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Abstract:

Eukaryotic cells respond to stress via adaptive programs that include reversible shutdown of key
cellular processes, the formation of stress granules, and a global increase in ubiquitination. The
primary function of this ubiquitination is generally considered to be tagging damaged or
misfolded proteins for degradation. Here we show that different types of stress generate distinct
ubiquitination patterns. For heat stress, ubiquitination correlates with cellular activities that are
downregulated during stress, including nucleocytoplasmic transport and translation, as well as
with stress granule constituents. Ubiquitination is not required for the shutdown of these
processes or for stress granule formation, but is essential for resumption of cellular activities and
for stress granule disassembly. These findings indicate that stress-induced ubiquitination primes

the cell for recovery following heat stress. =~ = )
One Sentence Summary: Stress-induced ubiquitination is essential for recovery of cellular

activities following heat stress.

Main Text:

Eukaryotic cells have a stereotypical response to a variety of stresses that aids in their
survival until normal growth conditions are restored (/, 2). This stress response is associated
with inhibition of global translation along with upregulated expression of select stress response
factors (/-7). In addition to programmed shutdown of translation, evidence suggests that other
biological pathways are also shut down or perturbed, including nucleocytoplasmic transport (8-
13), RNA splicing (14, 15), and cell cycle activities (/6-18), among others. Inhibition of
translation and subsequent polysome disassembly leads a rise in the cytoplasmic concentration of
free mRNA that culminates in the formation of cytoplasmic condensates known as stress
granules (/9). These stress-induced cellular changes are adaptive in the short term but require
coordinated reversal after stress is removed in order to resume cellular activities and reestablish
homeostasis. Accordingly, upon the removal of stress, stress granules disassemble while
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translation and other biological pathways return to normal activity levels on a time scale of
minutes to a few hours (2, 20-22). However, the mechanisms that facilitate this recovery are not
well understood.

One hallmark of the cellular response to many types of stress is a global increase in poly-
ubiquitin conjugation, which has largely been attributed to increased protein quality control
(PQC) activity in response to stress-induced protein damage and translation arrest (/-3). This
increased activity is required for the ubiquitin-dependent degradation of both defective ribosomal
products (DRiPs), the primary source of misfolded proteins in cells under normal conditions (4),
as well as proteins susceptible to stress-induced misfolding, such as thermolabile proteins or
proteins with intrinsically disordered domains (2, 5-7). Interestingly, immunostaining and
proteomics have demonstrated the presence of ubiquitin and some ubiquitin pathway proteins in
stress granules (23-28), and studies have shown that several deubiquitinating enzymes can
contribute to regulating stress granule dynamics (23, 27), although the mechanism of this
regulation is largely unknown. Furthermore, when PQC function is disrupted, ubiquitinated
DRiPs can aberrantly accumulate in stress granules and impair stress granule function (29-317).
Several investigations have examined the possibility that ubiquitination may play an additional
role in regulating stress granule dynamics, yielding conflicting results: whereas one study
reported that the ubiquitin-selective segregase VCP facilitates disassembly of arsenite-induced
stress granules (29), a more recent study found minimal ubiquitination of stress granule proteins
and no detectable role for ubiquitin conjugation in the formation or disassembly of arsenite-
induced stress granules (32). The role of ubiquitination in regulating stress granule dynamics
remains unresolved, as does the role of ubiquitination in regulating other cellular activities that
are altered or shut down by stress.

Analysis of stress-dependent changes to the global protein ubiquitin modification
landscape, or “ubiquitinome,” can provide unbiased insights into details of the stress response by
connecting differentially ubiquitinated proteins with specific biological pathways. To this end,
several proteomic techniques have been developed to allow for quantitative comparisons of
ubiquitinomes from differentially treated cell or tissue samples (33-36). Analysis of the
ubiquitinome in yeast has suggested that heat shock-induced ubiquitination primarily targets
cytosolic misfolded proteins (37, 38), consistent with the presumption that ubiquitination in this
setting relates exclusively to PQC, though it remains unknown whether the same holds true in
human cells. Furthermore, comprehensive analysis to directly compare changes in ubiquitination
in response to various stresses has not been undertaken, and it remains unclear to what extent
ubiquitination is similar or different in these different contexts.

Here we used a series of complementary proteomic analyses in mammalian cells,
including tandem ubiquitin binding entity (TUBE) enrichment (35), di-GLY enrichment (36),
and tandem mass tagging (TMT) (39), to quantitatively assess the stress-responsive
ubiquitination elicited by five different types of stress. We determined that each type of stress is
associated with unique but overlapping patterns of ubiquitination. Taking a deep dive into the
heat stress response, we determined that in addition to playing a role in PQC, ubiquitination also
correlates with biological processes that are downregulated or shut off. Remarkably,
ubiquitination is not involved in shutting off these processes, but is essential for the restoration of
normal activity during the recovery phase following stress, including resumption of
nucleocytoplasmic transport and translation, and the disassembly of stress granules.

Results
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Different cellular stresses induce distinct patterns of ubiquitination

To investigate whether cells deploy different patterns of ubiquitination to cope with
different types of stress, we performed proteomic analysis following TUBE-based capture of the
ubiquitinome in HEK293T cells exposed to heat stress (43°C), oxidative stress (sodium arsenite),
osmotic stress (sorbitol), UV stress, or proteasomal inhibition (bortezomib) (Fig. 1, A and B).
Following exposure to each type of stress, lysates were incubated with HALO-linked TUBE
resin to capture ubiquitin conjugates, followed by label-free LC-MS/MS (Fig. 1, A and B).
Immunoblotting for poly-ubiquitin indicated that all stress types except UV led to an increase in
total poly-ubiquitin conjugates (input blot, Fig. 1C) and that the TUBESs captured the vast
majority of the ubiquitinated material (compare bound and unbound blets, Fig. 1C). We used
harsh buffer conditions in our TUBE protocol to minimize non-covalent binding of non-
ubiquitinated proteins to poly-ubiquitin chains or ubiquitin conjugates. We detected ~200-300
ubiquitinated proteins per stress condition and a total of 500 unique proteins across all five stress
conditions, many of which increased or decreased in abundance in response to stress (Fig. 1D,
table S1).

