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Abstract 96 

Drosophila melanogaster is a leading model in population genetics and genomics, and a 97 
growing number of whole-genome datasets from natural populations of this species have been 98 

published over the last 20 years. A major challenge is the integration of these disparate 99 

datasets, often generated using different sequencing technologies and bioinformatic pipelines, 100 
which hampers our ability to address questions about the evolution and population structure 101 

of this species. Here we address these issues by developing a bioinformatics pipeline that 102 
maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting 103 

of fly and symbiont genomes and estimates allele frequencies using either a heuristic 104 

(PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate 105 

the largest data repository of genomic data available for D. melanogaster to date, 106 
encompassing 271 population samples from over 100 locations in >20 countries on four 107 

continents based on a combination of 121 unpublished and 150 previously published genomic 108 
datasets. Several of these locations have been sampled at different seasons across multiple 109 

years. This dataset, which we call Drosophila Evolution over Space and Time (DEST), is 110 
coupled with sampling and environmental meta-data. A web-based genome browser and web 111 

portal provide easy access to the SNP dataset. Our aim is to provide this scalable platform as 112 
a community resource which can be easily extended via future efforts for an even more 113 
extensive cosmopolitan dataset. Our resource will enable population geneticists to analyze 114 

spatio-temporal genetic patterns and evolutionary dynamics of D. melanogaster populations 115 
in unprecedented detail. 116 

 117 
Keywords: Drosophila melanogaster, population genomics, SNPs, evolution, adaptation, 118 

demography 119 

 120 
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Introduction 123 

The vinegar fly Drosophila melanogaster is one of the oldest and most important genetic 124 
model systems and has played a key role in the development of theoretical and empirical 125 

population genetics (e.g., Schneider 2000; Larracuente and Roberts 2015; Haudry et al. 126 

2020). Through decades of work, we now have a basic picture of the evolutionary origin (David 127 
and Capy 1988; Lachaise et al. 1988; Keller 2007; Sprengelmeyer et al. 2020), colonization 128 

history and demography (Caracristi and Schlötterer 2003; Li and Stephan 2006; Duchen et al. 129 
2013; Grenier et al. 2015; Arguello et al. 2019; Kapopoulou et al. 2020), and spatio-temporal 130 

diversification patterns of this species and its close relatives (Kolaczkowski et al. 2011; Fabian 131 

et al. 2012; Bergland et al. 2014; Lack et al. 2016; Machado et al. 2016; Kapun et al. 2016, 132 

2020). The availability of high-quality reference genomes (Adams 2000; Celniker and Rubin 133 
2003; dos Santos et al. 2015) and genetic tools (Schneider 2000; Duffy 2002; Jennings 2011; 134 

Hales et al. 2015; Haudry et al. 2020) facilitates placing evolutionary studies of flies in a 135 
mechanistic context, allowing for the functional characterization of ecologically relevant 136 

polymorphisms (e.g., de Jong and Bochdanovits 2003; Paaby et al. 2010, 2014; Mateo et al. 137 
2014; Kapun et al. 2016; Durmaz et al. 2018, 2019; Ramaekers et al. 2019).  138 

Recently, work on the evolutionary biology of Drosophila has been fueled by a growing 139 
number of population genomic datasets from field collections across a large portion of D. 140 
melanogaster's range (Grenier et al. 2015; Machado et al. 2021; Guirao-Rico and González 141 

2019; Arguello et al. 2019). These genomic data consist either of re-sequenced inbred (or 142 
haploid) individuals (e.g., Mackay et al. 2012; Langley et al. 2012; Grenier et al. 2015; Lack et 143 
al. 2015, 2016; Mateo et al. 2018; Kapopoulou et al. 2020) or pooled sequencing of outbred 144 
population samples (Pool-Seq; e.g., Kolaczkowski et al. 2011; Fabian et al. 2012; Bastide et 145 

al. 2013; Campo et al. 2013; Bergland et al. 2014; Machado et al. 2016, 2019; Kapun et al. 146 

2016, 2020). Pooled re-sequencing provides accurate and precise estimates of allele 147 
frequencies across most of the allele frequency spectrum (Zhu et al. 2012; Lynch et al. 2014; 148 
Schlötterer et al. 2014) at a fraction of the cost of individual-based sequencing. Although Pool-149 

Seq retains limited information about linkage disequilibrium (LD) relative to individual 150 
sequencing (Feder et al. 2012), Pool-Seq data can be used to infer complex demographic 151 

histories (e.g., Cheng et al. 2012; Bergland et al. 2016; Deitz et al. 2016; Gould et al. 2017; 152 

Corbett-Detig and Nielsen 2017; Giesen et al. 2020), characterize levels of diversity (Kofler et 153 
al. 2011a, 2011b; Ferretti et al. 2013; Kapun et al. 2020), and infer genomic loci involved in 154 

recent adaptation in nature (Flatt 2016; Kapun et al. 2016, 2020; Gould et al. 2017; Bogaerts-155 

Márquez et al. 2020; Machado et al. 2021) and during experimental evolution (e.g., Turner et 156 
al. 2011; Orozco-terWengel et al. 2012; Burke 2012; Kofler and Schlötterer 2014). However, 157 

the rapidly increasing number of genomic datasets processed with different bioinformatic 158 

pipelines makes it difficult to compare results across studies and to jointly analyze multiple 159 
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datasets. Differences among bioinformatic pipelines include filtering methods for the raw 160 

reads, mapping algorithms, the choice of the reference genome or SNP calling approaches, 161 
potentially generating biases when combining processed datasets from different sources for 162 

joint analyses (e.g., Gautier et al. 2013; Hoban et al. 2016). 163 

To address these issues, we have developed a modular bioinformatics pipeline to map 164 
Pool-Seq reads to a hologenome consisting of fly and microbial genomes, to remove reads 165 

from potential Drosophila simulans contaminants, and to estimate allele frequencies using two 166 
complementary SNP callers. Our pipeline is available as a Docker image (available from 167 

https://dest.bio) to standardize versions of software used for filtering and mapping, to make 168 

the pipeline available independently of the operating system used, and to facilitate future 169 

updates and modification of the pipeline. In addition, our pipeline allows using either heuristic 170 
or probabilistic methods for SNP calling, based on PoolSNP (Kapun et al. 2020) and SNAPE-171 

pooled (Raineri et al. 2012). We also provide tools for performing in-silico pooling of existing 172 
inbred (haploid) lines that exist as part of other Drosophila population genomic resources (Pool 173 

et al. 2012; Langley et al. 2012; Grenier et al. 2015; Kao et al. 2015; Lack et al. 2015, 2016). 174 
This pipeline is also designed to be flexible, facilitating the streamlined addition of new 175 

population samples as they arise.  176 
Using this pipeline, we generated a unified dataset of pooled allele frequency estimates 177 

of D. melanogaster sampled across a large portion of its world-wide distribution, including 178 

Europe, North America, Africa, Australia, and Asia. This dataset is the result of the 179 
collaborative efforts of the European DrosEU (Kapun et al. 2020) and DrosRTEC (Machado 180 
et al. 2021) consortia and combines both novel and previously published population genomic 181 
data. Our dataset combines samples from 100 localities, 55 of which were sampled at two or 182 

more time points across the reproductive season (~10-15 generations/year) for one or more 183 

years. Collectively, these samples represent >13,000 individuals, cumulatively sequenced to 184 
>16,000x coverage or ~1x per fly. The cost-effectiveness of Pool-Seq has enabled us to 185 
estimate genome-wide allele frequencies over geographic space (continental and sub-186 

continental) and time (seasonal, annual and decadal) scales, thus making our data a unique 187 
resource for advancing our understanding of fundamental adaptive and neutral evolutionary 188 

processes. We provide data in two file formats (VCF and GDS: Danecek et al. 2011; Zheng 189 

et al. 2017), thus allowing researchers to utilize a variety of tools for computational analyses. 190 
Our dataset also contains sampling and environmental meta-data to enable various 191 

downstream analyses of biological interest. 192 

 193 
  194 
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Materials and Methods 195 

Data sources. The genomic dataset presented here has been assembled from a combination 196 
of Pool-Seq libraries and in-silico pooled haplotypes. We combined 246 Pool-Seq libraries of 197 

population samples from Europe, North America and the Caribbean that were sampled 198 

through space and time by two collaborating consortia in North America (DrosRTEC: 199 
https://web.sas.upenn.edu/paul-schmidt-lab/dros-rtec/) and Europe (DrosEU: 200 

http://droseu.net) between 2003 and 2016. Of these 246 Pool-Seq samples, 121 samples 201 
represent previously unpublished samples generated by DrosEU, 48 DrosEU samples 202 

previously reported in Kapun et al. (2020), and 77 samples previously reported in Machado et 203 

al. (2021). In addition, we integrated genomic data from >900 inbred or haploid genomes from 204 

25 populations in Africa, Europe, Australia, and North America available from the Drosophila 205 
Genome Nexus dataset (DGN v1.1; Pool et al. 2012; Langley et al. 2012; Grenier et al. 2015; 206 

