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Abstract 

Predictive coding has been proposed as a unifying theory of brain function. However, few studies 

have examined this theory during complex cognitive processing across multiple time-scales and 

levels of abstraction. We used MEG, EEG and fMRI to ask whether dynamic, hierarchical 

predictive coding can account for the timecourse of evoked activity at multiple cortical levels 

during language comprehension. Unexpected words produced increased activity in left temporal 

cortex (lower-level prediction error). Critically, violations of high-precision event predictions 

produced additional activity within left inferior frontal cortex (higher-level prediction error). 

Furthermore, the successful resolution of higher-level prediction error led to later feedback to 

temporal cortex (top-down sharpening), while a failure to resolve these errors led to sustained 

activity at still lower levels (reanalysis). These findings suggest that fundamental principles of 

dynamic hierarchical predictive coding –– suppression of prediction error, precision-weighting, 

delayed top-down sharpening –– can explain the dynamics of neural activity during human 

language comprehension.
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Introduction 

The process by which we make sense of the world around us can be understood as probabilistic 

inference –– the use of prior knowledge, encoded within a generative model, to infer the underlying 

higher-level representation that best “explains” the bottom-up input1. It has been proposed that the 

brain approximates probabilistic inference using an algorithm known as predictive coding2-5. 

According to this algorithm, more abstract representations, encoded at higher levels of the cortical 

hierarchy, are used to predict or “reconstruct” information at lower cortical levels. Any new 

bottom-up information that is not present within these top-down reconstructions produces 

prediction error, which is used to update the higher-level representations, allowing them to 

produce more accurate reconstructions that switch off the lower-level prediction error. Inference 

is complete when prediction error is minimized across all levels of the generative hierarchy.  

 Although predictive coding is sometimes interpreted as a unifying theory of brain 

function4,5, most of its supporting evidence comes from studies examining neural activity at lower 

cortical levels within a single time window6. For example, predictable inputs have been shown to 

evoke less activity than unpredictable inputs within lower-level temporal and occipital regions 

across multiple tasks, including auditory processing7, speech perception8 and visual word 

recognition9. These findings are consistent with the suppression of lower-level prediction error by 

top-down reconstructions that match expected perceptual inputs. 

There has been far less study of whether this theory can account for the timecourse of 

neural activity evoked at both lower and higher levels of the cortical hierarchy in complex and 

rapidly changing environments. According to dynamic hierarchical predictive coding10,11,  the 

abstract representation that generates top-down reconstructions is a dynamic “state” that (a) is 

iteratively updated by new unpredicted input (lower-level prediction error) as it becomes available 
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over time, and (b) receives top-down reconstructions from still higher levels of the cortical 

hierarchy. In a changing environment, the brain continually tracks its confidence in this state. If a 

lower-level prediction error induces an update that is inconsistent with either a prior high-certainty 

state, or with reconstructions received from the higher cortical level, then this will result in a 

higher-level prediction error11, which can trigger a “model shift”12 at the highest level of the 

generative hierarchy. Successful high-level shifts will then generate new reconstructions that 

provide feedback to lower levels of cortex, enhancing activity over consistent representations and 

reducing activity over inconsistent representations at later stages of processing (top-down 

“sharpening”)4,13. 

 Language comprehension provides an excellent model system for testing this dynamic 

hierarchical predictive coding framework. This is because it requires us to transform rapidly 

unfolding sequences of words into a dynamic, high-level state that encodes our understanding of 

the events being communicated — an event model14. Within this framework15, the event model 

receives top-down reconstructions from long-term schema-relevant knowledge, represented at the 

highest level of the hierarchy. At any given time, the brain continually estimates its confidence in 

the current high-level event representation, based on the prior context, while also generating top-

down probabilistic reconstructions of upcoming lexico-semantic information (top-down pre-

activation16,17). When a new word is encountered, any new lexico-semantic information that is not 

contained in these lower-level reconstructions — lower-level lexico-semantic prediction error— 

is passed back up and used to update the event model.  

 According to dynamic predictive coding, incremental updates to the event model, induced 

by lower-level prediction error, are usually sufficient to explain the bottom-up input. Importantly, 

however, if an update leads the comprehender to infer an event that is either inconsistent with a 
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prior high-certainty event representation, or that falls outside the range of plausible events 

reconstructed by the higher-level schema, then it will produce a higher-level event prediction 

error. This event prediction error induces a shift away from the current schema at the highest level 

of the hierarchy15. If there is a new schema stored within long-term memory that can better explain 

the input, then it will be retrieved18, resulting in the production of new reconstructions that provide 

feedback to lower cortical levels, enhancing activity over schema-consistent lexico-semantic 

representations15. If, however, the newly inferred event is completely anomalous, with no pre-

stored schema that can explain it, then this will result in a failure to switch off prediction error at 

still lower levels of the hierarchy (reanalysis), and may trigger new learning in order to explain the 

input18,19. 

 Studies using scalp-recorded event-related potentials (ERPs) have uncovered some 

evidence that the brain does indeed differentiate between unpredictable words that do, or do not, 

violate higher-level contextual constraints. In plausible sentences, contextually unexpected words 

generate a larger evoked response between 300-500ms than expected words (the N400 effect), 

regardless of the constraint of the prior context20-22. However, only words that violate higher-level 

contextual constraints produce additional late activity between 600-1000ms, with different scalp 

distributions depending on whether they yield plausible or anomalous interpretations22,23. Within a 

predictive coding framework, evoked (phase-locked) neural responses reflect the magnitude of 

prediction error4. These findings therefore provide some evidence for a temporal distinction 

between lower-level (lexico-semantic) and higher-level (event) prediction error during language 

comprehension. To date, however, it remains unknown whether this temporal distinction is 

accompanied by a neuroanatomical dissociation across the left lateralized fronto-temporal 

hierarchy that is classically associated with language processing.  
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 While numerous previous fMRI and MEG studies have established clear effects of top-

down context on activity within this fronto-temporal network during sentence comprehension24, 

none has been able to address this question directly. This is because most of these studies 

contrasted implausible and plausible words, without independently manipulating predictability and 

contextual constraint. Moreover, fMRI lacks the temporal resolution to dissociate evoked activity 

at earlier and later stages of processing, while MEG studies have rarely reported activity in later 

time-windows. Finally, no previous study of sentence comprehension has examined the time 

course and spatial localization of neural activity produced using all three neuroimaging methods 

in the same participants. Given that these techniques are sensitive to different aspects of underlying 

neural activity, such direct comparisons are critical for integrating the large ERP, MEG and fMRI 

literatures examining the influences of context on language processing.   

 We therefore undertook a comprehensive multimodal neuroimaging study (MEG, EEG and 

fMRI) that examined the timecourse and spatial localization of neural responses evoked by 

incoming words as comprehenders read four types of multi-sentence discourse scenarios (Table 

1). We compared neural activity evoked by expected critical words and three different types of 

unpredictable critical words: plausible words in low constraint contexts (low constraint 

unexpected), plausible words that violated high constraint contexts (high constraint unexpected), 

and words that yielded impossible interpretations (anomalous).  

***Insert Table 1 here*** 

 

 We expected that both the low constraint unexpected and the high constraint unexpected 

words would produce a larger evoked response between 300-500ms (a larger N400) than expected 

words20-22. If, as posited by predictive coding, this effect reflects lower-level lexico-semantic 
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prediction error, then it should localize to lower levels of the language cortical hierarchy (left 

temporal cortex). We also expected that only high constraint unexpected words would additionally 

evoke activity in a later time-window 600-1000ms (a late frontal positivity ERP effect21,22). 

According to the dynamic hierarchical predictive coding framework outlined above, this late 

activity should reflect the production of a higher-level event prediction error that is produced when 

a newly inferred event violates a prior high precision estimate of a different event. As such, it 

should localize to higher regions of the language cortical hierarchy (left inferior frontal cortex). 

Moreover, it should be accompanied by a re-activation of lower-level regions (temporal cortex), 

reflecting feedback activation of new schema-relevant lexico-semantic information (top-down 

“sharpening”). 

 Finally, we predicted that, relative to the expected words, anomalous words that were 

incompatible with prior event reconstructions would produce a larger evoked response within the 

left inferior frontal cortex (an early higher-level event prediction error), as well as a larger response 

within the temporal cortex (due to a failure to switch off lower-level lexico-semantic prediction 

error). The failure to retrieve a new schema from long-term memory to explain the input should 

also result in a different pattern of activity in the later time window (600-1000ms), corresponding 

to the late posterior positivity/P600 ERP effect22,25,26. This late activity may reflect a failure to 

switch off prediction error (“reanalysis”) within regions that support still lower-level orthographic 

processing (e.g. the posterior fusiform cortex9), and/or activity within regions implicated in longer-

term learning (e.g. the medial temporal lobe27). 