In comparing the ubiquitin-conjugate landscape across the five modes of stress,
unsupervised hierarchical clustering revealed that each type of stress was associated with a
distinct pattern of altered ubiquitination (Fig. 1E). Indeed, the majority of proteins with
increased or decreased ubiquitination were associated with a single type of stress (Fig. 1F).
Several patterns emerged from this analysis. Some proteins showed increased or decreased
ubiquitination in response to all 5 stresses, suggesting that certain ubiquitination events are part
of a non-specific, generalized stress response (e.g., Groups a and b, Fig. 1E). On the other
hand, some prominent groups of proteins showed altered ubiquitination in a stress-specific
manner. For example, ubiquitination of some proteins was increased exclusively in response to
heat shock (Group ¢, Fig. 1E) or UV exposure (Group d, Fig. 1E). The emergence of these
distinct protein groups suggested the existence of stress-specific patterns of ubiquitination that
represent distinct adaptive responses to distinct stressors. To test this hypothesis, we deeply
investigated stress-responsive ubiquitination in response to heat stress and oxidative stress,
stresses that evoked a large number of unique changes in ubiquitination. Whereas the cellular
response to these stresses have been intensely studied, insight into stress-responsive
ubiquitination has been very limited and largely assumed to reflect non-selective degradation of
misfolded or damaged proteins.

Heat stress leads to rapid increases in total poly-ubiquitination and a time-dependent shift
in solubility of ubiquitin conjugates

We first examined the kinetics of poly-ubiquitin conjugate accumulation during heat
shock and recovery. Heat stress-induced ubiquitination occurred rapidly, with increased poly-
ubiquitin conjugates apparent as early as 15 minutes and peaking within 30 minutes following
heat shock (Fig. 2A). The accumulated poly-ubiquitin conjugates remained at a constant elevated
level during prolonged stress for at least 150 minutes (Fig. 2A). Prolonged heat shock has been
reported to result in progressive loss of solubility in a fraction of the proteome (40-43), although
the relationship to ubiquitination has not been examined previously. Here we observed a time-
dependent dynamic shift in the ubiquitinome between soluble and insoluble fractions.
Specifically, accumulation of poly-ubiquitin conjugates in the soluble fraction peaked at about
30 minutes and then progressively declined over the course of the experiment. In contrast, poly-
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ubiquitin conjugates accrued more slowly in the insoluble fraction, reaching a plateau after 60
minutes (Fig. 2A). The accumulation of poly-ubiquitin conjugates after heat stress was
temporary, returning to baseline within 3 hours after a 30-minute heat shock (Fig. 2B).

With this kinetic profile in mind, we next performed deep proteomic analysis of the heat
stress-associated ubiquitinome by TUBE-LC-MS/MS. We examined this ubiquitinome in the
soluble fraction at an early time point (15 min) corresponding to the initial increase in poly-
ubiquitination, and at a later time point (60 min) in both soluble and pellet fractions (Fig. 2C).
This quantification of over 1,000 ubiquitinated proteins in the TUBE-recovered samples
indicated good depth of coverage and reproducibility (fig. S1, A and B, table S2). We also
verified heat stress-induced increase in poly-ubiquitination of seven representative proteins by
immunoblotting (fig. S1C). Importantly, replicating this experiment in U20S cells gave results
very similar to those in HEK293T cells, indicating that heat stress-induced changes in
ubiquitination are not specific to one cell type (fig. S1D and table S3).

In examining the temporal profile of changes in the ubiquitinome in the soluble fraction,
we observed only modest changes at 15 minutes but more substantial changes at 60 minutes
following heat stress (Fig. 2, D-F). These results indicate that despite an increase in a poly-
ubiquitin smear detected by immunoblotting at 15 minutes (Fig. 2A), the global shift in the
ubiquitinated protein landscape is better reflected later in the stress response process. We
therefore directed the majority of our subsequent analyses to examining changes to the
ubiquitinome after 60 minutes of heat shock.

Significant changes to the ubiquitinome were also detected in the pellet fraction. Whereas
we detected no loss of ubiquitinated proteins in the pellet fraction, there was a significant
increase in 172 ubiquitinated proteins after 60 minutes of heat stress (Fig. 2, G and H). Roughly
80% of these proteins had also been detected in the soluble fraction, where these proteins had
been found to be enriched, depleted, or unchanged in response to heat stress (Fig. 2, I and J).
Importantly, our analysis indicated that while some ubiquitinated proteins do accumulate in the
pellet fraction following heat shock, an individual protein’s ubiquitination status was not
predictive of its solubility. Therefore, in subsequent analyses we assessed the significance of heat
stress-induced ubiquitination of all proteins irrespective of whether they appeared in the soluble
fraction, pellet fraction, or both. Altogether, our analysis demonstrated that heat stress induced a
global shift in the ubiquitin landscape, resulting in a “heat shock ubiquitinome™ of 381 proteins
which we define as all proteins showing a predicted net total increase in ubiquitination in
response to heat stress (Fig. 2J and table S4).

