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Abstract 
The early mammalian germ cell lineage is characterized by extensive epigenetic 
reprogramming, which is required for the maturation into functional eggs and sperm. In 
particular, the epigenome needs to be reset before parental marks can be established and 
then transmitted to the next generation. In the female germ line, reactivation of the inactive X-
chromosome is one of the most prominent epigenetic reprogramming events, and despite its 
scale involving an entire chromosome affecting hundreds of genes, very little is known about 
its kinetics and biological function. 
Here we investigate X-chromosome inactivation and reactivation dynamics by employing a 
tailor-made in vitro system to visualize the X-status during differentiation of primordial germ 
cell-like cells (PGCLCs) from female mouse embryonic stem cells (ESCs). We find that the 
degree of X-inactivation in PGCLCs is moderate when compared to somatic cells and 
characterized by a large number of genes escaping full inactivation. Nevertheless, PGCLCs 
that fail to undergo X-inactivation show an abnormal gene expression signature and 
deficiencies in meiotic entry. Subsequent to X-inactivation we observe gradual step-wise X-
reactivation, which is mostly completed by the end of meiotic prophase I. Cells deviating from 
these progressive kinetics and undergoing X-reactivation too rapidly fail to enter a meiotic 
trajectory. Our data reveals that a fine-tuned X-inactivation and -reactivation cycle is a critical 
feature of female germ cell developmental competence towards meiosis and oogenesis
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Introduction 
The germ cell lineage is unique in its critical 
function to transmit genetic and epigenetic 
information from one generation to the next. In 
mice, primordial germ cells (PGCs), the 
precursors of eggs and sperm, are specified 
during early postimplantation development from 
somatic precursors in the proximal epiblast by 
inductive signals (Ohinata et al, 2009, 2005; 
Lawson et al, 1999). Thereafter, PGCs migrate 
and enter the future gonads where they receive 
sex-specific somatic signals, which determine the 
germ cell sex and promote differentiation towards 
a spermatogenic or oogenic fate (Spiller et al, 
2017; Miyauchi et al, 2017). While in males, germ 
cells enter mitotic arrest and differentiate into 
prospermatogonia, in females, germ cells instead 
progress into meiosis and oogenesis.  
A hallmark feature of early germ cell development 
is the extensive epigenetic reprogramming 
(Kurimoto & Saitou, 2019), characterized by 
global changes in histone marks (Hajkova et al, 
2008; Seki et al, 2005), DNA demethylation and 
erasure of genomic imprints (Seisenberger et al, 
2012; Shirane et al, 2016; Hajkova et al, 2002). 
This establishes an epigenetic naive state (Ohta 
et al, 2017), which is required in order for PGCs to 
progress towards gonadal germ cell fate (Hill et al, 
2018) and to control their timing to enter female 
meiosis (Yokobayashi et al, 2013). Ultimately, this 
erasure of parental information allows the 
reestablishment of new paternal and maternal 
marks during spermatogenesis and oogenesis, 
respectively, which are critical for the competence 
of egg and sperm to facilitate embryonic 
development in the next generation (Ohta et al, 
2017; Reik & Surani, 2015). 
In addition to these global changes, another 
important epigenetic reprogramming event takes 
place in the female germline; the reversal of 
silencing of the inactive X chromosome by X-
chromosome reactivation. While X-chromosome 
inactivation (Lyon, 1961; Galupa & Heard, 2018; 
Payer & Lee, 2008) is the process by which 
female mammals (XX) achieve X-linked gene 
dosage parity with males (XY), X-reactivation 
takes place specifically in pluripotent epiblast cells 
of the mouse blastocyst (Mak et al, 2004; 
Borensztein et al, 2017) and in PGCs during their 
migration and upon their entry into the gonads 

(Sugimoto & Abe, 2007; Chuva de Sousa Lopes 
et al, 2008). Therefore, while X-inactivation is 
associated with pluripotency exit and the 
differentiated state (Schulz et al, 2014), X-
reactivation is a key feature of naive pluripotency 
and germ cell development (Payer, 2016; Talon et 

al, 2019; Pasque et al, 2014; Bauer et al, 2021; 
Janiszewski et al, 2019). X-reactivation in mouse 
PGCs is a multistep process, which initiates 
during PGC migration with downregulation of Xist, 
the long non-coding master regulator RNA of X-
inactivation, and concomitant loss of the 
associated histone H3K27me3 mark from the 
inactive X (Sugimoto & Abe, 2007; Chuva de 
Sousa Lopes et al, 2008). This process is 
regulated by repression of the Xist gene by the 
germ cell transcription factor PRDM14 (Mallol et 

al, 2019; Payer et al, 2013) and potentially by 
other members of the pluripotency network such 
as NANOG or OCT4 (Navarro et al, 2008), which 
are all expressed during PGC development. 
Subsequently, X-linked genes become 
progressively reactivated during migration, with 
the process being completed after PGCs have 
reached the gonads, and following the initiation of 
oogenesis and meiosis (Sangrithi et al, 2017; 
Sugimoto & Abe, 2007). X-linked gene 
reactivation is thereby thought to be enhanced by 
a female-specific signal from gonadal somatic 
cells (Chuva de Sousa Lopes et al, 2008). 
Although the molecular nature of the X-
reactivation-promoting signal is currently 
unknown, the timing of X-linked gene reactivation 
around meiotic entry and the dependency of both 
processes on a female somatic signal, suggests a 
potential mechanistic link. Until now it has not 
been formally tested, if, and to which degree, the 
X-inactivation status might impact the meiotic and 
oogenic potential of germ cells. Furthermore, 
previous studies on the X-inactivation and -
reactivation dynamics during mouse germ cell 
development have been limited to few individual 
genes (Sugimoto & Abe, 2007) or have not been 
allelically resolved and therefore been unable to 
discriminate between transcripts expressed from 
either one or two X chromosomes (Sangrithi et al, 
2017). Therefore a comprehensive analysis of X-
inactivation and -reactivating kinetics and its 
functional relation to germ cell developmental 
progression is necessary to gain mechanistic 
insight. 
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Based on in vitro germ cell differentiation from 
mouse embryonic stem cells (ESCs) (Nakaki et al, 
2013; Hayashi et al, 2011, 2012), we developed 
an X-chromosome reporter system (XRep) to 
study the kinetics of X-inactivation and -
reactivation during germ cell development. We 
thereby provide a high-resolution allelic analysis 
of X-chromosome dynamics and discovered that 
germ cells with high meiotic and oogenic 
competence are characterized by a moderate 
degree of X-inactivation and gradual X-
reactivation kinetics. In contrast, germ cells that 
failed to undergo X-inactivation or which 
reactivated the X chromosome too rapidly 
displayed abnormal gene expression and 
differentiation characteristics. Thus, we found first 
evidence that a controlled sequence of X-
inactivation followed by X-reactivation to be a 
characteristic hallmark of normal female germ 
cells. This suggests that both dosage control and 
epigenetic reprogramming of the X chromosome 
may be critical steps required for female germ 
cell's developmental progression towards meiosis 
and oogenesis. 

Results 

XRep, a tailor-made system for tracing X-
chromosome dynamics during in vitro 
germ cell development 
In order to achieve a better understanding of the 
X-chromosome dynamics during mouse germ cell 
development, we created a tailor-made in vitro 
model system called XRep (Fig. 1A). XRep 
combines the following features. First, it is based 
on a hybrid female embryonic stem cell (ESC) line 
containing one Mus musculus (Xmus) and one Mus 

castaneus (Xcas) X chromosome (Lee & Lu, 1999; 
Ogawa et al, 2008), allowing allele-specific 
determination of gene expression. Moreover, this 
line was shown to be karyotypically highly stable 
(Lee & Lu, 1999; Bauer et al, 2021), therefore 
preventing X-loss, a crucial prerequisite for X-
inactivation and -reactivation studies. Additionally, 
the cell line contains a Tsix truncation (TST) on 
Xmus, forcing non-random X inactivation of the Xmus 
upon cell differentiation (Ogawa et al, 2008; 
Luikenhuis et al, 2001). This enabled us to study 
the X-inactivation and -reactivation dynamics 
specifically of the Xmus chromosome, while the Xcas 
would remain constitutively active. Second, 
primordial germ cell-like cells (PGCLCs) can be 