Kao et al. 2015; Lack et al. 2015, 2016) We further included the D. simulans haplotype (w501; 207 
Hu et al. 2013), built as part of the DGN dataset, as an outgroup, making this repository of 208 

272 (246 Pool-Seq + 25 DGN + 1 D. simulans) whole-genome sequenced samples the largest 209 
dataset of genome-wide SNP polymorphisms available for D. melanogaster to date.  210 

 211 
Metadata. We assembled uniform meta-data for all samples (Supplementary Material online, 212 
supplementary table S1). This information includes collection coordinates, collection date, and 213 

the number of flies per sample. Samples are also linked to bioclimatic variables from the 214 
nearest WorldClim (Hijmans et al. 2005) raster cell at a resolution of 2.5° and to weather 215 
stations from the Global Historical Climatology Network (GHCND; 216 
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/) to allow for future analyses of the environmental 217 

drivers that might underlie genetic change. We also provide summaries of basic attributes of 218 

each sample derived from the sequencing data including average read depth, PCR duplicate 219 
rate, D. simulans contamination rate, relative abundances of non-synonymous versus 220 
synonymous polymorphisms (pN/pS), the number of private polymorphisms, diversity statistics 221 

(Watterson’s θ, π and Tajima’s D), and estimates of inversion frequencies. 222 
 223 

Sample collection. The majority of population samples contributed by the DrosEU and the 224 

DrosRTEC consortia was collected in a coordinated fashion to generate a consistent dataset 225 
with minimized sampling bias. In brief, fly collections were performed exclusively in natural or 226 

semi-natural habitats, such as orchards, vineyards and compost piles. For most European 227 

collections, flies were collected using mashed banana, or apples with live yeast as bait in traps 228 
placed at sampling sites for multiple days to attract flies, or by sweep netting (see Kapun et 229 

al. 2020 for more details). For North American collections, flies were collected by sweep-net, 230 
aspiration, or baiting over natural substrate or using baited traps (see Behrman et al. 2018; 231 
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Machado et al. 2021 for details). Samples were either field-caught flies (n=227), from F1 232 

offspring of wild-caught females (n=7), from a mixture of F1 and wild-caught flies (n=7), or 233 
from flies kept as isofemale lines in the lab for 5 generations or less (n=4); see supplementary 234 

table 1 for more information. To minimize cross-contamination with the closely related 235 

sympatric sister species D. simulans, we only sequenced male D. melanogaster specimens, 236 
allowing for higher confidence discrimination between the two species based on the 237 

morphology of male genitalia (Capy and Gibert 2004; Markow and O’Grady 2006). Samples 238 
were stored in 95% ethanol at -20°C before DNA extraction.  239 

 240 

DNA extraction and sequencing. The DrosEU and DrosRTEC consortia centralized 241 

extractions from pools of flies. DNA was extracted either using chloroform/phenol-based 242 
(DrosEU: Kapun et al. 2020) or lithium chloride/potassium acetate extraction protocols 243 

(DrosRTEC: Bergland et al. 2014; Machado et al. 2021) after homogenization with bead 244 
beating or a motorized pestle. DrosEU samples from the 2014 collection were sequenced on 245 

an Illumina NextSeq 500 sequencer at the Genomics Core Facility of Pompeu Fabra 246 
University in Barcelona, Spain. Libraries of the previously unpublished DrosEU samples from 247 

2015 and 2016 were constructed using the Illumina TruSeq PCR Free library preparation kit 248 
following the manufacturer’s instructions and sequenced on the Illumina HiSeq X platform as 249 
paired-end fragments with 2 x 150 bp length at NGX Bio (San Francisco, California, USA). 250 

The previously published samples of the DrosRTEC consortium were prepared and 251 
sequenced on GAIIX, HiSeq2000 or HiSeq3000 platforms, as described in Bergland et al. 252 
(2014) and Machado et al. (2021). For information on DNA extraction and sequencing 253 
methods of the various DGN samples see Lack et al. (2016) and others (Pool et al. 2012; 254 

Langley et al. 2012; Grenier et al. 2015; Kao et al. 2015).  255 

 256 
Mapping pipeline. The joint analysis of genomic data from different sources requires the 257 
application of uniform quality criteria and a common bioinformatics pipeline. To accomplish 258 

this, we developed a standardized pipeline that performs filtering, quality control and mapping 259 
of any given Pool-Seq sample (see supplementary fig. S1). This pipeline performs quality 260 

filtering of raw reads, maps reads to a hologenome (see below), performs realignment and 261 

filtering around indels, and filters for mapping quality. The output of this pipeline includes 262 
quality control metrics, bam files, pileup files, and allele frequency estimates for every site in 263 

the genome (gSYNC, see below). Our pipeline is provided as a Docker image and will facilitate 264 

the integration of future samples to extend the worldwide D. melanogaster SNP dataset 265 
presented here.  266 

The mapping pipeline includes the following major steps. Prior to mapping, we removed 267 
sequencing adapters and trimmed the 3’ ends of all reads using cutadapt (Martin 2011). We 268 
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enforced a minimum base quality score ≥ 18 (-q flag in cutadapt) and assessed the quality of 269 

raw and trimmed reads with FASTQC (Andrews 2010). Trimmed reads with minimum length 270 
< 75 bp were discarded and only intact read pairs were considered for further analyses. 271 

Overlapping paired-end reads were merged using bbmerge (v. 35.50; Bushnell et al. 2017). 272 

Trimmed reads were mapped against a compound reference genome (“hologenome”) 273 
consisting of the genomes of D. melanogaster (v.6.12) and D. simulans (Hu et al. 2013) as 274 

well as  genomes of common commensals and pathogens, including Saccharomyces 275 
cerevisiae (GCF_000146045.2), Wolbachia pipientis (NC_002978.6), Pseudomonas 276 

entomophila (NC_008027.1), Commensalibacter intestine (NZ_AGFR00000000.1), 277 

Acetobacter pomorum (NZ_AEUP00000000.1), Gluconobacter morbifer 278 

(NZ_AGQV00000000.1), Providencia burhodogranariea (NZ_AKKL00000000.1), Providencia 279 
alcalifaciens (NZ_AKKM01000049.1), Providencia rettgeri (NZ_AJSB00000000.1), 280 

Enterococcus faecalis (NC_004668.1), Lactobacillus brevis (NC_008497.1), and 281 
Lactobacillus plantarum (NC_004567.2), using bwa mem (v. 0.7.15; Li 2013) with default 282 

parameters. We retained reads with mapping quality greater than 20 and reads with no 283 
secondary alignment using samtools (Li et al. 2009). PCR duplicate reads were removed using 284 

Picard MarkDuplicates (v.1.109; http://picard.sourceforge.net). Sequences were re-aligned in 285 
the proximity of insertions-deletions (indels) with GATK (v3.4-46; McKenna et al. 2010). We 286 
identified and removed any reads that mapped to the D. simulans genome using a custom 287 

python script, following methods outlined previously (Kapun et al. 2020; Machado et al. 2021; 288 
for a more in-depth analysis of D. simulans contamination see Wallace et al. 2021). Although 289 
this method of decontamination by D. simulans accurately estimates contamination rate and 290 
removes the vast majority of D. simulans reads (Machado et al. 2021), care should be taken 291 

when analyzing samples with higher contamination rates at sites that are shared 292 

polymorphisms between the two species.  293 
 294 
Incorporation of the DGN dataset. We incorporated population allele frequency estimates 295 

derived from inbred line and haploid embryo sequencing data from populations sampled 296 
throughout the world using an in-silico pooling approach. These samples have been previously 297 

collected and sequenced by several groups (Pool et al. 2012; Mackay et al. 2012; Langley et 298 

al. 2012; Grenier et al. 2015; Kao et al. 2015; Lack et al. 2015, 2016) and together form the 299 
Drosophila Genome Nexus dataset (DGN; Lack et al. 2015, 2016). We included 25 DGN 300 

populations with ≥ 5 individuals per population, plus the D. simulans haplotype w501 built as 301 

part of the DGN dataset. The DGN populations that we used are primarily from Africa (n=18) 302 
but also include populations from Europe (n=2), North America (n=3), Australia (n=1), and 303 

