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ABSTRACT

The entry of antibiotic resistance genes (ARGS) into aquatic systems has been documented for
large municipal wastewater treatment plants, but there is less study of the impact of smaller
plants that are situated on small rural rivers. We sampled water metagenomes for ARG and taxa
composition from the Kokosing River, a small rural river in Knox County, Ohio, which has been
designated an Ohio State Scenic River for retention of natural character. Samples were obtained
1.0 km upstream, 120 m downstream, and 6.4 km downstream from the effluent release of the
Mount Vernon wastewater treatment plant (WWTP). ARGS were identified in metagenomes
using ShortBRED markers from the CARD database screened against UniPROT. Through all
seasons, the metagenome just downstream of the WWTP effluent showed a substantial elevation
of at least 15 different ARGs, including 6 ARGs commonly associated with Acinetobacter
baumannii such as msrE, mphE (macrolide resistance) and tet(39) (tetracycline resistance). The
ARGs most prevalent near the effluent pipe persisted 6.4 km downriver. Using MetaPhlAn2
clade-specific marker genes, the taxa distribution near the effluent showed elevation of reads
annotated as Acinetobacter species as well as gut-associated taxa, Bacteroides and Firmicutes.
The ARG levels and taxa prevalence showed little dependence on seasonal chlorination of the
effluent. Nitrogen and phosphorus were elevated near the effluent pipe but had no consistent
correlation with ARG levels. We show that in a rural river microbiome, year-round wastewater
effluent substantially elevates ARGs including those associated with multidrug-resistant A.
baumanii.

IMPORTANCE

Antibiotic resistance is a growing problem worldwide, with frequent transmission between

pathogens and environmental organisms. Rural rivers can support high levels of recreational use
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by people unaware of inputs from treated wastewater, while WWTPs can generate a small but
significant portion of flow volume into a river surrounded by forest and agriculture. There is
little information on the rural impacts of WWTP effluent on the delivery and transport of
antibiotic resistance genes. In our study, the river water proximal to wastewater effluent shows
evidence for the influx of multidrug-resistant Acinetobacter baumanii, an opportunistic pathogen
of concern for hospitals but also widespread in natural environments. Our work highlights the
importance of wastewater effluent in management of environmental antibiotic resistance, even in

high quality, rural river systems.
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INTRODUCTION

Environmental sources of antibiotic resistance increasingly threaten global public health (1-3).
Antibiotics from clinical use and livestock husbandry can promote the development of resistant
bacteria, and they readily pollute urban and rural waterways (4-6). Even very low concentrations
of antimicrobial drugs select for resistance (7). Antibiotic resistance genes (ARGS) that enter
environmental microbial communities have the potential for transfer to pathogenic bacteria (8).
Yet the public is rarely aware of the potential for exposure to ARG-carrying organisms in rural
aquatic systems, particularly those designated for preservation by government agencies such as
the Ohio Scenic Rivers Program (ohiodnr.gov).

A major source of ARGs and antibiotics in aquatic systems is the effluent of wastewater
treatment plants (WWTPs) (9-11). Wastewater treatment may actually select for increased
antibiotic resistance of potential pathogens such as Acinetobacter species (12, 13). It is important
to understand the potential of WWTP to transfer ARGs as well as resistant microbes into rural
streams, where they may disturb autochthonous microbial communities and spread drug
resistance to human microbiomes. We investigated the impact of WWTP effluent on the taxa
distribution and ARG counts in the Kokosing River, a rural river designated as a state “Scenic”
River by the Ohio Department of Natural Resources (ODNR) as well as meeting the criteria for
Exceptional Habitat by the Ohio Environmental Protection Agency (Ohio EPA) due to its high
species diversity and high ecological condition (14).

The river microbiome may be affected by WWTP effluent in various ways: by elevation
of phosphorus, nitrogen, and organic nutrients; by introduction of exogenous microbes and
antibiotics; and by introduction of DNA including ARGs. The WWTP in our study chlorinates

effluent only during the months of May through October, so we compared both conditions.
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While chlorination effectively decreases bacterial biomass by three log units (15, 16), it does not
fully remove ARGs from effluent. Some studies show partial decrease of ARGs by chlorine (17,
18), whereas others show that chlorination may increase the effluent content of ARGs and
promote their conjugative transfer (19, 20). Various stress conditions in the WWTP can co-
select antibiotic resistances and virulence properties (21). In some cases the release of heavy
metals, antibiotics, and other compounds into receiving rivers further propagates resistance by
selecting for ARGs that encode multidrug efflux pumps (10, 22-24).

