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96 Abstract
97 Drosophila melanogaster is a leading model in population genetics and genomics, and a
98  growing number of whole-genome datasets from natural populations of this species have been
99 published over the last 20 years. A major challenge is the integration of these disparate
100 datasets, often generated using different sequencing technologies and bioinformatic pipelines,
101  which hampers our ability to address questions about the evolution and population structure
102  of this species. Here we address these issues by developing a bioinformatics pipeline that
103  maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting
104 of fly and symbiont genomes and estimates allele frequencies using either a heuristic
105 (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate
106 the largest data repository of genomic data available for D. melanogaster to date,
107 encompassing 271 population samples from over 100 locations in >20 countries on four
108 continents based on a combination of 121 unpublished and 150 previously published genomic
109 datasets. Several of these locations have been sampled at different seasons across multiple
110 vyears. This dataset, which we call Drosophila Evolution over Space and Time (DEST), is
111  coupled with sampling and environmental meta-data. A web-based genome browser and web
112 portal provide easy access to the SNP dataset. Our aim is to provide this scalable platform as
113  a community resource which can be easily extended via future efforts for an even more
114  extensive cosmopolitan dataset. Our resource will enable population geneticists to analyze
115  spatio-temporal genetic patterns and evolutionary dynamics of D. melanogaster populations
116  in unprecedented detail.
117
118 Keywords: Drosophila melanogaster, population genomics, SNPs, evolution, adaptation,
119 demography
120
121
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123 Introduction

124 The vinegar fly Drosophila melanogaster is one of the oldest and most important genetic
125 model systems and has played a key role in the development of theoretical and empirical
126  population genetics (e.g., Schneider 2000; Larracuente and Roberts 2015; Haudry et al.
127  2020). Through decades of work, we now have a basic picture of the evolutionary origin (David
128 and Capy 1988; Lachaise et al. 1988; Keller 2007; Sprengelmeyer et al. 2020), colonization
129  history and demography (Caracristi and Schlétterer 2003; Li and Stephan 2006; Duchen et al.
130 2013; Grenier et al. 2015; Arguello et al. 2019; Kapopoulou et al. 2020), and spatio-temporal
131  diversification patterns of this species and its close relatives (Kolaczkowski et al. 2011; Fabian
132 et al. 2012; Bergland et al. 2014; Lack et al. 2016; Machado et al. 2016; Kapun et al. 2016,
133 2020). The availability of high-quality reference genomes (Adams 2000; Celniker and Rubin
134  2003; dos Santos et al. 2015) and genetic tools (Schneider 2000; Duffy 2002; Jennings 2011;
135 Hales et al. 2015; Haudry et al. 2020) facilitates placing evolutionary studies of flies in a
136  mechanistic context, allowing for the functional characterization of ecologically relevant
137  polymorphisms (e.g., de Jong and Bochdanovits 2003; Paaby et al. 2010, 2014; Mateo et al.
138  2014; Kapun et al. 2016; Durmaz et al. 2018, 2019; Ramaekers et al. 2019).

139 Recently, work on the evolutionary biology of Drosophila has been fueled by a growing
140 number of population genomic datasets from field collections across a large portion of D.
141  melanogaster's range (Grenier et al. 2015; Machado et al. 2021; Guirao-Rico and Gonzalez
142 2019; Arguello et al. 2019). These genomic data consist either of re-sequenced inbred (or
143  haploid) individuals (e.g., Mackay et al. 2012; Langley et al. 2012; Grenier et al. 2015; Lack et
144  al. 2015, 2016; Mateo et al. 2018; Kapopoulou et al. 2020) or pooled sequencing of outbred
145  population samples (Pool-Seq; e.g., Kolaczkowski et al. 2011; Fabian et al. 2012; Bastide et
146  al. 2013; Campo et al. 2013; Bergland et al. 2014; Machado et al. 2016, 2019; Kapun et al.
147 2016, 2020). Pooled re-sequencing provides accurate and precise estimates of allele
148 frequencies across most of the allele frequency spectrum (Zhu et al. 2012; Lynch et al. 2014;
149  Schldtterer et al. 2014) at a fraction of the cost of individual-based sequencing. Although Pool-
150 Seq retains limited information about linkage disequilibrium (LD) relative to individual
151  sequencing (Feder et al. 2012), Pool-Seq data can be used to infer complex demographic
152  histories (e.g., Cheng et al. 2012; Bergland et al. 2016; Deitz et al. 2016; Gould et al. 2017,
153  Corbett-Detig and Nielsen 2017; Giesen et al. 2020), characterize levels of diversity (Kofler et
154  al. 2011a, 2011b; Ferretti et al. 2013; Kapun et al. 2020), and infer genomic loci involved in
155 recent adaptation in nature (Flatt 2016; Kapun et al. 2016, 2020; Gould et al. 2017; Bogaerts-
156  Marquez et al. 2020; Machado et al. 2021) and during experimental evolution (e.g., Turner et
157  al. 2011; Orozco-terWengel et al. 2012; Burke 2012; Kofler and Schlétterer 2014). However,
158 the rapidly increasing number of genomic datasets processed with different bioinformatic

159 pipelines makes it difficult to compare results across studies and to jointly analyze multiple
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160 datasets. Differences among bioinformatic pipelines include filtering methods for the raw
161 reads, mapping algorithms, the choice of the reference genome or SNP calling approaches,
162  potentially generating biases when combining processed datasets from different sources for
163 joint analyses (e.g., Gautier et al. 2013; Hoban et al. 2016).

164 To address these issues, we have developed a modular bioinformatics pipeline to map
165 Pool-Seq reads to a hologenome consisting of fly and microbial genomes, to remove reads
166 from potential Drosophila simulans contaminants, and to estimate allele frequencies using two
167 complementary SNP callers. Our pipeline is available as a Docker image (available from
168 https://dest.bio) to standardize versions of software used for filtering and mapping, to make
169 the pipeline available independently of the operating system used, and to facilitate future
170  updates and modification of the pipeline. In addition, our pipeline allows using either heuristic
171  or probabilistic methods for SNP calling, based on PoolSNP (Kapun et al. 2020) and SNAPE-
172 pooled (Raineri et al. 2012). We also provide tools for performing in-silico pooling of existing
173  inbred (haploid) lines that exist as part of other Drosophila population genomic resources (Pool
174 et al. 2012; Langley et al. 2012; Grenier et al. 2015; Kao et al. 2015; Lack et al. 2015, 2016).
175 This pipeline is also designed to be flexible, facilitating the streamlined addition of new
176  population samples as they arise.

177 Using this pipeline, we generated a unified dataset of pooled allele frequency estimates
178 of D. melanogaster sampled across a large portion of its world-wide distribution, including
179  Europe, North America, Africa, Australia, and Asia. This dataset is the result of the
180 collaborative efforts of the European DrosEU (Kapun et al. 2020) and DrosRTEC (Machado
181 etal. 2021) consortia and combines both novel and previously published population genomic
182  data. Our dataset combines samples from 100 localities, 55 of which were sampled at two or
183  more time points across the reproductive season (~10-15 generations/year) for one or more
184  years. Collectively, these samples represent >13,000 individuals, cumulatively sequenced to
185 >16,000x coverage or ~1x per fly. The cost-effectiveness of Pool-Seq has enabled us to
186 estimate genome-wide allele frequencies over geographic space (continental and sub-
187  continental) and time (seasonal, annual and decadal) scales, thus making our data a unique
188  resource for advancing our understanding of fundamental adaptive and neutral evolutionary
189  processes. We provide data in two file formats (VCF and GDS: Danecek et al. 2011; Zheng
190 etal 2017), thus allowing researchers to utilize a variety of tools for computational analyses.
191 Our dataset also contains sampling and environmental meta-data to enable various
192  downstream analyses of biological interest.

193

194
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195 Materials and Methods

196 Data sources. The genomic dataset presented here has been assembled from a combination
197  of Pool-Seq libraries and in-silico pooled haplotypes. We combined 246 Pool-Seq libraries of
198  population samples from Europe, North America and the Caribbean that were sampled
199 through space and time by two collaborating consortia in North America (DrosRTEC:
200 https://web.sas.upenn.edu/paul-schmidt-lab/dros-rtec/) and Europe (DrosEU:
201  http://droseu.net) between 2003 and 2016. Of these 246 Pool-Seq samples, 121 samples

202  represent previously unpublished samples generated by DrosEU, 48 DrosEU samples

203  previously reported in Kapun et al. (2020), and 77 samples previously reported in Machado et
204  al. (2021). In addition, we integrated genomic data from >900 inbred or haploid genomes from
205 25 populations in Africa, Europe, Australia, and North America available from the Drosophila
206  Genome Nexus dataset (DGN v1.1; Pool et al. 2012; Langley et al. 2012; Grenier et al. 2015;
207 Kao et al. 2015; Lack et al. 2015, 2016) We further included the D. simulans haplotype (w*°';
208 Hu et al. 2013), built as part of the DGN dataset, as an outgroup, making this repository of
209 272 (246 Pool-Seq + 25 DGN + 1 D. simulans) whole-genome sequenced samples the largest
210 dataset of genome-wide SNP polymorphisms available for D. melanogaster to date.