obtained highly efficiently from XRep cells by 
doxycycline-inducible overexpression of the germ 
cell fate specifier transcription factors BLIMP1 
(also known as PRDM1), PRDM14 and TFAP2C 
(also known as AP2γ) (Nakaki et al, 2013), 
therefore bypassing the need for addition of 
cytokines. Last, the X-chromosome status of 
XRep cells can be traced by dual X-linked reporter 
genes placed in the Hprt-locus (Wu et al, 2014), a 
GFP reporter on Xmus (XGFP) and a tdTomato 
reporter on Xcas (XTomato). This allows us to 
isolate distinct populations of cells, harboring 
either two active X chromosomes 
(XGFP+/XTomato+) or one inactive and one 
active X (XGFP-/XTomato+), using fluorescence-
activated cell sorting (FACS). This gives us a 
unique advantage over in vivo studies, as it 
enables us to test the importance of X-inactivation 
and -reactivation for germ cell development by 
isolating and further culturing cells of different X-
inactivation states. Taken together, this tailor-
made system allows us to assess X-chromosome 
dynamics and its importance for female mouse 
germ cell development in vitro. 
We first set out to assess competence for PGCLC 
differentiation of our XRep cell line. We slightly 
adapted published protocols (Hayashi & Saitou, 
2013; Nakaki et al, 2013), by differentiating ESCs 
into epiblast-like cells (EpiLCs) for four days, as 
differentiation for two days did not yield PGCLCs 
with our XRep cells likely due to their specific 
genetic background (Fig. EV1A), followed by 
induction into PGCLCs for five days (Fig. 1B). We 
quantified PGCLC induction efficiency by FACS 
analysis, using SSEA1 and CD61 double-positive 
staining to mark successfully induced PGCLCs 
(Fig. 1C). At PGCLC day 5, we found ~60% of the 
cell population to be double-positive for 
SSEA1/CD61, indicating a very high PGCLC 
induction efficiency when compared to the 
cytokine-based protocol (Hayashi & Saitou, 2013) 
and in line with previous observations on 
transcription factor-based PGCLC induction 
(Nakaki et al, 2013). To further assess the quality 
of our PGCLCs, we stained cryosections of 
PGCLC bodies at day 5 of induction for SOX2 and 
TFAP2C, both germ-line expressed transcription 
factors. We observed that more than 50% of cells 
were double-positive for SOX2 and TFAP2C (Fig. 
1D), confirming PGCLC cell identity. We next 
wanted to assess X-inactivation kinetics using our 
XGFP and XTomato reporters. As expected, 
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Figure 1. A tailor-made system to trace X-chromosome inactivation and reactivation dynamics during
PGCLC induction.
(A) Schematic representation of the features implemented in the XRep cell line. A hybrid background in which cells carry one X
chromosome from M.m musculus (Xmus) and one from M.m castaneus (Xcas). The cell line carries an rtTA under the control
of the Rosa26 locus and piggyBac transposon-based vectors with doxycycline (Dox)-responsive promoters driving the
expression of Prdm14, Blimp1 and Tfap2c. The Xmus carries a GFP reporter and a truncation of the Tsix transcript while the
Xcas carries a tdTomato reporter.
(B) Overview of the adapted PGCLC differentiation timeline. Stages of the culture system are shown.
(C) Representative FACS data of primordial germ cells specific surface markers CD61 and SSEA1 in ESCs, EpiLCs d4 and
PGCLCs d5. Numbers indicate the percentages of SSEA1+/CD61+ gated cells over time. Shown are contour plots gated on
live cells.
(D) Immunostaining of PGCLCs d5 cryosections for SOX2 (magenta) and TFAP2C (cyan). Barplot indicates the quantification
of SOX2+ cells, TFAP2C+ cells, and SOX2+/TFAP2C+. n=452 cells, from n=1 PGCLC aggregate. The white squares
represent the position of the magnified region at the bottom. Scale bar, 50 µm and 10 µm for the magnified region.
(E) Representative culture showing the X-activity reporter during PGCLC induction. Images for bright field (BF), XGFP, and
XTomato were taken for ESCs, EpiLC d4 and PGCLC d5. Scale bar, 50 μm.
(F) Representative FACS data showing XGFP distribution during PGCLC induction. Numbers indicate the percentage of gated
cells according to the XGFP status (gray = X-inactive, green = X-active). Dashed line indicates the transition from X-active to
X-inactive according to XGFP levels. XGFP percentages from PGCLC d2 to PGCLC d5 are calculated from SSEA1+/CD61+
PGCLCs. Shown are histograms gated on live cells.
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Figure EV1. A tailor-made system to trace X-chromosome inactivation and reactivation dynamics during
PGCLC induction.
(A) Top panel shows representative contour plots of FACS analysis of PGCLC induction, without or with Dox, in PGCLC d4
induced from EpiLC d2. Bottom panel shows PGCLC d5 induced from EpiLC d4. The number indicates the gated germ cells
identified by CD61 and SSEA1 signal. Shown are contour plots gated on live cells.
(B) Representative FACS data showing XTomato distribution during PGCLC induction. Numbers indicate the percentage of
gated cells according to the XTomato status (gray = X-inactive, red = X-active). Dashed line indicates the transition from X-
active to X-inactive according to XTomato levels. XTomato percentages from PGCLC d2 to PGCLC d5 are calculated from
SSEA1+/CD61+ PGCLCs. Shown are histograms gated on live cells.
(C) Immunolabeling with antibodies against H3K27me3 (green) in EpiLCs, combined with SOX2 (magenta) in PGCLCs d1 and
PGCLCs d5. Images show representative groups of cells showing H3K27me3 enrichment on the Xmus. Barplots indicate the
percentage of cells having H3K27me3 accumulation. PGCLC d1 and PGCLC d5 H3K27me percentages are calculated from
SOX2 positive cells. On top of the bars, the total cell number analysed from n=1 body is indicated. The white squares
represent the position of the magnified region at the bottom. Dashed line indicates SOX2-/H3K27me3+ cells. Continuous line
indicates SOX2+/H3K27me3+ cells. Scale bar, 50 µm and 10 µm for the magnified region.
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XTomato stayed active throughout the 
differentiation (Fig. EV1B). In contrast, we 
observed downregulation of the XGFP reporter at 
day 2 of PGCLC differentiation, with the XGFP- 
population gradually increasing until day 5 (Fig. 
1E and F). Nevertheless, even at day 5, up to 40% 
of PGCLCs remained XGFP+ in our system. 
Despite this, the large majority of EpiLCs showed 
H3K27me3 foci indicating initiation of X-
inactivation (Fig. EV1C). As H3K27me3 
accumulation on the Xi was shown to initiate prior 
to gene silencing (Zylicz et al, 2019), this suggests 
that XGFP+ PGCLCs failed to undergo X-linked 
gene silencing rather than originating from a 
subpopulation that did not initiate X-inactivation. 
In summary, using our tailor-made XRep cell line, 
we could show that X-inactivation occurs early 
during PGCLC differentiation. Additionally, our 
system enables the isolation of distinct PGCLC 
populations either having undergone X-
inactivation or harboring two active X, suggesting 
that PGCLC specification can occur in the 
absence of X-inactivation as well. 

XGFP+ and XGFP- PGCLCs define 
distinct subpopulations 
Having identified two distinct PGCLC populations, 
we set out to characterize the transcriptional 
changes taking place during differentiation. We 
induced EpiLCs from ESCs for 4 days and 
subsequently induced PGCLCs for 5 days, at 
which stage we isolated XGFP+ and XGFP- 
PGCLCs by FACS (Fig. EV2A). With these 
samples, we performed allele-specific RNA-
sequencing on two biological replicates (different 
clones) with two technical replicates each. 
Principal component analysis (PCA) of the 
expression profiles showed a high coherence 
between replicates, with ESCs, EpiLCs and 
PGCLCs occupying distinct clusters (Fig. 2A). 
Moreover, we observed that XGFP+ and XGFP- 
PGCLCs clustered separately, indicating distinct 
expression profiles of the two populations. To 
exclude the possibility that the distinct clustering 
of PGCLC populations was influenced by the 
different X-status of the two, we repeated the PCA 
while eliminating X chromosome-linked genes 
from the analysis. We observed a highly similar 
clustering of samples with minimal changes in 
component variances (Fig. EV2B). In order to 
assess if transcriptional differences in XGFP+ and 

XGFP- PGCLCs could be explained by 
differences in developmental timing, we took 
advantage of published datasets of female in vivo 
PGCs from E9.5, E10.5, E11.5 and E12.5 
embryos (Nagaoka et al, 2020) and compared 
expression profiles to our in vitro derived PGCLCs 
(Fig. 2B). PCA revealed a trajectory where PC1 
defined the developmental timing of in vivo 
samples. We found that both PGCLC populations 
clustered around E10.5, with XGFP+ cells 
corresponding to a slightly advanced 
developmental stage. Therefore, as XGFP+ and 
XGFP- PGCLCs seemed to correspond to a 
similar developmental time point, we wanted to 
characterize their transcriptional differences in 
more detail. We performed differential gene 
expression analysis and could identify 2684 
upregulated and 2437 downregulated genes in 
XGFP- PGCLCs, when compared to XGFP+ 
PGCLCs (Fig. 2C-E). Among the genes 
upregulated in XGFP- PGCLCs, we found early 
germ cell genes including Blimp1 (Prdm1), 
Prdm14 and Tfap2c. In contrast, in XGFP+ 
PGCLCs we observed higher expression of 
pluripotency genes such as Esrrb and Zfp42 and 
a subset of late germ cell genes like Dazl.  
Moreover, when we performed functional 
annotation by gene ontology (GO) term analysis 
we observed enrichment for genes involved in 
urogenital system development, MAPK regulation 
and WNT signaling in XGFP- PGCLCs, while 
genes upregulated in XGFP+ PGCLCs were 
enriched for DNA methylation involved in gamete 
generation, meiotic cell cycle and response to LIF 
signaling (Fig. 2F). MAPK signaling is known to be 
inhibited by double X-dosage (Schulz et al, 2014; 
Song et al, 2019; Genolet et al, 2021), which might 
explain enrichment of this pathway in our XGFP- 
PGCLCs. LIF signaling on the other hand, which 
is enriched in our XGFP+ PGCLCs, is known to 
enable expression of the naive pluripotency 
network, which represses Xist, thereby promoting 
the active X state (Payer & Lee, 2014; Panda et 

al, 2020). Furthermore, enrichment for meiotic cell 
cycle genes in XGFP+ PGCLCs such as Aurkc, 
Dazl and Piwil2, suggests a premature activation 
of a subset of meiotic genes in XGFP+ PGCLCs. 
One characteristic feature of PGCLCs are 
changes in cell cycle progression and proliferation 
upon differentiation (Ohta et al, 2017), both of 
which are known to be affected by MAPK, as well 
as LIF signaling pathways (Onishi & Zandstra, 
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Figure 2. Gene expression analysis reveals two PGCLCs subpopulations.
(legend on next page)
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Figure EV2. Gene expression analysis reveals two PGCLCs subpopulations.
(A) Top panel shows representative contour plots of FACS analysis of PGCLC induction, without or with Dox, in PGCLC d5.
The number indicates the gated germ cells identified by CD61 and SSEA1 signal. Bottom panel indicates the percentages of
X-active (green box) or X-inactive (red box) cells. For the +Dox condition, percentages of X-active and X-inactive originating
from SSEA1+/CD61+ cells are shown. Shown are contour plots gated on live cells.
(B) PCA of gene expression dynamics during PGCLC differentiation. n = top 500 most variable genes excluding X
chromosomal genes. Axes indicate the variance. Arrows indicate hypothetical trajectory. Shapes indicate the clones ( A11 =
square, E9 = rhombus).
(C) Representative images showing the X-activity reporter status in colonies formed by ESCs, XGFP+ PGCLCs and XGFP-
PGCLCs after 7 days of culture in 2i/LIF on immortalized feeder cells. BF = bright field. Scale bar 200 μm.
(D) FACS analysis showing the X-reporter status of the indicated cell types after 7 days of culture in 2i/LIF on immortalized
feeder cells. Numbers indicate the percentage of cells falling in the corresponding gate. Histograms come from XTomato+
gated cells depleted of immortalized feeder cells.

