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Abstract

Fatty liver disease progresses through stages of fat accumulation and inflammation to non-alco-
holic steatohepatitis (NASH), fibrosis and cirrhosis and eventually hepatocellular carcinoma
(HCC). Currently available diagnostic tools for HCC lack sensitivity and specificity and deliver
little value to patients. In this study, we investigated the use of circulating serum glycoproteins to
identify a panel of potential prognostic markers that may be indicative of progression from the
healthy state to NASH and further to HCC. Serum samples were processed using a standard pre-
analytical sample preparation protocol and were analyzed using a novel high throughput glycopro-
teomics platform. We analyzed 413 glycopeptides, representing 57 abundant serum proteins and
compared among the three phenotypes. Our initial dataset contained healthy, NASH, and HCC
serum samples. We analyzed normalized abundance of common glycoforms and found 40 glyco-
peptides with statistically significant differences in abundances in NASH and HCC compared to
controls. Summary level relative abundance of core-fucosylated, sialylated and branched glycans
containing glycopeptides were higher in NASH and HCC as compared to controls. We replicated
some of our findings in an independent set of samples of individuals with benign liver conditions

and HCC, respectively. Our results may be of value in the management of liver diseases.
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Introduction

Accumulation of fat deposits in the liver, in the absence of excess alcohol consumption, is the
hallmark of non-alcoholic fatty liver disease (NAFLD). NAFLD is the most common cause of
chronic liver disease, affecting approximately 25% of the global population!. NAFLD progresses
through various stages of fat accumulation from simple steatosis (NAFL) to steatosis and weak
inflammation with or without fibrosis, a condition termed non-alcoholic steatohepatitis (NASH),
which, in turn, may progress to the development of liver cirrhosis. Since about 1-2% of patients
with liver cirrhosis will develop either end-stage liver diseases or hepatocellular carcinoma
(HCC)**, early recognition of NAFLD and NASH represents an urgent unmet medical need. While
liver biopsy is the gold standard and the most commonly used method for diagnosing NAFLD, its
utility is limited by the invasive nature of the procedure as well as by the stochastic constraints

imposed by histological heterogeneity>-6.

A wide variety of noninvasive approaches have been developed for the noninvasive diagnosis of
NAFLD and NASH, including imaging techniques, hepatic stiffness measurements using shear
wave elastography or magnetic resonance elastography, and a multitude of biomarker-derived in-
dices such as the aspartate aminotransferase-to-platelet ratio index (APRI), the FibroTest (gamma-
glutamyl transferase, total bilirubin, alpha-2-macroglobin (A2MG), apolipoprotein A1, and hap-
toglobin (HPT), with/without alanine aminotransferase [ALT]), the Firm index, the Fibrolndex,
the fibrosis-2 index, the Hui index, the NAFLD fibrosis score, or the BAAT-score (BMI, Age,
ALT, triglycerides) 7). In addition, a large number of individual biomarkers including cytokeratin

18 (CK18)3, osteopontin®, fucosylated AFP (AFP-L.3)!°, des-gamma-gamma-carboxy prothrombin
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(DCP)!!, glypican-3'2, alpha-1-fucosidase'?, Golgi protein-73 ', alpha-1-acid-glycoprotein
(AGP1)'5- 1 alpha-fetoprotein (AFP)", alpha-1-antitrypsin (A1AT) '8:1°, HPT !8-20-27 "apolipopro-
tein-J, A2MG, ceruloplasmin (CERU), CFAH, fibronectin, hemopexin (HEMO), kininogen,
paraoxonase-1, vimentin, vitronectin (VITNC) , mac-2-binding protein, immunoglobulin G (IgG)?,
and miRNA? have variably been cited as potentially useful to diagnose NAFLD/NASH and/or

HCC; for the latter, AFP is used most widely!'’.

Common to all these indices and biomarkers is an underwhelming performance in real world test-
ing, rendering them of limited utility and resulting in a multitude of missed diagnoses®. This is
unfortunate, since NAFLD, and to a lesser extent NASH, in the absence of any approved pharma-
cologic treatments, may be reversible via simple dietary and lifestyle modifications if diagnosed
early-on. Therefore, the development of an accurate, noninvasive diagnostic test for early recog-

nition, with its expected major public health impact, has been the focus of numerous efforts.

Common to many of these putative biomarkers is that they are glycoproteins (cytokeratin 18,
AGP1, AFP, A1AT, HPT, apolipoprotein-J, A2MG, CERU, CFAH, fibronectin, HEMO, kinino-
gen, paraoxonase-1, vimentin, VITNC, mac-2-binding protein and IgGs). Indeed, higher levels of
branching, sialylation and core fucosylation for a range of proteins have been found to be a hall-
mark of HCC?!, and a “fucosylation index” has been considered as an indicator of progression
from NASH to HCC?2. Only a few detailed studies have been carried out investigating the associ-
ation of shifts in relative abundance of individual glyco-isoforms of these proteins with the pro-
gression from the healthy state to NAFLD, NASH, and HCC. A recent publication by Zhu et al.
found that characterization of HPT glycopeptide-isoforms might be useful in tracking progression

from NASH/cirrhosis to early and late stage HCC?'.
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In this study, we applied a novel, high-throughput glycoproteomics platform to the interrogation
of serum glycoprotein isoforms with the aim of finding clinically actionable, accurate biomarker
panels that would allow for early, noninvasive recognition of, NAFLD/NASH as well as for mon-

itoring the progression of fatty liver disorder to HCC.