211

212 Metadata. We assembled uniform meta-data for all samples (Supplementary Material online,
213  supplementary table S1). This information includes collection coordinates, collection date, and
214  the number of flies per sample. Samples are also linked to bioclimatic variables from the
215 nearest WorldClim (Hijmans et al. 2005) raster cell at a resolution of 2.5° and to weather
216  stations from the Global Historical Climatology Network (GHCND;
217  ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/) to allow for future analyses of the environmental
218  drivers that might underlie genetic change. We also provide summaries of basic attributes of
219 each sample derived from the sequencing data including average read depth, PCR duplicate
220 rate, D. simulans contamination rate, relative abundances of non-synonymous versus
221 synonymous polymorphisms (pn/ps), the number of private polymorphisms, diversity statistics
222  (Watterson’s 6, m and Tajima’s D), and estimates of inversion frequencies.

223

224  Sample collection. The majority of population samples contributed by the DrosEU and the
225 DrosRTEC consortia was collected in a coordinated fashion to generate a consistent dataset
226  with minimized sampling bias. In brief, fly collections were performed exclusively in natural or
227  semi-natural habitats, such as orchards, vineyards and compost piles. For most European
228  collections, flies were collected using mashed banana, or apples with live yeast as bait in traps
229 placed at sampling sites for multiple days to attract flies, or by sweep netting (see Kapun et
230 al. 2020 for more details). For North American collections, flies were collected by sweep-net,

231  aspiration, or baiting over natural substrate or using baited traps (see Behrman et al. 2018;

4
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232 Machado et al. 2021 for details). Samples were either field-caught flies (n=227), from F1
233 offspring of wild-caught females (n=7), from a mixture of F1 and wild-caught flies (n=7), or
234  from flies kept as isofemale lines in the lab for 5 generations or less (n=4); see supplementary
235 table 1 for more information. To minimize cross-contamination with the closely related
236  sympatric sister species D. simulans, we only sequenced male D. melanogaster specimens,
237  allowing for higher confidence discrimination between the two species based on the
238  morphology of male genitalia (Capy and Gibert 2004; Markow and O’Grady 2006). Samples
239  were stored in 95% ethanol at -20°C before DNA extraction.

240

241 DNA extraction and sequencing. The DrosEU and DrosRTEC consortia centralized
242  extractions from pools of flies. DNA was extracted either using chloroform/phenol-based
243  (DrosEU: Kapun et al. 2020) or lithium chloride/potassium acetate extraction protocols
244  (DrosRTEC: Bergland et al. 2014; Machado et al. 2021) after homogenization with bead
245  beating or a motorized pestle. DrosEU samples from the 2014 collection were sequenced on
246  an lllumina NextSeq 500 sequencer at the Genomics Core Facility of Pompeu Fabra
247  University in Barcelona, Spain. Libraries of the previously unpublished DrosEU samples from
248 2015 and 2016 were constructed using the lllumina TruSeq PCR Free library preparation kit
249  following the manufacturer’s instructions and sequenced on the lllumina HiSeq X platform as
250 paired-end fragments with 2 x 150 bp length at NGX Bio (San Francisco, California, USA).
251  The previously published samples of the DrosRTEC consortium were prepared and
252  sequenced on GAIIX, HiSeq2000 or HiSeq3000 platforms, as described in Bergland et al.
253  (2014) and Machado et al. (2021). For information on DNA extraction and sequencing
254  methods of the various DGN samples see Lack et al. (2016) and others (Pool et al. 2012;
255 Langley et al. 2012; Grenier et al. 2015; Kao et al. 2015).

256

257 Mapping pipeline. The joint analysis of genomic data from different sources requires the
258  application of uniform quality criteria and a common bioinformatics pipeline. To accomplish
259 this, we developed a standardized pipeline that performs filtering, quality control and mapping
260 of any given Pool-Seq sample (see supplementary fig. S1). This pipeline performs quality
261 filtering of raw reads, maps reads to a hologenome (see below), performs realignment and
262 filtering around indels, and filters for mapping quality. The output of this pipeline includes
263  quality control metrics, bam files, pileup files, and allele frequency estimates for every site in
264  the genome (gSYNC, see below). Our pipeline is provided as a Docker image and will facilitate
265 the integration of future samples to extend the worldwide D. melanogaster SNP dataset
266  presented here.

267 The mapping pipeline includes the following major steps. Prior to mapping, we removed

268 sequencing adapters and trimmed the 3’ ends of all reads using cutadapt (Martin 2011). We
5
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269 enforced a minimum base quality score = 18 (-q flag in cutadapt) and assessed the quality of
270  raw and trimmed reads with FASTQC (Andrews 2010). Trimmed reads with minimum length
271 < 75 bp were discarded and only intact read pairs were considered for further analyses.
272 Overlapping paired-end reads were merged using bbmerge (v. 35.50; Bushnell et al. 2017).
273  Trimmed reads were mapped against a compound reference genome (“hologenome”)
274  consisting of the genomes of D. melanogaster (v.6.12) and D. simulans (Hu et al. 2013) as
275 well as genomes of common commensals and pathogens, including Saccharomyces
276  cerevisiae (GCF_000146045.2), Wolbachia pipientis (NC_002978.6), Pseudomonas
277  entomophila (NC_008027.1), Commensalibacter intestine (NZ_AGFR00000000.1),
278  Acetobacter pomorum (NZ_AEUP00000000.1), Gluconobacter morbifer
279  (NZ_AGQV00000000.1), Providencia burhodogranariea (NZ_AKKL00000000.1), Providencia
280 alcalifaciens (NZ_AKKMO01000049.1), Providencia rettgeri (NZ_AJSB00000000.1),
281  Enterococcus faecalis (NC_004668.1), Lactobacillus brevis (NC_008497.1), and
282  Lactobacillus plantarum (NC_004567.2), using bwa mem (v. 0.7.15; Li 2013) with default
283  parameters. We retained reads with mapping quality greater than 20 and reads with no
284  secondary alignment using samtools (Li et al. 2009). PCR duplicate reads were removed using
285  Picard MarkDuplicates (v.1.109; http://picard.sourceforge.net). Sequences were re-aligned in
286  the proximity of insertions-deletions (indels) with GATK (v3.4-46; McKenna et al. 2010). We
287 identified and removed any reads that mapped to the D. simulans genome using a custom
288  python script, following methods outlined previously (Kapun et al. 2020; Machado et al. 2021;
289  for a more in-depth analysis of D. simulans contamination see Wallace et al. 2021). Although
290 this method of decontamination by D. simulans accurately estimates contamination rate and
291 removes the vast majority of D. simulans reads (Machado et al. 2021), care should be taken
292 when analyzing samples with higher contamination rates at sites that are shared
293  polymorphisms between the two species.

294

295 Incorporation of the DGN dataset. We incorporated population allele frequency estimates
296  derived from inbred line and haploid embryo sequencing data from populations sampled
297  throughout the world using an in-silico pooling approach. These samples have been previously
298 collected and sequenced by several groups (Pool et al. 2012; Mackay et al. 2012; Langley et
299  al. 2012; Grenier et al. 2015; Kao et al. 2015; Lack et al. 2015, 2016) and together form the
300 Drosophila Genome Nexus dataset (DGN; Lack et al. 2015, 2016). We included 25 DGN

01 Kuilt as

301 populations with = 5 individuals per population, plus the D. simulans haplotype w
302 part of the DGN dataset. The DGN populations that we used are primarily from Africa (n=18)
303 but also include populations from Europe (n=2), North America (n=3), Australia (n=1), and
304 Asia (n=1). The complete list of DGN populations, and samples, used in this dataset can be

305 found in supplementary table S1.
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306 To incorporate the DGN populations into the DrosEU and DrosRTEC Pool-Seq datasets, we
307 used the pre-computed FASTA files (“Consensus Sequence Files” from

308 https://www.johnpool.net/genomes.html) and calculated allele frequencies at every site, for

309 each population, using custom bash scripts. We calculated allele frequencies for each
310 population by summing reference and alternative allele counts across all individuals using the
311  precomputed haplotype FASTA files. Since estimates of allele frequencies and total allele
312  counts for the DGN samples only consider unambiguous IUPAC codes, heterozygous sites or
313 sites masked as N’s in the original FASTA files were converted to missing data. We used
314  liftover (Kuhn et al. 2013) to translate genome coordinates to Drosophila reference genome
315 release 6 (dos Santos et al. 2015) and formatted them to match the gSYNC format (described
316  below). Scripts for reformatting the DGN data can be found in the GitHub repository for this
317  project (https:/github.com/DEST-bio/DEST freeze1).