The establishment of antibiotic resistance in environmental microbial communities can be
controlled when municipalities reduce antibiotic use (25). Therefore, understanding the impact
of ARG pollutants on rural river resistomes is important for understanding the lasting potential of
resistance in the environment. River resistomes offer the opportunity for surveillance of
opportunistic pathogens that move between environment and human host, such as the ESKAPE
pathogen Acinetobacter baumanii (26-28). The ESKAPE acronym comprises six leading
hospital-acquired pathogens with multidrug resistance (29). While A. baumanii is known for
hospital transmission, recent reports indicate community acquisition of strains that carry ARGs
on plasmids (30, 31). In the Kokosing River we examined evidence for Acinetobacter ARGs
such as tet(39) (32, 33) and msrE, mphE (34).

To understand how WWTP effluent with secondary treatment might alter rural river
microbial communities, we sampled sites upstream, just downstream, and further downstream of
the effluent release of the Mount Vernon WWTP on the Kokosing River. The Kokosing river in
east-central Ohio, USA, flows 92 km into the Walhonding River, a part of the watershed of the
Mississippi River (35). The Kokosing is included in Ohio’s Scenic Rivers Program; “scenic”

designates “a waterway that retains much of its natural character for the majority of its length”
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(ODNR, ohiodnr.gov). The river is designated for: Exceptional Warmwater Habitat, Agricultural
Water Supply, Industrial Water Supply, and Primary Contact Recreation (14). The river is used
regularly for recreation by the local residents, including students from an undergraduate college
(approximately 1800 students) situated at the downstream site reported by this study.
Nevertheless, the Ohio EPA recognizes some localized impairment of the Kokosing’s
warmwater habitat and use for recreational activities (mywaterway.epa.gov/).

Our study focused on a segment of the Kokosing in Knox County, proximal to the
WWTP that serves the City of Mount Vernon (pop. 17,000). Mount Vernon includes surrounding
suburban and rural homes as well as a 65-bed hospital. The WWTP system diagram is presented
in Figure S1. The design flow is 5.0 MGD; actual discharge rates vary from 2.4-16.0 MGD (36).
During our study dates the discharge accounted for 2-7% of the river’s daily flow rate (Table S1,
Supporting Material). This fraction is small compared to the base flow contribution of municipal
WWTP effluent to some rivers (37). Because it represents a small proportion of the river
discharge, we asked whether the WWTP effluent would affect the microbiome of the system
downriver of the plant. Small wastewater plants are situated approximately 25 km upstream
(Village of Fredericktown, design flow 0.70 MGD) and 8 km downstream (Village of Gambier,
0.45 MGD). Al of these plants disinfect their effluent by chlorination during six months of the
year (May 1st through October 31st).

We focussed our study on the river water microbiomes upstream, midstream (proximal to
effluent pipe) and downstream of the Mount Vernon WWTP. We examined how ARG numbers
are associated with the WWTP; and how much ARG elevation may persist downstream of the

effluent.
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MATERIALS AND METHODS
Water sampling and metadata. All water samples were obtained from the Kokosing River,
Knox County, Ohio. Water samples were obtained at three sites on the river to yield data on
water quality upstream of the WWTP effluent, just downstream of the WWTP in the mixing
zone where wastewater is mixed with river water (Midstream site), and further downstream
where plant effluent has been fully diluted (Fig. 1). The Upstream site (coordinates 40.38368, -
82.47042) lies approximately 1.0 km upstream of the Mount Vernon WWTP effluent discharge.
WWTP discharge rates and river flow rates on the dates of sample collection are presented in
Table S1. The Midstream site, nearest the WWTP (40.378007, -82.467822) is located
approximately 120 m downstream of the effluent release pipe, within the mixing zone of the
plant, where the effluent is initially mixed with river water. The Downstream site (40.376038, -
82.40346) lies approximately 6.4 km downstream of the WWTP. The next nearest site where
wastewater enters the Kokosing is the Fredericktown WWTP, a small plant (0.70 MGD)
approximately 25 km upstream of the Mount Vernon WWTP. The three river sites were sampled
using identical procedures at six dates throughout the year: October 27, November 3, and
December 3, 2019; and April 13, May 28, and June 25, 2020. The WWTP effluent undergoes
chlorination before discharge only from May 1% through October 31%; thus, only the October,
May and June samples occurred during the time that effluent was chlorinated.