Materials and Methods

Biological samples:

The discovery set consisted of serum samples from 23 patients with a biopsy-proven diagnosis of
NASH (10 male, 13 female; Indivumed AG, Hamburg, Germany) (Tablel, Table S1), 20 patients
with a diagnosis of HCC (16 male, 4 female; 6 stage I, 8 stage II, 6 stage 111, 2 stage IV; Indivumed
AG) (Tablel, Table S2), and from 56 apparently healthy subjects with no history of liver disease
(controls, 26 male, 30 female) which were sourced from iSpecimen (n=23, Lexington, MA), Pal-
leon Pharmaceuticals Inc. (n=12, Waltham, MA) and Human Immune Monitoring Center
(HIMC), Stanford University (n=21)) (Tablel). Our validation set consisted of serum samples
from 28 control subjects with a benign hepatic mass (16 male, 12 female) (Tablel) and 28 subjects
(20 male, 8 female) with HCC (Table 1), all obtained from Indivumed AG. Clinical diagnoses of
patients with NASH and HCC were based on histopathological characterization of hepatic tissue

obtained either via needle biopsy or at surgery.

Chemicals and reagents:
Pooled human serum (for assay normalization and calibration purposes), dithiothreitol (DTT) and

iodoacetamide (IAA) were purchased from Millipore Sigma (St. Louis, MO). Sequencing grade
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trypsin was purchased from Promega (Madison, WI). Acetonitrile (LC-MS grade) was purchased
from Honeywell (Muskegon, MI). All other reagents used were procured from Millipore Sigma,

VWR, and Fisher Scientific

Preanalytical sample preparation:
Serum samples were reduced with DTT and alkylated with IAA followed by digestion with trypsin
in a water bath at 37°C for 18 hours. To quench the digestion, formic acid was added to each

sample after incubation to a final concentration of 1% (v/v).

Liquid chromatography/mass spectrometry (LC-MS) analysis:

Digested serum samples were injected into an Agilent 6495B triple quadrupole mass spectrometer
equipped with an Agilent 1290 Infinity ultra-high-pressure (UHP)-LC system and an Agilent
ZORBAX Eclipse Plus C18 column (2.1 mm x 150 mm i.d., 1.8 ym particle size). Separation of
the peptides and glycopeptides was performed using a 70-min binary gradient. The aqueous mobile
phase A was 3% acetonitrile, 0.1% formic acid in water (v/v), and the organic mobile phase B was
90% acetonitrile 0.1% formic acid in water (v/v). The flow rate was set at 0.5 mL/min. Electrospray
ionization (ESI) was used as the ionization source and was operated in positive ion mode. The
triple quadrupole MS was operated in dynamic multiple reaction monitoring (AIMRM) mode. Sam-
ples were injected in a randomized fashion with regard to underlying phenotype, and reference
pooled serum digests were injected interspersed with study samples, at every 10" sample position

throughout the run.

Data analysis:
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We performed MRM analysis of peptides and glycopeptides representing a total of 73 high-abun-
dance serum glycoproteins. Our transition list consisted of glycopeptides as well as of non-glyco-
sylated peptides from each glycoprotein. The python library Scikit-learn (https://scikit-
learn.org/stable/) was used for all statistical analyses and for building machine learning models.
We used PB-Net, a peak-integration software, that had been developed in-house to integrate peaks
and to automatically obtain raw abundances for each marker**. Normalized abundance, corrected

for within run drift, was calculated using the following formula:

Normalized abundance = (raw abundance of any glycopeptide or peptide in sample/raw abundance
of a non-glycosylated peptide from the same glycoprotein) / average relative abundance of the

same glycopeptides or peptides in the flanking pooled reference serum samples.

Relative abundance was calculated as the ratio of the raw abundance of any given glycopeptide to

the sum of raw abundances of all glycopeptides.

Fold-changes for individual peptides and glycopeptides, were calculated on normalized abun-
dances of control vs. NASH samples, control vs. HCC samples, as well as on NASH vs. HCC
samples, after adjusting for age and sex. False discovery rate was calculated using the Benjamini-
Hochberg method**. We performed principal component analysis (PCA) on normalized abun-
dances of glycopeptides to investigate differences among the three phenotypes studied. Prior to
performing PCA, normalized abundances were scaled so that the distribution had a mean value of
0 and a standard deviation of 1. Logistic regression models were built using normalized abun-
dances of selected glycopeptides. The probability estimates of a sample in the test set predicted to

belong to a particular phenotype was obtained from the trained logistic regression model.