Heat and arsenite stress induce different changes to the ubiquitinome

In the initial characterization of ubiquitination patterns that arise in response to different
stressors, unsupervised hierarchical clustering showed that the pattern of ubiquitination
following arsenite stress was the most similar to that generated by heat stress (Fig. 1E). To
examine this more deeply, we characterized arsenite stress-induced ubiquitination at 60 minutes
in triplicate following the same approach that we used to define heat stress-induced
ubiquitination. After identifying proteins whose ubiquitination was significantly altered relative
to control cells (tables S4 and S5), we compared the responses to arsenite stress versus heat
stress. Consistent with our pilot study, this deep analysis confirmed significant overlap in the
arsenite stress- and heat stress-induced ubiquitinomes in both the soluble and pellet fractions (fig.
S1E). This overlap was evident not only among proteins that showed increased ubiquitination,
but also those that showed decreased ubiquitination (fig. S1F). Nevertheless, this analysis also
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confirmed stress-specific patterns in altered ubiquitination. Indeed, more than 400 significant
changes in ubiquitination were unique to either arsenite or heat stress (fig. S1, E and F, tables
S2 and S5).

Stress-dependent ubiquitination is not reflected by altered abundance

We next sought to determine the extent to which changes in the stress-induced
ubiquitinomes reflected changes in total protein levels due to altered rates of synthesis or
ubiquitin-dependent degradation. To investigate changes in expression at the protein level, we
performed multiplexed TMT MS quantification of the whole proteome from unstressed, heat-
stressed, or arsenite-stressed cells in the presence or absence of proteasome inhibition (0.5 uM
bortezomib) (Fig. 3A). Lysates were digested and labeled by TMT in 11-plex mode, followed by
nanoscale LC-high resolution MS/MS. Remarkably, of the 12,586 proteins quantified, the vast
majority of proteins showed no statistically significant stress-dependent change in total
abundance using 1.5-fold and P < 0.05 as a cut-off (Fig. 3B, fig. S2A, and table S6).
Nevertheless, we detected several expected changes in total protein levels in response to both
stress types, including the accumulation of the well-known stress response transcription factors
ATF4 and XBP1, and depletion of BTG1, a regulator of ATF4 (44) (fig. S2B and table S6).
Importantly, no proteins with a stress-dependent increase in ubiquitination showed a significant
increase in total protein levels, indicating that increased capture in the TUBE experiments was
reflective of increased ubiquitination rather than increased levels of total protein. Additionally,
only eight proteins with heat shock-dependent increases in ubiquitination showed a statistically
significant decrease of > 1.25-fold in total protein levels in response to stress, of which only
three proteins (EPPK1, GCNI1, CYP51A1) decreased > 1.5-fold (Fig. 3B, left panel, blue dots,
and fig. S2B). The levels of these three proteins were stabilized during heat shock by the
addition of bortezomib, indicating that they are targets of heat stress-dependent proteasomal
degradation (Fig. 3B, right panel, and fig. S2B). Nonetheless, for nearly all cases with heat
shock (Fig. 3B) and all cases with arsenite (fig. S2A), a stress-dependent increase in
ubiquitination did not significantly alter the total cellular pool of a given protein. Notably,
treatment with bortezomib during the 1-hour heat shock did not significantly alter ubiquitinated
protein enrichment based on TUBE pulldown (fig. S2C and D), indicating no substantial
degradation of the heat shock ubiquitinome during this time frame. These results suggest that
either the observed ubiquitination is non-degradative or that only a minor fraction of each protein
type is ubiquitinated in response to stress. Similarly, RNA-seq analysis revealed that most heat
shock ubiquitinome genes are not regulated at the level of transcription, with a few exceptions
(Fig. 3C, fig. S2E, table S7). We further noted that upregulation of many heat shock response
genes at the mRNA level (e.g., HSPA6, DNAJB1, table S7) was not yet apparent at the protein
level at the 1-hour time point used here (table S6), consistent with previous reports that
demonstrate a lag time between stress-dependent induction at the transcriptional and translational
levels (45-47).

Paired di-GLY and TMT quantitative proteomics indicate that heat stress-induced
ubiquitination leads to degradation during the recovery phase

Di-GLY proteomics is an alternative approach to identify and quantify the ubiquitin-
modified proteome that can validate TUBE-based proteomics and identify specific sites of
ubiquitin conjugation (39, 48). This approach uses antibody-based affinity to enrich the Lys-e-
Gly-Gly (di-GLY) remnant that is generated following trypsin digestion of ubiquitinated
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proteins, and these peptides are then identified by mass spectrometry. We paired di-GLY
proteomics with TMT labeling in the presence or absence of proteasome inhibition to quantify
changes in the levels of ubiquitinated peptides in response to a 60-minute heat stress and also
following a 2-hour recovery period. Across all samples, we quantified 16,525 unique ubiquitin-
modified peptides, corresponding to 4,892 unique proteins (Fig. 3D and table S8). We found a
high degree of correlation between heat stress-induced ubiquitinomes as determined by di-
GLY/TMT proteomics and our earlier TUBE-based proteomics, detecting at least one ubiquitin-
modified peptide for the majority of proteins identified by TUBE pulldown (Fig. 3, E and F and
tables S2, S8). Of the 381 proteins in the heat shock ubiquitinome by TUBE pulldown, 335 had
at least one peptide increased by > 1.5-fold in response to heat shock in the di-GLY analysis
(Fig. 3G and tables S4 and S8). Of the 46 that did not, 35 were not detected at all in the di-GLY
experiment, 8 had overall reduced ubiquitinated peptide levels in response to heat shock
(HS/CTL = 0.53-0.95), and 3 had modestly increased levels (HS/CTL = 1.29-1.33) (Fig. 3G and
tables S4 and S8). We note that the amplitudes of the observed changes were often much lower
in the di-GLY profiling experiment, likely due to ratio suppression commonly observed in TMT-
based quantification (tables S2 and S8) (49). Interestingly, the heat shock ubiquitinome had
much higher numbers of ubiquitination sites per protein (8.6) than the global ubiquitinome (3.4)
(Fig. 3, F and H), suggesting concerted ubiquitination of a subset of proteins that define the heat
shock ubiquitinome. Due to the increased depth of coverage, we identified an additional 3,722
proteins not detected in the TUBE spectral counting for which ubiquitin-modified peptide levels
were increased by at least 1.5-fold in response to heat shock (Fig. 3G). While the additional heat
shock-dependent ubiquitination events detected only by di-GLY profiling represent interesting
biology that warrants further investigation, the TUBE-based experiments identified a critical
subset of the heat shock ubiquitinome that allowed for comparison between many more sample
conditions (e.g., soluble vs pellet, arsenite vs other stresses, multiple cell lines) due to the vastly
reduced time and resources required. For this reason, we adjusted the definition of the “heat
shock ubiquitinome” as those proteins detected in the TUBE experiments as described above but
excluding the 8 proteins showing a heat shock-dependent decrease in the di-GLY experiment
(373 proteins, table S4).

