

1 **Counting actin in contractile rings reveals novel contributions of cofilin and type II
2 myosins to fission yeast cytokinesis**

3

4 Mamata Malla¹, Thomas D. Pollard^{2,3, 4} and Qian Chen^{1,2,*}

5

6 ¹Department of Biological Sciences, University of Toledo, Toledo, OH 43606

7 ²Departments of Molecular Cellular and Developmental Biology

8 ³Departments of Molecular Biophysics and Biochemistry

9 ⁴Department of Cell Biology

10 Yale University, PO Box 208103

11 New Haven, CT 06520-8103 USA

12 *Correspondence: Qian.Chen3@UToledo.edu

13 Keywords: cytokinesis, fission yeast, actin, cofilin, myosin, formin

14 Running title: Polymerized actin in contractile rings of fission yeast

15

16 **Abstract**

17 Cytokinesis by animals, fungi and amoebas depends on actomyosin contractile rings, which are
18 stabilized by continuous turnover of actin filaments. Remarkably little is known about the
19 amount of polymerized actin in contractile rings, so we used low concentration of GFP-Lifeact to
20 count total polymerized actin molecules in the contractile rings of live fission yeast cells.
21 Contractile rings of wild-type cells accumulated polymerized actin molecules at 4,900/min to a
22 peak number of ~198,000 followed by a loss of actin at 5,400/min throughout ring constriction.
23 In *adf1-M3* mutant cells with cofilin that severs actin filaments poorly, contractile rings
24 accumulated polymerized actin at twice the normal rate and eventually had almost two-fold more
25 actin along with a proportional increase in type II myosins Myo2, Myp2 and formin Cdc12.
26 Although 30% of *adf1-M3* mutant cells failed to constrict their rings fully, the rest lost actin from
27 the rings at the wild-type rates. Mutations of type II myosins Myo2 and Myp2 reduced
28 contractile ring actin filaments by half and slowed the rate of actin loss from the rings.

29 **Introduction**

30 Cytokinesis separates daughter cells during the last stage of the cell cycle. Amoebas, fungi and
31 animal cells assemble an actomyosin ring to provide force to form a cleavage furrow (for review
32 see (Pollard and O'Shaughnessy, 2019)). Contractile rings consist of actin filaments, actin
33 binding proteins including alpha-actinin, capping protein, cofilin, formins and type II myosins
34 (Wu et al., 2003). In fission yeast, two type II myosins contribute about equally to the rate of ring
35 constriction (Bezanilla et al., 2000; Laplante et al., 2015). Myo2 is essential for viability, while
36 the unconventional myosin-II called Myp2 is not.

37 Although actin is the most abundant protein in contractile rings, much less is known
38 about its dynamics than the myosins or actin-binding proteins owing to difficulty tracking actin

39 in live cells. Fluorescent phalloidin is widely used to stain actin in fixed cells but this provides
40 only a snapshot. SIR-actin, jasplakinolide conjugated to silicon rhodamine, can stain actin
41 filaments in live cells (Lukinavicius et al., 2014), but jasplakinolide will alter actin dynamics.
42 Microinjection of fluorescently labeled actin is an option for some animal cells (Cao and Wang,
43 1990) but has not been exploited for quantitative measurements and may not be feasible for some
44 cells including fungi. Unfortunately, the genetically encoded fluorescent tags tested to date
45 compromise the function of actin during cytokinesis. For example, the formins that nucleate and
46 elongate actin filaments for the contractile ring in fission yeast filter out all the actin fused to
47 either fluorescent proteins such as GFP or small tetracysteine peptide tags (Chen et al., 2012; Wu
48 and Pollard, 2005).

49 Consequently, only indirect labeling of actin filaments in the contractile ring has been
50 successful. Although less versatile than direct labeling, we measured about 190,000 actin
51 molecules, equal to 500 μm of actin filaments, in the fission yeast contractile ring by titration
52 with Lifeact (Courtemanche et al., 2016), a small peptide that binds actin filaments (Riedl et al.,
53 2008). We also estimated the average length of the filaments from the ratio of polymerized actin
54 to formin molecules in the contractile ring. The filaments start at about 1.4 μm and shorten
55 gradually during the ring constriction. Despite this progress, little is known about how actin
56 filaments themselves turn over in contractile rings.

57 Cofilins promote actin turnover during endocytosis in yeast (Chen and Pollard, 2013;
58 Okreglak and Drubin, 2007), at the leading edge of motile cells (Ghosh et al., 2004; Konzok et
59 al., 1999) and in neurite growth cones (Zhang et al., 2012). Cofilin is required for the assembly
60 of the cytokinetic contractile ring in fission yeast (Chen and Pollard, 2011; Nakano and Mabuchi,
61 2006). Cofilin mutations that reduce severing activity slowed or prevented the assembly of

62 contractile rings, because the precursors to the contractile ring, called cytokinetic nodes, are
63 pulled into large heterogeneous clusters around the equator rather than being organized into a
64 contractile ring. Rings that form slowly from these clusters constrict far more variably than those
65 in wild-type cells (Chen and Pollard, 2011).

66 Here we expanded our previous study (Courtemanche et al., 2016) to count polymerized
67 actin in contractile rings of wild-type fission yeast and strains with mutations in cofilin, formin
68 and type II myosins. The cofilin mutant *adfl-M3* with half of wild-type severing activity had
69 strong effects on both contractile ring assembly and disassembly. The contractile rings of the
70 cofilin mutant cells have about twice the normal numbers of actin, formin Cdc12, Myo2 and
71 Myp2 molecules, while contractile rings of cells with a hypomorphic mutation of formin Cdc12
72 accumulated actin slowly. Remarkably, mutations of either type II myosin, Myo2 or Myp2,
73 reduced contractile ring actin by half.

74

75 **Results**

76 **Measurement of actin turnover in contractile rings using GFP-Lifeact**

77 To measure the number of polymerized actin molecules in contractile rings of live fission yeast
78 over time, we expressed GFP-Lifeact (GFP-LA) constitutively from the endogenous *leu1* locus,
79 driven by a constitutive *Padfl* promoter of the endogenous cofilin gene. All yeast strains used in
80 this study expressed GFP-LA at similar levels (Fig. S1), which saturates only 6% of polymerized
81 actin molecules and avoids artifacts during cytokinesis and endocytosis caused by higher
82 concentrations of GFP-Lifeact (Courtemanche et al., 2016). Using a calibrated fluorescence
83 microscope (Wu and Pollard, 2005), we converted the fluorescence intensity of GFP-Lifeact into
84 the numbers of actin molecules in subcellular structures (Courtemanche et al., 2016).

85 Specifically, we expressed from the endogenous locus Rlc1, the regulatory light chain for both
86 Myo2 and Myp2, tagged with tdTomato and used its fluorescence to segment the contractile ring
87 and measure the total GFP-Lifeact fluorescence.

88 Actin accumulated in contractile rings, about half during assembly and about half during
89 18 mins of maturation when the rate was constant at ~4,900 molecules/min (Fig. 1A-B and Table
90 1). At the end of the maturation phase, just before cleavage furrow ingression, fully assembled
91 contractile rings contained ~200,000 polymerized actin molecules, consistent with previous
92 measurements (Courtemanche et al., 2016).

93 During contractile ring constriction the number of polymerized actin molecules was
94 constant for the first six minutes, which was not clear in our previous analysis (Courtemanche et
95 al., 2016), and then declined steadily at ~5,400 molecules/min for ~20 minutes (Fig. 1C). About
96 50,000 actin molecules remained in the contractile ring remnant at the end of constriction, which
97 has not been reported previously. These filaments abruptly dispersed within two minutes,
98 together with the myosin regulatory light chain Rlc1 leaving behind actin patches along both
99 sides of the cleavage furrow (Fig. 1A).

100 **Contractile ring assembly and composition in the cofilin hypomorphic mutant *adf1-M3***

101 Cofilin is essential for viability, so we used the hypomorphic mutant *adf1-M3* to test the role of
102 cofilin in the dynamics of contractile ring actin filaments. The *adf1-M3* mutation reduces the
103 severing activity of cofilin by more than 50% and slows contractile ring assembly (Chen and
104 Pollard, 2011). Actin patches and actin filament bundles stained brighter with Bodipy-
105 phallacidin in fixed *adf1-M3* mutant cells than in wild-type cells (Chen and Pollard, 2011).
106 However, at that time we lacked quantitative probes to measure polymerized actin in live cells
107 (Chen et al., 2012). The cytokinesis defects were less severe in the *adf1-M3* strain than the *adf1-*

108 *M2* strain (Chen and Pollard, 2011), allowing us to analyze the assembly and disassembly of
109 larger numbers of mature rings.

