

1 Functional ultrasound imaging of the spreading activity following
2 optogenetic stimulation of the rat visual cortex

3

4

5 Authors: M. Provansal¹, G. Labernede¹, C. Joffrois¹, A. Rizkallah¹, R. Goulet¹, M. Valet¹, W.
6 Deschamps¹, U. Ferrari¹, A. Chaffiol¹, D. Dalkara¹, J.A. Sahel^{1,2,3}, M. Tanter⁴, S. Picaud¹, G.
7 Gauvain^{*1}, F. Arcizet^{*1}.

8 • * Equal contribution

9 ¹Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France; ²Department of
10 Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States;
11 ³Department of Ophthalmology and Vitreo-Retinal Diseases, Fondation Ophtalmologique Rothschild,
12 F-75012 Paris, France; and ⁴Physics for Medicine Paris, INSERM, CNRS, Ecole Supérieure de
13 Physique et de Chimie Industrielles (ESPCI Paris), Paris Sciences et Lettres (PSL) Research
14 University, 75012 Paris, France.

15

16 Optogenetic stimulation of the primary visual cortex (V1) is a promising therapy for sight
17 restoration, but it remains unclear what total cerebral volume is activated after surface
18 stimulation. In this study, we expressed the red-shifted opsin ChrimsonR in excitatory
19 neurons within V1 in rats, and used the fine spatial resolution provided by functional
20 ultrasound imaging (fUS) over the whole depth of the brain to investigate the brain response
21 to focal surface stimulation. We observed optogenetic activation of a high proportion of the
22 volume of V1. Extracellular recordings confirmed the neuronal origin of this activation.
23 Moreover, neuronal responses were even located in deep layers under conditions of low
24 irradiance, spreading to the LGN and V2, consistent with a normal visual information
25 process. This study paves the way for the use of optogenetics for cortical therapies, and
26 highlights the value of coupling fUS with optogenetics.

27

28 **Introduction**

29 Optogenetics has revolutionized investigation of the central nervous system¹, providing hope
30 for the treatment of a number of conditions, including deafness^{2,3} or vision loss⁴. Optogenetic
31 therapy is already widely applied to retinal cells to restore vision for *in vivo* light application^{5–}
32 ¹¹, and is currently being assessed in two different clinical trials^{12,13}. However, different
33 approaches, targeting cells other than those of the retina, are required for diseases causing
34 degeneration of the optic nerve (e.g. glaucoma) and for advanced retinal degeneration (late
35 AMD). For such conditions, direct stimulation of the primary visual cortex (V1) is a promising
36 alternative strategy. Indeed, high performance rates have been reported for the detection of
37 forms, with great accuracy, by blind human patients with cortical implants¹⁴, and cortical
38 electrical prostheses have been shown to elicit visual percepts and to alter visual behavior in
39 nonhuman primates (NHP)¹⁵. Successes have been achieved with implantable devices, but
40 this approach nevertheless has a number of serious drawbacks: invasive surgery, signal
41 degradation over time, and a lack of cell-type specificity. In this respect, optogenetic therapy
42 stimulating V1 at the cortical surface could potentially afford similar benefits, but with less
43 invasive administration, stable expression over time and precise genetic targeting of the
44 appropriate cell population. Two of the key aspects of this strategy are the activation of
45 cortical layer IV neurons, as these are the first cells to receive visual information from the
46 visual thalamus¹⁶ and the propagation of activity to other visual structures, which would favor
47 the generation of visual percepts.

48 Layer IV is located deep in the cortex (>1 mm in NHP). It is therefore a major challenge to
49 read and write neuronal activity, to demonstrate the efficacy of stimulation. Red-shifted
50 opsins are very good tools for neuronal stimulation, as they make it possible to use lower
51 light power to activate deeper neurons than blue-sensitive opsins, whilst also making it
52 possible to use higher light intensity safely^{17–19}. Electrophysiological recordings can report
53 neuronal activity with unmatched spatiotemporal resolution, but over a very small spatial
54 area²⁰. Conversely, techniques such as optical imaging and fMRI have been coupled with
55 optogenetics to report activity throughout the brain, but at the expense of a loss of both

56 spatial and temporal resolution^{21,22}. Like fMRI, ultrafast functional ultrasound imaging (fUS)
57 can provide brain-sized maps of neurovascular activity changes, with a high spatiotemporal
58 resolution (100 µm x 100 µm, 1Hz) even in deep structures (up to 1.5 cm)²³. This technique
59 has been used to investigate sensory processing in anesthetized²⁴, awake²⁴⁻²⁶ and asleep²⁷
60 rodents, and in behaving primates^{28,29}. fUS imaging and electrophysiological recordings can,
61 therefore, be used to describe the dynamics of local neuronal activity accurately whilst
62 scanning neurovascular activity over the entire brain. We used these two techniques to
63 determine whether the optogenetic stimulation of V1 at the cortical surface could induce
64 neuronal activity even in deep cortical layers, and initiate the propagation of information to
65 other visual structures.

66 We show here that red light stimulation at the cortical surface can activate visual neurons
67 localized in deep cortical layers without triggering a thermal hemodynamic response and
68 toxicity. We were also able to follow the propagation of this information in other visual brain
69 structures (i.e. LGN and V2). More generally, this work shows that fUS imaging has the
70 potential to provide a clear, brain-wide mesoscopic view of the neuronal activities resulting
71 from optogenetic stimulation.

72

73 **Results**

74 **fUS imaging of V1 optogenetic activation in rats.** We used the optogenetic actuator
75 ChrimsonR for visual restoration in the cortex, because of its red-shifted opsin properties¹⁷
76 and because it was already being used for visual restoration in the primate retina¹¹ and had
77 given promising results in clinical trials¹³. We maximized the optogenetic activation of V1 by
78 using the CaMKII promoter to ensure expression limited to the excitatory neurons of V1.
79 Indeed, a ubiquitous promoter might lead to the silencing of pyramidal neurons through the
80 recruitment of inhibitory neurons. ChrimsonR was fused to the fluorescent reporter tdTomato
81 to facilitate the visualization of transfected areas. Following preliminary screening, we used

82 the AAV9-7m8 mutated viral capsid to express ChrimsonR in the V1 neurons of Long-Evans
83 rats (Fig. 1a). The mean rate of neuronal transfection was 5.5% over all cortical layers (Fig.
84 S1). ChrimsonR expression was not restricted to the soma, but spread to the axons and
85 dendrites (Fig. 1a). We assessed the efficacy of the optogenetic stimulation of V1 cortical
86 neurons, by using fUS imaging to measure brain activity in a large proportion of the brain:
87 from AP -3.5 mm to AP -8 mm, the zone in which most of the early visual system areas are
88 located. Activity in the cortical layers was assessed following either direct stimulation of the
89 contralateral eye with a white LED (58 mW.cm^{-2}), or stimulation at 595 nm delivered with an
90 optic fiber placed at the surface of the transfected or non-transfected V1 areas (7 mW , ~ 140
91 mW.mm^{-2} at the brain surface) (Fig. 1b). We chose to use durations and magnitudes of
92 parameters similar to those previously used^{24,30} for stimulation of the eye or cortex (2 s at 4
93 Hz or 20 Hz for stimulation of the eye and cortex, respectively, separated by a 13 s period of
94 darkness. This cycle was performed 20 times). For eye stimulation (Fig. 1b, left), we first
95 imaged V1 with a single imaging plane at AP -7.5 mm and constructed an activation map
96 including only pixels displaying significant CBV (cerebral blood volume) responses ($p < 0.05$
97 with Bonferroni-Holm correction, Wilcoxon signed-rank test, one-tailed, relative to baseline
98 activity). We detected strong activation in both the ipsilateral and contralateral superior
99 colliculi (SC) (ipsilateral, $n = 121/488$ activated pixels; contralateral, $n = 134/421$ activated
100 pixels), but almost no activation in the ipsilateral and contralateral V1 areas (ipsilateral,
101 $n = 8/634$ activated pixels; contralateral, $n = 9/370$ activated pixels). The lack of response in
102 both V1 areas and the strong signal in both SC may reflect the retinotectal nature of most
103 rodent retinal outputs¹⁶ or an effect of anesthesia³¹. An increase in CBV was already clearly
104 visible on single-cycle responses (gray dashed lines), as illustrated for the significant pixel
105 (#14-92) in the ipsilateral V1 area (insert). Following direct stimulation of the contralateral
106 eye, the mean response (black curve) peaked 2 seconds after the two-second stimulation
107 represented by the patch in gray (mean: $19.8 \pm 18.3\%$). For cortical stimulation (Fig. 1b,
108 center), we observed a broad activation of the ipsilateral V1 area ($n = 310/634$ activated
109 pixels). The activation spread out of the V1 area at each border (medial and ventral) with V1

110 projections onto other visual areas. Single-cycle responses of the same example pixel
111 showed larger, less variable increases in CBV variation than for stimulation of the
112 contralateral eye (optogenetic, mean: $65.8 \pm 32.6\%$, $p < 0.0001$, Mann-Whitney). A previous
113 study showed that blue light delivery to the brain could itself generate non-specific changes
114 in CBV³⁰. We therefore performed a control stimulation by locating the optic fiber at the
115 surface of the non-injected V1 area, which did not express ChrimsonR-tdT (Fig. 1b, right).
116 We used the same light stimulation parameters for this control as before. We detected no
117 significant CBV responses in the non-injected V1 area under such optogenetic stimulation
118 conditions.