On each sampling date, the three sites were sampled within a 2-h period. At each site,
400 ml water was collected from the river using a dipper and sealed in sterile WhilrPak® Bags.
Within 24 h of sample collection, three 100-ml samples were vacuum-filtered through a sterile
0.22-micron filter, 45 mm in diameter. Filter paper was folded using sterile forceps and

deposited in centrifuge tubes which were then frozen at -80°C to preserve microbial DNA. Water
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147  pH, conductivity, temperature, and dissolved oxygen (DO) were measured in the field using a
148  Hannah pH/conductivity combination meter and a YSI Pro20 DO meter (Yellow Springs

149 Instruments). Nutrient concentrations were analyzed using collected water samples within 24 h
150 using a portable a Hach® DR900 Multiparameter Portable Colorimeter, including nitrate (NO3" -
151 -N), ammonia (NHs-N) and phosphate (PO4s—FP; Table S1, Supporting Information).

152

153 DNA isolation and sequencing. Metagenomic DNA was isolated using a ZymoBIOMICS DNA
154  Miniprep Kit. For control samples, 2 ug of the ZymoBIOMICS Microbial Community Standard
155  was processed under the same conditions. This community standard contains defined proportions
156  of ten microbes (5 Gram positive, 3 Gram negative, 2 fungal).

157 Each filter was cut into small pieces and transferred to a ZR BashingBead Lysis Tube.
158 650 pl ZymoBIOMICS Lysis Solution was added, and all tubes were processed on a VVortex

159  Genie 2 for 40 min. The remainder of the preparation was performed according to the

160  manufacturer’s protocol. Shotgun sequencing of DNA was performed by Admera Health

161  (www.admerahealth.com). Libraries for sequencing were prepared using Illumina’s Nextera XT
162  DNA Library Preparation Kit, following manufacturer’s instructions. Final libraries were then
163  pooled and sequenced on Illumina HiSeq X sequencer for 150-bp read length in paired-end

164  mode, with an output of 40 million reads per sample.

165

166 ARG marker analysis. Sequence reads were analyzed for ARG marker hits using ShortBRED,
167  acomputational pipeline from Huttenhower Biobakery (38). ShortBRED-Identify was used to
168  create a database of short marker peptides specific to ARG protein families compiled from the

169  Comprehensive Antibiotic Desistance database (CARD) (39). From the ARG families, short


https://doi.org/10.1101/2021.04.26.441562
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441562; this version posted July 17, 2021. The copyright holder for this preprint (which

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

consensus peptides were identified based on regions of amino-acid sequence identity. To
maintain high specificity, the set of peptides was then filtered against the Univeral Protein

Database UNIREF90 (https://www.uniprot.org/uniref/) (data accessed October 23, 2019). This

database was used to eliminate markers that match sequences outside a specific ARG. One
additional marker, ARO_3002930 (vanRO, Rhodococcus_hoagii) was removed from the marker
set because it lacked specificity. The final list of markers used for our study (ShortBRED-2019)
is presented in Supplemental Table S2.

The ShortBRED-2019 marker list was used to screen metagenomic reads from each of
the three river sites, from six sampling dates (Supplemental Table S3). Total read counts per

sample were determined using Trimmomatic (40) (Supplemental Table S4).

Taxa profiles. The microbial taxa were profiled using the Huttenhower lab pipeline MetaPhlAn2
(Metagenomic Phylogenetic Analysis) MetaPhlAn2 (41, 42). MetaPhlAn2 assigns
metagenomic reads to taxa using a set of clade-specific marker genes identified from
approximately 17,000 microbial reference genomes. Taxa were grouped at the levels of phylum,
class, order, family, and genus (Supplemental Table S5). For control, MetaPhlAn2 was also
used to predict the taxa of ZymoBIOMICS Microbial Community Standards that had been
prepared concurrently with our experimental samples. For all preparation sets, MetaPhlAn2
consistently predicted the genera of the eight bacterial components and one fungal component of

the standard (Table S7).