110 Contractile ring assembly in *adf1-M3* mutant cells was less orderly (Fig. 2B) and much
111 more variable than in wild type cells (Fig. 2B-D). Contractile rings of *adf1-M3* mutant cells
112 accumulated actin twice as fast over a similar period of time as wild type cells (Table 2).
113 Therefore, mature rings of the mutant had on average about 1.9 times as much actin as wild-type
114 cells (Table 1 and Fig. 2A, arrows). The peak number of molecules (100,000 to 600,000) was
115 much more variable in *adf1-M3* mutant cells than wild-type cells (Fig. 2D). On average, the
116 contractile rings of *adf1-M3* mutant cells had enough actin molecules to assemble ~ 950 μ m of
117 filaments (Table 2). A cross section of such rings would contain ~75 filaments in a bundle ~160
118 nm wide, if the spacing between the actin filaments is 15 nm like wild-type cells, which have
119 ~50 filaments in a bundle of ~125 nm wide (Courtemanche et al., 2016; Swulius et al., 2018).
120 We conclude that severing by cofilin limits and makes more reliable the assembly of actin
121 filaments in the contractile ring.

122 To estimate the lengths of actin filaments in the contractile ring of *adf1-M3* mutant cells
123 we measured the number of formins in fully assembled contractile rings just before they
124 constricted. Assuming that barbed ends of all contractile ring actin filaments are associated with
125 a formin (Coffman et al., 2013), the ratio of total actin to total formin molecules gives the
126 average length of actin filaments, averaging ~1.5 μ m in wild-type cells (Table 2), similar to the
127 previous estimate (Courtemanche et al., 2016).

128 The number of Cdc12-3GFP molecules in the contractile rings of *adf1-M3* mutant cells
129 was on average about twice that of wild-type cells and much more variable (Fig. 3C), while the
130 number of formin For3 was the same as wild-type cells (Fig. 3D). As a result, the combined

131 number of the two formin molecules was ~50% higher in the contractile rings of the mutant cells
132 (Table 2). Consequently, the ratio of actin to formins was ~25% higher, translating to an average
133 length of 1.9 μ m in the mutant cells (Table 2).

134 The numbers of type II myosins (Myo2 and Myp2) in mature contractile rings of wild-
135 type cells peaked at ~7,000 myosin molecules (Fig. 3A-B and Table 2), consistent with previous
136 measurements (Goss et al., 2014; Wu and Pollard, 2005). This translates to one myosin motor
137 domain for every 76 nm of actin filament and ~20 motor domains for every actin filament in the
138 contractile ring.

139 Contractile rings of *adfl-M3* mutant cells that were able to constrict had twice as many
140 myosin molecules as the wild-type cells, translating to one myosin motor domain for every 70
141 nm of filament (Fig. 3A-B and Table 2). We conclude that reduced severing by cofilin leads to
142 contractile rings with twice the normal numbers of actin, Cdc12 and type II myosin molecules,
143 so the ratios of these three proteins are about the same as in wild-type cells (Table 2).

144 **Effects of a formin mutation on contractile ring assembly**

145 Measurements of the time course of actin accumulation in the contractile rings of the *cdc12-4A*
146 formin mutant cells revealed defects in actin that were not appreciated in previous work (Bohnert
147 et al., 2013). The essential formin Cdc12 is required for assembly of actin filaments in contractile
148 rings (Chang et al., 1996; Kovar et al., 2003). The hypomorphic *cdc12-4A* mutation prevents the
149 phosphorylation of the formin by the essential SIN pathway kinase Sid2 (Bohnert et al., 2013). In
150 prior work the mutant cells appeared to assemble normal contractile rings, but our quantitative
151 measurements revealed that the *cdc12-4A* mutation reduced by about half both the rate of
152 accumulation and the final numbers of polymerized actin (Fig. 2E and Table 1).

153 **Contractile ring disassembly during constriction in *adf1-M3* mutant cells**

154 The contractile rings in 30% of *adf1-M3* mutant cells (n = 65) either failed to constrict or halted
155 constriction prematurely (Fig. S2), but those that constricted fully did so at an average rate
156 similar to wild-type cells although with much more variability (Chen and Pollard, 2011). During
157 ring constriction, the absolute number of actin molecules in the contractile rings of *adf1-M3* cells
158 declined linearly at ~5,800/min (Fig. 4A and B, Table 1), almost identical to wild-type cells.
159 However, the cofilin mutant cells had two defects. First, the large standard deviations showed
160 that rate of actin disassembly varied much more in *adf1-M3* cells than in wild-type cells. Second,
161 the normalized disassembly rate, which took the number of actin molecules in the ring into
162 consideration, was 40% lower in the mutant than wild-type cells. Thus, normal severing by
163 cofilin is not essential for the disassembly of actin filaments in constricting contractile rings but
164 makes the process much more orderly.

165 Wild-type cells retain both Myo2 (Fig. 4C) and Myp2 (Fig. 4D) in the contractile ring
166 through the first 20 minutes of constriction before they leave during the last 10 minutes of the
167 constriction as observed earlier (Wu and Pollard, 2005). In contrast, these myosins persisted at
168 nearly their highest levels for an hour and the time course of the process was much more variable
169 in the *adf1-M3* mutant cells (Fig. 4C and D). In a few cofilin mutant cells, the myosins dwelled
170 at the cell division for more than 10 minutes after the completion of the ring constriction (Fig.
171 5A). Myp2 oscillated as clusters along the contractile ring of the mutant cells, which was rarely
172 observed in the wild-type cells (Fig. 5A).

173 Face views of constricting contractile rings of *adf1-M3* cells revealed linear structures
174 containing both myosin-II isoforms and actin filaments that separated from 60% (n = 18) of the
175 rings (Fig. 5B and C). Similar structures were observed previously in 3D-reconstructions of

176 cofilin mutants *adf1-M2* and *-M3* (Cheffings et al., 2019; Chen and Pollard, 2011). Although the
177 structures containing myosin-II retracted back to the contractile ring, the bundles of actin
178 filaments did not (Fig. 5C, arrowheads). Such shedding of actin filaments was not observed in
179 the wild-type cells. We conclude that contractile rings are far less stable in cofilin mutant cells
180 than wild type cells.

181 **Influence of type II myosins on assembly and disassembly of contractile ring actin
182 filaments**

183 Mutations of either type II myosin gene in the *myo2-E1* or *myp2Δ* strains reduced the numbers of
184 actin molecules in contractile rings by more than half compared with wild-type cells at the end of
185 the maturation period and the onset of constriction (Fig. 6A-B and Table 1). This surprising
186 finding was missed previously.

187 Starting with less than the normal amount of polymerized actin, contractile rings
188 constricted slower in both *myo2-E1* (0.32 $\mu\text{m}/\text{min}$) and *myp2Δ* (0.30 $\mu\text{m}/\text{min}$) cells than wild-
189 type cells (0.36 $\mu\text{m}/\text{min}$). These rates are slightly higher than earlier studies (Laplante et al.,
190 2015; Zambon et al., 2017). After normalization for the initial actin content, the rates that actin
191 left constricting rings were only slightly less than normal in the *myo2-E1* mutant and similar in
192 the *myp2Δ* strain to wild-type cells (Table 2).

193 To rule out the possibility that the lower disassembly rates in the myosin mutants were
194 indirectly tied to ring assembly defects, we measured the loss of actin from contractile rings of
195 wild-type cells treated with blebbistatin to inhibit myosin II (Straight et al., 2003). Contractile
196 rings in wild-type cells either disintegrated or failed to assemble in blebbistatin concentrations of
197 $\geq 20 \mu\text{M}$ (Fig. 6D). Treating wild-type cells with mature contractile rings with 10 μM
198 blebbistatin decreased the rate of actin disassembly by 60% (Fig. 6C). The ring constriction rate

199 was also lower by 30% (n = 16) (Fig. 6D). We conclude that type II myosins contribute to both
200 the assembly and disassembly of actin filaments in contractile rings.

201

202 **Discussion**

203 Knowing the numbers and dynamics of polymerized actin molecules in the actomyosin
204 contractile ring is essential for understanding the mechanism of cytokinesis, but such
205 measurements have not been made due to the technical challenge of labeling actin directly
206 without disrupting its activity (Chen et al., 2012; Wu and Pollard, 2005). Indirect probes can
207 produce artifacts, so we measured polymerized actin with a low concentration of GFP-Lifeact
208 that does not disturb endocytosis or cytokinesis (Courtemanche et al., 2016). Measurements on
209 beautiful EM-tomograms (Swulius et al., 2018) confirmed our earlier count of contractile ring
210 actin with GFP-Lifeact (Courtemanche et al., 2016).

211 Our method provides valuable, new quantitative data on the accumulation and loss of
212 polymerized actin in contractile rings but does not reveal the behavior, including the turnover, of
213 individual filaments. Experiments with a probe directly on actin molecules will be required to
214 probe the underlying mechanisms.

215 Our measurements revealed several aspects of cytokinesis that were overlooked due to
216 the lack of quantitative data on actin in contractile rings including the phenotypes of yeast strains
217 with mutations in cofilin, myosin and formin genes. The protein products of each of these genes
218 are essential for cytokinesis and their roles are likely to have been conserved during evolution.