Figure 2. Gene expression analysis reveals two PGCLCs subpopulations.
(A) PCA of gene expression dynamics during PGCLC differentiation. 4 biological replicates are shown. n = top 500 most
variable genes. PGCLCs were sorted for SSEA1 and CD61 expression and further divided into XGFP+ and XGFP-. Axes
indicate the variance. Arrows indicate hypothetical trajectory. Shapes indicate the biological clone (clone A11 = square, clone
E9 = rhombus).
(B) PCA of gene expression dynamics compared to in vivo samples from (Nagaoka et al, 2020). n = top 500 most variable
genes, calculated including in vivo samples. Gray arrow indicates putative developmental trajectory. Shapes indicate the
replicates (clone A11 = square, clone E9 = rhombus, in vivo samples = circle).
(C) MA plot of differential gene expression changes between XGFP- and XGFP+ PGCLCs as determined by RNA-seq. Log2-
mean expression (log2-normalized counts from DESeq2) on the x-axis and the log2-fold change on the y-axis are shown.
Significantly upregulated and downregulated genes are highlighted in red and green respectively. False Discovery Rate (FDR)
< 0.001. Non-significant genes with log2-mean expression between 0 and 0.2 were removed for easier plot visualization.
(D) Expression levels (normalized DEseq2 counts) of selected differentially expressed genes between XGFP- and XGFP+
PGCLCs during the differentiation time course. Genes with FDR < 0.001 were considered significantly differentially expressed.
Points indicate expression of individual biological replicates.
(E) Heatmap of RNA-seq normalized counts showing the Zscore across PGCLC induction timepoints of 31 manually selected
and manually ordered marker genes belonging to the categories reported on the side.
(F) Selected GO terms enriched in XGFP- PGCLCs and XGFP+ PGCLCs.
(G) FACS analysis of cell cycle using DAPI. Numbers indicate the percentage of cells in G1, S and G2/M respectively.
(H) Alkaline phosphatase staining for ESC and XGFP+ PGCLC and XGFP- PGCLC grown for 7 days in 2i/LIF medium on
immortalized feeder cells.
(I) Barplot indicates the absolute numbers of Alkaline Phosphatase (AP) positive colonies in each cell type after 7 days of
culture in 2i/LIF medium on immortalized feeder cells. Y-axis is in square root scale (sqrt) for easier plot visualization. Each
white dot represents one technical replicate.
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2015; Meloche & Pouysségur, 2007).  We 
therefore performed cell cycle analysis using 
DAPI and found that ESCs, EpiLCs and XGFP+ 
PGCLCs shared highly similar profiles, with the 
majority of cells (>60%) residing in S phase. In 
contrast, XGFP- PGCLCs showed a decreased 
number of cells in S phase, concomitant with an 
increase of cells in G1, suggesting a slower 
proliferation of this population (Fig. 2G). 
As our transcriptomics and cell cycle analysis 
suggested that XGFP+ PGCLCs could 
correspond to an aberrant PGCLC state with 
similarities to ESCs, we set out to address if this 
would also lead to an advantage in growth and 
survival under physiological conditions favoring 
ground state pluripotent stem cells. We therefore 
isolated XGFP+ and XGFP- PGCLCs at day 5 and 
seeded them (1000 cells per 6-well) on irradiated 
mouse embryonic fibroblasts in 2i/LIF medium 
(Fig. 2H and I), which previously has been 
reported to allow the establishment of pluripotent 
embryonic germ cell (EGC) lines from in vivo 
mouse PGCs (Leitch et al, 2010).  When we then 
compared EGC colony formation capacity, we 
found that while almost no colonies (2 from 1000 
seeded cells) originated from XGFP- PGCLCs, we 
observed a substantially higher number of 
colonies (84) from XGFP+ PGCLCs, albeit still 
fewer than when re-plating ESCs (633 colonies). 
Importantly, both ESCs and XGFP+ PGCLCs 
retained two active X chromosomes, while only a 
subset of XGFP- PGCLCs had undergone XGFP-
reactivation during EGC colony formation (Fig. 
EV2C and D). 
In summary, RNA expression analysis of XGFP+ 
and XGFP- PGCLCs showed a PGC-like 
transcriptome of both populations, further 
suggesting that X-inactivation and PGCLC 
induction can be uncoupled in our system. 
However, we observed that XGFP+ PGCLCs 
displayed higher expression of several naive 
pluripotency genes as well as premature 
expression of a subset of meiotic genes and a 
rapid cell cycle. Moreover, considering their 
higher ability to form EGC colonies under ground 
state pluripotency conditions, this suggests that 
XGFP+ PGCLCs may correspond to an aberrant 
PGCLC state of pluripotent stem cell-like 
character, indicating that X-inactivation could be 
necessary for correct PGCLC maturation. 

Moderate X-inactivation in XGFP- 
PGCLCs 
To this point, due to the lack of an allele-specific 
transcriptomic analysis, the X-inactivation and -
reactivation dynamics during mouse PGC 
development in vivo and in vitro have not been 
assessed on a chromosome-wide level. 
Therefore, to determine X chromosome-wide 
gene inactivation kinetics during PGCLC 
differentiation, we assessed the allelic expression 
ratio between the inactive Xmus and the active Xcas. 
We performed PCA of the allelic ratio of our 
samples and additionally of neural progenitor cells 
(NPCs) from the same parental clone (Bauer et al, 
2021) to include a cell type shown to have 
undergone complete X-inactivation (Fig. 3A). We 
observed that the PC1 of the PCA defined the 
degree of X-inactivation, separating samples with 
two active Xs on the left (ESCs and XGFP+ 
PGCLCs), and with one inactive X on the right 
(XGFP- PGCLCs and NPCs). Moreover, we 
noticed that EpiLCs were positioned at the center, 
suggesting an intermediate degree of X-
inactivation. We next determined X-inactivation 
kinetics, while focussing on genes biallelically 
expressed in ESCs (Fig. EV3A) (allelic expression 
ratio >0.3 and <0.7) and established an X-
inactivation cutoff of an allelic ratio of 0.135, 
according to the distribution in NPCs (Fig. EV3B). 
As a control, we assessed the allelic expression 
ratio of the fully hybrid chromosome 13, which 
maintained biallelic expression throughout the 
time course (Fig. EV3C). In contrast, we observed 
initiation of X-linked gene silencing in EpiLCs, 
progressing further in XGFP- PGCLCs, while 
XGFP+ PGCLCs showed biallelic expression, 
similar to ESCs (Fig. 3B). To assess X-inactivation 
dynamics in more detail, we grouped X-linked 
genes according to their silencing kinetics (Fig. 
3C). We found 62 genes to have undergone X-
inactivation (XCI) in EpiLCs, termed (early XCI), 
and 138 genes to have undergone inactivation in 
PGCLCs (late XCI). To our surprise, we observed 
a large number of genes (93) to still be active in 
XGFP- PGCLCs (escapees). In comparison, we 
observed 51 genes escaping X-inactivation in 
NPCs (Bauer et al, 2021), out of which 37 were 
also found to be escapees in PGCLCs (Fig. 3D). 
While a certain degree of escape from X-
inactivation is expected, the percentage of 
escapees we observed for PGCLCs here at 32%, 
is considerably higher than reported for other cell 
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Figure 3. Characterization of X-inactivation dynamics during PGCLC induction.
(A) PCA of X chromosome allelic ratio (see Methods) for 334 X-linked genes. Axes indicate the variance. Shapes indicate the
clones (A11 = square, E9 = rhombus, circle = neural progenitor cells (NPCs) from (Bauer et al, 2021)).
(B) Boxplots of allelic ratio of X linked genes (n = 294). Upper dashed line indicates biallelic expression with a ratio of 0.5, the
lower dashed line indicates the X-inactivation threshold of 0.135. Box plots depict the first and third quartiles as the lower and
upper bounds of the box, with a band inside the box showing the median value and whiskers representing 1.5x the interquartile
range. Number of X-inactive genes are shown at the bottom.
(C) Allele-specific expression ratios of X-linked genes are represented as heatmaps, with X-inactive genes in red (ratio ≤
0.135), X-active genes in green (ratio > 0.135) and mono-allelic Xcas expression in blue (ratio between 0.5 and 1). Genes are
ordered by genomic position and subdivided into three groups according to the timing of X-inactivation (early X-inactivation =
early XCI, late X-inactivation = late XCI and Escapees).
(D) Venn diagram showing the total number of Escapee genes overlapping between XGFP- PGCLCs and NPCs from (Bauer
et al, 2021).
(E) Xistmus expression (see Methods). NPCs from (Bauer et al, 2021). Barplot indicates the mean expression value of 4
replicates.
(F) Expression of Xmus genes in ESCs belonging to the indicated categories. The numbers above the bars indicate p-values
(two-sample unpaired Wilcoxon-Mann-Whitney test with R defaults). Box plots depict the first and third quartiles as the lower
and upper bounds of the box, with a band inside the box showing the median value and whiskers representing 1.5x the
interquartile range. n = 295 genes.
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Figure EV3. Characterization of X-inactivation dynamics during PGCLC induction.
(A) Distribution of the allelic ratio of X-linked genes in ESCs. Dashed lines indicate a biallelic expression window from 0.3 to
0.7. n = 334 genes.
(B) Distribution of the allelic ratio in NPCs of X-linked genes expressed biallelically in ESCs. Dashed line represents allelic
ratio of 0.135 used as a threshold for X-inactivation. Genes below the threshold are considered X-inactive. n = 294 genes.
(C) Boxplots of allelic ratio of genes located on chromosome 13 (n = 294). Dashed line indicates the biallelic ratio of 0.5. Box
plots depict the first and third quartiles as the lower and upper bounds of the box, with a band inside the box showing the
median value and whiskers representing 1.5x the interquartile range.
(D) Expression of Xmus genes in XGFP- PGCLCs belonging to the indicated categories. The numbers above the bars indicate
p-values (two-sample unpaired Wilcoxon-Mann-Whitney test with R defaults) Box plots depict the first and third quartiles as the
lower and upper bounds of the box, with a band inside the box showing the median value and whiskers representing 1.5x the
interquartile range. n = 295 genes.
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types (Balaton et al, 2021; Marks et al, 2015; 
Peeters et al, 2014).  
Given these results, we wondered how this large 
degree of escape from X-inactivation might be 
explained. We assessed Xist expression levels 
and could observe high levels in EpiLCs, reaching 
levels comparable to those in NPCs (Fig. 3E). 
However, expression levels in XGFP- PGCLCs 
were considerably decreased, which might be 
explained by the high expression of Prdm14 in 
PGCLCs, a known repressor of Xist (Payer et al, 
2013). This is also in line with in vivo data 
(Sugimoto & Abe, 2007), where Xist has been 
shown to be completely downregulated in E10.5 
PGCs of equivalent stage (Fig. 2B). Moreover, we 
wanted to know which features might distinguish 
escapees from inactivated genes in our system. 
We measured gene expression levels from the 
Xmus allele in ESCs and found escapees to be 
significantly higher expressed, while early 
inactivating genes, in contrast, showed the lowest 
expression levels (Fig. 3F). Similarly, expression 
of escapees from the Xcas allele was also elevated 
in XGFP- PGCLCs  (Fig. EV3D). 
Taken together, we find that PGCLCs undergo a 
moderate degree of X-inactivation, characterized 
by a large percentage of escapees. Moreover, our 
analysis suggests that low expression of Xist in 
PGCLCs might lead to a failure of gene silencing 
of highly expressed genes, leading to a large 
percentage of escapees. 

Single-cell RNA-seq analysis of meiotic 
entry of in vitro-derived germ cells 
After having established the degree of X-
inactivation during PGCLC specification, we 
wanted to address the further developmental 
progression of PGCLCs depending on their X-
chromosome status. Having identified and 
isolated distinct PGCLC types with either two 
active X-chromosomes (XGFP+ PGCLCs) or one 
active and one inactivated X-chromosome 
(XGFP- PGCLCs) (Fig. 2), we were able to assess 
whether the X-inactivation status of PGCLCs had 
an impact on germ cell maturation. Furthermore, 
we sought to investigate to which degree X-
reactivation and meiotic entry were intrinsically 
coupled processes. 
To this end, we differentiated XGFP+ and XGFP- 
PGCLCs using an adapted in vitro reconstituted 
Ovary (rOvary) protocol (Hayashi & Saitou, 2013) 

and performed single-cell RNA-sequencing 
(scRNA-seq) using the SMART-Seq v5 Ultra Low 
Input RNA (SMARTer) Kit for Sequencing (Takara 
Bio) (Karimi et al, 2021). Briefly, we aggregated in 