318

319 SNP calling strategies. We used two complementary approaches to perform SNP calling.

320 The first was PoolSNP (Kapun et al. 2020), a heuristic tool which identifies polymorphisms
321 based on the combined evidence from multiple samples. This approach is similar to other
322  common Pool-Seq variant calling tools (Koboldt et al. 2009, 2012; Kofler et al. 2011a, 2011b).
323  PooISNP integrates allele counts across multiple independent samples and applies stringent
324  minor allele count and minor allele frequency thresholds for variant detection. PoolSNP is
325 expected to be good at detecting variants present in multiple populations, but is not very
326  sensitive to rare private alleles. The second approach was SNAPE-pooled (Raineri et al.
327  2012), atool that identifies polymorphic sites based on Bayesian inference for each population
328 independently using pairwise nucleotide diversity estimates as a prior. SNAPE-pooled is
329 expected to be more sensitive to rare private polymorphisms (Rainieri et al. 2012, Guirao-Rico
330 and Gonzalez 2021). The SNP calling step is built using the snakemake (Mdlder et al. 2021)
331 pipeline and the parameters to run the two callers can be found at https://github.com/DEST-
332  bio/DEST freeze1.

333

334 gSYNC generation and filtering. Our pipeline utilizes a common data format to encode allele

335 counts for each population sample (SYNC; Kofler et al. 2011b). A “genome-wide SYNC"
336 (gSYNC) file records the number of A, T,C, and G for every site of the reference genome.
337 Because gSYNC files for all populations have the same dimension, they can be quickly
338 combined and passed to a SNP calling tool. They can be filtered and are also relatively small
339 for a given sample (~500 Mb), enabling efficient data sharing and access. The gSYNC file is
340 analogous to the gVCF file format as part of the GATK HaplotypeCaller approach (McKenna
341  etal 2010), but is specifically tailored to Pool-Seq samples.


https://doi.org/10.1101/2021.02.01.428994
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.428994; this version posted May 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Kapun et al. DEST Population Genomics

342 We generated gSYNC files for both PoolSNP and SNAPE. To generate a PoolSNP
343  gSYNC file, we first converted BAM files to the MPILEUP format with samtools mpileup using
344  the -B parameter to suppress recalculations of per-base alignment qualities and filtered for a
345  minimum mapping quality with the parameter -q 25. Next, we converted the MPILEUP file
346  containing mapped and filtered reads to the gSYNC format using custom python scripts. To
347  generate a SNAPE-pooled gSYNC file, we ran the SNAPE-pooled version specific to Pool-
348  Seqdata for each sample in MPILEUP format with the following parameters: 6=0.005, D=0.01,
349  prior="informative’, fold="unfolded’ and nchr=number of flies (x2 for autosomes and x1 for the
350 X and Y chromosomes) following Guirao-Rico and Gonzalez (2021). We converted the
351  SNAPE-pooled output file to a gSYNC file containing the counts of each allele per position
352  and the posterior probability of polymorphism as defined by SNAPE-pooled using custom
353  python scripts. We only considered positions with a posterior probability = 0.9 as being
354  polymorphic and with a posterior probability < 0.1 as being monomorphic. In all other cases,
355  positions were marked as missing data.

356 We masked gSYNC files for PooISNP and SNAPE-pooled using a common set of filters.
357  Sites were filtered from gSYNC files if they had: (1) minimum read depth < 10; (2) maximum
358 read depth > the 95% coverage percentile of a given chromosomal arm and sample; (3)
359 located within repetitive elements as defined by RepeatMasker; (4) within 5 bp distance up-
360 and downstream of indel polymorphisms identified by the GATK IndelRealigner. Filtered sites
361 were converted to missing data in the gSYNC file. The location of masked positions for every
362 sample was recorded as a BED file.

363

364 VCF generation. We generated three versions of the variant files, which differ in their inclusion
365 of the DGN samples and the SNP calling strategy. For PoolSNP variant calling, we generated
366 two variant tables: the first version incorporates all 272 samples of the Pool-Seq (DrosRTEC,
367 DrosEU) and in-silico Pool-Seq populations (DGN). The second version only considers the
368 246 Pool-Seq samples excluding the DGN samples (used for comparison to the SNAPE-
369 pooled version). The third file is based on SNAPE-pooled and contains 246 Pool-Seq samples
370  only.

371 To generate the PoolSNP versions, we combined the masked PoolSNP-gSYNC files into
372  atwo-dimensional matrix, where rows correspond to each position in the reference genome
373  and columns describe chromosome, position and reference allele, followed by allele counts in
374 SYNC format for every sample in the dataset. This combined matrix was then subjected to
375  variant calling using PoolSNP, resulting in a VCF formatted file. We performed SNP calling
376  only for the major chromosomal arms (X, 2L, 2R, 3L, 3R) and the 4th (dot) chromosome. Data
377  for heterochromatic arms of the autosomes, the Y chromosome, and the mitochondrial

378 genome can be extracted from the MPILEUP files provided at https://dest.bio.
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379 We evaluated the choice of two heuristic parameters applied to PoolSNP: global minor
380 allele count (MAC) and global minor allele frequency (MAF). Using all 272 samples, we varied
381 MAF (0.001,0.01,0.05) and MAC (5-100) and called SNPs at a randomly selected 10% subset
382  of the genome. Based on SNP annotations with SNPeff (version 4.3; Cingolani et al. 2012) we
383 calculated pn/ps, which is the ratio of non-synonymous to synonymous polymorphisms, and
384  used this value to tune our choice of MAF and MAC and to identify egregious outlier samples.
385  We found that a global MAC=50 provided qualitatively identical estimates of pn/ps across all
386 populations (Figure 2B) and that the results were insensitive to MAF (results not shown). We
387 therefore used these parameters for genome-wide variant calling (see Results: Identification
388 and quality control of SNP polymorphisms). We kept a third heuristic parameter, the missing
389 data rate, constant at a minimum of 50%.

390 To generate the SNAPE-pooled VCF files, we combined the 246 masked SNAPE-pooled
391 gSYNC files into a two-dimensional matrix, as described above, and generated a VCF
392 formatted output based on allele counts for any site found to be polymorphic in one or more
393  populations. We evaluated pn/ps across a range of local minor allele frequency thresholds
394  (Figure 2C) and found that pn/ps is largely insensitive to local MAF, once accounting for some
395 problematic samples (see below).

396 Final VCF files with annotations from SNPeff (version 4.3; Cingolani et al. 2012) were
397 stored in VCF and BCF (Danecek et al. 2011) file formats alongside an index file in TABIX
398 format (Li 2011). Besides VCF files, we also stored SNP data in the GDS file format using the
399 R package SeqArray (Zheng et al. 2017).

400

401 Inversion frequency estimates. We estimated the frequencies of 7 cosmopolitan inversion
402  polymorphisms (In(2L)t, In(2R)NS, In(3L)P, In(3R)C, In(3R)K, In(3R)Mo, In(3R)Payne) based
403 on a previously published panel of diagnostic SNP markers that are in tight LD with the
404  corresponding inversions (Kapun et al. 2014). As previously described (Kapun et al. 2016),
405 we isolated the positions in the VCF file of all marker SNPs and estimated the frequency of
406 each inversion as the mean frequency of inversion-specific alleles at all marker SNPs.

407

408 Population genetic analyses. We estimated allele frequencies for each site across
409 populations as the ratio of the alternate allele count to the total site coverage. We also
410 calculated per-site averages for nucleotide diversity (17, Nei 1987), Watterson’s 6 (Watterson
411 1975) and Tajima’s D (Tajima 1989) across all sites or in non-overlapping windows of 100 kb,
412 50 kb and 10 kb length. To estimate these summary statistics, we converted masked gSYNC
413 files (with positions filtered for repetitive elements, low and high read depth, and proximity to
414  indels; see gSYNC generation and filtering) back to the MPILEUP format using custom-made

415  scripts. mpileup files were processed using npstat v.1 (Ferretti ef al. 2013) with parameters -
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416  maxcov 10000 and -nolowfreq m=0 in order to include all filtered positions for analysis. We
417 only considered sites identified as being polymorphic by PoolSNP or SNAPE-pooled for
418 analysis, using the -snpfile option of npstat. For the DGN populations, chromosome-wide
419 summary statistics were estimated only for samples with less than 50% missing data per
420 chromosome. Due to small sample sizes, Tajima’s D was not estimated for 7 African DGN
421 populations that consisted of only 5 haploid embryos. To compare population genetic
422  estimates between the PoolSNP versus SNAPE-pooled datasets, we performed Pearson’s
423  correlations on 226 populations present in both datasets (see Identification and quality control
424  of SNP polymorphisms) using the stats package of R v.3.6.3. The effects of pool size (number
425  of individuals sampled per population) on genome-wide estimates of m, Watterson’s 6 and
426  Tajima’s Ds estimates were examined for European and North American populations using
427  the PoolSNP dataset and a linear model in R v.3.6.3. Finally, for 48 European populations we
428 estimated Pearson’s correlations between 17, Watterson’s 6 and Tajima’s D as estimated from
429 the PoolSNP dataset versus previous estimates by Kapun et al. (2020) using the stats
430 package of Rv3.6.3.