Data Analysis. To generate an ARG heatmap from the ShortBRED data, we employed R Studio

® 1.3.073. For One-Way ANOVA analysis, we used JMP ® 14.2.0. One-Way ANOVA was
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193  used to analyze the significance of ARG and taxa variances among the sites. ARG hits and
194  metadata were correlated by the Spearman rank correlation using R (Supplemental Table S6).
195

196  Data submission. For all DNA sequences, FASTQ files were submitted to NCBI, SRA

197  accession number PRINA706754.

198
199

10
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RESULTS

ARGs are elevated downstream of the WWTP effluent. We sought to determine how the
ARG distribution of the Kokosing River microbiomes was affected by the effluent from the
Mount Vernon WWTP. Microbial samples were obtained from three sites on the Kokosing
River, designated Upstream (1.0 km upstream of the WWTP), Midstream (120 m below the
effluent pipe) and Downstream (6.4 km downstream of the effluent pipe) (Fig. 1). From all sites
the metagenomic DNA sequences were analyzed for ARG prevalence using the ShortBRED
pipeline (38) applied to the CARD database (39). For each marker, the numbers of read hits were
summed across all samples and dates, and the markers were ranked according to total hits
(Supplemental Table S3). Results for the top 60 scoring markers are presented as a heat map
(Fig. 2).

Most of the top-scoring ARGs were elevated in the Midstream samples, compared to
samples from either Upstream or Downstream. The elevated ARGs include resistance
determinants from several organisms that are of clinical concern. Most striking, six of the
abundant ARGs are associated with the ESKAPE pathogen Acinetobacter baumanii and related
strains: msrE, mphE, tet(39), CfxA6, 0xa280, and aadA4 (26-28). The three top-ranked ARGs
(msrE, mphE, tet(39)) are found together on A. baumanii plasmid pS30-1 (34). Overall, the four
top A. baumanii ARGs account for 37% of the total ARG hits found.

We tested whether the Downstream samples show evidence of carryover from the
Midstream site. First, the numbers of ARG hit reads were re-sorted by Midstream site ARG
totals (Table 1). For each of the top-ranked Midstream ARGs, we present the difference in ARG
hits between Upstream and Downstream. The top 27 most abundant Midstream ARGs, including

those associated with Acinetobacter, all show higher numbers at the Downstream site compared

11
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223  to the Upstream location. In addition, we ranked Midstream ARGs separately for each of the six
224 individual sampling dates and tested the top 20 ARGs for evidence of persistence downstream,
225  using the Wilcoxon signed rank test (Figure S2). Four of the six dates showed significant

226  increase of Midstream ARGs at the Downstream site compared to the Upstream site (P < 0.0083,
227  with Bonferroni correction).

228 The overall percentage of reads that matched ARG markers ranged from 0.0015-0.0052%
229  for Midstream samples, and from 0.0002-0.0010% for Upstream and Downstream samples.

230  These numbers indicate roughly 5-fold elevation of ARG hits in the Midstream, compared to the
231  other two sites. We considered the possible effect of sample size, that is, whether the ARG hit
232 numbers reflect the number of reads in our samples (Supplemental Table S4). The read counts
233  from individual samples deviated less than 20% from the mean. There was no significant

234  difference in read numbers amongst the three collection sites Upstream, Midstream, and

235  Downstream. Thus, the elevated number of ARGs near the effluent pipe was independent of the
236  number of sequenced reads per sample.

237

238  Taxa profiles associated with WWTP effluent. We investigated whether the elevation of

239  ARGs by the WWTP was associated with specific microbial taxa. The taxa structure of our river
240  metagenomes was determined using the pipeline MetaPhlAn2 (41). The distribution of major
241  bacterial phyla and classes in our samples is shown in Fig. 3A, with p-values for Wilcoxon rank
242  sum test (Fig. 4A). Reads annotated to the genus Acinetobacter showed a striking prevalence in
243  the Midstream, accounting for as high as 30% of predicted organisms (June sample, Midstream);
244 and in some months elevated levels persisted downriver (December and April). By comparison,

245  through ShortBRED, ARGs associated with A. baumanii ARGs accounted for 37% of the total

12
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ARG hits. This result is striking, since the ShortBRED and MetaPhlAn2 pipelines use very
different marker sets (ARGs versus core genome components). Thus the two pipelines offer
orthogonal evidence consistent with a high level of multidrug-resistant A. baumanni associated
with the WWTP plant effluent.