vitro derived PGCLCs, originating from either 
XGFP+ or XGFP- populations, for 6 days with 
somatic cells isolated from E13.5 female 
embryonic gonads plus mesonephros in order to 
mimic the female urogenital environment and 
provide in vitro-derived germ cells with the 
appropriate signaling niche (Hayashi et al, 2012; 
Chuva de Sousa Lopes et al, 2008) to facilitate 
their meiotic entry and X-reactivation (Fig. 4A and 
B). We then sorted single cells of the following 
populations on which we performed scRNA-seq. 
Derived from XGFP- PGCLC rOvaries, we 
collected three populations: XGFP+ reactivated 
(144 cells, XTomato+/XGFP+), XGFP 
intermediate (XTomato+/XGFPint., 144 cells) and 
XGFP- (XTomato+/XGFP-, 136 cells). From the 
constitutively active XGFP+ PGCLC rOvaries, we 
collected one population: XGFP+ constitutive 
(XTomato+/XGFP+, 188 cells) (Fig. 4A and B). In 
total, we obtained 391 million reads, with an 
average of 740,000 reads per cell. Next, to ensure 
that our analysis focussed on germ cells of 
appropriate quality, we only included cells with the 
germ cell marker Dazl expression >1 (log2 counts 
per 10,000) and with sufficient allelic information 
(see methods). This left us with 379 cells in total 
and 15,583 informative genes.  
To characterize cellular heterogeneity, we 
performed Uniform Manifold Approximation and 
Projection for dimension reduction (UMAP) on 
genome-wide single-cell expression data, and 
then applied Shared Nearest Neighbor (SNN) 
modularity optimization based clustering which 
returned 5 clusters (Fig. 4C) that showed distinct 
patterns according to the expression of mitotic 
and meiotic germ cell marker genes (Fig. 4D and 
E). We identified two mitotic clusters termed 
“Mitotic 1” and “Mitotic 2”, showing expression of 
the PGC marker Stella (also known as Dppa3) as 
well as mitotic PGC markers Morc1 and Nanog. 
Moreover, we identified two pre-meiotic clusters 
termed “Pre-meiotic 1” and “Pre-meiotic 2”, 
defined by the initial expression of both Stella and 
Ddx4, and lastly one meiotic cluster termed 
“Meiotic'' characterized by expression of the 
meiotic genes Prdm9 and Sycp3. Next, we 
wanted to assess whether a directionality within 
the clusters and eventually among the two groups 
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Figure 4. Single-cell RNA-seq of maturing germ cells using the rOvary system.
(A) Schematic illustration of the single-cell RNA-seq experiment and the isolated populations during germ cell maturation in
rOvaries. The first 24h of culture are indicated as d0. rOvary = reconstituted Ovary, d = day of rOvary culture; XGFP int. =
XGFP intermediate.
(B) (i) Imaging of XGFP and XTomato reporters in rOvaries d5 aggregated with E13.5 gonadal and mesonephric cells. Scale
bars = 50μm. BF = bright field. (ii) FACS gating strategy for single-cells sorted XTomato+ cells against XGFP intensities.
Numbers indicate the percentage of gated live cells over the total population. Numbers in brackets indicate the percentage of
gated cells over the XTomato+ population.
(C) UMAP embedding based on Shared Nearest Neighbor (SNN) modularity clustering identified 5 clusters, termed Mitotic 1 (n
= 77), Mitotic 2 (n = 97), Pre-meiotic 1 (n = 62), Pre-meiotic 2 (n = 90) and Meiotic (n = 53) labeled with different colors.
(D) Marker gene expression projected onto the UMAP plot.
(E) Heatmap of gene expression dynamics throughout germ cell maturation clusters. Selected genes belong to the category
“early germ cell” and “meiotic”. Zscore is shown.
(F) UMAP of clusters as in (C) with arrows indicating cell trajectories, inferred by RNA velocity analysis.
(G) (i) Integration with in vivo published single-cell RNA-seq data from E12.5 (red), E14.5 (green) and E16.5 (blue) (Zhao et al,
2020). Black dots represent cells from in vitro rOvaries from this study. (ii) Distribution of germ cell maturation clusters from
rOvaries identified in this study, along the in vivo UMAP projection. Dashed blue circle indicates deviant cells falling in the
E16.5 cluster despite not showing expression of late meiotic markers Sycp3 and Prdm9 (data not shown).
(H) UMAP projection labeled with FACS sorted populations. XGFPint. = XGFP intermediate.
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could be observed. Pseudo-time analysis using 
RNA velocity (La Manno et al, 2018) placed the 
meiotic cluster at the apex of a path which 
revealed a differentiation trajectory directed 
towards meiosis, initiating from the pre-meiotic 
clusters (Fig. 4F). Moreover, comparison to in vivo 
data (Zhao et al, 2020) showed that our mitotic 
clusters corresponded to E12.5 germ cells, 
whereas pre-meiotic and meiotic clusters 
corresponded to later time points; E14.5 and 
E16.5 (Fig. 4G), confirming that our in vitro 
clusters followed an in vivo-like developmental 
trajectory. Finally, we set out to answer whether 
our XGFP+ and XGFP- PGCLCs, which were the 
starting material for our rOvaries (Fig. 4A and B), 
showed a differential developmental profile, and in 
particular, if the meiotic germ cells originated 
preferentially from XGFP+ or XGFP- PGCLCs. To 
this end, we projected the 4 FACS populations 
(Fig. 4B and H) on our UMAP plot and observed 
two major groups, which coincided well with the 
levels of XGFP fluorescence. One group included 
predominantly the XGFP-negative and XGFP-
intermediate germ cells (originating both from the 
XGFP- PGCLCs) on the left, and another group 
was constituted from the XGFP+ reactivated and 
XGFP+ constitutive germ cells on the right. 
Intriguingly, both pre-meiotic and meiotic germ 
cells almost exclusively originated from XGFP- 
PGCLCs, whereas mitotic germ cells consisted of 
XGFP+ reactivated and XGFP+ constitutive germ 
cells. 
Taken together, germ cells seem to adopt highly 
similar transcriptomes when two active X 
chromosomes are present, irrespective of their 
parental condition of origin and hence regardless 
of whether cells underwent X-inactivation followed 
by X-reactivation, or were constitutively X-active. 
Moreover, germ cells can undergo X-reactivation 
in the absence of the meiotic gene expression 
programme, suggesting that X-reactivation is not 
dependent on meiotic entry. However, our data 
suggest that X-inactivation is important for proper 
germ cell maturation and entry into meiosis, as 
germ cells originating from constitutively active 
XGFP+ PGCLCs failed to acquire a meiotic 
transcriptional profile. 
 
XGFP- PGCLCs can enter meiotic 
prophase and undergo oocyte maturation 
Our single-cell RNA-seq analysis showed an 
exclusive ability for XGFP- PGCLCs to 

differentiate into mature germ cells with a meiotic 
transcriptional profile. We therefore wanted to 
further dissect their ability to enter meiosis and 
their capability to differentiate to more mature 
stages. To be able to assess in more detail the 
extent of prophase I progression, we cultured 
XGFP- PGCLCs for an additional 9 days on 
immortalized m220 stromal feeder cells in the 
presence of BMP2 and retinoic acid (Fig. 5A), 
which was previously shown to facilitate entry into 
meiosis (Miyauchi et al, 2017). During this 
expansion culture we observed a progressive 
accumulation of SYCP3+ meiotic cells (Fig. 5B 
and C), all of which were XGFP+ by day 5 of the 
expansion culture (Fig. 5B and D), indicating the 
co-occurrence of XGFP-reactivation with meiotic 
entry. We then prepared chromosomal spreads 
from the expansion culture and performed 
immunostaining for SYCP3, which shows a 
distinctive pattern according to the different 
prophase stages (Fig. 5E). Moreover, to aid the 
correct recognition of the different stages, we 
stained for the double-strand-break marker, a 
phosphorylated form of histone variant H2AX 
(γH2AX) (Mahadevaiah et al, 2001). This showed 
that the majority of cells could successfully enter 
the zygotene stage by day 9 of expansion culture 
(Fig. 5E and F), confirming our observation of a 
meiotic transcriptional profile in cells originating 
from XFGP- PGCLCs. 
Next, we wanted to assess if our XGFP- PGCLCs 
could mature further and initiate oogenesis. We 
therefore took advantage of a published in vitro 
differentiation protocol and aggregated XGFP- 
PGCLCs with embryonic-derived somatic gonadal 
cells, forming a rOvary, followed by the culture of 
the rOvary onto a transwell to allow in vitro 
differentiation (IVDi) of PGCLCs (Fig. 5G) 
(Hayashi et al, 2017). However, to perform the 
experiment in a more physiological niche, without 
external cues, no retinoic acid was added to the 
IVDi culture and the IVDi tissue was cultured for 
11 days until primary follicles had formed. We then 
stained the entire whole-mount tissue for DAZL 
and SYCP3 to identify mature (DAZL+) and 
meiotic (SYCP3+) germ cells and could observe 
on average 200 oocytes in cysts per aggregate 
and moreover around 50 primary follicles (Fig. 5H 
and I), similar to what has been observed 
previously (Hamada et al, 2020). 
Taken together, our XGFP- PGCLCs are able to 
enter prophase I and to mature into primary 
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Figure 5. Prophase I progression and germ cell maturation by m220 feeder expansion and IVDi transwell
culture.
(A) Schematic representation of the m220 stromal feeders expansion culture for XGFP- PGCLCs. Meiosis is induced via
addition of Retinoic Acid (RA) and Bone Morphogenetic Protein 2 (BMP2). c0 = starting day of culture, c9 = culture day 9 and
last day of culture.
(B) Representative images for the expression of XGFP (green) and SYCP3 (red) in germ cells at c5, c7 and c9 from XGFP-
PGCLCs. Cells were counterstained with DAPI (gray). Scale bars = 10 μm.
(C) Number of SYCP3+ cells per m220 culture day originating from XGFP- PGCLCs. Each white dot represents a biological
replicate (n = 3). Y-axis is in square root scale (sqrt) for easier plot visualization.
(D) Percentage of XGFP+ cells among SYCP3+ cells at the indicated m220 culture day, originating from XGFP- PGCLCs.
Each white dot represents a biological replicate (n = 3).
(E) Representative images showing stages of meiotic prophase I from culture day 9 (c9) germ cells from XGFP- PGCLCs. c9
germ cells were spread and immunostained for SYCP3 (red), and γH2AX (gray). Scale bar = 10 µm.
(F) Quantification of meiotic progression in culture day (c9) expanded germ cells derived from XGFP- PGCLCs. The graphs
show the percentages of the meiotic stage. L, leptotene; Z, zygotene; P, pachytene; D, diplotene. Numbers indicate absolute
number of counted cells from n= 1 experiment.
(G) Schematic representation of the IVDi (In Vitro Differentiation) maturation system. The stages of oogenesis in culture for 11
days are indicated. The condition of culture is indicated above. rOvary = reconstituted Ovary. Agg = aggregation day. AA =
Ascorbic Acid.
(H) Immunofluorescence images of SYCP3 (red), DAZL (yellow) and DAPI at agg11 of IVDi tissue maturation from XGFP-
PGCLCs. IVDi = in vitro differentiation. White squares indicate the positions of the magnified section shown below. Top panel
scale bar = 100 µm. Middle panel scale bar = 10 µm. Bottom panel scale bar = 50 µm.
(I) Quantification of SYCP3+ cells (oocytes in cyst and primary follicles) in IVDi tissues at agg11. Each dot represents one IVDi
tissue performed in 3 biological replicates.
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follicles when defined culture conditions are 
provided. 