119 We further characterized the V1 activation volume generated by contralateral eye stimulation
120 or by stimulation of the transfected V1 area, by imaging all the planes containing V1 (from AP
121 -6 to -8 mm, Fig. 1c-d). As shown in Fig. 1b, direct eye stimulation induced CBV responses
122 mostly in the SC areas, but very little activation was observed in the two V1 areas (mean:
123 $0.05 \pm 0.12\%$). Strikingly for the same animal shown (as shown in Fig. 1c), direct optogenetic
124 stimulation of the injected V1 area generated significantly stronger CBV responses, with a
125 mean active volume of 37% (range: 0.5 to 75.9%). The percentage mean active injected V1
126 area, over all animals, was higher for optogenetic cortical stimulation than for direct eye
127 stimulation (optogenetic, mean: $16.2 \pm 17.8\%$, Wilcoxon signed-rank test, one-tailed,
128 $p = 0.001$, Fig. S1). Neurovascular activity and ChrimsonR expression were distributed
129 similarly along the AP axis and their amplitudes were correlated (Fig. 1d, Fig. S1). Again, our
130 control experiments demonstrated that direct optogenetic stimulation of a non-transfected
131 cortical area resulted in no activation. The findings for these control conditions indicate that
132 the parameters we used for optogenetic stimulation at the cortical surface did not generate
133 CBV variations in areas into which the virus was not injected (mean: $0 \pm 0\%$). These
134 observations indicate that the optogenetic light stimulation used here does not trigger a
135 vascular response detectable by fUS imaging. Consequently, with fUS imaging, we were

136 able to visualize the entire volume of an optogenetically evoked response resulting from focal
137 stimulation within the primary visual cortex.

138 We then sought to confirm that the observed changes in blood volume following optogenetic
139 stimulation at the surface of V1 were indeed due to an increase in neuronal activity, and not
140 to indirect factors, such as heating. We therefore performed electrophysiological recordings
141 of V1 during the stimulation of the contralateral eye with white light (200 ms, 1 Hz, 100
142 cycles, 58 mW.cm^{-2}) or of the injected V1 area with light at 595 nm (200 ms, 1 Hz, 100
143 cycles, 140 mW.mm^{-2}). We used the Spyking Circus algorithm³² to sort the multi-unit
144 recordings, to obtain single-cell responses. In total, we recorded a population of 171 neurons
145 from nine animals expressing ChrimsonR in V1. These neurons displayed several distinctive
146 patterns of activity under both direct eye and optogenetic stimulation conditions (Fig. 1e). We
147 plotted the spike density function (SDF) of four V1 neurons for both direct eye stimulation
148 (black lines) and optogenetic conditions (red lines), to highlight the diversity of these activity
149 patterns. Based on the profiles of visual and optogenetic responses, we classified neurons
150 into four different groups: neurons responding to both visual and optogenetic stimulation (V +
151 O neurons, $n=13$, 7.6%, Wilcoxon signed-rank test, two-tailed, $p<0.01$, between baseline: [-
152 100 0] ms, and stimulus presentation window: [0 200] ms), to visual stimulation only (V
153 neurons, $n=20$, 11.7%), to optogenetic stimulation only (O neurons, $n=81$, 47.4%), and non-
154 responsive neurons ('None' neurons, $n=57$, 33.3%). Most of the neurons responding to visual
155 stimulation displayed phasic responses, with an ON response occurring after the start of
156 stimulation followed, in some cases, by an OFF response. By contrast, the neurons
157 responding to optogenetic stimulation displayed a unique ON response. We characterized
158 the neuronal activation further, by comparing the onset latencies and durations of the V1
159 responses for both direct eye and optogenetic stimulation conditions, for V, O and V+O
160 neurons ($n=109$, Fig. 1f). As observed for the representative neurons shown in Fig. 2a, the
161 onset latencies of V1 responses were significantly shorter after optogenetic stimulation
162 (mean: 1.76 ± 3.14 ms, $n=76$ units) than after stimulation of the contralateral eye (mean:

163 41.24 \pm 16.61 ms, $n=33$ units, Mann-Whitney, $p<0.0001$). These very short response
164 latencies for optogenetic stimulation are consistent with the direct activation of transfected
165 neuronal cell bodies, bypassing all retinal synapses, by contrast to natural visual signal
166 transmission. We also analyzed the duration of visual/optogenetic responses, to determine
167 whether V1 neurons presented transient or sustained activity, according to the type of
168 stimulation. For direct eye stimulation, the duration of neuronal responses was tuned on a
169 single ensemble, with a mean duration of activation of 28.09 \pm 17.05 ms ($n=33$). By contrast,
170 in optogenetic conditions, two subgroups emerged: neurons displaying transient and
171 sustained responses. Based on these results, we defined two subsets of neurons: transient
172 (durations < 51 ms, $n=33$) and sustained (durations > 197 ms, $n=22$) neurons. The remaining
173 neurons ($n=17$) had intermediate response durations. The transient responses may result
174 from inhibitory cortical feedback from interneurons or a difference in voltage-gated channel
175 properties between neuronal subtypes leading to the silencing of these neurons. We found
176 no significant difference in the depth distribution of transient and sustained neurons (Fig. 1g),
177 revealing an absence of correlation between neuronal response patterns and potential
178 decreases in stimulus intensity with tissue depth; transient and sustained neurons were
179 recorded within the same cortical layers (L2/3 to L6), suggesting a direct activation of cortical
180 neurons by optogenetic stimulation at the cortical surface. We then assessed the specificity
181 of optogenetic activation, by performing electrophysiological recordings on naive animals. In
182 the animals in which no injection was performed (Fig. S1, $n=3$ animals), almost all the
183 recorded neurons ($n=187/188$) displayed a total absence of response to optogenetic
184 stimulation; the only responsive neuron had a very low response rate (3.89 Hz) relative to its
185 baseline activity (1.71 Hz, $p = 0.0014$). In this experiment, most neurons displayed a visual
186 response when the contralateral eye was stimulated ($n=80/118$), whereas another group of
187 neurons ($n=37/118$) did not respond to either visual or optogenetic stimulation. Thus, by
188 recording single-cell activities in transfected areas of V1, we were able to demonstrate that
189 optogenetic light stimulation at the surface of the cortex triggered both an increase in
190 cerebral blood volume, as shown by fUS imaging, and direct neuronal activation. We can

191 therefore conclude that the fUS variations we observed reflected the optogenetic activation of
192 V1 neurons. As in fUS imaging, we found that a larger number of neurons responded to
193 optogenetic stimulation than to visual stimulation (Fig. 1e), consistent with the broader
194 activation of areas in response to optogenetic stimulation than following direct contralateral
195 eye stimulation and fUS imaging.

196 **Neuronal and neurovascular optogenetic sensitivity**

197 As both single-cell recording and fUS imaging can be used to monitor optogenetic neuronal
198 activation, we decided to assess the sensitivities of these two approaches. We first imaged
199 the same single V1 plane (AP -7.5 mm) by fUS while optogenetically stimulating the surface
200 of the ChrimsonR-expressing V1 area with various irradiances (from 1.2 to 106 mW.mm⁻²).
201 The size of the active volume within the injected V1 area increased with irradiance, with a
202 major increase between 36 mW.mm⁻² and 70 mW.mm⁻² and a slight decrease at 106
203 mW.mm⁻² (Fig. 2a). One also found that the contralateral SC was slightly activated at
204 irradiances above 1.2 mW.mm⁻². For each irradiance, we then calculated the mean CBV
205 variation over all significant pixels in the V1 area and over all trials (Fig. 2b, left panel). For
206 each animal, we normalized these values against those obtained for the highest irradiance
207 (106 mW.mm⁻²). Normalized CBV variation peaked 4 s after the start of stimulation. Peak
208 CBV values increased as a function of irradiance. No CBV variation was recorded for the
209 lowest irradiance (1.2 mW.mm⁻²). Difference in peak CBV values relative to that for the
210 lowest irradiance tested started to become significant from 6 mW.mm⁻² onwards (1.2
211 mW.mm⁻², mean: 0 ± 0; 6 mW.mm⁻², mean: 0.36 ± 0.34, Wilcoxon signed-rank test, one-
212 tailed, $p<0.05$). For each irradiance, we then calculated the percentage normalized activated
213 ipsilateral V1 volume (Fig. 2b, right panel) in all animals ($n=9$). We again observed an
214 increase in the normalized active volume of V1 with irradiance. Difference with respect the
215 value obtained at the lowest irradiance became significant from 6 mW.mm⁻² onwards (1.2
216 mW.mm⁻², mean: 0 ± 0%; 6 mW.mm⁻², mean: 22.3 ± 39.0%, Wilcoxon signed-rank test, one-
217 tailed, $p<0.05$). We then investigated whether the variation of CBV responses observed with