Ingenuity Pathway Analysis:
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Core analysis was performed to identify canonical pathways, up-stream regulators, and associated
protein network by using Ingenuity® Pathway Analysis (IPA) software (QIAGEN Inc.), relying
on IPA’s proprietary algorithm to evaluate and minimize sample source bias. The p-value of over-
lap was calculated based on right-tailed Fisher’s exact test to determine the statistical significance
of each canonical pathway, with p<10- being considered statistically significant. The 10 statisti-
cally most significantly associated upstream regulators of differentially abundant glycoproteins
identified in our study were predicted by using Ingenuity® Knowledge Base. A molecule-class
filter was applied to include only genes, RNAs and proteins. The networks associated with glyco-
proteins of interest were built based on both direct and indirect relationships. In addition, a total
of 11 fucosyltransferase (FUT) genes and 20 sialyltransferase (ST) genes were retrieved from the
CAZy database (www.cazy.org), and the IPA pathway explorer tool was used to explore the mo-
lecular connections of glycosylation-modifying enzymes and identified glycoproteins of interest.
The “shortest path+1 node” was selected to construct the networks. Abundance values of the gly-

coproteins interrogated were not considered in these analyses.

Results

Normalized abundance of glycopeptides/peptides among control-, NASH-, and HCC-sam-

ples

We performed MRM analysis on control, NASH, and HCC serum samples. The peptide and gly-

copeptide markers employed in the MRM study were a selection of those published by Li et al*>.
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The identity of each marker employed in our MRM experiments were verified by us. Figure S1
shows a representative example of chromatographic separation of different glycoforms of peptide
VVLHPN#*YSQVDIGLIK from HPT. In the MRM study of control, NASH, and HCC serum sam-
ples, normalized abundances of 187 glycopeptides and peptides were found to be statistically sig-
nificantly different between samples from patients with NASH and controls with p-value of fold
change less than 0.05. Likewise, normalized abundances of 254 glycopeptides and peptides were
found to be statistically significantly different between samples from HCC patients and controls
with p-values of fold change less than 0.05. Among these 254 glycopeptides and peptides, 215
showed differences that were statistically significant at a false discovery rate (FDR) of <0.05.
Among the two sets of comparisons (NASH vs. controls, and HCC vs. controls), 87 glycopeptides
and peptides were shared, i.e., showed statistically significantly different abundances in both com-
parisons at FDR<0.05. Among these 87 glycopeptides and peptides, the abundances of 40 glyco-
peptides and 23 peptides which exhibited statistically significantly differences that is also found
in comparisons between samples from patients with NASH and controls. These 40 glycopeptides
originated from 20 glycoproteins (Fig 1.a, Table S6). Likewise, normalized abundances of 166
glycopeptides and peptides were found to statistically significantly different between samples from
NASH and HCC patients, with p-values of less than 0.05. Among these 72 glycopeptides and
peptides, showed differences that were statistically significant at a false discovery rate FDR) of

<0.05.

Principal component analysis was performed to assess the segregation between the three pheno-
types across first and second principal components (Fig. S2). While HCC samples segregate quite

distinctly from control samples, most NASH samples do not. We trained a logistic regression
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model on normalized abundances of potential “disease progression markers”, i.e., glycopep-
tides/peptides that displayed unidirectionally higher or lower abundances across the phenotypic
cascade from healthy to NASH to HCC. Fig 1.b shows the predicted probability of a sample rep-
resenting the control, NASH, or HCC phenotype, respectively, based on this analysis. The coeffi-
cients of the logistic regression model are listed in Table S3. Among the 20 glycoproteins that
were found to demonstrate statistically significant, unidirectional differences in abundance across
the 3 phenotypes were seen in A2MG, HPT, apolipoprotein C3 (APOC3), CFAH, serotransferrin
(TRFE), VINC, CERU, A1AT. For differentiating glycoprotein profiles among NASH- and HCC-
patients, we used logistic regression algorithm with LASSO regularization to build the model and
leave one out cross validation (LOOCV) on NASH and HCC samples form the discovery set. We
demonstrate an AUROC of 0.99 for the training set samples, and of 0.89 for the testing set (Figure

S3).

Relative abundance of glycopeptides containing common glycans among control-, NASH-

and HCC-samples

We examined the cumulative relative abundances of glycopeptide motifs in control-, NASH- and
HCC-samples. Higher levels of branching as well as of sialylation and core fucosylation have
previously been reported for a range of proteins in HCC3!. To further explore these findings, we
examined glycopeptides with glycans containing no core fucosylation and either no sialylations (0
Fuc, 0 Sial), three sialylations (0 Fuc, 3 Sial), or four sialylations (0 Fuc, 4 Sial) among the gly-
copeptides identified as statistically significantly differentially abundant in our study. There were

49, 29, and 9 glycopeptides, respectively, in each of these 3 groups. We also examined
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glycopeptides with one core fucosylation and either two sialylations (I Fuc, 2 Sial), three sialyla-
tions (I Fuc, 3 Sial), or four sialylations (/ Fuc, 4 Sial) among the glycopeptides that are statisti-
cally significantly differentially abundant in our study (Fig 2). There were 33, 15, and 4 glycopep-
tides, respectively, in each of these 3 groups. Statistically significantly higher abundances were
observed in relative abundance of all glycoforms with core fucosylation and multiple sialylations
in NASH- and HCC-samples, respectively, as compared to control-samples. Statistically signifi-
cant lower relative abundances of 0 Fuc, 3 Sial-glycoforms were observed in NASH- and HCC-
as compared to control-samples. Conversely, statistically significant higher abundances of 0 Fuc,