X-Reactivation occurs progressively 
during germ cell maturation and meiotic 
entry 
Having shown that cells could undergo X-
reactivation in the absence of meiosis, we 
nevertheless wanted to assess if X-reactivation 
was a prerequisite for meiotic entry. To therefore 
analyse X-reactivation dynamics in more detail, 
we again took advantage of the hybrid 
background of our XRep cell line and performed 
allele-specific RNA expression analysis, which 
allowed us to successfully detect allele-specific 
expression of 220 X-linked genes (see methods). 
To first assess the X-status on a chromosome-
wide level, we calculated the average allelic ratio 
of all X-linked genes (Fig. 6A). As expected, we 
observed biallelic X-linked gene expression of the 
XGFP+ mitotic clusters 1 and 2, as reflected by an 
average allelic ratio of 0.5. However, cells of the 
pre-meiotic and meiotic clusters, despite 
originating from mostly XGFP- and XGFPint. 
populations showed close to biallelic expression 
at an average allelic ratio of ~0.4, as the sensitivity 
of the XGFP reporter was insufficient to mark cells 
as reactivated if they had low levels of X-
inactivation (Fig. 6B). We therefore assessed the 
X-status on a gene by gene level and compared it 
to the data of ESCs, EpiLCs and XGFP- PGCLCs 
(Fig. 6C and D). In addition to 78 escapees, being 
active throughout the differentiation, we observed 
early X-chromosome reactivation (early XCR) of 
58 genes in pre-meiotic cells. Therefore, the vast 
majority of genes (85%) had escaped X-
inactivation in the first place, or undergone 
reactivation, before the onset of meiosis. 
Moreover, 17 genes reactivated as cells 
underwent meiosis (late XCR), with only 8 genes 
still being inactive in meiotic cells (no XCR). 
Furthermore, we observed that early reactivating 
genes displayed higher allelic ratios in XGFP- 
PGCLCs compared to late reactivating genes 
(Fig. 6D and E), suggesting that the degree of 
silencing could influence X-reactivation timing. 
Taken together, X-reactivation in germ cells 
seems to occur in two waves. First, before the 
onset of meiosis for the majority of genes and 
second, concomitantly with meiotic entry for a 
small subset of genes. 

Discussion 
While X-chromosome inactivation has been a 
long-studied phenomenon (Lyon, 1961) and has 
been shown to play an important biological role for 
embryonic development (Marahrens et al, 1997) 
and pluripotency exit (Schulz et al, 2014), its 
reversal by X-reactivation and its biological 
function during germ cell development have 
remained elusive to date. Previous studies on X-
chromosome dynamics during female mouse 
germ cell development have been hampered by a 
lack of allelic-resolution, a low number of genes 
assessed, as well as an inability to directly trace 
the X-chromosome status of single cells 
(Sugimoto & Abe, 2007; Chuva de Sousa Lopes 
et al, 2008). To overcome these limitations, we 
generated with XRep an in vitro system, which 
allowed us to reveal the X-chromosome 
inactivation and reactivation cycle and its 
functional relation to germ cell development and 
meiotic progression. We thereby uncovered that 
X-inactivation is an important hallmark of proper 
PGCLC differentiation in order to progress at later 
stages towards meiotic entry (Fig. 6F). X-
reactivation, on the other hand, coincides 
temporally with meiotic maturation. This is in line 
with the timing of X-reactivation in mouse germ 
cells in vivo, (Sugimoto & Abe, 2007; Sangrithi et 
al, 2017; Chuva de Sousa Lopes et al, 2008), 
where it takes place gradually, initiating during 
germ cell migration and peaking after colonization 
of the gonads around the time of meiotic entry. 
Additionally, our in vitro system enabled the 
isolation of PGCLCs harboring two active X, a 
unique advantage over in vivo systems, as it 
allowed us to compare the differentiation potential 
of PGCLCs with and without X-inactivation. While 
our results suggest that PGCLC specification can 
occur in the absence of X-inactivation, we found 
that germ cells, which had never undergone X-
inactivation in the first place, or in which X-
reactivation occurred preemptively, displayed a 
mitotic germ cell character and did not enter a 
meiotic trajectory. This further highlights how 
timely X-inactivation and -reactivation might be 
necessary for proper germ cell maturation (Fig. 
6F).  Moreover, while we acknowledge that our 
findings are based on data generated in vitro, we 
note that allele-specific single-cell RNA-seq of 
E5.5-E6.5 epiblast cells, the precursors of PGCs, 
revealed a considerable heterogeneity in X-
inactivation progression at this developmental 
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Figure 6. Biallelic re-expression of X-linked genes.
(A) Average allelic ratio of single cells projected onto the UMAP plot. n = 220 X-linked genes per single cell. X-inactivation
(average ratio <0.135) in red and X-reactivation (average ratio from 0.135 > 0.8) in green. Labels indicate the 5 different
previously identified clusters. Dashed lines indicate the position of cluster borders.
(B) Distribution of single cells based on fluorescence intensity of XGFP reporter quantified by BD FACSDiva Software, plotted
against the X chromosome average allelic ratio per cell. R and p-values calculated by Pearson’s correlation are shown. Black
line represents linear regression fitting.
(C) Heatmaps of allele-specific ratios of X-linked genes in ESC, EpiLC, XGFP- PGCLC, Pre-meiotic, Meiotic and Mitotic
clusters. X-inactive genes are shown in red (ratio ≤ 0.135), X-active genes in green (ratio > 0.135) and mono-allelic Xcas
expression in blue (ratio between 0.5 and 1). Colour gradients used in between and above these two values as shown in the
legend. Genes are ordered by genomic position and grouped according to the category to which they belong, indicated on the
left side of the heatmap. n = 161 genes.
(D) Average allelic ratios of X-linked genes within each category (Escapees, Early XCR, Late XCR) in ESC, EpiLC, XGFP-
PGCLC, Pre-meiotic and Meiotic clusters.
(E) Each dot indicates the average allelic ratio of a single X-linked gene belonging to the indicated category in XGFP-
PGCLCs. The numbers above the bars indicate p-values (two-sample unpaired Wilcoxon-Mann-Whitney test with R defaults).
Box plots depict the first and third quartiles as the lower and upper bounds of the box, with a band inside the box showing the
median value and whiskers representing 1.5x the interquartile range.
(F)Working model of the effects of X-status on germ cell developmental stages.
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time window (Mohammed et al, 2017; Lentini et al, 
2021; Naik et al, 2021; Cheng et al, 2019), which 
could potentially allow cells to give rise to XaXa 
PGCs, similar to our XGFP+ PGCLCs. Thus our 
data supports the idea of a potential functional link 
between appropriate X-chromosome dosage 
compensation kinetics and developmental 
progression during mammalian germ cell 
maturation. 
It remains an open question, what could be the 
potential role of X-inactivation for proper PGCLC 
development and if it is a driver or, alternatively, a 
diagnostic mark for meiotic competence of germ 
cells. We observed that XGFP+ PGCLCs, which 
failed to undergo X-inactivation, differed from 
XGFP- PGCLCs on multiple accounts. Albeit 
sharing an overall similar transcriptome signature 
with their XGFP- germ cell counterparts, XGFP+ 
PGCLCs displayed ESC-like features including a 
higher expression of naive pluripotency genes, 
shortened cell cycle and propensity to form 
pluripotent EGC colonies when cultured under 
2i/LIF conditions. An explanation for this 
pluripotency-related phenotype could be the two-
fold expression of critical X-linked dosage-
sensitive genes, which need to be silenced by X-
inactivation to allow normal pluripotency exit 
during ESC differentiation (Schulz et al, 2014). 
For example, Dusp9, an X-linked regulator of 
MAPK signaling, has been shown to be 
responsible for the lower DNA-methylation levels 
of XX pluripotent stem cells, when compared with 
XY and XO cells (Choi et al, 2017; Song et al, 
2019; Genolet et al, 2021). In germ cell 
development, DNA methylation safeguards 
repression of late germ cell / meiotic genes during 
early germ cell stages and demethylation of their 
promoters is required for their upregulation during 
germ cell maturation and meiotic entry (Hill et al, 
2018; Yamaguchi et al, 2012). Along those lines, 
we observed that XGFP+ PGCLCs also displayed 
precocious expression of a subset of late germ 
cell markers, which remained repressed in XGFP- 
PGCLCs. Importantly, demethylation of late germ 
cell genes alone has been shown to only lead to 
partial activation of some germ cell genes, while 
not being sufficient for their full expression in the 
absence of meiosis-inducing signals (Ohta et al, 
2017; Miyauchi et al, 2017). This would explain 
our observation of a relatively mild upregulation of 
late germ cell genes in our XGFP+ PGCLCs and 
why this was not sufficient to aid entrance of 

XGFP+ cells into a full meiotic trajectory after their 
aggregation with gonadal somatic cells.  
Klhl13, another X-linked MAPK pathway 
regulator, has been recently described to promote 
pluripotency factor expression, thereby delaying 
differentiation when expressed at double dose 
(Genolet et al, 2021). The counterbalance 
between pluripotency vs. differentiation-
promoting signaling responses was also observed 
in our gene expression analysis, in which we 
found “MAPK regulation” and “WNT signaling” to 
be enriched GO terms in XGFP- PGCLCs, while 
“response to LIF” was enriched in XGFP+ 
PGCLCs (Fig. 2F). Apart from being involved in 
pluripotency, MAPK-inhibition (Kimura et al, 2014) 
as well as WNT- and LIF-signaling pathways 
(Ohinata et al, 2009; Hayashi et al, 2011) play 
facilitating roles during PGCLC induction, 
therefore differential enrichment of these 
pathways in our XGFP+ and XGFP- PGCLCs 
might contribute to their distinct developmental 
potentials. Taken together, the combination of 
these differential features might lead to a reduced 
mitotic propensity of XGFP- PGCLCs, which 
might prime them for meiotic entry, while XGFP+ 
PGCLCs rather remain mitotic and do not enter 
meiosis. To which degree this may be a cause or 
consequence of the X-inactivation status in 
PGCLCs and how X-linked gene dosage might 
affect female germ cell development will need to 
be addressed by future studies. 
While we found that X-inactivation marked 
PGCLCs of full potential for subsequent meiosis 
and oogenesis, X-reactivation occurred 
progressively during their transition from pre-
meiotic into meiotic stages. Evidently, X-
reactivation is not dependent on meiotic entry as 
it occurred completely in mitotic germ cells as well, 
and X-reactivation by itself was also not sufficient 
for germ cells to enter a meiotic trajectory. 
However, it remains to be tested whether X-
reactivation is a requirement for female germ cells 
to progress through meiosis, or if the two 
processes are functionally unrelated. As in the 
case of pluripotency, reactivation of dosage-
sensitive X-linked genes could enable the 
initiation of the meiotic gene expression program 
by promoting the derepression and upregulation 
of meiotic genes (Hill et al, 2018; Yamaguchi et al, 
2012). The absence of double X dosage and/or 
abnormalities in meiotic pairing ability greatly 
diminishes the success rate of XO and XY germ 
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cells to pass through meiotic prophase due to 
delay of meiotic initiation and meiotic arrest when 
compared to XX germ cells (Hamada et al, 2020). 
Therefore, equalizing the chromatin state 
between the heterochromatic inactive X and 
euchromatic active X by X-reactivation could be a 
necessary step in order to allow X-X chromosome 
pairing during meiotic prophase. Our XRep 
system will provide a unique tool to test the 
potential requirement of X-reactivation for meiotic 
progression and thereby reveal the biological 
function of the intriguing epigenetic yoyo of X-
inactivation and -reactivation in the mammalian 
germ cell lineage. 
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Materials and Methods 

Cell culture 

Embryonic stem cell culture: Serum/LIF 
Embryonic Stem Cells (ESCs) were maintained 
and expanded on 0.2% gelatin-coated dishes in 
DMEM (Thermo Fisher Scientific, 31966021) 
supplemented with 10% Fetal Bovine Serum 
(FBS) (ES-qualified, Thermo Fisher Scientific, 
16141079), 1,000 U/ml LIF (ORF Genetics, 01-
A1140-0100), 1 mM Sodium Pyruvate (Thermo 
Fisher Scientific, 11360070), 1x MEM Non-
Essential Amino Acids Solution (Thermo Fisher 
Scientific, 11140050), 50 U/ml 
penicillin/streptomycin (Ibian Tech, P06-07100) 
and 0.1 mM 2-mercaptoethanol (Thermo Fisher 
Scientific, 31350010). Cells were cultured at 37°C 
with 5% CO2. Medium was changed every day 
and cells were passaged using 0.05% Trypsin-
EDTA (Thermo Fisher Scientific, 25300054) and 
quenched 1:5 in DMEM supplemented with 10% 
FBS (Life Technologies, 10270106). Cells were 
monthly tested for mycoplasma contamination by 
PCR. 