218 irradiance was related to the number of neurons recruited. The SDF from a single-unit
219 example was determined for the different irradiances; the amplitude of the neuronal response
220 increased with irradiance from 8.2 ± 1 Hz for 6 mW.mm^{-2} to 36.6 ± 7 Hz for 106 mW.mm^{-2}
221 (Fig. 2a). We generalized this analysis by plotting the cumulative distribution of the mean
222 maximal firing rates for each irradiance (Fig. 2c, left panel). The cumulative curves reached a
223 plateau for lower maximal firing rates with decreasing irradiance. We noted a significant
224 difference in distribution between 1.2 mW.mm^{-2} and irradiances of 6 mW.mm^{-2} and above
225 (1.2 mW.mm^{-2} , median: 0 Hz; 6 mW.mm^{-2} , 3.8 Hz, Kolmogorov-Smirnov test, $p < 0.0001$),
226 demonstrating that electrophysiological recordings and fUS imaging had equivalent
227 sensitivities. Finally, in our total population of V1 neurons, the proportion of responsive
228 neurons increased with irradiance (from 28/92 units at 6 mW.mm^{-2} to 71/92 units at 106 mW.mm^{-2} ,
229 Fig. 2c, right panel). Interestingly, the depth distribution of the activated neurons
230 did not change with increasing irradiance (Fig. 2c, right panel). It was, therefore, possible to
231 activate neurons from deep cortical layers even at very low irradiances.

232 **Spread of optogenetic activation to downstream and upstream visual areas.** The results
233 described above relate to optogenetic activation in V1 with the optic fiber placed at the
234 surface of the primary visual cortex. We then investigated whether the activity initiated in V1
235 spread to other visual structures up- or downstream. This aspect is important for optogenetic
236 therapies for the restoration of cortical vision because it would demonstrate the propagation
237 of visual information favoring the generation of visual percepts. For the downstream pathway,
238 LGN terminals end in V1 at the depth of cortical layer IV, whereas cortical V1 layer VI sends
239 feedback connections to the LGN. We thus hypothesized that injecting AAV9-7m8-CaMKII-
240 ChrimsonR-tdT into V1 would increase ChrimsonR expression in at least one of these two
241 categories of fibers and that the optogenetic activation of V1 would lead to direct activation of
242 the LGN via LGN terminals in V1, or to an indirect activation of the LGN through feedback
243 connections in V1 cortical layer VI. Histological analyses confirmed that some ChrimsonR
244 expression occurred in the LGN, but we were unable to identify any ChrimsonR-expressing

245 cell bodies in the LGN, suggesting that only retrograde fibers originating from cortical V1
246 layer VI expressed this opsin (Fig. S2). We imaged the planes containing the LGN (AP -3.5
247 to AP -5.5 mm). Figure 3a shows the fUS imaging planes at AP -5 mm for the direct eye and
248 optogenetic stimulation conditions. We noted a slight activation of the visual cortex following
249 visual stimulation (see Fig. 1b), and a strong activation of the ipsilateral LGN ($n=85/225$
250 active pixels) when the contralateral eye was stimulated with the white LED, suggesting that
251 this kind of stimulation was more appropriate for LGN and SC activations than for the visual
252 cortex. Indeed, in the 11 animals (Fig. 3b), the mean percentage of the LGN volume visually
253 activated was $20.5 \pm 13.7\%$ which is much greater than the volume activation obtained for V1
254 (less than 1%). When the injected V1 surface was stimulated with the optic fiber (Fig. 3a),
255 CBV responses increased significantly in the ipsilateral LGN, but with a much smaller
256 number of activated pixels ($n=12/225$ pixels) than for visual stimulation. We also performed a
257 control optogenetic stimulation, in which we stimulated the non-injected V1 area. We
258 observed no activation of the ipsilateral LGN, confirming that, on stimulation of the injected
259 hemisphere, ipsilateral LGN activation was due to optogenetic activation of LGN terminals in
260 V1 or feedback from the V1 area (Fig. S2). In the 11 animals tested, the active LGN volumes
261 for visual stimulation were larger than those for optogenetic stimulation (visual, mean: $20.5 \pm$
262 13.7% ; optogenetic, mean: $6.5 \pm 12.3\%$, Wilcoxon signed-rank test, $p=0.0068$). In addition,
263 for the five animals tested by optogenetic stimulation of the non-transfected V1 area, we
264 detected no significant responsive pixels (Fig. 3b, mean: $0 \pm 0\%$, $n=5$ animals). We also
265 performed single-cell recordings in the LGN, to demonstrate that the neurovascular
266 activations imaged by fUS in the LGN coincided with the activation of LGN neurons (Fig. 3c).
267 We recorded a total of 153 neurons in the LGN. Only two units responded to both visual and
268 optogenetic stimulation; seven units were responsive only to optogenetic stimulation, and 40
269 units were responsive only to visual stimulation ($n=7$ animals). The vast majority of LGN
270 neurons were unresponsive to both types of stimulation. The distribution of onset latencies
271 following direct eye stimulation was broader for LGN than for V1 single units (Fig. 3d, mean:
272 47.88 ± 23.55 ms, $n=42$ units, and see Fig. 1f). This may reflect the recording of both cells

273 activated by retinal ganglion cells and cells retrogradely activated by the V1 area, which have
274 higher latencies. Following optogenetic stimulation at the surface of the V1 area, the onset
275 latencies for LGN neurons were shorter than those following visual stimulation (mean: $9.86 \pm$
276 4.95 ms, $n=7$ units, Mann-Whitney, $p<0.05$). However, these response latencies were greater
277 than those recorded in V1 ($n=42$ units, Mann-Whitney, $p<0.0001$, see Fig 1f for V1 units).
278 This result suggests that the optogenetically activated LGN single units recorded here were
279 activated indirectly, by retrograde fibers from V1 cortical layer VI, as suggested by the
280 histological data.

281 We also investigated whether V1 optogenetic stimulation could spread to the direct upstream
282 visual area toward which V1 projects: the V2 area. We obtained fUS activation maps in
283 different imaging planes (AP -6 to AP -8 mm) in which the entire V2 area was present after
284 either direct stimulation of the contralateral eye or optogenetic stimulation at the surface of
285 the V1 area. We show representative activation maps from single imaging planes (AP -8.5
286 mm) in Figure 4a. Visual stimulation of the contralateral eye led to almost no activation of the
287 V2 area on the same side as the injected V1. By contrast, optogenetic stimulation of the
288 transfected V1 area led to a stronger activation of the ipsilateral V2, mostly within the ventral
289 part of V2. As previously reported, within the different imaging planes, we also observed
290 strong activation in the lower parts of V1 and V2 containing the axons. We next quantified the
291 active volume over all imaging planes for the V2 area, for all 10 animals (Fig. 4b). As for the
292 V1 area, visual stimulation resulted in only weak activation of V2 (mean: $0.2 \pm 0.3\%$ of
293 activated volume). Averaged activation volumes were significantly larger for optogenetic
294 stimulation than for visual stimulation (mean: $5.6 \pm 8.0\%$ activated volume, $n=10$ animals,
295 Wilcoxon signed-rank test, one-tailed, $p<0.05$). Control stimulation of the non-injected V1
296 area confirmed the specificity of the spread of optogenetic activation from V1 to V2, as no
297 activation was observed in the contralateral V2 area (Fig. 4b, Fig. S2).

298 Electrophysiological recordings within V2 confirmed that the fUS variations we observed in
299 V2 were consistent with direct neuronal activation (Fig. 4c). We recorded V2 single units

300 responding to visual and optogenetic stimulation. As previously described, we characterized
301 the onset latency of these neurons, comparing the values obtained with those for V1 single
302 units (Fig. 4d). Similar visual latencies were recorded for V1 and V2 single units (V1, mean:
303 41.24 ± 16.61 ms, $n=33$ units (see Fig. 1f); V2, mean: 39.43 ± 9.557 ms, $n=14$ units).
304 Interestingly, optogenetic onset latencies were higher for V2 single units than for V1 (V1,
305 mean: 1.76 ± 3.14 ms, $n=76$ units. V2, mean: 62.78 ± 77.44 ms, $n=9$ units, Mann-Whitney,
306 $p<0.0001$), suggesting that these neurons were activated indirectly by ChrimsonR-expressing
307 V1 neurons. Two V2 neurons presented particularly long optogenetic ON latencies, possibly
308 due to a difference in the microcircuits involved. We checked that this variability did not bias
309 the latency delay for V2 and V1 neurons after optogenetic stimulation, by performing the
310 same statistical test on a V2 data set restricted to the remaining seven fast V2 units. The
311 difference in ON latency between V1 neurons and these fast V2 neurons was conserved
312 (fast V2 units, mean: 12.2 ± 9.5 ms, $n=7$ units, Mann-Whitney, $p<0.0001$), suggesting that all
313 V2 neurons were activated indirectly after the onset of stimulation. This conclusion is
314 supported by the lack of ChrimsonR expression in V2 on brain slices from the animals used
315 to record these single units. However, these V2 latencies were shorter than V2 latencies for
316 natural eye stimulation, demonstrating that they were genuinely produced by V1 optogenetic
317 activation.