219 **The role of cofilin in the assembly and composition of contractile rings**

220 A mutation that reduces the severing activity of cofilin has a remarkable impact on the molecular
221 composition of the contractile ring: about twice the wild-type numbers of polymerized actin,

222 Myo2, Myp2 and formin Cdc12. First we consider myosins and then formins and actin for
223 discussion.

224 *Myosins*: Myo2 and formin Cdc12 are components of cytokinesis nodes that form prior to
225 the assembly of actin filaments (Wu and Pollard, 2005), so extra numbers of both proteins in the
226 contractile rings of *adfl-M3* cells implies proportionally more cytokinesis nodes. In fact, the
227 nodes were larger in *adfl-M3* mutant cells than wild-type cells (Chen and Pollard, 2011) and
228 likely represent clusters of larger numbers of small, unitary nodes as revealed in wild-type cells
229 by super-resolution microscopy (Laplante et al., 2016). We do not know when these extra nodes
230 form or how either reduced severing or more polymerized actin induce their formation.

231 On the other hand, Myp2 is recruited to fully formed contractile rings during the
232 maturation period in a process that depends on actin filaments (Okada et al., 2019; Takaine et al.,
233 2015; Wu et al., 2003). Thus, the higher numbers of Myp2 molecules in contractile ring of *adfl-*
234 *M3* cells may follow directly from the high content of actin filaments.

235 *Formins and actin*: The essential formin Cdc12 nucleates and elongates actin filaments in
236 the contractile ring (Chang et al., 1996; Kovar et al., 2003), so more formin Cdc12 in contractile
237 rings of *adfl-M3* cells likely contributes to the rapid accumulation of extra actin filaments and
238 the actin monomer concentration in the cytoplasm sets the rate of growth of individual filaments.

239 On the other hand, no connection between slow severing and excess formin is known.

240 The longer actin filaments in the contractile rings of *adfl-M3* cells are expected for cells
241 with low actin filament severing activity (Chen and Pollard, 2011) and given evidence that
242 cofilin stochastically severs actin filaments connecting the precursor nodes (Chen and Pollard,
243 2011). Longer filaments may also explain our observation of a negative genetic interaction
244 between cofilin and *ain1* mutants (Chen and Pollard, 2011).

245 Since actin filaments accumulate faster in the contractile rings of *adf1-M3* mutant cells,
246 some other mechanism must account for the slow assembly of full contractile rings (Chen and
247 Pollard, 2011). The most likely mechanism is that slow severing results in the aggregation of
248 nodes that delays the coalescence of the nodes into an organized contractile ring of actin
249 oligomers (Chen and Pollard, 2011).

250 In contrast to the essential formin Cdc12, *adf1-M3* cells do not accumulate excess formin
251 For3, which is not a component of cytokinesis nodes and joins fully assembled contractile rings
252 at a later stage and assembles peripheral actin bundles at the cell division plane (Coffman et al.,
253 2013). Unlike Cdc12, its recruitment likely depends on the type V myosin and polarized
254 membrane secretion (Coffman et al., 2013).

255 **The role of cofilin in contractile ring constriction and disassembly**

256 Multiple defects appear during constriction of contractile rings of *adf1-M3* cells. First,
257 constriction is much less uniform than in wild-type cells. About 30% of the rings fail to complete
258 the constriction. Bundles of actin filaments containing myosins peel from the rings of mutant
259 cells. Second, starting with contractile rings containing much more polymerized actin and both
260 type II myosins, the cofilin mutant cells required more time for all three proteins to leave the
261 rings in a highly variable fashion. Third, type II myosin Myp2 oscillates along the contractile
262 rings as clusters. Nevertheless, the *adf1-M3* mutation does not significantly reduce the rate of net
263 loss of actin filaments from contractile rings as they constrict.

264 The most likely explanation for the variability of contractile ring constriction in the *adf1-*
265 *M3* cells is that the loss of severing activity compromises the continuous, relatively rapid (tens of
266 seconds) turnover of contractile ring components, which is required to maintain orderly force
267 production in computer simulations of constriction (Stachowiak et al., 2014). Those simulations
268 assume estimates of continuous protein turnover revealed by photobleaching experiments.

269 Dialing down the turnover of polymerized actin, Cdc12 and Myo2 in these simulations, resulted
270 in the loss of tension in less than 3 minutes. Cofilin contributes to this turnover by severing actin
271 filaments, while other uncharacterized processes cause the exchange of Cdc12 and Myo2 with
272 cytoplasmic pools.

273 **Role of formins in the assembly of the contractile ring**

274 Counting polymerized actin revealed unrecognized defects caused by the *cdc12-4A* mutation.
275 This mutation prevents phosphorylation of Cdc12 by the SIN pathway kinase Sid2, but does not
276 cause any discernable cytokinetic defects (Bohnert et al., 2013). Although cytokinesis appears
277 normal, contractile rings in *cdc12-4A* mutant cells accumulate actin slower and in less than half
278 the number of wild-type cells. This previously overlooked actin assembly defect may explain the
279 hyper-sensitivity of this strain to Latrunculin A (Bohnert et al., 2013) as well as the genetic
280 interaction of the *cdc12-4A* mutation with many other cytokinetic mutants.

281 **Roles of type II myosins in the assembly of the contractile ring**

282 Our experiments revealed to our surprise that mutations of type II myosins strongly reduce the
283 actin content of contractile rings. This remarkable, unexpected finding had been missed in
284 dozens of studies on these mutant strains due to the lack of methods to measure actin in live
285 cells. During ring assembly, Myo2 in a given node pulls on actin filaments growing from nearby
286 nodes (Vavylonis et al., 2008). In a reconstituted system, force on a filament growing from
287 formin Cdc12 slows its elongation (Zimmermann et al., 2017). However, the loss of Myo2
288 activity in the *myo2-E1* mutant has the opposite effect, resulting in more actin filaments, so the
289 mechanism reducing the actin content is not clear. Myp2 is not present in contractile rings until
290 after they form, so it must have its effect on the half of the actin that assembles during the
291 maturation period, which is slower in the *myp2Δ* mutant than wild-type cells.

292 **The role of type II myosins in constriction and disassembly of the contractile ring**

293 Contractile rings with half the normal amount of actin filaments constrict 10% slower in the
294 *myo2-E1* strain and 20% slower in the *myp2Δ* strain than wild-type cells (Laplante et al., 2015).
295 Disassembly of actin filaments is slower in both myosin mutants than wild-type cells, although
296 these rates are the same as wild-type when normalized for the starting actin content. Previously,
297 the defects in ring constriction in the strains with myosin-II mutations was attributed entirely to
298 loss of function of the myosins (Laplante et al., 2015; Zambon et al., 2017). However, these
299 strains have a secondary defect, a loss of about half the normal polymerized actin. This insight
300 emphasizes the importance of quantitative measurements of other contractile ring components in
301 mutant strains.

302 Inhibition of myosins with 10 μM blebbistatin reduced both the disassembly rate of actin
303 filaments and the ring constriction rate by ~60% and 30% respectively. In addition to cofilin-
304 mediated severing, forces produced by myosins may contribute to actin filament turnover during
305 contractile ring constriction.

306 Collectively, our experiments demonstrate the value of measurements of polymerized
307 actin in live cells. These measurements provided new, unanticipated features of contractile ring
308 assembly and constriction, which will motivate future studies to characterize mechanisms.

309

310 **Materials and methods**

311 **Yeast genetics**

312 We followed the standard protocols for yeast cell culture and genetics. Tetrad were dissected
313 using a SporePlay+ dissection microscope (Singer, UK). Table 3 lists all the strains used in this
314 study.

315 **Microscopy**

316 For microscopy, 1 ml of exponentially growing yeast cells at 25°C with a density between 5.0 ×
317 10^6 /ml and 1.0×10^7 /ml in YE5s liquid media (unless specified), were harvested by
318 centrifugation at 4000 rpm for 1 min and resuspended in 50 μ l YE5s. Due to the extremely slow
319 growth of the *adf1-M3* cells at 25°C, they were first inoculated at 30°C for a day from the plate,
320 before being inoculated at 25°C for 12 h. 6 μ L of re-suspended cells were applied to a 25%
321 gelatin + YE5s pad and sealed under the coverslip with VALAP (a mix of an equal amounts of
322 Vaseline, Lanolin, and paraffin) (Wang et al., 2016). Live cell microscopy was carried out on an
323 Olympus IX71 microscope equipped with both a 100× (NA = 1.41) and a 60× (NA = 1.40)
324 objective lenses, a confocal spinning-disk unit (CSU-X1; Yokogawa, Japan), a motorized XY
325 stage with a Piezo Z Top plate (ASI). The images were captured on an Ixon-897 EMCCD
326 camera controlled by iQ3.0 (Andor, Ireland). Solid-state lasers of 488 nm (5% for 100ms except
327 for For3-3GFP: 7.5% for 150 ms) and 561 nm (5% for 50 ms) were used in the confocal
328 fluorescence microscope. In all experiments, the cells were imaged for 3 h (2-minutes interval
329 unless specified) by acquiring a Z-series of 15 slices at a step size of 0.5 μ m using the 100×
330 objective (unless specified). Live cell microscopy was conducted in a room where the
331 temperature was maintained at around 22 ± 2 °C. To minimize the variations in culture and
332 microscopy conditions, we imaged both control and experimental groups with randomized order
333 within a week. To measure the relative fluorescence of Cdc12-3GFP and For3-3GFP, a Z-series
334 of 8 slices with a spacing of 1 μ m was used.