Asia (n=1). The complete list of DGN populations, and samples, used in this dataset can be 304 
found in supplementary table S1.  305 
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To incorporate the DGN populations into the DrosEU and DrosRTEC Pool-Seq datasets, we 306 

used the pre-computed FASTA files (“Consensus Sequence Files” from 307 
https://www.johnpool.net/genomes.html) and calculated allele frequencies at every site, for 308 

each population, using custom bash scripts. We calculated allele frequencies for each  309 

population by summing reference and alternative allele counts across all individuals using the 310 
precomputed haplotype FASTA files. Since estimates of allele frequencies and total allele 311 

counts for the DGN samples only consider unambiguous IUPAC codes, heterozygous sites or 312 
sites masked as N’s in the original FASTA files were converted to missing data. We used 313 

liftover (Kuhn et al. 2013) to translate genome coordinates to Drosophila reference genome 314 

release 6 (dos Santos et al. 2015) and formatted them to match the gSYNC format (described 315 

below). Scripts for reformatting the DGN data can be found in the GitHub repository for this 316 

project (https://github.com/DEST-bio/DEST_freeze1).  317 

 318 
SNP calling strategies. We used two complementary approaches to perform SNP calling. 319 
The first was PoolSNP (Kapun et al. 2020), a heuristic tool which identifies polymorphisms 320 

based on the combined evidence from multiple samples. This approach is similar to other 321 
common Pool-Seq variant calling tools (Koboldt et al. 2009, 2012; Kofler et al. 2011a, 2011b). 322 
PoolSNP integrates allele counts across multiple independent samples and applies stringent 323 
minor allele count and minor allele frequency thresholds for variant detection. PoolSNP is 324 

expected to be good at detecting variants present in multiple populations, but is not very 325 
sensitive to rare private alleles. The second approach was SNAPE-pooled (Raineri et al. 326 
2012), a tool that identifies polymorphic sites  based on Bayesian inference for each population 327 

independently using pairwise nucleotide diversity estimates as a prior. SNAPE-pooled is 328 
expected to be more sensitive to rare private polymorphisms (Rainieri et al. 2012, Guirao-Rico 329 

and González 2021). The SNP calling step is built using the snakemake (Mölder et al. 2021) 330 

pipeline and the parameters to run the two callers can be found at https://github.com/DEST-331 
bio/DEST_freeze1.   332 

 333 
gSYNC generation and filtering. Our pipeline utilizes a common data format to encode allele 334 

counts for each population sample (SYNC; Kofler et al. 2011b). A “genome-wide SYNC'' 335 
(gSYNC) file records the number of A,T,C, and G for every site of the reference genome. 336 

Because gSYNC files for all populations have the same dimension, they can be quickly 337 

combined and passed to a SNP calling tool. They can be filtered and are also relatively small 338 
for a given sample (~500 Mb), enabling efficient data sharing and access. The gSYNC file is 339 

analogous to the gVCF file format as part of the GATK HaplotypeCaller approach (McKenna 340 

et al. 2010), but is specifically tailored to Pool-Seq samples.  341 
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We generated gSYNC files for both PoolSNP and SNAPE. To generate a PoolSNP 342 

gSYNC file, we first converted BAM files to the MPILEUP format with samtools mpileup using 343 
the -B parameter to suppress recalculations of per-base alignment qualities and filtered for a 344 

minimum mapping quality with the parameter -q 25. Next, we converted the MPILEUP file 345 

containing mapped and filtered reads to the gSYNC format using custom python scripts. To 346 
generate a SNAPE-pooled gSYNC file, we ran the SNAPE-pooled version specific to Pool-347 

Seq data for each sample in MPILEUP format with the following parameters: θ=0.005, D=0.01, 348 
prior=’informative’, fold=’unfolded’ and nchr=number of flies (x2 for autosomes and x1 for the 349 

X and Y chromosomes) following Guirao-Rico and Gonzalez (2021). We converted the 350 

SNAPE-pooled output file to a gSYNC file containing the counts of each allele per position 351 

and the posterior probability of polymorphism as defined by SNAPE-pooled using custom 352 
python scripts. We only considered positions with a posterior probability ≥ 0.9 as being 353 

polymorphic and with a posterior probability ≤ 0.1 as being monomorphic. In all other cases, 354 
positions were marked as missing data. 355 

We masked gSYNC files for PoolSNP and SNAPE-pooled using a common set of filters. 356 
Sites were filtered from gSYNC files if they had: (1) minimum read depth < 10; (2) maximum 357 

read depth > the 95% coverage percentile of a given chromosomal arm and sample; (3) 358 
located within repetitive elements as defined by RepeatMasker; (4) within 5 bp distance up- 359 
and downstream of indel polymorphisms identified by the GATK IndelRealigner. Filtered sites 360 

were converted to missing data in the gSYNC file. The location of masked positions for every 361 
sample was recorded as a BED file.  362 

 363 
VCF generation. We generated three versions of the variant files, which differ in their inclusion 364 

of the DGN samples and the SNP calling strategy. For PoolSNP variant calling, we generated 365 

two variant tables: the first version incorporates all 272 samples of the Pool-Seq (DrosRTEC, 366 
DrosEU) and in-silico Pool-Seq populations (DGN). The second version only considers the 367 
246 Pool-Seq samples excluding the DGN samples (used for comparison to the SNAPE-368 

pooled version). The third file is based on SNAPE-pooled and contains 246 Pool-Seq samples 369 
only.  370 

To generate the PoolSNP versions, we combined the masked PoolSNP-gSYNC files into 371 

a two-dimensional matrix, where rows correspond to each position in the reference genome 372 
and columns describe chromosome, position and reference allele, followed by allele counts in 373 

SYNC format for every sample in the dataset. This combined matrix was then subjected to 374 

variant calling using PoolSNP, resulting in a VCF formatted file. We performed SNP calling 375 
only for the major chromosomal arms (X, 2L, 2R, 3L, 3R) and the 4th (dot) chromosome. Data 376 

for heterochromatic arms of the autosomes, the Y chromosome, and the mitochondrial 377 
genome can be extracted from the MPILEUP files provided at https://dest.bio. 378 
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We evaluated the choice of two heuristic parameters applied to PoolSNP: global minor 379 

allele count (MAC) and global minor allele frequency (MAF). Using all 272 samples, we varied 380 
MAF (0.001, 0.01, 0.05) and MAC (5-100) and called SNPs at a randomly selected 10% subset 381 

of the genome. Based on SNP annotations with SNPeff (version 4.3; Cingolani et al. 2012) we 382 

calculated pN/pS, which is the ratio of non-synonymous to synonymous polymorphisms, and 383 
used this value to tune our choice of MAF and MAC and to identify egregious outlier samples. 384 

We found that a global MAC=50 provided qualitatively identical estimates of pN/pS across all 385 
populations (Figure 2B) and that the results were insensitive to MAF (results not shown). We 386 

therefore used these parameters for genome-wide variant calling (see Results: Identification 387 

and quality control of SNP polymorphisms). We kept a third heuristic parameter, the missing 388 

data rate, constant at a minimum of 50%.  389 
To generate the SNAPE-pooled VCF files, we combined the 246 masked SNAPE-pooled 390 

gSYNC files into a two-dimensional matrix, as described above, and generated a VCF 391 
formatted output based on allele counts for any site found to be polymorphic in one or more 392 

populations. We evaluated pN/pS across a range of local minor allele frequency thresholds 393 
(Figure 2C) and found that pN/pS is largely insensitive to local MAF, once accounting for some 394 

problematic samples (see below). 395 
Final VCF files with annotations from SNPeff (version 4.3; Cingolani et al. 2012) were 396 

stored in VCF and BCF (Danecek et al. 2011) file formats alongside an index file in TABIX 397 

format (Li 2011). Besides VCF files, we also stored SNP data in the GDS file format using the 398 
R package SeqArray (Zheng et al. 2017).  399 
 400 
Inversion frequency estimates. We estimated the frequencies of 7 cosmopolitan inversion 401 

polymorphisms (In(2L)t, In(2R)NS, In(3L)P, In(3R)C, In(3R)K, In(3R)Mo,  In(3R)Payne) based 402 

on a previously published panel of diagnostic SNP markers that are in tight LD with the 403 
corresponding inversions (Kapun et al. 2014). As previously described (Kapun et al. 2016), 404 
we isolated the positions in the VCF file of all marker SNPs and estimated the frequency of 405 

each inversion as the mean frequency of inversion-specific alleles at all marker SNPs. 406 
 407 

Population genetic analyses. We estimated allele frequencies for each site across 408 

populations as the ratio of the alternate allele count to the total site coverage. We also 409 
calculated per-site averages for nucleotide diversity (π, Nei 1987), Watterson’s θ (Watterson 410 

1975) and Tajima’s D (Tajima 1989) across all sites or in non-overlapping windows of 100 kb, 411 

50 kb and 10 kb length. To estimate these summary statistics, we converted masked gSYNC 412 
files (with positions filtered for repetitive elements, low and high read depth, and proximity to 413 

indels; see gSYNC generation and filtering) back to the MPILEUP format using custom-made 414 
scripts. mpileup files were processed using npstat v.1 (Ferretti et al. 2013) with parameters -415 
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maxcov 10000 and -nolowfreq m=0 in order to include all filtered positions for analysis. We 416 

only considered sites identified as being polymorphic by PoolSNP or SNAPE-pooled for 417 
analysis, using the -snpfile option of npstat. For the DGN populations, chromosome-wide 418 

summary statistics were estimated only for samples with less than 50% missing data per 419 

chromosome. Due to small sample sizes, Tajima’s D was not estimated for 7 African DGN 420 
populations that consisted of only 5 haploid embryos. To compare population genetic 421 

estimates between the PoolSNP versus SNAPE-pooled datasets, we performed Pearson’s 422 
correlations on 226 populations present in both datasets (see Identification and quality control 423 

of SNP polymorphisms) using the stats package of R v.3.6.3. The effects of pool size (number 424 

of individuals sampled per population) on genome-wide estimates of π, Watterson’s θ and 425 