318

319 **Discussion**

320 **Coupling of optogenetics with fUS**

321 In this study, we demonstrate that optogenetic activation can be detected by fUS imaging.
322 Rungta and colleagues³⁰ indicated that blue light from the tip of the optic fiber *per se* could
323 induce neurovascular responses in naïve mice, at irradiances higher than $2 \text{ mW} \sim 18$
324 mW.mm^{-2} . Another recent study reported hemodynamic responses following blue light
325 illumination of the retrosplenial cortex in Thy-ChR2 mice or the illumination of specific

326 neuronal subpopulations of the superior colliculus in other transgenic lines²⁶. The authors
327 explained that they used a lower light power and irradiance (0.3 mW ~1.5 mW.mm⁻²) to
328 prevent non-specific activation. By contrast, we used an AAV-mediated strategy to express
329 ChrimsonR in V1 neurons, resulting in a lower density of opsin-expressing cells than in
330 transgenic mice lines³³. This generalizes the possibility of recording neurovascular
331 optogenetic activation due to a small number of transfected neurons. Moreover, we show
332 here that stimulation of the control non-injected hemisphere does not induce a vascular
333 response, thereby demonstrating the specificity of ChrimsonR-elicited optogenetic activity.
334 Single-cell recordings confirmed the neuronal optogenetic activation correlated with these
335 CBV variations. We also used a higher wavelength (595 nm) for illumination than Rungta and
336 coworkers, but with comparable values of power and irradiance. These results indicate that
337 red light can be used even at high power, in protocols combining the optogenetic activation
338 of red-shifted opsins and fUS imaging. Importantly, electrophysiological recordings from the
339 control animals showed no neuronal activation, suggesting negligible thermal effects with the
340 use of 595 nm light under the parameters used here. Indeed, we included these parameters
341 in the heat propagation model of Stujenske³⁴, and recorded a very local (<1 mm-diameter
342 sphere from the tip of the optic fiber) increase in temperature, by 0.2°C, which is too small to
343 alter neuronal firing rates. Finally, we characterized the dose-response dependence of our
344 recorded optogenetic activations. We obtained equivalent sensitivities for optogenetic
345 responses measured by fUS imaging and by electrophysiological recordings.

346 The use of fUS imaging to analyze optogenetic responses has the advantage that it could
347 potentially provide a mesoscopic view of the activated area. Unlike electrophysiological
348 recordings, which extract information very locally²⁰, and calcium imaging, which is dependent
349 on both expression of the calcium indicator and the penetration of blue light through the
350 tissue³⁵, it can display information at a brain-wide spatial scale. The coupling of fMRI with
351 optogenetics meets these criteria, but with a lower spatial resolution^{21,22,36} (of the order of a

352 millimeter per pixel). By contrast, fUS imaging can detect brain activity at a submesoscopic
353 resolution (100 x 100 μm^2), with less cumbersome equipment than for fMRI.

354 **Spread of the activity**

355 We found that optogenetic neurovascular activation was well correlated with ChrimsonR
356 expression in the AP axis. We also noted that optogenetic V1 stimulation spread beyond the
357 borders of V1, as indicated by the activation of both the LGN and V2 on both fUS and
358 electrophysiology. This spread of activity may be due to fibers located at the base of V1,
359 connected to the LGN and expressing ChrimsonR (Fig. S1). These fibers may generate the
360 neurovascular activity detected ventrally to V1 on our activation maps. Furthermore, the
361 mean neuronal transfection rate was 5.5% in the coronal plane displaying the highest
362 fluorescence signal, whereas a larger volume of V1 was activated in this plane. A first
363 explanation for this may be the spread of neuronal activation to other V1 cells, although we
364 recorded a rather homogeneous set of short-onset latencies. Alternatively, neurovascular
365 activations may be broader *per se* than neuronal responses. Some studies of rat olfactory
366 bulb glomeruli have provided evidence of a close overlap between capillary blood flow and
367 neuronal activity³⁷, whereas others have reported a mismatch between the areas of
368 neurovascular and neuronal activation^{38,39}. Specifically for V1, a lack of correlation between
369 BOLD signals and spiking activity has been observed in cats⁴⁰, and a lack of correlation
370 between single-vessel hemodynamic responses and calcium imaging signals has been found
371 in cats and rats⁴¹. Importantly, we show here that the neurovascular and neuronal activities
372 initiated in V1 spread to the LGN and V2. This propagation of visual information is important
373 for optogenetic cortical vision restoration therapy, because it favors the generation of visual
374 percepts.

375 **Cortical visual restoration**

376 We detected neurovascular and neuronal responses, even at low irradiance (6 mW. mm^{-2}),
377 with no modification of the depth distribution of the activated neurons. One recent study⁴²

378 reported that the stimulation of deep V1 layers (>1.5 mm) in non-human primates with
379 electrical prostheses elicited behavioral responses. Our ability to activate neurons in deep
380 cortical layers highlights the potential value of red-shifted opsin ChrimsonR for optogenetic
381 cortical vision restoration strategies. A key element of visual restoration is the induction of
382 neuronal responses with characteristics matching those resulting from a natural visual
383 stimulus⁵⁻¹¹. We show here that the firing rates induced by optogenetic stimulation were
384 similar to those induced by visual stimulation. Optogenetically activated neurons had very
385 short latencies, of the order of 1-2 ms. Theoretically, this is sufficient for the encoding of
386 natural images into optogenetic stimulations at a temporal resolution matching the resolution
387 of the natural visual signal. Moreover, those optogenetic onset latencies were quite
388 homogeneous, despite being obtained for neurons located in different layers. These results
389 demonstrate that we can induce a signal that does not lose its temporal resolution with
390 depth.

391 Finally, the feasibility of inducing visual percepts by optogenetic cortical vision restoration
392 remains to be demonstrated. In species with a more complex hierarchical organization of
393 cortical visual areas, such as nonhuman primates, a few studies have shown behavioral
394 effects due to the optogenetic stimulation of higher visual areas. Jazayeri⁴³ and coworkers
395 reported that saccades following fixation tasks were shifted towards the receptive field of the
396 region of V1 optogenetically activated following the fixation point offset. Ju⁴⁴ and coworkers
397 demonstrated the successful detection of optogenetic percepts in a saccade task. Our ability
398 to detect a spread of activity from V1 to other visual areas is consistent with these behavioral
399 studies indicating perception. Here, we used a single optic fiber for optogenetic stimulation.
400 Replacing this device with a more complex stimulation system, such as arrays of micro-
401 LEDs, might make it possible to generate percepts more complex than phosphenes and to
402 develop discrimination behavioral tasks to assess their perception.

403

404 **Materials and methods**

405 **Animals**

406 All animal experiments and procedures were approved by the Local Animal Ethics
407 Committee (registration number 2018032911282465) and performed in accordance with
408 European Directive 2010/63/UE. We used wild-type male Long-Evans rats (Janvier
409 Laboratories), nine weeks old at the time of viral injection. Rats were maintained under a
410 reverse 12-hour light/12-hour dark cycle, with ad libitum access to food and water, except
411 during surgery and electrophysiological recordings.

412 **AAV production**

413 The AAV9-7m8-CaMKII-ChrimsonR-tdT vector was packaged as previously described, by
414 the triple transfection method, and purified by iodixanol gradient ultracentrifugation⁴⁵. The
415 AAV9-7m8-CaMKII-ChrimsonR-tdT vector was titered by qPCR with SYBR Green⁴⁶ (Thermo
416 Fisher Scientific). The titer used in this study was 4.39×10^{12} vg.mL⁻¹.