 To test these hypotheses, we collected MEG and EEG data in the same session. A 

distributed source localization analysis of the MEG data, which is relatively undistorted by the 

conductivities of the skull and scalp, allowed us to track the time course and localization of evoked 
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activity produced by the incoming words. The simultaneous collection of EEG data enabled us to 

link this source-localized activity to ERP effects reported in the prior literature. Finally, in a 

separate session, we collected fMRI in the same participants, which allowed us to examine 

similarities and differences between source-localized MEG activity and the hemodynamic 

response across our four conditions. 

 

Results 

Behavioral results 

Participants correctly judged the plausibility of the discourse scenarios in 85.5% (SD: 6.3%) 

of trials on average. They answered 82.4% (SD: 10.1%) of the comprehension questions correctly, 

suggesting that they were engaged in comprehension. See Supplementary Materials section 2 for 

a detailed report. 

ERP results 

Plausible unexpected vs. expected 

The N400 evoked by the expected critical words was significantly smaller (less negative) 

than that evoked by the low constraint unexpected (t(31) = -8.53, p < 0.001) and the high constraint 

unexpected critical words (t(31) = -5.31, p < 0.001), see Figure 1a. 

***Insert Figure 1 here*** 

 

Between 600-1000ms, the contrast between the low constraint unexpected and expected 

critical words did not reveal any effects (prefrontal region: t(31) = -0.78, p = 0.44; posterior region: 

t(31) = -0.26, p = 0.79). However, the contrast between the high constraint unexpected and 

expected critical words produced a late frontal positivity effect (prefrontal region: t(31) = 3.03, p 
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= 0.005), but no late posterior positivity/P600 effect (posterior region: t(31) = 1.91, p = 0.07), see 

Figure 1b. 

Anomalous vs. expected  

This contrast again revealed an N400 effect (t(31) = -7.72, p < 0.001). Between 600-

1000ms, it additionally revealed a late posterior positivity/P600 effect (posterior region: t(31) = 

7.65, p < 0.001), but no late frontal positivity effect (prefrontal region: t: t(31) = 1.51, p = 0.14), 

see Figure 1b. 

These findings replicate our previous ERP study using overlapping stimuli in a different 

group of participants22. 

MEG results 

The sensor-level findings are shown in Figure 2. The MEG N400 was smaller to expected 

critical words than to all three types of unpredictable critical words. Between 600-1000ms, the 

topographic sensor maps contrasting the two types of plausible unexpected with the expected 

critical words show similar patterns of activity, but the magnetometer maps suggest that the effect 

was larger for the contrast between high constraint unexpected and expected words. The 

anomalous versus expected contrast revealed a spatially distinct pattern of activity. 

***Insert Figure 2 here*** 

 

Source localized MEG activity: Plausible unexpected vs. expected 

300-500ms: Figure 3a (left) depicts the signed dSPMs produced by the low constraint 

unexpected, expected, and high constraint unexpected critical words at 100ms intervals, from 

200ms until 500ms. Figure 3a (right) shows statistical maps contrasting the two types of plausible 

unexpected critical words with the expected words within the 300-500ms window of interest. Both 
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contrasts reveal significantly more activity to the unexpected than the expected critical words 

within the left lateral temporal cortex (superior temporal gyrus, extending anteriorly towards the 

temporal pole, and posteriorly into the supramarginal gyrus, and the mid-portion of the superior 

temporal sulcus/middle temporal cortex), and the left ventral temporal cortex (mid and posterior 

fusiform gyrus). They also revealed effects within the left medial temporal cortex 

(parahippocampal and entorhinal), which were driven both by a dipole to the unexpected critical 

words (outgoing) and a dipole in the opposite direction (ingoing) to the expected critical words. 

***Insert Figure 3 here*** 

 

600-1000ms: Figure 3b (middle panel) presents the signed dSPMs produced by the critical 

words in the same three conditions at 100ms intervals, from 500 until 1000ms, and the statistical 

maps for both contrasts between 600-800ms (left panel) and 800-1000m (right panel). The contrast 

between the low constraint unexpected and expected critical words showed no significant effects 

in either time window (although it did reveal non-significant activity within the anterior inferior 

frontal gyrus throughout the 600-1000ms window, and within the left lateral temporal cortex 

between 800-1000ms). The contrast between the high constraint unexpected and expected critical 

words, however, revealed effects within the left anterior inferior frontal cortex and within the left 

middle temporal cortex, which reached cluster-level significance within the 800-1000ms time 

window, and were driven by dipoles going in opposite directions in the two conditions. Of note, 

the dipoles within the left middle temporal cortex were of the opposite polarity to those observed 

within the same region in the 300-500ms time window. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.17.431452doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431452
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

Source localized MEG activity: Anomalous vs. expected 

Figure 4 shows the signed dSPMs produced by the anomalous and the expected critical 

words at 100ms intervals from 200ms until 1000ms, and the statistical contrasts between the two 

conditions for the 300-500ms, 600-800ms and 800-1000ms time windows of interest. 

***Insert Figure 4 here*** 

 

300-500ms: The anomalous words produced effects within left lateral, ventral and medial 

temporal cortices that appeared qualitatively similar, but stronger than the effects produced by the 

unexpected plausible (versus expected) critical words, described above. In addition, this contrast 

revealed significantly more activity to the anomalous than the expected critical words within the 

left inferior frontal and anterior cingulate cortex. 

600-1000ms: In this later time window, the anomalous vs. expected contrast revealed effects 

within the posterior portion of the left temporal fusiform cortex (significant between 600-800ms, 

driven by increased activity to the anomalous words), within the anterior inferior frontal gyrus 

(significant between 800-1000ms, driven by dipoles going in opposite directions to the anomalous 

and expected words), and within the left parahippocampal gyrus (significant across the whole 600-

1000ms window, driven by a large ingoing dipole to the anomalous words, which was of the 

opposite polarity to that observed during the 300-500ms time window).  

We report the results of exploratory analyses over the right hemisphere in Supplementary 

Figures 2, 3 and 4. We also illustrate the dynamics of source activation in each of the four 

experimental conditions as “movies” in Supplementary materials. 
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fMRI results 

Regions showing significantly greater hemodynamic responses to the unpredictable critical 

words (low constraint unexpected, high constraint unexpected and anomalous) than to the expected 

critical words are shown in Figure 5, alongside a summary of the MEG source-localized results 

(reported above) for comparison. 

***Insert Figure 5 here*** 

 

Low constraint unexpected vs. expected 

This contrast revealed a significant hemodynamic effect within the left inferior frontal 

cortex, but no significant effect within the left temporal cortex (Table 2A). This qualitatively 

mirrored the pattern of MEG activity detected in the 600-1000ms time window, but the MEG 

frontal effect was smaller and, as noted above, it did not reach significance. 

High constraint unexpected vs. expected 

This contrast revealed significant hemodynamic effects within the left inferior frontal cortex 

and the mid-portion of the left superior temporal sulcus. Again, this was qualitatively similar to 

the MEG effects observed between 600-1000ms, but again the left inferior frontal effect was more 

extensive in fMRI than in MEG. In addition, fMRI revealed clusters within the left inferior parietal 

lobule, and left lateral and medial middle/superior frontal cortices (Table 2B). 

Anomalous vs. expected 

Again, this contrast revealed hemodynamic effects that mirrored the late MEG effects: 

activity within the left inferior frontal cortex (again more extensive than in MEG) and within the 

left fusiform gyrus (Table 2C). 

***Insert Table 2 here*** 
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The results of an exploratory whole brain fMRI analysis are reported in Supplementary 

Figure 5 and Supplementary Table 2. 

 

Discussion 

We used multiple neuroimaging techniques to ask whether the principles of dynamic hierarchical 

predictive coding can explain the location and timing of evoked neural activity produced by 

expected, unexpected and anomalous words during language comprehension. We showed that, 

relative to predicted continuations, words carrying unpredicted lexico-semantic information 

produced larger evoked responses at lower levels of the left fronto-temporal language hierarchy 

(left temporal cortex), while words that additionally violated higher-order contextual constraints 

produced activity at higher levels of the hierarchy (left inferior frontal cortex). In a later time 

window, prediction violations also activated different parts of the temporal cortex depending on 

whether they resulted in plausible or anomalous interpretations. We first describe the pattern of 

MEG and ERP effects for each contrast of interest. We then turn to the pattern of activity revealed 

by fMRI across the four conditions, discussing both its divergence and convergence with the 

source-localized MEG effects. 