Tajima’s DS estimates were examined for European and North American populations using 426 
the PoolSNP dataset and a linear model in R v.3.6.3. Finally, for 48 European populations we 427 

estimated Pearson’s correlations between π, Watterson’s θ and Tajima’s D as estimated from 428 
the PoolSNP dataset versus previous estimates by Kapun et al. (2020) using the stats 429 

package of R v3.6.3. 430 
Next, we examined patterns of between-population differentiation by calculating window-431 

wise estimates of pairwise FST, based on the method from Hivert et al. (2018) implemented in 432 
the computePairwiseFSTmatrix() function of the R package poolfstat (v1.1.1). This analysis 433 
was performed for the dataset composed of 271 samples (all samples excluding the D. 434 

simulans reference strain) processed with PoolSNP, focusing on SNPs shared across the 435 
whole dataset. Finally, we averaged pairwise FST within and among phylogeographic clusters 436 
(Africa [17 samples], North America [76 samples], Eastern Europe [83 samples] and Western 437 
Europe [93 samples]; not included due to limited sampling: China and Australia). These FST 438 

tracks at windows sizes of 100kb, 50kb and 10kb are available at https://dest.bio 439 

(supplementary fig. S2, S3).  440 
To assess population structure in the worldwide dataset, we applied principal components 441 

analysis (PCA), population clustering, and population assignment based on a discriminant 442 

analysis of principal components (DAPC; Jombart et al. 2010) to all 271 PoolSNP-processed 443 
samples. For these analyses, we subsampled a set of 100,000 SNPs spaced apart from each 444 

other by at least 500 bp. We optimized our models using cross-validation by iteratively dividing 445 

the data as 90% for training and 10% for learning. We extracted the first 40 PCs from the PCA 446 
and ran Pearson’s correlations between each PC and all loci. We subsequently extracted the 447 

top 33,000 SNPs with large and significant correlations to PCs 1-40. We chose the 33,000 448 

number as a compromise between panel size and differentiation power. For example, 449 
depending on the number of individuals surveyed, these 33,000 DIMs can discern divergence 450 

(τ) between two populations with parametric FST  of 0.001- 0.0001 for sample sizes (n) of 10-451 
1000. These estimates come from the phase change formula: τ ≈ FST = 1/(nm)1/2 (Patterson et 452 
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al. 2006). Here, the two populations were sampled for n/2 individuals and genotyped at 453 

m=33,000 markers. Furthermore, we included SNPs as a function of the percent variance 454 
explained by each PC. PCAs, clustering, and assignment-based DAPC analyses were carried 455 

out using the R packages FactoMiner (v. 2.3), factoextra (v. 1.0.7) and adegenet (v. 2.1.3), 456 

respectively.  457 
 458 

Web-based genome browser. Our HTML-based DEST browser (supplementary fig. S2) is 459 
built on a JBrowse Docker container (Buels et al. 2016), which runs under Apache on a 460 

CentOS 7.2 Linux x64 server with 16 Intel Xeon 2.4 GHz processors and 32 GB RAM. It 461 

implements a hierarchical data selector  that facilitates the visualization and selection of 462 

multiple population genetic metrics or statistics for all 271 samples based on the PoolSNP-463 
processed dataset, taking into account sampling location and date. Importantly, our genome 464 

browser provides a portal for downloading allelic information and pre-computed population 465 
genetics statistics in multiple formats (supplementary fig. S2A, S2C, S3), a usage tutorial 466 

(supplementary fig. S2B) and versatile track information (supplementary fig. S2D). Bulk 467 
downloads of full variation tracks are available in BigWig format (Kent et al. 2010) and Pool-468 

Seq files (in VCF format) are downloadable by population and/or sampling date using custom 469 
options from the Tools menu (supplementary fig. S2C). All data, tools, and supporting 470 
resources for the DEST dataset, as well as reference tracks downloaded from FlyBase (v.6.12) 471 

(dos Santos et al. 2015), are freely available at https://dest.bio.  472 
 473 

Results  474 
Integrating a worldwide collection of D. melanogaster population genomics resources. 475 

We developed a modular and standardized pipeline for generating allele frequency estimates 476 

from pooled resequencing of D. melanogaster genomes (supplementary fig. 1). Using this 477 
pipeline, we assembled a dataset of allele frequencies from 271 D. melanogaster populations 478 
sampled around the world (Figure 1A, Supplementary Material online, supplementary table 479 

S1). Many of these samples were collected at the same location, at different seasons and over 480 
multiple years (Figure 1B). The nature of the genomic data for each population varies as a 481 

consequence of biological origin (e.g., inbred lines or Pool-Seq), library preparation method, 482 

and sequencing platform.  483 
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 484 
Figure 1. Sampling location, dates, and quality metrics. (A) Map showing the 271 sampling localities 485 
forming the DEST dataset. Colors denote the datasets that were combined together. (B) Collection 486 
dates for localities sampled more than once. (C) General sample features of the DEST dataset. The x-487 
axis represents the population sample, ordered by the average read depth. 488 
 489 

To assess whether these features affect basic attributes of the dataset, we calculated six 490 

basic quality metrics focusing on the Pool-Seq samples (Figure 1C, Supplementary Material 491 
online, supplementary table S2). On average, median read depth across samples is 62x 492 
(range: 10-217x). The per-nucleotide missing allele frequency rate was less than 7% for most 493 

(95%) of the samples. Excluding populations with high missing data rate (>7%), the proportion 494 

of sites with missing data was positively correlated with read depth (p=1.2x109, R2=0.4). The 495 
positive correlation between read depth and missing data rate is primarily due to an increased 496 

sensitivity to identify indels. The number of flies per sample varied from 33 to 205, with 497 

considerable heterogeneity among the DrosRTEC samples (standard deviation [sd]=30), but 498 
not among DrosEU samples (sd=0.04). Variation in the number of flies and in sequencing 499 

depth is reflected in the effective read depth, an estimate of the number of independent reads 500 

after accounting for double binomial sampling that occurs during Pool-Seq (Eff. RD; 501 
Kolaczkowski et al. 2011; Feder et al. 2012; Figure 1C). There was considerable variation in 502 
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PCR duplicate rate among samples, with notable differences between batches of DrosEU 503 

samples (~6% in 2014 vs. 18% in 2015/16; t-test p=1.8x10-19) and DrosRTEC samples (~3% 504 
in samples collected as part of Bergland et al. 2014 vs. ~14% in samples collected as part of 505 

Machado et al. 2021; p=6.37x10-3). Curiously, the 2015/2016 DrosEU samples were made 506 

with a PCR-free kit, suggesting that the observed PCR duplicates were optical duplicates and 507 
not amplification artifacts. Contamination of samples by D. simulans varied among populations 508 

but was generally absent (<1% D. simulans specific reads; supplementary table 1). 509 
 510 

Identification and quality control of SNP polymorphisms. In order to determine 511 

appropriate SNP calling and filtering parameters, and to identify potentially problematic 512 

population samples, we first calculated the ratio of genome-wide numbers of non-synonymous 513 
to synonymous polymorphism (pN/pS) for each population sample. Since non-synonymous 514 

changes are expected to be under strong purifying selection (Kreitman 1983), we chose this 515 
metric because it can reflect the presence of sequencing errors that would disproportionately 516 

inflate pN relative to pS. Our primary goal was not to provide novel estimates of pN/pS  but rather 517 
to ensure that all population samples have estimates that are consistent with estimates 518 

generated from independent Drosophila datasets (Mackay et al 2012). 519 
For the PoolSNP dataset, we varied the global minor allele count (MAC) and global minor 520 

allele frequency (MAF) and then calculated pN/pS. MAC thresholds <50 resulted in large 521 

variances of pN/pS caused by 20 outlier populations characterized by unusually high pN/pS 522 
ratios and numbers of private SNPs (Supplementary Material online, supplementary table S3; 523 
Figures 2A and 2B) indicating that there may be elevated numbers of  sequencing errors in 524 
some samples. Some (n=17) of these samples had previously been found to show positive 525 

values of Tajima’s D across the whole genome (Kapun et al. 2020). We observed that, as 526 

expected, pN/pS was negatively correlated with MAC (linear regression; p<0.001; Figure 2B) 527 
and that applying a MAC threshold of 50 reduced the elevated pN/pS ratios of the 20 528 
aforementioned outlier samples to values similar to the rest of the dataset, suggesting that 529 

potential sequencing errors had been largely removed. To minimize false positive variant 530 
calling, we therefore conservatively chose MAC=50 and MAF=0.001 as threshold parameters 531 

for SNP calling with PoolSNP. Using these parameters, we identified 4,381,144 532 

polymorphisms segregating among the 271 D. melanogaster samples (Pool-Seq plus DGN), 533 
and 4,042,456 polymorphisms segregating among the 246 Pool-Seq samples (excluding 534 