335 To image the contractile ring head-on, cofilin mutant cells were observed in a petri dish
336 with a coverslip bottom. A sample of 20 μ l of the cell culture was spotted onto a glass coverslip
337 (#1.5) at the bottom of a 10-mm petri dish (Cellvis, USA). The coverslip was precoated with 50

338 μ l of 50 μ g/ml lectin (Sigma, L2380) and allowed to dry overnight at 4°C. The cells were
339 allowed to attach to the lectin for 10 minutes at room temperature. YE5s medium (2 ml) was then
340 added to the dish just before microscopy. Images were acquired at 1-minute intervals.

341 **Drug treatment**

342 A sample of 20 μ l of the cell culture was spotted onto a glass coverslip on the bottom of a petri
343 dish as described above. YE5s medium (2 ml) with either 10 μ M Blebbistatin or 1% DMSO was
344 added to the dish before starting microscopy using the 60x objective. Image acquisition was
345 started exactly after 15 min of the drug treatment to minimize experimental variability.

346 **Image processing and analysis**

347 We used ImageJ (National Institutes of Health) to process all the images, with either freely
348 available or customized macros/plug-ins. For quantitative analysis, the fluorescence micrographs
349 were corrected for X-Y drifting using the StackReg plug-in (Thevenaz et al., 1998). Average
350 intensity projections of Z-slices were used for actin number measurements. Maximum intensity
351 projections of Z-slices were used for the contractile ring tracking. Kymographs of the rings
352 labeled with Rlc1-tdTomato were generated to determine both the start and end of ring closure.
353 The customized plug-in Ring Intensities Measurement-2015 was used to measure the GFP-LA
354 fluorescence during the constriction of rings that went on to complete constriction
355 (Courtemanche et al., 2016). The background fluorescence was calculated separately for each
356 cell used for GFP-LA measurement. The corrected GFP-LA fluorescence was then converted to
357 number of actin molecules based on the calibration as described (Morris et al., 2019).

358 The number of actin filaments in a cross-section of the contractile ring was calculated by
359 dividing total length of actin filaments with the circumference of a cell. Total length of actin
360 filaments (μ m) is calculated as total number of actin molecules divided by 370. The

361 circumference of wild-type and *adf1-M3* cells was estimated at 10 and 13 μm respectively (Chen
362 and Pollard, 2011). The center-to-center spacing between actin filaments is assumed to be 15 nm
363 (Kanbe et al., 1989; Swulius et al., 2018) in estimating the width of a contractile ring.

364 **Western Blots**

365 For probing the expression level of GFP-Lifeact, 50 ml of exponentially growing cells were
366 collected by centrifuging at 3000g for 5 min. The pellet was resuspended in 300 μL of lysis
367 buffer containing HaltTM protease inhibitor cocktail (#1862209, Thermo-Fisher Scientific) and
368 frozen at -20 °C until lysis. The cells were lysed using BeadBug microtube homogenizer
369 (Benchmark Scientific). Proteins were resolved using Mini-PROTEAN TGXTM Precast SDS-
370 PAGE gels (#4561084, BioRad). The gels were either stained with Coomassie blue or transferred
371 to PVDF membrane (Millipore) for immunoblots. Membranes were blotted with 1:1000 dilution
372 of primary anti-GFP (#11814460001, Sigma-Roche) over night, followed by 1:5000 dilution of
373 HRP-linked secondary antibody (#sc-516102, Santa Cruz) for 2 h. The blot was developed using
374 SuperSignalTM West Pico PLUS chemiluminescent substrate (#34577, Thermo-Fisher Scientific).

375 **Acknowledgements**

376 Research reported in this publication was supported by National Institute of General Medical
377 Sciences of the National Institutes of Health under award numbers R01GM026132 to TDP and
378 R15GM134496 to QC. The content is solely the responsibility of the authors and does not
379 necessarily represent the official views of the National Institutes of Health. The authors thank
380 Debatrayee Sinha and Abhishek Poddar for their technical assistance.

381 **Table 1: Summary of the actin assembly and disassembly in the contractile ring**

Genotype	Number of actin molecules in the mature ring ($\times 10^{-3}$)*	Number of cells measured*	Net assembly rate (actin molecules $\times 10^{-3}$ min $^{-1}$) [#]	Net disassembly rate (actin molecules $\times 10^{-3}$ min $^{-1}$) [#]	Normalized disassembly rate (min $^{-1}$) ^{&}
<i>Wild-type</i>	198 \pm 42	80	+4.9	-5.4	-2.7%
<i>adf1-M3</i>	362 \pm 176	21	+10.0	-5.8	-1.6%
<i>cdc12-4A</i>	93 \pm 23	38	+2.4	N.M.	N.M.
<i>myo2-E1</i>	82 \pm 28	38	N.M.	-1.6	-2.0%
<i>myp2Δ</i>	88 \pm 21	33	N.M.	-2.3	-2.6%

382 *: The cells were pooled from at least two independent biological repeats.

383 #: Based on the best fits of linear regression. $R^2 > 0.90$.

384 [&]: Equals to the net disassembly rate divided by the total number of actin molecules in the ring.

385 N.M.: Not measured.

386

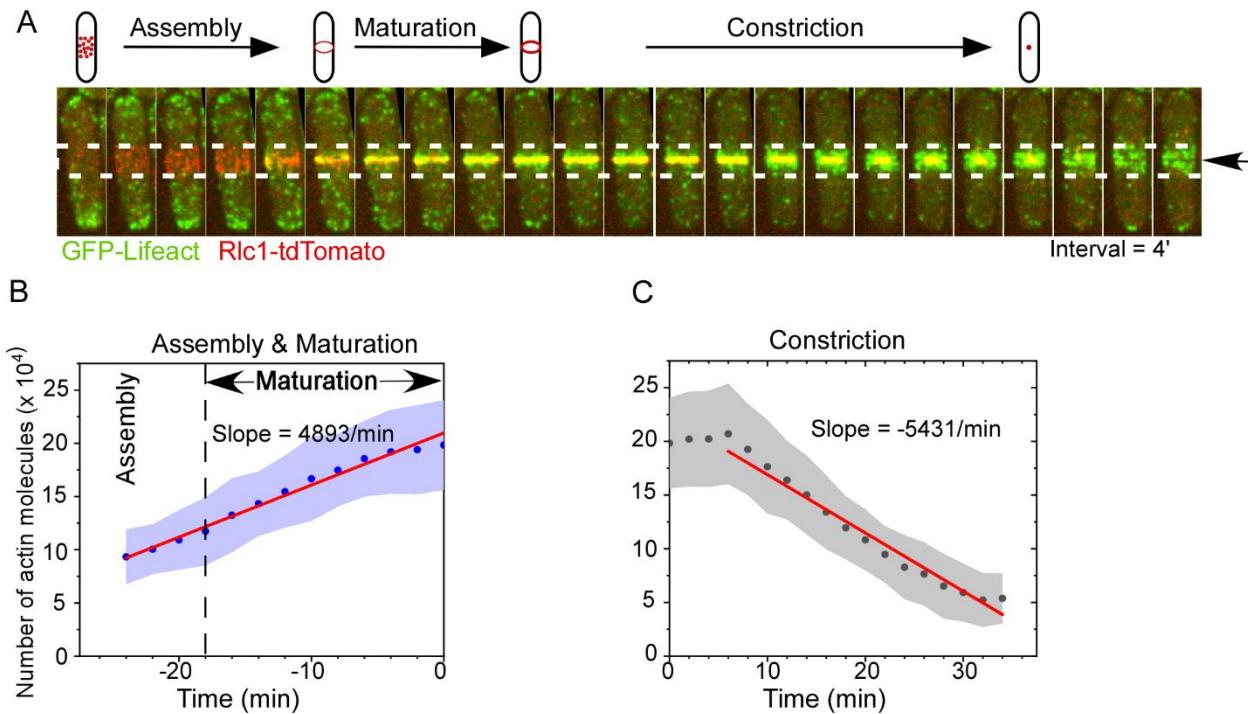
387 **Table 2: Comparison of the architecture of the contractile ring between wild-type and the**
388 **cofilin mutant**

Genotype	Estimated assembly time of actin (mins)*	Total filament length in the mature ring (μm)	Number of formin dimers in the mature ring	Number of type II myosin motor domains in the mature ring	Average filament length in the mature ring (μm)
WT	43	530	~350	~7,000	1.5
<i>adf1-M3</i>	39	975	~520	~14,000	1.9

389

390 *: Based on the best fit of linear regression. Time = Number of actin molecules/net assembly
391 rate.