4 Sial-glycoforms were observed in NASH- and HCC-samples as compared to control samples.

Examination of the relative abundances of glycopeptides containing glycan moieties 5400, 5401,
5411 and 5412 revealed that abundances of those lacking core fucosylation (5400 and 5401) were
statistically significantly less abundant in NASH- and HCC-samples as compared to control-sam-
ples. The abundances of glycans 5411 and 5412, which contain core fucose and sialic acid residues,
were statistically significantly more abundant in NASH- and HCC-samples as compared to control
samples (Fig S4). We then analyzed the 65xx series of glycoforms, which contain 5 N-acetyl-
hexosamine (HexNaC), 6 hexose, and variable numbers of fucose and sialic acid residues, finding
similar trends. Higher relative abundances were observed for sialylated and core-fucosylated gly-
copeptides, such as glycans 6511, 6512, 6513, in HCC-samples as compared to control-samples.
Statistically significantly higher relative abundances were observed for sialylated and core-fuco-
sylated glycopeptides, such as glycans 6571, 6513, in NASH-samples as compared to control-
samples. For glycoforms lacking core fucosylation but containing one or more sialylations, the

result is more complex. Statistically significantly higher abundances were seen for 6501, but
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statistically significant lower relative abundances were observed for 6502, 6503 in NASH- and
HCC-samples as compared to control-samples (Fig S5). We also analyzed the 76xx series of gly-
coforms that contain 6 HexNaC, 7 hexose and varying number of fucose and sialic acid residues.
Relative abundances of multiply sialylated species 7602 and 7604 were statistically significantly
much higher in NASH- and HCC-samples compared to control samples. Core fucosylated and
multiply sialylated moieties 7613 and 7614 were statistically significantly more abundant in HCC-
samples as compared to control-samples. Glycopeptides with glycan 7614 were statistically sig-
nificantly more abundant in NASH compared to control samples. Meanwhile, their non-fucosyl-
ated, non-sialylated counterpart 7600 (Fig S6) showed no statistically significant difference among

NASH- and HCC-samples as compared to control-samples.

Glycoproteins with the most pronounced unidirectional quantitative differences among con-

trols, NASH, and HCC

Alpha-2-macroglobulin (A2MG):

We observed statistically significant differences of four glycosylation sites (55,247,869 and 1424)
for this protein (Fig 3, Table S4, Table S5). On site 1424, we found a statistically significantly
lower abundance of glycan 5401 in HCC as compared to control samples. Glycan 5402, containing
no core fucosylation and two sialylations, was statistically significantly more abundant in NASH
and HCC than in control patients at all 4 glycosylation sites. We observed statistically significantly
lower abundances of the 5200-glycan moiety at amino acid position 247 in HCC as compared to
control samples. Likewise, glycans 5200, 6200 and 6300 at amino acid position 869 displayed

statistically significantly lower abundances in HCC as compared to controls. On the other hand,

12


https://doi.org/10.1101/2021.09.30.462486
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.30.462486; this version posted December 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

glycan 5401 was statistically significantly increased in HCC compared to control samples at site
869. Findings at amino acid position 55 were similar to those at amino acid position 1424 and 247.
Glycan moiety 5402, containing no core fucosylation and two sialylations, was statistically signif-
icantly more abundant in HCC-derived samples compared to samples derived from healthy sub-
jects. At site 55, glycans 5411 and 5412 were statistically significantly less abundant in HCC cases
as compared to controls. Also, statistically significantly higher abundances of A2MG protein were

observed in in HCC patients as compared to controls (Fig 3, Table S4, Table S5).

Alpha-1-acid glycoprotein 1 (AGPI):

The non-fucosylated, sialylated and tri- antennary (6503) glycopeptide at amino acid residue 103
was statistically significantly less abundant in HCC as compared to control samples (Fig S7, Table
S4, Table S5). Meanwhile, the non-fucosylated, sialylated (5402) glycopeptide moiety at amino
acid residue 33 was statistically significantly less abundant in NASH- and HCC- compared to
control-samples. At amino acid site 93 statistically significantly lower abundances of moieties
6502 and 7604 (all lacking the core fucosylation) were observed in HCC as compared to control
samples. Also, statistically significantly lower abundances of glycan moieties 6500 and 7604 were
observed in in NASH-samples as compared to control samples on site 93. Moreover, statistically
significantly higher abundances of glycans 7673 (containing a core fucose) were seen among HCC
samples compared to controls at site 93. At amino acid residue 72, we observed statistically sig-
nificantly lower abundances of glycan moiety 6503, which lacks core fucosylation, in HCC as
compared to control samples. At the same glycosylation site 72, statistically significantly higher

abundances of branched, fucosylated, and multiply sialylated glycan moieties 7613, 7614 and 7601
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(the latter lacking core fucosylation) were observed in HCC as compared to control samples (Fig

S7, Table S4, Table S5).