DGN), using PoolSNP. 535 

SNAPE-pooled calls variants in each sample separately using a probabilistic approach, 536 
in contrast to PoolSNP, which integrates allelic information across all populations for heuristic 537 

SNP calling. To quantify the number of putative sequencing errors among low frequency 538 
variants we varied the local MAF threshold per sample and calculated pN/pS for each sample 539 
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in the SNAPE-pooled dataset. Similar to PoolSNP, we found that elevated pN/pS was 540 

negatively correlated with a local MAF threshold (linear regression; p<0.001; Figure 2C) and 541 
that the 20 above-mentioned problematic samples also had a strong effect on the variance 542 

and mean of pN/pS ratios. Accordingly, we excluded these 20 samples from further analyses 543 

of low-frequency variants and private SNPs and applied a conservative local MAF filter of 5% 544 
for the remainder of the SNAPE-pooled analysis to avoid misclassification of sequencing 545 

errors as low-frequency variants. Our results identified 8,541,651 polymorphisms segregating 546 
among the remaining 226 samples. Below, we discuss the geographic distribution and global 547 

frequency of SNPs identified using these two methods in order to provide insight into the 548 

marked discrepancy in the number of SNPs that they identify.   549 

 550 

 551 
Figure 2. Quality control of SNPs called with SNAPE-pooled and PoolSNP. Panel (A) shows 552 
genome-wide pN/pS ratios and the number of private SNPs for all Pool-Seq samples based on SNP 553 
calling with SNAPE-pooled. We highlight 20 outlier samples in red, which are characterized by 554 
exceptionally high values of both metrics. The dashed black lines indicate the 95% confidence limits 555 
(average + 1.96 sd) for both statistics. The vertical green dashed line highlights the empirical estimate 556 
of pN/pS calculated from individual sequencing data of the DGRP freeze2 dataset (Mackay et al. 2012). 557 
The green diamond shows the corresponding value of the DGRP population, which was pool-558 
sequenced as part of the DrosRTEC dataset (NC_ra_03_n; Zhu et al. 2012). Panels B and C show the 559 
effects of heuristic minor allele count (MAC) and minor allele frequency (MAF) thresholds on pN/pS ratios 560 
in SNP data based on PoolSNP and SNAPE-pooled, respectively. Blue lines in both panels show 561 
average genome-wide pN/pS ratios across 271 and 246 populations, respectively. The blue ribbons 562 
depict the corresponding standard deviations. The 20 outlier samples, which are characterized in panel 563 
A, are highlighted red. In addition, pN/pS ratios of the DGRP Pool-Seq sample (NC_ra_03_n) are shown 564 
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at different cut-offs as green diamonds and the empirical values from the DGRP freeze2 dataset are 565 
indicated as dashed green lines. 566 

 567 

Similarity of SNP polymorphisms detected with PoolSNP and SNAPE-pooled. We 568 
calculated three metrics related to the amount of polymorphism discovered by our pipelines: 569 

the abundance of polymorphisms segregating in n populations across each chromosome 570 

(Figure 3A), the difference of discovered polymorphisms between SNAPE-pooled and 571 
PoolSNP (defined as the absolute value of PoolSNP minus SNAPE-pooled; Figure 3B), and 572 

the amount of polymorphism discovered per minor allele frequency bin (Figure 3C). We 573 
evaluated these three metrics across a 2x2 filtering scheme: two MAF filters (0.001, 0.05) and 574 

two sample sets (the whole dataset of 246 samples; and the 226 samples that passed the 575 

sequencing error filter in SNAPE-pooled; see Identification and quality control). Notably, 576 
PoolSNP was biased towards identification of common SNPs present in multiple samples, 577 

whereas SNAPE-pooled was more sensitive to the identification of polymorphisms that 578 
appeared in few populations only (Figure 3B). For example, at a MAF filter of 0.001, SNAPE-579 

pooled discovered more polymorphisms that were shared in less than 25 populations (relative 580 

to PoolSNP), and these accounted for ~79% of all polymorphisms discovered by the pipeline. 581 
Likewise, at a MAF filter of 0.05, SNAPE-pooled discovered more polymorphisms that were 582 

shared in less than 97 populations; these accounted for ~71% of all discovered 583 
polymorphisms. SNAPE-pooled identifies fewer polymorphic sites that are shared among a 584 
large number of populations than PoolSNP does because SNAPE-pooled does not integrate 585 

information across multiple populations. As a consequence, it can fail to identify SNPs that 586 
are at low overall frequencies and get called as monomorphic or missing in a subset of 587 
populations given the posterior probability thresholds that we employed (see Materials and 588 

Methods). 589 

We also compared allele frequency estimates between the two callers using the 590 
aforementioned dataset of 226 populations applying a local MAF filter of 0.05 in the SNAPE-591 

pooled dataset (see Supplementary Material online, supplementary table S2). Among the 592 

positions identified as polymorphic by both calling methods, our frequency estimates were 593 
identical for the great majority of SNPs (92-99.67%) in all samples analyzed. Between 0.1% 594 

and 7.1 % of the polymorphic SNPs differed by less than 5% frequency between the two 595 

methods, 0.003 to 2.1% of polymorphic SNPs differed by 5%-10% frequency and only up to 596 
0.3% varied >10% frequency (supplementary table 4). Finally, on average 13.32% of the 597 

positions analyzed were called as polymorphic by PoolSNP while there were monomorphic or 598 

no data according to SNAPE-pooled, consistent with the use of a hard threshold of the 599 
posterior-probability in the SNAPE calling step (Supplementary Material online, 600 

supplementary table S4).   601 
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 602 

 603 
Figure 3. Polymorphism data in the PoolSNP and SNAPE datasets. (A) Number of polymorphic 604 
sites discovered across populations. The x-axis shows the number of populations that share a 605 
polymorphic site. The y-axis corresponds to the number of polymorphic sites shared by any number of 606 
populations, on a log10 scale. The colored lines represent different chromosomes, and are stacked on 607 
top of each other. (B) The difference of discovered polymorphisms between SNAPE-pooled and 608 
PoolSNP. (C) Number of polymorphic sites as a function of allele frequency and the number of 609 
populations in which the polymorphisms are present. The color gradient represents the number of 610 
variant alleles from low to high (black to green). The x-axis is the same as in A, and the y-axis is the 611 
minor allele frequency. The 2x2 filtering scheme is shown on the right side of the figure. 612 
 613 
Mutation-class frequencies. We estimated the percentage of mutation classes (e.g., A→C, 614 

A→G, A→T, etc.) accepted as polymorphisms in both our SNP calling pipelines, and classified 615 
these loci as being either “rare” (i.e., allele frequency <5% and shared in less than 50 616 
populations) or “common” (allele frequency >5% and shared in more than 150 populations). 617 
For this analysis, we classified the minor allele as the derived allele. Figure 4A shows the 618 

percentage of each mutation class for the 226 populations which passed filters in both SNAPE-619 

pooled and PoolSNP. In addition, we overlaid, as a horizontal line, the expected mutation 620 
frequencies for rare (blue; Assaf et al. 2017) and common (red; Mackay et al. 2012) mutations. 621 
In general, our SNP discovery pipelines produced mutation-class relative frequencies of rare 622 

and common mutations that are consistent with empirical expectations, however, there were 623 

some exceptions to this pattern. For example, the frequencies of the C/G rare mutation-class 624 

were consistently underestimated by both callers, a phenomenon that might be related to the 625 

known GC bias of modern sequencing machines (Benjamini and Speed 2012). The correlation 626 
between SNP calling pipelines was high across both common and rare mutation classes, with 627 

marginal discrepancies observed for rare variants (Figure 4B). 628 

 629 
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 630 
 631 
Figure 4. Frequencies of observed nucleotide polymorphism in the DEST dataset (226 632 
populations common to PoolSNP and SNAPE-pooled). (A) Each panel represents a mutation type. 633 
The red color indicates common mutations (AF >0.05, and common in more than 150 populations) 634 
whereas the blue color indicates rare mutations (AF <0.05, and shared in less than 50 populations). 635 
The dark colors correspond to the PoolSNP pipeline and the soft colors correspond to the SNAPE-636 
pooled pipeline. The hovering red and blue horizontal lines represent the estimated mutation rates for 637 
common and rare mutations, respectively. (B) Correlation between the observed mutation frequencies 638 
seen in SNAPE-pooled and PoolSNP. The one-to-one correspondence line is shown as a black-dashed 639 
diagonal. Correlation estimates (Pearson’s correlation) and p-values for common and rare mutations 640 
are shown.  641 
 642 
Inversion frequencies. Using a set of inversion-specific marker SNPs (Kapun et al. 2014), 643 

we estimated the frequencies of 7 cosmopolitan inversion polymorphisms (In(2L)t, In(2R)NS, 644 
In(3L)P, In(3R)C, In(3R)K, In(3R)Mo and In(3R)Payne). We found that most of the 271 645 

populations were polymorphic for at least one or more chromosomal inversions 646 

(supplementary table 1). While most inversions were either absent or rare (average 647 
frequencies: In(2R)NS = 5.2% [± 4.7% sd], In(3L)P = 3.1% [± 4.3% sd], In(3R)C = 2.5% [± 648 