392 **Table 3 Yeast strains**

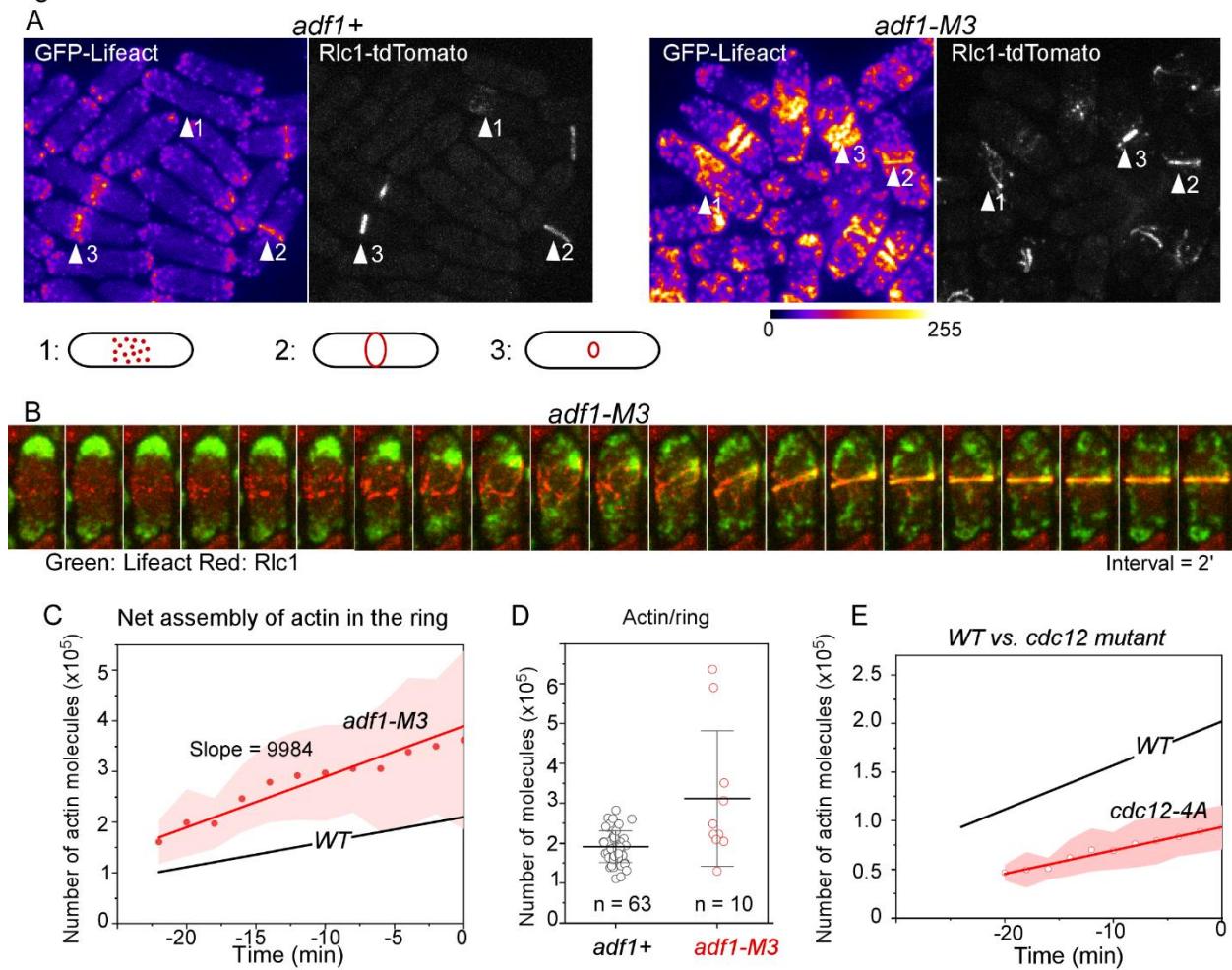

Strains	Genotype	Source
QC-Y601	<i>h+</i> <i>leu2::kanMX-Pcof1-mEGFP-Lifeact rlc1-tdTomato-Nat</i>	Lab stock
QC-Y620	<i>h+</i> <i>leu2::kanMX-Pcof1-mEGFP-Lifeact rlc1-tdTomato-Nat adf1::KanMX6-Padf1-adf1-M3</i>	Lab stock
QC-Y1164	<i>h?</i> <i>leu2::kanMX-Pcof1-mEGFP-Lifeact rlc1-tdTomato-Nat Myo2-E1</i>	This study
QC-Y1185	<i>h?</i> <i>leu2::kanMX-Pcof1-mEGFP-Lifeact rlc1-tdTomato-Nat cdc12-4A:kanR ade6-M21X leu1-32 ura4-D18</i>	This study
QC-Y1196	<i>h?</i> <i>leu2::kanMX-Pcof1-mEGFP-Lifeact rlc1-tdTomato-Nat myp2::kanMX6</i>	This study
JW766	<i>h+</i> <i>kanMX6-Pmyo2-GFP-myo2 ade6-M210 leu1-32 ura4-D18</i>	Lab stock (Jian-Qiu Wu)
QC-Y129	<i>h+</i> <i>kanMX6-Pmyo2-GFP-myo2 leu1-32 ura4-D18 adf1M3A-KanMX6</i>	Lab stock
KV344	<i>h?</i> <i>cdc12-3XGFP::kanMX6 leu1-32 his3-D1 ura4-D18 ade6-M216</i>	Lab stock (David Kovar)
QC-Y142	<i>h+</i> <i>cdc12-3XGFP::kanMX6 leu1-32 his3-D1 ura4-D18 ade6-M216 adf1M3-KanMX6 leu1-32 ura4-D18 ade6-M216</i>	Lab stock
QC-Y267	<i>h+</i> <i>for3-3GFP-ura4+ ade6-M21 leu1-32 ura4-D18</i>	Lab stock
QC-Y1355	<i>h?</i> <i>adf1M3A-KanMX6 leu1-32 ura4-D18 his3-D1 ade6-M216 for3-3GFP-ura4+ ade6-M21 leu1-32 ura4-D18</i>	This study
QC-Y519	<i>h-</i> <i>myp2-GFP-kanMX6 ade6-M210 leu1-32 ura4-D18</i>	Lab stock
QC-Y1371	<i>h?</i> <i>adf1M3A-KanMX6 leu1-32 ura4-D18 his3-D1 ade6-M216 myp2-mEGFP-KanMX6 ade6-M210 leu1-32 ura4-D18</i>	This study

393

394

395 **Figures and Figure legends**

Figure 1

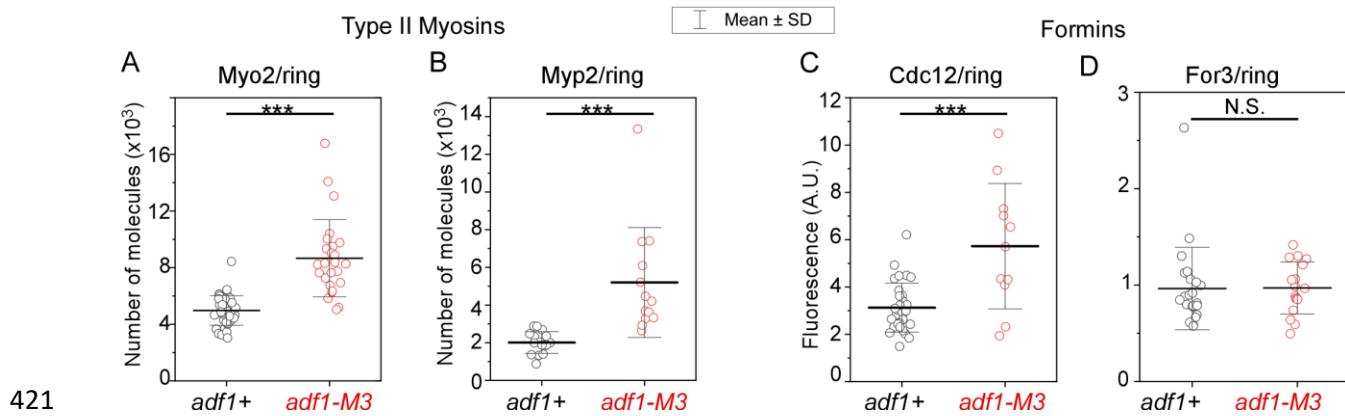

397 **Figure 1. Counting the numbers of actin molecules in the contractile ring of fission yeast**
398 **using GFP-Lifeact.**

399 **(A)** Assembly and constriction of the contractile ring documented by time-lapse micrographs of
400 a cell expressing both GFP-Lifeact (green) and Rlc1-tdTomato (red).

401 **(B-C)** Average time course of the number of actin molecules in the contractile rings during **(B)**
402 their assembly and maturation and **(C)** constriction in wild-type cells. Clouds represent standard
403 deviations. Time zero is defined as the start of the ring constriction. Red line represents the best
404 linear fit. $R^2 > 0.9$.