The Midstream site showed significantly higher proportions of several major taxa than
those Upstream (Fig. 3A). The taxa with greater abundance include Bacteroidetes (p=0.002),
Epsilonproteobacteria (p=0.002), Gammaproteobacteria (p=0.002) and Firmicutes (p=0.005).
Downstream taxa appeared largely similar to those Upstream, with the exception of elevated
abundance of Bacteroidetes (p=0.015). These four taxa are consistent with a human fecal source,
during the period of effluent chlorination as well as during absence of chlorination. The
Upstream and Downstream sites showed higher proportions of Actinobacteria relative to the
Midstream. Alphaproteobacteria and Betaproteobacteria showed high prevalence across all three
sites. High levels of Actinobacteria and Betaproteobacteria are consistent with metagenomic
studies of freshwater oligotrophic lakes and rivers (43).

We considered whether the Midstream elevated ARGs might be associated with bacterial
clades that were enriched in Midstream samples. A Spearman rank correlation was performed
comparing ARG hits with the major taxa identified (Fig. 4C). ARGS were categorized as “Top
60 and “below 60 based on overall rank prevalence (Fig. 2 and Supplemental Table S3). The
“Top 60” were those ARG classes showing relative elevation at the Midstream site near the
WWTP effluent, whereas ARGs “Below 60 (ranked below the top 60 ARGs) more likely
represent autochthonous genes commonly found in a relatively undisturbed river ecosystem. The
number of ARG hits at Midstream and Downstream showed a positive correlation with

Firmicutes and Epsilonproteobacteria, taxa that might be expected to arise from the WWTP

13
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effluent. Negative correlations were seen between ARGs and Betaproteobacteria, which are most
likely native to the river.

If the source of “top 60” ARGs is the WWTP, are they carried by the genomes of effluent
bacteria, or do they enter the river in the form of environmental DNA? The answer is unclear
from our data. However, the occurrence of effluent chlorination (during the months of
November, December and April) shows no significant effect on the Midstream taxa profiles (Fig.
3A). If live bacteria are responsible for ARGs elevation, significant numbers must be surviving

chlorination.

Nitrate, phosphate and ammonia levels show no correlation with elevated ARGs. The
Mount Vernon WWTP effluent commonly includes total suspended solids 1-37 mg/L,
phosphorus 2.6-4.1 mg/L, nitrate plus nitrate 5.86-28.9 mg/L, ammonia 0.107-5.77 mg/L
(summer), 0.31-10.5 mg/L (winter) (14). Consistent with the above data, our Midstream water
samples showed elevated levels of nitrate, phosphate and ammonia relative to the Upstream and
Downstream Sites (Fig. 5 and Supplemental Table S1). We therefore looked for possible
correlations between water chemistry and ARG prevalence. Spearman rank correlations were
performed for ARG levels and various chemical and physical factors (Supplemental Table S5).
Correlations were run separately for the sums of Top 60 ARG hits and for the sums of Below 60
ARG hits. We hypothesized that the top 60 ARGs are dominated by the WWTP effluent and
would therefore show stronger correlations with the Midstream chemistry.

In fact, the nitrate, phosphate and ammonia levels showed no consistent correlations with

ARGs, either Top 60 or Below 60. This finding suggests that, despite the higher concentration of

14
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291 these nutrients near the effluent pipe, the elevated levels of nitrogen and phosphorus are not

292  correlated with the increased level of ARGs.

293 The plant effluent typically has a dissolved oxygen content (DO) of 5.3-10.2 mg/L (14).
294  In the Kokosing river samples, we observed DO values ranging from 8.22-12.60 mg/L (Table
295  S1). There was no significant correlation between river DO values and ARG prevalence

296  (Spearman rank correlations, Table S6).