Haptoglobin (HPT):

We evaluated at amino acid residue positions 184, 207 and 241 (Fig S8, Table S4, Table S5). At
residue 184, we observed statistically significantly lower abundances of peptides carrying the non-
fucosylated, mono-sialylated (5407) and mono-fucosylated, non-sialylated (5410) glycan motifs
in HCC as compared to control. A statistically significantly higher abundance of glycans contain-
ing multiple sialic acid residues with (5411, 5412) or without core-fucosylation (5402) and multi-
ple sialylations were observed in HCC as compared to control samples. The peptide containing
site 207 has multiple sites of glycosylation. The identity of individual glycans and site of attach-
ment is not known. Out transition list also included a glycopeptide from haptoglobin with two sites
of glycosylation. A statistically significant decrease in all glycoforms of the glycopeptide was ob-
served in HCC compared to controls. A statistically significant decrease in three of these gly-
coforms was also observed in NASH compared to controls. At amino acid residue 241, statistically
significantly lower abundances of glycan moieties 5401, 5402, 5511 were observed in NASH and
HCC, as compared to control samples, while higher abundances of highly branched, sialylated,
and core fucosylated glycan moieties (6512, 6513, 7604) were observed in HCC as compared to

control samples (Fig S8, Table S4, Table S5).

Complement Factor H (CFAH):

14
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At amino acid position 1029 we observed a statistically significantly lower abundance of glycan
moieties 5401 and 5431 in HCC as compared to control samples. At site 882, we observed a sta-
tistically significantly lower abundances of glycans 5407 and 5402, both of which lack core fuco-
sylation, but are sialylated, in NASH and HCC as compared to control samples. Correspondingly,
at this glycosylation site, a statistically significantly higher abundance of glycan 5471 was ob-
served in HCC compared to control samples. At amino acid position 911, a statistically signifi-
cantly higher abundance of doubly sialylated glycan moiety 5402, along with a statistically signif-
icantly lower abundance of the singly sialylated glycan moiety 5401, was observed in HCC as

compared to control samples (Fig S9, Table S4, Table S5).

Alpha-1-antitrypsin (AI1AT):

We observed statistically significantly higher abundances of core fucosylated, sialylated and
branched glycans 6572 and 6513 at site 107 and of 5472 at site 271 and, correspondingly statisti-
cally significantly lower abundances of glycan species that lacked core fucosylation or sialylation,
namely of 6502 at site 107 and of 5401 and 5402 at site 271, in NASH and HCC samples as
compared to normal controls. Total levels of A1AT protein were statistically significantly in-

creased in NASH compared to controls (Fig S10, Table S4, Table S5).

Validation of results

We validated the results of the initial model by analyzing an independent set of samples from HCC

patients and controls. The controls chosen were individuals with a diagnosis of a benign hepatic
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mass, to assess directly the discriminant power of differential glycopeptide abundance for HCC.
In this set of samples, we were able to verify 12 glycopeptides and 2 of the peptides that had
previously shown differences among healthy controls and HCC patients, with the directionality,
magnitude of difference, and level of statistical significance being consistent among the 2 sample
sets (Table 2, Fig 4). The 2 peptides and 9 of the 12 glycopeptides are associated with A2MG with

the remaining 3 glycopeptides belonging to HPT, IGG1 and afamin (AFAM), respectively.

We built a logistic regression model using least absolute shrinkage and selection operator
(LASSO) 3 regularization based on the samples of individuals with benign hepatic masses and of
HCC patients, and performed a leave-one-out-cross-validation (LOOCV). We trained a LASSO
model on all of the validation set except for one that left out, to test the model on. We tested the
trained LASSO model on the data point that had been left out. We repeated this for every data
point in the validation set. The consolidated results from LOOCYV is represented in Fig 5. shows
the receiver-operating-characteristic (ROC) curve for both the training and testing sets. The area
under the ROC curve (AURQOC) for the training set was found to be 0.85, and 0.77 for the testing
set. When the LASSO model derived from the validation set was applied to the healthy controls

and HCC samples from the discovery set, an AUROC of 0.87 was determined (Fig 5).

Molecular pathway analysis

To explore functional biological aspects relevant for the 20 glycoproteins that were found to