We next analyzed the di-GLY data to determine the effect of proteasome inhibition on
the levels of ubiquitin-modified peptides during heat shock and recovery (Fig. 3I). In accordance
with our TUBE experiments and whole proteome analysis, we observed that treatment with
bortezomib had, at most, a modest effect on abundance of peptides in the heat-shocked samples
for most heat shock ubiquitinome proteins. Interestingly, while most of heat shock-dependent
ubiquitination recovered to baseline levels after 2 hours in the absence of proteasomal inhibition,
the levels remained elevated during recovery in the presence of bortezomib. This result suggests
that many proteins ubiquitinated during continued heat stress are likely ultimately targeted for
proteasomal degradation upon recovery.

The heat shock ubiquitinome is not defined by the most abundant, highly translated, or
thermo-labile proteins

We next sought to elucidate general features of the heat shock ubiquitinome by analyzing
data from the whole-proteome TMT and RNA-seq dataset along with several proteome-wide
datasets. We note that the label-free MS approach used in our TUBE enrichment experiments is
inherently biased toward identifying abundant proteins. However, proteins detected in the TUBE
pulldown experiment spanned four orders of magnitude in TMT intensity, indicating that the heat
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shock ubiquitinome does include low abundance proteins (tables S2 and S6). Furthermore, the
spectral count values for the proteins detected in the TUBE pulldown experiment were largely
uncorrelated with total protein or mRNA abundance (Fig. 3, J and K). This observation, along
with the high degree of correlation with the di-GLY profiling, indicates that the quantification of
TUBE pulldown samples reflects levels of ubiquitinated protein rather than total protein or
transcript levels. Similarly, based on analysis of ribosome profiling data from control HEK293T
cells, we found no correlation between the TUBE-based spectral counting quantification of heat
shock ubiquitinome proteins and density of ribosome occupancy for the corresponding mRNA
(Fig. 3L), suggesting that the heat shock ubiquitinome is not composed of DRiPs arising from
the most actively translated proteins. Finally, we compared the heat shock ubiquitinome to a
previous proteome-wide investigation of protein thermostability (50). This published dataset
included 139 proteins from the heat shock ubiquitinome, which showed a very similar bimodal
distribution of melting temperatures as compared to all 969 proteins analyzed in the study (Fig.
3M). Thus, it is unlikely that the heat shock ubiquitinome represents the proteins most likely to
misfold as a result of temperature increase. Together these data suggest that the heat shock
ubiquitinome is not primarily defined by total protein abundance, translation activity, or
thermostability.

The functional landscape of the heat shock ubiquitinome reflects cellular activities
perturbed by stress

To investigate the functional significance and biological implications of the heat shock
ubiquitinome, we performed gene ontology (GO) analysis (DAVID (57) and PANTHER (52))
along with literature curation (Fig. 4, A-C). Remarkably, this analysis revealed that the heat
shock ubiquitinome is a non-random group of proteins highly enriched in biological pathways
that are downregulated or shut down during cellular stress. Furthermore, we detected enrichment
of proteins involved in stress granule formation, including translation initiation factors and other
components of the translational machinery (Fig. 4C). We also noted that the heat shock
ubiquitinome includes several classes of nucleocytoplasmic transport proteins (e.g., 11 of the 18
importin o/f superfamily members, components of the nuclear pore complex, and RNA transport
proteins), consistent with a recent report that stress disrupts nucleocytoplasmic transport through
localization of transport factors into stress granules (8) and further linking ubiquitination with
downregulated cellular activities and stress granules (Fig. 4C). Collectively, these results suggest
that in addition to responding to increased PQC demands, ubiquitination plays a role in
regulating a variety of biological activities that comprise the cellular stress response, including
stress granule assembly. Furthermore, these results suggest that ubiquitination may also
contribute to previously underexplored aspects of the heat stress response such as folate and
cholesterol metabolism (Fig. 4C).

Comparisons of the GO analysis of the heat shock- and arsenite-induced ubiquitinomes
showed overlap of many common GO terms (e.g., splicing, nucleocytoplasmic transport) and
others that were unique to heat shock (e.g., translation, metabolic process) (Fig. 4, A and B),
suggesting that ubiquitination may play distinct roles in the response to each stress type. Notably,
within the GO categories shared by both ubiquitinomes, the heat shock ubiquitinome generally
included both a higher number of proteins and higher levels of enrichment over control samples
compared to the arsenite ubiquitinome (Fig. 4A and tables S2, S4 and S5).

mRNPs are ubiquitinated en bloc and have an altered interactome upon heat shock
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Conspicuously, a large fraction of the heat shock ubiquitinome was mRNA-binding
proteins (Fig. 4), which raised the possibility of en bloc ubiquitination of mRNP complexes. To
examine this possibility, we first captured mRNPs using magnetic beads conjugated with
oligo(dT)2s, which binds to the poly(A) tail of mRNAs, and performed immunoblotting to test
for the presence of mRNA bound to poly-ubiquitinated proteins (Fig. 5, A and B). Results from
this assay indicated that poly-ubiquitinated proteins co-purified with polyadenylated mRNA to a
much greater extent after heat stress. Poly(A) binding protein (PABP)-mediated 3’ end retrieval
is an orthologous method for capturing polyadenylated mRNAs (53). When we isolated mRNPs
by immunoprecipitating endogenous PABPC1, we similarly observed substantial heat stress-
induced poly-ubiquitin conjugates that co-purified with mRNPs (Fig. 5, A and B). Importantly,
arsenite stress did not lead to a similar level of increased poly-ubiquitin associated with
PABPCI1, nor did treatment with translation inhibitors cycloheximide, puromycin, or cephaeline
in the absence of heat stress, indicating that this phenomenon is specific to heat stress rather than
a general response to stress or inhibition of translation (fig. S3A).