405

Figure 2



406
407 **Figure 2. Contractile ring assembly in cofilin mutant *adf1*-M3 and formin mutant *cdc12*-
408 4A.**

409 (A) Fluorescence micrographs of the wild-type (left) and *adf1*-M3 cells. Both expressed GFP-
410 Lifeact (fire colored) and Rlc1-tdTomato. Arrowheads: contractile rings at the stages of (1)
411 assembly, (2) maturation and (3) constriction.
412 (B) Time series of micrographs (pseudo-colored) of a cofilin mutant cell during cytokinesis.
413 (C) Time course of actin molecules accumulating in the contractile rings of *adf1*-M3 cells (n =
414 21). Red symbols are mean values; the line represents best fit; the cloud represents standard
415 deviations. The line for WT cells is from Fig. 1B.
416 (D) Average number of actin molecules in mature contractile rings. Measurements were taken
417 just before the start of the ring constriction.

418 (E) Time course of actin assembly in the contractile rings of formin *cdc12-4A* mutants. The line
419 for *WT* cells is from Fig. 1B. The slope of the *cdc12-4A* mutant cells is significantly smaller than
420 that of the wild-type ($P < 0.005$).

Figure 3

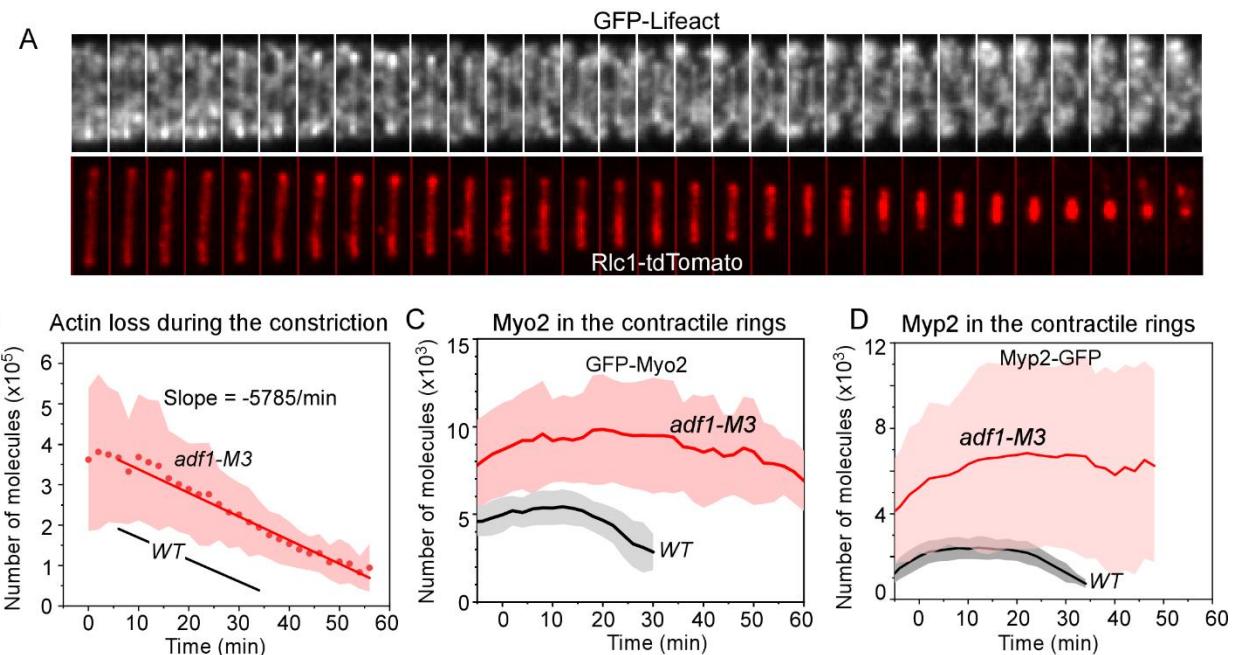


Figure 3. Architecture of the contractile ring in cofilin mutant cells.

(A-B) Numbers of type II myosins, (A) Myo2 and (B) Myp2 in contractile rings of wild-type and *adf1-M3* cells.

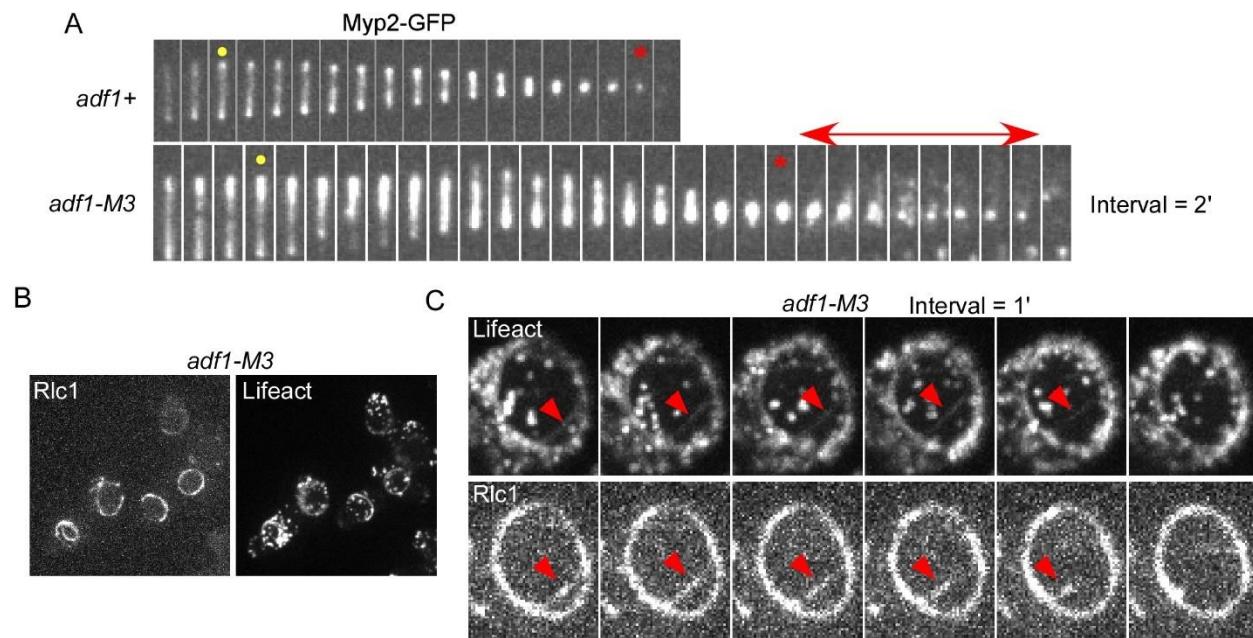

(C-D) The fluorescence intensities of two formins, (C) Cdc12-3GFP and (D) For3-3GFP in contractile rings of wild-type and *adf1-M3* cells. ***: $P < 0.001$. N.S.: $P > 0.05$. Values were calculated from two-tailed student t-tests.