431 Next, we examined patterns of between-population differentiation by calculating window-
432  wise estimates of pairwise Fst, based on the method from Hivert et al. (2018) implemented in
433  the computePairwiseFSTmatrix() function of the R package poolfstat (v1.1.1). This analysis
434  was performed for the dataset composed of 271 samples (all samples excluding the D.
435  simulans reference strain) processed with PoolSNP, focusing on SNPs shared across the
436  whole dataset. Finally, we averaged pairwise Fstwithin and among phylogeographic clusters
437  (Africa [17 samples], North America [76 samples], Eastern Europe [83 samples] and Western
438  Europe [93 samples]; not included due to limited sampling: China and Australia). These Fsr
439 tracks at windows sizes of 100kb, 50kb and 10kb are available at https://dest.bio
440  (supplementary fig. S2, S3).

441 To assess population structure in the worldwide dataset, we applied principal components
442  analysis (PCA), population clustering, and population assignment based on a discriminant
443  analysis of principal components (DAPC; Jombart et al. 2010) to all 271 PoolSNP-processed
444  samples. For these analyses, we subsampled a set of 100,000 SNPs spaced apart from each
445  other by at least 500 bp. We optimized our models using cross-validation by iteratively dividing
446  the data as 90% for training and 10% for learning. We extracted the first 40 PCs from the PCA
447  and ran Pearson’s correlations between each PC and all loci. We subsequently extracted the
448  top 33,000 SNPs with large and significant correlations to PCs 1-40. We chose the 33,000
449 number as a compromise between panel size and differentiation power. For example,
450 depending on the number of individuals surveyed, these 33,000 DIMs can discern divergence
451 (1) between two populations with parametric Fst of 0.001- 0.0001 for sample sizes (n) of 10-

452  1000. These estimates come from the phase change formula: 7= Fsr = 1/(nm)"? (Patterson et

10
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453  al. 2006). Here, the two populations were sampled for n/2 individuals and genotyped at
454  m=33,000 markers. Furthermore, we included SNPs as a function of the percent variance
455  explained by each PC. PCAs, clustering, and assignment-based DAPC analyses were carried
456  out using the R packages FactoMiner (v. 2.3), factoextra (v. 1.0.7) and adegenet (v. 2.1.3),
457  respectively.

458

459  Web-based genome browser. Our HTML-based DEST browser (supplementary fig. S2) is
460  built on a JBrowse Docker container (Buels et al. 2016), which runs under Apache on a
461 CentOS 7.2 Linux x64 server with 16 Intel Xeon 2.4 GHz processors and 32 GB RAM. It
462 implements a hierarchical data selector that facilitates the visualization and selection of
463  multiple population genetic metrics or statistics for all 271 samples based on the PoolSNP-
464  processed dataset, taking into account sampling location and date. Importantly, our genome
465  browser provides a portal for downloading allelic information and pre-computed population
466  genetics statistics in multiple formats (supplementary fig. S2A, S2C, S3), a usage tutorial
467  (supplementary fig. S2B) and versatile track information (supplementary fig. S2D). Bulk
468  downloads of full variation tracks are available in BigWig format (Kent et al. 2010) and Pool-
469  Seqfiles (in VCF format) are downloadable by population and/or sampling date using custom
470 options from the Tools menu (supplementary fig. S2C). All data, tools, and supporting
471  resources for the DEST dataset, as well as reference tracks downloaded from FlyBase (v.6.12)
472  (dos Santos et al. 2015), are freely available at https://dest.bio.

473

474 Results

475 Integrating a worldwide collection of D. melanogaster population genomics resources.
476  We developed a modular and standardized pipeline for generating allele frequency estimates
477  from pooled resequencing of D. melanogaster genomes (supplementary fig. 1). Using this
478  pipeline, we assembled a dataset of allele frequencies from 271 D. melanogaster populations
479  sampled around the world (Figure 1A, Supplementary Material online, supplementary table
480 S1). Many of these samples were collected at the same location, at different seasons and over
481  multiple years (Figure 1B). The nature of the genomic data for each population varies as a
482  consequence of biological origin (e.g., inbred lines or Pool-Seq), library preparation method,

483  and sequencing platform.
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Figure 1. Sampling location, dates, and quality metrics. (A) Map showing the 271 sampling localities
forming the DEST dataset. Colors denote the datasets that were combined together. (B) Collection
dates for localities sampled more than once. (C) General sample features of the DEST dataset. The x-

axis represents the population sample, ordered by the average read depth.

To assess whether these features affect basic attributes of the dataset, we calculated six
basic quality metrics focusing on the Pool-Seq samples (Figure 1C, Supplementary Material
online, supplementary table S2). On average, median read depth across samples is 62x
(range: 10-217x). The per-nucleotide missing allele frequency rate was less than 7% for most
(95%) of the samples. Excluding populations with high missing data rate (>7%), the proportion
of sites with missing data was positively correlated with read depth (p=1.2x10°, R?=0.4). The
positive correlation between read depth and missing data rate is primarily due to an increased
sensitivity to identify indels. The number of flies per sample varied from 33 to 205, with
considerable heterogeneity among the DrosRTEC samples (standard deviation [sd]=30), but
not among DrosEU samples (sd=0.04). Variation in the number of flies and in sequencing
depth is reflected in the effective read depth, an estimate of the number of independent reads
after accounting for double binomial sampling that occurs during Pool-Seq (Eff. RD;

Kolaczkowski et al. 2011; Feder et al. 2012; Figure 1C). There was considerable variation in
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503 PCR duplicate rate among samples, with notable differences between batches of DrosEU
504 samples (~6% in 2014 vs. 18% in 2015/16; t-test p=1.8x10"°) and DrosRTEC samples (~3%
505 in samples collected as part of Bergland et al. 2014 vs. ~14% in samples collected as part of
506 Machado et al. 2021; p=6.37x107). Curiously, the 2015/2016 DrosEU samples were made
507  with a PCR-free kit, suggesting that the observed PCR duplicates were optical duplicates and
508 not amplification artifacts. Contamination of samples by D. simulans varied among populations
509 but was generally absent (<1% D. simulans specific reads; supplementary table 1).

510

511 Identification and quality control of SNP polymorphisms. In order to determine
512  appropriate SNP calling and filtering parameters, and to identify potentially problematic
513  population samples, we first calculated the ratio of genome-wide numbers of non-synonymous
514  to synonymous polymorphism (pn/ps) for each population sample. Since non-synonymous
515 changes are expected to be under strong purifying selection (Kreitman 1983), we chose this
516  metric because it can reflect the presence of sequencing errors that would disproportionately
517 inflate pn relative to ps. Our primary goal was not to provide novel estimates of pn/ps but rather
518 to ensure that all population samples have estimates that are consistent with estimates
519 generated from independent Drosophila datasets (Mackay et al 2012).

520 For the PoolSNP dataset, we varied the global minor allele count (MAC) and global minor
521 allele frequency (MAF) and then calculated pn/ps. MAC thresholds <50 resulted in large
522  variances of pn/ps caused by 20 outlier populations characterized by unusually high pn/ps
523  ratios and numbers of private SNPs (Supplementary Material online, supplementary table S3;
524  Figures 2A and 2B) indicating that there may be elevated numbers of sequencing errors in
525 some samples. Some (n=17) of these samples had previously been found to show positive
526 values of Tajima’s D across the whole genome (Kapun et al. 2020). We observed that, as
527  expected, pn/ps was negatively correlated with MAC (linear regression; p<0.001; Figure 2B)
528 and that applying a MAC threshold of 50 reduced the elevated pn/ps ratios of the 20
529  aforementioned outlier samples to values similar to the rest of the dataset, suggesting that
530 potential sequencing errors had been largely removed. To minimize false positive variant
531 calling, we therefore conservatively chose MAC=50 and MAF=0.001 as threshold parameters
532 for SNP calling with PoolSNP. Using these parameters, we identified 4,381,144
533  polymorphisms segregating among the 271 D. melanogaster samples (Pool-Seq plus DGN),
534  and 4,042,456 polymorphisms segregating among the 246 Pool-Seq samples (excluding
535 DGN), using PooISNP.