417 **Immunostaining and confocal imaging**

418 Following electrophysiological recordings, rats were euthanized, and their brains were
419 extracted and fixed by overnight incubation in 4% paraformaldehyde (100496, Sigma-Aldrich)
420 at 4°C. Brains were then cryoprotected in 30% sucrose (84097, Sigma-Aldrich) and 50 µm
421 sagittal slices were cut with a microtome (HM450, Microm). The slices with the most intense
422 tdT fluorescence from each brain were selected for further immunohistochemistry and
423 imaging. Cryosections were permeabilized by incubation with 0.5% Triton X-100 in PBS for 1
424 h at room temperature and were then incubated in blocking buffer (PBS + 1% BSA + 0.1%
425 Tween 20) for 1 hour at room temperature. Samples were incubated overnight at 4°C with
426 monoclonal anti-NeuN antibody (1:500; Mouse, MAB377, Merck Millipore), in a 50% dilution
427 of blocking buffer + 0.5% Triton X-100. Secondary antibodies conjugated with Alexa Fluor
428 dyes (1:500; Molecular Probes) and DAPI (1:1000, D9542, Merck Millipore), were incubated
429 with the samples for 1 hour at room temperature. An Olympus FV1000 laser-scanning
430 confocal microscope with a 20x or 40x objective (UPLSAPO 20XO, NA: 0.85) was used to
431 acquire images of brain sections.

432 **Viral injections**

433 Viral injections were performed in aseptic conditions with a digital small-animal stereotaxic
434 instrument (David Kopf Instruments). Ear bars were covered with xylocaine to ensure that the
435 animals felt no pain. Rats were anesthetized in a sealed box containing gaseous isoflurane
436 (5%), and maintained under anesthesia in the stereotaxic frame (25% ketamine, 10%

437 medetomidine and 65% saline injected intraperitoneally) for the entire surgical procedure,
438 and animal body temperature was maintained at 37°C with a heating pad. Buprenorphine
439 was injected subcutaneously to reduce inflammation, and Lubrithal was applied to the eyes
440 to prevent them from drying out. Xylocaine, 70% ethanol and Vetedine were applied
441 successively to the scalp before incision, to minimize pain and maintain sterile conditions.
442 Cranial sutures were cleaned to remove connective tissue, by applying H₂O₂, to facilitate
443 localization of the injection coordinates. We injected a total volume of 1.2 µL of viral
444 suspension unilaterally into rats, via two injection tracks, at a flow rate of 50-75 nL/min, with
445 a 5 or 10 µL microsyringe (Hamilton) equipped with a microinjector (Sutter Instrument) and
446 controller (World Precision Instruments). The coordinates for viral injection were +2.8 / +3.2
447 mm from midline (M-L axis), -6.5 / -7.5 mm from Bregma (A-P axis) and 1.6-1.35-1.1 mm
448 ventral to the skull surface (D-V axis), based on the 2004 edition of the Paxinos and Franklin
449 rat brain atlas. Viral efflux was prevented by leaving the needle in a 1.8 mm ventral position
450 for two minutes before beginning the injection, with a three-minute interval left between
451 injections before complete withdrawal of the needle from the cortex. After surgery, rats were
452 brought round from anesthesia with a subcutaneous injection of Antisédan (0.15 mL).

453 ***In vivo* electrophysiological recordings**

454 Bilateral craniotomies were performed with a digital small-animal stereotaxic instrument
455 (David Kopf Instruments), at least 30 days after viral injection, to allow time for opsin
456 expression. Ear bars were covered with xylocaine to prevent pain. Rats were anesthetized in
457 a sealed box containing gaseous isoflurane (5%) and maintained under anesthesia in the
458 stereotaxic frame (25% ketamine, 10% medetomidine and 65% saline injected
459 intraperitoneally) for the entire surgical procedure, and electrophysiological recordings were
460 taken with body temperature maintained at 37°C with a heating pad. Buprenorphine was
461 injected subcutaneously to reduce inflammation, and Lubrithal was applied to the eyes to
462 prevent them from drying out. Cranial sutures were cleaned to remove connective tissue, by
463 applying H₂O₂, to reveal the injection tracks. Parietal bones were removed by drilling
464 rectangular flaps and gently moving the bone away from the dura mater, exposing the cortex
465 from 3 to 8.5 mm from Bregma (A-P axis), to cover the injection tracks. The dura was then
466 gently removed. During drilling, the skull was regularly cooled with PBS, and once the cortex
467 was exposed, it was protected from dehydration by the regular application of cortex buffer.
468 After surgery, electrophysiological recordings were performed with 16-channel electrodes
469 (A1x16-5 mm-50-703-OA16LP) coupled with a 400 µm-core fiber (Thorlabs M79L005 Fiber
470 Cable, MM, 400 µm 0.39NA, FC/PC to 1.25 mm ferrule, 0.5 m) at various positions close to
471 the injection sites. Electrophysiological data were acquired with MC RACK software. For

472 visual stimulation, a white LED (Thorlabs MNWHL4 Mounted LED, 5V, 60 mW/cm²) was
473 placed 15 cm in front of the eye on the contralateral side of the cranial window.

474 **Acquisition protocol for electrophysiological recordings**

475 For optogenetic stimulation, we connected the optic fiber (reference above) to a light source
476 (Thorlabs M595F2 (fiber coupled LED @595 nm), Ø400 µm, 150 µW/cm²) delivering light at
477 the ChrimsonR excitation wavelength (595 nm). We targeted the transfected region of V1 by
478 imaging tdT fluorescence with a Micron IV imaging microscope (Phoenix Research
479 Laboratories) before recordings. The fiber was placed on the surface of the cortex while the
480 electrode was inserted in the tissue. Both stimulations consisted of 100 repeats of 200 ms
481 flashes at 1 Hz. The onset of the flashes was aligned with electrophysiological data, with
482 Clampex 9.2 software. We used several different irradiances of light at 595 nm in this study.
483 Power at the fiber tip was measured with a power meter (Thorlabs, PM100D), by placing the
484 fiber tip in contact with the sensor. The irradiance corresponding to each power was
485 calculated as previously described³⁰.

486

Irradiance (mW.mm ⁻²)	Power (mW)
142	7.1
140	7.0
106	5.3
70	3.5
36	1.8
14	0.7
6	0.3
1.2	0.06

487 Table 1: 595 nm light irradiances and powers used in this study

488 **Spike sorting**

489 Offline spike sorting of the electrophysiological recordings (linear 16-channel electrodes) was
490 performed with the SpyKING CIRCUS package³². Raw data were first high-pass filtered (>
491 300 Hz) and spikes were detected when a filtered voltage trace crossed the threshold.
492 Automatic cluster extraction was performed and candidate clusters were curated. Refractory
493 period violations (< 2 ms, >1% violation) and noisy spike shapes led to cluster deletion. Spike
494 templates with coordinated refractory periods in the cross-correlogram together with similar
495 waveforms led to the merging of cluster pairs.

496 **Electrophysiological data analysis**

497 All electrophysiological data were extracted and analyzed with a custom-made Matlab script.
498 Responsive units were defined as those displaying a significant difference in neuronal activity
499 between the pre-stimulation period (averaged 100 ms before stimulus onset) and the
500 stimulation interval (averaged 200 ms following stimulus onset, Wilcoxon signed-rank test,
501 $p<0.01$). For each unit, responses are represented as the spike density function (SDF), which
502 was calculated from the mean peristimulus time histogram (PSTH, bin size: 1 ms, 100 trials)
503 smoothed with a Gaussian filter (2 ms SD).

504 **Calculation of latencies and response durations**

505 The latency of the units displaying activation was defined as the first time point at which the
506 SDF crossed the value of the baseline plus 2SD and remained higher than this value for at
507 least 10 ms. Conversely, the offset of activation was defined as the first time point after
508 latency that the SDF crossed back below the value of the baseline plus 2SD and remained
509 lower than this value for at least 10 ms. Not all active neurons from a given population met
510 these criteria, accounting for the slight difference between the number of active neurons and
511 the number of latencies presented here.

512 **Generation of functional ultrasound images**

513 fUS imaging was performed as previously described²⁴, with a linear ultrasound probe (128
514 elements, 15 MHz, 110 μ m pitch and 8 mm elevation focus, Vermon; Tour, France) driven by
515 an ultrafast ultrasound scanner (Aixplorer, Supersonic Imagine; Aix-en-Provence, France).

516 **Acquisition protocol for fUS imaging**

517 3D fUS acquisitions were performed after craniotomy and electrophysiological recordings, as
518 previously described. When optogenetic responses were observed, the position of the optic
519 fiber on the surface of the cortex was kept unchanged until control acquisitions were
520 performed, in which the fiber was moved to the other hemisphere. The cortex buffer on the

521 surface of the cortex dried out, and 1 cm³ of ultrasound coupling gel was placed between the
522 cortex and the linear ultrasound probe. Acquisition protocols consisted of 20 stimulation
523 blocks, each consisting of 13 s of rest followed by 2 s of stimulation. For visual stimulation,
524 the white LED used for electrophysiological recordings was kept in the same position, and
525 the 2 s stimulation consisted of eight repeats of 125 ms flashes at 4 Hz. For optogenetic
526 stimulation, the 2 s stimulation consisted of 40 repeats of 25 ms flashes at 20 Hz.
527 Acquisitions were performed on coronal planes from 3 mm to 8.5 mm from Bregma (AP
528 axis), with a 0.5 mm increment corresponding to the thickness of the imaging plane.

