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In-vitro studies of autosomal dominant Alzheimer’s disease implicate longer amyloid-beta
peptides in pathogenesis, however less is known about the behaviour of these mutations in-
vivo. In this cross-sectional cohort study, we used liquid chromatography-tandem mass
spectrometry to analyse 66 plasma samples from individuals who were at-risk of inheriting a
pathogenic mutation or were symptomatic. We tested for differences in plasma amyloid-
betad2:38, 42:40 and 38:40 ratios between presenilinl and amyloid precursor protein
carriers. We examined the relationship between plasma and in-vitro models of amyloid-beta
processing and tested for associations with parental age at onset. 39 participants were
mutation carriers (28 presenilinl and 11 amyloid precursor protein). Age- and sex-adjusted
models showed marked differences in plasma amyloid-beta between genotypes: higher
amyloid-beta42:38 in presenilinl versus amyloid precursor protein (p<0.001) and non-
carriers (p<0.001); higher amyloid-beta38:40 in amyloid precursor protein versus presenilinl
(p<0.001) and non-carriers (p<0.001); while amyloid-beta42:40 was higher in both mutation
groups compared to non-carriers (both p<0.001). Amyloid-beta profiles were reasonably
consistent in plasma and cell lines. Within presenilinl, models demonstrated associations
between amyloid-beta42:38, 42:40 and 38:40 ratios and parental AAQ. In-vivo differences in
amyloid-beta processing between presenilinl and amyloid precursor protein carriers provide

insights into disease pathophysiology, which can inform therapy development.
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INTRODUCTION

Understanding Alzheimer’s disease (AD) pathogenesis is critical to realising disease-
modifying treatments. Autosomal dominant Alzheimer’s disease (ADAD), caused by
mutations in presenilin 1/2 (PSENL1/2) or amyloid precursor protein (APP), is a valuable

model for characterising the molecular drivers of AD (Ryan et al., 2016).

PSEN1, the catalytic subunit of y-secretase, sequentially cuts APP: initial endopeptidase
cleavage generates an amyloid-beta (AB) peptide, either AB49 (major product) or A48
(minor product) (Sato et al., 2003). Subsequent proteolysis largely occurs down two
pathways: AB49>46>43>40 or AP48>45>42>38 (Takami et al., 2009). As ApP49 is the
predominant endopeptidase cleavage product, normal APP processing largely leads to Ap40
formation (Sato et al., 2003). Pathogenic ADAD mutations alter APP processing resulting in
more, and/or longer, aggregation prone, Ap peptides, which accelerate cerebral amyloid
accumulation leading to typical symptom onset in 30s to 50s (Bateman et al., 2012; Chavez-

Gutiérrez et al., 2012).

Both APP and PSEN1/2 mutations increase production of longer (e.g. Ap42) relative to
shorter (e.g. Ap40) peptides (Chavez-Gutiérrez et al., 2012). However, there are intriguing
inter-mutation differences in AB profiles. PSEN1 mutant lines produce increased AR42:38
ratios reflecting impaired y-secretase processivity (Chavez-Gutiérrez et al., 2012; Arber et
al., 2019). In contrast, APP mutations at the y-secretase cleavage site increase Ap38:40
ratios, consistent with preferential processing down the AB48 pathway (Arber et al., 2019).
To date, studies examining the influence of ADAD genotypes on A ratios in-vivo have been

lacking.
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Increasingly sensitive mass spectrometry-based assays now make it possible to measure
concentrations of different A moieties in plasma (Schindler et al., 2019a). Therefore, we
aimed to analyse plasma A levels in an ADAD cohort, explore influences of genotype and
clinical stage, and examine relationships between ratios and both age at onset (AAO) and
estimated years to/from symptom onset (EYQO), while also assessing consistency with in-vitro
models of AP processing.

METHODS

Study design and participants

We recruited 66 participants from UCL’s longitudinal ADAD study; details described
previously (Ryan et al., 2016). Samples were collected from August 2012 to July 2019 and
concomitantly a semi-structured health questionnaire and clinical dementia rating (CDR)
scale were completed (Morris, 1993). EYO was calculated by subtracting parental AAO from
the participant’s age. Participants were defined as symptomatic if global CDR was >0.
ADAD mutation status, determined using Sanger sequencing, was provided only to
statisticians, ensuring blinding of participants and clinicians. The study had local Research
Ethics Committee approval; written informed consent was obtained from all participants or a
consultee.