297 Electrical conductivity (EC) was measured in the Kokosing samples, which has been
298  shown to be an indirect indicator for dissolved organic carbon (DOC) (44-46). Previous studies
299 find connections between DOC and ARG abundance (47, 48). Over the courrse of our study, EC
300 values ranged from 500-890 uS/cm (Table S1) but no significant correlation was found with site
301 location or season, nor with ARG levels (Table S6).

302

303 ARG numbers increased with pH and temperature. The strongest strongest correlations we
304  saw between ARGs and water chemistry were for pH and temperature (Supplemental Table
305  S5). The range of pH values observed was pH 7.19-8.55 (Supplemental Table S1). At

306  Midstream and Downstream sites, pH showed positive correlations with ARG hits, particularly
307 the Below 60 ARGs. These results suggest the possibility that low pH might select against ARGs
308 that commonly occur in metagenomes of the undisturbed river. In laboratory evolution

309 experiments on Escherichia coli, low pH and membrane-permeant aromatic acids select for loss
310 of ARGs and ARG regulators (49, 50).

311 Temperature showed a strongly negative correlation with ARG levels, particularly those
312  Below 60. This finding suggests the possibility of high-temperature selection against ARGs

313  commonly found in the river community.
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DISCUSSION

Past studies have investigated ARGs in urban waterways, but there has been relatively
little research on the occurrence of ARGs in rural watersheds characterized by low human
population density and agricultural land use. In addition, few studies have focused on rivers that
are considered to be of exceptional quality, such as the Kokosing River investigated here. Forty-
seven miles of the river are designated “scenic” by the state, and the river attracts members of the
public for fishing, birding and canoeing. Nonetheless portions of the river are impacted by
livestock and agriculture, as well as pollution from a residential lakeside development (14). In
2007, portions of the watershed were reported to be impacted by gravel mining, erosion, and
conversion to row crops.

Despite the overall high water quality of this river system, and the relatively small
contributions of WWTP effluent to stream discharge, we found substantially higher ARG
abundance downriver of a WWTP compared to the more agricultural portions of the watershed
that lie upstream. we found substantially higher ARG abundance downriver of a WWTP
compared to the more agricultural portions of the watershed that lie upstream. The WWTP
influx inputs a few percent of the total river flow rate (Supplementary Table S1). Thus, a
relatively small city WWTP (catchment population 17,000) may foster the spread of ARGs in a
river that is in excellent ecological condition, as has been shown for anthropogenic contaminants
in large, urban centers (see for example (51)).

The footprint of the WWTP effluent release was evident across our data, including shifts
in ARG prevalence (Fig. 2, Table 1), microbial community taxa distribution (Fig. 3), and
chemical indicators (Fig. 5). The top three ARGs for ShortBRED markers ranked in our

metagenomes are known to occur together on A. baumanii plasmid pS30-1 (34). In addition, the
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MetaPhlAn2 taxonomic pipeline, with completely different markers, found high prevalence of A.
baumanii near the WWTP effluent (Fig. 3B). It is possible that the multidrug-resistant A.
baumanii actually comes from the WWTP. Wastewater treatment is known to increase the
prevalence of multidrug resistance in A. baumanii from influent to the final effluent (12).

An effect of the wastewater effluent could be to increase community exposure to drug-
resistant strains of this ESKAPE pathogen. It is also possible that the ARGs associated with A.
baumanii have been acquired by other members of the native river microbial community.
Nevertheless, the possibility of A. baumanii contamination should be followed up by further
studies. Acinetobacter species of concern are emerging worldwide, especially in warmer
climates; and their prevalence likely will increase with climate change (52-54). River levels of
Acinetobacter species can be examined by targeted metagenomic analysis (55), amplicon
assessment (56) and culture-based methods (57).

Rural rivers have substantial economic and cultural significance for local human
communities. Nevertheless, the public is rarely aware of the potential impact of WWTP ARG
exposure, with the common presence of WWTP plants along rural rivers. For example, 25 km
upstream of the Mount Vernon plant is the Fredericktown WWTP; and just downstream of our
sampled sites in Gambier, another small WWTP releases effluent to the Kokosing. Further
downstream from Gambier (20 km) lies the Danville WWTP (design flow 0.20 MGD).