2.3% sd], In(3R)K = 1.8% [± 7.4% sd], In(3R)Mo = 2.2% [± 3.6% sd] and In(3R)Payne = 5.7% 649 

[± 7.1% sd]), only In(2L)t segregated at substantial frequencies in most populations (average 650 
frequency = 18.3% [± 11% sd]). We found that our novel inversion frequency estimates of the 651 

DrosEU data from 2014 were highly consistent with previous estimates from Kapun et al. 652 

(2020) as coefficients of determination (R2) ranged from 91% to 99%. 653 
 654 

Comparison to previously published datasets. We compared the allele frequency and read 655 

depth estimates from the DEST dataset (based on PoolSNP) to previously published 656 
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estimates by Bergland et al. (2014), and Kapun et al. (2020), Machado et al. (2021). For these 657 

datasets we employed two types of correlations, the nominal correlation (i.e., Pearson’s 658 
correlation; CO) and the concordance correlation coefficient (CCC; Lin 1989; Liao and Lewis 659 

2000). The CCC determines how much the observed data deviate from the line of perfect 660 

concordance (i.e., the 45 degree-line on a square scatter plot).  661 
Estimates of allele frequency were strongly correlated and consistent with previously 662 

published data. The strongest correlation of DEST allele frequencies and previously published 663 
allele frequencies was observed with the data of Kapun et al. (2020) (average CO and CCC 664 

>0.99; Figure 5, top row; Supplementary Material online, supplementary fig. S4). Allele 665 

frequency correlations with Machado et al. (2021) are also generally high (average CO and 666 

CCC >0.98; Figure 5, top row; Supplementary Material online, supplementary fig. S5). Allele 667 
frequency correlations with the data from Bergland et al. (2014) were lower (0.94; 668 

Supplementary Material online, supplementary fig. S6), likely reflecting differences in data 669 
processing and quality control.  670 

We also examined two aspects of read depth, i.e., nominal coverage and effective 671 
coverage. Nominal coverage is the number of reads mapping to a site that has passed quality 672 

control. Effective coverage is the approximate number of independent reads, after accounting 673 
for double binomial sampling, and is useful for obtaining unbiased estimates of the precision 674 
of allele frequency estimates (Kolaczkowski et al. 2011; Kofler et al. 2011a; Feder et al. 2012; 675 

Schlötterer et al. 2014). Similar to allele frequency estimates, the Pearson correlation 676 
coefficients for both coverage and effective coverage were large (0.92, 0.95, 0.90 for Machado 677 
et al. (2021), Kapun et al. (2020), and Bergland et al. (2014), respectively; see Supplementary 678 
Material online, Figures S7-S12), indicating that sample identity was preserved appropriately. 679 

However, the concordance correlation coefficients were substantially lower between the 680 

datasets (0.24, 0.88, 0.79, respectively), indicating systematic differences in read depth 681 
between the DEST dataset and previously published data. Indeed, read depth estimates were 682 
on average ~12%, ~14% and ~20% lower in the DEST dataset as compared to the previously 683 

published data in Machado et al. (2021), Kapun et al. (2020), and Bergland et al. (2014) 684 
respectively. The lower read depth and effective read depth estimates in the DEST dataset 685 

reflect our more stringent quality control and filtering. 686 

 687 
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 688 
 689 
Figure 5. Correlations between DEST dataset and previously published datasets.  Correlations 690 
between allele frequencies (AF), Nominal Coverage (COV), and Effective Coverage (NEFF) between the 691 
DEST dataset (using the PoolSNP method) and three previously Drosophila datasets: Machado et al. 692 
(2021), Kapun et al. (2020), and Bergland et al. (2014). For each dataset, we show the distribution of 693 
two types of correlation coefficients: the nominal (Pearson’s) correlation (CO; dashed lines) and the 694 
concordant correlation (CCC; solid lines). In addition to the actual correlations between the datasets 695 
(red distributions), we show the distributions of correlations estimated with random population pairs 696 
(green distributions). 697 

 698 

Genetic diversity. We estimated nucleotide diversity (π), Watterson’s θ and Tajima’s D for 699 

both the PoolSNP and SNAPE-pooled datasets (Supplementary Material online, 700 
supplementary table S5). Results for the African, European and North American population 701 
samples are presented in Figure 6 (also see Supplementary Material online, supplementary 702 

fig. S13 for estimates by chromosome arm). All estimates were positively correlated between 703 
PoolSNP and SNAPE-pooled (p<0.001), with Pearson’s correlation coefficients of 0.90, 0.83 704 

and 0.70 for π, Watterson’s θ, and Tajima’s D, respectively. Higher values of genetic diversity 705 
were obtained for the SNAPE-pooled dataset, probably due to its higher sensitivity for 706 

detecting rare variants (see Patterns of polymorphism between PoolSNP and SNAPE-pooled). 707 
Pool size had no significant effect on the four summary statistics in European or in North 708 

American populations (linear models, all p>0.05), suggesting that data from populations with 709 

heterogeneous pool sizes can be safely merged for accurate population genomic analysis.  710 
 711 
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 712 
Figure 6. Population genetic estimates for African, European and North American populations. 713 
Shown are genome-wide estimates of (A) nucleotide diversity (π), (B) Watterson’s θ and (C) Tajima’s 714 
D for African populations using the PoolSNP data set, and for European and North American 715 
populations using both the PoolSNP and SNAPE-pooled (SNAPE) datasets. As can be seen from the 716 
figure, estimates based on PoolSNP versus SNAPE-pooled (SNAPE) are highly correlated (see main 717 
text). Genetic variability is seen to be highest for African populations, followed by North American and 718 
then European populations, as previously observed (e.g., see Lack et al. 2016; Kapun et al. 2020). 719 
 720 

The highest levels of genetic diversity were observed for ancestral African populations 721 
(mean π = 0.0060, mean θ = 0.0059); North American populations exhibited higher genetic 722 
variability (mean π = 0.0054, mean θ = 0.0054) than European populations (mean π = 0.0049, 723 

mean θ = 0.0048). These results are consistent with previous observations based on individual 724 
genome sequencing (e.g., see Lack et al. 2016; Kapun et al. 2020). Our observations are also 725 

consistent with previous estimates based on pooled data from three North American 726 

populations (mean π = 0.00577, mean θ = 0.00597; Fabian et al. 2012) and 48 European 727 

populations (mean π = 0.0051, mean θ = 0.0052; Kapun et al. 2020). Estimates of Tajima’s D 728 

were positive when using PoolSNP, and slightly negative using SNAPE. These results are 729 

expected given biases in the detection of rare alleles between these two SNP calling methods. 730 
In addition, our estimates for π, Watterson’s θ and Tajima’s D were positively correlated with 731 

previous estimates for the 48 European populations analyzed by Kapun et al. (2020) (all 732 

p<0.01). Notably, slightly lower levels of Tajima’s D in North America as compared to both 733 
Africa and Europe (Figure 6C) may be indicative for admixture (Stajich and Hahn 2005) which 734 

has been identified previously along the North American east coast (Caracristi and Schlötterer 735 

2003; Kao et al. 2015; Bergland et al. 2016). 736 
 737 
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Phylogeographic clusters in D. melanogaster. We performed PCA on the PoolSNP 738 

variants in order to include samples from North America (DrosRTEC), Europe (DrosEU), and 739 
Africa (DGN) datasets (excluding all Asian and Oceanian samples). Prior to analysis we 740 

filtered the joint datasets to include only high-quality biallelic SNPs. Because LD decays 741 

rapidly in Drosophila (Comeron et al. 2012), we only considered SNPs at least 500 bp away 742 
from each other. PCA on the resulting 100,000 SNPs revealed evidence for discrete 743 

phylogeographic clusters that correspond to geographic regions (Supplementary Material 744 
online, supplementary fig. S14B). PC1 (24% variance explained [VE]) partitions samples 745 

between Africa and the other continents (Figure 7A). PC2 (9% VE) separates European from 746 

North American populations, and both PC2 and PC3 (4% VE) divide Europe into two 747 

population clusters (Figure 7B). As expected, North American samples are intermediate to 748 
European and African samples, presumably due to recent secondary contact (Kao et al. 2015; 749 