536 SNAPE-pooled calls variants in each sample separately using a probabilistic approach,
537 in contrast to PoolSNP, which integrates allelic information across all populations for heuristic
538 SNP calling. To quantify the number of putative sequencing errors among low frequency

539 variants we varied the local MAF threshold per sample and calculated pn/ps for each sample
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540 in the SNAPE-pooled dataset. Similar to PoolSNP, we found that elevated pn/ps was
541 negatively correlated with a local MAF threshold (linear regression; p<0.001; Figure 2C) and
542  that the 20 above-mentioned problematic samples also had a strong effect on the variance
543  and mean of pn/ps ratios. Accordingly, we excluded these 20 samples from further analyses
544  of low-frequency variants and private SNPs and applied a conservative local MAF filter of 5%
545  for the remainder of the SNAPE-pooled analysis to avoid misclassification of sequencing
546  errors as low-frequency variants. Our results identified 8,541,651 polymorphisms segregating
547  among the remaining 226 samples. Below, we discuss the geographic distribution and global
548  frequency of SNPs identified using these two methods in order to provide insight into the

549  marked discrepancy in the number of SNPs that they identify.

550
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552  Figure 2. Quality control of SNPs called with SNAPE-pooled and PooISNP. Panel (A) shows
553  genome-wide pn/ps ratios and the number of private SNPs for all Pool-Seq samples based on SNP
554  calling with SNAPE-pooled. We highlight 20 outlier samples in red, which are characterized by
555  exceptionally high values of both metrics. The dashed black lines indicate the 95% confidence limits
556 (average + 1.96 sd) for both statistics. The vertical green dashed line highlights the empirical estimate
557  of pn/ps calculated from individual sequencing data of the DGRP freeze2 dataset (Mackay et al. 2012).
558 The green diamond shows the corresponding value of the DGRP population, which was pool-
559  sequenced as part of the DrosRTEC dataset (NC_ra_03_n; Zhu et al. 2012). Panels B and C show the
560 effects of heuristic minor allele count (MAC) and minor allele frequency (MAF) thresholds on pn/psratios
561 in SNP data based on PoolSNP and SNAPE-pooled, respectively. Blue lines in both panels show
562 average genome-wide pn/ps ratios across 271 and 246 populations, respectively. The blue ribbons
563  depict the corresponding standard deviations. The 20 outlier samples, which are characterized in panel
564 A, are highlighted red. In addition, pn/ps ratios of the DGRP Pool-Seq sample (NC_ra_03_n) are shown
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565 at different cut-offs as green diamonds and the empirical values from the DGRP freeze2 dataset are
566 indicated as dashed green lines.

567

568 Similarity of SNP polymorphisms detected with PoolSNP and SNAPE-pooled. We
569 calculated three metrics related to the amount of polymorphism discovered by our pipelines:
570 the abundance of polymorphisms segregating in n populations across each chromosome
571  (Figure 3A), the difference of discovered polymorphisms between SNAPE-pooled and
572  PoolSNP (defined as the absolute value of PoolISNP minus SNAPE-pooled; Figure 3B), and
573  the amount of polymorphism discovered per minor allele frequency bin (Figure 3C). We
574  evaluated these three metrics across a 2x2 filtering scheme: two MAF filters (0.001, 0.05) and
575 two sample sets (the whole dataset of 246 samples; and the 226 samples that passed the
576  sequencing error filter in SNAPE-pooled; see Identification and quality control). Notably,
577 PoolSNP was biased towards identification of common SNPs present in multiple samples,
578 whereas SNAPE-pooled was more sensitive to the identification of polymorphisms that
579 appeared in few populations only (Figure 3B). For example, at a MAF filter of 0.001, SNAPE-
580 pooled discovered more polymorphisms that were shared in less than 25 populations (relative
581 to PoolSNP), and these accounted for ~79% of all polymorphisms discovered by the pipeline.
582 Likewise, at a MAF filter of 0.05, SNAPE-pooled discovered more polymorphisms that were
583 shared in less than 97 populations; these accounted for ~71% of all discovered
584  polymorphisms. SNAPE-pooled identifies fewer polymorphic sites that are shared among a
585  large number of populations than PoolSNP does because SNAPE-pooled does not integrate
586 information across multiple populations. As a consequence, it can fail to identify SNPs that
587 are at low overall frequencies and get called as monomorphic or missing in a subset of
588 populations given the posterior probability thresholds that we employed (see Materials and
589  Methods).

590 We also compared allele frequency estimates between the two callers using the
591  aforementioned dataset of 226 populations applying a local MAF filter of 0.05 in the SNAPE-
592  pooled dataset (see Supplementary Material online, supplementary table S2). Among the
593  positions identified as polymorphic by both calling methods, our frequency estimates were
594 identical for the great majority of SNPs (92-99.67%) in all samples analyzed. Between 0.1%
595 and 7.1 % of the polymorphic SNPs differed by less than 5% frequency between the two
596 methods, 0.003 to 2.1% of polymorphic SNPs differed by 5%-10% frequency and only up to
597 0.3% varied >10% frequency (supplementary table 4). Finally, on average 13.32% of the
598 positions analyzed were called as polymorphic by PoolSNP while there were monomorphic or
599 no data according to SNAPE-pooled, consistent with the use of a hard threshold of the
600 posterior-probability in the SNAPE calling step (Supplementary Material online,
601 supplementary table S4).
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604  Figure 3. Polymorphism data in the PoolSNP and SNAPE datasets. (A) Number of polymorphic
605 sites discovered across populations. The x-axis shows the number of populations that share a
606 polymorphic site. The y-axis corresponds to the number of polymorphic sites shared by any number of
607 populations, on a log10 scale. The colored lines represent different chromosomes, and are stacked on
608 top of each other. (B) The difference of discovered polymorphisms between SNAPE-pooled and
609  PoolSNP. (C) Number of polymorphic sites as a function of allele frequency and the number of
610 populations in which the polymorphisms are present. The color gradient represents the number of
611 variant alleles from low to high (black to green). The x-axis is the same as in A, and the y-axis is the
612 minor allele frequency. The 2x2 filtering scheme is shown on the right side of the figure.

613

614  Mutation-class frequencies. We estimated the percentage of mutation classes (e.g., A—C,
615 A—G, A—T, efc.) accepted as polymorphisms in both our SNP calling pipelines, and classified
616 these loci as being either “rare” (i.e., allele frequency <5% and shared in less than 50
617  populations) or “common” (allele frequency >5% and shared in more than 150 populations).
618  For this analysis, we classified the minor allele as the derived allele. Figure 4A shows the
619 percentage of each mutation class for the 226 populations which passed filters in both SNAPE-
620 pooled and PoolSNP. In addition, we overlaid, as a horizontal line, the expected mutation
621 frequencies for rare (blue; Assaf et al. 2017) and common (red; Mackay et al. 2012) mutations.
622  In general, our SNP discovery pipelines produced mutation-class relative frequencies of rare
623 and common mutations that are consistent with empirical expectations, however, there were
624  some exceptions to this pattern. For example, the frequencies of the C/G rare mutation-class
625  were consistently underestimated by both callers, a phenomenon that might be related to the
626  known GC bias of modern sequencing machines (Benjamini and Speed 2012). The correlation
627  between SNP calling pipelines was high across both common and rare mutation classes, with
628  marginal discrepancies observed for rare variants (Figure 4B).

629
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632 Figure 4. Frequencies of observed nucleotide polymorphism in the DEST dataset (226
633  populations common to PoolSNP and SNAPE-pooled). (A) Each panel represents a mutation type.
634  The red color indicates common mutations (AF >0.05, and common in more than 150 populations)
635  whereas the blue color indicates rare mutations (AF <0.05, and shared in less than 50 populations).
636  The dark colors correspond to the PoolSNP pipeline and the soft colors correspond to the SNAPE-
637 pooled pipeline. The hovering red and blue horizontal lines represent the estimated mutation rates for
638 common and rare mutations, respectively. (B) Correlation between the observed mutation frequencies
639 seen in SNAPE-pooled and PoolSNP. The one-to-one correspondence line is shown as a black-dashed
640  diagonal. Correlation estimates (Pearson’s correlation) and p-values for common and rare mutations
641  are shown.

