++RS 

83, and SiPhy 84); (3) splicing mutations predicted by at least one of two splicing-

specific methods (ADA 75 and RF 75) and (4) hotspot mutations identified with 

OncodriveCLUST 85 v1.0.0. 

Copy Number Variant (CNV) segments, sample ploidy and sample purity values 

were obtained from TCGA SNP arrays using ASCAT 86 v.2.5.2. Segments were 

intersected with the exonic coordinates of 19756 human genes in hg19 and genes 

were considered to have CNV if at least 25% of their transcribed length was covered 

by a CNV segment. RNA-Seq data were used to filter out false positive CNVs. Putative 

gene gains were defined as copy number (CN) >2 times sample ploidy and the levels 

of expression were compared between samples with and without each gene gain using 

a two-sided Wilcoxon rank-sum test and corrected for multiple testing using Benjamini-

Hochberg. Only gene gains with false discover rate (FDR) <0.05 were retained. 

Homozygous gene losses had CN = 0 and Fragments Per Kilobase per Million (FPKM) 

values <1 over sample purity. Heterozygous gene losses had CN = 1 or CN = 0 but 

FPKM values >1 over sample purity. This resulted in 2192832 redundant genes 

damaged in 7921 TCGA samples.  

In total, 518115 genes were considered to acquire LoF alterations because they 

underwent homozygous deletion or had truncating, missense damaging, splicing 

mutations, or double hits (CN = 1 and LoF damaging mutation), while 1674717 genes 

were considered to acquire GoF alterations because they had a hotspot mutation or 

underwent gene gain with increased expression (Figure 3A). 
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Systems-level properties 

Protein sequences from RefSeq 87 v.99 were aligned to hg38 using BLAT 88. Unique 

genomic loci were identified for 19756 genes based on gene coverage, span, score 

and identity 89. Genes sharing at least 60% of their protein sequence were considered 

as duplicates 46.  

Evolutionary conservation was assessed for 18922 human genes using their 

orthologs in EggNOG 90 v.5.0. Genes were considered to have a pre-metazoan origin 

(and therefore conserved in evolution) if they had orthologs in prokaryotes, 

eukaryotes, or opisthokonts 53.  

Gene expression for 19231 genes in 49 healthy tissues was derived from the 

union of Protein Atlas 91 v.19.3 and GTEx 92 v.8. Genes were considered to be 

expressed in a tissue if their expression value was ≥1 Transcript Per Million (TPM). 

Protein expression for 13229 proteins in 45 healthy tissues was derived from Protein 

Atlas 91 v.19.3 retaining the highest value when multiple expression values were 

available.  

A total of 542397 nonredundant binary interactions between 17883 proteins were 

gathered from the integration of five sources (BioGRID 93 v.3.5.185, IntAct 94 v.4.2.14, 

DIP 95 (February 2018), HPRD 96 v.9 and Bioplex 97 v.3.0). Data on 9476 protein 

complexes involving 8504 proteins were derived from CORUM 98 v.3.0, HPRD 96 v.9 

and Reactome 99 v.72. Experimentally supported interactions between 14747 genes 

and 1758 miRNAs were acquired from miRTarBase 100 v.8.0 and miRecords 101 v.4.0. 

Degree, betweenness and clustering coefficient were calculated for protein and 

miRNA networks using the igraph R package 102 v.1.2.6. 

The loss-of-function observed/expected upper bound fraction (LOEUF) score for 

18392 genes was obtained from gnomAD 54 v.2.1.1. Germline mutations (SNVs and 
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indels) were obtained from the union of 2504 samples from the 1000 Genomes Project 

Phase 3 103 v.5a and 125748 samples from gnomAD 54 v.2.1.1. Mutations were 

annotated with ANNOVAR 74 (October 2019) and 18812 genes were considered as 

damaged using the same definitions as for TCGA samples. A total of 32558 germline 

SVs for 14158 genes were derived using 15708 samples from gnomAD 54 v.2.1.1. The 

numbers of damaging mutations and SVs per base pairs (bp) were calculated for each 

gene. 

Essentiality data for 19013 genes in 1122 cell lines were obtained integrating 

three RNAi knockdown and six CRISPR Cas9 knockout screens 55,56,57,58,59,60,61,62,63. 

Genes with CERES 57 or DEMETER 63 scores <-1 or Bayes score 104 >5 were 

considered as essential.  

Proportions of duplicated, pre-metazoan, essential genes and proteins engaging 

in complexes were compared between gene groups using two-sided Fisher’s exact 

test. Distributions of tissues where genes or proteins were expressed, protein and 

miRNA network properties, LOEUF scores, damaging mutations and SVs per bp were 

compared between gene groups using a two-sided Wilcoxon test. Multiple 

comparisons within each property were corrected using Benjamini-Hochberg. For 

each systems-level property in each driver group (d) a normalised property score was 

calculated as:  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑	𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦	𝑠𝑐𝑜𝑟𝑒 = 	sgn(Δ6) ×
|Δ6| − min= |Δ=|

max
=
|Δ@| − min= |Δ=|

 

where t represents 11 gene groups (canonical drivers, candidate drivers, tumour 

suppressors, oncogenes, drivers with coding alterations, drivers with noncoding 

alterations, canonical healthy drivers, candidate healthy drivers, remaining healthy 

drivers and rest of human genes); sgn(Δ6) is the sign of the difference; and Δ6 
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indicates the difference of medians (continuous properties) or proportions (categorical 

properties) between each driver group and the rest of human genes.	Minima and 

maxima were taken over all 11 gene groups for each property. 