Pool 2015; Bergland et al. 2016). Notably, these spatial relationships become evident when 750 
PCA projections from each sample are plotted onto a world map (Figure 7C). Interestingly, the 751 

emergent clusters in Europe are not strictly defined by geography. For example, the western 752 
cluster (diamonds in Figure 7D) includes Western Europe as well as Finland, Turkey, Cyprus, 753 

and Egypt. The eastern cluster, on the other hand, consists of several populations collected 754 
in previous Soviet republics as well as Poland, Hungary, Serbia and Austria, raising the 755 
possibility that recent geo-political division in Europe could have affected migration and 756 

population structure. Whether this result arises as a relic of recent geopolitical history within 757 
Europe, more ancient migration and colonization (e.g., following post-glacial range expansion, 758 
Kapun et al. 2020), local adaptation, or sampling strategy (Novembre and Stephens 2008; cf. 759 
Kapun et al. 2020) remains unknown. Future targeted sampling is needed to resolve these 760 

alternative explanations.  761 
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 762 
 763 
Figure 7. Demographic signatures of the DrosEU, DrosRTEC, and DGN data (using the PoolSNP 764 
pipeline). (A) PCA dimensions 1 and 2. The mean centroid of a country’s assignment is labeled. (B) 765 
PCA dimensions 1 and 3. (C) Projections of PC1 onto a World map. PC1 projections define the 766 
existence of continental level clusters of population structure (indicated by the shapes circles: Africa; 767 
triangles: North America; diamonds and squares: Europe). (D) Projections of PC3 onto Europe. These 768 
projections show the existence of a demographic divide within Europe: the diamond shapes indicate a 769 
western cluster, whereas the squares represent an eastern cluster. For panels C and D, the intensity 770 
of the color is proportional to the PC projection. The black dashed line shows the two-cluster divide. 771 
 772 

A unique feature of this dataset is that it contains a mixture of Pool-Seq and inbred (or 773 
haploid) genome data. For some geographic regions, the DEST dataset contains both data 774 

types. Inbred and Pool-Seq samples from nearby geographic regions clustered in the same 775 

regions of PC space (Supplementary Material online, supplementary fig. S15). Excluding the 776 
DGN-derived African samples, no PC was significantly correlated with data type (PC1 p = 777 

0.352, PC2 p = 0.223, PC3 p = 0.998).  778 
 779 
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Geographic proximity analysis. The geographic distribution of our samples allows 780 

leveraging basic principles of phylogeography and population genetics to assess the biological 781 
significance of rare SNPs (Wright 1943; Battey et al. 2020). Accordingly, we expect to observe 782 

young neutral alleles at low frequencies among geographically close populations, reflecting 783 

isolation by distance. We tested this hypothesis by estimating the average geographic 784 
distance among pairs of populations that share SNPs only occurring in these two populations 785 

(doubletons), among three populations that share tripletons, and so forth. Without imposing a 786 
MAF filter, both SNAPE-pooled and PoolSNP pipelines produced patterns concordant with the 787 

expectation. Populations in close proximity were more likely to share rare mutations relative 788 

to random chance pairings (Figure 8A). Notably, SNPs identified in less than 25 populations 789 

tend to be geographically closer in PoolSNP, relative to SNAPE-pooled. The primary source 790 
of this discrepancy between callers occurs when evaluating SNPs shared by just 2 populations 791 

(Figure 8B).  In the case of PoolSNP, only 0.0006% of all SNPs are private to just 2 populations 792 
and the mean geographical distance is 702 Km. In the case of SNAPE-pooled, 9.3% of all 793 

SNPs are private to 2 populations and the mean distance is ~2000 Km. Aside from the case 794 
of n=2, the difference in proximity estimates between the callers is minimal. These findings 795 

suggest that some of the SNAPE-pooled SNPs which only segregate in two populations or 796 
less might be false positives. To further evaluate these geographical patterns, we estimated 797 
the probability that any given population pair belongs to a particular phylogeographic cluster 798 

(Supplementary Material online, supplementary fig. S16) as a function of their shared variants. 799 
Our results indicate that rare variants, private to geographically proximate populations, are 800 
strong predictors of phylogeographic provenance (see Figure 8C).  801 
 802 

 803 
Figure 8. Geographic Proximity Analysis. (A) Average (local regression; LOESS) geographic 804 
distance between populations that share a polymorphism at any given site for PoolSNP and SNAPE-805 
pooled. The x-axis represents the number of populations considered; the y-axis is the mean geographic 806 
distance among samples. The yellow line represents the random expectation calculated as random 807 
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pairings of the data. The band around the lines is the standard deviation of the estimator. (B) Correlation 808 
graph showing the different mean distance estimate for both callers as a function of the number of 809 
populations (the groups from n=2 to n=25 are labeled in the graph). A 1-to-1 line is also shown. (C) 810 
Probability that all populations containing a polymorphic site come from the same phylogeographic 811 
cluster (as defined by principal component space, Figure 7 and supplementary fig. 14). The y-axis is 812 
the probability of “x” populations belonging to the same phylogeographic cluster. The axis only shows 813 
up to 60 populations since, after 40 populations, the probabilities approach 0. The colors are consistent 814 
across panels. 815 

   816 

Geographically-informative markers. An inherent strength of our broad biogeographic 817 
sampling is the potential to generate a panel of core demography SNPs to investigate the 818 

provenance of current and future samples. We created a panel of geographically-informative 819 

markers (GIMs) by conducting a discriminant analysis of principal components (DAPC) to 820 
discover which loci drive the phylogeographic signal in the dataset. We trained two separate 821 

DAPC models: the first utilized the four phylogeographic clusters identified by principal 822 
components (PCs; Figure 6AB, Supplementary Material online, supplementary fig. S16, 823 
supplementary table S1); the second utilized the geographic localities where the samples were 824 
collected (i.e., countries in Europe and the US states). This optimization indicated that the 825 

information contained in the first 40 PCs maximizes the probability of successful assignment 826 
(Figure 9A). This resulted in the inclusion of 30,000 GIMs, most of which were strongly 827 

associated with PCs 1-3 (Figure 9B inset). Moreover, the correlations were larger among the 828 
first 3 PCs and decayed monotonically for the additional PCs (Figure 9B). Lastly, our GIMs 829 
were uniformly distributed across the fly genome (Figure 9C). 830 

We assessed the accuracy of our GIM panel using a leave-one-out cross-validation 831 
approach (LOOCV). We trained the DAPC model using all but one sample and then classified 832 

the excluded sample. We performed LOOCV separately for the phylogeographic cluster 833 

groups, as well as for the state/country labels. The phylogeographic model used all 834 
DrosRTEC, DrosEU, and DGN samples (excluding Asia and Oceania with too few individuals 835 

per sample); the state/country model used only samples for which each label had at least 3 or 836 

more samples. Our results showed that the model is 100% accurate in terms of resolving 837 
samples at the phylogeographic cluster level (Figure 9D) and 89% at the state/country level 838 

(Figure 9E). We anticipate that this set of DIMs will be useful to validate the geographic origin 839 

of samples in future sequencing efforts (i.e., identify sample swaps; Nunez et al. 2021) and to 840 
study patterns of migration. We note that although Drosophila populations evolve over short 841 

time-scales in temperate orchards, samples collected over multiple years were predicted with 842 
89% accuracy in our LOOCV analysis, suggesting that these markers will be valuable for 843 

future samples. We provide a tutorial on the usage of the GIMs in Supplemental Methods.  844 
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 845 

 846 
Figure 9. Geographically-informative markers. (A) Number of retained PCs which maximize the 847 
DAPC model’s capacity to assign group membership. Model trained on the phylogeographic clusters 848 
(dashed lines) or the country/state labels (solid line). (B) Absolute correlation for the 33,000 individual 849 
SNPs with highest weights onto the first 40 components of the PCA. Inset: Number of SNPs per PC. 850 
(C) Location of the 33,000 most informative demographic SNPs across the chromosomes. (D) LOOCV 851 
of the DAPC model trained on the phylogeographic clusters. (E) LOOCV of the DAPC model trained on 852 
the phylogeographic state/country labels. For panels D and E, the y-axis shows the highest posterior 853 
produced by the prediction model and the x-axis is the posterior assigned to the actual label 854 
classification of the sample. Also, for D and E, marginal histograms are shown. 855 
 856 

Discussion 857 

Here we have presented a new, modular and unified bioinformatics pipeline for 858 
processing, integrating and analyzing SNP variants segregating in population samples of D. 859 

melanogaster. We have used this pipeline to assemble the largest worldwide data repository 860 

of genome-wide SNPs in D. melanogaster to date, based both on previously published data 861 
(DGN: Africa; Lack et al. 2015, 2016) as well as on new data collected by our two collaborating 862 

consortia (DrosRTEC: mostly North America; Machado et al. 2021; DrosEU: mostly Europe; 863 

Kapun et al. 2020). We assembled this dataset using two SNP calling strategies that differ in 864 
their ability to identify rare polymorphisms, thereby enabling future work studying the 865 

evolutionary history of this species. We are dubbing this data repository and the supporting 866 
bioinformatics tools Drosophila Evolution over Space and Time (DEST).  867 
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The DEST data repository was built using two different SNP calling pipelines, SNAPE-868 

pooled (Raineri et al. 2012) and PoolSNP (Kapun et al. 2020). These two approaches differ 869 
fundamentally in their approach to SNP identification. SNAPE-pooled treats each Pool-Seq 870 

sample separately and calculates the posterior probability that a site is polymorphic based on 871 

the read depth, alternate allele count, and a prior estimate of nucleotide diversity; this 872 
approach was designed to identify rare polymorphisms and has been validated using both 873 

simulation and empirical approaches (Guirao-Rico and Gonzalez 2021). Here, we also provide 874 
evidence that rare and private SNPs identified by SNAPE-pooled are enriched for true 875 

positives (Figure 8) after applying rigorous filtering and excluding 20 population samples likely 876 

affected by problems during library preparation which may have resulted in elevated error 877 

rates.  878 
The dataset based on SNAPE-pooled could therefore be useful for studies that rely on 879 

rare SNPs, such as those investigating recent demographic events (Keinan and Clark 2012). 880 
SNAPE-pooled has several limitations though. First, it is only capable of handling Pool-Seq 881 

data. Second, because of the hard-filtering that we are imposing with our posterior probability 882 
cutoff, some true SNPs are being called as missing data (see Materials and Methods). This 883 

problem is apparent when comparing the number of polymorphisms identified by SNAPE-884 
pooled and PoolSNP (Figure 3). In addition, studies that rely on the SNAPE-pooled dataset 885 
should exclude the 20 samples we flagged here (Figure 2A, supplementary table 1). 886 