Lower-level lexico-semantic prediction error within left temporal cortex is produced by 

incoming words, regardless of contextual constraint  

Consistent with many previous ERP studies20-22, contextually unexpected words produced a larger 

N400 between 300-500ms at the scalp surface than expected words. A key claim of predictive 

coding is that differences in evoked activity between expected and unexpected inputs are driven 

by the top-down suppression of prediction error to expected inputs at lower levels of the cortical 
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hierarchy (expectation suppression6,7). Our MEG findings support this claim. The evoked effect 

between 300-500ms localized to multiple regions within left temporal cortex that are known to 

support lexical and semantic processing. These included left anterior temporal cortices (ventral 

and superior/middle temporal), which function to “bind” widely distributed semantic features into 

distinct concepts28, and left mid- temporal cortices (mid-superior/middle temporal29,30 and mid-

fusiform31), which function to map orthographic and phonological representations onto meaning 

(lexical processing). 

Previous MEG32 and intracranial studies33 have also reported increased activation in 

temporal cortex to unexpected (versus expected) words in the N400 time window. However, in 

these earlier studies, the unexpected words were often implausible or they violated strong 

contextual constraints. Using plausible sentences, we showed that, between 300-500ms, the 

activity evoked by unexpected words within the temporal cortex was very similar in low constraint 

and high constraint contexts. This provides strong evidence that, instead of reflecting an enhanced 

response to implausible continuations, or the costs of inhibiting incorrect lexico-semantic 

predictions, these differences were driven by the top-down facilitation of expected lexico-semantic 

information within the temporal cortex. Specifically, we suggest that, in high constraint contexts, 

comprehenders incrementally built an event model14 that generated top-down lexico-semantic 

reconstructions of expected upcoming words. These reconstructions immediately suppressed the 

lexico-semantic prediction error produced by new expected inputs. 

 In addition to these expectation suppression effects within left anterior and mid-temporal 

cortices, we also observed an MEG effect in the left medial temporal cortex within the same 300-

500ms time window, consistent with previous intracranial studies33. This medial temporal effect, 

however, was not only driven by a dipole to the unexpected critical words, but also by a dipole in 
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the opposite direction to the expected critical words. We suggest that the dipole to the unexpected 

words reflected a functional role of the left medial temporal cortex (along with anterior lateral 

temporal regions) in retrieving and binding the semantic features associated with the incoming 

word28, possibly supported by “pattern completion” within the hippocampus itself27. The dipole to 

the expected words may have reflected a neural “resonance”34 within medial temporal 

subpopulations that were already pre-activated prior to encountering the new bottom-up input35. 

The presence of two dipoles going in opposite directions may explain why previous MEG studies 

have failed to detect effects within the medial temporal cortex within the N400 time window. This 

is because most MEG studies have used unsigned, rather than signed, dipole values for source 

localization, and the absolute values of two dipoles going in opposite directions are likely to cancel 

out. 

Higher-level prediction error within left inferior frontal cortex is produced only by words 

that violate high certainty predictions  

A key assumption of the account outlined above is that the top-down lexico-semantic 

reconstructions that suppress lower-level prediction error are informed by long-term schema 

knowledge that is relevant to the current message being communicated. Within this hierarchical 

framework, these schemas are represented at the highest level of the generative hierarchy, and they 

themselves generate reconstructions that constrain the current event model15. During real-world 

language comprehension, however, messages can change rapidly. In order to continue predicting 

effectively, comprehenders must be able to recognize event boundaries36 so that they can rapidly 

shift the event model by retrieving new high-level schemas15,18. Dynamic hierarchical predictive 

coding makes two important claims regarding these high-level shifts. First, they are triggered by 

higher-level prediction error, which is produced whenever new inputs violate a high confidence 
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prior belief in the higher-level state11. Second, they result in the generation of new top-down 

reconstructions that provide retroactive feedback to lower levels of the cortical hierarchy, 

enhancing activity over consistent representations (top-down “sharpening”4,13). 

 Our findings support both these claims. Replicating previous ERP studies21,22, we found 

that, relative to expected words, unexpected words produced a late frontal positivity ERP effect 

between 600-1000ms only in high constraint contexts. In MEG, the same contrast revealed activity 

within the left inferior frontal cortex in this late time window. This was accompanied by a re-

activation of the left middle temporal cortex. No late frontal or temporal effects were observed 

when contrasting expected words with unexpected words in low constraint contexts. 

 We suggest that in both the low and high constraint contexts, the lower-level lexico-

semantic prediction error led comprehenders to infer a new plausible event, resulting in the 

production of reconstructions that switched off the lower-level lexico-semantic prediction error, 

thereby attenuating the evoked response within the left temporal cortex at the end of the N400 time 

window. However, in the high constraint context, this newly inferred event violated a prior high-

certainty belief in a different event that had previously been inferred from the context37,38. This 

increased the gain on the new event information, resulting in a higher-level event prediction error 

within the left inferior frontal cortex in the later 600-1000ms time window. This higher-level 

prediction error initiated the retrieval of a new schema from long-term memory18, enabling 

comprephenders to successfully shift their event model, and resolve the error22,39. The updated 

event model, in turn, provided retroactive feedback to the left temporal cortex, enhancing activity 

over schema-consistent lexico-semantic representations, while reducing activity over incorrectly 

predicted lexico-semantic information15. The top-down nature of this feedback enhancement may 

explain why, within this late time window, the dipoles within the temporal cortex were of the 
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opposite polarity to those produced by the bottom-up prediction error within the 300-500ms time 

window. This account is also consistent with the well-known role of the left inferior frontal cortex 

in top-down suppression and selection40. 

A breakdown of predictive coding to anomalous words 

This hierarchical predictive coding framework posits that higher-level prediction error should also 

be produced if a newly updated state is inconsistent with prior reconstructions received from a still 

higher cortical level. Critically, however, if this higher-level prediction error cannot be resolved 

because the input is incompatible with the constraints of the generative model, or with alternative 

models stored in long-term memory, then the late retrieval and top-down sharpening mechanisms 

described above should break down. For example, after encountering a semantic anomaly, it is 

impossible to retrieve a new schema that can explain the input, and so the conflict between the 

top-down reconstructions produced by the current schema and the bottom-up lexico-semantic 

prediction error cannot be resolved. This will therefore lead to (a) a failure to switch off prediction 

error at even lower levels of the cortical hierarchy (perceptual reanalysis), and/or (b) new learning 

in order to explain the input18,19. 

 Our findings are broadly consistent with this account. First, at the scalp surface, the 

anomalous words produced an N400 that was larger than that produced by the plausible 

unexpected continuations (this difference was less prominent in ERP than in MEG, see 

Supplementary Materials section 3). MEG localized the activity within this 300-500ms time 

window not only to the left temporal cortex, but also to the left inferior frontal and anterior 

cingulate cortices. We suggest that the inferior frontal activity reflected the production of an early 

event prediction error (because the impossible event fell outside the range of event reconstructions 

generated by the current schema), and that the enhanced activity within the temporal cortex 
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resulted from a failure to settle on a higher-level interpretation within this time window, and 

therefore to switch off lower-level lexico-semantic prediction error. The surprising failure to 

minimize prediction error within the N400 time window may have led to the early recruitment of 

the anterior cingulate cortex41. 

 Second, within the late time window (600-1000ms), the semantic anomalies also produced 

a late posterior positivity/P600 ERP effect, which is often triggered by high-level linguistic 

conflict22,25,26, and thought to reflect a lower-level reanalysis of the input22,25,39. Consistent with this 

proposal, in MEG we observed sustained activity within posterior fusiform cortex, which supports 

sub-lexical orthographic processing9. We suggest that this “orthographic reanalysis” arose because 

the brain failed to settle on a single lexico-semantic representation, and therefore failed to produce 

reconstructions that switched off orthographic prediction error at this still lower level of the 

linguistic hierarchy.  

Finally, throughout the 600-1000ms window, semantic anomalies also produced an effect 

within the medial temporal cortex. This region is highly interconnected with the hippocampus, 

which plays a major role in detecting associative and contextual novelty42, primarily through a 

“comparator function” that tracks the magnitude of prediction violations43, thereby paving the way 

towards new learning44. Consequently, this medial temporal activation may have indirectly 

supported updates in the parameters of the generative model that allowed comprehenders to adapt 

to anomalous inputs (consistent with known links between the late posterior positivity/P600 and 

adaptation45). Alternatively, it may have supported the learning of new schemas from the novel 

anomalous inputs18,27,46. Both of these interpretations are consistent with the important 

computational role of prediction error in bridging comprehension and learning38. 

Convergence and divergence between fMRI and MEG/EEG 
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A second goal of this study was to understand how hemodynamic activity, recorded using fMRI, 

converged and diverged from the pattern of ERP and source-localized MEG effects produced in 

the same paradigm and in the same group of participants.  