Embryonic stem cell culture: 2i/LIF 
ESCs were cultured for 24h prior to the start of the 
primordial germ cell-like cell induction in 2i/LIF 
medium. Briefly, a homemade version of the 
N2B27 medium was prepared based on previous 
reports (Ying et al, 2008) with additional 
modifications reported in (Hayashi & Saitou, 
2013) containing two chemical inhibitors 0.4 µM 
PD032591 (Selleck Chemicals, S1036) and 3 µM 
CHIR99021 (SML1046, SML1046) together with 
1,000 U/ml LIF (ORF Genetics, 01-A1140-0100). 
ESCs were seeded on a dish coated with 0.01% 
poly-L-ornithine (Sigma-Aldrich, P3655) and 500 
ng/ml laminin (Corning, 354232). 

XRep cell line generation 
We used the female F2 ESC line EL16.7 TST, 
derived from a cross of Mus musculus musculus 
with Mus musculus castaneus (Ogawa et al, 
2008). As a result, cells contain one X 
chromosome from M.m musculus (Xmus) and one 
from M.m castaneus (Xcas). Moreover, EL16.7 
TST contains a truncation of Tsix on Xmus 
(TsixTST/+), which abrogates Tsix expression and 

leads to the non-random inactivation of Xmus upon 
differentiation. XGFP and XtdTomato vectors 
were integrated first, followed by integration of 
rtTA and last of germ cell transcription factor 
vectors. 

XGFP and XtdTomato dual color reporter 
A GFP reporter construct (Wu et al, 2014) was 
targeted in the second exon of Hprt on Xmus as 
described in (Bauer et al, 2021). The same 
strategy was used to simultaneously target a 
tdTomato reporter construct in the second exon of 
Hprt on Xcas and a GFP reporter on Xmus. Briefly, 
5x106 EL16.7 TST ESCs were nucleofected with 
the AMAXA Mouse Embryonic Stem Cell 
Nucleofector Kit (LONZA, VPH-1001) using 
program A-30 with 1.6 µg each of GFP and 
tdTomato circularised targeting vectors and 5 µg 
single gRNA vector PX459 (5'-
TATACCTAATCATTATGCCG-3') (Addgene, 
48139, a gift from Feng Zhang). Homology arms 
flanking the target site were amplified from 
genomic DNA and cloned into pBluescript II SK(+) 
(Addgene, 212205) by restriction-enzyme based 
cloning and the cHS4-CAG-nlstdTomato-cHS4 
and cHS4-CAG-nlsGFP-cHS4constructs, kindly 
provided by J. Nathans (Wu et al, 2014) were 
cloned between the two homology arms. 7.5 µM 
of RS-1 (Merck, 553510) was added to enhance 
homology-directed repair. To select for the 
homozygous disruption of Hprt, cells were grown 
in the presence of 10 µM 6-thioguanine (Sigma-
Aldrich, A4882-250MG) for 6 days, and GFP+ / 
tdTomato+ cells were isolated by FACS using a 
BD Influx (BD Biosciences). Single clones were 
screened by Southern blot hybridization as 
described in (Bauer et al, 2021). 

Rosa26 rtTA  
1 µg of R26P-M2rtTA targeting vector (Addgene, 
47381) and 5 µg of PX459 gRNA vector (5’-
GACTCCAGTCTTTCTAGAAGA-3’) were 
nucleofected with the AMAXA Mouse Embryonic 
Stem Cell Nucleofector Kit (LONZA, VPH-100) 
using program A-30 in the XRep. Cells were 
selected with 3 μg/ml puromycin (Ibian tech., ant-
pr-1) for 5 days, with medium being changed daily. 
Single clones were screened for rtTA expression 
by quantitative RT-PCR and by Southern blot 
hybridization, with genomic DNA being digested 
by EcoRV. 
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Germ cell transcription factors 
overexpression 
PB-TET vectors containing key germ cell factors 
Blimp1, Tfap2c and Prdm14 (Nakaki et al, 2013) 
were kindly given by F. Nakaki. Cells were 
transfected with 3 µg each of PB-TET vectors, 
pPBCAG-hph and a PiggyBac Transposase 
vector using the AMAXA Mouse Embryonic Stem 
Cell Nucleofector Kit (LONZA, VPH-1001). 
Transfected cells were selected with 200 μg/ml 
hygromycin B Gold (Ibian tech., ant-hg-1) for 10 
days and genotyped by PCR for transgenes. The 
primer sequences are shown in Table 1.  
Copy number integration was estimated by 
Southern blot hybridization. Briefly, 15 µg of 
genomic DNA were digested with BamHI. DNA 
fragments were electrophoresed in 0.8% agarose 
gel and transferred to an Amersham Hybond XL 
membrane (GE Healthcare, RPN303S). The b-
geo probe was designed downstream of the 
BamHI site, obtained by digesting the PB-TET-
Avi-Blimp1 plasmid with CpoI/SmaI, labeled with 
dCTP [α-32P] (Perkin Elmer, NEG513H250UC) 
using High Prime (Roche, 11585592001), purified 
with an illustra ProbeQuant G-50 Micro Column 
(GE Healthcare, 28903408) and hybridization 
performed in Church buffer. Radioisotope images 
were captured with a Phosphorimager Typhoon 
Trio 
 
Epiblast-like cell and primordial germ cell-
like cell induction 
XRep ESCs were induced into PGCLCs as 
described previously (Hayashi & Saitou, 2013) 
with the following modifications as this condition 
was most efficient in generating PGCLCs. ESCs 
were thawed on 0.2% gelatin in serum/LIF and 
after 24h seeded at a density of 0.6 x105 cells/cm2 
in 2i/LIF medium on a dish coated with 0.01% 
poly-L-ornithine (Sigma-Aldrich, P3655) and 500 
ng/ml laminin (Corning, 354232). 24h later, ESCs 
were dissociated with TrypLE Express for 5 mins 
at 37°C and induced into EpiLCs by addition of 
human recombinant basic fibroblast growth factor 
(bFGF) (Invitrogen, 13256-029) and activin A 
(Peprotech, 120-14P) and seeding on 16.7 µg/ml 
human plasma fibronectin-coated plates (Merck 
Millipore, FC010). After 48h, EpiLCs were split 
using TrypLE Express (Life Technologies 
12604013) and re-seeded at 0.2 x 105 cells/cm2 on 
16.7 µg/ml human plasma fibronectin-coated 
plates. After an additional 48h, EpiLCs were 

aggregated in U-bottom 96-well Lipidure-Coat 
plate (Thermo Fisher Scientific, 81100525) at 
2,000 cells per aggregate in GK15 medium 
(GMEM (Life Technologies, 11710035), 15% 
KnockOut Serum Replacement (KSR) (Thermo 
Fisher, 10828028), 0.1 mM nonessential amino 
acids (NEAA) (Thermo Fisher Scientific, 
11140050), 1 mM sodium pyruvate (Thermo 
Fisher Scientific, 11360), 2 mM Glutamax (Life 
Technologies, 35050061), 0.1 mM 2-
mercaptoethanol (Thermo Fisher Scientific, 
21985-023), and 100 U/ml penicillin and 0.1 
mg/ml streptomycin (Thermo Fisher Scientific, 
15140) with 1.5 µg/ml doxycycline (Tocris, 
4090/50) for 5 days. 

PGCLCs mitotic expansion  
PGCLC mitotic expansion culture was performed 
as previously described (Ohta et al, 2017) with few 
modifications. Briefly, five days after PGCLC 
induction, SSEA1+/CD61+ PGCLCs were sorted 
by flow cytometry onto m220 feeder cells, which 
constitutively express a membrane-bound form of 
mouse Stem Cell Factor (Dolci et al, 1991; 
Majumdar et al, 1994) on 0.1% gelatin-coated 
optical bottom plates (Nunc, 165305). The 
expansion culture was maintained for a total of 9 
days. The first 3 days in GMEM containing 100 
ng/ml SCF (Peprotech, 250-03), 10 µM forskolin 
(Sigma- Aldrich, F3917), 10 µM rolipram (Abcam, 
ab120029), 2.5% FBS (Capricorn Scientific, 
FBSES12B), 10% KSR, 0.1 mM NEAA, 1 mM 
sodium pyruvate, 2 mM Glutamax (Life 
Technologies, 35050061), 0.1 mM 2-
mercaptoethanol, 100 U/ml penicillin, 0.1 mg/ml 
streptomycin and 100 nM all-trans Retinoic Acid 
(RA) (Enzo Life Sciences, BMLGR100).  

PGCLCs meiosis induction  
Meiosis was induced after 3 days of mitotic 
expansion culture as previously reported 
(Miyauchi et al, 2017, 2018) by a combined 
treatment of 300 ng/ml BMP2 (R&D Systems, 
355-BM) and 100 nM RA. Medium was replaced 
completely every two days until the end of the 
culture period.  

rOvary reconstitution 
10,000 sorted SSEA1+/CD61+ PGCLCs were 
mixed with 75,000 freshly thawed E13.5 female 
somatic gonadal and mesonephric cells (SSEA1-
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/CD31-) or E12.5 female somatic gonadal cells 
and cultured in Lipidure-Coat plates at 37°C in a 
5% CO2 incubator for 6 days for the scRNAseq 
protocol or for 2 days for the IVDi as described in 
(Hayashi et al, 2017). Mouse care and procedures 
were conducted according to the protocols 
approved by the  Ethics  Committee on Animal 
Research of the Parc de Recerca Biomèdica de 
Barcelona (PRBB) and by the Departament de 
Territori i Sostenibilitat of the Generalitat de 
Catalunya. 

Oocyte in vitro differentiation (IVDi) 
culture 
IVDi culture was performed as previously 
described (Hayashi et al, 2017). Briefly, one single 
rOvary was placed in the middle of a 24-well 
Transwell-COL membrane (Corning, CLS3470-
48EA) and cultured in alpha-MEM (Life 
Technologies, 12571063) with 0.15 mM ascorbic 
acid (Sigma-Aldrich, A7506), 2% FBS, 2 mM 
Glutamax (Life Technologies, 35050061), 0.1 mM 
2-mercaptoethanol, 50 U/ml 
penicillin/streptomycin under normoxic condition 
(20% O2 and 5% CO2 at 37°C) for 11 days, 
changing IVDi medium every other day.  