M easurement of plasma Ap levels

EDTA plasma samples were processed, aliquoted, and frozen at —80°C according to
standardised procedures and shipped frozen to the Clinical Neurochemistry Laboratory,
Sahlgrenska University Hospital, for analysis blinded to participants’ mutation status and
diagnosis. Samples were analysed using a liquid chromatography-tandem mass spectrometry
(LC-MS/MS) method using an optimized protocol for immunoprecipitation for improved

analytical sensitivity (Appendix 1, Supplementary Fig. 1) (Pannee et al., 2014). Pooled
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plasma samples were used to track assay performance; intra- and inter-assay coefficients of
variation were <5%.

Correlation of AB ratiosin plasma and in induced pluripotent stem cell (iPSC) neurons

A sub-study investigated the consistency of A profiles between plasma and iPSC-derived
neurons. AP profiles were compared based on mutation for 8 iPSC-lines; data from 6 iPSC-
lines previously reported (Arber et al., 2019). Mutations tested were APP V7171 (n=2),
PSENL1 Intron 4 (n=1), Y115H (n=1), M139V (n=1), R278I (n=1) and E280G (n=2). Plasma
and iPSC samples were from the same participant or, where matched plasma was unavailable,
plasma from a carrier of the same mutation, and if possible a family member. Ap42:40,
AB38:40 and Ap42:38 ratios were normalised by taking the ratio of the median ratio in
controls for each experimental setting (n=27 non-carriers for plasma, n=5 iPSC controls lines

from non-ADAD families) (ratio values Supplementary Table 1).

iPSC-neuronal AB was quantified as previously reported (Arber et al., 2019). Briefly, iPSCs
were differentiated to cortical neurons for 100 days and then 48 hour-conditioned culture
supernatant was centrifuged removing cell debris. AP was analysed via
electrochemiluminescence on the MSD V-Plex ApB peptide panel (6E10), according to

manufacturer’s instructions.

Statistical analysis

Summary descriptive statistics were calculated by mutation type (PSEN1, APP, non-carriers)
and box plots produced for AB42:38, AB38:40 and AB42:40 ratios. Box plots were presented
by mutation type (PSEN1 vs APP vs non-carriers), and then individually for PSEN1 and APP

carriers by clinical stage (presymptomatic vs symptomatic vs non-carriers) (Fig. 1). AB ratios


https://doi.org/10.1101/2021.02.11.430756
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.11.430756; this version posted February 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

are displayed on logarithmic scales. Age- and sex-adjusted differences were estimated
between mutation type for each ratio; as were differences by clinical stage for each ratio,
separately for APP and PSENL1 carriers. These comparisons were made using mixed models
including random intercepts for clusters comprising individuals from the same family and
group, with random intercept and residual variances allowed to differ for the groups being
compared. Pairwise comparisons were only carried out if a joint test provided evidence of
differences. Ratios were log-transformed; estimated coefficients were back-transformed to

multiplicative effects.

The relationship between parental AAO, EYO and age (EYO = age — AAO) means that it is
not possible to estimate separate effects of AAO and EYO on A ratios adjusting for age
using a conventional statistical analysis: if age is held constant then a one-year increase in
AAO implies a one year decrease in EYO and vice versa, hence their effects are aliased.
However the aim here should be to allow for ‘normal ageing’ (as observed in non-carriers),
and this is possible. For each combination of mutation carrier group (PSEN1 and APP) and
AP ratio a separate mixed model was fitted jointly to the carrier group and the non-carrier
group. Each model allowed the logarithm of the A ratio to depend on AAO, EYO and sex
(but not age) in the carrier group, and on just sex and age (estimating ‘normal ageing’) in the
non-carrier group. Random effects were included as in the between group comparisons
above. In the carrier group the effect of AAO adjusted for EYO, sex and (non-carrier)
‘normal ageing’ was obtained by subtracting the ‘normal ageing’ effect from the AAO effect
(adjusted for sex and EYQ). Analogously the effect of EYO adjusted for AAO, sex and
‘normal ageing’ was obtained by subtracting the ‘normal ageing’ effect from the EYO effect
(adjusted for sex and AAO) in the carrier group. For Ap42:38 in PSENL carriers there was