 

Pancancer cell line data 

Mutation, CNV and gene expression data for 1291 cell lines were obtained from 

DepMap 56,105 v. 20Q3. Mutations were functionally annotated using ANNOVAR 74 and 

LoF mutations were identified as described for TCGA samples. Hotspot mutations 

were detected using hotspot positions derived from TCGA. Homozygous gene 

deletions were defined as CN <0.25 times cell line ploidy and expression <1 TPM; 

heterozygous gene deletions were defined as 0.25< CN<0.75 times cell line ploidy; 

gene gains were defined as CN >2 times cell line ploidy and significantly higher 

expression relative to cell lines with no gene gains. Genes with LoF or GoF alterations 

were defined as for TCGA samples. To map cell lines to organ systems, they were 

first associated with the TCGA cancer types and then the same classification as for 

TCGA was used 72. 

 

Driver functional annotation 

Gene functions were collected for 11778 proteins from Reactome 99 v.72 and KEGG 

106 v.94.1 (level 1 and 2). Driver enrichment in Reactome pathways (levels 2-8) 

compared to the rest of human genes was assessed using a one-sided Fisher’s exact 

test and corrected for multiple testing with Benjamini-Hochberg. Enriched pathways 

were then mapped to the corresponding Reactome level 1. 

 

Drug interactions 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.08.31.458177doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458177
http://creativecommons.org/licenses/by/4.0/


 33 

A total of 247 FDA approved, antineoplastic and immunomodulating drugs targeting 

212 human genes were downloaded from DrugBank 107 v.5.1.8. Genetic biomarkers 

of response and resistance to drugs in cancer cell lines were obtained from Genomics 

of Drug Sensitivity in Cancer (GDSC) 108 v.8.2. Of those, only 467 associations with 

FDR ≤0.25 involving 129 drugs and 106 genes were retained. Genetic biomarkers of 

response and resistance in clinical studies were obtained from the Variant 

Interpretation for Cancer Consortium Meta-Knowledgebase 109 v.1. A total of 868 

associations between drugs and genomic features involving 64 anti-cancer drugs and 

drug combinations and 24 human genes were retained 109. 

 

Database and website implementation 

All annotations of driver genes were entered into a relational database based on 

MySQL 110 v.8.0.21 connected to a web interface enabling interactive retrieval of 

information through gene identifiers. The frontend was developed with PHP 111 

v.7.4.15. The interactive displays of miRNA-gene and protein-protein interactions were 

implemented with the R packages Shiny 112 v.1.6.0 and igraph 102 v.1.2.6 and ran on 

Shiny Server v1.5.16.958. 
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The whole content of NCGHD can be freely downloaded from the website 

(http://network-cancer-genes.org/). No license is required. All the custom scripts used 

for the study are available upon request.  

Original data were obtained from the following online sources: 

1000 Genomes Project Phase 3 103 v.5a: 

https://www.internationalgenome.org/category/phase-3/ 

BioGRID 93 v.3.5.185: https://thebiogrid.org/ 

Bioplex 97 v.3.0: https://bioplex.hms.harvard.edu/interactions.php 

CORUM 98 v.3.0: http://mips.helmholtz-muenchen.de/corum/} 

Depmap 59,60 v20Q3: https://depmap.org/portal/ 

DIP 95 (February 2018): https://dip.doe-mbi.ucla.edu/dip/Main.cgi 

DrugBank 107 v.5.1.8: https://go.drugbank.com/ 

EggNog 90 v.5: http://eggnog5.embl.de/#/app/home 

GDSC 108 v.8.2: https://www.cancerrxgene.org/ 

GnomAD 54 v.2.1.1: https://gnomad.broadinstitute.org/ 

GTEx 92 v.8: https://gtexportal.org/home/ 

HPRD 96 v.9: https://www.hprd.org/ 

IntAct 94 v.4.2.14: https://www.ebi.ac.uk/intact/home 

KEGG 106 v.94.1: https://www.genome.jp/kegg/ 

Meta-KB 109 v.1: https://cancervariants.org/ 

MiRecords 101 v.8.0: http://c1.accurascience.com/miRecords/ 

MiTarBase 100 v.4.0: 

https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php 

NCI Genomics Data Commons Portal 73: https://gdc.cancer.gov/ 

PICKLES 61: https://pickles.hart-lab.org/ 
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Protein Atlas 91 v.19.3: https://www.proteinatlas.org/ 

Reactome 99 v.72: https://reactome.org/ 

RefSeq 87 v.99: https://www.ncbi.nlm.nih.gov/refseq/ 
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