demonstrate statistically significant, unidirectional differences in glycopeptide abundance across
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the 3 phenotypes (Table S3), we performed IPA analysis to find canonical pathways, to discover
potential regulatory networks, and to predict upstream regulators. The 10 statistically most signif-
icant canonical pathways with an overlapping p-value <107 are plotted in Fig 6.a, Table S6. The
liver X receptor and retinoid acid X receptor (LXR/RXR) pathways, which are involved in regu-
lating cholesterol and fatty acid metabolism, were identified as the most statistically significantly
enriched pathways. Of the 20 glycoproteins interrogated, 9 are associated with this pathway, in-
cluding A1BG, APOC3, CO4A/C4B, APOM, CLU, ORMI1, SERPINAI1, TF and VINC. Addi-
tionally, the FXR/RXR pathway, acute phase response signaling, the complement system, and
clathrin-mediated endocytosis signaling were among the 5 most enriched pathways. We next iden-
tified the 10 statistically most significantly associated upstream regulators for differentially abun-
dant glycoproteins, using a p-value <10 as cutoff, including transcription regulators, transmem-
brane receptor, ligand dependent nuclear receptors and cytokines (Fig 6.b, Table S6). Solid lines
in Fig 6.b represent a direct interaction between two molecules. Dotted lines represent an indirect
interaction. Among the regulators thus identified, are hepatocyte nuclear factor la (HNFla),
hepatocyte nuclear factor 4a (HNF4a), and sterol regulatory element binding factor (SREBF1),
three transcription factors prominently expressed in hepatocytes with multiple roles in the regula-
tion of liver-specific genes. Dysregulation of HNF1a expression has been reported to be associated
with both liver cirrhosis and hepatocellular carcinoma [34]. SREBF1 is involved in synthesis of
cholesterol and lipids by regulating at least 30 pertinent genes*’. The upstream regulator network,
represented as a graph indicating the molecular relationships between these proteins, with the gly-
coproteins identified as statistically significantly abundant in our study highlighted in yellow (Fig
6.b). To gain further insight into molecular mechanisms associated with the N-linked glycosylation

differences identified among these glycoproteins, 11 FUT and 20 ST genes were added to the
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analysis. The IPA Pathway explorer function was used to probe putative functional relationships
of these glycosylation-modifying enzymes and the glycoproteins identified in our study as being
of interest, based on the IPA Knowledge Base. Ten of the 11 FUT genes interrogated have been
reported to be being directly or indirectly linked to glycoproteins identified in our study, via mo-
lecular intermediaries such as transcription factor HNF4a (Fig S11 (a)), and 12 of the 20 ST genes
interrogated have been reported to affect 14 of the glycoproteins identified in our study, namely
A2M, APOC3, AZGP1, C6, CFI, CLU, CO4A, IGHM, HP, ORM1, TF, SERPINA1, SERPINA3
and VTN via several transcription factors (e.g., SREBF1 and STAT®6) or cytokines (e.g., IL1, IL2,
IL6 and TNF) (Fig S11 (b)). These molecular networks indicate the potential crosstalk between

several glycosyltransferases and the glycoproteins identified in our study.

Discussion

Our study is consistent with several previous studies that found higher relative abundance of core
fucosylation, branching, and sialylation of glycans in NASH and HCC patients as compared to
healthy controls. While many of the glycopeptides that we have identified as being associated with
NASH had previously been reported in the literature, our study adds significant depth and detail
for these biomarkers. These include APOC3 8, apolipoprotein D (APOD) *°, apolipoprotein A1,
apolipoprotein M (APOM) %!, retinol binding protein-4*>, HPT, A1AT, AGP1, VINC, CFAH, IgA,
IgG, IgM, hemopexin, TRFE 4, complement C8 alpha chain** and A2MG*. Importantly, since a

few of them (e.g., HPT 2746, A1AT ¥, A2MG*#°, and VTNC) have been reported previously as
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being differentially abundant at the protein level in NASH, our study opens important new insights

into NASH biomarkers, as discussed below.

AGP1 has previously been studied as a potential biomarker for cirrhosis and HCC. Zhang et al.
reported statistically significantly higher glycan branching, sialylation, and fucosylation of AGP1
glycopeptides in samples from patients suffering from NASH and cirrhosis as compared to con-
trols 1. Several other studies have reported similar results for AGP1 glyco-isoforms in HCC 64
3052 Qur results confirm and expand these findings. We found higher normalized abundances of
highly branched, core-fucosylated and multiply sialylated glycans in NASH and HCC as compared
to healthy controls. Determination of the abundances of AGP-1 glycans may thus be of value when

using this protein as a biomarker for NASH and HCC.

HPT has been proposed as a potentially useful marker for differentiating HCC from cirrhosis, with
extensive work over the past few years highlighting, specifically, fucosylated haptoglobin as a
marker for HCC and other liver diseases !%-20-24.26.27.43.53-55 [p a]] these studies, relatively higher
levels of sialylated and fucosylated modifications of HPT in HCC as compared to controls have
been reported. Moreover, HPT has also been evaluated as a marker for distinguishing NASH from
hepatic steatosis *°. Kamada and coworkers found fucosylated and hyper-sialylated forms of HPT
to be useful markers distinguishing NASH from NAFLD, and HCC from controls 4636, Our results
confirm many of these findings and would justify further study of the use of HPT glyco-isoforms

as markers for the diagnosis of NASH or HCC.
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ATAT has previously been reported to be a marker for HCC. Communale et al. observed higher
levels of glycans with core and outer arm fucosylation among 5 isoforms of A1AT" in HCC as
compared to healthy controls. Ahn et al. also reported higher levels of fucosylation of A1AT in
HCC compared to hepatitis B virus (HBV) infected patients®’. While decreased protein levels of
A1AT in NAFLD compared to control healthy subjects have been reported in the past*’, we found

that A1AT protein levels were statistically significantly higher in NASH compared to controls.