PoolSNP, on the other hand, is useful for analysis of common variants and allows 887 
studying aspects of population structure and local adaptation based on shared polymorphism. 888 
Such analyses could include the inference of migration out of Africa Kapopoulou et al. 2020), 889 
admixture (Bergland et al. 2016), and back-migration to Africa (Pool and Aquadro 2006). 890 

PoolSNP is an extension of the approach developed elsewhere (Kofler et al. 2011a,b; Kapun 891 

et al. 2020). PoolSNP necessarily has a limited capacity to identify rare and private SNPs 892 
because it imposes global minor allele count and allele frequency filters. As a consequence, 893 
the more populations that are used for SNP calling by PoolSNP, the less likely PoolSNP is to 894 

identify private polymorphisms. Because PoolSNP filters out rare and private polymorphisms, 895 
it is less sensitive to sequencing or library preparation errors. Notably, the 20 flagged 896 

populations do not have elevated pN/pS with MAC > 50. Additionally, Kapun et al. (2020) 897 

demonstrated that these problematic samples did not affect population genetic inference 898 
based on common SNPs. The problematic samples derived from the DrosRTEC studies likely 899 

do not have a major impact on their results either as both Bergland et al. (2014) and Machado 900 

et al. (2021) imposed stringent minor allele frequency filters.  901 
PoolSNP has the advantage that it can incorporate in-silico pooled datasets wherein 902 

haplotype or genotype information are collapsed into allele frequencies (see Materials and 903 
Methods). We took this approach by incorporating the Drosophila Genome Nexus dataset 904 
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(DGN; Lack et al. 2016), a dataset that amalgamates whole-genome sequencing of inbred line 905 

data and haploid embryos from samples collected around the world. Although the DGN data 906 
was originally generated by multiple labs and run through a different mapping pipeline than 907 

what we used for the Pool-Seq data, these samples appear to cluster tightly with 908 

geographically close Pool-Seq samples (supplementary fig. S15, and discussed in the 909 
Results). Thus, there does not appear to be significant bias when combining these datasets, 910 

at least when integrating information across the genome. Nonetheless, some care should be 911 
taken when interpreting allele frequency differences based on datasets generated by different 912 

means. However, any real-time monitoring activity will likely suffer from the rapidly changing 913 

landscape of sequencing technologies. 914 

One of the biggest challenges in the present “omics” era is the rapidly growing number of 915 
complex large-scale datasets which require technically elaborate bioinformatics know-how to 916 

become accessible and utilizable. This hurdle often prohibits the exploitation of already 917 
available genomics datasets by scientists without a strong bioinformatics or computational 918 

background. To remedy this situation for the Drosophila evolution community, our 919 
bioinformatics pipeline is provided as a Docker image (to standardize across software 920 

versions, as well as make the pipeline independent of specific operating systems) and a new 921 
genome browser makes our SNP dataset available through an easy-to-use web interface (see 922 
supplementary fig. S2, S3; available at https://dest.bio). 923 

The DEST data repository and platform will enable the population genomics community 924 
to address a variety of longstanding, fundamental questions in ecological and evolutionary 925 
genetics. The current dataset might for instance be valuable for providing a more accurate 926 
picture of the demographic history of D. melanogaster populations, in particular in Europe and 927 

North America, and with respect to multiple bouts of out-of-Africa migration and recent 928 

patterns of admixture. Such analyses can be strongly affected by chromosomal inversions that 929 
are known to impact LD and haplotype variation (Kapun and Flatt 2019; Durmaz et al. 2020). 930 
We have therefore provided frequency estimates for the seven most common cosmopolitan 931 

inversions (In(2L)t, In(2R)NS, In(3L)P, In(3R)C, In(3R)K, In(3R)Mo and In(3R)Payne; 932 
Lemeunier and Aulard 1992), which allows accounting for the effects of inversions in 933 

population genetic inference (e.g., Kapopoulou et al. 2020). 934 

The DEST dataset will likewise be useful for an improved understanding of the genomic 935 
signatures underlying both global and local adaptation, including a more fine-grained view of 936 

selective sweeps, their evolutionary origin and distribution (e.g., see Glinka et al. 2003; 937 

Beisswanger et al. 2006; Ometto 2010; Stephan 2016; Kapun et al. 2020). In terms of local 938 
adaptation, the broad spatial sampling across latitudinal and longitudinal gradients on the 939 

North American and European continents, encompassing a broad range of climate zones and 940 
areas of varying degrees of seasonality, will allow examining the parallel nature of local (clinal) 941 
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adaptation in response to similar environmental factors in greater depth than possible before 942 

(e.g., Turner et al. 2008; Kolaczkowski et al. 2011; Fabian et al. 2012; Reinhardt et al. 2014; 943 

Bergland et al. 2014, 2016; Kapun et al. 2016, 2020; Bogaerts-Márquez et al. 2020; Waldvogel 944 

et al. 2020; Machado et al. 2021). 945 

Another major opportunity provided by the DEST dataset lies in studying the temporal 946 
dynamics of evolutionary change. Sampling at dozens of localities across the growing season 947 

and over multiple years will help to advance our understanding of the short-term population 948 

and evolutionary dynamics of flies living in diverse environments, thereby providing novel 949 
insights into the nature of temporally varying selection (Bergland et al. 2014; Wittmann et al. 950 

2017; Machado et al. 2021) and evolutionary responses to climate change (e.g., Umina 2005; 951 

Rodríguez-Trelles et al. 2013; Waldvogel et al. 2020). 952 
Moreover, by integrating these worldwide estimates of allele frequencies, those from lab- 953 

and field-based ‘evolve and resequence’ experiments (E&R; Turner et al. 2011; reviewed in 954 

Kofler and Schlötterer 2014; Schlötterer et al. 2014; Flatt 2020) and those from mesocosm 955 
experiments (e.g., Rudman et al. 2019; Erickson et al. 2020), we might be able to gain deeper 956 

insights into the genetic basis and evolutionary history of variation in fitness components (e.g., 957 
Flatt 2020). 958 

The real value of the DEST dataset lies in the future: its long-term utility will grow as 959 

natural and experimental populations are continually being sampled, resequenced and added 960 
to the repository by the community of Drosophila evolutionary geneticists. The pipeline that 961 
we have established will make future updates to the data repository straightforward. 962 

Furthermore, since it is not easily feasible for any single research group to sample flies densely 963 
through time and across a broad geographic range, the growing value of the DEST dataset 964 
will depend upon the synergistic collaboration among research groups across the globe, as 965 

exemplified by the DrosRTEC and DrosEU consortia. Importantly, in an era of rapidly 966 
decreasing sequencing costs, comprehensive population genomic analyses are no longer 967 

limited by genetic marker density but by the availability of biological samples from 968 

standardized, collaborative long-term collection efforts through space and time (e.g., Kapun 969 
et al. 2020; Machado et al. 2021). In this vein, the collaborative framework presented here 970 

might allow us, as a global community, to fill some important gaps in the current data 971 

repository: for example, many areas of the world (notably Asia and South America) remain 972 
largely uncharted territory in Drosophila population genomics, and the addition of phased 973 

sequencing data (e.g., providing information on haplotypes, LD, linked selection) will be 974 

crucially important for future analyses of demography, selection and their interplay. 975 
We are convinced that the DEST platform will become a valuable and widely-used 976 

resource for scientists interested in Drosophila evolution and genetics, and we actively 977 

encourage the community to join the collaborative effort we are seeking to build. 978 
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 979 

Data availability 980 
All scripts to make figures and perform analyses associated with this manuscript are available 981 

here: https://github.com/DEST-bio/data-paper. All scripts to build the dataset, including the 982 

mapping pipeline, SNP calling scripts, and meta-data are available here: 983 
https://github.com/DEST-bio/DEST_freeze1. All output from the DEST pipeline, including 984 

intermediate output files, metadata, etc. can be found here: https://dest.bio. Datafiles available 985 
via the website can also  be downloaded through the command-line interface. The genome 986 

browser associated with the DEST dataset can be found here: https://dest-bio.uab.cat. The 987 

dockerized mapping pipeline can be found at  988 

https://hub.docker.com/orgs/destbio/repositories.  989 
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