Figure 4

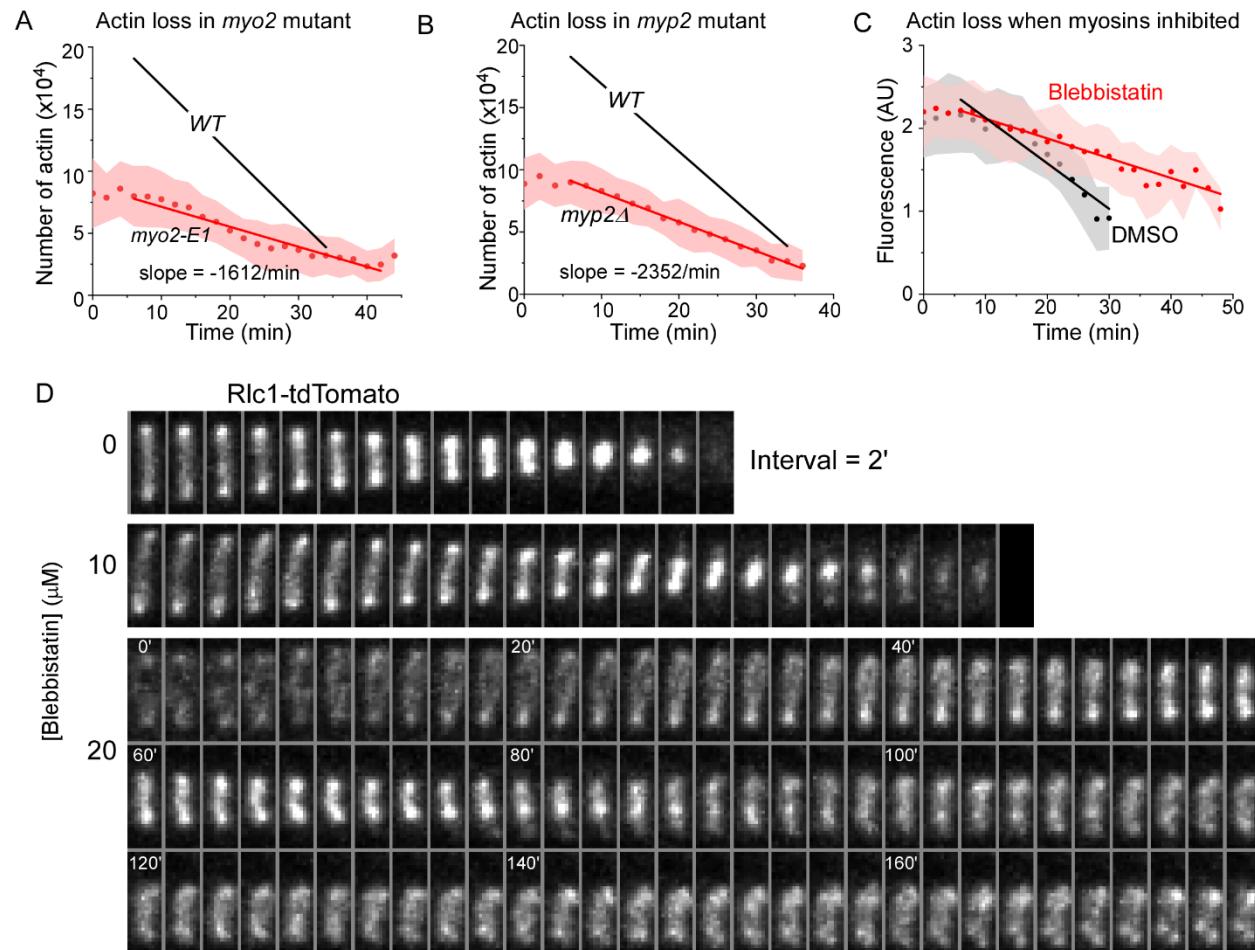
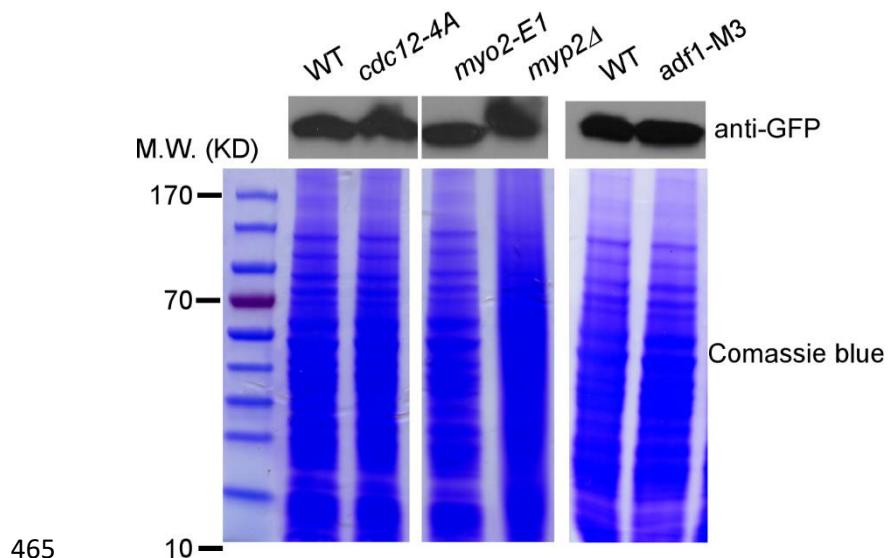

429
430 **Figure 4. Time courses of the numbers of actin and type II myosins in constricting**
431 **contractile rings of WT and *adf1-M3* cells.** Time zero is the onset of constriction.
432 (A) Time-series of micrographs of a constricting contractile ring in an *adf1-M3* mutant cell
433 expressing GFP-Lifeact (top) and Rlc1-tdTomato (bottom, red). Interval = 2 min.
434 (B) Time course of the loss of actin molecules from contractile rings as they constricted. Red
435 symbols and line are mean values; the cloud shows standard deviations.
436 (C) Time course of the numbers of GFP-Myo2 molecules in constricting contractile rings of WT
437 and *adf1-M3* cells (n > 25). Red symbols and line are mean values; the cloud shows standard
438 deviations, which are large in the mutant cells.
439 (D) Time course of the numbers of Myp2-GFP molecules in constricting contractile rings of WT
440 and *adf1-M3* cells (n > 10). The thick lines are mean values.

Figure 5

450

Figure 6

451


452 **Figure 6. Disassembly of contractile ring actin filaments in type II myosin mutants at the**
453 **permissive temperature of 22°C.**

454 **(A-B)** Time courses of actin loss from constricting contractile rings of **(A)** *myo2-E1* and **(B)**
455 *myp2Δ* mutant cells. Dark red circles are mean values; red lines are the best linear fits; the cloud
456 shows standard deviations.

457 **(C)** Time courses of GFP-Lifeact fluorescence in contractile rings of the cells treated with either
458 10 μM blebbistatin or 1% DMSO (control). The slopes are -5489/min (DMSO) and
459 -2389/min (Blebbistatin) respectively. Only cells with a mature contractile ring before the
460 treatment were included. Circles are mean values; solid lines are the best linear fits; the cloud
461 shows standard deviations.

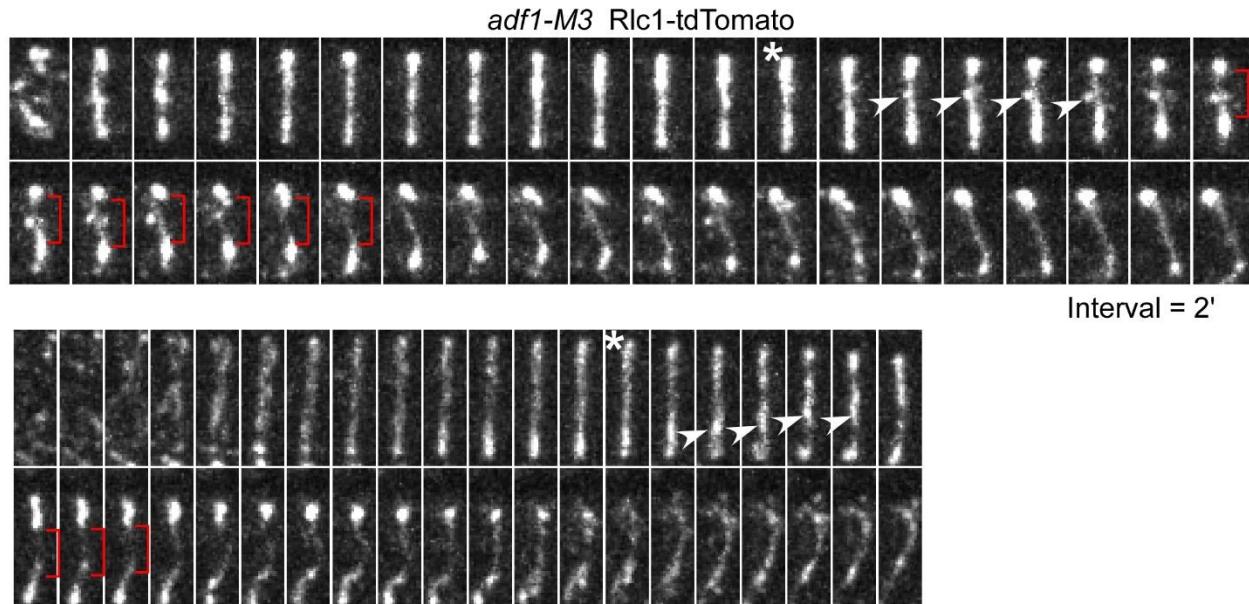

462 (D) Time series of micrographs of contractile rings marked by Rlc1-tdTomato in three wild-type
463 cells treated with either DMSO (top), or 10 (middle) or 20 μ M (bottom) of blebbistatin. The
464 number in the time series of 20 μ M blebbistatin-treated cell represents time in minutes.

Figure S1

465 **Supplemental Figure S1: Expression of GFP-Lifeact.** Top: Anti-GFP blot of the whole cell
466 lysate from wild-type, formin mutant and myosin mutants (left) and wild-type and cofilin mutant
467 cells (right). Bottom: Coomassie blue-stained SDS-PAGE gel of the whole cell lysate as loading
468 control.
469

Figure S2

470

471 **Supplemental Figure S2: The contractile rings that failed to constrict in the cofilin mutant**
472 **cells.** Time-series micrographs of two *adf1-M3* cells expressing Rlc1-tdTomato. Asterisk: start of
473 the contractile ring constriction. Arrowhead: fragmentation of the ring. Bracket: enlarging gap in
474 the contractile ring. Such fragmenting rings represent 30% of the contractile rings among the
475 cofilin mutant.

476 **References**

477 Bezanilla, M., J.M. Wilson, and T.D. Pollard. 2000. Fission yeast myosin-II isoforms assemble into
478 contractile rings at distinct times during mitosis. *Curr Biol.* 10:397-400.