APOC3 contains a single known O-glycosylation site. Overall protein levels of APOC3 have been
reported to be lower in HCC3® compared to healthy controls. Our results are consistent with these
findings. We found statistically significant lower levels of APOC3 protein in HCC compared to
healthy controls. In addition, we found that levels were statistically significantly lower in NASH
compared to healthy controls. We also found differences in O-glycosylation at amino acid position
74. While glycosylation variants of APOC3 have been reported to occur in breast cancer * and
lung cancer %, to our knowledge, our study is the first to demonstrate glycosylation differences of

APOC3 in NASH and HCC.

CFAH has been extensively studied in HCC. Benicky and coworkers found that the ratios of fu-
cosylated to non-fucosylated forms of the same glycan at amino acid residues 217, 882,911 and
1029 ® were higher in HCC as compared to controls. Darebna and coworkers observed higher core
fucosylation levels at amino acid position 882> in HCC as compared to controls, and our findings
confirm these results. In addition, we found that the normalized abundance of core fucosylation is
statistically significantly higher in NASH and in HCC, as compared to healthy controls. Contrary

to a previous report® based on a small number of samples and a different methodology, we found
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statistically significantly lower abundances of core-fucosylated glycopeptide species at amino acid

residue 1029.

Specific glycopeptide moieties at amino acid position 1424 of A2MG have been reported to be
present in the plasma of HCC patients*. We confirm this finding in our current study. Differential
expression of A2MG glycoisoforms has also been reported in NASH patients**:4°. In our study, we
demonstrate that A2MG glycoforms are associated with the progression from controls to NASH
and to HCC and confirmed this trend in samples of patients with HCC compared to those with a
benign hepatic mass. For several A2MG glycopeptides and peptides, the directionality and mag-
nitude of differences across the spectrum from healthy controls to NASH and HCC appears repre-
sentative of phenotype-aligned and phenotype-indicating progressive differences. We performed
leave one out cross validation (LOOCYV) on our validation set consisting of benign hepatic mass
and HCC samples. Using logistic regression algorithm with LASSO regularization to build the
model and LOOCV, we demonstrate an AUROC of 0.85 for the training set samples, and of 0.77
for the testing set. Subsequently, we built the LASSO model on the contrast of benign hepatic
masses vs. HCCs using all samples in the validation set. When we used this trained model to pre-
dict on healthy controls vs. HCC, we determined an AUROC of 0.87, outperforming the validation
set, test AUROC of 0.77 (Fig 5). This speaks to the robustness of glycopeptides as biomarkers

distinguishing HCC from non-malignant liver conditions and from the healthy state.

Within the limitations inherent to the speculative nature of bioinformatics-based analyses, we high-
light several plausible canonical pathways and upstream regulators linked to a selection of glyco-
proteins we found to have unidirectionally altered abundances among NASH and HCC samples.

Likewise, we were able to demonstrate known interactions between a number of key enzymes
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involved in protein glycosylation and these glycoproteins. It is clear that these results, are at best
suggestive of actual functional interactions and should be viewed as no more than hypothesis-

generating; any more conclusive interpretation will have to await experimental confirmation.

The major shortcoming of the current study is the small sample size from patients with NASH that
precluded splitting the cohort into a training and a testing set. Likewise, even though we were able
confirm our findings with regard to HCC in an independent set of samples, the makeup of this
second cohort (controls being individuals with benign hepatic lesions) was somewhat different
from the first cohort (controls being healthy subjects without liver conditions). Additional work,
using independent, ad ideally larger cohorts compatible with the phenotypes currently examined
will be necessary to confirm our findings further. Another potential limitation of the present study
is the fact that, based on the methods and protocol we applied, we are only interrogating a limited
small number of relatively abundant serum glycoproteins; however, given the strength of our data,
we believe that the advantage of a very simple workflow that lends itself to high throughput offsets

the theoretical opportunity of obtaining even larger AuROCs.

Conclusions

In summary, our work confirms previous findings demonstrating altered protein glycosylation in
NASH and HCC. While previous studies explored either only single or few glycoproteins, we
analyzed a large number of glycoproteins which resulted in the discovery of a broad panel of gly-
copeptide biomarkers associated with progression from the healthy state to NASH and ultimately
HCC. This allowed us to build a highly accurate multivariable predictive classifier that clearly

distinguishes between these conditions and that paves the way for generating a tool for early
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recognition of NASH and HCC. If confirmed in future prospective studies, our results may provide

important new diagnostic tools in an area of currently unmet medical need.
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Figure S2. Principal component analysis of serum from control, NASH and HCC subjects using
potential “progression markers”. The X-axis represents the first principal component and Y-axis
represents the second principal component. Each dot represents first and second principal com-

ponent coordinates of a subject.

Figure S3. ROC curve from leave-one-out cross validation on NASH and HCC samples in the

discovery dataset.

Figure S4. Relative abundance of common glycoforms 5400, 5401, 5411, 5412 in control,
NASH and HCC serum across all 73 glycoproteins studied. Columns indicate cumulative relative

abundances of glycans among the glycoproteins being monitored.

Figure S5. Relative abundances of common glycoforms 6501, 6511,6512,6502,6512, 6503,
6513 in control, NASH, and HCC serum across all 73 glycoproteins studies. Columns indicate

cumulative relative abundances of glycans among the glycoproteins being monitored.