642

643 Inversion frequencies. Using a set of inversion-specific marker SNPs (Kapun et al. 2014),
644  we estimated the frequencies of 7 cosmopolitan inversion polymorphisms (In(2L)t, In(2R)NS,
645 In(3L)P, In(3R)C, In(3R)K, In(3R)Mo and In(3R)Payne). We found that most of the 271
646  populations were polymorphic for at least one or more chromosomal inversions
647  (supplementary table 1). While most inversions were either absent or rare (average
648 frequencies: In(2R)NS = 5.2% [+ 4.7% sd], In(3L)P = 3.1% [t 4.3% sd], In(3R)C = 2.5% [+
649 2.3% sd], In(BR)K =1.8% [+ 7.4% sd], In(3R)Mo = 2.2% [+ 3.6% sd] and In(3R)Payne = 5.7%
650 [+ 7.1% sd]), only In(2L)t segregated at substantial frequencies in most populations (average
651 frequency = 18.3% [t 11% sd]). We found that our novel inversion frequency estimates of the
652 DrosEU data from 2014 were highly consistent with previous estimates from Kapun et al.
653  (2020) as coefficients of determination (R?) ranged from 91% to 99%.

654

655 Comparison to previously published datasets. We compared the allele frequency and read

656 depth estimates from the DEST dataset (based on PoolSNP) to previously published
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657  estimates by Bergland et al. (2014), and Kapun et al. (2020), Machado et al. (2021). For these
658 datasets we employed two types of correlations, the nominal correlation (i.e., Pearson’s
659  correlation; CO) and the concordance correlation coefficient (CCC; Lin 1989; Liao and Lewis
660 2000). The CCC determines how much the observed data deviate from the line of perfect
661  concordance (i.e., the 45 degree-line on a square scatter plot).

662 Estimates of allele frequency were strongly correlated and consistent with previously
663  published data. The strongest correlation of DEST allele frequencies and previously published
664  allele frequencies was observed with the data of Kapun et al. (2020) (average CO and CCC
665 >0.99; Figure 5, top row; Supplementary Material online, supplementary fig. S4). Allele
666 frequency correlations with Machado et al. (2021) are also generally high (average CO and
667 CCC >0.98; Figure 5, top row; Supplementary Material online, supplementary fig. S5). Allele
668 frequency correlations with the data from Bergland et al. (2014) were lower (0.94;
669  Supplementary Material online, supplementary fig. S6), likely reflecting differences in data
670  processing and quality control.

671 We also examined two aspects of read depth, i.e., nominal coverage and effective
672  coverage. Nominal coverage is the number of reads mapping to a site that has passed quality
673  control. Effective coverage is the approximate number of independent reads, after accounting
674  for double binomial sampling, and is useful for obtaining unbiased estimates of the precision
675  of allele frequency estimates (Kolaczkowski et al. 2011; Kofler et al. 2011a; Feder et al. 2012;
676  Schlotterer et al. 2014). Similar to allele frequency estimates, the Pearson correlation
677  coefficients for both coverage and effective coverage were large (0.92, 0.95, 0.90 for Machado
678 etal (2021), Kapun et al. (2020), and Bergland et al. (2014), respectively; see Supplementary
679  Material online, Figures S7-S12), indicating that sample identity was preserved appropriately.
680 However, the concordance correlation coefficients were substantially lower between the
681 datasets (0.24, 0.88, 0.79, respectively), indicating systematic differences in read depth
682  between the DEST dataset and previously published data. Indeed, read depth estimates were
683  onaverage ~12%, ~14% and ~20% lower in the DEST dataset as compared to the previously
684  published data in Machado et al. (2021), Kapun et al. (2020), and Bergland et al. (2014)
685 respectively. The lower read depth and effective read depth estimates in the DEST dataset
686 reflect our more stringent quality control and filtering.

687
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690 Figure 5. Correlations between DEST dataset and previously published datasets. Correlations
691  between allele frequencies (AF), Nominal Coverage (COV), and Effective Coverage (Nerr) between the
692  DEST dataset (using the PoolSNP method) and three previously Drosophila datasets: Machado et al.
693  (2021), Kapun et al. (2020), and Bergland et al. (2014). For each dataset, we show the distribution of
694  two types of correlation coefficients: the nominal (Pearson’s) correlation (CO; dashed lines) and the
695  concordant correlation (CCC; solid lines). In addition to the actual correlations between the datasets
696  (red distributions), we show the distributions of correlations estimated with random population pairs
697  (green distributions).

698

699 Genetic diversity. We estimated nucleotide diversity (1), Watterson’s 8 and Tajima’s D for
700 both the PoolSNP and SNAPE-pooled datasets (Supplementary Material online,
701  supplementary table S5). Results for the African, European and North American population
702  samples are presented in Figure 6 (also see Supplementary Material online, supplementary
703  fig. S13 for estimates by chromosome arm). All estimates were positively correlated between
704  PoolSNP and SNAPE-pooled (p<0.001), with Pearson’s correlation coefficients of 0.90, 0.83
705 and 0.70 for 7, Watterson’s 6, and Tajima’s D, respectively. Higher values of genetic diversity
706  were obtained for the SNAPE-pooled dataset, probably due to its higher sensitivity for
707  detecting rare variants (see Patterns of polymorphism between PoolSNP and SNAPE-pooled).
708 Pool size had no significant effect on the four summary statistics in European or in North
709  American populations (linear models, all p>0.05), suggesting that data from populations with
710 heterogeneous pool sizes can be safely merged for accurate population genomic analysis.
711
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713 Figure 6. Population genetic estimates for African, European and North American populations.
714  Shown are genome-wide estimates of (A) nucleotide diversity (17), (B) Watterson’s 8 and (C) Tajima’s
715 D for African populations using the PoolSNP data set, and for European and North American
716  populations using both the PoolSNP and SNAPE-pooled (SNAPE) datasets. As can be seen from the
717  figure, estimates based on PoolSNP versus SNAPE-pooled (SNAPE) are highly correlated (see main
718  text). Genetic variability is seen to be highest for African populations, followed by North American and
719  then European populations, as previously observed (e.g., see Lack et al. 2016; Kapun et al. 2020).
720

721 The highest levels of genetic diversity were observed for ancestral African populations
722 (mean = 0.0060, mean 6 = 0.0059); North American populations exhibited higher genetic
723 variability (mean m=0.0054, mean 6 = 0.0054) than European populations (mean = 0.0049,
724  mean 6=0.0048). These results are consistent with previous observations based on individual
725 genome sequencing (e.g., see Lack et al. 2016; Kapun et al. 2020). Our observations are also
726  consistent with previous estimates based on pooled data from three North American
727  populations (mean m = 0.00577, mean 6 = 0.00597; Fabian et al. 2012) and 48 European
728  populations (mean = 0.0051, mean 6 = 0.0052; Kapun et al. 2020). Estimates of Tajima’s D
729  were positive when using PoolSNP, and slightly negative using SNAPE. These results are
730 expected given biases in the detection of rare alleles between these two SNP calling methods.
731 In addition, our estimates for 7, Watterson’s 6 and Tajima’s D were positively correlated with
732 previous estimates for the 48 European populations analyzed by Kapun et al. (2020) (all
733 p<0.01). Notably, slightly lower levels of Tajima’s D in North America as compared to both
734 Africa and Europe (Figure 6C) may be indicative for admixture (Stajich and Hahn 2005) which
735  has been identified previously along the North American east coast (Caracristi and Schl6tterer
736  2003; Kao et al. 2015; Bergland et al. 2016).

737
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738  Phylogeographic clusters in D. melanogaster. We performed PCA on the PoolSNP
739  variants in order to include samples from North America (DrosRTEC), Europe (DrosEU), and
740 Africa (DGN) datasets (excluding all Asian and Oceanian samples). Prior to analysis we
741  filtered the joint datasets to include only high-quality biallelic SNPs. Because LD decays
742 rapidly in Drosophila (Comeron et al. 2012), we only considered SNPs at least 500 bp away
743  from each other. PCA on the resulting 100,000 SNPs revealed evidence for discrete
744  phylogeographic clusters that correspond to geographic regions (Supplementary Material
745  online, supplementary fig. S14B). PC1 (24% variance explained [VE]) partitions samples
746  between Africa and the other continents (Figure 7A). PC2 (9% VE) separates European from
747  North American populations, and both PC2 and PC3 (4% VE) divide Europe into two
748  population clusters (Figure 7B). As expected, North American samples are intermediate to
749  European and African samples, presumably due to recent secondary contact (Kao et al. 2015;
750 Pool 2015; Bergland et al. 2016). Notably, these spatial relationships become evident when
751  PCA projections from each sample are plotted onto a world map (Figure 7C). Interestingly, the
752  emergent clusters in Europe are not strictly defined by geography. For example, the western
753  cluster (diamonds in Figure 7D) includes Western Europe as well as Finland, Turkey, Cyprus,
754  and Egypt. The eastern cluster, on the other hand, consists of several populations collected
755 in previous Soviet republics as well as Poland, Hungary, Serbia and Austria, raising the
756  possibility that recent geo-political division in Europe could have affected migration and
757  population structure. Whether this result arises as a relic of recent geopolitical history within
758  Europe, more ancient migration and colonization (e.g., following post-glacial range expansion,
759  Kapun et al. 2020), local adaptation, or sampling strategy (Novembre and Stephens 2008; cf.
760  Kapun et al. 2020) remains unknown. Future targeted sampling is needed to resolve these

761  alternative explanations.
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Figure 7. Demographic signatures of the DrosEU, DrosRTEC, and DGN data (using the PoolSNP
pipeline). (A) PCA dimensions 1 and 2. The mean centroid of a country’s assignment is labeled. (B)
PCA dimensions 1 and 3. (C) Projections of PC1 onto a World map. PC1 projections define the
existence of continental level clusters of population structure (indicated by the shapes circles: Africa;
triangles: North America; diamonds and squares: Europe). (D) Projections of PC3 onto Europe. These
projections show the existence of a demographic divide within Europe: the diamond shapes indicate a
western cluster, whereas the squares represent an eastern cluster. For panels C and D, the intensity
of the color is proportional to the PC projection. The black dashed line shows the two-cluster divide.