Direct analysis of the PABPCI protein-protein interaction network from IP of the
endogenous protein revealed substantial remodeling in response to heat stress. Indeed, 105
proteins showed significantly increased interaction with PABPC1 after heat shock, whereas 18
proteins showed significantly decreased interaction (P < 0.02, fold enrichment/depletion > 2,
detected in both replicates) (Fig. 5C and table S9). More than half of the proteins that exhibited
a heat stress-dependent increase in co-immunoprecipitation with PABPC1 (59 of 103) were
components of the heat shock ubiquitinome (Fig. 5C). Moreover, the relative amount of protein
retrieved in PABPC1 immunoprecipitation after heat stress strongly correlated with abundance in
the TUBE pulldown experiment (Fig. 5, D and E, tables S2 and S9). Consistent results were
obtained with 4 additional bait proteins, substantiating the idea of en bloc ubiquitination of
mRNPs (Fig. S5E and table S9). Notably, some of the interactions in the co-IP experiments were
observed at low levels in control samples but increased with heat shock (e.g., GCN1 with
EIF4G1), whereas others were only detected after heat shock (e.g., TTLL12 with PABPC1 and
EIF4G1) (Fig. SE and table S9). One possibility to emerge from this series of experiments is
stabilization of PABPC1 complexes through direct, poly-ubiquitin-mediated interactions.
However, when we repeated the PABPC1 immunoprecipitation with the addition of the
nonspecific deubiquitinating enzyme USP2 that was sufficient to eliminate poly-ubiquitin, we
saw no change in the PABPCI interactome (fig. S3B). Altogether, these results suggest en bloc
ubiquitination of protein components of mRNPs, with some pre-existing interactions that become
stabilized upon heat shock as well as some novel heat shock-dependent interactions, reflecting
remodeling of the mRNPs.

Ubiquitination is required for the disassembly of heat shock-induced stress granules

Our initial analysis of the heat shock ubiquitinome highlighted strong enrichment for
protein constituents of stress granules. To pursue this observation, we assembled a list of 726
proteins found in stress granules as reported in three independent studies (25, 26, 28) (table
S10). Interestingly, we observed that many more stress granule proteins were represented in the
heat shock ubiquitinome than the arsenite ubiquitinome (Fig. 6, A and B). For a high confidence
stress granule proteome list (those detected in at least 2 of the 3 aforementioned investigations)
(tables S2, S5, and S10), we observed a clear overall increase in stress granule protein
ubiquitination in response to heat shock (Fig. 6C). Consistent with a previous report (32), this
preferential increase in ubiquitination of stress granule proteins was not apparent in response to
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arsenite stress (Fig. 6D). Confirming these results, we observed robust co-localization of poly-
ubiquitin with stress granule markers induced by heat shock, but not in those induced by arsenite
(Fig. 6, E and F).

To further investigate the relationship between poly-ubiquitin conjugation and stress
granule dynamics, we made use of the recently developed E1 ubiquitin activating enzyme
(UBAT) inhibitor, TAK243 (54). First, we verified that TAK243 treatment led to a dose-
dependent and time-dependent depletion of cellular ubiquitin conjugates (fig. S4). It was
previously reported that elimination of ubiquitination with TAK?243 did not influence the
assembly or disassembly of arsenite-induced stress granules (32). We independently replicated
this result using live cell imaging, confirming that ubiquitination does not impact the dynamics
of stress granules induced by arsenite (Fig. 6G and movies S1, S2). However, given the
differences between the ubiquitin response to heat shock and arsenite, we next assessed the role
of ubiquitination in regulating the assembly and disassembly of heat shock-induced stress
granules. Indeed, considering the prominent ubiquitination of mRNPs we observed following
heat stress, we suspected that ubiquitination of mRNPs might be important for stress granule
assembly in this setting. To our surprise, elimination of ubiquitination with TAK243 did not
prevent stress granule formation in response to heat shock, but rather caused a striking
impairment in stress granule disassembly after the removal of stress (Fig. 6H and movies S3,
S4). We confirmed this observation with immunofluorescence imaging of 10 additional stress
granule markers, which showed persistence in stress granules for up to two hours after
restoration of normal growth temperature (fig. S4, B-D). We also examined how mitigating
stress granule assembly impacted the heat shock ubiquitinome. Consistent with the idea that
ubiquitination of mRNPs occurs upstream and independent from stress granule formation, we
found that blocking stress granule assembly either pharmacologically (i.e., cycloheximide (55))
or genetically (i.e., G3BP1/2 double KO cells (56)) had no detectable effect on the heat shock
ubiquitinome (fig. S4, E-G and table S3). These data indicate that, whereas ubiquitination is not
required for heat stress-induced stress granule assembly, it is essential for their rapid disassembly
during recovery from stress.