The clearest discrepancy between the fMRI and MEG/EEG data was that fMRI failed to 

detect the ERP and MEG effects observed in the N400 time window (300-500ms). For example, 

even though the contrast between the low constraint unexpected and expected critical words 

revealed significant MEG effects within left lateral, ventral and medial temporal cortices 

(corresponding to the N400 effect), the same contrast in fMRI showed no significant differences 

within the temporal cortex. The contrast between high constraint unexpected and expected critical 

words did reveal some hemodynamic activity within the left middle temporal cortex, and the 

contrast between anomalous and expected words revealed activity within the fusiform cortex. 

However, both these effects can be explained by later MEG/EEG activity, from 600-1000ms. 

Although striking, this insensitivity of the hemodynamic response to N400 activity is not 

altogether surprising. Others have noted that MEG is more likely to localize top-down contextual 

effects to the temporal lobe than fMRI30. In addition, multimodal neuroimaging studies of semantic 

priming report fMRI effects that are much smaller and less robust than MEG N400 effects47,48. A 

likely reason for these discrepancies is that, while MEG and EEG are highly sensitive to brief, 

time-locked activity49,  fMRI is relatively blind to transient responses that are associated with the 

initial stages of feedforward activity50,51. 

Conversely, because the hemodynamic response integrates activity across multiple 

successive time windows, the signal is dominated by activity at later stages of processing. Indeed, 

the clearest pattern of convergence between fMRI effects and source-localized MEG effects was 

within the 600-1000ms time window. Both techniques revealed effects within the left 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.17.431452doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431452
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

frontal/middle temporal cortex to high constraint unexpected (versus expected) critical words, and 

within the left frontal/fusiform cortex to anomalous (versus expected) critical words. Consistent 

with previous studies50,52, activity within the prefrontal cortex was more robust and extensive in 

fMRI than MEG (note that the left frontal effect to low constraint unexpected versus expected 

critical words was significant in fMRI but not in MEG). This may be because MEG is insensitive 

to radial sources from gyri, and because tangential sources on opposing sides of sulci can cancel 

out53. It is also possible that the hemodynamic response was less time-locked to the critical words, 

and that it detected activity past 1000ms. Nonetheless, given the challenges of solving the inverse 

problem, the qualitative similarity between the MEG activity detected within the late time window 

and the hemodynamic response in the same contrasts provides independent corroborating evidence 

for the late MEG source-localized effects. 

Conclusion 

By tracking the timecourse and localization of evoked neural activity to incoming linguistic 

information, we showed clear dissociations in the production of prediction error at different levels 

of the left fronto-temporal cortical hierarchy. Consistent with classic predictive coding 

frameworks, lower-level prediction error, produced by the lexico-semantic features of individual 

words, was localized to lower levels of the hierarchy (left temporal cortex). Critically, as predicted 

by hierarchical and dynamic predictive coding, higher-level prediction error, produced by whole 

events, was observed at higher levels of the hierarchy (left inferior frontal cortex), and was 

modulated by prior certainty of the higher-level event representation (precision-weighting). 

Finally, when comprehenders were able to resolve this high-level error by shifting to a new 

plausible interpretation, this led to feedback activation of the temporal cortex at a later stage of 

processing (top-down “sharpening”). Taken together, these findings provide strong evidence that 
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a basic computational principle – the minimization of prediction error – can explain the functional 

dynamics of feedforward and feedback activity during human language comprehension. 

 

Methods 

Materials 

Participants read four types of three-sentence scenarios, each with a critical noun in the third 

sentence, see Table 1. In the expected scenarios, the critical word was predictable following a high 

constraint context. In each of the three other conditions, the critical word was unpredictable, but 

each for a different reason. In the low constraint unexpected scenarios, the critical word was 

plausible but unpredictable because it followed a low constraint context. In the high constraint 

unexpected scenarios, the critical word was plausible but unpredictable because it violated a high 

constraint context. In the anomalous scenarios, the critical word followed a high constraint context 

and violated the animacy selectional constraints of the preceding verb (which constrained either 

for animate or inanimate nouns).  

The stimuli were based on those used in a recent ERP study22. A full description is provided 

there as well as in Supplementary Materials, section 1. Briefly, in each scenario, the discourse 

context was either high constraint (average cloze probability of the most probable word: 68%), or 

low constraint (average cloze: 22%), as quantified in a cloze norming study that was carried out in 

participants recruited through Amazon Mechanical Turk (see Supplementary Materials section 1 

for details). These contextual constraints came from the entirety of the discourse context — the 

first two sentences plus the first few words of the third sentence before the critical word. In all 

scenarios, these first few words of the third sentence constituted an adjunct phrase of 1-4 words, 

followed by a pronominal subject that referred back to the first two sentences, a verb and a 
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determiner. The verb was always relatively non-constraining in minimal contexts (cloze 

probability of the most probable word was below 24%, as quantified in another cloze norming 

study in which participants recruited through Amazon Mechanical Turk were presented with just 

a proper name, the verb, and a determiner, see Supplementary Materials section 1 for details). 

To create the expected scenarios, each high constraint context was paired with the noun with 

the highest cloze probability for that context. To create the high constraint unexpected scenarios, 

each high constraint context was paired with a noun of zero (or very low) cloze probability, but 

that was still plausible in relation to this context. To create the low constraint unexpected scenarios, 

the same unexpected noun was paired with the low constraint context, again ensuring that it was 

plausible in relation to this context. To create the anomalous scenarios, each high constraint 

context was paired with a noun that violated the animacy selectional constraints of the verb. In all 

scenarios, the critical noun was followed by three additional words to complete the sentence. This 

gave rise to our four conditions of interest. 

Table 1 shows the stimulus characteristics of the critical nouns in each of the four scenario 

types. Critical words in the expected scenarios had fewer letters, smaller orthographic 

neighborhoods and were more frequent than in the unpredictable scenarios (all ts > 5, ps < 0.001). 

However, all these values were matched between the three types of unpredictable scenarios (all ts 

< 1.5, ps > 0.10). In addition, the semantic relatedness between the critical words and their prior 

contexts (operationalized using Semantic Similarity Values, SSVs, extracted using Latent 

Semantic Analysis, LSA (http://lsa.colorado.edu/, term-to-document with default settings) were 

matched between the three types of unpredictable scenarios (all ts < 1, ps > 0.10 for all pairwise 

comparisons). As expected, these values were greater in the expected scenarios than in the three 

types of unpredictable scenarios (all ts > 8, ps < 0.001). 
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Each participant read 150 experimental scenarios: 25 expected, 50 low constraint 

unexpected, 25 high constraint unexpected, and 50 anomalous. In addition, each participant read 

an additional 50 filler anomalous scenarios with low constraint contexts. This overall list 

composition ensured that each participant viewed 50% plausible and 50% anomalous scenarios, 

and that critical words were just as likely to be plausible following high constraint and low 

constraint contexts. Counterbalancing worked so that the combination of the verbs and critical 

words in all four conditions appeared across four lists, and, within each list, no participant read the 

same combination of verb and critical word more than once. 

Overall procedure: MEG/EEG and MRI sessions 

Participants took part in two separate experimental sessions: one for simultaneous 

MEG/EEG recordings, and one for structural and functional MRI (s/fMRI) recordings. We took 

several steps to minimize any confounds due to repetition of stimuli across sessions: (1) At least 

two weeks intervened between MEG/EEG and s/fMRI session; (2) The order of participation was 

fully counterbalanced across sessions (participants’ gender was included in this counterbalancing 

scheme); (3) Each participant viewed a different list in the MEG/EEG and fMRI session, which 

reduced repetition of contexts or critical words. For any contexts that did repeat across the two 

sessions, we constructed versions of the lists that changed proper names and small details of these 

contexts (such that they had minimal impact on cloze probability/lexical constraint). Full details 

of these modified stimuli and the counterbalancing scheme are provided in Supplementary 

Materials section 1. 

Participants 

All participants were native speakers of English (with no other language exposure before 

the age of 5), right-handed, and had normal or corrected-to-normal vision. All were screened to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.17.431452doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431452
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

exclude past or present psychiatric and neurological disorders, and none were taking medication 

affecting the Central Nervous System. Written consent was obtained before participation following 

the guidelines of the Massachusetts General Hospital Institutional Review Board. 

Here we report the results of 32 separate MEG/EEG datasets (16 females, mean age: 23.4; 

range: 18-35) and 31 separate fMRI datasets (16 females, mean age: 23.5; range: 18-35). Twenty-

nine of these participants (15 females, mean age: 23.5; range: 18-35) participated in both the 

MEG/EEG and fMRI sessions. 