evidence also to include a quadratic term for parental AAO. For each analysis the estimated
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geometric mean ratio (and 95% confidence interval) was plotted against parental AAO,
standardising to an equal mix of males/females, an EYO of 0 (i.e. the point of symptom
onset), and adjusted for ‘normal ageing’ relative to age 43 (the average age of mutation
carriers). Analogous plots of estimated geometric mean ratio (and 95% confidence interval)
against EYO were standardised to an equal mix of males/females, an AAO of 43 (average

age of mutation carriers), and adjusted for ‘normal ageing’ relative to age 43.

Spearman correlation coefficients were calculated to assess the association between plasma

and iPSC-neuron Ap ratios.

Analyses were performed using Stata v16.

Data availability

Data are available upon reasonable request from qualified investigators, adhering to ethical
guidelines.

RESULTS

Demographic and clinical characteristics are presented in Table 1: 27 non-carriers; 39

mutation carriers (28 PSEN1, 11 APP); Supplementary Table 2 gives mutation details.

Age- and sex-adjusted models showed marked differences in plasma Ap between PSEN1 and
APP carriers. The geometric mean of Ap42:38 was higher in PSEN1 compared to both APP
carriers (69% higher, 95%CI 39%, 106%; p<0.001) and non-carriers (64% higher, 95%ClI
36%, 98%; p<0.001), while there was no evidence of a difference between APP carriers and

non-carriers (p= 0.60) (Fig. 1A).
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Plasma Ap42:40 was raised in both PSEN1 and APP; compared to non-carriers the adjusted
geometric mean was 31% higher (95%CI 16%, 49%; p<0.001) in PSEN1 and 61% higher
(95%CI 44%, 80%; p<0.001) in APP (Fig. 1D). There were also inter-mutation differences in
AP42:40: the geometric mean was 22% higher (95%CI 8%, 38%; p=0.001) in APP compared

to PSENL1 carriers.

The geometric mean of AB38:40 was higher in APP carriers compared to both PSEN1
carriers (101% higher, 95%CI 72%, 135 %; p<0.001) and non-carriers (61% higher, 95%ClI
41%, 84%; p<0.001) (Fig. 1G). While in PSEN1, AB38:40 was reduced compared to non-

carriers (geometric mean 20% lower, 95%CI 10%, 29%, p<0.001).

For AB42:40 ratios, group differences remained significant when separately comparing non-
carriers to (i) presymptomatic (18% higher, 95% CI 3%, 36%, p=0.02) and symptomatic
(47% higher, 95% CI1 23%, 76%, p<0.001) PSENL1 carriers, and to (ii) presymptomatic (62%
higher, 95% CI 44%, 82%, p<0.001) and symptomatic (62% higher, 95% CI 37%, 92%,
p<0.001) APP carriers (Figs. 1E, 1F). Within PSEN1, the geometric mean of Ap42:40 was
also 24% higher (95%CI 2%, 52%; p=0.03) in symptomatic compared to presymptomatic
carriers (Fig. 1E). There were no statistically significant differences between presymptomatic
and symptomatic PSEN1 carriers in AB42:38 (p=0.11; Fig 1B) or AB38:40 (p=0.54; Fig. 1H).
Additionally, no significant differences were observed in the AB42:40, AB42:38 or AB38:40
ratios between presymptomatic and symptomatic APP carriers (all p values>0.50) (Fig. 1C,

1F, 11).