A unique feature of this dataset is that it contains a mixture of Pool-Seq and inbred (or
haploid) genome data. For some geographic regions, the DEST dataset contains both data
types. Inbred and Pool-Seq samples from nearby geographic regions clustered in the same
regions of PC space (Supplementary Material online, supplementary fig. S15). Excluding the
DGN-derived African samples, no PC was significantly correlated with data type (PC1 p =
0.352, PC2 p = 0.223, PC3 p = 0.998).
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780 Geographic proximity analysis. The geographic distribution of our samples allows
781 leveraging basic principles of phylogeography and population genetics to assess the biological
782  significance of rare SNPs (Wright 1943; Battey et al. 2020). Accordingly, we expect to observe
783  young neutral alleles at low frequencies among geographically close populations, reflecting
784  isolation by distance. We tested this hypothesis by estimating the average geographic
785  distance among pairs of populations that share SNPs only occurring in these two populations
786  (doubletons), among three populations that share tripletons, and so forth. Without imposing a
787  MAF filter, both SNAPE-pooled and PoolSNP pipelines produced patterns concordant with the
788  expectation. Populations in close proximity were more likely to share rare mutations relative
789  to random chance pairings (Figure 8A). Notably, SNPs identified in less than 25 populations
790 tend to be geographically closer in PoolSNP, relative to SNAPE-pooled. The primary source
791  ofthis discrepancy between callers occurs when evaluating SNPs shared by just 2 populations
792  (Figure 8B). Inthe case of PooISNP, only 0.0006% of all SNPs are private to just 2 populations
793 and the mean geographical distance is 702 Km. In the case of SNAPE-pooled, 9.3% of all
794  SNPs are private to 2 populations and the mean distance is ~2000 Km. Aside from the case
795  of n=2, the difference in proximity estimates between the callers is minimal. These findings
796  suggest that some of the SNAPE-pooled SNPs which only segregate in two populations or
797 less might be false positives. To further evaluate these geographical patterns, we estimated
798 the probability that any given population pair belongs to a particular phylogeographic cluster
799  (Supplementary Material online, supplementary fig. S16) as a function of their shared variants.
800  Our results indicate that rare variants, private to geographically proximate populations, are

801 strong predictors of phylogeographic provenance (see Figure 8C).
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804  Figure 8. Geographic Proximity Analysis. (A) Average (local regression; LOESS) geographic
805  distance between populations that share a polymorphism at any given site for PoolSNP and SNAPE-
806 pooled. The x-axis represents the number of populations considered; the y-axis is the mean geographic

807  distance among samples. The yellow line represents the random expectation calculated as random
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808  pairings of the data. The band around the lines is the standard deviation of the estimator. (B) Correlation
809 graph showing the different mean distance estimate for both callers as a function of the number of
810  populations (the groups from n=2 to n=25 are labeled in the graph). A 1-to-1 line is also shown. (C)
811 Probability that all populations containing a polymorphic site come from the same phylogeographic
812  cluster (as defined by principal component space, Figure 7 and supplementary fig. 14). The y-axis is
813 the probability of “x” populations belonging to the same phylogeographic cluster. The axis only shows
814 up to 60 populations since, after 40 populations, the probabilities approach 0. The colors are consistent
815  across panels.

816

817 Geographically-informative markers. An inherent strength of our broad biogeographic
818 sampling is the potential to generate a panel of core demography SNPs to investigate the
819 provenance of current and future samples. We created a panel of geographically-informative
820 markers (GIMs) by conducting a discriminant analysis of principal components (DAPC) to
821  discover which loci drive the phylogeographic signal in the dataset. We trained two separate
822 DAPC models: the first utilized the four phylogeographic clusters identified by principal
823 components (PCs; Figure 6AB, Supplementary Material online, supplementary fig. S16,
824  supplementary table S1); the second utilized the geographic localities where the samples were
825  collected (i.e., countries in Europe and the US states). This optimization indicated that the
826 information contained in the first 40 PCs maximizes the probability of successful assignment
827  (Figure 9A). This resulted in the inclusion of 30,000 GIMs, most of which were strongly
828  associated with PCs 1-3 (Figure 9B inset). Moreover, the correlations were larger among the
829 first 3 PCs and decayed monotonically for the additional PCs (Figure 9B). Lastly, our GIMs
830  were uniformly distributed across the fly genome (Figure 9C).

831 We assessed the accuracy of our GIM panel using a leave-one-out cross-validation
832  approach (LOOCV). We trained the DAPC model using all but one sample and then classified
833 the excluded sample. We performed LOOCV separately for the phylogeographic cluster
834 groups, as well as for the state/country labels. The phylogeographic model used all
835 DrosRTEC, DrosEU, and DGN samples (excluding Asia and Oceania with too few individuals
836 per sample); the state/country model used only samples for which each label had at least 3 or
837 more samples. Our results showed that the model is 100% accurate in terms of resolving
838 samples at the phylogeographic cluster level (Figure 9D) and 89% at the state/country level
839  (Figure 9E). We anticipate that this set of DIMs will be useful to validate the geographic origin
840  of samples in future sequencing efforts (i.e., identify sample swaps; Nunez et al. 2021) and to
841  study patterns of migration. We note that although Drosophila populations evolve over short
842  time-scales in temperate orchards, samples collected over multiple years were predicted with
843  89% accuracy in our LOOCV analysis, suggesting that these markers will be valuable for

844  future samples. We provide a tutorial on the usage of the GIMs in Supplemental Methods.
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847 Figure 9. Geographically-informative markers. (A) Number of retained PCs which maximize the
848 DAPC model’s capacity to assign group membership. Model trained on the phylogeographic clusters
849 (dashed lines) or the country/state labels (solid line). (B) Absolute correlation for the 33,000 individual
850  SNPs with highest weights onto the first 40 components of the PCA. Inset: Number of SNPs per PC.
851  (C) Location of the 33,000 most informative demographic SNPs across the chromosomes. (D) LOOCV
852  of the DAPC model trained on the phylogeographic clusters. (E) LOOCV of the DAPC model trained on
853  the phylogeographic state/country labels. For panels D and E, the y-axis shows the highest posterior
854 produced by the prediction model and the x-axis is the posterior assigned to the actual label
855 classification of the sample. Also, for D and E, marginal histograms are shown.

856

857 Discussion

858 Here we have presented a new, modular and unified bioinformatics pipeline for
859  processing, integrating and analyzing SNP variants segregating in population samples of D.
860 melanogaster. We have used this pipeline to assemble the largest worldwide data repository
861 of genome-wide SNPs in D. melanogaster to date, based both on previously published data
862  (DGN: Africa; Lack et al. 2015, 2016) as well as on new data collected by our two collaborating
863  consortia (DrosRTEC: mostly North America; Machado et al. 2021; DrosEU: mostly Europe;
864  Kapun et al. 2020). We assembled this dataset using two SNP calling strategies that differ in
865  their ability to identify rare polymorphisms, thereby enabling future work studying the
866  evolutionary history of this species. We are dubbing this data repository and the supporting

867  bioinformatics tools Drosophila Evolution over Space and Time (DEST).
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868 The DEST data repository was built using two different SNP calling pipelines, SNAPE-
869 pooled (Raineri et al. 2012) and PoolSNP (Kapun et al. 2020). These two approaches differ
870 fundamentally in their approach to SNP identification. SNAPE-pooled treats each Pool-Seq
871 sample separately and calculates the posterior probability that a site is polymorphic based on
872 the read depth, alternate allele count, and a prior estimate of nucleotide diversity; this
873  approach was designed to identify rare polymorphisms and has been validated using both
874  simulation and empirical approaches (Guirao-Rico and Gonzalez 2021). Here, we also provide
875 evidence that rare and private SNPs identified by SNAPE-pooled are enriched for true
876  positives (Figure 8) after applying rigorous filtering and excluding 20 population samples likely
877  affected by problems during library preparation which may have resulted in elevated error
878  rates.