Reversal of mRNP remodeling following heat shock requires ubiquitination

Given our surprising finding that the disassembly of heat shock-induced stress granules
was dependent on ubiquitination, we next investigated the importance of ubiquitination in the
reversibility of the heat shock-dependent interactions we observed in the remodeled mRNPs. We
added 1 uM TAK243 to the culture media prior to and during heat shock and confirmed
elimination of the poly-ubiquitin signal associated with either PABPC1 or oligo(dT) retrieval
(Fig. 7A and fig. S5). TAK?243 treatment did not block the heat shock-dependent remodeling of
the mRNP interactome; however, similar to what we observed with stress granules, elimination
of ubiquitination prevented the reversal of this stress-dependent remodeling during recovery
(Fig. 7A and fig. S5). These results indicate that ubiquitination is required not only for
disassembly of stress granules, but also the reversibility of mRNP remodeling following
restoration of normal growth conditions after heat shock.

Ubiquitination is required for recovery of heat shock-induced disruption of
nucleocytoplasmic transport

Cellular stresses perturb nucleocytoplasmic transport, resulting in redistribution of many
proteins between the nuclear and cytoplasmic compartments (/2). Heat stress-induced inhibition
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of nucleocytoplasmic transport, particularly nuclear import, is accompanied by collapse of the
Ran gradient (57), nuclear retention of importin alpha (/3), and sequestration of multiple nuclear
transport factors in stress granules (&8). Upon removal of stress, normal nucleocytoplasmic
transport is restored and the distribution of proteins between the nuclear and cytoplasmic
compartments returns to baseline. To investigate the role of ubiquitination in stress-induced
perturbation of nucleocytoplasmic transport, we used a Shuttle-tdTomato nucleocytoplasmic
reporter assay in which the fluorescent protein tdTomato was conjugated to both a nuclear
localization signal (NLS) and nuclear export signal (NES) that mediate its shuttling between the
nucleus and cytoplasm (8). Under normal growth conditions, the relative strength of the NLS
over the NES led to a preferential localization of fluorescent signal to the nucleus, yielding a
steady-state ratio of nuclear to total fluorescence (N/W) of ~0.75 (Fig. 7, B and C). Upon heat
shock, a defect in nuclear import activity led to a significant redistribution of the reporter from
the nucleus to the cytoplasm (N/W ~0.5) (Fig. 7, B and C). Under normal growth conditions,
inhibition of ubiquitination with TAK243 had no significant impact on the steady-state ratio of
nuclear versus cytoplasmic reporter signal, indicating that ubiquitination is not a critical
determinant of canonical nuclear import or export. Moreover, following elimination of
ubiquitination with TAK243, cells exposed to heat shock still showed a defect in nuclear import
activity, indicating that ubiquitination is not required for this inhibition. However, cells treated
with TAK?243 failed to recover from impaired nucleocytoplasmic shuttling even upon restoration
of normal growth conditions for 2 hours. Thus, similar to disassembly of stress granules and
reversal of mRNP remodeling, ubiquitination is essential for recovery of nucleocytoplasmic
shuttling following heat stress (Fig. 7, A and B).

Ubiquitination is required for the reinitiating translation following heat shock

Protein synthesis is also strongly perturbed by heat stress (58) due to broad shutdown of
most translation, with the exception of heat shock proteins whose translation is preserved (59).
Upon removal of stress, normal translation is restored. To investigate the role of ubiquitination in
stress-induced perturbation of translation, we used a metabolic labeling assay (60). As expected,
upon heat shock, we observed a dramatic decrease in translation activity as measured by
puromycin incorporation into nascent translation products, followed by a time-dependent
recovery after restoration of normal growth conditions (Fig. 7, D and E). Whereas TAK243
treatment had no effect on basal translation levels, heat-shocked cells treated with TAK243
showed a profound failure to recover protein synthesis following restoration of normal growth
conditions (Fig. 7, D and E). Thus, ubiquitination is essential for the recovery of translation
during the recovery phrase from heat shock.

Taken together, our results indicate that ubiquitination is required for recovery from
multiple heat stress-induced cellular perturbations, including reversal of mRNP remodeling (Fig.
7F), stress granule disassembly, and resumption of nucleocytoplasmic transport and protein
synthesis (Fig. 7G). Furthermore, our results indicate that the role of stress-induced
ubiquitination is context-dependent; indeed, several of these observations did not hold true for
arsenite stress. Our extensive proteomics datasets describing the heat shock ubiquitinome also
suggest that ubiquitination facilitates other aspects of the stress response that have yet to be
elucidated. Indeed, in preliminary studies exploring the role of ubiquitination on sterol
metabolism, we observed that TAK243 treatment had significant effects on the cholesterol
biosynthesis pathway during both heat shock and recovery in a pattern entirely different than that
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observed for the other cellular activities investigated above (Fig. 7G and fig. S6). The data
presented here will therefore likely provide a valuable resource for directing future studies.

Discussion

To survive harsh conditions, eukaryotic cells have evolved adaptive stress response
programs that include induction of stress response genes, downregulation of key cellular
activities, and the formation of stress granules. Accompanying these stress responses is a global
increase in ubiquitination that has been conventionally ascribed to the need for degradation of
misfolded or damaged proteins. Here we profiled stress-induced ubiquitination in response to a
variety of different types of stress and present evidence that different stressors each result in a
distinct pattern of ubiquitination. We delved deeply into heat shock-induced ubiquitination and
demonstrate that a substantial fraction of this ubiquitination does not correlate with protein
abundance, translation status, or thermostability. Rather, a large fraction of the ubiquitinome
corresponds to stress granules and biological pathways that are perturbed by stress. To our
surprise, we discovered that ubiquitination was dispensable for characteristic heat shock
responses, including downregulation of nucleocytoplasmic transport and translation, and the
formation of stress granules. However, in the absence of heat shock-induced ubiquitination there
was a profound failure in recovery from stress, revealing an unanticipated function for
ubiquitination in mediating the recovery from heat stress (Fig 7G).