529 **Building activation maps**

530 For each pixel, we averaged, for each block, the intensity of Doppler power at baseline (2 s
531 before stimulus onset) and during a response window (4 s after stimulus onset). The signals
532 were then compared in one-tailed Wilcoxon signed-rank tests. Only pixels with *p*-values <
533 4.03 × 10⁻⁶ (corresponding to a global *p*-value < 0.05 with Bonferroni correction) were
534 considered significant. On the maps, CBV during the response window is presented as a
535 percentage of the baseline value. Region of interest (ROI) as V1, V2, SC and LGN were
536 determined for each imaging plane, based on the Matt Gaidica rat brain atlas.

537

538

539 **References**

- 540 1. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. *Nat. Neurosci.* **18**,
541 1213–1225 (2015).
- 542 2. Wrobel, C. *et al.* Optogenetic stimulation of cochlear neurons activates the auditory pathway and
543 restores auditory-driven behavior in deaf adult gerbils. *Sci. Transl. Med.* **10**, (2018).
- 544 3. Dieter, A., Keppeler, D. & Moser, T. Towards the optical cochlear implant: optogenetic approaches
545 for hearing restoration. *EMBO Mol. Med.* **12**, e11618 (2020).
- 546 4. Roska, B. & Sahel, J.-A. Restoring vision. *Nature* **557**, 359–367 (2018).
- 547 5. Bi, A. *et al.* Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice
548 with Photoreceptor Degeneration. *Neuron* **50**, 23 (2006).

549 6. Lagali, P. *et al.* Light-activated channels targeted to ON bipolar cells restore visual function in
550 retinal degeneration. *Nature neuroscience* vol. 11 <https://pubmed.ncbi.nlm.nih.gov/18432197/>
551 (2008).

552 7. Gaub, B. M. *et al.* Restoration of visual function by expression of a light-gated mammalian ion
553 channel in retinal ganglion cells or ON-bipolar cells. *Proc. Natl. Acad. Sci. U. S. A.* **111**, E5574–
554 E5583 (2014).

555 8. Khabou, H. *et al.* Noninvasive gene delivery to foveal cones for vision restoration. *JCI Insight* **3**,
556 (2018).

557 9. Sengupta, A. *et al.* Red-shifted channelrhodopsin stimulation restores light responses in blind
558 mice, macaque retina, and human retina. *EMBO Mol. Med.* **8**, 1248–1264 (2016).

559 10. Chaffiol, A. *et al.* A New Promoter Allows Optogenetic Vision Restoration with Enhanced
560 Sensitivity in Macaque Retina. *Mol. Ther.* **25**, 2546–2560 (2017).

561 11. Gauvain, G. *et al.* Optogenetic therapy: High spatiotemporal resolution and pattern
562 recognition compatible with vision restoration in non-human primates. *bioRxiv*
563 2020.05.17.100230 (2020) doi:10.1101/2020.05.17.100230.

564 12. Allergan. *Phase I/IIa, Open-Label, Dose-Escalation Study of Safety and Tolerability of
565 Intravitreal RST-001 in Patients With Advanced Retinitis Pigmentosa (RP).*
566 <https://clinicaltrials.gov/ct2/show/NCT02556736> (2020).

567 13. GenSight Biologics. *A Phase 1/2a, Open-Label, Non-Randomized, Dose-Escalation Study to
568 Evaluate the Safety and Tolerability of GS030 in Subjects With Retinitis Pigmentosa.*
569 <https://clinicaltrials.gov/ct2/show/NCT03326336> (2020).

570 14. Beauchamp, M. S. *et al.* Dynamic Stimulation of Visual Cortex Produces Form Vision in
571 Sighted and Blind Humans. *Cell* **181**, 774–783.e5 (2020).

572 15. Bosking, W. H., Beauchamp, M. S. & Yoshor, D. Electrical Stimulation of Visual Cortex:
573 Relevance for the Development of Visual Cortical Prosthetics. *Annu. Rev. Vis. Sci.* **3**, 141–166
574 (2017).

575 16. Seabrook, T. A., Burbridge, T. J., Crair, M. C. & Huberman, A. D. Architecture, Function, and
576 Assembly of the Mouse Visual System. *Annu. Rev. Neurosci.* **40**, 499–538 (2017).

577 17. Klapoetke, N. C. *et al.* Independent optical excitation of distinct neural populations. *Nat.*
578 *Methods* **11**, 338–346 (2014).

579 18. Mager, T. *et al.* High frequency neural spiking and auditory signaling by ultrafast red-shifted
580 optogenetics. *Nat. Commun.* **9**, 1750 (2018).

581 19. Marshel, J. H. *et al.* Cortical layer-specific critical dynamics triggering perception. *Science* **365**,
582 (2019).

583 20. Buzsáki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents —
584 EEG, ECoG, LFP and spikes. *Nat. Rev. Neurosci.* **13**, 407–420 (2012).

585 21. Liang, Z. *et al.* Mapping the Functional Network of Medial Prefrontal Cortex by Combining
586 Optogenetics and fMRI in Awake Rats. *NeuroImage* **117**, 114–123 (2015).

587 22. Chen, X. *et al.* Mapping optogenetically-driven single-vessel fMRI with concurrent neuronal
588 calcium recordings in the rat hippocampus. *Nat. Commun.* **10**, (2019).

589 23. Macé, E. *et al.* Functional ultrasound imaging of the brain. *Nat. Methods* **8**, 662–664 (2011).

590 24. Gesnik, M. *et al.* 3D functional ultrasound imaging of the cerebral visual system in rodents.
591 *Neuroimage* **149**, 267–274 (2017).

592 25. Macé, É. *et al.* Whole-Brain Functional Ultrasound Imaging Reveals Brain Modules for
593 Visuomotor Integration. *Neuron* **100**, 1241-1251.e7 (2018).

594 26. Brunner, C. *et al.* A Platform for Brain-wide Volumetric Functional Ultrasound Imaging and
595 Analysis of Circuit Dynamics in Awake Mice. *Neuron* **108**, 861-875.e7 (2020).

596 27. Bergel, A., Deffieux, T., Demené, C., Tanter, M. & Cohen, I. Local hippocampal fast gamma
597 rhythms precede brain-wide hyperemic patterns during spontaneous rodent REM sleep. *Nat.*
598 *Commun.* **9**, (2018).

599 28. Dizeux, A. *et al.* Functional ultrasound imaging of the brain reveals propagation of task-
600 related brain activity in behaving primates. *Nat. Commun.* **10**, (2019).

601 29. Blaize, K. *et al.* Functional ultrasound imaging of deep visual cortex in awake nonhuman
602 primates. *Proc. Natl. Acad. Sci. U. S. A.* **117**, 14453–14463 (2020).

603 30. Rungta, R. L., Osmanski, B.-F., Boido, D., Tanter, M. & Charpak, S. Light controls cerebral
604 blood flow in naive animals. *Nat. Commun.* **8**, 14191 (2017).

605 31. Gao, Y.-R. *et al.* Time to wake up: Studying neurovascular coupling and brain-wide circuit
606 function in the un-anesthetized animal. *NeuroImage* **153**, 382–398 (2017).

607 32. Yger, P. *et al.* A spike sorting toolbox for up to thousands of electrodes validated with ground
608 truth recordings in vitro and in vivo. *eLife* **7**,

609 33. Arenkiel, B. R. *et al.* In vivo light-induced activation of neural circuitry in transgenic mice
610 expressing channelrhodopsin-2. *Neuron* **54**, 205–218 (2007).

611 34. Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the Spatiotemporal Dynamics of Light
612 and Heat Propagation for In Vivo Optogenetics. *Cell Rep.* **12**, 525–534 (2015).

613 35. Emiliiani, V., Cohen, A. E., Deisseroth, K. & Häusser, M. All-Optical Interrogation of Neural
614 Circuits. *J. Neurosci.* **35**, 13917–13926 (2015).

615 36. Gerits, A. *et al.* Optogenetically-induced behavioral and functional network changes in
616 primates. *Curr. Biol. CB* **22**, 1722–1726 (2012).

617 37. Chaigneau, E., Oheim, M., Audinat, E. & Charpak, S. Two-photon imaging of capillary blood
618 flow in olfactory bulb glomeruli. *Proc. Natl. Acad. Sci.* **100**, 13081–13086 (2003).

619 38. Iadecola, C., Yang, G., Ebner, T. J. & Chen, G. Local and propagated vascular responses
620 evoked by focal synaptic activity in cerebellar cortex. *J. Neurophysiol.* **78**, 651–659 (1997).

621 39. Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling
622 in health and disease. *Neuron* **96**, 17–42 (2017).

623 40. Kayser, C., Kim, M., Ugurbil, K., Kim, D.-S. & König, P. A Comparison of Hemodynamic and
624 Neural Responses in Cat Visual Cortex Using Complex Stimuli. *Cereb. Cortex* **14**, 881–891 (2004).