We found evidence that detectable levels of ARGs persist in the river microbial
community at least several kilometers past the effluent pipe. The Downstream site exhibited
higher ARG counts than Upstream for the top 27 ARGs elevated at Midstream (Table 1). Thus,
WWTP-associated ARGs persist and are transported in the environment at least 6.4 km

downstream. Most of these ARGs are found in multiple species and may be transmitted by
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mobile elements (39). These ARGs might become established in the river microbial resistome
and could propagate to pathogenic bacteria in the future, posing a risk to human health.

The WWTP-proximal site also showed substantial alteration of overall taxa distributions,
such as increased prevalence of Bacteroidetes and Firmicutes (Fig. 4), findings that are
consistent with previous study (35). The increase in Bacteroidetes persisted 6.4 km downstream.
In addition, the WWTP-proximal site showed depletion of Actinobacteria, although the levels of
this river group recovered downstream.

There is need for future investigation regarding efficient methods of ARG control from
WWTP in freshwater systems (59). In addition, the public should be more aware of the entry of
wastewater into recreational waterways. Better awareness of the consequences of WWTP-
effluent release into rivers will improve our ability to sustain healthy microbial communities in

our freshwater systems.
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563 TABLES
564
565
566 Table 1. Top-ranked Midstream ARG hits: Difference in hit numbers between
567 Downstream and Upstream Sample Sites*
Mid Reads:
Rank | ARG Family | Host Organism for ARG (example) |Down - Up
1 msrE Acinetobacter baumannii 60
2 mphE Acinetobacter baumannii 64
3 tet(39) Acinetobacter baumannii 51
4 CfxAB Acinetobacter baumannii 70
5 OXA-256 Enterobacter cloacae 28
6 Mef(En2) Bacteroides fragilis 36
7 AAC(3)-Vlla Streptomyces rimosus 34
8 OXA-5 Pseudomonas aeruginosa 9
9 QnrS6 Aeromonas hydrophila 25
10 OXA-226 Pseudomonas aeruginosa 16
11 ANT(4 )-Ib Staphylococcus aureus 38
12 mirA Mycobacterium tuberculosis 8
13 sult Vibrio fluvialis 12
14 OXA-280 Acinetobacter johnsonii 11
15 tete Escherichia coli 4
16 EreA2 Providencia stuartii 3
17 mefC Photobacterium damselae 7
18 tetQ Bacteroides fragilis 9
19 OXA-46 Pseudomonas aeruginosa 9
20 MOX-5 Aeromonas caviae 11
21 CblA-1 Bacteroides uniformis 2
22 ErmB Enterococcus faecium 17
23 (aadA4) Acinetobacter baumannii 1
24 mphG Photobacterium damselae 6
25 ErmG Bacteroides thetaiofaomicron 4
26 dfrF Enterococcus faecalis 2
568 27 ErmF Bacteroides fragilis 14

27
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569

570  *ARGs shown represent the top 30 most abundant ARGs from Midstream sites. Values in right-
571  hand column indicate the difference between total Downstream reads and total Upstream reads
572  that match the marker shown.

573
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Figure 1. Map of water sampling sites on the Kokosing River. The Upstream site is 1 km
upstream of the Mount VVernon City Wastewater Treatment Plant (WWTP). Midstream site is
located 9 m downstream of the WWTP. Downstream site is 6 km downstream of the WWTP.

Map was generated using the National Wild and Scenic Rivers System (2021).
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586
ARG \ Taxon of Origin or Prevalence \ October \ Novemb \ D b | April \ May \ June | Total
‘ Family Up Mid Down Up Mid Down Up Mid Down Up Mid Down Up