The adaptive nature of stress-induced ubiquitination has long been recognized.
Particularly with proteotoxic insults such as heat shock, stress induces several types of
potentially hazardous proteins (e.g., DRiPs, thermolabile misfolded proteins, and other damaged
proteins) that must be cleared to prevent the formation of toxic species (29-31, 40-42), and this
need is largely met by ubiquitination and subsequent proteasomal degradation of the offending
species. Prior global proteomic analyses have revealed that a substantial portion of the proteome
becomes transiently insoluble in response to heat stress (40-43), which suggested a second mode
whereby the cell can temporarily reshape the proteome to survive a stressful period. Our results
add a third dimension to these concepts, indicating that changes to the ubiquitinome are tailored
to specific stressors and, in the case of heat shock stress, ubiquitination serves to prime the cell
for recovery. Furthermore, our direct comparisons of the relationship between ubiquitination and
heat shock- or arsenite-induced stress granules highlight important differences in context-
dependent mechanisms regulating what otherwise appear to be very similar condensates.

Finally, our combined proteome and ubiquitinome datasets represent a vast repository of
potentially interesting findings. Our di-GLY-TMT analysis is especially rich, representing one of
the deepest ubiquitinomes published to date, including many heat shock-dependent
ubiquitination events that were not reflected in our TUBE results. These datasets are likely to
provide a rich resource for follow-up investigations of the role of ubiquitination in the stress
response.
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Fig. 1. Different cellular stresses induce different patterns of ubiquitination. (A) Schematic
representation of HALO-linked TUBE resin and ubiquitinated protein capture. (B) Workflow for
sample preparation and TUBE proteomics. HEK293T cells were treated with the indicated stress
or incubated with fresh media as a control, then lysed and ubiquitinated proteins were captured
with TUBE:s prior to MS spectral counting. (C) Immunoblot showing TUBE capture of
ubiquitinated proteins from cells stressed as in (B). Indicated fractions were immunoblotted with
poly-ubiquitin antibody PD41. (D) Summary of statistics from proteomic analysis. (E) Heatmap
illustrating global stress-induced changes to the ubiquitinome. Colors indicate log> fold change
in spectral counts of stressed samples versus control samples. Example groups of proteins with a
shared pattern are shown in the blow-ups. (F) UpSet plot indicating proteins changed > 2-fold
versus control for each stress.

Fig. 2. Heat shock induces significant changes to the global ubiquitinome. (A-B)
Immunoblots showing poly-ubiquitination levels at various time points of heat shock (A) and
during recovery from 30 min heat shock (B) in whole cell lysates, soluble fractions, and pellet
fractions after centrifugation at 14,000 x g. Bar graphs indicate quantification of Western blots
from > 3 replicates for each experiment. Error bars indicate s.d. ns, not significant; *P < 0.05,
**¥p <0.01, #**P <0.001, ****P <0.0001 ANOVA with Dunnett’s test. (C) Workflow for
soluble and pellet fraction sample preparation and TUBE proteomic analysis. (D) Charts
indicating the number of significantly changed proteins in soluble fractions for heat-shocked
samples (15 min or 60 min) compared to control. (E) Heatmap illustrating heat shock-induced
changes to the global ubiquitinome in soluble fractions. Colors indicate relative abundance as
quantified by spectral counting. (F) Spectral count values for several representative proteins of
indicated categories; averages are shown from three replicates of each sample condition in
soluble fractions. Error bars indicate s.d. (G) Chart indicating the number of significantly
changed proteins in pellet fractions for heat-shock samples compared to control. (H) Heatmap
illustrating heat shock-induced changes to the global ubiquitinome in pellet fractions. (I) Spectral
count values for several representative proteins of indicated categories; averages are shown from
three replicates of each sample condition in soluble and pellet fractions. CTL, control; HS, 60
min heat shock. Error bars indicate s.d. (J) Chart indicating the number of proteins with heat
shock-dependent increase in ubiquitination as detected in soluble and/or pellet fractions. Proteins
detected in the pellet fraction are shown in purple, proteins detected only in the soluble fraction
are shown in green. Dashed line indicates categories included in the heat shock ubiquitinome.

Fig. 3. Total proteomic, transcriptomic, and di-GLY analyses reveal additional details of
the heat shock ubiquitinome. (A) Workflow for total proteome and transcriptome analysis. (B)
Volcano plots indicating changes in total protein abundance for heat shock versus control
samples (left) and heat shock versus heat shock in the presence of the proteasome inhibitor
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bortezomib (Btz) (right). Statistically significant changes with the indicated parameters are
shown for the whole proteome (black dots) and heat shock ubiquitinome (blue dots). Red dashed
lines indicates P = 0.05. (C) Volcano plot indicating statistically significant changes in mRNA
levels in response to heat shock. HSPA1A4 and HSPA6 were the most upregulated genes that were
also in the heat shock ubiquitinome (see also fig. S2E); four other representative proteins are
indicated. (D) Heatmap illustrating global changes to the ubiquitinome during heat shock (HS)
and recovery (REC) in the presence or absence of bortezomib (Btz) as determined by di-GLY
profiling. Color indicates scaled TMT intensity. (E) Venn diagram showing overlap of
ubiquitinated proteins detected in di-GLY and TUBE experiments. (F) Histogram showing the
number of ubiquitination sites per protein detected for all proteins in di-GLY experiments. (G)
Venn diagram showing overlap of heat shock-dependent increases in ubiquitination as
determined by di-GLY and TUBE experiments. (H) Histogram showing the number of
ubiquitination sites per protein for the heat shock ubiquitinome. (I) Box-and-whisker plots
showing relative abundance of ubiquitinated peptides for heat shock ubiquitinome proteins. Total
peptide abundance (TMT intensity) in all samples was normalized to 1 for each peptide. (J-L)
Correlation between abundance of heat shock ubiquitinome proteins as determined by TUBE
experiments and total protein abundance (J), transcript abundance (K), and ribosome occupancy
(L) as determined by Ribo-seq, with R? values displayed. (M) Histogram showing melting
temperatures as determined in reference (50) for all proteins measured (black bars) and measured
heat shock ubiquitinome proteins (blue bars).