879 The dataset based on SNAPE-pooled could therefore be useful for studies that rely on
880 rare SNPs, such as those investigating recent demographic events (Keinan and Clark 2012).
881 SNAPE-pooled has several limitations though. First, it is only capable of handling Pool-Seq
882 data. Second, because of the hard-filtering that we are imposing with our posterior probability
883  cutoff, some true SNPs are being called as missing data (see Materials and Methods). This
884  problem is apparent when comparing the number of polymorphisms identified by SNAPE-
885  pooled and PoolSNP (Figure 3). In addition, studies that rely on the SNAPE-pooled dataset
886  should exclude the 20 samples we flagged here (Figure 2A, supplementary table 1).

887 PooIlSNP, on the other hand, is useful for analysis of common variants and allows
888  studying aspects of population structure and local adaptation based on shared polymorphism.
889  Such analyses could include the inference of migration out of Africa Kapopoulou et al. 2020),
890 admixture (Bergland et al. 2016), and back-migration to Africa (Pool and Aquadro 2006).
891 PoolSNP is an extension of the approach developed elsewhere (Kofler et al. 2011a,b; Kapun
892 et al. 2020). PoolSNP necessarily has a limited capacity to identify rare and private SNPs
893  because it imposes global minor allele count and allele frequency filters. As a consequence,
894  the more populations that are used for SNP calling by PoolSNP, the less likely PoolSNP is to
895 identify private polymorphisms. Because PoolSNP filters out rare and private polymorphisms,
896 it is less sensitive to sequencing or library preparation errors. Notably, the 20 flagged
897  populations do not have elevated pn/ps with MAC > 50. Additionally, Kapun et al. (2020)
898 demonstrated that these problematic samples did not affect population genetic inference
899 based on common SNPs. The problematic samples derived from the DrosRTEC studies likely
900 do not have a major impact on their results either as both Bergland et al. (2014) and Machado
901 etal (2021) imposed stringent minor allele frequency filters.

902 PoolSNP has the advantage that it can incorporate in-silico pooled datasets wherein
903 haplotype or genotype information are collapsed into allele frequencies (see Materials and

904 Methods). We took this approach by incorporating the Drosophila Genome Nexus dataset
26
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905 (DGN; Lack et al. 2016), a dataset that amalgamates whole-genome sequencing of inbred line
906 data and haploid embryos from samples collected around the world. Although the DGN data
907 was originally generated by multiple labs and run through a different mapping pipeline than
908 what we used for the Pool-Seq data, these samples appear to cluster tightly with
909 geographically close Pool-Seq samples (supplementary fig. S15, and discussed in the
910 Results). Thus, there does not appear to be significant bias when combining these datasets,
911 atleast when integrating information across the genome. Nonetheless, some care should be
912 taken when interpreting allele frequency differences based on datasets generated by different
913 means. However, any real-time monitoring activity will likely suffer from the rapidly changing
914  landscape of sequencing technologies.

915 One of the biggest challenges in the present “omics” era is the rapidly growing number of
916 complex large-scale datasets which require technically elaborate bioinformatics know-how to
917 become accessible and utilizable. This hurdle often prohibits the exploitation of already
918 available genomics datasets by scientists without a strong bioinformatics or computational
919 background. To remedy this situation for the Drosophila evolution community, our
920 bioinformatics pipeline is provided as a Docker image (to standardize across software
921 versions, as well as make the pipeline independent of specific operating systems) and a new
922  genome browser makes our SNP dataset available through an easy-to-use web interface (see

923  supplementary fig. S2, S3; available at https://dest.bio).

924 The DEST data repository and platform will enable the population genomics community
925 to address a variety of longstanding, fundamental questions in ecological and evolutionary
926  genetics. The current dataset might for instance be valuable for providing a more accurate
927  picture of the demographic history of D. melanogaster populations, in particular in Europe and
928 North America, and with respect to multiple bouts of out-of-Africa migration and recent
929 patterns of admixture. Such analyses can be strongly affected by chromosomal inversions that
930 are known to impact LD and haplotype variation (Kapun and Flatt 2019; Durmaz et al. 2020).
931 We have therefore provided frequency estimates for the seven most common cosmopolitan
932 inversions (In(2L)t, In(2R)NS, In(3L)P, In(3R)C, In(3R)K, In(3R)Mo and In(3R)Payne;
933 Lemeunier and Aulard 1992), which allows accounting for the effects of inversions in
934  population genetic inference (e.g., Kapopoulou et al. 2020).

935 The DEST dataset will likewise be useful for an improved understanding of the genomic
936  signatures underlying both global and local adaptation, including a more fine-grained view of
937 selective sweeps, their evolutionary origin and distribution (e.g., see Glinka et al. 2003;
938 Beisswanger et al. 2006; Ometto 2010; Stephan 2016; Kapun et al. 2020). In terms of local
939 adaptation, the broad spatial sampling across latitudinal and longitudinal gradients on the
940 North American and European continents, encompassing a broad range of climate zones and

941 areas of varying degrees of seasonality, will allow examining the parallel nature of local (clinal)
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942  adaptation in response to similar environmental factors in greater depth than possible before
943  (e.g., Turner et al. 2008; Kolaczkowski et al. 2011; Fabian et al. 2012; Reinhardt et al. 2014;
944  Bergland et al. 2014, 2016; Kapun et al. 2016, 2020; Bogaerts-Marquez et al. 2020; Waldvogel
945 et al. 2020; Machado et al. 2021).

946 Another major opportunity provided by the DEST dataset lies in studying the temporal
947  dynamics of evolutionary change. Sampling at dozens of localities across the growing season
948 and over multiple years will help to advance our understanding of the short-term population
949  and evolutionary dynamics of flies living in diverse environments, thereby providing novel
950 insights into the nature of temporally varying selection (Bergland et al. 2014; Wittmann et al.
951 2017; Machado et al. 2021) and evolutionary responses to climate change (e.g., Umina 2005;
952  Rodriguez-Trelles et al. 2013; Waldvogel et al. 2020).

953 Moreover, by integrating these worldwide estimates of allele frequencies, those from lab-
954  and field-based ‘evolve and resequence’ experiments (E&R; Turner et al. 2011; reviewed in
955  Kofler and Schiétterer 2014; Schldtterer et al. 2014; Flatt 2020) and those from mesocosm
956  experiments (e.g., Rudman et al. 2019; Erickson et al. 2020), we might be able to gain deeper
957 insights into the genetic basis and evolutionary history of variation in fithess components (e.g.,
958  Flatt 2020).

959 The real value of the DEST dataset lies in the future: its long-term utility will grow as
960 natural and experimental populations are continually being sampled, resequenced and added
961 to the repository by the community of Drosophila evolutionary geneticists. The pipeline that
962 we have established will make future updates to the data repository straightforward.
963  Furthermore, since itis not easily feasible for any single research group to sample flies densely
964 through time and across a broad geographic range, the growing value of the DEST dataset
965  will depend upon the synergistic collaboration among research groups across the globe, as
966 exemplified by the DrosRTEC and DrosEU consortia. Importantly, in an era of rapidly
967 decreasing sequencing costs, comprehensive population genomic analyses are no longer
968 limited by genetic marker density but by the availability of biological samples from
969 standardized, collaborative long-term collection efforts through space and time (e.g., Kapun
970 et al. 2020; Machado et al. 2021). In this vein, the collaborative framework presented here
971 might allow us, as a global community, to fill some important gaps in the current data
972  repository: for example, many areas of the world (notably Asia and South America) remain
973 largely uncharted territory in Drosophila population genomics, and the addition of phased
974  sequencing data (e.g., providing information on haplotypes, LD, linked selection) will be
975  crucially important for future analyses of demography, selection and their interplay.

976 We are convinced that the DEST platform will become a valuable and widely-used
977 resource for scientists interested in Drosophila evolution and genetics, and we actively

978 encourage the community to join the collaborative effort we are seeking to build.
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979

980 Data availability

981  All scripts to make figures and perform analyses associated with this manuscript are available
982  here: https://github.com/DEST-bio/data-paper. All scripts to build the dataset, including the
983 mapping pipeline, SNP calling scripts, and meta-data are available here:
984  https://github.com/DEST-bio/DEST freeze1. All output from the DEST pipeline, including
985 intermediate output files, metadata, etc. can be found here: https://dest.bio. Datafiles available

986 via the website can also be downloaded through the command-line interface. The genome

987 browser associated with the DEST dataset can be found here: https://dest-bio.uab.cat. The

988  dockerized mapping pipeline can be found at
989  https://hub.docker.com/orgs/destbio/repositories.
990
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