1 msrE Acinetobacter baumannii

2 mphE Acinetobacter baumannii

3 tet(39) Acinetobacter baumannii

4 CixAB Acinetobacter baumannii

5 AAC(3)-Vlla Streptomyces rimosus

6 ANT(4) Staphylococcus aureus

7 OXA-256 Enterobacter cloacae

8 Mef(En2) Bacteroides fragilis

9 OXA-5 Pseudomonas aeruginosa

10 QnrS6 Aeromonas hydrophila

11 OXA-226 Pseudomonas aeruginosa

12 mtrA Mycobacterium tuberculosis

13 sult Vibrio fluvialis

14 OXA-280 Acinetobacter johnsonii

15 tet(E) Escherichia coli

16 mefC Photobacterium damselae

17 EreA2 Providencia stuartii

18 ACT-35 Enterobacter cloacae

19 OXA-156 Pandoraea pulmonicola

20 tetQ Bacteroides fragilis

21 OXA-46 Pseudomonas aeruginosa

22 ErmB Enterococcus faecium

23 MOX-5 Aeromonas caviae

24 Erm(O)-Irm Streptomyces lividans

25 ChlA-1 Bacteroides uniformis

26 SHV-100 Klebsiella pneumoniae

27 mphG Fhotobacterium damselae

28 OXA-443 Ralstonia mannitolilytica

29 aadA4 Acinetobacter baumannii

30 EmF Bacteroides fragilis

31 emlAS Gram-negative species
587 32 FOX-3 Klebsiella oxytoca

33 EmG Bacteroides thetaiotaomicron

34 berC Bacillus licheniformis

35 OXA-137 Brachyspira pilosicoli

36 dfrF Enterococcus faecalis

37 tetW Butyrivibrio fibrisolvens

38 MOX-9 Citrobacter freundif

39 mefB Escherichia coli

40 gacH Vibrio cholerae

41 AER-1 Aeromonas hydrophila

42 ANT(3) Serratia marcescens

43 EreD Riemerella anatipestifer

44 aadA27 Acinetobacter Iwoffii

45 GES-21 uncultured bacterium

46 InuC Streptococcus agalactiae

47 sul2 Vibrio cholerae

48 mphA Escherichia coli | 11 |

49 APH(6)-Id Pseudomonas aeruginosa

50 OXA-31 Pseudomonas aeruginosa

51 tet(L) Geobacillus stearothermophilus

52 lIsakE Enterococcus faecalis m

53 imiS Aeromonas veronii

54 tet(40) Clostroides sp.

55 ANT(3) Escherichia coli

58 OXA-45 Pseudomonas aeruginosa

57 mel Streptococcus pyogenes

58 APH(3)-llla  Campylobacter coli CYM N29710

59 tetX Bacteroides fragilis
588 60 aads Transposon Tn4551
589

590 Figure 2. Heatmap of relative abundance of top 60 ARG marker hits. Read hit numbers are
591  ranked in descending order by total hits across samples. Yellow represents highest abundance,
592  cyan represents lowest abundance.

593
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594  Figure 3. ARGs and bacterial taxa distribution across sampling sites and dates.

595  A. Percentages of phyla and of proteobacterial classes predicted by MetaPhlAn2. Taxa with
596  prevalence too small to be quantified were grouped as “Other.” Samples are sorted by site, then
597 by sampling date. Horizontal black bars indicate dates when effluent was unchlorinated.

598  B. Percentage of Acinetobacter species predicted by MetaPhlAn2.

599
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Midstream -- Downstream 0.18 0.083 0.015 0.002 0.026 0.015 0.608 0.189 0.002
Upstream -- Downstream| 0.699 0.818 0.093 0.093 0.589 0.015 0.074 0.937 0.375
Midstream -- Upstream| 0.093 0.132 0.002 0.002 0.004 0.002 0.074 0.093 0.005

B.
Taxa and ARG
prevalence: Upstream Upstream Midstream [Midstream |Downstream |Downstream
Top 60 and Below 60 [Top 60 Below 60 Top 60 Below 60 Top 60 Below 60
Firmicutes 0.55 0.84 0.43 0.71 0.89 0.83
Bacteroidetes| ' -020 031 0.66 0.49 0.49 0.77
Cyanobacteria 0.54 0.26 0.03 0.20

Actinobacteria -0.09
Alphaproteobacteria
Betaproteobacteria
Gammaproteobacteria
Epsilonproteobacteria

600

601  Figure 4. Taxa correlations across river sites.

602  A. Wilcoxon rank sum test p-values for comparison of taxa percentages at different sites,
603  grouped across all dates. p-values < 0.02 indicate significant differences (highlighted).
604  B. Spearman rank correlations between bacterial taxa and ARG abundance.

605
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606
607

608  Figure 5. Nitrate, phosphate and ammonia concentrations across sites and dates.
609  Concentrations of nitrate, phosphorus and ammonia were measured at each river site for each
610  month. Full metadata are presented in Supplemental Table S1; and metadata correlations with

611 ARG abundance in Supplemental Table S6.
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