479 Bohnert, K.A., A.P. Grzegorzewska, A.H. Willet, C.W. Vander Kooi, D.R. Kovar, and K.L. Gould. 2013. SIN-
480 dependent phosphoinhibition of formin multimerization controls fission yeast cytokinesis. *Genes*
481 & development. 27:2164-2177.

482 Cao, L.G., and Y.L. Wang. 1990. Mechanism of the formation of contractile ring in dividing cultured
483 animal cells. I. Recruitment of preexisting actin filaments into the cleavage furrow. *The Journal*
484 *of cell biology.* 110:1089-1095.

485 Chang, F., A. Woppard, and P. Nurse. 1996. Isolation and characterization of fission yeast mutants
486 defective in the assembly and placement of the contractile actin ring. *Journal of cell science.* 109
487 (Pt 1):131-142.

488 Cheffings, T.H., N.J. Burroughs, and M.K. Balasubramanian. 2019. Actin turnover ensures uniform
489 tension distribution during cytokinetic actomyosin ring contraction. *Molecular biology of the*
490 *cell.* 30:933-941.

491 Chen, Q., S. Nag, and T.D. Pollard. 2012. Formins filter modified actin subunits during processive
492 elongation. *Journal of structural biology.* 177:32-39.

493 Chen, Q., and T.D. Pollard. 2011. Actin filament severing by cofilin is more important for assembly than
494 constriction of the cytokinetic contractile ring. *The Journal of cell biology.* 195:485-498.

495 Chen, Q., and T.D. Pollard. 2013. Actin filament severing by cofilin dismantles actin patches and
496 produces mother filaments for new patches. *Curr Biol.* 23:1154-1162.

497 Coffman, V.C., J.A. Sees, D.R. Kovar, and J.Q. Wu. 2013. The formins Cdc12 and For3 cooperate during
498 contractile ring assembly in cytokinesis. *The Journal of cell biology.* 203:101-114.

499 Courtemanche, N., T.D. Pollard, and Q. Chen. 2016. Avoiding artefacts when counting polymerized actin
500 in live cells with LifeAct fused to fluorescent proteins. *Nature cell biology.* 18:676-683.

501 Ghosh, M., X. Song, G. Mouneimne, M. Sidani, D.S. Lawrence, and J.S. Condeelis. 2004. Cofilin promotes
502 actin polymerization and defines the direction of cell motility. *Science (New York, N.Y.)*. 304:743-
503 746.

504 Goss, J.W., S. Kim, H. Bledsoe, and T.D. Pollard. 2014. Characterization of the roles of Blt1p in fission
505 yeast cytokinesis. *Molecular biology of the cell.* 25:1946-1957.

506 Kanbe, T., I. Kobayashi, and K. Tanaka. 1989. Dynamics of cytoplasmic organelles in the cell cycle of the
507 fission yeast *Schizosaccharomyces pombe*: three-dimensional reconstruction from serial
508 sections. *Journal of cell science.* 94 (Pt 4):647-656.

509 Konzok, A., I. Weber, E. Simmeth, U. Hacker, M. Maniak, and A. Muller-Taubenberger. 1999. DAip1, a
510 Dictyostelium homologue of the yeast actin-interacting protein 1, is involved in endocytosis,
511 cytokinesis, and motility. *The Journal of cell biology.* 146:453-464.

512 Kovar, D.R., J.R. Kuhn, A.L. Tichy, and T.D. Pollard. 2003. The fission yeast cytokinesis formin Cdc12p is a
513 barbed end actin filament capping protein gated by profilin. *The Journal of cell biology.* 161:875-
514 887.

515 Laplante, C., J. Berro, E. Karatekin, A. Hernandez-Leyva, R. Lee, and T.D. Pollard. 2015. Three myosins
516 contribute uniquely to the assembly and constriction of the fission yeast cytokinetic contractile
517 ring. *Curr Biol.* 25:1955-1965.

518 Laplante, C., F. Huang, I.R. Tebbs, J. Bewersdorf, and T.D. Pollard. 2016. Molecular organization of
519 cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live
520 fission yeast. *Proceedings of the National Academy of Sciences of the United States of America.*
521 113:E5876-E5885.

522 Lukinavicius, G., L. Reymond, E. D'Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo,
523 H. Waldmann, C. Blaukopf, C. Sommer, D.W. Gerlich, H.D. Arndt, S.W. Hell, and K. Johnsson.
524 2014. Fluorogenic probes for live-cell imaging of the cytoskeleton. *Nat Methods*. 11:731-733.

525 Morris, Z., D. Sinha, A. Poddar, B. Morris, and Q. Chen. 2019. Fission yeast TRP channel Pkd2p localizes
526 to the cleavage furrow and regulates cell separation during cytokinesis. *Molecular biology of the*
527 *cell*. 30:1791-1804.

528 Nakano, K., and I. Mabuchi. 2006. Actin-capping protein is involved in controlling organization of actin
529 cytoskeleton together with ADF/cofilin, profilin and F-actin crosslinking proteins in fission yeast.
530 *Genes Cells*. 11:893-905.

531 Okada, H., C. Wloka, J.Q. Wu, and E. Bi. 2019. Distinct Roles of Myosin-II Isoforms in Cytokinesis under
532 Normal and Stressed Conditions. *iScience*. 14:69-87.

533 Okreglak, V., and D.G. Drubin. 2007. Cofilin recruitment and function during actin-mediated endocytosis
534 dictated by actin nucleotide state. *The Journal of cell biology*. 178:1251-1264.

535 Pollard, T.D., and B. O'Shaughnessy. 2019. Molecular Mechanism of Cytokinesis. *Annual review of*
536 *biochemistry*. 88:661-689.

537 Riedl, J., A.H. Crevenna, K. Kessenbrock, J.H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T.A. Holak,
538 Z. Werb, M. Sixt, and R. Wedlich-Soldner. 2008. Lifeact: a versatile marker to visualize F-actin.
539 *Nat Methods*. 5:605-607.

540 Stachowiak, M.R., C. Laplante, H.F. Chin, B. Guirao, E. Karatekin, T.D. Pollard, and B. O'Shaughnessy.
541 2014. Mechanism of cytokinetic contractile ring constriction in fission yeast. *Developmental cell*.
542 29:547-561.

543 Straight, A.F., A. Cheung, J. Limouze, I. Chen, N.J. Westwood, J.R. Sellers, and T.J. Mitchison. 2003.
544 Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. *Science (New*
545 *York, N.Y.)*. 299:1743-1747.

546 Swulius, M.T., L.T. Nguyen, M.S. Ladinsky, D.R. Ortega, S. Aich, M. Mishra, and G.J. Jensen. 2018.
547 Structure of the fission yeast actomyosin ring during constriction. *Proceedings of the National*
548 *Academy of Sciences of the United States of America*. 115:E1455-E1464.

549 Takaine, M., O. Numata, and K. Nakano. 2015. An actin-myosin-II interaction is involved in maintaining
550 the contractile ring in fission yeast. *Journal of cell science*. 128:2903-2918.

551 Thevenaz, P., U.E. Ruttmann, and M. Unser. 1998. A pyramid approach to subpixel registration based on
552 intensity. *IEEE Trans Image Process*. 7:27-41.

553 Vavylonis, D., J.-Q. Wu, S. Hao, B. O'Shaughnessy, and T.D. Pollard. 2008. Assembly mechanism of the
554 contractile ring for cytokinesis by fission yeast. *Science*. 319:97-100.

555 Wang, N., I.J. Lee, G. Rask, and J.Q. Wu. 2016. Roles of the TRAPP-II Complex and the Exocyst in
556 Membrane Deposition during Fission Yeast Cytokinesis. *PLoS biology*. 14:e1002437.

557 Wu, J.Q., J.R. Kuhn, D.R. Kovar, and T.D. Pollard. 2003. Spatial and temporal pathway for assembly and
558 constriction of the contractile ring in fission yeast cytokinesis. *Developmental cell*. 5:723-734.

559 Wu, J.Q., and T.D. Pollard. 2005. Counting cytokinesis proteins globally and locally in fission yeast.
560 *Science (New York, N.Y.)*. 310:310-314.

561 Zambon, P., S. Palani, A. Kamnev, and M.K. Balasubramanian. 2017. Myo2p is the major motor involved
562 in actomyosin ring contraction in fission yeast. *Curr Biol*. 27:R99-R100.

563 Zhang, X.F., C. Hyland, D. Van Goor, and P. Forscher. 2012. Calcineurin-dependent cofilin activation and
564 increased retrograde actin flow drive 5-HT-dependent neurite outgrowth in Aplysia bag cell
565 neurons. *Molecular biology of the cell*. 23:4833-4848.

566 Zimmermann, D., K.E. Homa, G.M. Hocky, L.W. Pollard, E.M. De La Cruz, G.A. Voth, K.M. Trybus, and D.R.
567 Kovar. 2017. Mechanoregulated inhibition of formin facilitates contractile actomyosin ring
568 assembly. *Nature communications*. 8:703.