Fluorescence-activated cell sorting 
(FACS)  
After 5 days of culture, PGCLC aggregates were 
dissociated using TrypLE Express (Thermo Fisher 
Scientific, 12604021) for 8 min at 37°C, with 
periodical tap-mixing. The reaction was quenched 
1:5 with wash buffer DMEM/F12 (Thermo Fisher 
Scientific, 11320-082) containing 0.1% bovine 
serum albumin (BSA) fraction V (Thermo Fisher 
Scientific, 15260-037) and 30 mM HEPES (Gibco, 
15630-056) containing 0.1 mg/mL of DNAse I 
(Sigma-Aldrich, DN25-10MG). The cell 
suspension was centrifuged at 1200 rpm for 5 min, 
resuspended in FACS buffer (0.1% BSA in PBS) 
and passed through a 70 µm cell strainer 
(Corning, 352350). Cells were stained with 1:100 
SSEA1-eFluor 660 (Thermo Fisher Scientific, 50-
8813-42) and 1:10 CD61-PE-Vio770 (Miltenyi 
Biotec, 130102627) for 1h at 4°C. Cells were 
washed thrice with FACS Buffer, stained with 
1:1000 DAPI (Thermo Fisher Scientific, D1306) 
and then FACS sorted using a BD FACSAria II or 
a BD Influx. Double-positive population of 

PGCLCs was collected in GK15 medium. Data 
was analysed with Flowjo (Tree Star) software. 

Cell cycle analysis 
Identification of G1, S, G2/M cell cycle phases 
was based on DNA content and performed as 
described previously (Bonev et al, 2017) with 
minor modifications. Briefly, ESCs, EpiLC, 
PGCLCs were dissociated and quenched as 
described above. Cells were then fixed for 10 min 
at room temperature with freshly prepared 1% 
formaldehyde in PBS (Sigma-Aldrich, F8775-
4X25ML) and the reaction then quenched by 
addition of 0.2M glycine (NZYTech, MB01401) 15 
min on ice. 1x106 cells/ml were permeabilized 
using 0.1% saponin (Sigma-Aldrich, 47036-50G-
F) containing 10 µg/ml DAPI (Thermo Fisher 
Scientific, D1306) and 100 µg/ml RNase A 
(Thermo Fisher Scientific, EN0531) for 30 min at 
room temperature protected from light with slight 
agitation. After washing once with cold PBS, 
samples were resuspended in cold 0.5% BSA in 
PBS at a concentration of 1x106 cells/ml and 
immediately analyzed using a BD LSRFortessa.  

Immunofluorescence of PGCLCs bodies 
and rOvaries 
Immunofluorescence analysis of PGCLC bodies 
or rOvaries was performed on cryosections 
prepared as follows: aggregates were fixed with 
4% paraformaldehyde (PFA) (Electron 
Microscopy Science, 15713) in PBS at room 
temperature for 30 min, followed by three washes 
in PBS and submerged in serial concentrations of 
10% and 30% of sucrose (Sigma-Aldrich, S0389) 
in PBS, 15 mins and overnight at 4°C respectively. 
The samples were embedded in OCT compound 
(Sakura Finetek, 4583), snap-frozen in liquid 
nitrogen, and cryo-sectioned at a thickness of 10 
µm at -20°C on a cryostat (Leica, CM1850). The 
sections were placed on a coated glass slide 
(MAS-GP type A; Matsunami, S9901) and dried 
completely. 
For immunostaining, the slides were blocked with 
PBS containing 10% normal goat serum (NGS) 
(Abcam, ab7481), 3% BSA (Sigma-Aldrich, 
A3311), and 0.2% Triton X-100 (Sigma-Aldrich, 
T9284) for 1 hr at room temperature, followed by 
incubation with the primary antibodies diluted in a 
1:1 solution of blocking buffer to PBS with 0.2% 
Tween (PBST) (Sigma-Aldrich, P7949) overnight 
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at room temperature. The slides were washed 
three times with PBST, then incubated with the 
secondary antibodies diluted as the primary, with 
DAPI at 1 µg/ml for 1 hr at room temperature. 
Following three washes in PBST, the samples 
were mounted in VECTASHIELD with DAPI 
(Vector Laboratories, H1200) and observed under 
a Leica SP8 confocal microscope. All images 
were analyzed using Fiji/Image J software 
(Schindelin et al, 2012). All antibodies used in this 
study are listed in Table 2. 

Immunofluorescence of cultured PGCLC-
derived cells 
Immunofluorescence analysis of cultured 
PGCLC-derived cells was performed as described 
in (Nagaoka et al, 2020). Briefly, PGCLCs were 
cultured on m220 feeder cells seeded on a 0.1% 
gelatin-coated plate used specifically for imaging 
(Nunc, 165305). PGCLC-derived cells were fixed 
at c5, c7 or c9 with 4% PFA (Electron Microscopy 
Science, 15713) in PBS at room temperature for 
30 min, followed by three washes in PBS. Fixed 
cells were blocked in PBS containing 10% NGS, 
3% BSA, and 0.2% Triton X-100 for 1 hr, then 
incubated with the primary antibodies diluted in a 
1:1 solution of blocking buffer to PBS with 0.2% 
Tween (PBST) at room temperature overnight. 
After three washes in PBST, cells were incubated 
with the secondary antibodies and DAPI at room 
temperature for 2 hr and washed three times in 
PBST. Finally, the well was filled with 
VECTASHIELD without DAPI (Vector 
laboratories, H1000). Immunostained samples 
were observed with a Leica SP8 confocal 
microscope. 

Meiotic cell spreads 
Cultured PGCLC-derived cells were harvested by 
TrypLE Express at 37°C for 5 min, quenched with 
1:1 TrypLE wash buffer (DMEM/F12 containing 
0.1% BSA fraction V, 30 mM HEPES), filtered 
through a 70 µM strainer and centrifuged at 1200 
rpm for 5 min. Cell pellets were dislodged by 
tapping and washed once in PBS. Cells were then 
treated with a hypotonic solution (30 mM Tris-HCl, 
50 mM sucrose (Sigma, S0389), 17 mM trisodium 
citrate, 5 mM ethylenediaminetetraacetic acid 
(EDTA), 2.5 mM dithiothreitol (DTT) (Sigma, 
D0632), 0.5 mM phenylmethylsulfonylfluoride 
(PMSF) (Sigma, P7626), pH 8.2-8.4 at room 

temperature for 20 min. Cells were spun down 3 
min at 1200 rpm, resuspended in 100 mM sucrose 
and the cell suspension distributed onto slides 
(Matsunami, S9901) covered with 1% PFA in H2O 
(Electron Microscopy Science, 15713) with 0.2% 
Triton X-100 (pH 9.2-9.4). The slides were 
incubated at room temperature overnight in a 
humidified chamber. Finally, the slides were air-
dried and washed with 0.5% Kodak Photo-Flo 200 
(Kodak, B00K335F6S) for 2 min at room 
temperature. The spread slides were blocked in 
PBS containing 10% NGS, 1% BSA for 1 hr, then 
incubated with the primary antibodies diluted in a 
1:1 solution of blocking buffer to PBS with 0.2% 
Tween (PBST) at room temperature overnight. 
After three washes in PBST, cells were incubated 
with the secondary antibodies and DAPI at room 
temperature for 2 hr, washed three times in PBST 
and mounted in VECTASHIELD mounting 
medium with DAPI (Vector Laboratories, h1200). 
Immunostained cells were observed under a 
Leica SP8 confocal microscope. 

Immunofluorescence of IVDi tissues  
Day 11 IVDi tissues were treated while still 
attached to the transwell member as follow: 
culture medium was carefully removed from the 
transwell and the whole membrane was fixed in 
4% PFA (Electron Microscopy Science, 15713) in 
PBS for 30 min at room temperature, washed 
twice with PBS and blocked overnight at room 
temperature in 10% NGS, 1% BSA, 0.2% Triton 
X-100. Primary antibodies were diluted in a 1:1 
solution of blocking buffer to PBS with 0.2% 
Tween (PBST) and incubated overnight. After 3 
washes with PBST, secondary antibodies and 
DAPI diluted as the primary, were incubated an 
additional overnight, washed thrice and the whole 
membrane mounted on VECTASHIELD with 
DAPI (Vector Laboratories, H1200). 
Immunostained tissues were observed under a 
Leica SP8 confocal microscope. 

RNA-fluorescent in situ hybridization and 
immunofluorescence 
Cells were fixed with 3% paraformaldehyde PFA 
(Electron Microscopy Science, 15713) for 10 min 
with 2 mM Ribonucleoside-Vanadyl Complex 
RVC (New England Biolabs, S1402S) at room 
temperature and then permeabilized for 5 min on 
ice in 0.5% Triton-X with 2mM RVC. Cells were 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.11.455976doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455976
http://creativecommons.org/licenses/by-nc/4.0/


 

 

then blocked in 3% BSA/PBS with 2mM RVC for 
1h at room temperature, incubated with primary 
antibodies diluted in blocking solution with 2mM 
RVC overnight at 4°C. The secondary antibodies 
were diluted in blocking buffer and incubated 1h 
at room temperature. Cells were then again fixed 
in 3% PFA for 10 min at room temperature. 
Strand-specific RNA FISH was performed with 
fluorescently labeled oligonucleotides (IDT) as 
described previously (Del Rosario et al, 2017). 
Briefly, probe mix was prepared by mixing 10 
ng/ml equimolar amounts of Cy5 labeled Xist 
probes BD384-Xist-Cy5-3' (5'-ATG ACT CTG 
GAA GTC AGT ATG GAG /3Cy5Sp/ -3'), BD417-
5'Cy5-Xist-Cy5-3' (5'- /5Cy5/ATG GGC ACT GCA 
TTT TAG CAA TA /3Cy5Sp/ -3'), 0.5 µg/µL yeast 
t-RNA (Life Technologies, 15401029) and 20 mM 
RVC. Probe mix was pre annealed at 80°C for 10 
min followed by 30 min at 37°C and hybridized in 
25% formamide, 10% dextran sulfate, 2xSSC pH 
7 at room temperature overnight. Slides were then 
washed in 25% formamide 2xSSC pH 7 at room 
temperature, followed by washes in 2xSSC pH 7 
and then mounted with Vectashield (Vector 
Laboratories, H1200). Images were acquired 
using a Zeiss Cell Observer.  

RNA extraction, cDNA synthesis and 
qPCR analysis 
Total RNA was isolated from ESCs, EpiLCs, and 
PGCLCs (two biological replicates each, 
corresponding to two different clones, with further 
two technical replicates each) using phenol-
chloroform extraction (Sigma Aldrich, P2069) 
followed by ethanol precipitation and quantified by 
Nanodrop. cDNA was produced with a High-
Capacity RNA-to-cDNA Kit (Thermo Fisher 
Scientific, 4387406) and was used for qRT-PCR 
analysis in triplicate reactions with Power SYBR 
Green PCR Master Mix (Thermo Fisher Scientific, 
4367659). The gene expression levels are 
presented as ∆∆Ct normalized with the mean Ct 
values of one housekeeping gene, Arbp, in a 
normalization sample (ESCs). The primer 
sequences used in this study are listed in Table 2. 