Fig. 4. The heat shock ubiquitinome consists of proteins from biological pathways
associated with the stress response. (A) Dot plot of gene ontology (GO) enrichment showing
significantly overrepresented GO biological process terms for heat shock and arsenite
ubiquitinomes. Color indicates FDR P value and dot size indicates overrepresentation fold
enrichment compared to the whole genome. Dots are not shown for terms with no statistically
significant (P < 0.05) enrichment. (B) Overlap of top 25 GO as terms ranked by statistical
significance (FDR P value) for heat shock and arsenite ubiquitinomes. (C) DAVID functional
clustering along with literature curation was used to identify biological pathways represented by
heat shock ubiquitinome proteins.

Fig. 5. Heat shock induces ubiquitination of mRNP complexes. (A) Immunoblots and RNA
gels showing polyadenylated mRNA isolated by oligo(dT) resin (left) or PABPC1
immunoprecipitation (right) pulling down poly-ubiquitinated proteins after 60 min heat shock.
Isolated mRNA was visualized by SYBR orange RNA stain. (B) Quantification of immunoblot
analysis for poly-ubiquitin shown in (A). Results represent average of 3 replicate experiments.
Error bars indicate s.d. (C) Scatter plot showing abundance (log> [spectral counts]) of PABPCI-
interacting proteins in heat shock versus control conditions. Results represent averages of 2
replicates. Lines indicate 2-fold increase (red) or decrease (blue) with heat shock; heat shock
ubiquitinome proteins are indicated by blue dots. (D) Correlation between abundance of heat
shock ubiquitinome proteins detected in TUBE pulldown and PABPCI1 IP in 60 min heat-
shocked samples with indicated R? value. (E) Heatmap illustrating changes in abundance in 60
min heat shock versus control samples for proteins detected in TUBE pulldown, endogenous
protein IP (PABP, SND1, GCNI1, EIF4G, [PO4), or oligo(dT) pulldown.
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Fig. 6. Heat shock-induced stress granules contain ubiquitinated proteins and require
active ubiquitination for disassembly. (A-B) Overlap of heat shock (A) and arsenite (B)
ubiquitinomes with the stress granule proteome. (C-D) Histograms showing changes in
ubiquitinated protein abundance for high-confidence stress granule proteins in response to 60
min heat shock (C) or 60 min arsenite (D) in soluble and pellet fractions as determined by TUBE
experiments (tables S2 and S5). Orange and blue bars indicate > 2-fold increase or decrease
respectively. (E) U20S cells were exposed to 90 min of sodium arsenite or heat shock, fixed,
and stained for stress granule markers PABPCI1 (red), EIF3n (not shown), and poly-ubiquitin
(FK2, green). Insets show a magnified image of a stress granule; graphs represent a line scan of
signal intensity for PABPC1 and FK2 channels across the indicated stress granule. Scale bar, 50
um. (F) Co-localization between immunofluorescent signal for stress granule markers PABPC1
and EIF3n and poly-ubiquitin as determined from U20S images. Bar graphs represent average
values; error bars represent s.d. of Pearson’s correlation coefficient for stress granules from >
100 cells for each condition. (G-H) Live cell imaging of U20S cells stably expressing GFP-
G3BPI during arsenite (G) or heat (H) stress and recovery in the presence or absence of
TAK243. Still images are shown at indicated times (left). Plots show the percentage of cells with
> 2 stress granules at the indicated time, with solid lines and error bars representing average
values and s.d. for three biological replicates with 30-50 cells each.

Fig. 7. Ubiquitination is required for the recovery of nucleocytoplasmic transport and
translation following heat shock. (A) Immunoblot showing formation and dissolution of poly-
ubiquitinated protein-mRNA complex during heat shock and isolated by oligo(dT) resin. Where
indicated, TAK243 was added to cell culture media 30 min prior to heat shock and incubation
with the drug was maintained for the duration of the experiment. In drug-treated unstressed
samples, cells were incubated with TAK243 for 180 min prior to lysis. (B) HEK293T cells
expressing nucleocytoplasmic transport reporter NLS-tdTomato-NES were fixed and imaged
after no stress, 60 min heat shock, or 60 min heat shock and 120 min recovery. Cells were treated
with TAK243 or DMSO for 30 min prior to heat shock or for a total of 120 minutes in non-heat-
shocked cells. Nuclear and cytoplasmic boundaries are indicated with dashed yellow and white
lines respectively. (C) Quantification of nucleocytoplasmic ratio of tdTomato intensity from cell
images described in (B) from 20-30 cells for each condition. Error bars indicate s.e.m. *P < (.05,
**4P <0.01, ¥**P <0.001, ****P <(0.0001, ANOVA with Tukey’s test. (D) Immunoblotting of
HEK293T cells treated with puromycin to label nascent transcripts for 30 min prior to heat shock
and recovery in the presence or absence of TAK243. Cells were lysed at indicated times and
translational activity was analyzed by immunoblotting for puromycin. (E) Quantification of
immunoblots shown in (D). Average puromycin signal is shown for three replicate experiments.
Error bars indicate s.d. n.s., not significant, *P < 0.05, **P < 0.01, student’s t-test. (F-G)
Proposed model illustrating heat shock-induced ubiquitination associated with (F) mRNP
remodeling, and (G) stress granule formation and shutdown of cellular activities, and the
requirement for active ubiquitination for reversal of these processes during recovery.
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