625 41. O'Herron, P. *et al.* Neural correlates of single-vessel haemodynamic responses in vivo. *Nature*
626 **534**, 378–382 (2016).

627 42. Chen, X., Wang, F., Fernandez, E. & Roelfsema, P. R. Shape perception via a high-channel-
628 count neuroprosthesis in monkey visual cortex. *Science* **370**, 1191–1196 (2020).

629 43. Jazayeri, M., Lindblom-Brown, Z. & Horwitz, G. D. Saccadic eye movements evoked by
630 optogenetic activation of primate V1. *Nat. Neurosci.* **15**, 1368–1370 (2012).

631 44. Ju, N., Jiang, R., Macknik, S. L., Martinez-Conde, S. & Tang, S. Long-term all-optical
632 interrogation of cortical neurons in awake-behaving nonhuman primates. *PLoS Biol.* **16**, e2005839
633 (2018).

634 45. Choi, V. W., Asokan, A., Haberman, R. A. & Samulski, R. J. Production of recombinant adeno-
635 associated viral vectors. *Curr. Protoc. Hum. Genet.* **Chapter 12**, Unit 12.9 (2007).

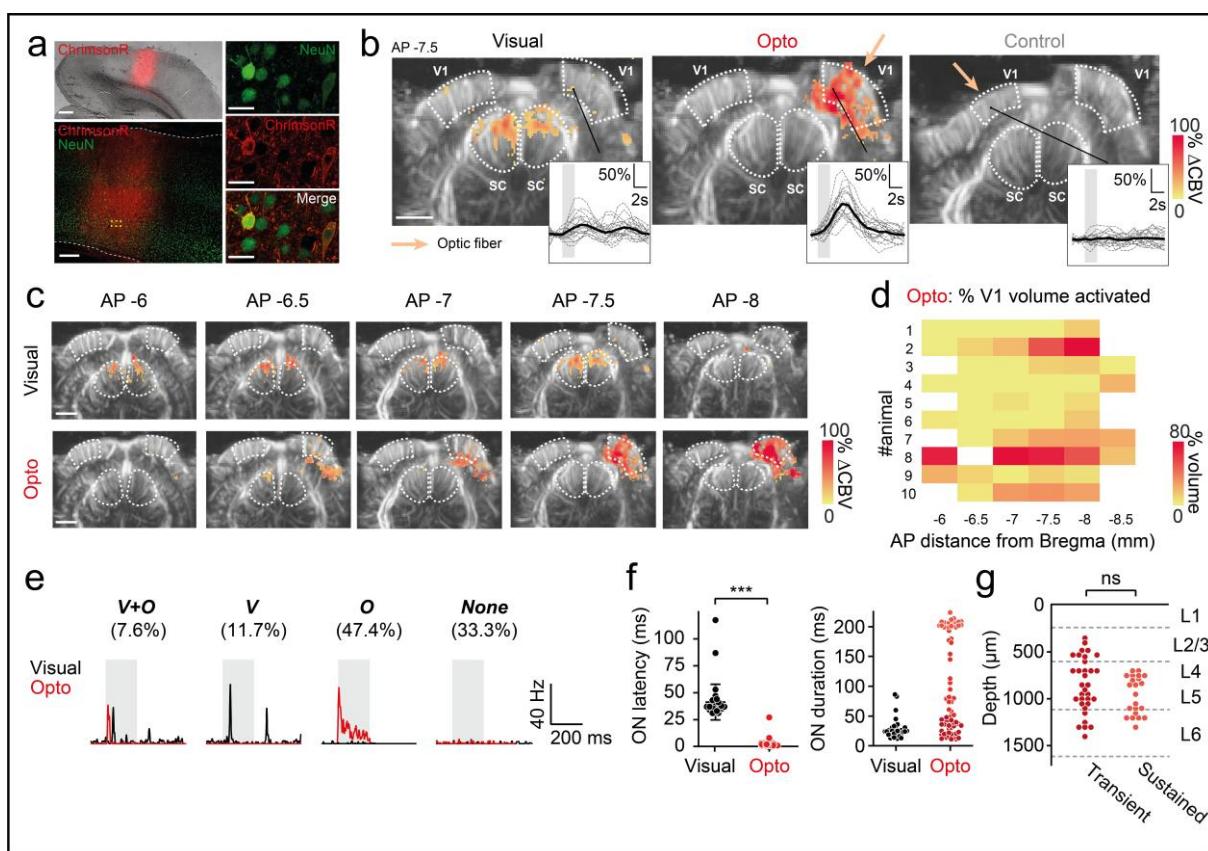
636 46. Aurnhammer, C. *et al.* Universal real-time PCR for the detection and quantification of adeno-
637 associated virus serotype 2-derived inverted terminal repeat sequences. *Hum. Gene Ther.*
638 *Methods* **23**, 18–28 (2012).

639

640 **Acknowledgments**

641 We thank Pierre Pouget, Frédéric Chavane, Brice Bathellier, Kévin Blaize, Sara Cadoni and Diep
642 Nguyen for their useful discussions about the data. We thank Julie Dégardin for her help with
643 surgery, Baptiste Lefebvre for assistance with spike sorting and Hicham Serroune for technical
644 assistance with fUS imaging. This work was supported by the European Research Council (ERC)
645 Synergy Grant Scheme (ERC Grant Agreement 610110).

646 **Competing financial interests**

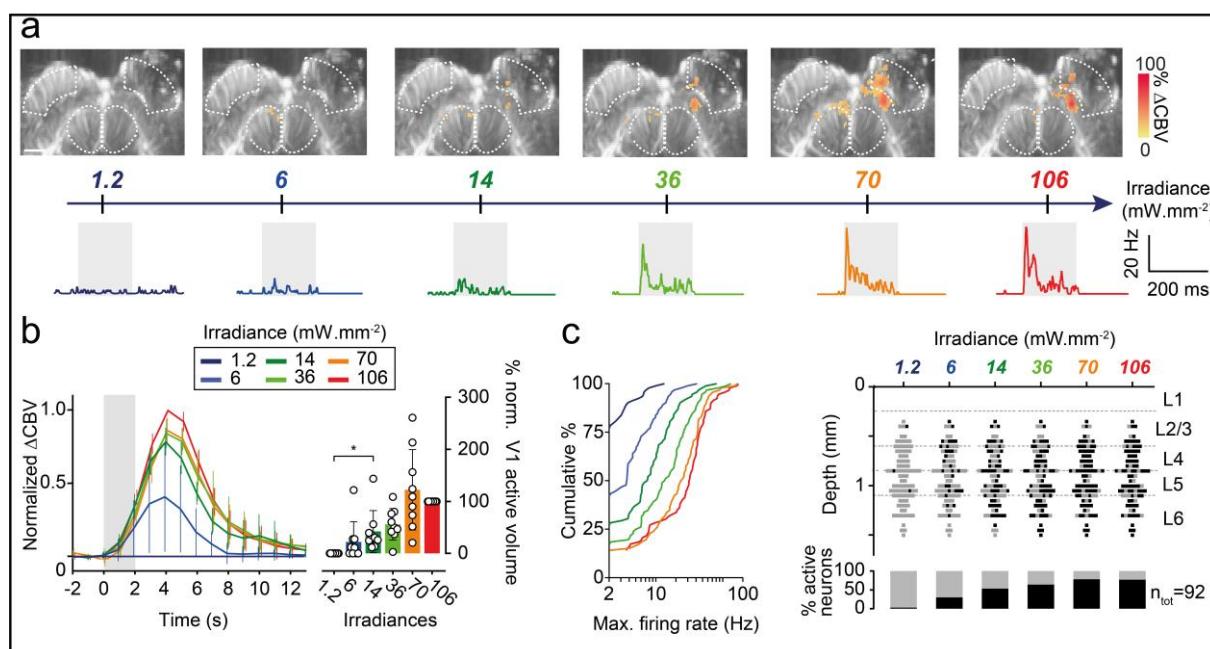

647 M.T. is cofounder and S.P. and M.T. are shareholders of ICONEUS. D.D. and S.P. are consultants for
648 Gensight Biologics.

649 **Author contributions**

650 M.P., S.P., J-A.S., M.T., G.G., and F.A. designed the study; M.P. and D.D. designed viral vectors; M.P.
651 and W.D. produced viral vectors; M.P., G.L., A.R., R.G. and M.V. performed intracortical injections;
652 M.P., G.L. and C.J. performed electrophysiological recordings and fUS acquisitions; G.L. performed
653 histological experiments; M.P., U.F., A.C., G.G., F.A. and S.P. analyzed data; M.P., G.G. and F.A.
654 constructed the figures; M.P., A.C., G.G., F.A. and S.P. wrote the manuscript.