Originally, a total of thirty-five participants were recruited for the study. Thirty-three took 

part in both the MEG/EEG and the fMRI sessions (17 females, mean age: 24.5 years; range: 18-

35 years); the remaining two participants participated in fMRI but failed to return for the 

MEG/EEG session. Of the 33 participants who took part in the MEG/EEG session, we excluded 

one dataset because of technical problems. Of the 35 participants who took part in the fMRI 

session, we excluded four participants due to technical problems, termination of the experiment 

by the participant, or excessive movement (for further details of cutoff criterion, see fMRI analysis 

below). 

Stimuli presentation and task 

In both the MEG/EEG and fMRI sessions, stimuli were presented using PsychoPy 1.83 

software54 and projected on to a screen in white Arial font (size: 0.1 of the screen height) on a 

black background. On each trial, the first two sentences appeared in full (each for 3900ms, 100ms 

interstimulus interval, ISI), followed by a fixation (a white “++++”), which was presented for 

550ms in the MEG/EEG session, and for 350ms in the fMRI session, followed by a 100ms ISI in 

both sessions. Then the third sentence was presented word by word (each word for 450ms, 100ms 

ISI). 
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In both the MEG/EEG and the fMRI session, participants’ task was to judge whether or not 

the scenario “made sense” by pressing one of two buttons (response fingers were counterbalanced 

across participants) after seeing a ‘‘?’’, which appeared after each scenario (1400ms with a 100ms 

ISI). This task encouraged active coherence monitoring during online comprehension and was 

intended to prevent participants from completely disregarding the anomalies (see55 for evidence 

that detecting anomalies is necessary to produce a neural response). In addition, following 

approximately 24/200 trials (semi-randomly distributed across runs), participants answered a 

“YES/NO” comprehension question that appeared on the screen for 1900ms (100ms ISI). This 

encouraged participants to comprehend the scenarios as a whole, rather than focusing on only the 

third sentence in which the anomalies appeared. 

In the MEG/EEG session, following each trial, a blank screen was presented with a variable 

duration that ranged from 100-500ms. This was then followed by a green fixation (++++) for a 

duration of 900ms followed by an ISI of 100ms. These green fixations were used to estimate the 

noise covariance for the MEG source localization (see below). To ensure precise time-locking of 

stimuli, we used frame-based timing, which synced stimulus presentation to the frame refresh rate 

of the monitor (for example, a 450ms word presentation would be displayed for exactly 27 frames 

on our 60Hz monitor). 

In the fMRI session, between each trial, a green fixation (++++) was presented for a duration 

that ranged from 2-18 seconds (average 6.2 seconds). This was to optimize the deconvolution of 

the event-related hemodynamic response function, as determined using the OptSeq2 algorithm (see 

https://surfer.nmr.mgh.harvard.edu/optseq). In order to keep the stimulus presentation synced with 

the scanner, preventing an accumulation of timing errors as a result of waiting for the screen to 

refresh during stimulus presentation, we used a “non-slip” routine timer in PsychoPy. 
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In both the MEG/EEG and the fMRI session, stimuli were presented over eight runs, each 

with 25 scenarios. Runs were presented in random order in each participant. Participants took part 

in a short practice session before both sessions to gain familiarity with the stimulus presentation 

and tasks. 

Data acquisition 

MEG and EEG data acquisition 

Participants sat inside a magnetically shielded room (IMEDCO AG, Switzerland). The 

MEG data were acquired with a Neuromag VectorView system (Elekta-Neuromag Oy, Finland) 

with 306 sensors — 102 triplets, with each triplet comprising 2 orthogonal planar gradiometers 

and 1 magnetometer. The EEG data were acquired at the same time using a 70-channel MEG-

compatible scalp electrode system (BrainProducts, München), and referenced to an electrode 

placed on the left mastoid. An electrode was also placed on the right mastoid and a ground 

electrode was placed on the left collarbone. EOG data were collected with bipolar recordings: 

vertical EOG electrodes were placed above and below the left eye, and horizontal EOG electrodes 

were placed on the outer canthus of each eye. ECG data were also collected with bipolar 

recordings: ECG electrodes were placed a few centimeters under the left and right 

collarbones. Impedances were kept at <20 kΩ at all scalp sites, at <10 kΩ at mastoid sites, and at 

<30 kΩ at EOG and ECG sites. Both MEG and EEG data were acquired with an online band-pass 

filter of 0.03-300Hz and were continuously sampled at 1000Hz. 

To record the head position relative to the MEG sensor array for later co-registration of the 

MEG and MRI coordinate frames, the locations of three fiduciary points (nasion and two 

auricular), four head position indicator coils, all EEG electrodes, and at least 100 additional points, 

were digitized using a 3Space Fastrak Polhemus digitizer, integrated with the Vectorview system. 
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Structural and functional MRI data acquisition 

Structural and functional MRIs were acquired using a 3T Siemens Trio scanner with a 32-

channel head coil. Each of the eight fMRI runs lasting for approximately eight minutes, and in 

each run, we acquired 238 functional volumes (87 axial slices, 1.5mm slice thickness, 204mm field 

of view, in-plane resolution of 136mm) with a gradient-echo sequence (Time to Repetition, TR: 

2s; echo time: 30ms; echo spacing: 0.65ms; flip angle: 80 degrees). The acquisition angle was 

raised to approximately 20 degrees off the AC-PC line in order to reduce distortion along the 

anterior temporal lobe. Slices were acquired, three at a time, using an interleaved simultaneous 

multi-slice protocol with a GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) 

acceleration factor of 2. Following the eight functional runs, we acquired T1-weighted high-

resolution structural images (1mm isotropic multi-echo magnetization-prepared rapid gradient-

echo, MP-RAGE; TR: 2.53s; flip angle: 7 degrees; 4 echoes with TE: 1.69ms, 3.55ms, 5.41ms, 

and 7.27ms).  

Preprocessing and initial data analysis 

EEG preprocessing and individual averaging 

 EEG data were analyzed using the Fieldtrip software package56 in the Matlab 

environment57. EEG channels with excessive noise (7 out of the 70 channels, on average) were 

visually identified and marked as bad channels. We then applied a low band-pass filter (30Hz), 

downsampled the EEG data to 500Hz, and segmented the epochs from -2600ms to 1400ms, 

relative to the onset of the critical words. After that, we visualized the data in summary mode 

within the Fieldtrip toolbox to identify the trials that showed high variance across channels. These 

trials were then removed from subsequent analysis. We then carried out an Independent 

Component Analysis (ICA) to remove ICA components associated with eye-movement (one 
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component on average was removed per participant). Finally, we visualized the artifact-corrected 

trials and removed any additional trials with residual artifact. On average, 6% of trials were 

removed from each condition (equally distributed across the four conditions: F(3,93) = 0.88, p = 

0.45, η2 = 0.028), yielding, on average, 23 trials in the expected and high constraint unexpected 

conditions, and 46 trials in the low constraint unexpected and anomalous conditions. Finally, the 

data of bad channels were interpolated using spherical spline interpolation58. In each participant, 

at each site, we then calculated ERPs, time-locked to the onset of critical words, in each of the four 

conditions, applying a -100ms pre-stimulus baseline. After that, we averaged these voltages across 

all time points and electrode sites within each of three spatiotemporal regions of interest to carry 

out statistical analyses, as described below. 

MEG preprocessing, individual averaging and sensor-level visualization 

MEG data were analyzed using version 2.7.4 of the Minimum Norms Estimate (MNE) 

software package in Python59. In each participant, in each run, MEG sensors with excessive noise 

were visually identified and removed from further analysis. This resulted in the removal of seven 

(on average) of the 306 MEG sensors. Signal-space projection (SSP) correction was used to correct 

for ECG artifact. Trials with eye-movement and blink artifacts were automatically removed59. 

Then, after applying a band-pass filter at 0.1Hz to 30Hz, we segmented epochs from -100 to 

1000ms, relative to the onset of the critical words. We removed epochs with additional artifact, as 

assessed using a peak-to-peak detection algorithm (the pre-specified cutoff for the maximal 

amplitude range was 4×10-10 T/m for the gradiometer sensors and 4×10-12 T for the magnetometer 

sensors). On average, 16% trials in each condition were removed (equally distributed across the 

four conditions: F(3,93) = 1.54, p = 0.21, η2 = 0.047), yielding, on average, 21 artifact-free trials in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.17.431452doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431452
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

the expected and high constraint unexpected scenarios, and 42 artifact-free trials in the low 

constraint unexpected and anomalous scenarios. 

In each participant, in each run, at each magnetometer sensor and at each of the two 

gradiometers at each site, we calculated event-related fields (ERFs), time-locked to the onset of 

critical words in each of the four conditions, applying a -100ms pre-stimulus baseline. We averaged 

the ERFs across runs in sensor space, interpolating the bad sensors using spherical spline 

interpolation58. We created gradiometer and magnetometer sensor maps to visualize the 

topographic distribution of ERFs across the scalp. In creating the gradiometer maps, we used the 

root mean square of the ERFs produced by the two gradiometers at each site. 