Using models that adjusted for sex, EYO and ‘normal ageing’, we found significant

associations between all three ratios and parental AAO in PSENL carriers (all p-values <0.03)
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(Fig. 2). Higher AB42:38 and AB42:40 ratios were associated with earlier parental onset,
while higher AB38:40 was associated with a later disease onset. For Apf42:38 we included a
quadratic term (p=0.003), which resulted in the estimated rate of change of A342:38 reducing
as parental AAQ increased; a one-year increase in parental AAO was associated with a 9.4%
decrease (95% CI: 5.3%,13.3%; p<0.001) in the geometric mean of AB42:38 at age 35
compared a 4.4% decrease (95% CI: 2.9%, 5.9%; p<0.001) in the same measure at age 45.
For both AB42:40 and AB38:40, the association with parental AAO was estimated to be
constant across the age range investigated, a one-year increase in parental AAO was
associated with a 1.6% decrease (95% ClI: 0.2%, 3.1%; p=0.03) in AB42:40 and a 1.7%
increase (95% CI: 0.4%, 3.0%; p=0.008) in the AB38:40. In APP carriers, there were no
significant associations between AB42:40, AB42:38 or AB38:40 and parental AAO (all p-

values >0.18; Supplementary Fig. 2).

In PSEN1 and APP carriers, models that adjusted for sex, parental AAO and ‘normal ageing’
did not find any significant association between either Ap42:40, Ap42:38 or Ap38:40 and
EYO (Supplementary Figs. 3,4) (p>0.06). However, in APP carriers there was weak evidence
of an association between AB42:40 and EYO: a one-year increase in EYO was associated
with a 0.8% decrease (95% CI: 1.6% decrease, 0.0% increase, p=0.06) in the geometric mean

of Ap42:40.

AP ratios in plasma and iPSC-conditioned media were highly associated for both AB42:40
(rho=0.86, p=0.01) and AB38:40 (rho=0.79, p=.02), somewhat less so for Ap42:38 (rho=0.61,
p=0.10 (Fig. 3). While we did not observe perfect agreement in the ApB42:38 ratio between

plasma and iPSC lines (shown by solid line, Fig. 3), the direction of change in this ratio, i.e.
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either increased or decreased when compared to controls, was largely consistent across

media.

DISCUSSION

In this study we found increases in plasma Ap42:40 in both APP and PSENL1 carriers
compared to non-carriers and marked differences in AP ratios between genotypes: Ap42:38
was higher in PSEN1 vs. APP, AB38:40 was higher in APP vs. PSEN1. Importantly, more
aggressive PSEN1 mutations (those with earlier ages of onset) had higher AB42:40 and

AP42:38 ratios — in-vivo evidence of the pathogenicity of these peptide ratios.

These results offer insights into the pathobiology of ADAD and differential effects of
APP/PSENL1 genotype. Increased AB42:38 in PSEN1 may be attributed to reduced conversion
of Ap42 (substrate) to 38 (product) relative to non-carriers — in contrast APP carriers showed
near identical AB42:38 ratios compared to non-carriers. Strikingly, increases in Ap42 relative
to shorter AB moieties (<40) were associated with earlier disease onset in PSENI1.
Importantly there were no associations between AP ratios and EYO in PSEN1 carriers,
suggesting these ratios represent molecular drivers of disease as opposed to being markers of
disease stage. Our in-vivo results recapitulate cell-based findings of reduced efficiency of y-
secretase processivity in PSEN1 (Szaruga et al., 2015, 2017; Arber et al., 2019); inefficiency
attributed to impaired enzyme-substrate stability causing premature release of longer AB

peptides (Szaruga et al., 2017).

Parental AAO is an indicator of disease severity, with a younger AAO implying a more
deleterious mutation. In PSEN1 AB42:38 (a read-out of the efficiency of the fourth y-

secretase cleavage) showed a deceleration in the rate of change as parental AAO increases.

10
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This further supports the central pathogenic role of y-secretase processivity in ADAD,

especially in younger onset, aggressive forms of PSENL.

In APP, production of AB38 relative to AB40 was increased. This is consistent with a shift in
the site of endopeptidase-cleavage causing increased generation of AB48; the precursor
substrate in the AB38 production line. Our study included APP mutations located near the y-
secretase cleavage site. Previous cell-based work involving mutations around this site also
demonstrated increased trafficking along the AB48 pathway (Chavez-Gutiérrez et al., 2012,
Szaruga et al., 2017; Arber et al., 2019). In contrast, APP duplications or mutations near the
beta-secretase site are associated with non-differential increases in Ap production (Hunter

and Brayne, 2018).