Figure S6. Relative abundances of common glycoforms 7600, 7602, 7604, 7613, 7614 in con-
trol, NASH and HCC serum across all 73 glycoproteins studied. Columns indicate cumulative

relative abundances of glycans among the glycoproteins being monitored.
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Figure S7. Normalized abundances of peptide and glycopeptides of AGP1 in control, NASH,

and HCC serum across all 73 glycoproteins studied. Columns indicate normalized abundances of

a certain type of glycans.

Figure S8. Normalized abundances of peptide and glycopeptides of HPT in control-, NASH- and

HCC-samples. Columns indicate normalized abundances of a certain type of glycans.

Figure S9. Normalized abundances of peptide and glycopeptides of CFAH in control-, NASH-

and HCC-samples. Columns indicate normalized abundances of glycans.

Figure S10. Normalized abundance of peptide and glycopeptides of A1AT in control-, NASH-

and HCC-samples. Columns indicate normalized abundances of glycans.

Figure S11. (a) Network of fucosyltransferases and target glycoproteins. Solid lines represent a

direct interaction between molecules. Dotted lines represent an indirect interaction. (b) Network

of sialyltransferases and target glycoproteins

Table S1. Summary of NASH patients in the discovery dataset

Table S2. Summary of HCC patients in the discovery dataset

Table S3. Multiplicative differences, Student’s t-test p-values, and FDR values for unidirection-

ally differentially expressed glycopeptides (“progression markers”)
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Table S4. Multiplicative difference between NASH/control and HCC/control

Table S5. Glycan code and structure

Table S6. IPA analysis - top ten upstream regulators
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Figure captions

Figure 1. (a) Glycopeptide biomarkers in serum with progressive unidirectional changes in abun-
dance of control-, NASH- and HCC-samples (b) Probability score for samples from control-,

NASH- and HCC-subjects

Figure 2. Relative abundances of common glycoforms by fucosylation and sialylation in control-
, NASH- and HCC-samples. Columns indicate average relative abundances of glycans among the

glycoproteins being monitored

Figure 3. Normalized abundances of peptides and glycopeptides of A2MG in control-, NASH-
and HCC-samples. Columns represent average normalized abundances of individual A2MG gly-

copeptides.

Figure 4. Normalized abundances of A2MG glycoforms in healthy controls and HCC, respec-
tively, in discovery sample set (top panel). Normalized abundances of A2MG glycoforms in pa-

tients with benign hepatic masses and HCC, respectively, in validation sample set (bottom panel)

Figure 5. ROC curves generated using LOOCYV in validation training and test sets, as well as

applied to HCC and control samples in the discovery set

Figure 6. (a) Canonical pathways linked to proteins specified in Table 2 (IPA analysis). The hor-

izontal bars represent the negative logarithm function of overlap p-value (b) Network of the 10
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upstream regulator molecules statistically most significantly associated with genes encoding pro-

teins specified in Table 2 (IPA analysis)
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Table 1. Summary of samples used in the discovery and validation sets
Number of Age
subjects Male Female
Control (healthy) 56 26 30 23-91
NASH 23 10 13 45-70
Discovery HCC 19 15 4 32-85
Control (benign hepatic 52-71
mass) 28 16 12
Validation HCC 28 20 8 47-17
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Table 2. Glycopeptides displaying statistically significantly different abundances in both discov-

ery and validation sample sets

Healthy Benign he-
con- patic
tro/HCC | Healthy | Healthy | mass/HCC | Benign he- | Benign he-
(multipli- con- con- (multiplica- patic patic
cative dif- | trol/HCC | trol/HCC | tive differ- | mass/HCC | mass/HCC
Marker ference) | (p-value) (FDR) ence) (p-value) (FDR)
A2MG (1424) — 5402 1.57 <0.001 <0.001 1.2 0.01 0.214
A2MG (247) — 5200 0.65 <0.001 <0.001 0.62 <0.001 0.005
A2MG (247) — 5401 0.89 0.04 0.089 0.84 0.012 0.218
A2MG (55) - 5411 0.69 <0.001 <0.001 0.66 <0.001 0.007
A2MG (55) — 5412 0.67 <0.001 <0.001 0.67 <0.001 0.009
A2MG (869) — 5200 0.74 <0.001 <0.001 0.82 0.003 0.107
A2MG (869) — 6200 0.68 <0.001 <0.001 0.79 0.002 0.092
A2MG (869) — 6300 0.62 <0.001 <0.001 0.63 <0.001 0.005
A2MG (991) — 5402 0.72 0.001 0.004 0.61 <0.001 0.007
AFAM (33) — 5402 1.33 0.002 0.006 1.12 0.049 0.348
HPT (207 & 211) -
5401&5402 0.55 <0.001 <0.001 0.71 0.032 0.280
IGG1 (297) - 5411 1.54 0.037 0.078 1.28 0.047 0.340
A2MG —
AIGYLNTGYQR 1.26 0.014 0.036 1.95 0.003 0.107
A2MG —
TEHPFTVEEFVLPK 1.26 0.029 0.064 1.97 0.003 0.098
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