MEG source localization in individual participants 

Each participant’s cortical surface was first reconstructed from their structural T1 MPRAGE 

image using the FreeSurfer software package developed at the Martinos Center, Charlestown, MA 

(http://surfer.nmr.mgh.harvard.edu). We used MNE-Python59 to estimate the sources of the ERFs 

evoked by critical words in each of the four conditions, on each participant’s reconstructed cortical 

surface using Minimum-Norm Estimation (MNE60). 

In order to calculate the inverse operator in each participant — the transformation that 

estimates the underlying neuroanatomical sources for a given spatial distribution of activity in 

sensor space, we first needed to construct a noise-covariance matrix of each participant's MEG 

sensor-level data, as well as a forward model in each participant (the model that predicts the pattern 

of sensor activity that would be produced by all dipoles within the source space). 

To construct the noise covariance matrix in each participant, we used 650ms of MEG sensor-

level data recorded during the presentation of the green inter-trial fixations (we used an epoch from 

100-750ms, which cut off MEG data measured at the onset and offset of these fixations in order to 
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avoid onset and offset evoked responses). We concatenated these fixations across runs. To 

construct the forward model in each participant, we needed to (a) define the source space — the 

location, number and spacing of dipoles, (b) create a Boundary Element Model (BEM), which 

describes the geometry of the head and the conductivities of the different tissues, and (c) specify 

the MEG-MRI coordinate transformation — the location of MEG sensors in relation to the head 

surface. 

The source space was defined on the white matter surface of each participant's reconstructed 

MRI and constituted 4098 vertices per hemisphere, with three orthogonally orientated dipoles at 

each vertex (two tangential and one perpendicular to the cortical surface). We defined these 

vertices using a grid that decimated the surface into meshes, with a spacing of 4.9mm between 

adjacent locations (spacing: “oct6”). We created a single compartment BEM by first stripping the 

outer non-brain tissue (skull and scalp) from the pial surface using the watershed algorithm in 

FreeSurfer, and then applying a single conductivity parameter to all brain tissue bounded by the 

inner skull. We specified the location of the MEG sensors in relation to the head surface by 

manually aligning the fiducial points and 3D digitizer (Polhemus) data with the scalp surface 

triangulation created in FreeSurfer, using the mne_analyze tool59. 

We then calculated the inverse operator in each participant, setting two additional 

constraints. First, we set a loose constraint on the relative weighting of tangential and 

perpendicular dipole orientations within the source space (loose = 0.2). Second, we set a constraint 

on the relative weighting of superficial and deep neuroanatomical sources (depth = 0.8) in order 

to increase the likelihood that the minimum norm estimates would detect deep sources. 

We then applied each participant’s inverse operator to the ERFs of all magnetometer and 

gradiometer sensors calculated within each run. We chose to estimate activity at the dipoles that 
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were orientated perpendicular to the cortical surface at each vertex (pick_ori = “normal”). Each of 

these perpendicular dipoles had both a positive and a negative value, which indicated whether the 

currents were outgoing or ingoing respectively. We chose to retain the two polarities of each dipole 

for further analyses for two reasons. First, this approach allowed us to include all trials in each of 

our four conditions, thereby maximizing power without inflating our estimate of noise in the 

conditions with more trials (if we had chosen to simply estimate the magnitude of each dipole by 

squaring the positive and negative values to yield positively-signed estimates, we would have 

artificially inflated the noise estimates in the low constraint unexpected and the anomalous 

conditions, which had twice as many trials as the expected and the high constraint unexpected 

conditions). Second, by retaining this polarity information, we were able to determine whether any 

statistical differences between conditions were driven by differences in the magnitude and/or 

differences in the polarity of the dipoles evoked in each condition. 

 Then, for each condition in each run, we computed noise-normalized dynamic Statistical 

Parametric Maps (dSPMs61) on each participant’s cortical surface at each time point. The obtained 

dSPM values were then averaged across runs within each participant. Finally, the source estimates 

of each participant were morphed on the FreeSurfer average brain “fsaverage”62 for group 

averaging and statistical analysis, as described below. 

fMRI preprocessing and individual analysis 

 Functional volumes were preprocessed using SPM12 in the Matlab environment57. In each 

participant, the first volume of each run was realigned to the first volume of the first run, and all 

images within a given run were realigned to the first image of that run. The resulting images were 

slice-time corrected and the mean of the functional images was co-registered with the individual’s 

structural MPRAGE image. The structural images were segmented into grey and white matter, and 
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the functional images were spatially normalized to the standard Montreal Neurological Institute 

(MNI) template. Images were smoothed with an 8mm full width at half maximum (FWHM) 

Gaussian kernel. 

We next used the Artifact Detection Toolbox63 to calculate the percentage of time 

points/volumes (across all runs) in which the composite motion was greater than 1.5mm. If more 

than 5% of the volumes in any run met this criterion, we excluded that run. This resulted in the 

exclusion of one participant (all runs met this criterion), the exclusion of two runs in a second 

participant, and the exclusion of a single run in a third participant. For all the remaining runs that 

were included in the analysis, we used the same toolbox to create nuisance regressors associated 

with any volume in which the composite motion was greater than 1.5mm. Over these remaining 

runs, less than 0.22% of volumes/time points per participant, on average, were “marked” by one 

of these extra regressors. 

At the first level of analysis, each run was modeled with a design matrix that included 

regressors for each condition. These were modeled as epochs from the onset of the critical word 

in the third sentence until the offset of the sentence-final word. Additional regressors were included 

for the contexts (from the onset of the first sentence until the onset of the critical word, not 

differentiating between conditions), and for the question mark events (from the onset of the 

question mark until the onset of the inter-trial fixations). All these regressors were convolved with 

a canonical hemodynamic response function (HRF). The model also included the additional 

nuisance regressors created using the Artifact Detection Toolbox63, as described above. First level 

contrasts were defined to take to the second level for random effects group analysis: each condition 

(contrast value of 1) versus an implicit baseline (contrast value of 0). 
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Group-level statistical analysis and hypothesis testing 

Planned comparisons for all three methods 

For ERP, MEG and fMRI analyses, we carried out planned a priori statistical comparisons 

between neural activity evoked by each type of unpredictable critical word (low constraint 

unexpected, high constraint unexpected, anomalous) and the expected critical words. 

Statistical analysis of ERP data 

To analyze the ERP data, our planned comparisons (paired t-tests) were carried out on 

voltages that were averaged across all time points and electrode sites within each of three 

spatiotemporal regions of interest. These regions were selected, a priori, to capture the N400, the 

late frontal positivity and the late posterior positivity/P600 ERP components. They were the same 

as those used in our previous ERP study using overlapping stimuli in a different group of 

participants22. The N400 was operationalized as the average voltage across ten electrode sites 

within a central region (Cz, C1, C2, C3, C4, CPz, CP1, CP2, CP3, CP4), averaged across all 

sampling points between 300-500ms; the late frontal positivity was operationalized as the average 

voltage across eight electrode sites within a prefrontal region (FPz, FP1, FP2, FP3, FP4, AFz, AF3, 

AF4), averaged across all sampling points between 600-1000ms; the late posterior positivity/P600 

was operationalized as the average voltage across 11 electrode sites within a posterior region (Pz, 

P1, P2, P3, P4, POz, PO3, PO4, Oz, O1, O2), averaged across all sampling points between 600-

1000ms. 

Statistical analysis of MEG source-level data 

To analyze the source-level MEG data, we carried out our planned statistical comparisons 

over a large left-lateralized search region that included classic language-related areas as well as 

other regions of interest (left lateral temporal cortex, left ventral temporal cortex, left medial 
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temporal cortex, left lateral parietal cortex, left lateral frontal cortex, and left medial frontal cortex). 

This search area was defined on the Desikan-Killiany Atlas64 and is illustrated in Figure 6. The 

correspondence between names of the anatomical regions given in Figure 6 (as well as in Figure 

5 and Table 2) and the nomenclature of the Desikan-Killiany regions is given in Supplementary 

Table 1. Within this search region, we examined activity within three 200ms time windows of 

interest: 300-500ms, corresponding to the N400 time window, and 600-800ms and 800-1000ms, 

corresponding to the first and second halves of the time window associated with late positivity 

ERP effects. To account for multiple comparisons, we tested hypotheses using permutation-based 

cluster mass procedures based on65 and modified as described next. 