Changes in AB38:40 were also seen in PSENL1 carriers; levels were reduced compared to both
APP carriers and non-carriers. Declines in AB38:40 may reflect mutation effects on
endopeptidase cleavage and/or y-secretase processivity; changes in both processes have been
described in in-vitro studies of PSEN1 (Fernandez et al., 2014; Arber et al., 2019). Premature
release of longer (>AB43) peptides may contribute to falls in AB38:40; both increasing AB
length and pathogenic PSEN1 mutations are associated with destabilisation of the enzyme-
substrate complex (Szaruga et al., 2017). It will be important for future research to
investigate the exact molecular drivers of declines in Ap38:40 in PSEN1, especially as lower

levels were associated with earlier disease onset.

We also saw inter-stage differences in APP processing; ApB42:40 was higher in symptomatic
compared to presymptomatic PSEN1 carriers. The reason for this is unclear and should be

treated cautiously given small group sizes and the absence of inter-stage differences in

11
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AB42:40 amongst APP carriers. However, post-symptomatic increases in plasma AB42 have
been reported in Down syndrome (Fortea et al., 2020). It is possible that downstream
pathogenic consequences of ADAD, such as cerebral amyloid angiopathy, may interact with,
and modify, plasma levels. Additionally, as Ap is produced peripherally in organs, muscle

and platelets, systemic factors may contribute to inter-stage differences (Wang et al., 2017).

Our results support the hypothesis that ADAD mutations increase in-vivo production of
longer AP peptides (Ap>42) relative to AB40. This is consistent with cell- and blood-based
studies in ADAD (Reiman et al., 2012; Szaruga et al., 2015). Additionally, we showed
plasma AP profiles were recapitulated in iPSC-media with consistent profiles for the same
mutation. There is some evidence that Ap42:40 ratios also increase in the CSF of mutation
carriers far from onset, however CSF levels then fall significantly during the two decades
before symptom onset; reductions are attributed to “trapping” of longer peptides within
cerebral plaques (Potter et al., 2013, Schindler et al., 2019b). In sporadic AD CSF, as well as
plasma, AB42:40 levels also fall as cerebral amyloid plaques start to accumulate, with ratio
levels remaining low thereafter (Palmgvist et al., 2019). In contrast, we show that plasma
APB42:40 in both APP and PSEN1 carriers was raised and did not fall below non-carriers
levels, either before or after symptom onset. Taken together, these findings suggest that

plasma A ratios in ADAD are less susceptible to the effects of sequestration.

Study limitations include the small sample size, due to the rarity of ADAD, however we
included a reasonably wide array of mutations. Secondly, ages at onset were estimated from
parental AAO, while this offers a reasonable estimate there is variability within families and
imprecision in determining AAO in a preceding, often deceased, generation (Pavisic et al.,

2020). Finally, future studies should measure A moieties longer than AB42, and also

12
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investigate interactions between central and peripheral A production (we lacked paired

CSF).

In conclusion, we demonstrate the impact of pathogenic ADAD mutation on APP processing
in-vivo. We show marked inter-mutation difference in Ap profiles, with relative increases in
longer peptides being associated with earlier disease onset. Our findings suggest that plasma
Ap ratios in ADAD may be useful biomarkers of APP processing. This is especially
important as we enter an era of gene silencing therapies, and personalised medicine, where

direct read-outs of gene function will be particularly valuable.
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Figure 1: Box plots for observed plasma A ratios. Plasma (1A-C) AB42:38, (1D-F) Ap42:40
and (1G-1) AB38:40 ratios are shown with the y-axis on a logarithmic scale. Mutation carriers
were divided into (1A, 1D, 1G) APP and PSEN1 carriers and non-carriers; (1B, 1E, 1H) PSEN1
presymptomatic and symptomatic mutation carriers and non-carriers and (1C, 1F, 11) APP
presymptomatic and symptomatic mutation carriers and non-carriers. Boxes show the
median and first and third quartiles. Dots represent individual observations.
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Figure 2: Plasma AP ratios against parental AAO in PSEN1 carriers.

Scatter plots of observed plasma (A) AB42:38 (C) AB42:40 and (E) AB38:40 values against
parental age at onset (AAO). Symptomatic mutation carriers are identified by square
symbols and presymptomatic mutation carriers by triangle symbols.