655

656

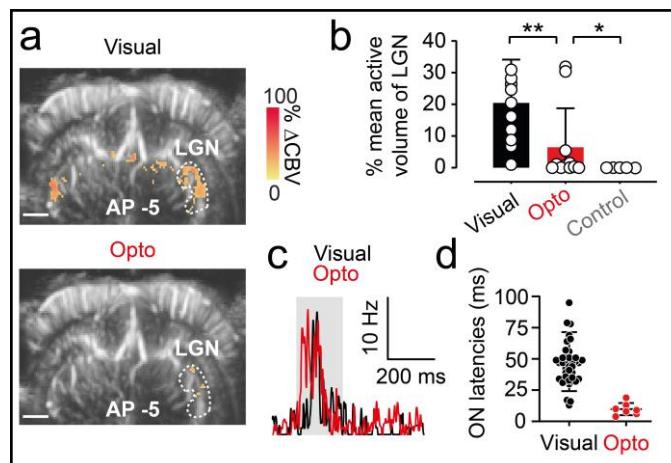


657

658 **Figure 1 | V1 neurovascular and neuronal activations resulting from cortical surface**
 659 **stimulation in rats.** (a) Left: 2.5x imaging (top) and 20x confocal imaging of a brain section showing
 660 the localization of ChrimsonR in V1. White dashed lines delimit the cortical surface and border
 661 between V1 and the white matter. Right: close-up (40x) of the area delimited by the yellow lines in the
 662 previous image, showing two ChrimsonR-expressing neurons. Scale bars: 500 μ m, 200 μ m, 20 μ m.
 663 (b) fUS activation maps obtained after visual stimulation of the contralateral eye (left), optogenetic
 664 stimulation of the ipsilateral V1 area expressing ChrimsonR (middle) and control optogenetic
 665 stimulation of the uninjected contralateral V1 area (right), from a single imaging plane (AP -7.5 mm)
 666 from the same animal. White dashed lines delimit the V1 and SC areas. Colored pixels indicate
 667 significant CBV variation (Wilcoxon signed-rank test with Bonferroni-Holm correction). Right insets:
 668 patterns of single-pixel activation. Gray lines represent single-trial activity ($n=20$) and the black line
 669 represents the mean CBV variation. Colored patches indicate light stimulation (duration: 2 s) (c) fUS
 670 activation maps for visual and optogenetic activation, for all imaging planes (AP -6 mm to AP -8 mm)
 671 in which V1 (delimited by white dashed lines) is present, from the same animal (animal #2). (d) Left:
 672 percentage of V1 activated during optogenetic stimulation for each fUS imaging plane, for all animals
 673 ($n=10$). Right: AP distribution of the ChrimsonR expression area on brain sections. (e) Spike density
 674 function (SDF) of typical V1 single units during visual (black lines) or optogenetic (red lines) activation.
 675 Four subpopulations of neurons were identified: double-responsive ($n_{V+O}=13$), responsive to the visual
 676 ($n_V=20$) or optogenetic stimulus only ($n_O=81$), non-responsive ($n_{None}=57$). (f) Left: ON response
 677 latencies for visual ($n=33$ units) and optogenetic ($n=76$ units) stimulation (Mann-Whitney, $p<0.0001$).
 678 Right: ON response durations for visual ($n=33$ units) and optogenetic stimulation ($n=72$ units). (g)

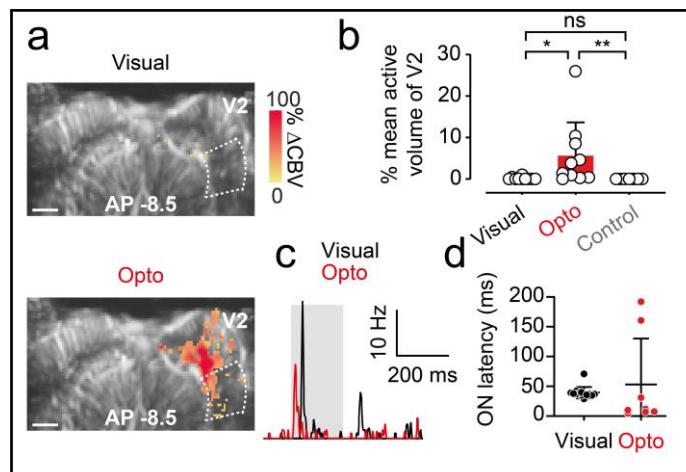
679 Depth profile of transient (ON duration<51 ms, $n=33$ units) and sustained (ON duration>197 ms, $n=22$
680 units) neurons activated by optogenetics. (c-d) Scale bar: 2 mm. The irradiance used for optogenetic
681 and control stimulation was 140 mW.mm $^{-2}$.

682



683

684 **Figure 2 | Neuronal and neurovascular optogenetic sensitivity.** (a) Top: fUS activation maps of a
685 single imaging plane (AP -7.5 mm) from animal #4 at different irradiances. Scale bar: 2 mm. White
686 dashed lines delimit the V1 and SC areas. Bottom: SDF from a typical V1 single unit during
687 optogenetic stimulation for 200 ms (gray patch) at different irradiances. (b) Left panel: mean CBV
688 variation over all animals ($n=9$) for each irradiance. of the values for each animal were normalized
689 against those obtained at 106 mW.mm $^{-2}$. Error bars represent the standard deviation. The colored
690 patch corresponds to the 2 s optogenetic stimulation. Right panel: normalized active volumes of the
691 ipsilateral V1 area for each irradiance. Open circles are individual values, bars represent the mean
692 and the standard deviation ($n=9$ animals, Wilcoxon signed-rank test, one-tailed, $p<0.05$). (c) Left:
693 cumulative distribution of the mean maximal firing rates of all recorded V1 single units ($n=92$) during
694 optogenetic stimulation, for each irradiance. Right panel, top: depth profile of V1 single units activated
695 (black squares) or not (gray squares) by the optogenetic stimulation, for each irradiance ($n=92$ single
696 units). Bottom: percentage of active (black) and non-responsive (gray) neurons for each set of
697 conditions.


698

699

700 **Figure 3 | Spread of optogenetic activation to the LGN.** (a) fUS activation maps obtained during
701 visual stimulation of the contralateral eye (top) and optogenetic stimulation of the ChrimsonR-
702 expressing ipsilateral V1 area (bottom) from a single imaging plane in which the LGN is present (AP -5
703 mm) from the same animal. White dashed lines delimit the ipsilateral LGN. Scale bar: 2 mm. (b)
704 Percentage active volume of the LGN after visual, optogenetic or control stimulation. For both visual
705 and optogenetic stimulations, we show the volumes of the LGN ipsilateral to the injection, whereas, for
706 control stimulations, the volume of the contralateral LGN is shown. Open circles represent mean
707 values over all imaging planes for each animal (visual and optogenetic stimulation, $n=11$, Wilcoxon
708 signed-rank test, one-tailed, $p=0.0068$, $n=5$ for control, Mann-Whitney test, one-tailed, $p=0.0288$), bars
709 represent the mean for all animals. (c) SDF of a typical LGN single unit responding to visual (black
710 line) and optogenetic (red line) stimulation of the ipsilateral V1 area. (d) ON latencies of V1 and LGN
711 single-unit responses to visual (V1, $n=33$ units, LGN, $n=42$ units) or optogenetic stimulation of V1 (V1,
712 $n=29$ units, LGN, $n=7$ units. Mann-Whitney test, $p<0.05$). The irradiance used for optogenetic and
713 control stimulation was $142 \text{ mW} \cdot \text{mm}^{-2}$.

714

715

716 **Figure 4 | Spread of the optogenetic activation to V2.** (a) fUS activation maps obtained during
717 visual stimulation of the contralateral eye (top) and optogenetic stimulation of the ChrimsonR-

718 expressing ipsilateral V1 area (bottom) and control stimulation of the uninjected contralateral area from
719 a single imaging plane (AP -7.5 mm) containing the V2 area. White dashed lines delimit the ipsilateral
720 V2 area. Scale bar: 2 mm. (b) Percentage active volume of V2 after visual, optogenetic or control
721 stimulation. For both visual and optogenetic stimulation, we show the volumes of V2 ipsilateral to the
722 injection, whereas, for the control, we show the volume of the contralateral V2. Open circles
723 represent mean values over all imaging planes for each animal (visual and optogenetic, $n=1$, Wilcoxon
724 signed-rank test, one-tailed, $p=0.002$, $n=7$ for control, Mann-Whitney test, one-tailed, $p=0.0004$), bars
725 represent the mean over all animals. (c) SDF of a typical V2 single unit responding to visual (black
726 line) and optogenetic (red line) stimulation of the ipsilateral V1 area. (d) ON latencies of V1 and V2
727 single-unit responses to visual (V1, $n=33$ units, V2, $n=14$ units) or optogenetic stimulation of V1 (V1,
728 $n=76$ units, V2, $n=8$ units). The irradiance used for optogenetic and control stimulation was 140
729 mW.mm⁻².