***Insert Figure 6 here*** 

 

For each contrast of interest, within each time window of interest, we carried out pairwise 

t-tests on the signed estimated dSPM values at each vertex and at each time point. Instead of using 

the resulting signed t-values to compute our cluster-level statistic, we used unsigned -log-

transformed p-values. This is because a single neuroanatomical source that is located on one side 

of a sulcus can appear on the cortical surface as adjacent groups of dipoles of opposite polarity 

(outgoing and ingoing) because of signal bleeding to the other side of the sulcus66. This is clearly 

apparent in the activation maps that show the signed dSPM values at each location in each 

condition (see Figures 3 and 4): positive dSPM values, corresponding to outgoing dipoles (shown 

in red), and negative dSPM values, corresponding to ingoing dipoles (shown in blue), often appear 

on either side of a sulcus. The use of unsigned p-values therefore ensured that adjacent effects of 

opposite signs were treated as a single cluster/single underlying source. Within each time window 
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of interest, any data points that exceeded a pre-set uncorrected significance threshold of 1% (i.e., 

p ≤ 0.01) were -log10 transformed, and the rest were zeroed. 

In order to account for multiple spatial comparisons across the search area, we subdivided 

it into 140 equal-sized patches67, shown in Supplementary Figure 1. Within each patch, we took 

the average of the -log-transformed p-values across all time points within each time window of 

interest (300-500ms, 600-800ms, 800-1000ms) as our cluster statistic. We then carried out exactly 

the same procedure as that described above, but this time we randomly assigned dSPM values 

between the two conditions for a given contrast. This was repeated 10,000 times. For each 

randomization, we took the largest cluster mass statistic across all spatial patches, and in this way 

created a null distribution for the cluster mass statistic. To test our hypotheses at each spatial patch 

in each time window of interest, we compared the observed cluster-level statistic for that patch 

against the null distribution. If our observed cluster-level statistic fell within the highest 5.0% of 

the distribution, we considered it to be significant. Note that this cluster-based method allowed us 

to account for temporal and spatial discontinuities in effects (resulting from noise). However, it 

constrains any statistical inference to the spatial resolution of each patch and to the temporal 

resolution of our a priori time windows. 

In order to illustrate the results, we projected the averaged uncorrected -log10 transformed 

p-values (p < 0.05) at each vertex on to the “fsaverage” brain. We use circles to indicate any spatial 

patches in which we observed a significant cluster, grouping these areas by the anatomical regions 

shown in Figure 6 and listed in Supplementary Table 1. 

Finally, in addition to carrying out these tests over our a priori left-lateralized search region 

of interest, we also carried out more exploratory analyses using the same procedure over an 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.17.431452doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431452
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 

analogous search region over the right hemisphere. We report these results in Supplementary 

Figures 2, 3 and 4. 

Statistical analysis of fMRI data 

At the group (second) level of analysis, we constructed a repeated measures ANOVA model 

that included the within-subject effects (31 regressors) and one regressor for every condition 

(versus implicit baseline). We used this model to create Statistical Parametric Maps (SPMs) of the 

t-statistics for each contrast of interest. 

We report the results of directional t-tests for regions that showed more hemodynamic 

activity to each type of unpredictable critical word than to the expected critical words (low 

constraint unexpected > expected; high constraint unexpected > expected; anomalous > expected) 

within the same a priori left lateralized search region of interest as that used in the MEG analysis. 

For the fMRI analysis, this search region was defined in Montreal Neurological Institute (MNI) 

volume space, using the AAL atlas68. The correspondence between the names of the anatomical 

regions illustrated in Figure 6 and the nomenclature of the Tzourio-Mazoyer regions is given in 

Supplementary Table 1.  

To account for multiple comparisons, we set an initial voxel-level threshold of p < 0.001 

(whole brain), and we inferred significance if clusters within the search region reached a cluster-

level family-wise error-corrected (FWE) threshold of p < 0.05, using a small volume correction 

(SVC)69. We report the size and the p-value of each cluster (as a whole), as well as the z-scores 

and uncorrected p-values of the individual peaks within that cluster. All coordinates reported are 

in MNI space. Although statistical analysis was carried out in MNI volume space, for maximal 

comparability to the MEG results, we converted the t-maps to right-anterior-superior (RAS) space 

and plotted the results on the “fsaverage” brain surface62. 
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In addition to carrying out analyses over our a priori left-lateralized search region of 

interest, we also carried out more exploratory whole brain analyses that included all brain regions. 

We report these results in Supplementary Figure 5 and Supplementary Table 2. 
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Figures 

Figure 1. ERP results. 

 
 
(a) Grand-averaged ERP waveforms elicited by critical words in each of the four conditions, 

shown at three representative electrode sites: Cz, FPz and Pz. Expected: solid black line; Low 

Constraint Unexpected: dashed magenta line; High Constraint Unexpected: solid red line; 

Anomalous: dashed blue line. Negative voltage is plotted upwards. The time windows 

corresponding to the N400 (300-500ms), the late frontal positivity (600-1000ms) and the late 

posterior positivity/P600 (600-1000ms) ERP components are indicated using dotted boxes.  

(b) Voltage maps show the topographic distributions of the ERP effects produced by contrasting 

each of the three types of unpredictable critical words with the expected critical words between 

300-500ms (left panel) and between 600-1000ms (right panel). Note that the N400 effects and the 

late positivity effects are shown at different voltage scales to better illustrate the scalp distribution 

of each effect. 
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Figure 2. MEG sensor-level results. 

 
 
(a) Earlier time window. Top: Grand-averaged event-related magnetic fields produced by critical 

words in each of the four conditions, shown at a left temporal gradiometer sensor 

(MEG0242+0243). The 300-500ms (N400) time window is indicated using a dotted box. Bottom: 

MEG Gradiometer (Grad) and Magnetometer (Mag) sensor maps show the topographic 

distributions of the MEG N400 effects produced by contrasting each of the three types of 

unpredictable critical words with the expected critical words between 300-500ms. In all three 

contrasts, the distribution of the MEG N400 effect was maximal over temporal sites, particularly 

on the left.  
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(b) Later time window. MEG Gradiometer (Grad) and Magnetometer (Mag) sensor maps show 

the topographic distributions of the MEG effects produced by contrasting each of the three types 

of unpredictable critical words with the expected critical words in the first half (600-800ms) and 

the second half (800-1000ms) of the late time window of interest. In order to better illustrate the 

scalp distribution of these late effects, these sensor maps are shown at a different scale from that 

used for the 300-500ms sensor maps. The contrasts between each type of plausible unexpected 

word and the expected critical words produced magnetic fields with similar spatial distributions, 

but the Magnetometer maps suggest that the effect was stronger for the contrast between the high 

constraint unexpected and the expected critical words, than for the contrast between the low 

constraint unexpected and the expected critical words. The contrast between the anomalous and 

expected critical words revealed the strongest effects, with a somewhat distinct spatial distribution 

of sensor-level activity.
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Figure 3. MEG source-level activity produced by the unexpected plausible and the expected critical words. 

 
 
(a) Earlier time window. Left: Signed dSPMs produced by the low constraint unexpected, the expected, and the high constraint 

unexpected critical words, shown at 100ms intervals from 200 until 500ms. Right: Statistical maps contrasting the low constraint 
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unexpected and expected critical words, and the high constraint unexpected and expected critical words within the 300-500ms (N400) 

time window of interest. Red circles indicate activity that reached cluster-level significance for each contrast individually. Green circles 

indicate activity that reached significance in an analysis that combined the two types of plausible unexpected critical words and 

contrasted the resulting activity with that produced by the expected critical words. Because previous ERP work had consistently shown 

that these two contrasts produce similar effects within the N400 time window20-22, we carried out this analysis in order to increase power.  

(b) Later time window: Signed dSPMs produced by the low constraint unexpected, the expected, and the high constraint unexpected 

critical words, shown at 100ms intervals from 500 until 1000ms. Statistical maps contrasting each type of plausible unexpected critical 

word with the expected critical words are shown between 600-800ms (left) and between 800-1000ms (right). Red circles indicate regions 

that reached cluster-level significance in each contrast. All dSPMs are thresholded at 0.15, with red indicating outgoing dipoles and blue 

indicating ingoing dipoles. Both dSPMs and contrast maps are displayed on the FreeSurfer average surface, “fsaverage”62.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.17.431452doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431452
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 

Figure 4. MEG source-level activity produced by the anomalous and the expected critical 

words. 

 
 
Top and middle rows: Signed dSPMs produced by the anomalous and expected critical words, 

shown at 100ms intervals from 200ms until 1000ms. 

Bottom row: Statistical maps contrasting the anomalous and expected critical words within our 

three a priori time windows of interest: 300-500ms, 600-800ms and 800-1000ms. Red circles 

indicate regions that reached cluster-level significance. All dSPMs are thresholded at 0.15, with 
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red indicating outgoing dipoles and blue indicating ingoing dipoles. Both dSPMs and contrast 

maps are displayed on the FreeSurfer average surface, “fsaverage”62. 
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Figure 5. FMRI results, together with summarized MEG source-localized effects for each 

contrast. 