Modelled geometric mean of plasma (B) AB42:38 (D) AB42:40 and (F) AB38:40 against
parental AAO in PSEN1 carriers; models adjust for EYO, sex and ‘normal ageing’ in non-
carriers. The trajectories displayed contain an equal mix of males/females and are adjusted
for ‘normal ageing’ relative to age 43 (the average age of mutation carriers). EYO is set at O,
i.e. point of symptom onset, in all three trajectory plots.

The y-axis scale is logarithmic in all panes.
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Figure 3: Comparison of AB processing in-vivo and in-vitro. Scatterplot comparing AB ratios
profiles in plasma and iPSC derived neurons for eight mutation carriers. One to one
comparison of AP ratios normalised to the median of controls for each experimental setting
(n=27 non-carrier controls for plasma, n=5 iPSC lines from controls who were not members
of ADAD families); values >1 indicate higher ratio in mutation carrier compared to median of
controls whereas values <1 indicate lower ratio in mutation carrier compared to median of
controls. Matched samples (plasma and iPSC samples donated by the same donor) are
identified with triangle symbols. Unmatched samples (plasma and iPSC samples donated by
different participants who carry the same mutation, and where possible are members of the
same family) are identified by square symbols. The y-axis scale is logarithmic in all panes.
Spearman rho and the associated p-value are shown for each scatter plot. The line displayed
on each scatterplot represents line of perfect agreement i.e. x=y.
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Table 1: Baseline characteristics (N=66)

Non-carrier APP PSEN1
N=27 N=11 N=28
Sexa, n (%)
Female 16 (59%) 3 (27%) 15 (54%)
Male 11 (41%) 8 (73%) 13 (46%)
Ageb, years
(mean (SD)) 39.6 (10.4) 46.5 (12.5) 43.0 (8.7)
Stage n (%)c
: 6 (54.6% 15 (53.6%
Presymptomatic N/A 5 §45.4%; 13 246.4%;

Symptomatic

AB 1-424

(pg/ml)
(median (IQR))

20.3 (18.3, 24.5)

29.5 (24.2, 36.0)

26.3 (14.7, 32.3)

AB 1-40°

(pg/ml)
(median (IQR))

225.7 (212.2, 246.1)

214.0 (174.5, 232.8)

221.5 (146.5, 252.2)

AB 1-38f

(pg/ml)
(median (IQR))

19.2 (16.7, 21.0)

27.0 (24.8, 35.6)

14.1 (9.6, 18.4)

AB 1-42/1-40 ratio
(median (IQR))

0.09 (0.08, 0.10)

0.14 (0.12, 0.15)

0.12 (0.09, 0.14)

AB 1-42/1-38 ratio
(median (IQR))

1.08 (0.99, 1.15)

1.01 (0.90, 1.13)

1.56 (1.36, 2.37)

APB 1-38/1-40 ratio
(median (IQR))

0.09 (0.08, 0.09)

0.14 (0.12, 0.16)

0.06 (0.05, 0.08)

a No evidence of a difference between groups: Fisher’s exact test p=0.21

b No evidence of a difference between groups: Wald test p=0.14
cAll non-carriers were asymptomatic

d For AB 1-42 there was evidence of a difference between groups (Wald test p=0.0003), after adjusting for age and
sex. Mean AB 1-42 in APP carriers was an estimated adjusted 10.4 pg/ml higher (95% CI 5.1, 15.7, p<0.001) than non-
carriers and in PSEN1 was 5.3 pg/ml higher (95% CI 0.5, 10.1, p=0.03) than non-carriers, while there was no evidence
of a difference between APP carriers and PSEN1 carriers (p= 0.10).

eFor AB 1-40 there was no evidence of a difference between groups after adjusting for age and sex: Wald test
p=0.61

fFor AB 1-38 there was evidence of a difference between groups (Wald test p<0.0001) after adjusting for age and
sex. Mean A 1-38 in APP carriers was an estimated adjusted 14.9 pg/ml higher (95% CI 8.7, 21.1; p<0.001) than PSEN1
carriers and 10.2 pg/ml higher (95% CI 4.1, 16.3; p=0.001) than non-carriers, and in PSEN1 carriers was 4.7 pg/ml lower
(95% CI 2.0, 7.4; p=0.001) than non-caurriers.
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