Bulk RNA-Seq analysis 
RNA libraries were prepared using the TruSeq 
Stranded Total RNA Library Preparation Kit 
(Illumina, 20020596) followed by 125 bp paired-
end sequencing on an Illumina HiSeq 2500.  

Allele-specific Analysis 
FastQ files that passed quality control were 
aligned to the mm10 reference genome 
containing CAST/EiJ and 129S1/SvImJ SNPs 
positions masked. The positions of all 36 mouse 
strains SNPs were downloaded from ftp://ftp-
mouse.sanger.ac.uk/REL-1505-
SNPs_Indels/mgp.v5.merged.snps_all.dbSNP14
2.vcf.gz.tbi. From here, we generated a VCF file 
containing only the SNPs information for the 
strains of interest, CAST/EiJ and 29S1/SvImJ. 
Reads with >= 1 SNPs were retained and aligned 
using STAR (Dobin et al, 2013) implementing the 
WASP method (van de Geijn et al, 2015) for 
filtering of allele-specific alignments.  
The generated bam files were used for counting 
reads using the HTseq tool (v0.6.1) (Anders et al, 
2015). All of the steps above were performed 
using a customized Nextflow pipeline (Di 
Tommaso et al, 2017). We obtained between 
50x106 and 75x106 reads per replicate. 
Coherence between samples, time points and 
replicates was verified by principal component 
analysis (PCA). Batch effects in principal 
component analysis (PCA) for comparison to in 

vivo samples were corrected using the R package 
limma (Ritchie et al, 2015).  
Differential expression analysis was performed 
using the R package DESeq2 (v1.16) (Love et al, 
2014). Briefly, differentially expressed genes were 
called by comparing XGFP+ PGCLCs and XGFP- 
PGCLCs or XGFP+ PGCLCs to ESCs. The 
DESeqDataSet (dds) was generated considering 
the dataset in its entirety while the DEseq analysis 
was conducted on dataset filtered as follows: 
Read counts were normalized by library size using 
“estimateSizeFactors”, were filtered for having a 
mean across the samples >10 (a more stringent 
cut off than the sum across the samples >10 ) and 
poorly annotated genes on chromosomal patches 
were removed. The resulting 16289 genes were 
kept for downstream analysis. Log2 fold change 
was shrinked using the “normal” parameter. 
Gene Ontology enrichment analysis performed on 
top and bottom differentially expressed genes 
defined as FDR < 0.001 e log2 fold change > |1| 
using the Gorilla. Over-represented categories 
were simplified using Revigo (http://revigo.irb.hr/) 
using a similarity of 0.4 as threshold. As 
background, all identified genes were used. 
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Single-cell RNA-seq analysis 
Full-length single-cell RNA-seq libraries were 
prepared using the SMART-Seq v5 Ultra Low 
Input RNA (SMARTer) Kit for Sequencing (Takara 
Bio). All reactions were downscaled to one-
quarter of the original protocol and performed 
following thermal cycling manufacturer’s 
conditions. Cells were sorted into 96-well plates 
containing 2.5 µl of the Reaction buffer (1× Lysis 
Buffer, RNase Inhibitor 1 U/µl). Reverse 
transcription was performed using 2.5 µl of the RT 
MasterMix (SMART-Seq v5 Ultra Low Input RNA 
Kit for Sequencing, Takara Bio). cDNA was 
amplified using 8 µl of the PCR MasterMix 
(SMART-Seq v5 Ultra Low Input RNA Kit for 
Sequencing, Takara Bio) with 25 cycles of 
amplification. Following purification with 
Agencourt Ampure XP beads (Beckmann 
Coulter), product size distribution and quantity 
were assessed on a Bioanalyzer using a High 
Sensitivity DNA Kit (Agilent Technologies). A total 
of 140 pg of the amplified cDNA was fragmented 
using Nextera XT (Illumina) and amplified with 
double indexed Nextera PCR primers (IDT). 
Products of each well of the 96-well plate were 
pooled and purified twice with Agencourt Ampure 
XP beads (Beckmann Coulter). Final libraries 
were quantified and checked for fragment size 
distribution using a Bioanalyzer High Sensitivity 
DNA Kit (Agilent Technologies). Pooled 
sequencing of Nextera libraries was carried out 
using a HiSeq4000 (Illumina) obtaining between 
0.5x106 to 1.5x106 reads per cell. Sequencing was 
carried out as paired-end (PE75) reads with 
library indexes corresponding to cell barcodes. 
Allele-specific alignment was done as described 
for bulk RNA-seq analysis using STAR and 
WASP. Data Processing and visualization was 
performed using the R package Seurat (v4.0) 
(Stuart et al, 2019). Low-quality cells with less 
than 4,000 identified genes, less than 10,000 RNA 
molecules or more than 5% mitochondrial reads 
were removed. Data was log normalized and the 
top 2,000 highly variable features were selected 
for downstream analysis. The expression matrix 
was then scaled and linear dimensional reduction 
was performed. To ensure that our analysis 
wouldn’t be confounded by in vitro differentiation 
artefacts, we focussed our analysis on germ cells 
by subsetting for cells with a normalized and 
scaled Dazl expression greater than 1 (60 out of 
460 sorted germ cells did not pass this criterium). 

Moreover, only cells that passed our allelic 
expression QC (explained below) were retained. 
Clusters were subsequently identified using 
“FindClusters” at a resolution of 0.8 on the first 20 
principal components and visualised as UMAP 
projections using “RunUMAP”. Clusters were 
annotated based on marker gene expression. 
Processing of allelic data was performed for all 
cells that passed the Seurat QC. Cells that passed 
the following criteria were considered for 
downstream analysis: More than 3,500 total allelic 
reads (sum of mus and cas), a minimum of 25 
allelically expressed genes as well as a minimum 
of 3% of total allelic reads from either genotype. 
Moreover, a gene was considered informative if 
the sum of its allelic reads was higher than 10 and 
if it was expressed in at least 25% of cells. This 
resulted in 379 cells that passed all our quality 
control steps. 

RNA velocity analysis 
Non-allele specific RNA velocity analysis was 
performed as follows: Briefly, loom files only of 
Dazl positive cells were generated from the non-
allelic specific BAM files from STAR using 
velocyto run-smartseq2 version v0.17.17 using 
the default parameters, mouse genome assembly 
mm10, and the UCSC repeat genome masked 
regions using custom made scripts.   
Subsequently the loom files were imported into 
Python version 3.7 and processed using scVelo 
v0.2.3 (Bergen et al, 2020). The metadata, the 
clusters and the UMAP dimensionality reduction 
coordinates from Seurat were imported then the 
single-cell data were filtered and normalized with 
a minimum of 20 counts and 2000 top genes. The 
moments for velocity estimations were computed 
with 20 principal components and 30 neighbours. 
The genes' full splicing kinetics were recovered 
before estimating the velocities using the 
dynamical model. The RNA-velocity was 
visualised using velocity_embedding_stream 

colour coding cells by their Seurat cluster. 

Integration with in vivo datasets 
Single-cell data of in vivo female germ cells was 
obtained from GEO GSE130212 (Zhao et al, 
2020). Data Processing and visualization was 
performed using the R package Seurat (v4.0) 
(Stuart et al, 2019). Low-quality cells with less 
than 2,000 identified genes, less than 2,000 RNA 
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molecules or more than 5% mitochondrial reads 
were removed. Data was log normalized, the top 
2,000 highly variable features were selected for 
downstream analysis and the expression matrix 
then scaled. Normalized and scaled in vivo and in 

vitro data from this study were merged by 
canonical correlation analysis (CCA) using the 
Seurat function RunCCA. UMAP was then 
performed using CCA.  
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Table 1. Primer sequences used in this study 

Target Transcript Forward (5’-3’) Reverse (5’-3’) 

Arbp CAAAGCTGAAGCAAAGGAAGAG AATTAAGCAGGCTGACTTGGTTG 

Xist mus/cas ATCATACTAAAGGCCACACAAAGAAT/C ATTTGGATTGCAAGGTGGAT 

Amot mus/cas TTTGCTCCCACTTGGTCACA/AG GACACGTTTGGAGAGGGAAC 

Prdx4 mus/cas TGAGTCTTCAAGGTATACACTA/AG TGAAGTGGTAGCATGCTCTGTT 

Prkx mus/cas TGCAGAATGAGAAAGCAGGC/CT CCACGATTACGCAGGTAGGT 

Klf4 TGGTGCTTGGTGAGTTGTGG GCTCCCCCGTTTGGTACCTT 

Dnd1 GCTGCTCAAGTTCAGTACGCAC GAAGTGCTGCTTTAGGTCTGGC 

Zfp42 (Rex1) CCCTCGACAGACTGACCCTAA TCGGGGCTAATCTCACTTTCAT 

Dnmt3b CTCGCAAGGTGTGGGCTTTTGTAAC CTGGGCATCTGTCATCTTTGCACC 

Dnmt3l CCAGGGCAGATTTCTTCCTAAGGTC TGAGCTGCACAGAGGCATCC 

Blimp1 AGCATGACCTGACATTGACACC CTCAACACTCTCATGTAAGAGGC 

Prdm14 ACAGCCAAGCAATTTGCACTAC TTACCTGGCATTTTCATTGCTC 

Tfap2c GGGCTTTTCTCTCTTGGCTGGT TCCACACGTCACCCACACAA 

Avi-Blimp1 TGGTGCCTGTAAAGGTCAAAC GGCGGAATTAGCTTATCGAC 

3xFLAG-Prdm14 TCCTGGATCAAGAGGCTTTC ACTAGCTAGAGCGGCCATCAC 

V5-Tfap2c ATTCCAGCAAGACGATGGAG GGCGGAATTAGCTTATCGAC 

rtTA CTACCACCGATTCTATGCCCC CGCTTTCGCACTTTAGCTGTT 

 

Table 2. Antibodies used in this study    

Name Description Dilution Company Catalog# 

Primary antibody     

anti-Sox2 Rabbit polyclonal 100x Abcam ab97959 

anti-Tfap2 (6E4/4) Mouse monoclonal 300x Santa Cruz SC12762 

anti-cleaved PARP1 Rabbit monoclonal 100x Abcam ab32064 

anti-Sycp3 Mouse monoclonal 100x Abcam ab97672 

anti-γH2A.X S139 Rabbit polyclonal 100x Abcam ab11174 

anti-Dazl Rabbit polyclonal 200x Abcam ab34139 

anti-GFP Chicken polyclonal 500x Abcam ab13970 

Surface markers     

SSEA1-eFluor 660 Mouse monoclonal 50x Thermos 50-8813-42 

CD61-PE-Vio770  Hamster monoclonal  10x Miltenyi Biotec 130-102-627 

Secondary antibody     

Anti-chicken IgY Goat polyclonal / Alexa488 500x Life Technologies A11039 

Anti-rabbit IgG Goat polyclonal / Alexa488 500x Life Technologies A11034 

Anti-mouse IgG Goat polyclonal / Alexa555 500x Life Technologies A21424 

Anti-rabbit IgG Donkey polyclonal/Alexa647 500x Life Technologies A31573 
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Data availability 

Raw and pre-processed data generated will be 
available upon peer-reviewed publication at 
GEO under accession: GSE169201 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.c
gi?acc=GSE169201). 
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