 
 
Right column: FMRI statistical maps showing hemodynamic activity that was significantly greater 

to critical words in each of the three unpredictable conditions (low constraint unexpected, high 

constraint unexpected, anomalous) than to critical words in the expected condition. All activity 

indicated reached a cluster-level significance threshold after family-wise error (FWE) correction 
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of p < 0.05, small volume corrected (SVC)69 over the search region of interest (shown in Figure 

6). The numbers correspond to the numbering of the regions shown in Figure 6 and in 

Supplementary Table 1. They also correspond to the regions listed in Table 2, which provides full 

details of the fMRI results. Although fMRI analyses were carried out in MNI volume space, the 

results are plotted on the left lateral and ventral FreeSurfer average surfaces (“fsaverage”62) to 

facilitate direct comparisons with the MEG results.  

Left and middle columns: To facilitate comparisons between the fMRI results and the source-

localized MEG results, the MEG source-localized effects between 300-500ms (left column) and 

between 600-1000ms (right column) are shown for each contrast of interest, displayed with a 

vertex-wise threshold of p ≤ 0.05 (p-values: -log10 transformed). The full presentation of these 

MEG results is given in Figures 3 and 4. The patterns of fMRI activity were qualitatively similar 

to the patterns of MEG activity within the late time window, although, within the prefrontal cortex, 

the hemodynamic effects were more extensive and robust than the effects detected by MEG. 
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Figure 6. Left-lateralized search region used to carry out MEG and fMRI statistical analysis. 

 

For the MEG statistical analysis, these regions were defined on the “fsaverage” FreeSurfer 

surface62 using the Desikan–Killiany atlas64. For the fMRI analysis, they were defined in Montreal 

Neurological Institute (MNI) volumetric space using the automated anatomical labeling (AAL) 

atlas68. In this figure, all regions are displayed on the fsaverage surface. Supplementary Table 1 

lists the correspondence between the names of the regions indicated here, and the nomenclature of 

the equivalent regions in the Desikan–Killiany and AAL atlases. 

 

1A: Superior temporal cortex 

1B: Middle temporal cortex 

1C: Inferior temporal cortex 

2: Fusiform cortex 

3: Medial temporal cortex 

4B: Superior parietal cortex 

4A: Inferior parietal lobule
Pars opercularis

5B: Middle frontal cortex

5C: Superior frontal cortex 

5C: Superior frontal cortex 

6A: Anterior cingulate cortex

6B: Medial orbitofrontal cortex 

6B: Medial orbitofrontal cortex 

5A: Inferior frontal cortex

1D: Temporal pole

Pars triangularis
Pars orbitalis

3: Medial temporal cortex 

5A: Inferior frontal cortex 

Lateral orbital frontal
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Tables 

Table 1. Examples of the four experimental conditions together with stimuli characteristics. 

 
Scenarios were created around the same verb (here, “cautioned”). The critical word in each of the example sentences is underlined (although this 
was not the case in the experiment itself). The final sentence continued with three additional words, as indicated by the three dots. 
Means are shown with the standard deviations in parentheses. 
*The lexical constraint of each discourse context was calculated by identifying the most common completion across participants who saw that context 
in the cloze norming study (see Supplementary Materials, section 1), and tallying the proportion of participants who provided this completion. 
**Cloze probabilities of critical words were calculated based on the percentage of respondents providing the critical noun used in the experiment. 
+SSV: Semantic Similarity Values, quantifying the semantic relatedness between the critical words and the “bag of words” within the prior contexts, 
based on Latent Semantic Analysis (LSA). 
++Log Frequency values, retrieved from the English Lexicon Project. 
^Orthographic Levenshtein Distance values, retrieved from the English Lexicon Project. 
^^Concreteness ratings, retrieved from 70.

Scenario 
Type Example 

*Lexical 
constraint 

**Cloze +SSV No. of 
Letters 

++Frequency 
^Orthographic 
neighborhood 

^^Concreteness 

1. Expected 

The lifeguards received a report of sharks 
right near the beach. Their immediate 
concern was to prevent any incidents in the 
sea. Hence, they cautioned the swimmers... 

69% 
(14%) 

69% 
(14%) 

0.18 
(.18) 

5.69 
(1.60) 

1.53 
(0.66) 

1.93 
(0.56) 

4.30 
(0.69) 

2. Low 
Constraint 
Unexpected 

Eric and Grant received the news late in the 
day. They mulled over the information, and 
decided it was better to act sooner rather 
than later. Hence, they cautioned the 
trainees... 

19% 
(9%) 

0.6% 
(1%) 

0.01 
(.05) 

7.41 
(2.33) 

0.64 
(0.86) 

2.58 
(0.89) 

4.08 
(0.72) 

3. High 
Constraint 
Unexpected 

The lifeguards received a report of sharks 
right near the beach. Their immediate 
concern was to prevent any incidents in the 
sea.  Hence, they cautioned the trainees... 

69% 
(14%) 

0.1% 
(0.5%) 

0.01 
(.06) 

7.46 
(2.22) 

0.61 
(0.88) 

2.61 
(0.86) 

4.15 
(0.69) 

4. Anomalous 

The lifeguards received a report of sharks 
right near the beach. Their immediate 
concern was to prevent any incidents in the 
sea. Hence, they cautioned the drawer... 

67% 
(15%) 

0% 
(0%) 

0.01 
(.05) 

7.11 
(2.04) 

0.81 
(0.85) 

2.47 
(0.81) 

4.21 
(0.65) 
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Table 2. FMRI results. Clusters showing significantly more hemodynamic activity to the 
unpredictable than the expected critical words within the left-lateralized search region of interest. 
 

 ^No. Voxel 
p-value z-score MNI (x, y, z) *Size 

+Cluster 
p-value 

A. Low Constraint Unexpected > Expected 
Inferior frontal gyrus (pars triangularis) 5A <0.0001 5.17 -48, 24, 12 1054 <0.0001 Inferior frontal gyrus (pars orbitalis) <0.0001 5.16 -38, 28, -10 
Middle cingulate cortex 

6A 
<0.0001 4.16 2, 24, 38 

241 <0.005 Supplementary motor area <0.0001 4.02 -2, 18, 46 
Anterior cingulate cortex <0.0001 3.78 -6, 32, 28 
B. High Constraint Unexpected > Expected 
Fusiform cortex (temporal) 2 <0.0001 4.49 -40, -24, -18 

189 <0.02 Middle temporal cortex (anterior) 1C <0.0001 3.77 -56, -16, -8 
Inferior temporal cortex 1B <0.0001 3.47 -48, -18, -20 
Inferior parietal lobule (angular gyrus) 4A <0.0001 4.81 -42, -64, 26 430 <0.0005 Inferior parietal lobule (other) <0.0005 3.58 -32, -82, 44 
Inferior frontal gyrus (pars orbitalis) 

5A 
<0.0001 6.41 -36, 24, -8 

2328 <0.0001 Inferior frontal gyrus (pars triangularis) <0.0001 5.36 -48, 22, 18 
Inferior frontal gyrus (pars opercularis) <0.0001 4.04 -38, 8, 34 
Middle frontal cortex 5B <0.0001 4.65 -20, 20, 46 

855 <0.0001 Superior frontal cortex (medial) 
5C 

<0.0001 4.55 -6, 38, 40 
Superior frontal cortex (lateral) <0.0001 3.89 -12, 40, 50 
Supplementary motor area <0.0005 3.67 -2, 20, 52 
C. Anomalous > Expected 
Fusiform 2 <0.0001 4.56 -44, -48, -20 168 <0.02 
Inferior frontal gyrus (pars triangularis) 

5A 
<0.0001 5.86 -46, 28, 8 

1902 <0.0001 Inferior frontal gyrus (pars orbitalis) <0.0001 5.83 -36, 28, -8 
Inferior frontal gyrus (pars opercularis) <0.0001 4.33 -40, 8, 22 

 
We only report regions that reached a cluster-level significance threshold after family-wise error (FWE) 
correction of p < 0.05, small volume corrected (SVC) over the search region 69. 
Anatomical locations and Montreal Neurological Institute (MNI) template coordinates correspond to the p-
values and z-scores of representative peaks within each cluster. We used the automated anatomical labeling 
(AAL) atlas to define the anatomical regions reported. Only one peak per anatomical region is reported. 
^No.: The numbering and names of each region correspond to those shown in Figures 5 and 6. 
Supplementary Table 1 lists the correspondence between the names of the regions indicated here and the 
names of the regions from the AAL atlas. 
*Size of cluster: the number of contiguous voxels within each cluster.  
+Cluster p-value: the cluster-level significance after FWE correction of p < 0.05, SVC over the search 
region. 
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